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1. Introduction 
 

Molecular magnetism is a multidisciplinary research field where chemists and 

physicists have to work side by side on the design and characterisation of smart 

building blocks for innovative devices. The wide playground of chemistry research 

provided a series of different molecular magnetic building blocks that have been 

classified depending on the different and peculiar properties. These archetypal 

systems ranges from the simplest organic radicals (ORs) featuring ferromagnetic 

behaviour in a non-metal based system, to the more complex, Single Molecule 

Magnets (SMMs) exhibiting a variety of properties including memory effect and 

resonant quantum tunnelling, but also more exotic systems such as, Valence 

Tautomers (VT) and Spin Crossover (SCO), which can be switched between a 

diamagnetic and a paramagnetic state by external stimuli. All of them are very 

fascinating materials due to their magnetic properties and scientists from various 

fields have joined the research on molecular magnetism in order to explore the 

unprecedented properties of these new compounds. In this thesis work we explored 

the organization in nanostructures of several classes of molecular systems with the 

perspective of promoting the development of the new technology of molecular 

spintronic where these magnetic molecules can be used as active building blocks 

modulating the charge and spin transport. Here below we briefly introduce the 

reader to each family of magnetic molecules investigated during this research 

activity. 

 

1.1 Molecular Magnetism from bulk to surfaces 

Organic Radicals (ORs) 

The interest in stable ORs origins from the presence of an unpaired electron 

localised in its function that one can use as efficient magnetic linker in molecular 

structures but potentially also in molecular devices exploiting the hyperfine 

interactions and the weak spin–orbit coupling. Organic radicals in fact are considered 

to be suitable media for spin transport;1 thanks to their stability, they could be 

assembled on surfaces and used for the development of molecular devices,2,3 

sensors4,5 and for non-volatile memory devices.6 A particular class of organic radicals 
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is constituted by the Nitronyl Nitroxide Radicals (NNRs) of general formula R-(4,4,5,5-

tetramethylimidazoline- 1-oxyl-3-oxide) where R is the substituent which changes 

from one radical to another.7 NNRs are purely organic paramagnetic molecules in 

which the unpaired electron is delocalized within an aromatic system including two 

N-O units.7,8 NNRs are characterized by a  S = 1/2 and they can be considered as the 

most simple magnetic molecules one can use to develop a hybrid system including a 

molecular magnetic layer and a magnetic surfaces. The unpaired electron in this 

system has stable in ambient conditions to be observed by conventional 

spectroscopic methods and in fact NNR can be isolated as pure compounds. 

Introduced by Ullman et al.7,9 they have been widely studied starting from the 

nineties as relevant molecular building blocks being considered as valid candidates 

in the development of organic magnets,10 but also for the design of Single Chain 

Magnets (SCMs)11 as well as for the development of nanostructured magnetic 

surfaces.12,13 Nanostructured NNRs molecules have been widely studied as 

monolayer14 assembled by wet chemistry techniques as well as sub-monolayer 

obtained by thermal sublimation15 (Figure 1). A characterisation by Scanning 

Tunnelling Microscopy (STM) has confirmed the high stability of NNR system and the 

retention of the unpaired electron. NNR  monolayers have been studied also by 

special STM-based tools based on the spin noise detection approach.16,17 

 

Figure 1. Chemical structure of the studied organic radical molecule (C28H25O2N4) High-
resolution topography, contour lines are at height intervals of 50 pm. The scale bar 
corresponds to 1 nm. 15 
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We mention here also that stable neutral organic biradicals recently attracted the 

interest of the community offering the possibility to study the tuning of the magnetic 

interactions through the appropriate design of a spacer and the biradical family.18  

Several recent studies have been focused on the possibility to deposit NNR or 

other radicals under HV or UHV conditions.19–25 Caro19 et al. demonstrated for the 

first time the possibility to thermally evaporate NNRs in UV condition on NaCl (001). 

X-Ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) revealed a 

highly ordered thin film with 2D spherulitic growth, which was unprecedented for 

molecular organic compounds. Recently, organic molecular beam epitaxy (OMBE) 

technique has been adopted to deposit a pyrene derivative of NNR in UHV conditions 

on several surfaces ranging from Au (111),20 TiO2(110), 21 and Al2O3(11−20)22 

identifying this system as a promising candidate for understanding thin film 

processes in purely organic-based magnets. Langmuir-Blodget technique has been 

also used to assemble functionalised radical molecules, including NNR, on various 

surface.26,27 We have demonstrated that it is possible to obtain a 2D regular structure 

of radicals using the Self Assembly Monolayer (SAM).14,28 Moreover, recent works 

have suggested that NNR function can be used to increase the spin polarisation of 

the current in molecular spintronics devices. 2,29  

In this thesis work we have focused our research on the realization of the first 

spin valve based on the use of NNR as a paramagnetic interface coupling the spin 

injection electrode La0.7Sr0.3MnO3 (LSMO) and the organic semiconductor (OSC) layer 

with the aim to modify the spin injection efficiency of the manganite substrate. 

 

Single Molecule Magnets (SMMs) 

SMMs are molecular clusters or paramagnetic complexes characterised, at 

cryogenic temperatures, by a high spin ground state coupled with an easy axis 

anisotropy leading to the observation of a magnetic hysteresis at molecular level.30 

This behaviour results from slow relaxation of the magnetisation at low temperature 

that arises from the coexistence of two oppositely magnetised states separated by 

an energy barrier. Each single molecule shows therefore a magnetic bistability, 

intramolecular interactions playing a negligible role. Due to their unique magnetic 

behaviour, SMMs are investigated as elementary units for high-density data storage 

applications, quantum computing and spintronics.31 The search for new SMMs with 
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higher anisotropy barriers is then accompanied by attempts of organising these 

molecules on surface where the addressing and the control of a magnetic state at 

the single molecule level is possible.32–34 The realization of SMM hybrid surfaces is 

not an easy task and became a critical issue like demonstrated for the dodecanuclear 

manganese complex (Mn12)35 where structural modifications induced by the 

substrate lead the molecules to lose their SMM character.36 The first relevant success 

in the preparation of a hybrid surface where the SMM character was retained, was 

achieved by chemical grafting37 a tetranuclear iron(III) complex38 functionalized with 

a specific molecular linker group able to bind a gold surface using a wet chemistry 

approach.  

SMM deposition has been achieved also using alternative techniques such as the 

electrospray beam deposition39 and the molecular thermal sublimation methods.40–

43 These methods overcome the limitation of the chemical grafting procedure but 

require the thermal stability of molecules. This aspect reduces the number of SMMs 

suitable for this type of deposition. Thanks to their high stability and flatness, 

terbium(III) bis(phathalocyaninato) (TbPc2) molecules, are probably the most studied 

SMM at the nanoscale.31,44–54 For instance Ying-Shuang and co-workers 

demonstrated that the TbPc2
 molecules can appear chiral and after deposition on 

Iridium (111) this property can be switched by applying an external stimuli with STM 

tip.55 This type of molecule is very suitable and can be functionalised with the pyrene 

in order to be grafted on graphene. This system has been characterised with Raman 

spectroscopy confirming the integrity of the system after wet deposition from 

solution.44   

 

Figure 2. Chirality of TbPc2 on Ir(111). STM images show two TbPc2 molecules which are 
initially chiral (a, c) and become achiral in an eight-lobed state (b) after switching.55 
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Thiele and co-workers showed the general feasibility of establishing an all 

electrical control of a single nuclear spin through use of the hyperfine Stark effect 

and the approach should be transferable to other spin qubit devices with a large 

hyperfine interaction.31 

In this work we present the results obtained adopting both the wet chemistry-

based functionalization and the thermal sublimation of TbPc2 complex. During the 

PhD we explored the deposition of this SMM on La0.7Sr0.3MnO3 a widely employed 

spin injection electrode, and on Silicon (100). This peculiar molecular system has 

scientific and technological interest due to its slow relaxation of the magnetisation 

at relatively high temperatures for SMMs (15 K) and several recent works have been 

focused on the study on the understanding of the magnetic interaction between this 

complex and several surfaces, being this a prerequisite to be able to exploit these 

hybrid architectures in spintronic devices.40,42 The control of the interaction between 

substrate and molecules could in fact open new perspectives for spintronics and data 

storage applications. On the other hand the surface interaction lead the SMM hybrid 

system some issues. When SMMs are organized in nanostructures on conducting 

surface a strong reduction of its magnetic hysteresis can be observed decreasing the 

richness of a SMM-based device.56,57 On the other hand this interaction has been 

observed to cause the occurrence of relevant coupling with magnetic substrates, 

whose  origin is still debated.40–42,45  For this reason our work has been focused not 

only in the evaluation of occurring interactions between the molecular layer and the 

magnetic electrodes but also in maintaining the SMM behaviour in the final 

environment selected to develop new devices.  

 

Valence Tautomers (VT) 

The reversible conversion of the electronic state of switchable coordination 

systems at the single molecule level promises breakthrough outcomes for 

information storage and processing technologies.58 In particular, the control of 

length and direction of the spin in paramagnetic switchable molecules represents a 

key feature to be used in quantum computation and nanosized spintronic 

applications.59,60  

The class of compounds named Valence Tautomers (VT) comprises switchable 

compounds where an intermolecular redox isomerism occurs with a charge transfer 
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between a redox active ligand and a metallic centre thus leading to an entropically 

driven equilibrium between two molecular states that usually are distinguished by 

different colour, different magnetic behaviour and different refractive index. The 

conversion between these two states can be promoted by changing temperature but 

also with external stimuli like pressure variation or light irradiation.61–63 Excluding the 

work described in this thesis work, in literature only one paper is present where 

chemically grafting strategies have been applied on Valence Tautomers. In this paper 

VT molecules have been chemisorbed on gold nanoparticles and small variation in 

the behaviour has been observed. That has been justified by the role of the solvent 

and by surface confinement effects thus highlighting that VT effects can be “tuned” 

by nanostructuration.64 

Two cobalt-dioxolene complexes featuring a VT behaviour have been investigated 

in this thesis work. These coordination compounds are the simplest molecular 

systems displaying VT and have been modified here to promote their chemisorption 

on surface, the first step toward the realization of VT-based spintronic devices. Being 

in fact the retention of switchability in molecular-inorganic architectures obtained 

by the regular assembling of molecules on conductive surfaces a mandatory step 

towards their implementation in hybrid devices. In this thesis we focused the study 

on the deposition process of VT on gold surface paying attention to the retain of 

switchability after the deposition process. In particular we adapted the investigation 

tools often used for other magnetic molecules to VT systems demonstrating that also 

in-house apparatus can be used to study the VT process at the nanoscale. 

 

Spin Cross-Overs (SCOs) 

SCOs are another class of bistable molecules in which the reversible conversion 

between a low spin and a high spin state can be induced by a temperature variation, 

a light irradiation or other external stimuli.65 In the literature several successful 

attempts of nano-structuration of SCO materials are present.66–68 In these complexes 

switchability arises from the control of the spin state of the metal centre and these 

experiments confirmed the feasibility of obtaining bistable nano-assemblies of SCO 

systems like thin films and nanoparticles.66,67 These studies, however, highlighted the 

non-innocent role played by the interaction with the surface in modifying the 

thermodynamics of the SCO equilibrium.66,69 In particular, the deposition of sub-
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monolayers of SCO systems on solid surfaces using ultra-high vacuum sublimation 

approach evidenced a strong influence of the substrate-molecule interaction on 

their switchability properties: while on Highly Oriented Pyrolytic Graphite supported 

SCO system preserves its bulk phase switchability features,70 sub-monolayer 

deposits of several SCO systems on metallic substrates show the loss of their original 

SCO behaviour .71–74 Indeed Miyamachi et al.71 have reported the reversible switching 

of individual [Fe(phen)2](NCS)2] molecules by an STM tip between two high- and low-

conduction states, which they assigned to the HS and LS states, respectively (Figure 

3).  

 

Figure 3. STM image of isolated [Fe(phen)2](NCS)2]molecules on a CuN/Cu(100) surface with 

HS) a) and  (LS) b) conformations and corresponding height profiles (c) along the 
molecular long axis acquired before and after the switching event.71 

Switching to the HS(LS) state of the molecular junction was achieved by applying 

a certain threshold bias of negative (positive) polarity. Interestingly the effect was 

observed only when the molecules were decoupled from the metallic Cu(100) 

substrate by a thin insulating CuN layer highlighting the crucial role of the molecule-

substrate interaction. 

The SCO molecules studied in this thesis work are robust and chemically stable. 

We have demonstrated that they can be thermally evaporated to promote the 

interaction with surfaces. Additionally, the system investigated in this thesis features 

photomodulation of SCO properties: light irradiation at room temperature induces a 
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transformation in the chemistry of the ligand causing the SCO transition, 75 that has 

been here confirmed to occur also at the nanoscale.  

 

1.2. Spintronics and molecular spintronics 

The discovery of a Giant Magneto-Resistance (GMR) effect in nanostructures76 

has led to the new research field of Spintronic,77 namely the use of spin state 

transport instead of charge transport as a new kind of electronics. The electron spin, 

has only two possible configurations (up or down), lending itself to the 

implementation of binary codes. The GMR effect consist in a “giant” variation in the 

resistance when two ferromagnetic layers (FM) separated by a non-magnetic 

conductive layer have their relative magnetisation paralely or antiparallely aligned. 

In GMR the conduction through this spacer is diffusive or ballistic, while, if the two 

ferromagnetic layers are separated by a thin insulator, the conduction occurs 

through quantum mechanical tunnelling effect. This magneto-resistance effect 

occurs when the insulating layer is only a few atomic layers in thickness. In this case 

there is a non-zero probability for the electrons to quantum tunnel through the 

insulating barrier and the effect is named as Tunnelling Magneto-Resistance (TMR). 

Its use in non-volatile Magnetic Random Access Memories (MRAM) has made TMR 

technology dominant over the GMR sensors. TMR is a pure interface effect and does 

not require spin transport in the non-magnetic layer.78 TMR originates from the 

difference in the Density Of State (DOS) at the Fermi energy between spin-up and 

spin-down electrons. They can tunnel only from a given sub-band in the first FM layer 

to the same sub-band in the second FM layer, because of the conservation on the 

spin orientation. Most employed devices has a sandwich structure where, between 

two ferromagnetic electrodes, a non-magnetic material is placed. They are referred 

as Spin Valve (SV) and Magnetic Tunnel Junction (MTJ), when the non-magnetic 

material spacer is a semiconductor and a thin insulator (few nanometres), 

respectively.  

One of the most challenging aspect in spintronic is an efficient transfer of spin 

polarisation.79 The injection depends not only on the individual materials properties, 

but also on the interfaces.80 This aspect has become relevant when the inorganic 

metals and semiconductors constituting the interlayer between the two electrodes 

have been replaced by a molecular layer. A newer field of research, the organic 
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spintronics,81 has been in fact developed by following the interesting results obtained 

in organic electronics with molecular systems acting as charge carriers (organic 

semiconductors) leading to well-developed devices like organic light emitting diodes 

(OLED) and organic photovoltaic cells (OPV). Using a molecular layer as interlayer the 

versatility of chemistry can be fully exploited to improve and tune the transport 

effect.  

Noticeably, the transport efficiency of the device is dominated by the resistance 

of the spacer and this aspect become particularly relevant for organic spintronics, 

since most organic materials are less conductive than the FM contacts.79 A bypass to 

this problem has been achieved by introducing a large spin dependent resistance: i) 

placing a tunnel barrier between the FM contact and the spacer or  

ii) using of a fully spin-polarized ferromagnetic material, like lanthanum strontium 

manganite La0.7Sr0.3MnO3 (LSMO).  

Dediu and co-workers reported the first example of a molecular spin-valve 

observing a magneto-resistance at room temperature using both LSMO electrodes 

(Figure 4a).82 The architecture was based on lateral spin devices where two 

ferromagnetic LSMO electrodes patterned by electron-beam lithography were 

bridged by a sexithiophene channel (Figure 4a). The archetypal molecular spin valve 

is a vertical device constituted by a bottom LSMO electrode, an OSC layer such as 

Al(III) tris(8-hydroxyquinoleine), Alq3, acting as spin carrier, an AlOx interlayer 

enrolled as tunnel barrier (not shown) and a metallic cobalt upper electrode (Figure 

4b).83,84 

 

Figure 4. a) Lateral spin device as published by Dediu et al.82 In this device, two 
ferromagnetic LSMO electrodes patterned by electron-beam lithography bridged by a 6T 
channel; b) Schematic of a typical vertical molecular spin valve.84 
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In a molecular spin valve the LSMO contact is used as spin injector and the cobalt 

as spin detector. The cobalt magnetic layer is a soft magnetic material and its 

magnetisation can be easily changed by the application of a small magnetic field, or 

applying a voltage, while the LSMO layer is a hard magnetic material and its 

magnetisation is insensitive to moderate fields. In a molecular spin valve the distance 

between the FM contacts is very important, and to works properly, it should be 

smaller than the spin relaxation length,85,86 thus evidencing that the conductivity of 

the OSC is a crucial point but even more important is the spin lifetime that is reduced 

if spin-orbit coupling effect occurs. Purely organic materials are attractive for 

building molecular spintronic devices because of their long spin relaxation lifetime 

(between a few milliseconds and a second).  

A systematic understanding of these aspects is still lacking and there is a lot of 

unexplored aspects, though, for instance, it has been observed that a thin insulating 

layer (like AlOx) deposited between the magnetic electrodes and the organic 

materials help to improve the device reproducibility and increase the MR. It is still 

not clear if this is connected to the suppression of surface states within the band-

gap or to the reduction of the transition metal inter-diffusion into the organic layer 

or to the reduction of the resistance mismatch.87 

Molecular spintronics is an extension of the organic spintronics, in which the OSC 

is replaced by a multifunctional molecular material with non-linear magnetic 

properties. The tunnelling probability of electrons will depend also on the specific 

and tuneable properties of the molecular layer such as a variable tunnel barrier of 

the material. It has been noticed that a spin filter junction with a ferromagnetic88,89 

semiconductor can promote a spin-polarized flow of tunnelling electrons. Using 

magnetic molecules deposited at the spin injection interface, one can imagine to 

develop newer devices where molecules, with metastable states related to the 

position of the magnetisation, could tune the spin injection. On the other hand it is 

also expected that the use of magnetic molecule can not only increase the spin 

injection gain, but also that magnetic molecules with a high spin state can act as 

molecular spin selector layer. In this way, by using a single layer of molecules it will 

be possible to select the spin direction of electrons without the use of spin injection 

electrode but simply acting on the molecular layer.  

In the frame of the wide research field briefly described above, during this PhD 

thesis we have explored the possibility to use multifunctional magnetic molecules as 
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active interfaces for spintronics devices. The persistence of the molecular magnetic 

behaviour after deposition on non-magnetic and ferromagnetic electrodes is 

however a crucial point for any further development and it has been the main focus 

of this thesis work. 

The thesis is organized as outlined in the following. Chapter 2 is devoted to a 

chemical investigation of the LSMO spin injection electrode focusing on the 

composition of the termination layer, the adsorbing site for a molecular layer and 

point out important information using a combination of in-house technique flanked 

by DFT calculations. Then in the same chapter we described a new protocol for 

assembling simple organic chain on the LSMO surface: important study finalized to 

the realization of the first spin valve based on magnetic molecules, functionalizing 

the LSMO surface with NNR and observing relevant magneto-resistance also when a 

paramagnetic layer is present. After that we moved on the investigation of the 

magnetic behaviour of a TbPc2 complex on the same substrate (LSMO) but with two 

different deposition technique. In particular we focused our attention on the 

alteration of the magnetisation dynamics of [TbPc2]0 depending on the deposition 

protocol (i.e. via sublimation and via wet chemistry).  

The chapter 3 is dedicated to the grafting of functionalized [TbPc2]0 molecules on 

silicon surface. A synchrotron characterisation evidenced an enhancement of the 

magnetic bistability of the complex due to the stabilization of cationic species of the 

complex by surface effects. This hypothesis was confirmed with a rigorous XPS 

characterisation of the complex. This rare behaviour makes this hybrid surface 

suitable for advanced spintronic applications as spin injection molecular layer.  

Chapter 4 is devoted to the study of three optical switchable systems, two based 

on cobalt, dioxolene and ancillary ligands featuring a VT behaviour and the third on 

a SCO system based on an iron(II) complex with 1- pyrazolyl ligands. The first system 

is a cobalt dimer with a general formula [CoLn-dioxo-R-dioxo-CoLn] we used it to 

test an in house analysis at the nanoscale to fasten also the selection of VT 

candidates for molecular spintronics. The second one is a cobalt monomer 

[CoLndiox] opportunely functionalized to be able to chemisorb it on a gold surface 

forming a monolayer with a VT behaviour. This is the first study, in our knowledge, 

based on a VT system chemically grafted on conductive surface that retains its redox 

isomerism. The transition in temperature was followed by in-house XPS as well as by 

synchrotron-based X-ray absorption spectroscopy (XAS) analyses at the nanoscale. 
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This unique behaviour of [CoLndiox] complex opens the possibility to introduce this 

system in a molecular spin vale where the properties could be modulated through 

light irradiation. The third complex belongs to class of SCO and is a very attractive 

system because of the presence of a diarylethene unit as ligand. The reversible 

modification of the ligand structure under UV-visible light modifies the ligand-field 

at room temperature thus promoting the conversion of the system from an high-spin 

configuration to diamagnetic low- spin at the coordinated Fe(II) ion. The reversible 

photoswitching of the spin states has been performed on surface after thermal 

deposition and monitored through magnetometry as well as by XPS at the Fe2p edge, 

though synchrotron based experiments remain a key tool for the investigation of 

these complex magnetic nanostructure and have been widely employed throughout 

this thesis work. 
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2. Assembling magnetic molecules on 

LSMO the electrode 

In this chapter we describe our research activity having as final aim the realization 

of a vertical Spin-Valve including magnetic molecules. In particular we selected as 

starting substrate the ferromagnetic mixed oxide La0.7Sr0.3MnO3 (hereafter LSMO), 

already introduced in the previous chapter, which is one of the most used electrodes 

in this class of spintronic devices.  

In the last years the electronic and magnetic structure of interfaces formed 

between an organic π-conjugated semiconductor and a ferromagnetic layer has 

been investigated for a large variety of systems.1 Among the results, it has been 

shown that the formation of hybrid states with magnetic properties, or specific 

exchange interactions, has a clear impact on spin injection across the interface. This  

topic has a  huge interest for both fundamental and applicative research related to 

organic-inorganic devices like magnetic tunnel junctions, spin valves, memristors and 

others, whose performance is strongly affected by the boundary region between the 

organic and inorganic phases.2–8 Most important achievements have been hitherto 

obtained by interfacing organic materials with complex ferromagnetic metal oxides, 

in particular with the LSMO, whose large spin polarisation of the surface (nominally 

100% at zero temperature), and its good stability under different conditions, may 

represent a significant advantage with respect to the use e.g. of 3d FM thin films.7  

Using molecules as building blocks for electronic devices offers ample possibilities 

for new device functionalities due to a chemical tunability much higher than that of 

standard inorganic materials. As mentioned earlier, monolayers of magnetic 

molecules are attracting broad interest thanks to their potential technological 

applications as building block units in new devices for data storage and molecular 

spintronics.9 SAM-based strategies 10 are among the most used techniques to 

achieve a bidimensional organization of molecules absorbed on surface but a 

prerequisite of the SAM formation is the presence of a functional group suitable to 

bind to a specific surface. According to this, focusing on the LSMO surface we had to 

design a specific coordination strategy to promote chemisorption of magnetic 

molecules on this manganite surface. 
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Before proceeding with this task it is important to know the surface properties of 

LSMO electrodes including the stoichiometry of the topmost layers of this substrate, 

which is expected to exhibit relevant deviation from bulk stoichiometry thus altering 

reactivity and magnetism of the surface and consequently the interaction with 

magnetic molecules deposited on it. 

 

2.1 Surface chemistry of LSMO  

The composition of the termination layer in manganites is clearly a key issue for 

interfaces prepared in vacuum environment and is equally relevant for innovative 

devices prepared from self-assembly in solution, where molecules are designed to 

be chemically grafted on the electrodes.11  

 

Figure 1. Unit cell of LSMO. 

In the unit cell of La1-xSrxMnO3 (Figure 1) the manganese atom (green) is 

surrounded by an oxygen octahedron (red). The atoms at the yellow sites can be 

either lanthanum or strontium. The surface of oxide ferromagnetic electrodes 

requires a detailed characterisation because the stoichiometry of the perovskite-

structured LSMO surface may deviate significantly from the nominal values, thereby 

affecting the surface magnetic properties e.g. by the generation of a magnetically 

dead layer or a complex magnetic configuration.12,13 Previous studies evidenced that 

the surface of La1-xSrxMnO3 thin films is usually enriched in strontium over a wide 

range of the temperatures and oxygen partial pressures chosen for the film growth 

and regardless of the sign or magnitude of strain induced by the growth 

substrates.14–17 This condition has been observed, e.g. by X-ray electron 

spectroscopy techniques, independently of the stoichiometry of the LSMO films as 

well as for other LaxAyMnO3 (A=Sr,Ca,Pb) manganites.18–20 In particular, for the 

topmost layers different situations have been proposed. It has been suggested that 
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the Sr segregation is responsible for a significant restructuring of the LSMO surface 

region through the formation of a Ruddlesden Popper phase, i.e. (La,Sr)n+1MnnO3n+1 

with n=1, or for  the formation of a uniform strontium oxide (SrO) monolayer.21,22 

However other studies performed for LSMO films of different composition and on 

different substrates suggest also the presence of a MnO2 terminating atomic layer.23–

25 It has been recently shown that for LSMO thin films of few nanometers the 

termination layer depends also on the nature of the substrate.26   

For this reasons we performed a detailed analysis of the surface chemical 

composition of LSMO epitaxial thin films (thickness 40 nm) grown on NdGaO3(110) 

by Channel Spark Ablation (CSA). These substrates have been provided by the group 

of Dr. Valentin A. Dediu of the ISMN-CNR in Bologna. 

The combination of Low Energy Ion Scattering measurements (LEIS), a technique 

extremely sensitive to the chemical composition of the topmost surface layer (see 

Chapter 5.2.), and Angular-Resolved X-ray Photoemission Spectroscopy (AR-XPS. 

Chapter 5.4.1) have been used in this thesis to define the LSMO surface 

stoichiometry. While the latter technique  has been already used  to determine the 

Sr/La concentration profile of the LSMO film from the surface to the bulk,27,28 the use 

of LEIS is practically unprecedented on this type of materials.  

Before any surface investigation, we developed a specific cleaning procedure of 

the LSMO thin films consisting in a sonication in acetone and 2-propanol for 10 min 

followed by an annealing in ultra-high vacuum (UHV) at 523 K and at pressure lower 

than 10−9 mbar for 30 min. This procedure assures the removal of water and other 

volatile contaminants from the surface.  

 

Figure 2. XPS spectra of LSMO in C1s and Sr3p3/2 regions before and after annealing 
procedure, respectively; C components are filled in violet and Sr in green. 
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This cleaning procedure was validated in situ by means of XPS spectroscopy. From 

a comparison between XPS spectra (Figure 2) in the region of C1s and Sr3p3/2, 

acquired before and after annealing, we found that the ratio between the areas of 

adventitious carbon to that of strontium decreased from 7.53 to 0.73 with our 

treatment, confirming its efficiency.  

Additionally an STM investigation carried out on a LSMO after this cleaning 

process (Figure 3) evidenced a sort of “grain-like” surface with average height of ca. 

1 nm with RMS roughness of 0.29 nm, with most outgrowths showing lateral 

dimension of ca. 1.5 nm. 

 

Figure 3. STM images of 12 nm LSMO on STO; 100x100nm2
 (a) and 30x30 nm2

 (b) both 
acquired with 50mV bias and 40pA of current. 

We notice that being the available LSMO surface characterized by this roughness 

high resolution imaging of the adsorbates we planned to chemisorb on it will not be 

possible. 

 

2.1.2 LEIS characterisation of the LSMO surface 

The LEIS spectra were acquired in the UHV system described in Chapter 5.2. The 

scattering data were recorded using a He+ ions accelerated at 1 keV on the LSMO 

film surface and the resulting spectra are shown in Figure 4. Primary He+ ions were 

chosen in order to reduce the sputtering efficiency, thus permitting a soft depth 

profile analysis of the material. The small evolution of the LEIS spectra across the 

whole sequence indicates negligible alteration of the stoichiometry through 

sputtering by the He+ ions at the imposed energy, confirming that they are fully 

indicative of the chemical composition of the topmost layers. The assignment of each 
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peak to the elements of the surface is achieved by evaluating the final kinetic energy 

Ei of the backscattered ions using the scattering equation for elastic collision events 

(Chapter 5.2, Eq. 13). On the basis of the above mentioned equation, the most 

intense peaks can be assigned to oxygen (400 eV), manganese (756 eV) and 

strontium (822 eV) respectively. 

 

Figure 4. LEIS spectra for LSMO film surface (He+, 1000 eV) as a function of time.  

The peak of lanthanum, expected in this case around 903 eV, shows up as a very 

small shoulder nearby the Sr peak, and increases very slightly along the sequence of 

the spectra despite the high differential scattering cross-section of La. This can be 

justified only considering that La is not present on the topmost layers of the surface.  

Although the use of LEIS technique to extract chemical composition of the surface 

is not employed as routinely as for XPS, a semiquantitative indication of the surface 

stoichiometry can been achieved by estimating the differential cross-section for each 

element according to literature procedures.29 The peaks areas were evaluated after 

subtracting a linear background. The differential cross-sections of the investigated 

elements, estimated by adopting a Thomas-Fermi-Moliere interacting potential and 

using the “Magic Formula” by Ziegler, Biersack and Littmark ,30 were used to correct 

the contribution of the different element in the LEIS spectra and then to evaluate 
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the elemental composition (see chapter 5.2).30 It turns out that the composition of 

the topmost layer of the sample strongly deviates from the La0.7Sr0.3MnO3 bulk 

phase, as shown in Figure 4 by the bars indicating the relative amount of the LSMO 

ion species for the first LEIS spectrum. We notice that the lack of an adequate 

standard for each element and the strong matrix effect in the scattering 

phenomenon, combined with the difficulties in background subtraction, does not 

allow a precise estimation of the uncertainty for our analysis. However, despite the 

limitations of this approach, a large disproportion between the amount of atoms of 

La and Sr in favour of the latter is achieved. In the first scan, considering also the 

contributions by oxygen and manganese, we obtain a nominal stoichiometry of 

La0.07Sr1.89Mn1.12O1.93. This result is confirmed along the whole series of the spectra, 

the peak intensities varying not more than 5% from their initial value. In particular, 

the La content, although slightly increasing with the sputtering time, remains very 

far from the bulk value of 0.7 reaching at the end of spectra series (15 scans) a 

nominal stoichiometry of La0.12Sr1.79Mn1.07O2.03. In Table 1 is reported the variation of 

surface stoichiometry for each LEIS scan in function of the time.  

Table 1. Variation of surface stoichiometry during LEIS measurements as a function of time. 
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Further information about the change of the stoichiometry from the surface to 

the bulk region may be achieved through LEIS measurements by increasing the mass 

and the kinetic energy of the primary ions. Figure 5 shows a set of LEIS spectra 

measured on a fixed area of the sample, in which Ne+ ions were used as probe, and 

their energy was gradually varied from 600 and 1500 eV, followed by a last spectrum 

with the initial energy (Ei
0=600 eV). La, Sr and Mn peaks have been identified (in 

agreement with Eq. 13, Chapter 5.2) and the element percentage was evaluated. 

With these conditions, the peak of Mn is only visible for the higher energies, while 

oxygen cannot be detected due to its low mass with respect to Ne. A strong increase 

in the La/Sr concentration ratio is observed by increasing the energy of the primary 

beam and the associated sputtering efficiency of the Ne+ ions, thus providing 

qualitative indications on the depth profile of the chemical composition. The La/Sr 

ratio varies from 0.25 at the lowest energy towards an almost stoichiometric value 

of 1.5 for the highest employed energy, as shown in the inset of Figure 5.  

 

Figure 5. LEIS spectra measured using Ne+ as primary source with kinetic energy varied from 
600 eV to 1500 eV and back to 600 eV on the same position of the sample surface. Color 
code indicate the different kinetic energy. The positions of the La, Sr and Mn peaks are 
indicated by dashed and red straight lines, respectively. 
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In Figure 5 are reported the LEIS spectra obtained using different kinetic energies 

of the Ne+ ions. La and Sr related signal are clearly identified in each spectrum, Mn 

is evident only at high energy while the oxygen signal is not visible within this primary 

energy range. The increased La/Sr ratio observed for Ei
0=600 eV in the last spectrum 

of the series with respect to the first one supports this analysis. Such evidences are 

in strong agreement with a small content of La on the topmost layer of the LSMO 

film and confirm that the topmost layers of LSMO are constituted almost exclusively 

by strontium and manganese oxides, while a gradual enrichment in La is observed 

sampling at increasing depth. Moreover, the presence of Mn on the surface denotes 

a situation different from the case of a termination layer containing exclusively of 

SrO proposed in Ref. 22, an information strictly related to the spin injection efficiency 

of our LSMO electrodes across the boundary with the organic layer. It is noteworthy 

that this evidence through LEIS measurements is very direct and unprecedented in 

the wide literature on the subject.23,24 

 

2.1.3 AR-XPS characterisation of the LSMO surface 

In order to confirm LEIS data we have investigated LSMO by AR-XPS 

measurements, collecting core-level spectra representative of all elements at 

different take-off angles to vary the sensitivity from the bulk to the surface regions.28 

This approach has been successfully utilised in the past for several studies focused 

on the investigation of surface segregation in manganite systems.18–22 The changes 

of the spectral line-shape for each element through the comparison of spectra 

recorded at =0° (normal emission) and =60° (grazing emission) are reported in 

Figure 6. In the case of Mn2p and La3d no significant angular dependence of the line 

shape is observed, while in the spectral regions of O1s and Sr3d an evolution with 

the angle is clearly detected. The spectral features were recognized by fitting the 

core level peaks with pseudo-Voigt curves for each component in the spectrum, 

while the inelastic background was subtracted by the Shirley method. The O1s 

lineshape, in agreement with previous investigations, consists of two components, 

one at 528.4 eV (filled in orange) attributable to oxygen in bulk LSMO phase, and the 

other at 530.4 eV (filled in violet), attributable to the outmost layers of the film, as 

the intensity of the latter component increases with increasing take-off angle.31 
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Figure 6. Comparison between core level spectra taken at normal (=0°, black) and grazing 

take-off angle (=60°, red). The intensity of the (a) La3d and (b) Mn2p spectra was 

normalized to better compare the line-shapes. (c) Sr3d peaks for =0° (top) and =60° 
(bottom); in both spectra green and blue area are relative to bulk and surface components, 

respectively. (d) O1s peaks for =0° (top) and =60° (bottom); bulk and surface components 
are indicated in orange and violet, respectively. 

Within the experimental resolution, there is no evidence of further contributions 

related to surface contaminations, thus indicating a surface quality similar to that of 

single crystals cleaved in vacuum. In analogy to what observed by several authors, 

the Sr3d peak is well described by two doublets with spin-orbit splitting 1.79 eV and 

full width half maximum 1.7 eV. The component at lower binding energy (Srbulk) is 

attributed to strontium contribution from bulk LSMO, while the other (Srsurface) is 

related to states located near the surface. The dependence of the Srsurface/Srbulk ratio 

on the take-off angle ranges from 0.07 at 0° to 0.42 at 60°, thereby indicates large Sr 

enrichment in the top LSMO unit cells and the presence of SrO regions. The presence 

of La and Sr amounts at the surface region different from the bulk, in agreement with 

the LEIS results, is evident looking at the angular dependence of the Sr/La ratio 
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evaluated from the intensities of the Sr3d and La3d peaks, shown in Figure 7, which 

is increasing with the emission angle, as expected for Sr enrichment close to the 

surface. If the relative concentration of Sr with respect to that of La were 

independent of the depth into the sample, the Sr/La ratio would have been roughly 

constant. The strict correlation between the intensity of Sr and La peaks is indicative 

of Sr segregation involving mostly the substitution of the La ions in the LSMO lattice. 

Accordingly to previous similar studies,21 the Sr/La intensity ratio has been used to 

evaluate quantitatively the deviation of the La and Sr composition from the bulk by 

fitting the data with the formula:  

                                      𝑹 =  
𝝈𝑺𝒓

𝝈𝑳𝒂

𝑻𝑺𝒓

𝑻𝑳𝒂

∑ 𝒇𝒊
𝑺𝒓𝒆

(−𝒊𝒅
𝝀𝑺𝒓 𝐜𝐨𝐬(𝜽)⁄ )

𝒊

∑ 𝒇𝒋
𝑳𝒂𝒆

(
−𝒋𝒅

𝝀𝑳𝒂 𝐜𝐨𝐬(𝜽)⁄ )
𝒋

 ( 1 ) 

in which  is the emission angle with respect to the surface normal,Sr(La) is the 

photoionization cross section, TSr(La) is the transmission coefficient of the analyser, 

Sr(La) is the inelastic mean free path of the emitted electrons and fi(j)
Sr(La) is the atomic 

fraction of Sr and La, respectively.28 Apart for the atomic fraction of the Sr and La 

ions, the other quantities were recovered from the literature: the cross sections for 

the excitation energy of 1253.6 eV (Mg K) were taken from Ref.32, while the mean 

free paths of the electrons in the LSMO were calculated according to the TPP-2M 

formula,33 and the transmission coefficient of our electron analyser varies as the 

inverse of the kinetic energy of the emitted electrons. We use the following values 

for the Sr3d and La 3d core levels: Sr = 5.29, La = 44.74, Sr = 2.0 nm, La = 1.0 nm. 

The interlayer spacing d is assumed to be 0.389 nm. The Sr and La atomic fractions 

were fitted, following the approach adopted in previous AR-XPS studies, by assuming 

for Sr an exponential segregation profile, while the La amount was correlated to the 

Sr value through the formulas: 

                                                         𝒇𝒊
𝑺𝒓 =  𝜶 +  𝜷𝒆−𝒊𝒅

𝜸⁄
    ( 2 ) 

                                                         𝒇𝒊
𝑳𝒂 = 𝟏 −  𝒇𝒊

𝑺𝒓  ( 3 ) 

where  is the bulk fraction of Sr in the material (nominally 0.3 in our case),  and  

are two parameters reflecting the excess of Sr across the lattice. 
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Figure 7. Squares: experimental values of the Sr3d/La3d intensity ratio vs. take-off angle. 
Solid line: best fit corresponding to the atomic concentration profiles of La and Sr shown 
in the inset. Details of the fitting procedure are reported in the text. 

The curve shown in Figure 7 obtained from the fitting analysis, giving the values  

= 0.56 and  = 0.46 nm, denotes a good agreement with the experimental data. The 

corresponding distributions of the La and Sr atomic fractions, reported in the inset, 

show the prevailing presence of Sr in the surface layer of the lattice model while the 

nominal stoichiometry is almost completely recovered since the first underlying 

layer. This result provides a detailed characterisation of the Sr concentration profile 

in LSMO films deposited by CSA.  

To shed further light on the topmost layers composition, and to support the 

experimental results, we performed periodic DFT calculations using a mixed 

Gaussian and plane waves approach (GPW) on several surface models. This 

theoretical study was part of Dr. S. Ninova PhD thesis.34 We built surface models with 

[MnO2] and [LaSrO] termination layers, shown in Figure 8, where the use of square 

brackets indicates the topmost layer. The slabs were modelled with a homogeneous 

distribution of the Sr ions and different termination layers ([MnO2] and [LaSrO]), as 

well as with two other different models to reproduce the Sr segregation on the top 

layer, labelled as [LaSrO-nograd] and [LaSrO-grad], respectively. 
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Figure 8. Upper part: The surface simulation cell (on the right) next to the model used 
for bulk and surfaces; bottom part: a schematic representation of the Sr ions distribution 

on the different (LaSrO)-layers. The Sr-ions are in yellow, and the La-ions in green. 

The so called energy surface, Esurf, can be used as a criterion to give an estimation 

of the surfaces stability. In our case, surface energies have been computed for all the 

different surface models using the following equation: 

                                                     𝑬𝒔𝒖𝒓𝒇 =
(𝑬𝒔𝒍𝒂𝒃 − 𝑬𝒃𝒖𝒍𝒌)

𝑨𝒔𝒖𝒓𝒇
⁄                                        ( 4 ) 

where Asurf is the surface area and for Ebulk we considered the energy computed for a 

homogeneous Sr bulk distribution in a 773 periodic supercell. The main indication 

arising from such a comparison is that the displacement of the Sr ions towards the 

surface lowers the Esurf term (see Table 2). In particular, a Sr gradient distribution 

presents the lowest Esurf term. These results support the experimental data, which 

suggest that La depletion is an energetic favourable process leading to a Sr 

segregated surface. 
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Table 2. Surface energies, Esurf computed at the DFT level. 

Surface Model Esurf 
a, (Jm-2 ) Esurf 

b, (Jm-2 ) 

[MnO2] 2.853 2.861 
[LaSrO] 2.633 2.644 
[LaSrO-nograd] 2.369 2.379 
[LaSrO-grad] 2.334 2.344 
 

a Esurf computed without surface dipole correction.  
b Esurf computed with surface dipole correction.  

 

This multi-techniques approach suggests that the description of the terminating 

layer of LSMO films deposited on NdGaO3(110) substrates by CSA should take into 

account the presence of a Sr and Mn rich oxide phase on the surface. LEIS can be 

fruitfully used as an additional tool for the straightforward investigation of the 

surface elemental composition of this material largely employed as spin valve 

electrode, thus opening the possibility of a deeper understanding of the properties 

LSMO-based spintronic devices and for the molecular functionalization of the LSMO 

films. The Sr segregation, although looking unavoidable in such complex oxide 

systems, in this case is limited to the topmost layers.  

Once defined the chemical surface composition of LSMO spin injection electrode 

the next step for the realization of a spin valve device based on the chemisorption of 

magnetic molecules, is the deposition of these systems on the surface. However 

before the realization of a Spin-Valve device using wet chemistry and magnetic 

molecules, we considered an additional preliminary study focused on the grafting of 

simpler diamagnetic systems on surface. 

 

2.2 2 Chemisorption of simple aliphatic systems on LSMO 

Before the grafting of NNR and TbPc2  we carried out a preliminary study to find 

the best procedure of the chemisorption, being the literature on LSMO 

functionalization11 limited to only one article. In that work the grafting of an alkyl 

phosponic acid on LSMO is reported, even if the procedure used is not described in 

detail. In this thesis we considered as suitable linker groups for LSMO phosphonic 

acid and dietyl-phosponate moieties. These functional groups can be able to tether 

LSMO due to their known capacity to chemically bind metal oxides. In particular as 
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testing systems we employed the diethyl 12-iodododecyl-phosphonate (1) and 12-

iodododecyl-phosphonic acid (2) systems reported in Figure 9. We decided to test an 

ethyl phosphonate and a phosphonic acid being available several articles describing 

the use of the latter system as linkers of nanoparticles based on metal oxides.35–37 

Considering that the acid functionalization cannot be compatible this SMMs or NNRs, 

we decided to test also the less commonly employed ethyl esters of the phosphonic 

acid.38,39  

 

Figure 9. Diethyl-12-iodododecyl-phosphonate (1) and 12-iodododecyl-phosphonic acid (2). 

The iodine functionalization present in both the two molecules has been selected 

in order provide an internal marker in XPS investigations. This aspect is very 

important because the XPS P2p peak at ca. 132.9 eV,40 that could indicate the 

chemisorption of the molecule, is hidden by the Sr3d  peak at ca. 133.5 eV40 present 

in the LSMO substrate, making almost impossible the phosphorous identification. On 

the contrary the I3d peak, not overlapping to other signals, can be used to estimate 

the molecular content at the surface even if no direct indication can be inferred on 

the occurrence of a real chemisorption. 

2.2.1 XPS characterisation of bulk alkyl systems 

Before testing the grafting of 1 and 2 on LSMO surface a bulk characterisation of 

those molecules was planned. However we limited this characterisation only to 

compound 2 being the former too volatile to be easily measured in bulk without 

damaging the UHV environment of the XPS chamber. In Figure 10 are reported the 

XPS spectra of 2 in the bulk phase. In particular from the analysis of the selected 

regions of interest it is possible to distinguish the peak of P2p at 134.2 eV40 and the 

presence of iodine peak at 620.1 eV with a spin-orbit splitting(ΔESO) of 11.5 eV. 40        
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Figure 10. XPS spectra of 2 in bulk phase. 

InTable 3 are reported the semiquantitative analysis of 2 drop cast on gold and the 

percentage are close to theoretical one especially for the P/I ratio.  

Table 3. Semi quantitative analysis of 2 in the bulk phase. 

 I 
3d 

 C 1s  P 2p  O 
1s 

 

 %  %  % P/I  %  
2 7.1  67.4  6.9 0.9  18.7  

Theoretical 5.9  70.6  5.9 1  17.6  
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2.2.2 XPS characterisation of the alkyl monolayers  

The following chemisorbed monolayer of 2 on LSMO surface has been 

characterized by XPS. According to literature indications,38,39 and locking forward to 

strategies compatible with the chemical grafting of SMMs and NNRs, we decided to 

adopt a procedure compatible with the chemistry of the reaction of the phosphonic 

group with the metal oxide as well as with the molecular stability. We used a 2 mM 

solution of the desired molecule dissolved in a methanol/dichloromethane 3:1 

solution and we maintained the surface in incubation for 20 hours in the dark at 60°C. 

After the incubation time the surface was rinsed several times with methanol and 

dichloromethane and sonicated in same solvents mixture for 30 minutes and washed 

again to remove physisorbed molecules. In order to verify the effect of sonication 

we characterised the surface before and after the sonication. In Figure 11 are 

reported the spectra of the P2p and Mn2p regions analysed. Form these data is 

possible confirm the presence of the molecule at the LSMO surface due the 

appearance of the iodine components at 620.3 eV and its ES.O. at 631.8 eV near the 

Mn2p peak at 642.3 eV.  

 

Figure 11. XPS spectra of monolayer of 2 on LSMO before sonication procedure. 

As mentioned above the P2p region is covered by Sr3d thus making almost 

impossible the phosphorous identification and the observation of a chemical shift 

induced by chemisorption on the LSMO surface. Here below we mention that the 

sonication phase is fundamental to remove the physisorbed molecules leaving on 

surface only those strongly interacting with the LSMO substrate. This has been 

validated by an XPS characterisation performed before and after this treatment (see 

Figure 12).  
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Figure 12. XPS spectra in the Mn2p and I3d region on the pristine LSMO a), before b) and 
after c) sonic treatment for the 2 compound. 

From this characterisation one can notice a decrease in intensity of I3d peaks 

after the sonication confirming the initial presence of physisorbed molecules 

removed with the sonication treatment.  In order to have an estimation of the trend 

of desorption the ratio between areas of Mn2p and I3d regions was employed (Table 

4). A decrease of ca. 50% of molecules initially present on LSMO surface can be 

estimated with this analysis, thus demonstrating that the sonication is a fundamental 

step to remove the excess of molecular layer present on the surface.  

 The same XPS characterisation has been carried out also for compound 1. In 

Figure 13 are reported the regions of interest for a monolayer obtained by incubating 

an LSMO surface in a 2mM solution of compound 1. The obtained characterisation 

evidence strong similarities with the previous case with the appearance of I3d peaks 

at 620.4 eV thus indicating that the two systems are equivalent passivating agents 

for LSMO.  
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Figure 13. XPS spectra of monolayer of 1 on LSMO before sonication proceedings. 

 

 

Figure 14. XPS spectra in the Mn2p and I3d region on the pristine LSMO a), before b) and 
after c) sonic treatment for the 1 compound. 

After the sonication process the intensity peak of the iodine decreases of about 

43% demonstrating that this treatment is mandatory also in this case.  
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Table 4. Areas ratio between areas under the Mn2p and I3d peaks. 

 Before sonication After sonication    

Mn/I areas ratio for 1 0.33 0.19   

Mn/I areas ratio for 2 0.35 0.18   

 

From this characterisation it is possible to evidence that the chemisorption of 

compounds 1 and 2 on LSMO surface is equally efficient, thus one can assume that 

the deprotection of the phosphonic function that usually requires harsh conditions41 

can be avoided.  Deposition of fragile systems like SMMs and NNRs functionalised 

with ethyl phosphonate units seems therefore feasible. 

Tentatively it is possible to suppose that the surface catalyzes the elimination of 

ethyl groups bridged to phosphonate group thanks to LSMO catalytic properties42 

with a progressive impairment of P-OEt bond due to the formation of a bond with 

the oxide surface followed by the elimination of ethanol.38,43  

Having characterized the termination layer of the LSMO substrate and having 

identified a protocol for grafting a molecular layer on it, one can proceed toward the 

grafting of NNRs systems on LSMO surface in order to start building the first Spin-

Valve based on purely radical organic molecules.  

 

2.3 Nitronyl-Nitroxide Radicals chemically grafted on LSMO 
surface 

Due to the magnetic nature of LSMO surface, after the deposition of magnetic 

molecules, the presence of magnetic interaction between molecule and LSMO can 

occur. This interaction can alter the spin injection properties of the LSMO in an OSC 

based spin valve architecture. For this reason we started our activities of 

functionalization of LSMO with the simplest paramagnetic molecules, organic 

radicals. 
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Purely organic molecules containing no metallic centres such as organic radicals 

can serve as an additional spin layer at the interface between a spin injecting 

electrode and an OSC layer due to the unpaired electron in the radical state of these 

molecules. This class of molecules, and in particular NNRs, results particularly 

interesting, since they feature long-range magnetic order44 at low temperature and 

it has been theoretically and experimentally demonstrated that partial ordering of 

the molecules can be achieved also at the nanoscale.45–47 

The idea was to chemically graft a particular class of NNR, using SAM strategies, 

able to create a direct bond with the surface. The decision to start from organic 

radicals to achieve a complete Spin-Valve, is given by the simple synthetic strategy 

required to realize the desired ethyl phosphonate functionalised NNR following the 

common strategies mastered in our laboratory. 44,48 

 

Figure 15. Synthetic scheme for the system (2-(diethyl 4-methylbenzylphosphonate)-
4,4,5,5-tetramethylimidazoline- 1-oxyl-3-oxide (3). 

The functionalised NNR system (2-(diethyl 4-methylbenzylphosphonate)-4,4,5,5-

tetramethylimidazoline- 1-oxyl-3-oxide (3) was synthetized by following the 

procedure described in Figure 15 using the Arbusov reaction49 in accord to literature 

procedures50 to obtain the relative aldehyde followed by the usual steps of 
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condensation51 and oxydation48 to finally obtain the functionalised NNR. The 

resulting molecule was characterized with XPS, ToF-SIMS, ESI mass spectrometry and 

with FT-IR.  

2.3.1 Bulk characterisations of the functionalised NNR system 

The bulk characterisation was carried out using mass spectrometry techniques 

including ESI-MS and ToF-SIMS (Figure 16). These analyses indicated the presence of 

the molecular peak at 383.11 m/z with the expected isotopic distribution structure. 

ESI-MS was performed on a 10-5 M solution of NNR in methanol while ToF-SIMS was 

obtained using a dropcast sample on gold. From the latter characterisation it has 

been possible to identify  fragmentation peaks typical of NNR systems:45 391.18 m/z 

[M-O+H+Na]+, 369.18 m/z [M-O+2H]+, 353.18 m/z [M-2O+2H]+, 281.14 [M-2Et-

3O+4H]+. 

 

Figure 16. ESI-Mass and positive ToF-SIMS spectra of 3, a) and b) respectively. 

The FT-IR spectrum (Figure 17a) presents fingerprint bands of the phosphonate 

group at: 1231 cm-1 ascribable to the stretching (P=O), 1167 cm-1 attributed to the 

stretching (C-P) and 900-1050 cm-1 coming from the stretching (P-OR), plus the the 

stretching N-O at 1393 cm-1 confirming the coexistence of the Nitronyl-Nitroxide 

radical function and of the phosphonate linker group.  
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Figure 17. FT-IR spectrum of 3 in nujiol solution a) and room temperature X-band EPR 
spectrum b) in dichloromethane solution.  

The recorded EPR spectrum (Figure 17b) of a 1mM solution in dichloromethane 

of NNR was in line with what expected for a Nitronyl-Nitroxide function showing the 

typical five lines shape centred around g = 2.009 with a relative intensity of 1:2:3:2:1 

originated by two equivalent nitrogen nuclei 14N (I = 1) with an approximate 

Hyperfine coupling of 7.5 G.51,52  

 

Figure 18. Massive phase N1s, P2p XPS spectra of 3 along with best-fit. 

In Figure 18 are reported the XPS bulk spectra of this NNRs obtained by dropcast 

on gold. An agreement with the stoichiometry of the compound was found. In 
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particular we notice that the N/P ratio is 1.7 in good agreement with theoretical one 

of 2. The N1s peak was centred at 399.2 eV and the P2p peak was at 132.9 eV in 

agreement with  53,54 literature data.55,56 The N1s region does not overlap with signals 

coming from the LSMO substrate and was therefore used like the finger print of 

deposition of NNR.  

 

2.3.2 NNR Monolayer Characterisation 

The same protocol employed to graft simple aliphatic chains on LSMO was here 

adopted; this surface was cleaned by sonication in acetone and 2-propanol for 10 

min. In order to increase the density of the monolayer according to our previous 

experience on NNR47 we increased concentration of the the incubation solution to 3 

mM using a solvent mixture methanol/dichloromethane 3/1 and the surface 

incubation was carried out at 60°C for 20 hours in the dark to avoid light-induced 

damage. After the incubation the surface was rinsed several times with methanol 

and dichloromethane and sonicated in the same solvent mix for 30 minutes to 

remove physisorbed molecules. All the sample manipulation was carried out using a 

portable glove bag to minimize the air exposure.  

 

Figure 19. XPS spectra N1s, P2p/Sr3d of the SAM of 3. 

In the XPS N1s region of functionalised LSMO surface was possible to identify a 

peak directly ascribable to a NNR functional group, centred at 399.3 eV, indicating 
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the successful deposition of molecules on surface. 47,55,56 For the deconvolution of 

the N1s peak was necessary to use three components due to a X-ray induced 

damage.47 This damage was noticeable also in the massive sample but a negligible 

amount respect to the monolayer one. 47 

To confirm the deposition ToF-SIMS characterisation was carried out on the 

functionalised LSMO surface. In Figure 20 are reported the ToF-SIMS spectra of the 

270-410 m/z region acquired on the monolayer deposit and in the massive phase. 

We notice that in the monolayer sample the [M]+ peak at 383.11 m/z is absent that 

instead is evident in the massive phase. Moreover the peaks distribution at 331.18 

m/z is present in the SAM sample while is absent in the massive phase indicating that 

a new species is formed on surface due to the deposition process. Indeed this 

distribution comes from a [M-2Et+4H]+ ion and corresponds to a loss of the two ethyl 

groups of the phosphonic linker group due to a reaction occurred on the surface and 

indicating a the formation of a chemical bond between the phosphonic function and 

the LSMO surface. Clearly the NNR interact with the LSMO surface after the loss of 

the two ethyl groups.  

 

Figure 20. Comparison between SAM and bulk ToF-SIMS spectra in the region 270-410 m/z. 

In addiction of those fingerprints other peaks were found confirming the effective 

chemisorption of functionalised NNR on LSMO surface. ToF-SIMS spectra of the 
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region from 253 to 261 m/z are reported: we notice that in the monolayer is present 

a molecular fragment, the ([M-NNR-Et+Sr]+) in which a fragment of the molecule 

(without the two ethyl group of phosphonate linker) is directly bound to a strontium 

atom. This evidence confirms an effective chemical bond between molecules and 

surface.  

On the other hand in the same region the bulk sample present another 

component, assignable to a molecular fragment containing the two ethyl groups still 

connected to the phosphorous ([C12H17NO3P]+). The absence of this peak in the SAM 

sample confirmed the good self-assembly procedure and effective washing protocol 

carried out.  

 

 

Figure 21. Comparison between SAM and bulk spectra in the region 253-261 m/z; lines 
above the experimental data represent the theoretical isotopic distribution. 

 

2.3.3 NNR based spin valve 

The NNR based spin valve was obtained using the SAM protocol described in 

previous chapter on a NGO substrate patterned with LSMO as spin injection 
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electrode. After the SAM incubation, on the functionalised surface 150 nm molecular 

film of Gaq3 was thermal evaporated followed by deposition of  the cobalt electrode 

(Figure 22). 

An additional layer of Al2O3 (thickness 2nm) was interposed between the Co and 

Gaq3 layers to avoid interdiffusion of the metal inside the OSC and possible creation 

of short-circuits between the two ferromagnetic layers. LSMO and Co electrodes are 

characterized by different values of coercive fields in order to observe the spin-valve 

effect modifying selectively the magnetisation value of the single electrode 

 

Figure 22. Schematic representation of the realization of the vertical sin valve.  

Electric transport measurements on the OSVs have been performed interfacing a 

source-meter unit (SMU, Keithley 2601A) with a Physical Properties Measurement 

System (PPMS, by Quantum Design). The SMU can operate as a current source, 

measuring the current with a maximum resolution of 1 pA or as a current source 

measuring the voltage with a maximum resolution of 1 μV (in both 2 and 4 wire 

sensing probe mode). 

 

Figure 23. Sample-holder used for electric transport measurements with the device 
measured mounted on it. 

This magneto transport study was part of Dr. G. Cucinotta PhD thesis.57 The PPMS 

platform provides the possibility to apply a magnetic fields up to + 90 kOe collecting 
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measurements in a range of temperatures from 1.9K to 350K. The SMU unit was 

connected to a pinned-head placed inside the variable temperature chamber of the 

PPMS as shown in Figure 23.  

The device was constituted of a substrate (10mm x 5mm) where on it three 

organic spin valves (OSVs) are present. The OSVs are linked to pinholes at the base 

of the puck by means of an on purpose designed printed circuit board on which the 

OSVs are connected through gold wires. Once inserted in the chamber of the PPMS 

pinholes present on puck base assure electric connection with the PPMS pinned-

head. 

 

Figure 24. Comparison between the magneto-resistance of a “standard” spin valve (a) and 
one modified with NNR (b). Measurements are taken at 100K. 

A schematic representation of the magnetic moments of the electrodes of the 

device is given in correspondence of the maxima and minima values of resistance. 

The magnetic field was directed in parallel to the device surface, while the electric 

measurements were collected in 2-wire sensing mode maintaining a fixed electric 

potential difference of 100 mV between the LSMO and Co. In Figure 24b the 

magnetoresistance measurement obtained at 100 K on an OSV with NNR is reported. 

A spin-valve effect was evident and a high resistance value, when both the magnetic 

moments of the electrodes are aligned with the magnetic field, was detected. Once 

the magnetic field reaches the value of the LSMO coercive field (≈+2.5 kOe), the 

device in an antiparallel configuration of the magnetic moments of the electrodes 

present the lowest resistance value. On continuing to decrease the field, once both 

the magnetic moments are again aligned to the external field, the resistance of the 

device returns again to its highest value. The magnetoresistance can be quantify as: 
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                                             𝑴𝑹 =  (𝑹↑↑ − 𝑹↑↓ 𝑹↑↑) ∗ 𝟏𝟎𝟎⁄   (5) 

where 𝑅↑↑ and 𝑅↑↓ are the resistances of the device when the magnetic moments of 

the electrodes are parallel and antiparallel respectively. This preliminary 

experiments demonstrate the presence of a spin-valve effect in OSV device 

comprising magnetic molecules and this represents the first report to the best of our 

knowledge. A comparison between standard OSV without magnetic molecules layer 

and the OSV with functionalised surface is reported in Figure 24, a) and b) 

respectively, both measured at 100K. The presence of a magnetic molecules layer on 

LSMO electrode seems to affects the shape of the field dependence of the resistance. 

In particular the value of magnetic field required to restore the high resistance state 

which is related to the change of the magnetisation at the interface with LSMO. In 

the device without NNR layer the magnetisation at the LSMO/Gaq3 is switched at 

H≈1 kOe and for the modified surface device the magnetic field required increases 

going to ≈2.5 kOe.  

This result represents a confirmation of how important interfaces are in the 

transport properties of organic based devices opening the development of new OSVs 

based on magnetic molecules. 

 

2.4 The terbium bis(phthalocyaninato) complex. 

After the successful deposition of the simple NNR systems on the LSMO surface 

we moved to a more complicated magnetic molecule, a Tb-based SMM.  

The Terbium bis(phthalocyaninato) complex (TbPc2) represents the first example 

of mono-nuclear metal complexes with a SMM behaviour;58–60 it is composed by a 

terbium ion inserted inside two phthalocyanine (Pc) ligands. The Pc are rotated with 

respect to each other by ca. 45° and the Tb ion is eight-fold coordinated by eight 

Nitrogen atoms. This peculiar structure induces, acting on the crystal field of the rare 

earth, a huge barrier for the reversal of the magnetisation with magnetic hysteresis 

observed at temperatures as high as 15 K.61 For this reason TbPc2 has been included 

in the molecular candidates for the realization of molecular spintronic devices based 

on SMMs.9,62–65 

TbPc2 can be synthesised as neutral [TbPc2]0 and anionic [TbPc2]- powder.66 By 

chemical oxidation of the neutral system67 or by electrochemistry68 is also possible 
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to achieve the [TbPc2]+ compound which is however rather unstable and can be 

stabilised using specific counterions.68 In all the three different species (-/0/+) the 

oxidation number of the metal ion does not change: the extraelectrons/holes  are 

localized on the ligands.69 The Tb3+ ion has a ground state with L=S=3 and J=6. The 

two phthalocyanine ligands induce an exceptionally high energy gap between the 

ground pseudo-doublet JZ=+6 and the next higher doublet (JZ=+5), of the order of 

several hundreds of K.70 This gives rise to a strong easy axis anisotropy with the axis 

perpendicular to the phthalocyanine planes. The neutral form [Pc•−Tb3+Pc2−]0, 

however, has a hole delocalized on the two ligands, which provides an additional 

S=1/2 spin. On the other hand the anionic compound [Pc2−Tb3+Pc2−]− has closed p 

shells because the two Pc ligands are doubly negatively charged and so only the 

magnetic moment of the Tb ion gives a contribution. The barrier opposing the 

reversal of the magnetisation changes with the oxidation state.68 Ishikawa and 

Takamatsu 71 have theorised that the two forms [TbPc2]+/- have different interplanar 

distance between the two Pc ligands. An increase of the crystal field applied to the 

Tb3+ is expected upon oxidation due to the reduction of bond length between N and 

Tb+3 of ca. 0.03 Å for the [TbPc2]+ state.  

Standard magnetometry and magnetic circular dichroism (MCD) with visible light 

experiments on the three oxidation states , have shown the presence of a butterfly-

shaped hysteresis, 68,72,73 originated by efficient  tunnelling in zero field. Vitali et al.74 

performed  scanning tunneling microscopy and spectroscopy experiment on isolated 

[TbPc2]0
  molecules deposited on the Cu(111) surface and showed that the 4f states 

of the [TbPc2]0 molecules does not interact with the metal, while the ligand electronic 

states are heavily perturbed by the hybridization with the metal states till the 

disappearance of the ligand spin.  

The chemical and thermal stability of the LnPc2 systems (with Ln=Lu, Tb) allows 

the [TbPc2]0
 to be thermal sublimated in high vacuum (HV) and ultra-high vacuum 

(UHV) conditions.75,76 It is well known that in thin film of LnPc2 sublimated on pure 

metal surfaces74,77–79 the molecules lay flat where the two phthalocyanine are 

parallel to the surface.  

This property, combined with the fact that these molecules tend to lie flat on 

metallic surfaces and graphite has prompted a large number of STM studies to probe 

the different orbitals. 80 The magnetic characterisation of hybrid surface has been 

mainly carried out using X-ray circular dichroism (XMCD), thanks to the high 
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sensitivity (in the order of sub-monolayer) and the high elements selectivity of this 

synchrotron-based technique.81–83 The XMCD derived magnetisation curves acquired 

in sub-monolayer or monolayer samples thermally deposited on metal surfaces 

showed the absence of hysteresis.76,77,84,85 On the other hand in a 200 nm thickness 

film the hysteresis opening is recovered.76 In the thick film there is a different trend. 

The preferential orientation is a “standing-up” geometry were the Pc are 

perpendicular to the surface.76 This type of phenomena is known for CuPc molecules 

were a reorientation process occurs during the films deposition. CuPc molecules lose 

their surface parallel orientation on Au(111) substrates after only 3nm and the 

perpendicular orientation is reached after ca. 10nm.86 Hofmann et al.87 using 

implanted muons at variable energy (from 0eV-30keV) demonstrated that a variation 

of molecular spin correlation time occurs in a thick film of TbPc2 (ca. 100nm) on Au 

(111) depending on the distance from the gold surface. These changes in the 

magnetisation dynamics seems to correlate with structural changes induced by the 

re-orientation of the molecules, showing an important role of packing in the 

magnetic behaviour of this system.  

Interestingly a molecule-surface antiferromagnetic (AF) interactions has been 

observed in sub-monolayer film of TbPc2 thermally sublimated on nickel,85 and in 

thin sublimated films on manganese.84 

We have therefore decided to investigate the magnetic behaviour of thin films 

sublimated and chemically grafted on LSMO to evidence the presence of magnetic 

interaction with the ferromagnetic oxide. This characterisation was performed as 

preliminary steps for the use of the TbPc2 as organic layer in spin valve devices. 

 

2.4.1 Thermal evaporation of unfunctionalised TbPc2 on LSMO 

The LSMO surface corrugation does not allow an STM characterisation of sub-

monolayer TbPc2 films because the dimension of molecules are comparable with the 

dimension of “lentils” of LSMO. For this reason we focused our interest on the 

spectroscopic characterisation of this hybrid molecular-inorganic system with the 

aim of  comparing the behaviour of TbPc2 on this magnetic surface extending 

previous studies of the effect of the coupling of magnetic molecules on magnetic 

surfaces.4,84,85,88–90 
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The X-ray absorption spectroscopy characterisation of a thin TbPc2 molecular 

layer deposited in situ was performed at the SIM-X11MA beamline at the Swiss Light 

Source (SLS) synchrotron facility. The LSMO substrate was a 12 nm LSMO film grown 

on strontium titanium oxide (STO) and was cleaned using the earlier reported 

procedure (Chapter 2.1).  

 

Figure 25. XAS and XMCD spectra of TbPc2/LSMO at the indicated edges measured, at T = 2 K, 

H = 3 kOe. 

The molecular sublimation was carried out using the thermal evaporator 

described in Chapter 5.7.3. The XAS setup was equipped with a total electron yield 

detector and both linearly and circularly polarisations were employed. 

The magnetic field was applied along the photon propagation at variable angle 

with the normal to the surface. The investigation of the hybrid surface was 

performed at both the Mn L2,3 and Tb M4,5 edges. The XAS spectra acquired at the Mn 

L2,3 edges under 3 kOe of magnetic field and using the two circular polarisation (left, 

+ and right, -) at  = 0° are reported in Figure 25a.  The XMCD spectrum reported in 
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Figure 25a has a similar features for LSMO films reported in the literature.91,92 In Figure 

25b is reported the XMCD spectra at Tb M4,5 edges showing the expected strong 

dichroic signal of TbPc2.76 Linearly polarized light was also used in order to get 

information about the orientation of the molecules with respect to the surface. 

The XNLD spectrum, obtained as the difference between vertically and 

horizontally polarized light absorption, both measured at  = 45° (Figure 26), showed 

a small dichroic contribution indicative of a partial molecular orientation on the 

surface. By comparison with literature reports76 it is possible to point out that this 

process induces a slightly preferential  arrangement of the molecules with the easy 

axis of magnetisation in the plane of the surface, as expected for a standing 

configuration of the Pc ligands. This geometry in agreement with the literature data 

of simple metal-phthalocyanines on oxides.93  

 

Figure 26. . XAS and XNLD spectra of TbPc2/LSMO at the indicated edges measured, at T = 2 

K, H = 3 kOe. 

To have a complete characterisation of the magnetic behaviour of this hybrid 

system the field dependence of the XMCD signal at the L3 edge of Mn was recorded 

at  = 0° and 45°. The hysteresis loops at Mn L3 edge reported in Figure 27a show the 

expected angular dependence for a film with an in-plane magnetic anisotropy. On 

the other hand the hysteresis loops at the M5 edge of Tb reported in Figure 27b show 

a small butterfly-shaped opening. This behaviour is similar to that observed for this 

type of molecule in the bulk phase or thick films.72,76 The XMCD signal recorded at 

=45° is slightly larger than at =0°, in agreement with the XNLD results. Unlike 

results obtained on other ferromagnetic substrates,84,85,90 no observable 



2. Assembling magnetic molecules on LSMO the electrode 
 
 

51 
 

antiferromagnetic coupling (AF) between TbPc2 molecules and the LSMO was 

detected with no correlation between the TbPc2 hysteresis loops and those of the 

substrate (Figure 27a and b). 

The collected data on the TbPc2 sublimated on LSMO evidences that a preferential 

perpendicular orientation is obtained. This hybrid surface is characterized by the 

presence of a smaller butterfly shaped hysteresis loop respect to the one observed in 

the bulk phase. This effect has been previously observed in amorphous sample72 and 

in diamagnetic glassy matrices68 and can be directly ascribed to a different 

organization of molecules on the surface respect to the one occurring on bulk 

deposits or to an interaction of the deposited molecules with the surface. 

 

Figure 27. Field dependence of the XMCD signal measured at the maximum of the dichroic 
signal at the indicated edge for TbPc2/LSMO 

Thus an alternative strategy has to be attempted, based on the chemical grafting 

of molecules using wet chemistry. In order to adopt this alternative approach 

molecules must be modified to promote specific interaction with the substrate and 

must be soluble and stable in the solvent selected for the grafting.  

 

2.4.2 Grafting TbPc2 functionalised systems on LSMO  

In order to chemisorb TbPc2 on LSMO we adopted a similar strategy respect to 

the one described earlier for NNRs. The TbPC2 molecule suitable for the grafting, is 

constituted by a normal complex functionalised with a phosphonate group that is 

able to connect on metal oxides and hence on LSMO.  
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Figure 28. TbPc2(PO3Et2)2 chemical structure. 

The chemical structure is reported in Figure 28 where the two phosphonate 

groups are connected directly with the two phthalocyanine ligands (hereafter 

TbPc2(PO3Et2)2). 

This molecule has been designed and synthetized in the laboratories of Prof. E. 

Dalcanale at the University of Parma, who provided the material used in this thesis 

to perform bulk magnetic characterisations and grafting tests described in the 

following. 

2.4.3 Bulk Magnetic Characterisations 

Magnetic characterisation, performed with standard AC susceptometry, clearly 

indicates the SMM behaviour of the complex in its bulk phase. As already observed 

for other TbPc2 complexes 72,76,89, SMM behaviour with the presence of hysteresis in 

the magnetisation curves below 15K characterizes the new TbPc2(PO3Et2)2 derivative 

(Figure 29), thus indicating that the functionalization does not alter significantly the 

SMM behaviour of this double decker system.  
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Figure 29. Magnetisation of [TbPc2(PO3Et2)2] as a function of the applied field at different 
temperatures. 

A better estimation of the eventual changes in the hysteretic behaviour can be 

achieved by plotting the difference in the magnetisation scans (see Figure 30) 

obtained for increasing field M(H↑) and decreasing field M(H↓): 

                                                   ∆𝑴(𝑯) = |𝑴(𝑯 ↑) − 𝑴(𝑯 ↓)| ( 6 ) 

By comparing the integral of those plots with an analogous characterisation 

performed on the pristine [TbPc2]0 complex (Figure 31) it results evident that the 

functionalization induces a slight alteration of the SMMs properties: the 

irreversibility increases monotonically on decreasing the temperature, in contrast to 

the pronounced maximum observed for [TbPc2]0. The latter represents however an 

anomaly that we can tentatively assign to intermolecular interactions through the 

radical ligands that are strongly reduced in the bulky functionalised derivative. 
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Figure 30. Hysteresis opening estimated as M/Msaturation according to the procedure 
described in the text. 

A more clear picture can be achieved by AC susceptometry. Zero static field AC 

susceptibility measurements as a function of temperature are shown in Figure 32.  

’’T is characterised by a frequency dependent peak in the out-of-phase component 

occurring at relatively high temperatures. The extended Debye model94 was adopted 

to analyse these data in the range 0.5Hz -10KHz allowing to extract the relaxation 

time, .  

 

Figure 31. Comparison between the area under hysteresis curves as a function of the 
temperature for TbPc2(PO3Et2)2 and for microcrystalline TbPc2.72  
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Figure 32. Frequency dependence of the χ'T product and χ''T product (left and right, 
respectively) as a function of temperature in zero static field left and right respectively.  

The temperature dependence of  is shown in Figure 34. A linear behaviour in the 

ln() vs. 1/T plot is observed at zero static field in the high temperature regime, T> 

40 K, providing the parameters 0 = 1.68±0.39*10-10s and kB=614±11 K for the best 

fit with the Arrhenius law,  = 0exp(kBT).  

The estimated energy barrier in the thermally activated process, 614 (+11 K) is 

smaller than that found for the crystalline phase of TbPc2 (965 K)95 but close to the 

value observed in similar conditions for amorphous unfunctionalised TbPc2 system 

(856 K)26, in agreement with the amorphous character of TbPc2(PO3Et2)2 sample 

 

Figure 33. Frequency dependence of the χ'T product and χ''T product (left and right, 
respectively) as a function of temperature at 5000 Oe static field. 

Below 40 K the relaxation becomes temperature independent, indicating the 

onset of a tunnel mechanism of relaxation, with a significant increase of the width 

of the distribution of the relaxation times.  
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Figure 34. Arrhenius plot of the data extracted from AC measurements in zero field and in 
5000 Oe static field. 

The application of a static field of 5000 Oe (Figure 33) provides comparable high 

temperature behaviour as shown in Figure 34, but significantly affects the magnetic 

relaxation below 40 K, suppressing the tunnelling mechanism with  exceeding the 

accessible timescale of the AC susceptometer. A single distribution of  is observed 

in static field because distortions from idealised D4d symmetry present in this 

amorphous material are less relevant when resonant quantum tunnelling is 

suppressed by the application of an external field. This AC characterisation reveals a 

significative effect of the tunnelling mechanism in the slow dynamics of the 

magnetisation of this system in zero field, in analogy to what previously found  in the 

case of other functionalised and unfunctionalised TbPc2 complexes.95,96 

 

2.4.5 XPS and mass bulk characterisation  

A MALDI-ToF/ToF mass analysis was performed on the TbPc2(PO3Et2)2 complex 

(Figure 35) and an isotopic distribution patter in perfect agreement with the expected 

one and centred at 3603 m/z was found. 

In Figure 36 is reported the UV-Vis spectrum of TbPc2(PO3Et2)2 solution in 

chloroform. 
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Figure 35. MALDI-ToF/ToF spectrum of TbPc2(PO3Et2)2 complex.  

From the spectrum in Figure 36 was possible to notice the promotion of an 

electron from the first semi-occupied molecular orbital (SOMO) to the second LUMO 

and from the second fully occupied HOMO to the first LUMO with the Q band at 680 

nm. At 330 nm and 360 nm the spectrum shows a typical split Soret band, resulting 

from the electronic transitions from the third occupied HOMO to the first LUMO. At 

469 nm and 926 nm were found the two weak π-radical bands due to electronic 

transitions from the SOMO orbital to the degenerate LUMO.97 

 

Figure 36. UV-Vis absorption spectrum of TbPc2(PO3Et2)2 in chloroform. 



2. Assembling magnetic molecules on LSMO the electrode 
 

58 
 

The bulk phase of the TbPc2(PO3Et2)2 complex was characterised also by X-ray 

Photoelectron Spectroscopy (XPS) on a drop-cas sample on gold to acquire a 

reference for further studies on thin films. Tb3d3/2, N1s and P2p signals have been 

included in a semiquantitative estimation of the element content (while C1s and O1s 

have been excluded being affected by spurious contaminations being the sample 

prepared ex situ). Regarding the Tb3d region of interest, only the Tb3d3/2 component 

can be used in this analysis, because the Tb3d5/2 overlaps with carbon Auger lines 

KVV at 1233 eV (using Al monochromatic source as needed to reach this energy 

region). Even considering the experimental error of XPS and the presence of 

adventitious carbon contamination in this bulk sample, we can assert that the 

stoichiometry is respected. In Table 5 the XPS estimated atomic percentages and 

atomic ratios are reported.  

Table 5. Theoretical and XPS estimated atomic percentages and ratios for TbPc2(PO3Et2)2 
complexes in bulk. 

 Tb3d3/2  N1s  P2p  

 %  % N/Tb  % P/Tb P/N 

TbPc2(PO3Et2)2 5.1  79.9 15.6  15 2.9 0.18 

theor. 5.3  84.2 16  10.

5 
2 0.13 

 

The experimental atomic ratios are in agreement with the theoretical ones and in 

particular the ratio N/Tb clearly confirms that the molecular system is intact. As can 

be noticed a small excess of phosphorous in the bulk is present that could be 

originated by small fraction of precursors as contaminants in the measured sample.     

The Tb3d3/2 peak is centred at 1276.5 eV in agreement with literature data,98  the 

N1s is centred at 398.2 eV and in not shifted if compared with a literature data of 

398.1 eV found on similar complexes99 and is in line with a neutral TbPc2 system.98 

P2p and C1s peaks was at 133.5 eV and 284.6 eV respectively, as expected for this 

type of organic compounds.56  
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Figure 37. Tb3d3/2, N1s, P2p and C1s XPS spectra of the bulk phase of TbPc2(PO3Et2)2 with 
best-fit components. 

 

2.4.6 XPS Monolayer Characterisations 

To deposit the functionalised TbPc2 derivative on LSMO we slightly modified the 

procedure previously described for simple organic phosphonate molecules (See 

chapter 2.2).  

Initially we tested a more rigorous cleaning procedure for LSMO based on oxygen 

plasma cleaning for 3 minutes at 15 W with a base pressure of 2x10-1 mbar in oxygen 

in order to promote a more efficient cleaning on the surface. After this treatment 

the LSMO has been immersed in a 2mM TbPc2(PO3Et2)2 mix of 3:1 

Methanol/Dichloromethane and maintained in incubation under nitrogen flux at 

60°C for ca. 20h in the dark. After that the slab was rinsed several times with pure 
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solvents, sonicated in the solvents solution for 30 minutes, rinsed a second time and 

dried under nitrogen flux. To avoid air exposure we used a portable glove bag filled 

with nitrogen gas.  

 

Figure 38. Tb 3d3/2 and N1s XPS spectra of the SAM of TbPc2(PO3Et2)2 on LSMO  

In Figure 38 are reported the most relevant XPS regions investigated after the 

incubation process. As anticipated the P2p region is covered by the Sr3d component 

thus making impossible the precise identification of peak position and a 

semiquantitative estimation of P2p. We notice that the peak relative of N1s is very 

low in intensity unlike the terbium 3d3/2, where the peak is very high in intensity and 

it is centred at 1275.6 eV. The N/Tb ratio resulted to be close to zero, thus strongly 

reduced respect to the one observed in the bulk phase. 

This dramatic evidence can be explained by considering i) an instability of the 

molecules in presence of the surface in the reaction condition or ii) a selective 

adsorption of contaminants onto the LSMO surface resulting not efficiently 

functionalisable with the designed molecules. A tentative justification of this 

anomaly can be due to the treatment with oxygen plasma and to a consequent 

activation of surface degradation process despite the high stability of terbium 

complex.  

In order to overcame this problem we tested an alternative deposition procedure 

for TbPc2(PO3Et2)2 avoiding the oxygen plasma.  
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Figure 39. Tb 3d3/2 and N1s XPS spectra of the SAM of TbPc2(PO3Et2)2 on LSMO obtained 
without oxygen plasma treatment. 

In Figure 39 are reported the regions of interest of XPS spectra of a sample 

obtained without oxygen plasma treatment of LSMO surface. The N1s region shows 

a much stronger peak compared to the analogous of Figure 14, though a rough 

estimation of the N/Tb results in a value, ca 10, still smaller than the stoichiometric 

one. The N1s peak fit reveal two component at 398.3 eV  and at 400.8 eV, the first is 

directly attributable to a nitrogen in the TbPc2 environment100 while the other one  

at higher energy (400.8 eV) clearly indicate a modification in the chemisorbed 

molecules, in analogy to hat observed for similar complexes chemisorbed on Si.98 A 

partial oxidation of the double decker system cannot be excluded. However we 

underline that this second attempt confirm that the exclusion of the oxygen plasma 

treatment increased the stability of the complex at the surface level even if also in 

these conditions the intactness of the complex cannot be inferred by the XPS 

characterisation.  

Additional experiments are required to clarify if intact TbPc2 are grafted on the 

LSMO substrate before proceeding with the realization of a spin-valve based on this 

magnetic molecule.  
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3 Realization of an alternative hybrid 
magnetic electrode based on Tb(III) bis-
phathalocyaninato. 

 

Considering the non-conclusive attempts of using wet chemistry and sublimation 

to develop hybrid TbPc2/LSMO systems described in the previous chapter, we 

decided to start testing an alternative strategy for the realisation of a spin-valve 

SMM-based system where, instead of using the LSMO spin injection electrode, this 

component is directly based on the presence of a magnetic molecular film chemically 

grafted on a non-magnetic surface. We selected the silicon surface and we planned 

to use the SMM film instead of LSMO to select the spin orientation of the charge 

carriers. 

As starting surface we used Si(100) surface and we profited again of the 

collaboration with Prof. E. Dalcanale and his group to rely on a derivative of TbPc2 

terminating with alkene units to be able to tether silicon through the hydrosilylation 

reaction.1 The selected grafting strategy offer the possibility to make robust and 

durable devices by forming stable Si–C covalent bonds. Moreover, the possibility of 

different doping of the silicon substrate can be used to influence the electronic 

properties of the grafted molecules2 and the mobility of the charge carriers in the 

final hybrid device. Although preliminary promising results were obtained with Fe4 

SMMs chemically anchored on silicon through an exchange process,3 no experiments 

on TbPc2 were reported.  

The design of a suitable TbPc2 for silicon grafting requires the introduction of 

functionalised alkyl chains at peripheral positions of the phthalocyanine ligands 

(Figure 1). In a nutshell the synthesis performed in Dalcanale laboratories in Parma 

consists in adapting the traditional De Cian synthesis4 for the double deckers by 

replacing the 1,2- dicyanobenzene with the 4-(-undecenyloxy)phthalonitrile in a 

reaction carried out at 160° with TbIII acetyl-acetonate in presence of 1.8- 

diazabicyclo[5.4.0]undec-7-ene (DBU). The resulting TbPc2(OC11H21)8 was 

characterised via high resolution MALDI-ToF mass spectrometry, XPS and UV-Vis 

spectroscopy. The mass spectrometry revealed a unique peak centred at 2529.44 

m/z that corresponds well in position and isotopic distribution to the calculated one 
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for the molecular ion of TbPc2(OC11H21)8 (Figure 2a and inset). The UV-VIS spectrum 

of TbPc2(OC11H21)8 recorded in chloroform solution shown in Figure 2b, confirms the 

neutral π radical form of the molecule with the characteristic absorption bands of 

double decker phthalocyaninato complexes.5   

 

Figure 1. Synthesis of the homoleptic TbPc2(OC11H21)8 using 4-(o-undecenyloxy) 
phthalonitrile as starting material. 

 

 

Figure 2. a) high resolution MALDI-ToF spectrum of TbPc2(OC11H21)8, with experimental (red 
lines) versus theoretical (black) isotopic distribution pattern in the inset; b) UV-Vis 
absorption spectrum of TbPc2(OC11H21)8 in chloroform. 
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The UV-VIS spectrum (Figure 2b) was in line with what expected and on what 

obtained on TbPc2(PO3Et2)2 (Chapter 2.4.5). 

 

3.1 XPS bulk characterisations 

The XPS spectra of a reference bulk phase were recorded on a thick film prepared 

by drop casting a diluted dichloromethane solution of the complexes on a 

polycrystalline gold substrate. A semi-quantitative analysis of the spectra is reported 

in Table 1. XPS atomic compositions of TbPc2(OC11H21)8 in a bulk deposit compared to the 

theoretical values for the molecule. An atomic composition of the compound in 

agreement, within the limits of the techniques, with the proposed formula can be 

deduced from this analysis, thus confirming the mass spectrometry results. 

Table 1. XPS atomic compositions of TbPc2(OC11H21)8 in a bulk deposit compared to the 
theoretical values for the molecule. 

 Tb 3d3/2  N 1s  C 1s 

 %  % N/Tb  % N/C 

TbPc2(OC11H21)8 0.5  7.5 15  92 0.08 

Theoretical 0.6  9.5 16  89.9 0.1 
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Figure 3. XPS spectra of a drop cast (thick film) of TbPc2(OC11H21)8 on Au 

In Figure 3 are reported the XPS spectra of a drop cast thick film on gold. The N1s 

features a unique peak at 398.3 eV arising from the contributions from the pyrrole-

aza coordinating the metal and from the meso-bridging aza nitrogen atoms, as 

expected for a metal coordinated phthalocyanine.6 The Tb3d3/2 peak is centred at 

1276.5 eV, in agreement with literature data.7  

 

3.2 Magnetic characterisation of bulk TbPc2(OC11H21)8 

Magnetic characterisation, performed with standard AC (Figure 4) and DC (Figure 

6) magnetometric techniques clearly indicates the SMM behaviour of the complex in 

its bulk phase. 
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Figure 4 AC susceptibility characterisation of the bulk phase of TbPc2(OC11H21)8: in zero field 
(a-b) and in a H=5 kOe external field (c-d). 

 In zero static field the AC susceptibility vs temperature curves are characterised 

by a frequency dependent peak in the out-of-phase component occurring at 

relatively high temperatures, e.g. the maximum in ” at 1 kHz is observed at 47 K, 

that well compares with those reported for similar homoleptic substituted TbPc2 

systems.8 

A more careful analysis of the frequency dependence of the AC susceptibility in a 

wide frequency range, 0.5 Hz - 10 kHz, was performed with the extended Debye 

model9 and the relaxation time, , was extract using this method. In Figure 5 ln() is 

reported vs. 1/T and in this plot and  a linear trend was observed at zero static field 

only in the high temperature regime, i.e.  T> 35K. Fitting the high temperature data 

with the Arrhenius law provided 0 = 5.5±0.710-12 s and kB=811±5 K.  
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Figure 5. Arrhenius plot of data extracted from AC measurements in zero field and in 5kOe 
static field. 

The estimated energy barrier (811 K) in the thermally activated process is bigger 

than that found for the TbPc2(PO3Et2)2 (614 K, chapter 2.4.3) but it was it was close 

to the value found  for amorphous unfunctionalised TbPc2 system (856 K).10 

In zero field the relaxation becomes temperature independent, indicating an 

efficient tunnel mechanism below 35 K. The application of a static field of 5 kOe 

supresses the tunnelling and restores the thermally activated regime also below 35 

K. with  exceeding our time window (10 s) below 30 K. As already observed for 

TbPc2(PO3Et2)2 complex,  was found to exhibit a single narrow distribution of  in 

static field, where the distortions from idealised D4d symmetry are not affecting the 

quantum tunnelling rate, while a much broader distribution was detected in  5 kOe 

static field. 
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Figure 6. Magnetisation curves as a function of the temperature recorded at the field 
sweeping rate of 50 Oe s-1. 

In Figure 6 the results of magnetisation vs. field measurements performed at 

several temperatures are reported. By scanning the field between 30000 Oe and -

30000 Oe at 50 Oe s-1 an opening in the hysteresis is evidenced below 15 K with the 

typical butterfly shape induced by the enhancement of quantum tunnelling in zero 

applied field.11 

 

Figure 7. Hysteresis opening of a bulk sample of TbPc2(OC11H21)8 estimated as M/Msaturation 
according to the procedure described in the chapter 2.4.3. 

Comparing the temperature dependence of the area of the plots in Figure 7 with 

analogous characterisations performed on TbPc2(PO3Et2)2 and on the pristine 
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[TbPc2]0 complex (Figure 8) a behaviour intermediate between the last two is found, 

in agreement also with the results from the Arrhenius analysis.  

 

Figure 8. Comparison between the temperature dependence of area under hysteresis 
curves for TbPc2(OC11H21)8, TbPc2(PO3Et2)2 and for microcrystalline TbPc2.10 

 

 

Figure 9. XAS characterisation of thick film of TbPc2(OC11H21)8  with linear polarised light (a) 
and circularly polarised light (b).  Temperature dependence of the XMCD signal at 1236.78 
eV at 2.2± 0.2 and 4.3 ± 0.2K (c). 
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In Figure 9 are reported the results of a synchrotron-based characterisation of a 

drop-cast thick film of TbPc2(OC11H21)8 on Si surface. In Figure 9a the spectra recorded 

with linear polarisation and the relative dichroism (XNLD) is reported. The shape of 

XNLD signal indicates that the molecules are preferentially oriented in the film with 

standing up configuration.12 The spectra recorded with circularly polarised light 

(Figure 9b) show the typical XMCD signal of TbPc2 species, and of TbIII in general.13–

16 More informative is the field and temperature dependence of the XMCD signal 

taken at its maximum (1236.78 eV), reported in Figure 9c confirming the SMM 

behaviour observed by standard magnetometry (Figure 6). 

 

3.3 Monolayer preparation. 

The TbPc2(OC11H21)8 complex has been anchored on a H-terminated Si(100) 

surface via thermal hydrosilylation of the double bonds according to the procedure 

available in the literature.17 The hydrosilylation reaction leads to the formation of a 

robust Si–C bond and it occurs by placing the alkene-functionalised molecules in a 

10-3 M mesitylene solution at 200° C in the presence of a freshly etched H-terminated 

Si(100) (Figure 11). After grafting, several cycles of cleaning (including the sonication 

of the sample in several solvents) guarantee the removal of all the physisorbed 

materials leaving on the surface only the monolayer of grafted molecules.  

 

Figure 10. Sketch of the TbPc2(OC11H21)8@Si grafting procedure: step 1) etching of silicon 
surface in HF 2.5%; step 2) hydrosilylation at 200°C for 2h. 
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3.3.1 XPS TbPc2(OC11H21)8@Si characterisation 

The silicon anchored complex was chemically grafted to the surface following the 

procedure described in the previous chapter and in Figure 10. The hybrid surface, 

named TbPc2(OC11H21)8@Si hereafter, was first characterised by XPS in order to verify 

the chemical integrity of the molecular system; only Tb3d3/2, N1s and C1s signals 

were included in a semiquantitative estimation of the element content on surface 

and are reported in Table 2. 

Table 2. XPS atomic composition of the monolayer of TbPc2(OC11H21)8 grafted on Si 
compared to the theoretical values. 

 Tb 3d3/2  N 1s  C 1s 

 %  % N/Tb  % N/C 

TbPc2(OC11H21)8@Si 0.5  6.4 14  93.1 0.07 

Theoretical 0.6  9.5 16  89.9 0.1 

 

Even considering the experimental error of XPS and the presence of adventitious 

carbon contamination in this ex situ prepared sample, we can assert that the 

procedure of grafting assures the deposition of the intact system. Additional 

information on the monolayer nature can be obtained by the analysis of the N1s 

peak shape. The comparison between the spectra of the monolayer and that of the 

thick film, reported in Figure 11, evidences in fact significant differences. The drop 

cast film features a unique peak at 398.3 eV, as mentioned above. On the contrary, 

the N1s spectral region of the monolayer presents, in addition to this signal, a more 

intense component at higher energy (400.3 eV), clearly indicating that a modification 

occurs in the chemisorbed molecules, somehow in analogy to what observed for the 

TbPc2(PO3Et2)2 chemically grafted on LSMO (chapter 2.4.6). 

We demonstrated in Figure 11 c that a similar shift to higher energy of the N1s 

signal can be induced also on a thick film of TbPc2(OC11H21)8 by exposing its solution 

to chlorine and then preparing a drop cast deposit. The treatment with chlorine, 

already described in literature for Lutetium(III) bis(phthalocyaninato),18 induces the 

formation of the corresponding cationic double-decker species,19 i.e. the oxidised 

complex in which one of the electrons of the bis(phthalocyaninato) ligands shell has 

been removed. On the basis of these evidences, the energy shift can be inferred to 

result either from a stabilisation effect of the silicon surface of a cationic species 
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formed during the grafting reaction or from an electron depletion of the molecular 

system induced by the interaction with the surface, in analogy to similar effects 

experimentally observed and discussed for various phthalocyanine monolayers 

adsorbed on semiconducting oxides,20–22 but never reported for double-decker 

complexes. 

 

Figure 11. N 1s XPS spectra: a) TbPc2(OC11H21)8@Si monolayer, b) drop cast deposit of 
TbPc2(OC11H21)8 and c) drop cast sample treated with chlorine.  

 

3.3.2 Magnetic characterisation of the TbPc2(OC11H21)8@Si 
monolayer 

X-ray absorption experiments carried out down to 2K, under a 50 kOe magnetic 

field parallel to the X-ray light propagation vector, using circularly polarised light 

allowed to extract also the X-ray Magnetic Circular Dichroism (XMCD). 



3. Realization of an alternative hybrid magnetic electrode based on Tb(III) bis-
phathalocyaninato 

 

80 
 

 

Figure 12. XMCD measurements at 2.2±0.2 K, 50 kOe, for (n,k)=60°. 

The result for the monolayer is reported in Figure 12: detected features and the 

intensity of the dichroic signal are in line with the expected ones12,23
 for a saturated 

Tb3+
 system characterised by total angular momentum J=L+S=6. Figure 13 reports the 

variation of the XMCD contribution at the M5 edge, normalized to the saturation 

value, as a function of the applied magnetic field between -50 and 50 kOe at three 

different temperatures. 

Profiting of the fast TEY detection setup and the stability of the experimental 

apparatus developed in the DEIMOS beamline, it has been possible to collect the 

signal as a function of the fast sweeping field, thus providing highly resolved XMCD-

detected magnetisation curves clearly showing hysteretic behaviour already at 

4.3±0.2 K. The opening of the hysteresis strongly depends on the temperature and 

also on the speed of the scanning field, confirming the dynamic character of the 

magnetic bistability typical of TbPc2 SMMs.  
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Figure 13. (a) XMCD-detected magnetisation curves for (n,k)=60° as a function of the 
temperature in the TbPc2(OC11H21)8@Si monolayer.  

Figure 14a reports a very tiny dependence of the hysteresis on the angle (n,k) 

between the normal to the surface and the light propagation vector, indicating a 

partial orientation of the molecular film. Most important is the comparison with the 

behaviour of the bulk phase reported in Figure 9c. Noticeably it reveals a significantly 

larger opening of the hysteresis for the monolayer.  

A better estimation of the changes in the hysteretic behaviour can be achieved in 

analogy to what reported in previous measurements by plotting the difference in the 

magnetisation obtained for increasing and decreasing field: M(H)=|M(H↑)-

M(H↓)|. In Figure 14 b are reported the M(H) curves and their area corresponds to 

the opening of the hysteresis loop, which results to be significantly larger in the 

monolayer sample than in the thick film.  
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Figure 14. Comparison between the hysteresis loop (a) and M/Msaturation (b)of the thick 
film and the monolayer measured for (n,k)=0° and 60°. 

 

3.3.3 XNLD monolayer characterisation 

Linear polarisation-dependent X-ray absorption experiments have been carried 

out on the TbPc2(OC11H21)8@Si monolayer to evaluate with the highest level of 

accuracy the structural properties of the assembled nanostructure.  

At first, X-ray Natural Linear Dichroism (XNLD) was measured for the Tb M4,5 

edges. The sample was set so that the normal to the surface n and the X-ray 

propagation vector k lie in the horizontal plane with (n,k)=60°. The cross-sections 

with horizontal linear polarisation (H) and with vertical linear polarisation (V) were 

measured (Figure 15). 
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Figure 15. XNLD measurements at 2.2±0.2 K, 50000 Oe, for (n,k)=60°. 

In the ideal case, where TbPc2 molecules adopt a lying down configuration, that is, 

the phthalocyaninato C4 axis is parallel to the surface normal, the electric field of the 

vertically polarised light is aligned perpendicular to the symmetry axis of the 

coordination square antiprism of the TbIII ion, whereas the horizontal one forms an 

angle of 30° with this axis. In the opposite case, where TbPc2 molecules adopt a 

standing configuration with no order in the plane, the electric field of the vertically 

polarised light can be now aligned at any angle with the symmetry axis of the 

molecules, whereas for the horizontal polarisation, the electric field cannot be 

parallel to the molecular symmetry axis. It is thus straightforward that XNLD, 

evaluated as (V - H), changes sign for the two configurations and can therefore be 

employed to extract information on the molecular arrangement in the monolayer. 

 

Figure 16. Sketch of the geometry of the XNLD experimental setup. 
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By the comparison with experimental and theoretical reports from earlier 

literature12, it is possible to assess the preferential orientation of the molecules on 

surface. We assume that XAS at Tb M4,5 edges is completely described in the electric 

dipole approximation and that the symmetry of the sample is C, i.e. the sample is 

invariant by any rotation parallel to the normal of the sample surface. According to 

the work of Brouder24 the two previous assumptions imply that the angular 

dependence of the cross-section is dichroic for linear polarised light. As reported in 

Figure 16 if θ is the angle between the linear polarisation vector  and the symmetry 

axis n, then the cross section is given by: 

                                 𝝈(𝜽) = [𝐜𝐨𝐬(𝜽)]𝟐𝝈𝑷𝒂𝒓 [𝐬𝐢𝐧(𝜽)]𝟐𝝈𝑷𝒆𝒓𝒑 ( 1 ) 

where 𝝈𝑷𝒂𝒓 is the cross-section measured with parallel to n and 𝝈𝑷𝒆𝒓𝒑 is the cross-

section measured with perpendicular to n We measured cross-section with 

vertical or horizontal and using Eq. ( 1 ) we find that for vertical 𝝈𝑽 = 𝝈𝑷𝒆𝒓𝒑 , while 

for horizontal  with θ=30° 𝝈𝑯 = (𝟑𝝈𝑷𝒂𝒓 + 𝝈𝑷𝒆𝒓𝒑)/𝟒. Then, recalling the definition of 

𝝈𝑿𝑵𝑳𝑫 = 𝝈𝑽 − 𝝈𝑯 it follows that: 

                                             𝝈𝑿𝑵𝑳𝑫 = 𝟑 𝟒⁄ (𝝈𝑷𝒆𝒓𝒑 − 𝝈𝑷𝒂𝒓) ( 2 ) 

The isotropic cross-section for dichroic systems is given by:24 

𝝈𝑰𝑺𝑶 = (𝟐𝝈𝑷𝒆𝒓𝒑 + 𝝈𝑷𝒂𝒓)/𝟑 

𝝈𝑰𝑺𝑶 = (𝟒𝝈𝑯 + 𝟓𝝈𝑽)/𝟗 

Using these definitions one can extract a percentage of the dichroic contribution 

with respect to the isotropic contribution and compare this result with the one 

calculated for a flat molecule placed in a lying down configuration and with the one 

experimentally measured for TbPc2 unfunctionalised molecules evaporated on 

gold.12 From this it is possible to estimate that about half of the molecules grafted to 

the silicon surface monolayer are preferentially oriented with a lying down 

configurations. It is interesting to notice that a reversed XNLD signal is measured in 

a bulk sample obtained by drop casting a solution of TbPc2(OC11H21)8 (Figure 9a). This 

finding are in line with the common tendency for thick bis(phthalocyaninato) films 

to aggregate in a standing up configuration12, and the observed difference between 

the two samples confirms that our monolayer of TbPc2 does not contain physisorbed 

aggregates.  
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The use of silicon, unprecedented for this type of SMMs, presents several 

interesting advantages. Our results show that TbPc2 SMMs can be covalently and 

robustly anchored to a silicon substrate, with the deposited monolayer standing 

harsh treatments like sonication in dichloromethane. Si–C covalent bonds in fact 

guarantee a higher stability. Moreover, the pronounced magnetic bistability is not 

only retained at the level of the monolayer but, when quantified as the area enclosed 

in the hysteresis cycle, it happens to be significantly enhanced by the grafting process 

to silicon. More important is that this alteration correlates with changes observed in 

the photoelectron spectra. Although the long alkyl chains in this Tb double-decker 

SMM could in principle hamper a significant interaction with the substrate, their 

flexibility, as already observed for functionalised TbPc2 molecules grafted on gold,25 

induces a preferential lying down configuration that can allow a stabilisation of an 

oxidised TbPc2 system by the silicon substrate. It is well known that the oxidation of 

the Pc ligands reduces the height of the square-antiprism coordination polyhedron 

with a sensible enhancement of the effective energy barrier for the reversal of the 

magnetisation and more pronounced hysteretic behaviour.26–28  
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4. Functional hybrid electrodes based on 
light switchable molecules. 

 

Cobalt complexes which contains dioxolene ligands belong to the class of 

switchable molecules.1,2 They are class II mixed-valence systems in the Robin’s and  

Day’s classification2 showing a small electronic delocalization between the Co ion 

and the organic ligand. Namely those systems are defined as Valence Tautomers 

(VT), systems in which two possible molecular electronic states can be defined: one 

is the closed-shell diamagnetic ls-CoIII(Cat) and the other is the hs-CoII(SQ) 

paramagnetic redox isomer, where Cat and SQ stand for the two forms of the 

dioxolene ligand, catecholate and semiquinonate, respectively.3  

The simplest molecular systems displaying VT rely on the [CoLdiox] core, being L 

a tetradentate N-donating ancillary ligand and diox a chelating ligand belonging to 

the ortho-quinone (dioxolene) family. At low temperatures the diamagnetic ls-

CoIIICat redox isomer is the ground state, but entropy driven intramolecular electron 

transfer triggers a spin switch at the metal center, reversibly yielding the 

paramagnetic hs-CoIISQ species upon heating the system.4 At cryogenic 

temperatures the same interconversion can be induced by optical5 and soft X-ray 

irradiation;6 once removed the stimulating source, a slow decay to the ls-CoIIICat 

ground state occurs with a temperature dependent lifetime.7 The intrinsic properties 

of VT allows to tune the electronic properties of the two redox active centers by 

chemical design, giving the possibility to prepare structurally related complexes with 

different charge distributions.8 Moreover, on the basis of DFT calculations it has been 

recently proposed that electric field switching may be achieved for surface deposits 

of these compounds, suggesting that detection and modulation of their magnetic 

state can be obtained at the single molecule level by using a Scanning Tunnel 

Microscopy-based architecture.9  

Low temperatures stabilize the ls-CoIIICat state for enthalpic reasons and upon 

heating, a reversible intramolecular electron transfer occurs from the ligand to the 

Co ion, bringing the system to switch their spin state by an intramolecular electron 

transfer. The transformation arise from the entropic gain induced by the higher 

density of vibrational and spin states in the hs-CoII(SQ).10 The control of the charge 
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distribution of the system can be tuned by varying thermodynamic parameters, like 

temperature,3,11 pressure,12,13 magnetic field.14 The control of the charge distribution 

can be achieved also at cryogenic temperatures, where the irradiation, either in the 

visible 7 or in the soft x-rays6 populates the metastable hs-CoII(SQ) electronic state. 

The coupling between electronic and vibrational states with the ground ls-CoIII(Cat) 

state leads to an activation barrier and the relaxation process is temperature 

dependent. The optical and thermal bistabilities in both VT15, in analogy to  what 

observed in  Spin Crossover (SCO)16 materials, follow two mechanisms: temperature 

induced transitions are strictly related to environmental effects; on the other hand, 

the decay process of the photoinduced phase is mainly a single-molecule property, 

involving the variation of bond length taking place during the optically  triggered 

transition.  

4.1 Optimisation of the spectroscopic characterisations of a 
Valence Tautomeric system in the bulk phase  

From a technological point of view these molecular properties are very promising, 

suggesting that bistable molecules can be used as active components for molecular 

devices. DFT calculations are in line with this perspective: it has been recently 

proposed that an STM could be used to read and change the electronic ground state 

of VT systems when the molecules are isolated on conductive surfaces.9 The 

chemical functionalization of VT and SCO molecules with the preservation of their 

bistabilities features, represents a step toward the surface structuration of these 

systems.  

For this reason, in order to understand the potentiality of VT compounds, we 

performed a multi-technique characterisation of a family of dinuclear Cobalt-

dioxolene complexes chemically functionalised with a thioether bridge (Figure 1). 

The complexes have a general formula Co(Mentpa)2+  where Mentpa are differently 

methylated derivatives of tris-pyridil-amine (n=0,2,3) for complexes [CoL1-dioxo-R-

dioxo-CoL1], [CoL2-dioxo-R-dioxo-CoL2] and [CoL3-dioxo-R-dioxo-CoL3] 

respectively like shown in Figure 1. These molecules are possible building blocks for 

the development of bistable molecular nanostructures. Complex [CoL2-dioxo-R-

dioxo-CoL2] features a VT behaviour while complex [CoL1-dioxo-R-dioxo-CoL1] (and 

[CoL3-dioxo-R-dioxo-CoL3]) maintain their diamagnetic (and paramagnetic 

respectively) state within the range of explored temperatures in agreement with 

what has been reported for the archetypal Cobalt–Dioxolene Complex complexes.7 
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Figure 1. Schematic representation of the dinuclear Cobalt-dioxolene complexes, [CoL1-

dioxo-R-dioxo-CoL1] (n=0), [CoL2-dioxo-R-dioxo-CoL2] (n=2), [CoL3-dioxo-R-dioxo-CoL3] 

(n=3) and the corresponding ancillary Mentpa ligands. 

4.1.1 Magnetic Characterisation.  

In order to follow the conversion between the diamagnetic ls-CoIII(Cat) and the 

paramagnetic hs-CoII(SQ) isomers, relevant information can be extracted from 

temperature and light dependent magnetic measurements. In  

Figure 2 is reported the temperature dependence of the 𝜒𝑀𝑇 product of complexes 

[CoL1-dioxo-R-dioxo-CoL1] (blue empty circles), [CoL2-dioxo-R-dioxo-CoL2] (full 

circles of variable colour) and [CoL3-dioxo-R-dioxo-CoL3] (full red circles), measured 

by applying a 1 kOe field in the 2 – 45 K range and a 10 kOe one up to 300 K. The 

samples were characterized as bulk polycrystalline samples. Complex  [CoL1-dioxo-

R-dioxo-CoL1] shows a substantially diamagnetic behaviour in the 10-300 K range, 

its 𝜒𝑀𝑇  varying from 0.02 emu K/mol at 10 K up to 0.13 emu K/mol at 300 K, in line 

with the expected temperature independent paramagnetism of the octahedrally 

coordinated ls-CoIII ion.17 This clearly evidence a temperature independent ls-

CoIII(Cat) electronic distribution in the whole investigated temperature interval. On 

the contrary, the room temperature 𝜒𝑀𝑇 value of [CoL3-dioxo-R-dioxo-CoL3] (6.15 
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emu K/mol) is consistent with two non-interacting semiquinonate radical ligands (S 

= 1/2, g =2.0) and two hs-CoII ions (S=3/2 with high orbital contribution) and is in the 

range expected for two hs-CoII-SQ moieties (6.0 - 7.6 emuK/mol).18  

 

Figure 2. Temperature dependence of the 𝝌𝑴𝑻  of the three investigates samples 

complexes [CoL1-dioxo-R-dioxo-CoL1] (blue empty circles), [CoL2-dioxo-R-dioxo-CoL2] (full 

circles of variable color) and [CoL3-dioxo-R-dioxo-CoL3] (full red circles). 

The slight increase in 𝜒𝑀𝑇  observed on lowering temperature observed for 

[CoL3-dioxo-R-dioxo-CoL3], though  surprising , has already been reported for a 

different dinuclear cobalt-dioxolene system.19 This can be attributed to variable 

population of the excited multiplets of the 4T1g ground state of CoII centers, which is 

split due to the combined effect of low symmetry distortion and spin–orbit 

coupling.18,20 On the other side the temperature dependence of the 𝜒𝑀𝑇 product of 

the complex [CoL2-dioxo-R-dioxo-CoL2] is completely different from [CoL1-dioxo-R-

dioxo-CoL1] and [CoL1-dioxo-R-dioxo-CoL1] complexes. Indeed 𝜒𝑀𝑇  product 

varying from 1.93 emu K/mol at 60 K to 3.82 emu K/mol at 300 K, in accordance with 

a thermally driven Valence Tautomeric equilibrium. Deconvolution of the magnetic 

signal of [CoL2-dioxo-R-dioxo-CoL2] using [CoL1-dioxo-R-dioxo-CoL1] and [CoL3-

dioxo-R-dioxo-CoL3] as reference compositional cases for the ls-CoIII(Cat) and hs-

CoII(SQ) charge distributions, respectively, allows to estimate a hs-CoII(SQ) molar 

fraction of 61 % at 300 K.  

Notwithstanding its dinuclear nature no double stepped entropy driven 

conversion were found for complex [CoL2-dioxo-R-dioxo-CoL2]. This phenomenon 
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can be explained considering the structural rigidity of the thioetheric bridge, which 

hampers a significant vibronic coupling between the two Co-diox centers. Molecular 

based multistability in Co VT molecular materials, was reported for the first time by 

Preuss et al. for an amorphous film of a dinuclear Cobalt-dioxolene complex,21 and 

only recently the dependance on the vibronic coupling between the two Co-diox 

moieties was demonstrated.19  Below 60 K, the levelling of 𝜒𝑀𝑇of [CoL2-dioxo-R-

dioxo-CoL2] to 1.57 emu K/mol is indicative of the presence of a hs-CoII(SQ) 

remaining fraction at low temperature (29 % of the overall Co content). This 

behavior, usually observed in spin crossover complexes21 and molecules undergoing 

redox isomerism,22 is to be attributed to the trifling intermolecular cooperativity in 

the solid state, confirmed by the smooth profile of the entropy-driven transition.  

 

4.1.2 Photomagnetism.  

In line with other Cobalt-dioxolene complexes23 [CoL2-dioxo-R-dioxo-CoL2] 

displays a light-induced VT transition, showing the possibility to optically trigger the 

ls-CoIII(Cat) to hs-CoII(SQ) conversion. In this case the samples were prepared using a 

Die Kit in a mixture of [CoL2-dioxo-R-dioxo-CoL2] sample and dried KBr with a 

complex concentration of ca. 1%. Light was applied perpendicularly to the pellet 

surface. In Figure 3 is reported the effect of the application of 904 nm laser lightat 

T=10 K: the 𝜒𝑀𝑇  value increases from 1.57 up to 1.99 emuK/mol, corresponding to 

an 11 % photo-conversion of the ls-CoIII(Cat) content.  

 

Figure 3. Time evolution of the 𝝌𝑴𝑻 product of [CoL2-dioxo-R-dioxo-CoL2] after 904 nm 
light irradiation. 
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In order to characterize the relaxation dynamics of the photo-induced metastable 

hs-CoII(SQ) molar fraction (𝛾ℎ𝑠−𝐶𝑜(𝐼𝐼)SQ) to the ls-CoIII(Cat) electronic ground state for 

[CoL2-dioxo-R-dioxo-CoL2], the time  decays of the photo-induced hs-CoII(SQ) were 

measured (Figure 4).  From the data the relaxation time was extracted by fitting the 

curves with a stretched exponential decay:  

                                                      𝜸𝒉𝒔(𝒕) =   𝜸𝒉𝒔(𝟎)𝒆
−(

𝒕

𝝉
)

𝜷

 ( 1 ) 

where the  exponent takes into account the width of the distribution of 

relaxation times.24  In Table 1 we report the relaxation times  and stretching 

exponential factors  

Table 1. Relaxation times  and stretching exponential factors extracted from the 
isothermal relaxation curves of the photo-induced phase of [CoL2-dioxo-R-dioxo-CoL2] .  

T (K)  (s) 

10 8.3(2)∙105 0.321(1) 

20 8.3(5)∙105 0.315(6) 

30 3.07(3) ∙105 0.291(1) 

40 7.49(3)  ∙104 0.357(1) 

50 1.317(3)∙104 0.3822(7) 

60 5.40(2) ∙103 0.443(1) 

 

The extracted relaxation times feature a non-linear dependence on temperature: 

monitoring the ln() vs T-1 plot (inset of Figure 4), it is possible to distinguish a 

crossover between a low temperature regime (10 - 20 K), where  is temperature 

independent, and a higher temperature one (30 - 60 K), where a linear dependence 

of ln( with T-1 is clearly observed. 

The fit of these points by an Arrhenius model for thermally activated relaxation  

                                                      𝝉(𝑻) = 𝝉𝟎𝒆−∆𝑬/𝒌𝑩𝑻 ( 2 ) 

resulted in a pre-exponential factor of 25(15) s and an activation barrier () of 

318(23) K.  The height of the barrier confirms that the mixing of the metastable and 

ground electronic states responsible for the decay takes place mainly though the Co-

O stretching vibrational mode.8,7 Linear fit of the low temperature region (reported 

in Figure 4 as a dotted line) provides 8.2(1) x 105 s as estimate of the (T0). 
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Figure 4. Isothermal time dependence of the photo-induced hs-CoII(SQ) molar fraction of 
[CoL2-dioxo-R-dioxo-CoL2], measured at different temperatures after photo-excitation at 
10 K. Inset: Corresponding Arrhenius plot. 

An estimate of the energy barrier to the thermally activated relaxation of the 

photo-induced phase can also be obtained by analyzing the thermal dependence of 

its metastable molar fraction 𝛾ℎ𝑠−𝐶𝑜(𝐼𝐼)SQ (Figure 5). 

 

Figure 5. a) Temperature dependence of the 𝝌𝑴𝑻 product before (○), during (x) and after 
(●) light irradiation at 10 K; b) corresponding plot of the photo-induced hs-CoIISQ molar 
fraction. In the inset the temperature derivative allow to extract TLIESST. 

In Figure 5 (a) is reported the temperature dependemce of  the 𝜒𝑀𝑇 product 

where measured  before during and after 904 nm irradiation at 10 K, warming the 
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sample after removing the irradiation at a rate of 0.3 K/min. In Figure 5 (b) is reported 

the corresponding plot of the photo-induced hs-CoIISQ molar fraction (𝛾ℎ𝑠−𝐶𝑜(𝐼𝐼)SQ), 

obtained interpolating the photo-induced 𝜒𝑀𝑇 values of [CoL2-dioxo-R-dioxo-CoL2] 

using the Eq. ( 3 ): 

                               𝜸𝒉𝒔−𝑪𝒐(𝑰𝑰)𝑺𝑸
(𝑻) =

[𝝌𝑴𝑻(𝑻)]𝟐−[𝝌𝑴𝑻(𝑻)]𝟏

[𝝌𝑴𝑻(𝑻)]𝟑−[𝝌𝑴𝑻(𝑻)]𝟏
 ( 3 ) 

The Eq.( 3 ) reports the procedure used to calculate the thermal evolution of the 

hs-CoII molar fraction of [CoL2-dioxo-R-dioxo-CoL2] from magnetisation 

measurements, using the MT values of [CoL1-dioxo-R-dioxo-CoL1] and [CoL3-

dioxo-R-dioxo-CoL3] as representative of ls-CoIII and hs-CoII charge distributions, 

respectively. 

After switching off the excitation source at 10 K, the 𝜒𝑀𝑇 value collapses on the 

non-irradiated one at 78 K. If carried out at a warming rate of 0.3 K min-1, this process 

allows to measure the TLIESST parameter, i.e. the temperature where a minimum in 

the derivative d(hs-CoII(SQ))/dT vs T plot occurs, see inset of Figure 6b.25,26 This 

parameter affords an easy way to compare the stability of the photo-induced state 

for different optically-switchable materials. For [CoL2-dioxo-R-dioxo-CoL2], the 

derived value of  TLIESST is 49 K, in agreement with literature data.7,15,19,23,27 

 

4.1.3 X-Ray Photoelectron Spectroscopy. 

 XPS has been previously used as atomically specific spectroscopic probe of 

oxidation and spin states in the analysis of electronic structures of molecular 

switchable materials, ranging from mixed valence28 to spin crossover29 and 

coordination polymeric networks.30–33 In dioxolene-metal coordination chemistry it 

has allowed the determination of the charge distribution in different nickel-

dioxolene adducts.34 XPS can provide information about the chemical and the 

electronic structure of diluted samples like monolayers of molecules grafted to 

conductive surfaces. However, since the binding energy of electrons in a given orbital 

is dependent on both valence and spin configuration of the emitter, it is not always 

straightforward to address redox states when the spin state of the emitter can be 

switched as well.35 By comparing the Co2p XPS spectra of [CoL2-dioxo-R-dioxo-CoL2] 

with those of the limiting charge configuration cases [CoL1-dioxo-R-dioxo-CoL1] and 
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[CoL3-dioxo-R-dioxo-CoL3] it has been possible in this thesis work to achieve a 

reference set to estimate the charge distribution of the interconverting system. 

 

Figure 6. Co2p R.T. XPS spectra of compounds [CoL1-dioxo-R-dioxo-CoL1], [CoL2-dioxo-R-
dioxo-CoL2] and [CoL3-dioxo-R-dioxo-CoL3] along with best fit components, as reported in 
Table 2. 

Table 2. Results of XPS spectral fitting of [CoL1-dioxo-R-dioxo-CoL1], [CoL2-dioxo-R-dioxo-
CoL2] and [CoL3-dioxo-R-dioxo-CoL3] with the procedure reported in the text, along with 
semi-quantitative evaluation of their chemical composition. 

 Co N S P F 

 A B C D S.O.3     

% B.E.2 

(%) 

B.E.2 

(%) 

B.E.2 

(%) 

B.E.2 

(%) 

 Co/N %1 Co/S %1 Co/P %1 %1 

[CoL1-dioxo-

R-dioxo-CoL1] 

7.4 782.4 
(89.2) 

786.0 
(2.5) 

788.0 
(8.3) 

n.a. 
(n.a.) 

15.1 0.2 6.5 1.1 7.2 1.0 7.2 47.2 

[CoL2-dioxo-

R-dioxo-CoL2] 

7.6 781.6 
(42.1) 

783.2 
(21.5) 

786.2 
(12.5) 

788.6 
(23.9) 

15.5 0.3 7.5 1.0 6.2 1.2 6.2 48.1 

[CoL3-dioxo-

R-dioxo-CoL3] 

7.3 781.7 
(36.3) 

783.3 
(20.7) 

786.0 
(15.1) 

788.4 
(27.9) 

15.8 0.3 7.1 1.0 7.8 0.9 7.8 49.8 

Theor. 7.7  0.3 7.7 1.0 7.7 1 7.7 46.2 
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The first step of our XPS analysis involved a semiquantitative determination of 

the elemental composition of [CoL1-dioxo-R-dioxo-CoL1], [CoL2-dioxo-R-dioxo-

CoL2] and [CoL3-dioxo-R-dioxo-CoL3] using Co2p (Figure 4), N1s, S2p, P2p, F1s 

(Figure 7) core levels. Carbon and oxygen contributions were discarded since they 

may be affected by spurious contaminations, inasmuch the samples were mounted 

like bulk polycrystalline samples on carbon tape to achieve higher intensity then on 

a drop-cast sample. This analysis confirmed the theoretical stoichiometric 

composition of the complexes, which is expected to be the same for the three 

compounds with regard to the investigated elements (see Table 2). In Table 2 are 

reported the molar percentage, the binding energies (B.E.) and spin-orbit splittings 

(S.O.) for the three systems. Component contributions are reported in brackets. The 

experimental ratios between the most significant contributions (Co/N, Co/S, Co/P) 

agree as well with the theoretical ones. Additional information can be extracted by 

analyzing the line shape of the Co2p spectra of [CoL1-dioxo-R-dioxo-CoL1], [CoL2-

dioxo-R-dioxo-CoL2] and [CoL3-dioxo-R-dioxo-CoL3]. This region was fitted 

following previously reported procedure for ls-CoIII and hs-CoII complexes;36,37 Table 

2 and Figure 6 report the results of the fitting analysis. Co2p3/2 region has been 

reproduced with 3 or 4 components (A-D), along with the corresponding Co2p1/2 

spin-orbit coupled contributions (A'-D'), weighted by the expected 2:1 ratio. In 

agreement with literature reports, the S.O. shift depends on the Co redox state and 

is larger for the hs-CoII ion than for the ls-CoIII one (15.8 eV for [CoL3-dioxo-R-dioxo-

CoL3] and 15.1 eV for [CoL1-dioxo-R-dioxo-CoL1]). This indicates that complex 

[CoL2-dioxo-R-dioxo-CoL2], whose room temperature S.O. shift is 15.5 eV, is 

constituted mainly by hs-CoII ions but indeed contains a relevant ls-CoIII molar 

fraction, in agreement with magnetometric data. Moreover, the Co2p spectrum of 

[CoL1-dioxo-R-dioxo-CoL1] can be reproduced by a main peak (A) centered at 782.4 

eV, with only minor contributions at higher binding energies (B, C, plus the 

corresponding S.O. peaks), in line with the electronic ground state expected for an 

octahedrally coordinated ls-CoIII ion.38 Compounds [CoL2-dioxo-R-dioxo-CoL2] and 

[CoL3-dioxo-R-dioxo-CoL3], on the contrary, display more complex spectral patterns 

due to the presence of shake-up components, typical of hs-CoII systems in octahedral 

coordination environment and in line with previous reports about inorganic39 and 

metallorganic36 ls-CoIII and hs-CoII compounds. This approach points out that 

comparison of XPS spectra of structurally related VT complexes can be used as in-

house analytical tool to obtain information about their electronic charge 

distribution. Anyway, a quantitative description of their temperature and light 
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conversion features requires higher sensitivity techniques, like synchrotron based 

absorption spectroscopies. 

 

 

Figure 7. R.T. XPS spectra of compounds [CoL1-dioxo-R-dioxo-CoL1] (blue), [CoL2-dioxo-R-
dioxo-CoL2] (black) and [CoL3-dioxo-R-dioxo-CoL3] (red) at the N1s, S2p, P2p and F1s core 
levels. 

4.1.4 X-Ray Absorption Spectroscopy.  

X-Ray Absorption Spectroscopy (XAS) has been shown to be an unmatched tool 

for the analysis of thermally- and optically-triggered transitions of bistable molecular 

materials, affording spectral analysis of the processes with atomic selectivity and 

sensitivity to investigate bulk and surface confined molecular assemblies.40 XAS has 

been employed to study the electronic and structural features of switchable 

materials like polycyanometallates41 and FeII complexes42,43 and to investigate the 

effect of surface confinement on their bistability.44 In the case of VT materials, it 

helped in clarifying the electronic states involved in the pressure-,45 entropy-46 and 

light-driven conversions47 and revealed that sof X-rays can act as a source of photo-

conversion, though the microscopic mechanism involved in the excitation process 

remained to be clarified.6 More recently, this technique provided definitive evidence 
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of the valence tautomeric nature of the transition in a two-centered Cobalt-

dioxolene complex.19  

Temperature and light dependent XAS at the Co L2,3 edge was here employed to 

assess the charge distribution of the bulk phase of [CoL1-dioxo-R-dioxo-CoL1]-

[CoL3-dioxo-R-dioxo-CoL3] compounds. Unlike for XPS, in XAS experiments, the 

sample were prepared by drop-casting the complexes from mM solutions on gold 

because the conduction of the sample was very important due to the employed TEY 

detection mode. 

Figure 8 shows room temperature XAS Co L3 edge spectra of compounds [CoL1-

dioxo-R-dioxo-CoL1] and [CoL3-dioxo-R-dioxo-CoL3], the temperature dependence 

of the normalised Co L3 edge spectra of [CoL2-dioxo-R-dioxo-CoL2], and the hs-CoII 

and ls-CoIII theoretical spectra calculated for the parent complex with 

unfunctionalised dioxolene ligand using a Ligand Field Multiplet (LFM) approach.6   

 

Figure 8. Co L3 edge X-ray absorption spectra of [CoL1-dioxo-R-dioxo-CoL1], [CoL2-dioxo-R-
dioxo-CoL2] and [CoL3-dioxo-R-dioxo-CoL3], along with calculated spectra for pure hs-CoII 
(grey line) and ls-CoIII (black line) phases. 
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XAS analysis of compounds [CoL1-dioxo-R-dioxo-CoL1] and [CoL3-dioxo-R-dioxo-

CoL3] confirms a temperature independent charge distribution, ls-CoIII and hs-CoII, 

respectively, insensitive to the irradiation with X-ray beam. On the other hand the 

300 K spectrum of [CoL2-dioxo-R-dioxo-CoL2] presents a superposition of signals 

belonging to the two redox isomeric forms. On cooling from 300 to 100 K the main 

feature at 781.5 eV, associated with the ls-CoIII ion, gains intensity, while the spectral 

band related to the hs-CoII contribution flattens down. This indicates the occurrence 

of Valence Tautomeric interconversion, similarly to what was previously found for 

similar Co-based molecular switchable materials.42,48,48 When lowering temperature 

from 100 to 10 K, XAS indicates an increase in the hs-CoII metastable phase which is 

not observed by magnetometry. This strongly suggests that this is an X-ray induced 

effect, which can be interpreted in terms of SOXIESST (Soft X-ray Induced Excited 

Spin State), a reversible phenomenon previously observed for photo-switchable 

molecular systems.6,49  

 

Figure 9. Thermal dependence of the hs-CoII distribution profile obtained from 
deconvolution of X-ray absorption spectra (empty black circles); empty red circles display 
the thermally activated relaxation after 904 nm laser light. For comparison the colour band 
is the conversion profile obtained by rescaling magnetic measurements. 

A quantitative estimation of the hs-CoII thermal distribution profile is reported in 

Figure 9, as calculated from spectral deconvolution using the theoretical spectra as 

limiting compositional references for the electronic states of [CoL2-dioxo-R-dioxo-

CoL2]: it displays a smooth conversion profile in the 100 – 300 K range, in accordance 
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with magnetometric analysis. The presence of a remaining fraction of hs-CoII phase 

at low temperature is confirmed by this technique, corresponding to 52 % of the 

overall Co content, to be compared with the 39 % estimated with standard 

magnetometry. Beside thermal- and X-ray-driven VT, XAS spectra allowed to 

demonstrate the occurrence of the light induced transition, evidencing an additional 

increase of the hs-CoII feature when the sample was irradiated with a 904 nm laser 

light for 30 minutes at 10 K (Figure 9, red dots). The photo-converted ls-CoIII 

percentage increases from the 11 % found by magnetometry up to the 25 % 

observed with XAS: such discrepancy must be related to the non-innocent nature of 

the X-Ray beam on the charge distribution of the sample.6 Finally, following the 

procedure carried out in traditional magnetometric experiments for determining 

TLIESST, we monitored the temperature dependence of the photo-induced hs-CoII 

fraction after laser irradiation with XAS (Figure 10). 

 

Figure 10. Temperature dependence of the hsCoII fraction of [CoL2-dioxo-R-dioxo-CoL2] 
measured with standard magnetometry (black fading line) and XAS before (empty circles) 
and after (full circles) 904 nm laser light irradiation. Inset: Corresponding first derivative 
plots to extract TLIESST (grey line = magnetometry data; black line = XAS data). 

Here, the TLIESST value increases from 49 to 60 K: in this case, however, differences 

in the temperature control setup and the non-innocence of X-rays on the low 

temperature electronic configuration of [CoL2-dioxo-R-dioxo-CoL2] may play a role 

in determining the minimum in the first derivative plot of the thermal distribution 

profile of the hs-CoII(SQ) photo-induced molar fraction. 
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Summarizing the content of this part, temperature-dependent magnetometric 

analysis confirms that chemically driven tuning of the redox potential of the 

[Co(Mentpa)]3+/2+ couple is possible in this molecular context as well:  consequently, 

while [CoL1-dioxo-R-dioxo-CoL1] and [CoL3-dioxo-R-dioxo-CoL3] feature ls-

CoIII(Cat) and hs-CoII(SQ) temperature independent charge distributions, 

respectively, [CoL2-dioxo-R-dioxo-CoL2] displays a partial entropy-driven 

switchability in the temperature range investigated.  

 

4.2 Observation of Valence Tautomerism at the nanoscale 

As anticipated in the previous paragraph (4.1), switchable coordination systems 

featuring  a reversible switching of electronic state at the molecular level promise 

breakthrough outcomes for information storage and processing technologies.50 In 

particular, the control of length and direction of the spin in paramagnetic switchable 

molecules represents a key feature to be used in quantum computation and 

nanosized spintronic applications.51–53 During the last few years huge research 

efforts have been spent investigating the effect of deposition on solid surfaces of a 

specific class of switchable molecular materials, the Fe(II) based Spin Crossover (SCO) 

coordination systems.54 These studies revealed that thin films of SCO systems can be 

grown through sequential assembly or patterned on solid surface with the retention 

of their bulk phase switchability properties.54,55 Lower surface coverages has been 

achieved by means of ultra-high vacuum sublimation techniques,55,56 allowing the 

manipulation of their electronic state through scanning probe techniques.44,57 

Unfortunately, direct interaction of the thermally evaporated molecules with the 

metallic surface resulted in a pinning of their spin states and a capability to 

interconvert significantly reduced with respect to their massive phase behavior.44,55–

58 

It appears therefore of interest to deposit systems exhibiting Valence 

Tautomerism on conducting surfaces and investigate their thermal and optic 

bistability at the level of the monolayer.  
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Figure 11. Synthetic pathway to the thiol-functionalised DBCatSH ligand and to the [CoL1diox], 
[CoL2diox] and [CoL3diox] complexes used in this study. 

The [CoLn-dioxo-R-dioxo-CoLn] with the thioether bridge was modify to achieve 

a thiol terminal group in order to graft [CoLdiox] systems on a gold surface. We 

prepared a family of complexes of general formula [Co(Mentpa)DBCatSH](PF6)· 

CH3OH] (n = 0, 2, 3) for compound [CoL1diox], [CoL2diox] and [CoL3diox], 

respectively), where like for the [CoLn-dioxo-R-dioxo-CoLn] system,  Mentpa are 

differently methylated derivatives of tris-pyridil-amine and DBCatSH is the 3,5-di-

tert-butyl-catecolate ligand functionalised with a thiol moiety (Figure 11).  

 

4.2.1 Characterisations of bulk [CoLdiox] samples 

In order to characterize the massive phase of compounds [CoL1diox], [CoL2diox] 

and [CoL3diox] we performed a bulk characterisations based on ToF-SIMS mass 

characterisation in order to verify the synthesis procedure and to obtain reference 

mass spectra to compare to those of monolayers. In addition the temperature 

dependence of the 𝜒𝑀𝑇  product for all the compounds and the temperature 

dependence of 𝜒𝑀𝑇 of [CoL2diox] after 904 nm irradiation at 10 K were measuresd, 

and XPS spectra recorded as a function of the temperature.  
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4.2.1.1 Mass characterisation of [CoLdiox] bulk samples 

Figure 12 compares the positive ions mass spectra of bulk samples. A comparison 

among the spectrum of [CoL2diox] with the ones of [CoL1diox] and [CoL3diox] 

reported in Figure 12, points out a straightforward correlation among the spectra. 

This relation in the fragmentation patterns arises from the different number of 

methyl groups in the three complexes and evidences that the shared DBCatSH ligand 

is the main site of molecular fragmentation (Table 3). In all cases, due to the ionic 

nature of the complexes, the (PF6)- counterion is not detected in the investigated 

positive spectra region while the intact [Co(Mentpa)DBCatSH]+ cations are present in 

each investigated bulk sample (737.22 m/z, 765.25 m/z and 779.31 m/z for 

[CoL1diox], [CoL2diox] and [CoL3diox], respectively). In Table 3 a complete peak 

assignation is reported for bulk samples [CoL1diox], [CoL2diox] and [CoL3diox] peak 

in each spectrum. 

  

Figure 12. Positive ToF-SIMS spectra of bulk of [CoL1diox], [CoL2diox] and [CoL3diox] 
measured in static regime. 
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Table 3. Summary of ToF-SIMS peaks expected and experimentally found for bulk samples 
[CoL1diox], [CoL2diox] and [CoL3diox]. 

 

 

4.2.1.2 Magnetic characterisation of [CoLdiox] bulk samples. 

Magnetometry data (Figure 13) evidence a room temperature charge distribution 

of ls-CoIIICat for [CoL1diox], hs-CoIISQ for  [CoL3diox], and a mixture of the two for 

[CoL2diox], as expected on the basis of what reported in section 4.1 and on similar 

Co-dioxolene based systems.8,19,59  For the complex [CoL2diox], the thermal 

evolution of the product of the molar magnetic susceptibility by the temperature, 

𝜒𝑀𝑇(Figure 13a), points out a reversible interconversion between the two redox 

isomers in the solid state, in line with an entropy driven VT process. Using magnetic 

moment values of [CoL1diox] and 3 as references for ls-CoIIICat and hs-CoIISQ phases 

and using the Eq.3 chapter 4.2.1, it is possible to quantitatively describe the thermal 

distribution profile of [CoL2diox]. The VT interconversion features a remaining 40% 

hs-CoIISQ fraction at 10 K and occurs on a temperature range broader than the 

experimentally accessible one in our setup, reaching 66 % at 300 K, in analogy with 

different sulphur-functionalised [CoLdiox]+ switchable complexes.60,61  

Fragment  [CoL1diox] [CoL2diox] [CoL1diox] 

  Theor. 
(m/z) 

Bulk 
(m/z) 

  Theor. 
(m/z) 

Bulk 
(m/z) 

 Theor. 
(m/z) 

Bulk 
(m/z) 

[M- PF6]+ 737.24 737.25 (s) 765.27 765.26 (s) 779.29 779.29 (s) 

[M- PF6-S+H]+ 705.27 705.30 (w) 733.30 733.29 (w) 747.31 747.30 (w) 

[M- PF6-tbu+H]+ 681.18 681.19 (vw) 709.20 709.20 (vw) 723.22 723.19 (vw) 

[M- PF6- 
CH2PyCH+H3]+ 

646.20 n.d -  660.21 660.38 (m) 674.22 674.35 (m) 

[M- PF6 - CH3-  
CH2PyMe +2H]+ 

632.18 n.d  - 644.18 644.26 (m) 660.21 660.33 (w) 

[M- PF6 - CH2Py- 
2*CH3 +2H]+ 

616.15 616.23 (s) 632.18 632.31 (s) 646.19 646.31 (s) 

[M- PF6- 
 CH2C6H4CH2SH +H]+ 

601.20 601.23 (vs) 629.24 629.25 (vs) 643.25 643.24 (vs) 

[M - PF6 - CH2Py – 
CH2S+H]+ 

600.21 600.22 (s) 612.21 612.20 (w) 628.24 628.26 (m) 

[M - PF6 - CH2PyMe – 
 CH3 - CH2S+H]+ 

586.20 586.17 (m) 600.21 600.24 (w) 614.23 600.24 (m) 

[M - PF6 -S –  
CH2C6H4CH2S+H]+ 

569.23 569.23 (m) 597.26 597.27 (m) 611.27 611.28 (m) 
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Figure 13. a): Temperature dependence of the χMT product of [CoL1diox] (small red circles), 
[CoL2diox] (full circles of variable color), and [CoL3diox] (large full blue circles); b): 
temperature dependence of χMT of 2, before (red circles), during (blue crosses) and after 
(blue circles) 904 nm irradiation at 10 K.  In the inset the temperature derivative allow to 
extract TLIESST.. 

The VT conversion of [CoL2diox] can also be triggered by low temperature light 

irradiation (Figure 13b panel): excitation of the ligand to metal charge-transfer band 

at 10 K turns 15 % of the ls-CoIIICat content to the hs-CoIISQ metastable phase. Upon 

heating at a 0.3 K/min rate, complete population of the ground state is recovered at 

75 K, while the temperature with the highest measurable relaxation rate (TLIESST) is 

found to be 55 K (insert panel Figure 13b).  Compared with previously analysed 

[CoLn-dioxo-R-dioxo-CoLn] VT systems,6,7,59 these data confirm that light-triggered 

bistability is a strictly molecular phenomenon and the switchability mechanism is 

strictly related to Co redox potential.  

 

4.2.1.3 XPS characterisation of [CoLdiox] bulk samples 

In Table 4 are reported the semiquantitative analysis and the stoichiometric ratios 

of the three complexes. These data are in accordance with the theoretical 

percentages and confirm ToF-SIMS data, suggesting that the starting material is 

suitable for the depositions on surface.  

Additional information have been obtained by the XPS investigation that has been 

performed on bulk samples of [CoL1diox], [CoL2diox] and [CoL3diox] complexes 
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using the same protocol of the paragraph 4.1 for the [CoLn-dioxo-R-dioxo-CoLn] 

complex family. The direct comparison of the Co 2p regions in the solid state of 

[CoL2diox] (Figure 14c) proves a different peak deconvolution due to a variation in 

temperature of the bulk sample of [CoL2diox].  

Table 4. Theoretical and XPS estimated atomic percentages and ratios for [CoL1diox], 
[CoL2diox] and [CoL3diox] complexes in bulk. 

 Co 

2p 

 N 1s  S 2p  P 2p  F 1s 

Bulk %  % N/Co  % S/Co  % P/Co  % F/Co 

[CoL1diox] 6.7  29.2 4.3  14.0 2.1  7.6 1.1  42.6 6.3 

[CoL2diox] 6.7  26.9 4.0  13.7 2.0  7.3 1.1  45.4 6.6 

[CoL3diox] 7.6  27.9 3.7  11.7 1.5  6.9 0.9  45.8 6.0 

theor. 7.1  28.6 4.0  14.3 2.0  7.1 1.0  42.9 6.0 

 

So with XPS characterisation one can provide not only the semiquantitative 

analysis but is possible to follow also the temperature conversion of the [CoL2diox] 

complex in the bulk phase but due to its sensitivity, XPS technique could give us those 

type of information also for the monolayer samples. 59 The Co2p spectrum of 

[CoL1diox] in bulk has the typical lineshape of ls-CoIII photoemission:59,36,62 it shows 

a main peak at 782.4 eV, integrating about 76 % of the overall signal area, and minor 

satellites at 786.7, 789.3 and 792.8 eV, with ΔESO contributions separated by 15.1 eV, 

in analogy to literature reference (and Figure 14).59 Complex [CoL3diox], on the 

other hand, presents a more structured spectrum, with high intensity satellites, as 

expected for 3d ions with unquenched orbital momentum. The main peak is centred 

782.3 eV and integrates about 48 % of the whole signal area, with satellites at 785.9, 

788.5 and 792.0 eV, and a ΔESO of 16.0 eV, in accordance with literature data.59,62 

Both Co2p photoemissions do not display any temperature dependence in the 170 – 

300 K range. As supposed the two complexes, [CoL1diox] and [CoL3diox], are not 

affected by a temperature variation as expected because of the energy difference 

between redox isomers in [CoL1diox] and [CoL3diox]. 



4. Functional hybrid electrodes based on light switchable molecules. 

 

109 
 
 

 

 

Figure 14. Co2p XPS spectra of compounds a) [CoL1diox], c) [CoL2diox] and b) [CoL3diox] 
along with best-fit components in function of the temperature. 

The room temperature XPS Co2p spectral features of a bulk of [CoL2diox] are 

different from those of ls-CoIII and hs-CoII reported above: even displaying a closer 

resemblance with the latter, [CoL2diox] shows a slightly lower ΔESO (15.9 eV), 

suggesting the presence of both charge distributions. Moreover, on cooling from 283 

K to 173 K, an increase in the main peak contribution of the overall signal intensity 

(from 50% up to about 62%, respectively) parallels a reduction in the ΔESO (15.9 to 

15.5 eV), indicating the presence of a thermally driven VT conversion in the bulk 

phase of this complex. 

Particularly indicative when the chemisorption will be promoted, the formation 

of a Au-S bound, will be noticed as a shift in the BE of S2p. In the bulk phase, the S2p 

region can be reproduced using a photoemission peak centred at 162.7 eV (Figure 

15), with a spin-orbit splitting (ΔESO) of 1.2 eV, as expected for the two sulphur atoms 

present in the molecule in very similar chemical environments.63 All the other peaks 



4. Functional hybrid electrodes based on light switchable molecules. 

110 
 
 

 

are at the binding energies expected for those type of compunds59 and  C1s 

deconvolution is composed by two different components attributable at different C-

C and C-O chemical environment at 284.7 eV and 286.2 eV respectively. The N1s can 

be reproduced using one component due to all equivalent nitrogen chemical 

environment and centred at 399.8 eV. 59 P2p and F1s were in line with what expected 

for this type of counterion.64 

 

Figure 15. Massive phase C1s, N1s, P2p, S2p and F1s of compound [CoL2diox]. 

 

4.2.2 [CoLdiox] monolayers characterisation 

Monolayers of [CoL1diox], [CoL2diox] and [CoL3diox] complexes were prepared 

by incubation of 150 nm thick Au(111) films evaporated on mica (flame annealed 

with hydrogen flame before the immersion) in 2 mM dichloromethane solutions of 

the complexes for 18 hours at room temperature; after incubation the slides were 

rinsed several times with dichloromethane to leave on the surface only the 

chemisorbed molecules and dried with nitrogen using a portable glove-bag  to 

minimize the air exposition. For more details see chapter 5. 
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4.2.2.1 Mass spectrometry characterisation of [CoLdiox] 
monolayers 

The integrity of the surface supported molecules was first checked with time of 

flight-secondary ion mass spectrometry (ToF-SIMS).  

 

Figure 16. Panels a-c): Positive ToF-SIMS spectra of bulk and monolayer of [CoL1diox] (red 
line), [CoL2diox] (green line), and [CoL3diox]   (blue line) Panels d-f): Magnification of the 
[M-PF6]+ and [M-PF6-H+Au]+ regions for bulk and monolayer samples of [CoL1diox], 
[CoL2diox] and [CoL3diox] complexes. The calculated isotopic distribution pattern 
expected for each fragment is reported as a black line. 

Figure 16 compares the positive ions mass spectra of bulk and monolayer samples 

of [CoL1diox], [CoL2diox] and [CoL3diox] complexes. Clear correlations among the 

spectra can be easily observed in the three systems (see Figure 16). In fact in the 

fragmentation pattern follows the one observed in the bulk phase (4.2.2.1 section) 

and arises from the different number of methyl groups present in each system.  
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Table 5. Summary of ToF-SIMS peaks expected and experimentally found for monolayer 
samples of [CoL1diox], [CoL2diox] and [CoL3diox]. 

 [CoL1diox] [CoL2diox]  [CoL3diox]  

  Fragment Theor. 
(m/z) 

Monolayer 
(m/z) 

  Theor 
(m/z) 

Monolayer 
 (m/z) 

( Theor. 
(m/z) 

Monolayer 
 (m/z) 

[M-PF
6
+S -H +Au]

+ 965.17 965.15 (vw) 993.20 993.19 (vw) 1007.22 1007.19 (vw) 
[M- PF

6
-CH

3
+S –H 

 +Au]
+ 950.14 950.16 (vw) 978.18 978.21 (vw) 992.19 992.20 (vw) 

[M- PF
6
-H +Au]

+ 933.20 933.18 (w) 961.23 961.22 (w) 975.24 975.20 (w) 
[M- PF

6
- CH

3
 +Au]

+ 918.17 918.20 (vw) 948.22 948.26 (vw) 961.23 961.24 (vw) 
[M- PF

6
-2*CH

3
+Au]

+ 903.15 903.20 (m) 931.18 931.24 (m) 945.20 945.25 (m) 
[M- PF

6
- 

C(CH
3
)

3
+Au]

+ 8771.30 nd - 905.17 905.13 (vw) 919.18 919.14 (vw) 
[M- PF

6
-C(CH

3
)

3
+Au-  

CH
3
+2H]

+ 863.12 863.12 (vw) 891.15 891.15 (vw) 905.17 905.16 (vw) 
[M- PF

6
- 

CH
2
C

6
H

4
CH

2
S +Au]

+ 797.16 797.15 (s) 825.19 825.17 (m) 839.21 839.16 (m) 
[M- PF

6
-  

CH
2
C

6
H

4
CH

2
S –  

CH
3
+H +Au]

+ 783.15 783.18 (vw) 811.18 811.23 (vw) 825.19 825.20 (vw) 
[M- PF

6
+S+H]

+ 769.21 769.19 (vw) 797.24 797.23 (vw) 811.23 811.23 (vw) 
[M- PF

6
]

+ 737.24 737.22 (s) 765.27 765.25 (s) 779.29 779.26 (s) 
[M- PF

6
-S+H]

+ 705.27 705.25 (vw) 733.30 733.28 (vw) 747.31 747.29 (vw) 
[M- PF

6
-C(CH

3
)

3
+H]

+ 681.18 681.00 (vw) 709.20 709.20 (vw) 723.22 723.16 (vw) 
[M- PF

6
- 

CH
2
C

5
H

3
NCH+H

3
]

+ 646.20 n.d -  660.21 660.37 (m) 674.22 674.36 (m) 
[M- PF

6
 - CH

3
-  

CH
2
C

5
H

3
NCH

3
 +2H]

+ 632.18 n.d -  644.18 644.21 (m) 660.21 660.34 (m) 
[M- PF

6
 - CH

2
C

5
H

3
N- 

2*CH
3
 +2H]

+ 616.15 616.18 (s) 632.18 632.34 (vs) 646.19 646.33 (vs) 
[M- PF

6
-  

CH
2
C

6
H

4
CH

2
SH +H]

+ 601.20 601.20 (vs) 629.24 629.23 (s) 643.25 643.22 (vs) 
[M - PF

6
 - CH

2
C

5
H

3
N  

-CH
2
S+H]

+ 600.21 600.19 (s) 612.21 612.19 (vw) 628.24 n.d. - 
[M - PF

6
 –  

CH
2
C

5
H

3
NCH

3
 - CH

3
 –  

CH
2
S+H]

+ 586.20 586.20 (m) 600.21 n.d. - 614.23 n.d. - 
[M - PF

6
 -S –  

CH
2
C

6
H

4
CH

2
S+H]

+ 569.23 569.22 (m) 597.26 597.25 (m) 611.27 611.25 (m) 
 

This evidence confirms that, also in monolayer samples, the shared DBCatSH 

ligand is the main site of molecular fragmentation and retain the same behaviour. In 

all cases, due to the ionic nature of the complexes, the (PF6)- counterion is not 

detected while the presence of intact [Co(Mentpa)DBCatSH]+ cations on surface is 
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witnessed by the observation of the corresponding [M-PF6]+ peak in each spectrum 

(737.22 m/z, 765.25 m/z and 779.31 m/z for [CoL1diox], [CoL2diox] and [CoL3diox], 

respectively). Moreover, a support to the hypothesis of formation of a single layer of 

molecules on surface is given by the presence of the molecular cation peak bound to 

a gold atom, [M-PF6 -H + Au]+, absent in bulk samples. This indicates the formation 

of molecule-substrate covalent bond, in analogy to what has been observed on other 

monolayers on Au(111).65 A detailed and more complete fragment assignation is 

reported in Table 5. 

 

4.2.2.2 XPS characterisation of [CoLdiox] monolayers 

A complete XPS characterisation of the monolayers of the three complexes was 

confirmed because this technique allows to evaluate the stoichiometry of the 

molecular film deposited on surface. Moreover, accordingly to what has been 

reported for this complex as well as for the dimeric system presented earlier, it is 

possible to follow by XPS the temperature conversion of compound [CoL2diox] 

obtaining an additional confirmation of the stability of this VT system once 

chemisorbed.  

The direct comparison of the S2p regions in the bulk sample and monolayer of 

[CoL2diox] (Figure 17a) provides further evidences of the chemisorption on Au. In 

the bulk phase, the S2p region can be reproduced using a photoemission peak 

centred (Figure 14) at 162.7 eV. In the monolayer sample, an additional signal 

appears at 161.7 eV, integrating 46 % of the overall S2p photopeak area: this 

component is directly attributed to the thiol group covalently bound to the Au 

surface, in analogy with previous reports on thiol based monolayers.66,67 A minor 

(8%) fraction at 168.4 eV is assigned to spurious oxidation of the sulphur atoms, 

usually related to defects in the thiol-based molecular packing on surface.65 
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Figure 17. a) Comparison between S2p XPS spectra of [CoL2diox] in the massive phase and 
monolayer, along with best fitting lines. b) Disappearance of the F1s photopeak on moving 
from massive phase to monolayer sample of [CoL2diox]. 

Co2p XPS spectra yielded clear prints of charge distributions in Cobalt-dioxolene 

adducts also in the monolayers. In the following we will describe how from this 

analysis of monolayer samples of [CoL1diox], [CoL2diox] and [CoL3diox] we 

qualitatively followed the VT conversion of surface deposited system by focusing on 

the electronic state of the metal ion (Figure 18).  

At room temperature the Co2p spectrum of a monolayer of [CoL1diox] has the 

typical lineshape of ls-CoIII photoemission accordingly to our previous bulk analyses 

(Figure 14c).59,36,62 The deconvolution shows a main peak at 781.5 eV, integrating 

about 50 % of the overall signal area, and minor satellites at 784.7, 788.0 and 792.2 

eV, with ΔESO contributions separated by 15.1 eV, in analogy to the bulk analogue 

(Figure 14c and  

Table 7). Complex [CoL3diox], as expected from bulk measurements, presents at RT 

a more structured spectrum, with high intensity satellites. The main peak shifts to 

781.2 eV and integrates about 40 % of the whole signal area, with satellites at 785.2, 

788.6 and 792.1 eV, and a ΔESO of 16.0 eV, in accordance with powder ( 

Table 7) and literature data.59 Like for the bulk samples these two reference samples 

do not display any temperature dependence in the 170 – 300 K range. Thus, surface 

deposition did not affect the electronic ground states of these complexes, as 

expected because of the energy difference between redox isomers in [CoL1diox] and 

[CoL3diox]. 
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In contrast, the XPS Co2p spectra of a monolayer of [CoL2diox] features a 

significative temperature evolution. At RT [CoL2diox] shows a ΔESO=15.8 eV, 

intermediate between what observed in the two reference samples, suggesting an 

intermediate charge distributions (ls-CoIII and hs-CoII). Cooling from 283 K to 173 K, 

an increase in the main peak contribution to the overall signal intensity (from 40% 

up to about 46%, respectively) parallels a reduction in the ΔESO (15.8 to 15.4 eV), 

indicating the presence of a thermally driven VT conversion also in the monolayer. 

 

Figure 18. Comparison of XPS Co2p spectra of monolayers of a) [CoL1diox], c) [CoL2diox] 
and b) [CoL3diox] (taken at three different temperatures), along with best fitting lines. 
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The Co/S ratios observed in the monolayers and reported in Table 6, close to the 

stoichiometric one, point out that the molecule-Au linkage takes place mainly 

through the terminal thiol group of diox ligand. Also the N/Co ratio is close to the 

stoichiometric value pointing out that the molecules maintain their chemical 

environment and are thus intact on surface. 

Table 6. Theoretical and XPS estimated atomic percentages and ratios for monolayers of 
[CoL1diox], [CoL2diox] and [CoL3diox]. 

 Co 

2p 

 N 1s  S 2p  P 

2p 

 F 

1s 
Monolayer %  % N/Co  % S/Co  %  % 

[CoL1diox] 14.8  53.1 3.6  31.5 2.1  --  -- 

[CoL2diox] 14.9  54.6 3.7  30.5 2.0  --  -- 

[CoL3diox] 14.0  53.7 3.8  32.6 2.3  --  -- 

theor. 14.3  57.1 4  28.6 2  --  -- 

 

Table 7. Spectral components of the Co2p XPS photopeak of bulk (above) and monolayer 
(below) samples [CoL1diox], [CoL2diox] and [CoL3diox]. Binding energies (B.E.) are in eV. 

In brackets are reported the integrated area percentages of each component. ESO 
splittings are in eV. 

 Co 2p  

 Components  

 A B C D E
SO 

 

Bulk B.E. (%) B.E. (%) B.E. (%) B.E. (%)  

[CoL1diox] 782.4, (76.2) 786.7, (8.2) 789.4, (7.4) 792.8, (8.3) 15.1 

 [CoL2diox], T= 173 K 782.1, (62.2) 785.0(10.3) 787.5, (14.2) 789.9, (13.4) 15.54 

[CoL2diox], T= 263 K  782.3, (47.1) 784.9(16.7) 788.0, (17.8) 789.9, (18.4) 15.9 

[CoL2diox], T= 283 K 782.0, (50.3) 784.4, (14.0) 787.2, (17.9) 789.7, (17.8) 15.94 

 [CoL3diox] 782.3, (48.0) 785.9, (19.2) 788.5, (18.9) 792.0, (13.8) 16.0 

      

Monolayer B.E. (%) B.E. (%) B.E. (%) B.E. (%) E
SO

 

[CoL1diox] 781.5, (50.9) 784.3, (20.1) 788.3, (14.7) 792.5, (14.4) 15.1 

 [CoL2diox], T= 173 K 781.4, (46.5) 785.2, (18.6) 787.3, (10.2) 789.8, (24.8) 15.4 

[CoL2diox], T= 263 K  781.2, (37.6) 785.0, (26.1) 787.8, (12.7) 790.2, (23.6) 15.8 

[CoL2diox], T= 283 K 781.0, (40.5) 784.8, (24.4) 787.6,(13.5) 790.2, (21.6) 15.8 

 [CoL3diox] 781.2, (40.5) 785.2, (28.3) 788.5, (12.2) 792.2, (19.0) 16.0 
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Moreover, the disappearance of F1s photopeak in monolayer samples for the 

surface-supported molecules, monitored by the (Figure 17b), is a further 

experimental evidence of the absence of physisorbed molecules on the Au(111) 

surface, in analogy to what previously found for monolayer of FeIII complexes on 

Au(111).68 

 

4.2.2.3 XAS characterisation of [CoL2ndiox] monolayers 

To investigate the VT conversion at the nanoscale with higher accuracy, X-ray 

absorption spectroscopy (XAS) has been used. Standard magnetometry is not 

sensitive enough to detect the magnetic state of a monolayer of molecules. 

 

Figure 19. a) Temperature evolution of the normalized Co L3 edge XAS spectra of a 
monolayer of [CoL2diox] (empty black dots) along with high-spin CoII and low-spin CoIII 
spectra (blue and red line, respectively) used as reference signals for the spectral 
deconvolution (green lines). Broken lines are guides to the eye. b, c) high-spin CoII thermal 
distribution profile (empty circles) obtained from XAS spectra taken before (b)) and after 
(c)) laser light irradiation (black dots). Massive phase rescaled data are reported as wide 
coloured dots for comparison. 



4. Functional hybrid electrodes based on light switchable molecules. 

118 
 
 

 

Like for the [CoL2-dioxo-R-dioxo-CoL2] system a synchrotron-based absorption 

techniques was employed to monitor the spin states of [CoL2diox] on surface. 44,57,69  

Figure 19a displays the temperature evolution of the Co L3 edge absorption 

spectrum of a monolayer of [CoL2diox] in the 100 – 300 K range. The 300 K spectrum 

confirms the coexistence of ls-CoIIICat and hs-CoIISQ redox isomeric forms in the 

monolayer, closely resembling the massive phase behaviour and XPS data. 

Isothermal time dependence of the Co L2,3 XAS spectra acquired on the same spot of 

the sample discards X-ray irreversible effects on the electronic structure of the 

grafted molecules and reported in Figure 20. The observed edge-jump corresponds 

to about 10 % of what has been observed in the bulk samples of structurally related 

[CoL2diox] VT systems taken in similar experimental conditions. 6,59 

 

Figure 20. Isothermal time evolution of the XAS spectrum at 300 K for L2,3 edges of a 
monolayer of [CoL2diox], measured on the same sample spot. 

 Considering that only the first few nm of a bulk sample are investigated in this 

type of experiments, the much weaker signal detected for the film provides an 

additional proof of the monolayer thickness of the studied deposit.65 Upon cooling 

from 300 to 100 K the spectral features related to the ls-CoIII isomer gain intensity 

while the signal coming from the hs-CoII one goes down in intensity; moreover, 

heating the sample back to 300 K the initial spectral lineshape is restored. These 

experimental evidences are in line with the occurrence of a reversible entropy driven 
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VT interconversion in the monolayer. In order to quantitatively analyze the hs-CoII 

thermal distribution profile, the experimental Co L3 spectra have been fitted using 

the ls-CoIII and hs-CoII ones obtained for [CoLn-dioxo-R-dioxo-CoLn] in the paragraph 

4.1.4 as references for the limiting redox isomeric distributions. The results, 

displayed in Figure 19b, evidence a VT conversion that is comparable with that 

observed by traditional magnetometry for the massive phase, the major difference 

being the 0.20(2) increase in the remaining hs-CoII molar fraction at low temperature 

found for the monolayer. This feature, often documented for thin films and 

nanoparticles of SCO systems,70 has been explained on the basis of different surface 

energies of the two interconverting phases.68 Moreover, enthalpic and entropic 

changes taking place in entropy driven equilibria like SCO and VT have been shown 

to significantly rely on intermolecular vibrational coupling, 59,10,15 whose intensities 

are supposed to lower moving from a 3D network of elastic interactions (solid state) 

to a monolayer. Chemically induced reduction of enthalpic and entropic 

contributions to VT in the solid state, in fact, resulted in an increase in the low 

temperature hs-CoII remaining fraction paralleling the one observed here for the 

monolayer.15 Thus XPS and XAS analysis concur in pointing out that the employed 

chemical grafting protocol has no significant effect on the charge distribution of 

[CoL1diox], [CoL2diox] and [CoL3diox] complexes and that it is thus possible to 

quantitatively retain their switchability at the monolayer level. 

 

4.2.2.4 Characterisation of light induced interconversion of 
chemisorbed VT monolayers 

To investigate the electronic bistability in a monolayer, we irradiated in situ the 

monolayer of [CoL2diox] with a 904 nm laser diode at 10 K and then measured the 

temperature dependence of the XAS spectra up to 100 K (Figure 21).  

The coupled effect of the X-ray beam and the laser light irradiation optically 

populates the hs-CoII metastable state at 10 K, reaching a hs-CoIISQ molar fraction of 

0.70(2). This value, corresponds to a 19 % overall conversion of the ls-CoIIICat phase 

present a 10 K, similarly to what is found for the bulk sample (see Figure 13). Upon 

heating to 100 K, the hs-CoIISQ molar fraction decreases to 0.63(3), in line with a 

thermally activated relaxation of the photo-induced metastable phase to the 

thermodynamically more stable ls-CoIIICat. A direct comparison of the relaxation 
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profiles for the monolayer and bulk phase of [CoL2diox] points out that, in analogy 

to entropy driven interconversion, the possibility to optically trigger valence 

tautomerism of Co-dioxolene complexes is retained after they are grafted on the 

gold surface, and that the energy barrier to thermally activated relaxation remains 

substantially unaffected by surface deposition. 

 

Figure 21. Thermal evolution of the normalised spectra of the Co L3 edge of a monolayer of 
[CoL2diox] measured after 904 nm laser irradiation. 

In this chapter we demonstrated that is possible to control the electronic state 

bulk and in a monolayer of switchable paramagnetic units using both temperature 

and light irradiation. This result is of paramount importance in the perspectives of 
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novel molecular-based devices that can be thermally and optically controlled, 

proposing Valence Tautomeric systems as potential building blocks for the 

construction of optically driven nanostructured hybrid devices. 

 

4.3. Spectroscopic observation of temperature and light–
induced switching of an evaporable Spin Crossover system 

Spin crossover (SCO) is an intriguing phenomenon describing the switching 

between high and low spin states in transition metal complexes with coordination 

symmetry inducing d-orbital energy splitting.1–7 Archetypal iron d6 octahedral 

complexes can be in a paramagnetic high spin state (HS; S=2) or in a diamagnetic low 

spin state (LS; S=0). Spin crossover, may be observed between the HS and the LS 

states when these states are separated by a barrier whose height is comparable to 

thermal energy.2,4,5 The SCO can be triggered via external stimuli, such as 

temperature,44,71–76 pressure8 or light irradiation,2–4 similarly to what we have 

previously described for VT systems. Cooling down induces the switching of iron(II) 

HS complex to its LS state.9,2,4 Light-induced excited spin-state trapping (LIESST) 

effect has also been observed at low temperatures in these complexes.2,9,10 SCO has 

been observed by various techniques while an external stimulus was applied. 4, 25, 54,79  

Thanks to the easy alteration of their spin state the implementation of SCO 

complexes in molecular electronics, spintronics, memory devices or sensors has 

been envisaged as an intriguing development of molecular magnetism.  

Recently a particular class of Fe(II) complexes, namely the  ([Fe(H2B(pz)2)2phen*], 

pz =1-pyrazolyl; hereafter [Fe-diaryl]) has been proposed.4 

 

Figure 22. Diarylethene-based ligands with open (phen*-o) and closed form (phen*-c). 
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In this system SCO is influenced by the conformation of one of the ligand present 

in the molecule that can be modified through a photo-cyclization reaction (Figure 

22).4 The diarylethene unit present in the ligand can switch from the open form 

(phen*-o) with two functional thiophene rings to a closed form (phen*-c).15  

Rings condensation can be triggered by irradiation with UV light (≈ 300 nm) and 

the reverse reaction can be induced by light in the visible range (≈ 500nm). The 

reversible and long-term stable photo-cyclization of the uncoordinated ligand has 

been successfully demonstrated in solution and in solid state.4 The cyclization 

changes the ligand field at the iron core of the complex and induces SCO transition 

from the HS state of the pristine complex towards a diamagnetic LS state. The LS 

state can also be attained by decreasing the temperature, as schematized in Figure 

23. 

 

Figure 23. SCO switching with external stimuli for complex [Fe-diaryl]. 

This molecular system has been designed and synthetised by the group of Dr. 

Marat M. Khusniyarov at the Friedrich-Alexander-Universität of Erlangen and 
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employed in this thesis in the framework of a collaboration between our Universities 

and the Institut de Chimie de la Matière Condensée de Bordeaux CNRS with the aim 

of testing nanostructuration of this molecular material by sublimation. 

4.3.1 Magnetic film characterisations 

As a first step in our investigation, we analysed by magnetometry the SCO 

conversion properties of a thick film of the complex grown by HV sublimation on an 

acetate film. The sublimation temperature was 425K and the base pressure in the 

chamber was 10-7 mbar. The temperature dependence of the 𝜒𝑀𝑇 product for a 

≈200 nm film of [Fe-diaryl] is reported in Figure 24.  

 

Figure 24. Temperature dependence of the product 𝝌𝑴𝑻 for a thick film of [Fe-diaryl]. 

At room temperature, the 𝜒𝑀𝑇 product of this thick film was 2.45 emuK/mol, 

indicating the coexistence of high spin (80 %) and low spin (20 %) Fe(II) molecules in 

the film. On cooling this product monotonically decreases to reach 0.75 emuK/mol 

at 25 K and 0.35 emuK/mol at 2 K. This behaviour has been attributed to a gradual 

SCO transition of the evaporated molecules, with a HS Fe(II) fraction of 20 % 

remaining unaltered at low temperature. The gradual conversion, as well as the 

presence of trapped HS fraction, have been interpreted as results of a low degree of 

elastic interactions among interconverting molecules in the film.16,17 Irradiation of 

the film with UV light led to a decrease of the room temperature 𝜒𝑀𝑇  product, 

reaching 1.42 emuK/mol in the photostationary state. Such a decrease is indicative 
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of the Ligand-Driven Light Induced Spin Change (LD-LISC)18 phenomenon, already 

reported for the complex in solution.4 In the film, the optically induced cyclization of 

the diarylethene-based ligands leads to a conversion of its high spin form to about 

50 % at room temperature, a value similar to the one reported for the same 

compound in acetonitrile solutions.4 This finding points out that the optically induced 

cyclization of the diarylethene phen* ligand is able to modify the strength of the 

ligand field on the Fe(II) ion even in the case of evaporated molecules on solid 

substrate. The remnant 30 % of unconverted high spin Fe(II) molecules keeps on 

displaying the original SCO behaviour on lowering the temperature. 

 

4.3.2 Nanoscale characterisations 

In order to follow the switching with temperature and with irradiation at the 

nanoscale, we employed XPS and UPS experiments due to the high sensitivity of 

those techniques in the monolayer regime. For these experiments the sample was 

prepared under UHV conditions and evaporated on an Au(111) single crystal with a 

base pressure of 1x10-10 mbar during the thermal evaporation of the complex. The 

gold was previously cleaned with a standard procedure involving sputtering and 

annealing procedure. The thermal evaporation of [Fe-diaryl] was carried out at 425K 

using the apparatus described in the chapter 5.7.3. and the nominal thickness was 

estimated using a quartz crystal microbalance (QCM). The XPS characterisation was 

performed also to verify the non-destructive thermal deposition process .  

Table 8. Theoretical and XPS estimated atomic percentages and ratios for a SCO thin film 
(5.3 nm) evaporated on Au(111). 

  Fe 2p  N 1s  B 1s  S 2p  C 1s 

  % Fe/B  % Fe/N  % N/B  % N/S  % 

Experimental  1.8 0.46  18.7 0.09  3.8 4.9  3.0 6.1  72.7 

Theoretical  1.5 0.50  15.4 0.10  3.1 5.00  3.1 5.00  76.9 

 

 In Table 8 are reported for a film thickness of 5.3 nm the experimental 

percentages obtained by the estimated areas of the deconvoluted peaks. The 
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components were estimated using a fit procedure involving a Gaussian-Lorentzian 

line-shapes and the background in the spectra was subtracted by means of a linear 

function. The experimental data resulted in line with what is expected for the pristine 

complex, suggesting that the thermal evaporation is a non-destructive process for 

the depositions of this SCO complex on a surface, in agreement with previous reports 

on simpler Fe(II) systems.5 Several papers have been released in the literature 

showing that SCO complexes can be characterised by using XPS at the Fe2p region, 

this has been observed in bulk19,20 as well as for thick films.21,22  The switching from 

HS to LS states in SCO molecules is directly observable in the line shape of the Fe2p 

region: in the LS configuration the Fe2p3/2 peak appears narrower than in the HS one. 

The latter features a broadening of the Fe2p3/2 peak probably due to coupling of the 

photoelectron with the partially-filled metal shell during the time of flight following 

ionization.23 Another important fingerprint of the switching is in the spin-orbit 

splitting (ΔESO) of the Fe2p. Indeed the ΔESO changes in the two configuration due to 

a different orbital population: in the HS configuration the measured transition 

involves eg orbitals that are empty in the LS one.  

 

Figure 25. Reversible switching of the SCO complex in a 5.3 nm thick film in the Fe2p region. 
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In Figure 25 is reported the sequence of consecutive XPS spectra in the Fe2p 

region measured after changing the sample temperature (after one hour of 

thermalization). The variable temperature experiment was performed using a liquid 

nitrogen-based cryostat connected to the sample holder.  

The variation in temperature (Figure 25) evidences a switching from the two 

electrons states: from HS (red dots) to LS (blue dots), going from R.T. to 150 K and 

vice versa. The reversibility of the transition is evident by looking at the shape of the 

Fe2p3/2 peak as well as by monitoring the variation in ΔESO that is 13.4 eV in the 

HS.19,21,24 In order to semiquantitatively follow this reversible transition a peak fitting 

procedure can be adopted. By monitoring the component at 709.4 eV and its relative 

ΔESO at 721.9 eV that have been highlighted in green, one can approximatively  

evaluate the LS component present in the sample depending on the temperature.  

 

Figure 26. Percentage of green component in function of the number of thermal cycles.  

In Figure 26 we report the variation of the percentage of the highlighted 

contribution due to the LS state respect to the whole Fe2p area. From the evolution 

of the component shown in Figure 26 it has been possible to demonstrate that a 

reversible switching of about the 20% of the molecules occurs in the explored 

temperature window.  

Accordingly to what we mentioned above the measured process does not involve 

the changing of the phen* ligand, being due to the standard ligand field alteration 

causing the SCO effect.4 This can be confirmed by monitoring the S2p region as 

function of the temperature (Figure 27), evidencing the absence of a parallel 

evolution of the S2p signal; this confirms that the phen* ligand retains its 
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conformation (phen*-o) during the thermal cycles we performed. The S2p signal 

appears centred at 164.9 eV in agreement with literature data.25,26  

 

 

Figure 27. Variation in temperature of a SCO complex 5.3 nm thick film in the S2p region. 

The multi-switchability of this particular system is evident after in situ UV 

irradiation of the evaporated sample in the UHV environment.  The 5.3 nm thick 

molecular film was exposed to UV light using a deuterium lamp (20W) directly 

mounted in front of a quartz viewport installed in the XPS chamber, using an optical 

filter with a 280.0 (+3/-0) nm band pass and with 10 ± 2 nm bandwidth in order to 

guarantee the irradiation with the proper wavelength to promote the cyclisation 

reaction.  In Figure 28 are reported the spectra in the Fe2p region for HS at RT (top, 

red circle), LS at 150K (middle, blue circle) and HS/LS at R.T. irradiated with UV light 

(bottom, green circle) configurations. From the direct comparison of the three 

spectra is possible to point out that a change of the lineshape is occurring in the 

irradiated sample that results in an intermediate situation between the 300 K and 
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the 150 K measurement. Indeed the green component, estimated using the same 

fitting procedure described above, resulted almost doubled respective to the one 

measured at RT. This evidences that a partial transition from the HS to the LS state 

can be promoted by UV light irradiation also in an evaporated sample accordingly to 

what was observed in solution for the same complex4 and in the thick film 

characterized with magnetometry in paragraph 4.3.1.  

 

Figure 28. Comparison of Fe2p XPS spectra at R.T. (red, top), 150K (blue, middle) and at R.T. 
after UV irradiation (bottom, dark green). 

We underline that this room temperature SCO transition is due to the alteration 

of the phen* ligand in [Fe-diaryl] molecules that goes from the open conformation 

(phen*-o) to a closed one (phen*-c). The occurrence of this cyclisation is confirmed 

by monitoring the S2p region (Figure 29). 

The occurrence of the cyclisation of the ligand is directly observable with the 

appearance of a component at lower binding energy (164 eV) respective to the main 



4. Functional hybrid electrodes based on light switchable molecules. 

 

129 
 
 

 

one (164.9 eV). This component accounts for 26% of the S2p signal, confirming that 

despite the low amount of material deposited on top of the gold surface it is possible 

to induce SCO transition also at room temperature by light irradiation. 

 

 

Figure 29. XPS S2p spectra at R.T. (red dots), 150K (blue dots) and after UV irradiation (dark 
green dots). 

Additional characterization of this multi-SCO switching can be performed by 

ultraviolet photoelectron spectroscopy (UPS). We performed a series of UPS 

experiments as a function of the molecular coverage starting from low coverage (0.7 

nm) to a nominal thickness of 5.3 nm corresponding to about 5-6 monolayers. For 

this UPS characterisation we employed photons at 40.8 eV (He II). In order to ensure 

that all photoelectrons generated by the He II line were detected, a fixed bias of −30 

V was applied to the sample. The binding energy scale was calibrated such that the 

Fermi level was located at 0 eV. In the spectra in Figure 30 it is possible to observe 

the presence of the typical features of [Fe(II)-SCO] systems as observed for similar 

compounds.7,24,27 The spectrum acquired at room temperature for 5.3 nm thickness,  

shown in Figure 30, evidences contributions at -2.3 eV, -4.5 eV, -6.5 eV, and two very 
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broad features centred for one at about  

-9.4 eV and for the other at -14.5 eV, in line with literature reports on similar 

systems.7,24,27 In Figure 30 the spectra at low coverages (0.7 nm and 2.2 nm) already 

show the features at -14.5 eV and at -9.5 eV. This system is thus indeed a promising 

candidate for the study at the sub-monolayer level due to the presence of intact 

molecules.  

 

Figure 30. UPS spectra from -18 eV to 1 eV (E-EF) at R.T from 0.7 nm to 5.3 nm in nominal 
thickness of [Fe-diaryl]. 

As shown in Figure 30, in the spectrum corresponding to the 5.3 nm coverage the 

features related to the gold substrate is absent in contrast to what reported for the 

for low coverages (from 0.7 to 2.2 nm) where the Fermi edge (0 eV) and the most 

prominent peaks of the spectra between −2 and −7 eV can be clearly identified. 

Focusing on the 5.3 nm sample, the spectra reported in Figure 31 show a 

temperature evolution of the relative intensity of the band at -2.3 eV. The same 

component is altered upon UV irradiation, similarly to what observed for 1,2-Bis(5-
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(2,4-diphenylphenyl)-2,4-dimethyl-3-thienyl)per-fluorocyclopentene, 1,2-bis(2-

methyl-5-p-tolylthiophen-3-yl)cyclo-pent-1-ene and 1,2-bis(5-(4-

hexyloxycarbonylphe-nyl)-2- 

methylthiophen-3-yl)cyclopent-1-ene films.28,29 Moreover after UV light exposure 

the relative intensities of bands at -9.4, -6.5 and -4.5 eV change.  

Focusing on the -2.3 eV band it is possible to notice that a variation in intensity is 

found and this can be attributed to the temperature induced switching (LS↔HS) by 

increasing the temperature: this band (blue dots) appears more intense at low 

temperature than in the room temperature measurement (red dots). This confirms 

the thermal switching as observed for similar compound, and according also to DFT 

calculations and experiments performed on [Fe(H2B(pz)2)2(bipy)] and 

[Fe(H2bpz)2(phen)] deposited complexes.7,27 

 

Figure 31. UPS spectra from -14 eV to 0 eV (E-EF) at R.T. (red dots), 150K (blue dots) and 
after UV irradiation (green dots). The inset emphasizes the feature at a binding energy of -
2.3 eV. 

When looking more carefully, the UPS band that before the irradiation was 

centred at  

-2.3 eV appears broadened and centred at -2.4 eV after irradiation. This can be 

attributed to the ligand cyclisation modifying the electronic structure of the ligand 

and thus the electronic structure of the complex. Indeed cyclization of a diarylethene 

function leads the system to a different energy distribution of HOMO/LUMO orbitals, 

which results in a variation in UPS spectra at near Fermi energies.28,29 Therefore the 
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band at -2.3 eV changes differently when the system is at low temperature or after 

UV irradiation in agreement to the different nature of the induced LS state. 

XPS and UPS analyses confirm that it is possible to evaporate intact [Fe-diaryl] 

molecules in a UHV environment and open the possibility to study sub-monolayer 

coverage by XAS experiments. Due to the persistence of their SCO multi-switchability 

properties, it is possible to envisage the use of this particular molecular system as 

building block for the realization of a new family of devices for which transport 

properties could be externally influenced through the molecular layer by using either 

temperature variation or light irradiation.  
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5. Experimental methods 
5.1 Magnetic characterisation 

Bulk microcrystalline sample and the thick evaporated films were characterised 

with standard magnetometry techniques, using commercial magnetometers 

allowing the measurement of the magnetisation and the susceptibility of the 

samples.  The susceptibility is defined as: 

                                                                       𝝌 =
𝜹𝑴

𝜹𝑯
                                                     ( 1 ) 

where M is the molar magnetisation of the sample and H is the magnetic field. The 

susceptibility describes the interaction between the magnetic moment of the 

samples and the external magnetic field. The magnetic moment, at the molecular 

scale, can be described as the variation in energy of the molecular system (𝛿𝑍) due 

to the interaction with the magnetic field. The magnetic moment m is defined as: 

                                                                     𝒎 =
𝜹𝒁

𝜹𝑯
 ( 2 ) 

where Z is the partition function. In a system where the energy spectrum is 

characterized by a discrete number of levels characterized by energy En (n=1,2,..,n) 

populated according to the  Boltzmann distribution, the macroscopic magnetisation 

can be defined by: 

                                                            
𝑴

𝑵
=

∑ (−
𝜹𝑬𝒏
𝜹𝑯

)𝒆

−𝑬𝒏
𝒌𝑩𝑻

𝒏

∑ 𝒆

−𝑬𝒏
𝒌𝑩𝑻

𝒏

  ( 3 ) 

where T is the absolute temperature, kb is the Boltzmann constant and N is the 

Avogadro’s number. With this the general formula is possible to access to the 

macroscopic magnetic properties trough energy levels of the system. The 

measurement of magnetisation can be carried out by employing standard 

magnetometry techniques. Standard magnetometry is based on the determination 

of the magnetic moment through an induction effect. The variation as a function of 

time of the magnetic flux  𝑑𝜙 𝑑𝑡⁄  generates a current flowing in a circuit. The 

electromotive force is proportional to the flux variation. The detection of this 

electromotive force is possible using a set of coils, but also the applied magnetic field 

can generate a magnetic flux. The magnet flux can be cancelled by using gradiometer 

distribution coils that are able only to detect a magnetic field gradient. The first order 
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gradiometer is made up by two coils, wrapped in opposite direction, where the 

magnetised sample is moved from the first coil to the second one: the difference in 

voltage induced in the two coils is directly proportional to sample magnetisation. To 

achieve a better magnetic moment detection a second order gradiometer is 

generally used, where 2N coil are positioned between two set of N coil. The 2N coil 

have a different wrap direction of N coil (Figure 1). 

 

Figure 1. First (left) and second order gradiometers (right).1 

In high sensibility magnetometer the induced current is measured coupling the 

gradiometer coils with a Superconducting Quantum Interference Device (SQUID). 

The SQUIDs are made of one superconducting ring, in which the flux is “quantized”, 

thus allowing a precise measurement of the magnetic field in term of Josephson 

tunnelling of the Cooper pairs occurring in the two Josephson junctions (for a dc-

SQUID). In Figure 2 is reported a schematic Josephson junction. The SQUID is kept in 

a 4He bath to ensure the good superconductivity of its ring. The sample is then moved 

in the gradiometer and induces an electromotive force generating a new magnetic 

field close to the SQUID. The dc-SQUID measures this field in terms of the quantum 

interferences occurring between the two pathways that enclose the area where the 

magnetic flux is modified. 

  

Figure 2. Scheme of a dc-SQUID. The current goes through a superconducting ring with two 

Josephson junctions 



5. Experimental methods 

141 
 

The current of the SQUID is therefore modulated by the flux induced in the ring. 

The sample is then moved through the coils and a feed–back coil is used to 

compensate the effect of the sample when it comes into the coils. The voltage that 

is needed to compensate the flux generated by the sample is proportional to its 

magnetization. After calibration with a known sample, it is possible to evaluate with 

high accuracy the magnetization of the sample. SQUID magnetometers can detect 

signals as low as 10-9 emu.  This magnetometer measure the magnetisation of the 

sample, and the molar susceptibility 𝜒 can be calculated, with a linear approximation 

of the magnetisation in the field as: 

                                                                 𝝌 =
𝑴

𝑵
⋅ 𝑯 ( 4 ) 

where M is the magnetization of the sample, N is the number of molecules and H is 

the external field. This linear approximation is not always applicable, for instance 

close to phase transitions or in high magnetic fields. To have access to the real 

susceptibility, defined in Eq.(1), the so called ac susceptometry is employed.  The 

sample is inserted inside a copper primary coil. An alternate current (ac) is passed 

through the primary coil generating a small oscillating magnetic field (in general 

smaller than  10 Oe). Inside the primary coil another coil, named secondary, is 

inserted.   

 

Figure 3. Scheme of the coil used in an ac susceptometer.1 

The magnetic moment of the sample oscillates as a response of the applied ac 

field. This oscillation is detected by the secondary coil, fixed inside of the primary 

one. This coil is made in two parts wrapped in opposite direction to compensate the 

contribution to the signal of the primary coil (see Figure 3). A first order gradiometer 
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is thus employed and absolute values for the susceptibility are obtained by 

measuring the induced voltage by the sample placed alternately at the center of the 

two coils of the secondary circuit.. The signal is then detected by the lock-in, in 

amplitude and phase. The measure can be carried out with a static magnetic field H0 

parallel to the oscillating field h and the total magnetic field H is: 

                                                          𝑯 = 𝑯𝟎 + 𝒉𝐜𝐨𝐬𝝎𝒕 ( 5 ) 

where ω is the frequency of the ac current in the primary coil. By measuring the ac 

susceptibility the derivative of the magnetization curve is obtained. The difference 

between the dc and ac susceptibility is explained easily in Figure 4. 

 

Figure 4. A schematic magnetization curve where the differences between ac and dc 

susceptibility are reported.1 

Another advantage of the ac susceptibility is that the measured signal does not 

depend of the external static applied field but only on the weak alternating one and 

investigations can be done in zero static field, thus avoiding saturation effects or the 

smearing of phase transitions.  

A further feature is that the frequency of the AC field can be varied easily over a 

wide range, in general about three-four order of magnitudes for a given pick-up coil.  

By using a phase-sensitive detection mode, i.e. a lock-in the two components of the 

response of the magnetisation to the oscillating field can be detected providing the 

complex susceptibility: 

                                                         𝝌 = 𝝌′+ 𝝌′′ ( 6 ) 
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where 𝜒′  and 𝜒′′  are the real and imaginary part of the susceptibility. From a 

thermodynamic point of view we can define two limiting cases: the first, when ω is 

slow compared to the relaxation rate of the system, is characterized by no phase lag 

of the magnetization and the susceptibility and it is called the isotherm limit and 

noted 𝜒𝑇. The other, when the system is not able to follow the ac field because it 

oscillates too fast compared to the relaxation rate and so the measured susceptibility 

is called adiabatic and noted 𝜒𝑆. Replacing these parameters in the Eq. ( 6 ), the 

susceptibility becomes: 

                                                 𝝌 (𝝎) =   
𝝌𝑻+ 𝝌𝑺

𝟏+𝒊𝝎𝝉
 ( 7 ) 

where 𝜏 is the characteristic time of the system to come back to a thermodynamic 

equilibrium. The two components of the susceptibility becomes: 2 

                                               𝝌′ =  
𝝌𝑻− 𝝌𝑺

𝟏+𝝎𝟐𝝉𝟐 + 𝝌𝑺 ( 8 ) 

 and  

                                               𝝌′′ =  
(𝝌𝑻− 𝝌𝑺)𝝎𝝉

𝟏+𝝎𝟐𝝉𝟐  ( 9 ) 

In Figure 5 is reported the theoretical dependence of 𝜒′ and 𝜒′′on 𝜔; 𝜒′′goes to the 

maximum value when 𝜔𝜏 = 1 and is zero when 𝜔 → 0 or when 𝜔 → ∞. In contrary 

𝜒′ has its largest value at low frequency and the its limits are the above mentioned  

𝜒𝑇  and 𝜒𝑆.  

The Eq. ( 7 ) can be modified to take into account a distribution (or dispersion) of the 

relaxation times due to differently behaving components in the sample by 

introducing a parameter 𝛼. For a system characterised by a distribution of relaxation 

times the two components of the susceptibility can be calculated as:  
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Figure 5. Scheme of the theoretical frequency dependence of the real and imaginary 

components of the susceptibility.1 

                                              𝝌(𝝎) =  𝝌𝑺 +
𝝌𝑻𝝌𝑺

𝟏+(𝒊𝝎𝝉)𝟏−𝜶 ( 10 ) 

and 𝜒′′(𝜔) and  𝜒′(𝜔) are defined as: 

                        𝝌′(𝝎) = 𝝌𝑺 + (𝝌𝑻–𝝌𝑺)
𝟏+(𝝎𝝉)𝟏−𝜶 𝐬𝐢𝐧(𝝅𝜶 𝟐⁄ )

𝟏+𝟐(𝝎𝝉)𝟏−𝜶 𝐬𝐢𝐧(𝝅𝜶 𝟐⁄ )+(𝝎𝝉)𝟐−𝟐𝜶 ( 11 ) 

 

                                𝝌′′(𝝎) = (𝝌𝑻–𝝌𝑺)
(𝝎𝝉)𝟏−𝜶 𝐜𝐨𝐬(𝝅𝜶 𝟐⁄ )

𝟏+𝟐(𝝎𝝉)𝟏−𝜶 𝐬𝐢𝐧(𝝅𝜶 𝟐⁄ )+(𝝎𝝉)𝟐−𝟐𝜶 ( 12 ) 

when by fitting the frequency dependence of the imaginary susceptibility with Eq.( 

12 ) the relaxation time 𝜏 and the 𝛼 parameter can be evaluated. 𝛼 varies between 

0 an 1, the larger its value the larger the width of the distribution of the relaxation 

times in the sample. The procedure can also be repeated using Eq. ( 11 ), although 

this one does not show a peak feature. By repeating the measurements at different 

temperatures it is possible to investigate the temperature dependence of the two 

parameters, 𝜏 and 𝛼. The same analysis can be repeated for different applied static 

fields.  

By plotting 𝜒′′(𝜔) versus 𝜒′(𝜔)  is possible to obtain a so-called Argand plot that 

allows a direct estimation of the 𝛼  parameter. When a single relaxation time is 

present the Argand plot is represented by a semicircle centred on the x axis. The 

larger is the distribution the flatter is the curve.  
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These type of magnetic measure are crucial for the investigation of the slow 

relaxation processes of SMM systems and for investigate the magnetization of VT 

and SCO. 

 

5.2 Low Energy Ion Scattering (LEIS) 

Low Energy Ion Scattering (LEIS), also called Ion Scattering Spectroscopy (ISS) is the 

most powerful technique to investigate the composition of the topmost layer of a 

surface.3 Due to the low penetration depth of ions (at the basis of the surface 

sensitivity of this technique) and to the consequent need of keeping clean the 

investigated surface, Ultra High Vacuum (UHV) environment is mandatory to 

perform ISS. This technique is based on the inelastic scattering of accelerated noble 

gas ions (usually He and Ne) impinging the surface at energies between 500 and 

10000 eV. The noble ions collide the surface topmost layer and, in first 

approximation, this phenomena can be described like an inelastic binary collision of 

a projectile of mass Mi with energy E0 with a target atom of mass Mt as schematised 

in Figure 6. 

 

Figure 6. Schematic elastic binary LEIS process, the projectile collides the target and it is 

then scattered. 

In the collision part of the E0 energy of the projectile is transferred to the target 

atom. The energy transferred to the surface target depends on the scattering angle 

() and on the mass of the two atoms, i.e. Mi and Mt. The projectile is then scattered 

with a different energy Ei and it can be collected by an ions analyser. An energy scan 

of the scattered ions allows to get information on the chemical composition of the 

surface layer. By knowing the scattering angle and the mass of the projectile, Eq. ( 
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13  ) can be used to calculate the mass of the target atom or to predict the energy of 

the ions after the impact with a known target on the surface:3 

                                           
𝑬𝒊

𝑬𝒊
𝟎 = {

±[(𝑴𝒕
𝟐−𝑴𝒊

𝟐𝒔𝒊𝒏𝟐𝜽)
𝟏/𝟐

+𝑴𝒊𝒄𝒐𝒔𝜽]

(𝑴𝒊+𝑴𝒕)
}

𝟐

 ( 13  ) 

However, if the target possesses a low atomic weight, the energy and the mass 

of projectiles are high, the interaction of the projectiles with the surface can modify 

the structure of the surface.4,5 In order to avoid such phenomenon, low energy ions 

are commonly used (< 1000 eV) to investigate surface composition, but accelerating 

the ions and using ions with larger mass, it is possible to achieve information about 

the “inner layers” of the sample4 due to the occurrence of sputtering processes used 

ion gun.  

This technique is commonly used for qualitative investigations, but with a good 

approximation, by estimating the differential cross sections of the investigated 

elements through the Thomas−Fermi−Molier interacting potential and using the 

“Magic Formula” by Ziegler, Biersack, and Littmark,6 it is possible to quantify the 

contributions of the different elements in the LEIS spectra and then to evaluate the 

elemental composition. The nuclear potential is the dominant factor in the events 

scattering. This potential is normally written as: 

                                                    𝑽(𝒓) =
𝒁𝟏𝒁𝟐𝒆𝟐

𝟒𝝅𝜺𝟎𝒓
𝚽(

𝒓

𝒂
) ( 14 ) 

where Z1, Z2 are the atomic numbers of ion and atom, e is the electronic charge, r is 

the radius, and a is the “screening length”. The screening function is unity at r = 0 

and decreases by increasing r. Using Eq (14) the scattering angle can be calculated 

for each interatomic collision. The scattering of ions is thus calculated by using  the 

empirically derived “Ziegler-Biersack- Littmark (ZBL) Universal Screening Potential”:6 

𝚽𝑼 = 𝟎. 𝟏𝟖𝟏𝟖𝒆−𝟑.𝟐𝒙 + 𝟎. 𝟓𝟎𝟗𝟗𝒆−𝟎.𝟗𝟒𝟐𝟑𝒙 
                                    +𝟎.𝟐𝟖𝟎𝟐𝒆−𝟎.𝟒𝟎𝟐𝟖𝒙 + 𝟎. 𝟐𝟖𝟏𝟕𝒆−𝟎.𝟐𝟎𝟏𝟔𝒙  ( 15) 

with the normalized radius:  

                                                                    𝒙 = 𝒓 𝒂𝑼⁄                                           ( 16 ) 

and the screening length  
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                                                                𝒂𝑼 =
𝟎.𝟖𝟖𝟓𝟒𝒂𝟎

𝒁𝟏
𝟎.𝟐𝟑+𝒁𝟐

𝟎.𝟐𝟑  ( 17 ) 

where a0 is the Bohr radius. The empirical function Eq.15 is based on calculated solid-

state interatomic potentials of 522 randomly chosen pairs of atoms over the range 

1-82 for Z1 and Z2. 6 

In Chapter 2 we described the use of this technique for the study of the 

lanthanum strontium manganite La0.7Sr0.3MnO3 (LSMO) topmost layers  composition 

on a neodymium gallate (NdGaO3, NGO) (100) single crystal. The four elements have 

quite different atomic weights thus facilitating this analysis. Moreover, varying the 

sputtering efficiency by changing the mass of the ions and their energy allowed to 

investigate the variation of the composition in the layers underneath the surface. 

 

5.3. Time-of-Flight Secondary Ions Mass Spectrometry (ToF-
SIMS). 

Time-of-Flight Secondary Ion Mass Spectrometry7 is a surface sensitive technique. 

With its soft ionisation mechanism, is particularly suited for the desorption of fragile 

molecules, such as purely organic molecules and the coordination compounds.8,9,10,11 

Molecular ions or their fragments produced with this process come from the 

topmost layers of the sample and only these fragments have sufficient energy to 

overcome the surface binding energy and leave the sample. This technique is 

extreme surface sensitivity due to the low mean free path of secondary ions. For this 

reason only the first molecular layers of the sample are involved in the ionic 

bombardment as well as in the subsequent desorption. The investigated sample is 

bombarded with a pulsed primary ions beam (Au+ in our experiments) with energy 

in the range of 10-25 keV, producing fragmentation and bond breaking in the close 

proximity of the collision site. The obtained fragments moving into the sample.  The 

particles loose part of their energy promoting the production of molecular 

fragments. This phenomenon induces the formation of neutral, positive or negative 

secondary particles. Only the charged ones are collected by the Time of Flight 

detector (ToF), revealed and analysed as a function of their m/z ratio. By placing the 

detector far from the sample, which means that secondary ions have a long path (see 

Figure 7) it is possible to get an excellent mass resolution (often exceeding 10,000 

m/Δm).12 
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Figure 7. ToF-SIMS spectrometer simplified scheme.  

A Time-of-Flight mass spectrometer is based on the measure of the time that the 

fragments spend to travel a distance through a medium to finally reach the 

spectrometer. The ions are accelerated from the surface to the instrument detector, 

through a sequence of electrostatic lens and selectors allowing the m/z selection of 

the produced fragments. The relation between mass and time of flight is defined by: 

                                                                  𝑬 =
𝒎𝒗𝟐

𝟐
=

𝒎𝑳𝟐

𝟐𝒛𝒕𝟐
 ( 18 ) 

where E is the acceleration energy, m the mass of the flying object, v the velocity of 

the object, L is the length of the travel and t is the flight time. Is easily notable how 

the ToF depends on the m/z, on the length of the flight as well as on the acceleration 

energy. Ions with lower m/z values will have higher speed than those of higher m/z 

values. 

 

Figure 8. Flight time versus ions mass, obtaine using Eq. 18. with the experimental set-up 

parameters indicated in the text. 
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In Figure 8 is reported the trend of time of flight versus ions mass in the case of a 

unitary z, a potential E set to 500 eV and a length of the drift tube L = 1 m. As evident 

from the Figure 8 and from Eq.18 in order to obtain the best separation of ions, E 

must be constant and this is achieved by pulsing the primary ion source with short 

pulse in order to yield secondary ions with a very short time dispersion and with a 

very low energy dispersion. A fixed voltage then accelerates the secondary ions (that 

could be positive or negative) into the ToF analyser. The energy and angular 

dispersion of the secondary ions can be focused using electronic components like 

focusing lens, ion mirrors or reflectors and selectors. After separation in the ToF 

analyser, the secondary ions are post-accelerated with a voltage up to 15 kV. This 

acceleration is applied to the ions to improve the detection efficiency of the high-

mass ions. In the end the ions reach the detector unit, which is typically composed 

by a photo-converter electrode, a channel plate, a scintillator, a photomultiplier and 

a counter, all in series. The complete setup of the used ToF-SIMS apparatus is 

sketched in Figure 7.  

ToF-SIMS spectroscopy provides important and exhaustive information about 

molecular surface deposition processes for both evaporated system and SAM. For 

instance it is possible to understand if the molecules are chemically grafted or simply 

physisorbed on the surface, or to detect the presence of additional physisorbed 

layers on top of the chemisorbed one. In this thesis work, ToF-SIMS has been used 

to clarify SAM deposition process and to understand if the integrity of evaporate 

molecule occur. 

 

5.4 Photo Electron Spectroscopies (PES) 

The Photo Electron Spectroscopies (PES) are based on photoemission effect, 

discover for the first time by H. R. Herzt in 1887, and rationalized by Einstein in 

1905.13 Its application in spectroscopic studies was developed only in the ‘50s and 

‘60s by Siegbahn that was awarded with the Noble prize in 1981. Siegbahn, noted 

that the PES spectra can be used for chemical analysis,14  and developed the so called 

Electron Spectroscopy for Chemical Analysis (ESCA). 

PES techniques are very powerful tools for the study of conducting substrate and 

for hybrid organic conductive substrate. The photoelectric effect requires photons 

with energies from a few electron-volts to over 1 MeV in elements with a high atomic 

number. The photoemission effect takes place when a photon transfers part of its 
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energy to an electron to get over the potential barrier (binding energy) holding it to 

the atom. The exceeding energy is given by the photon to the electron as kinetic 

energy. In a mono electronic approximation the process can be ascribed whit the 

following formula: 

                                              𝒉𝒗 = 𝑬𝒃 + 𝑬𝒌 + 𝝓𝒔 + 𝝓𝒔𝒑𝒆𝒄 ( 19 ) 

Knowing h the energy of the photon, and kinetic energy (Ek) of the 

photoelectron it is possible to calculate the binding energy (Eb ) where sis the work 

function of the investigated solid and spectr is the work function of the spectrometer. 

The work function is defined as the energy difference between the Fermi and the 

vacuum level. 

When the sample and the spectrometer are at the equilibrium and are in 

electrical contact their Fermi energies are equal. When photoelectrons goes from 

the sample to the spectrometer, due to the difference of the work functions of the 

two materials (s - spec) electrons feel a potential and they can accelerate or 

decelerate. Different materials have different work functions. In this approximation 

the two Fermi levels, of the sample and the spectrometer, are the same therefore 

they have different work functions.  

 

Figure 9. Sample levels scheme (left) and spectrometer levels (right).  
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This kind of connection between sample and spectrometer introduces a shift in 

the detected kinetic energy of the electrons that must be corrected to be able to 

compare spectra acquired with different spectrometers. Usually the correction to 

the kinetic energy is obtained by using an internal reference. Generally the spectra 

is acquired with a hemispherical analyser able to counts the number of electrons 

selected as a function of their kinetic energy (Figure 10). Due to the kinetic energy 

dependence on the radiation energy, generally it is preferred to report the binding 

energy in the abscissa. PES measurements allow to measure only the energy of the 

final state but not the initial state, because one measure only the transfer energy 

directly connected to the energy gap between initial and final state. The energy of 

initial state can be only obtained by theoretical considerations.  

 

5.4.1 X-ray Photoelectron Spectroscopy (XPS) and Angle 
Resolved X-Ray Photo electron spectroscopy (AR-XPS). 

Generally, in a X-ray photoelectron Spectroscopy (XPS) setup, incident photons 

of energies between 100 to 1500 eV are used; the common X-ray sources used in a 

conventional laboratory are the Al K (1486.6 eV) and Mg K (1253.6 eV). On the 

contrary, in synchrotron experiment it is possible to tune the frequency of incoming 

photons according to the interested elements. In order to compare the intensity of 

different XPS peaks the relative atomic photoemission cross-section () must be 

taken into account. This parameter depends on the atomic initial state and on the 

photon energy.The cross-section () depends on the atomic initial state and on the 

photon energy. A complete table of the element photoemission cross-section can be 

obtained from specific databases. 15 

In a good approximation the cross section allows to compare the intensity of XPS 

peaks originated by different atoms, thus leading to the possibility to extract 

information about the surface chemical composition. The tabulated values have 

been used in this work for the quantitative and semiquantitative interpretation of 

the XPS spectra. The intensity of each peak can be evaluated by integrating the 

corresponding area, after the subtraction of the inelastic background, and by 

dividing the extracted areal value by its relative cross section. In this way it is possible 

to estimate the surface chemical composition with an error that typically is below 10 

% also in the case of very diluted elements. 
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Photoelectrons are generally selected by a hemispherical analyser which is able 

to distinguish the electrons by kinetic energy, and then counted them with a 

detector, that could be a single or multichannel plate (Figure 10). 

 

Figure 10. The X-ray photon (hυ) excites the electrons of the sample which are emitted as 

photoelectrons. The photoelectrons are then separated in energy by means of a 

hemispherical analyser. 

In order to understand the lineshape of a specific peak in a typical XPS spectrum 

several effects have to be taken into account: 

- Multiplet splitting; 

- Satellites (shake-off and shake-up); 

- Plasmons; 

- Auger peaks. 

Multiplet splitting occurs when there are unfilled shells containing unpaired 

electrons. For instance, transition metals with unfilled p and d orbitals and rare 

earths with unfilled f orbitals all show multiplet splitting. Vacancy created by 

photoionization (unpaired electron left behind after ionization) couples with an 

unpaired electron in the originally incomplete valence shell and generates splitting 

of the orbital (p, d or f orbitals). For example iron in Fe2O3 has 5 unpaired electrons 

in the 3d shell (Figure 11). After the photoionization in the 3s shell, there are 2 

possible final states differing in the coupling, i.e. relative spin orientation, between 

the unpaired electron in the core and the unpaired electrons in the valence shell. 

This can create a number of final states, which will be seen in the photoelectron 

spectrum as a multi-peak envelope. 
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Figure 11.  Possible final state in a Fe3+ (d5) system. 

In addition, the total electronic angular momentum (j) is a combination of the 

orbital angular (l) and spin (s) momenta. The j-j coupling is equal to |L ± S| where L 

and S are the total orbital angular and spin momenta, respectively. For angular 

quantum number l ≠ 0 the line is a doublet. The splitting is given by two different 

final state j+= l + s and j-= l – s. For instance in p orbitals the doublet will be p1/2 and 

p3/2 because l = 1 and s =± 1/2 therefore j-= 1/2 and j+=3/2 and the relative intensity 

will be 0.5; for d orbitals, the doublet will be dx1 and dx2 because l = 2 and s = ±1/2 

therefore j-= x1 and j+= x2 and here the relative intensity will be 0.75. 

Satellites are due to a sudden change in Coulombic potential as the photo-ejected 

electron passes through the valence band. Satellites occurs when a core electron is 

removed by a photoionization. There is a sudden change in the effective charge due 

to the loss of shielding electrons. This perturbation induces a transition in which an 

electron from a bonding orbital can be transferred to an anti-bonding orbital 

simultaneously with core ionization.  Two types of satellite are detected: 

- Shake-up: an ion generated by photoionization will be left in an excited 

energy state a few eV above the ground state and when this happens, the 

kinetic energy of the emitted photoelectron is reduced and this will be seen 

as a “shake-up” peak at a higher binding energy than the main line. Shake up 

broadening lines are generated by the coupling of the photoelectron with 

the partially-filled metal shell during the time of flight following ionization;16 

  

- Shake-off: when the excitation occurs into free continuum states, leaving a 

double ionized atom with holes both in the core level and valence shell, the 

effect is denoted as a shake-off satellite. It appears as a broadening of the 

core-level peak or contribute to the inelastic background. 
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Figure 12. Scheme of shake up peaks in XPS experiments. 

Shake-up satellite (Figure 12) are very useful features to get information about 

the chemical environment in transition metal oxides associated with paramagnetic 

species. Generally, the shake-up satellites have intensity and energy separations 

from the parent photoelectron line that depends on the chemical state of the 

investigated element. With transition metals, the absence of these lines is indicative 

of the elemental or diamagnetic states. Prominent satellites occurs with 

paramagnetic states.17–20 

Photo-electrons travelling through the solid can interact with other electrons in 

the material.  These interactions can result in the photoelectron exciting an 

electronic transition, thus losing part of its energy (inelastic scattering process). Most 

common features are due to interband or plasmons effects. The satellites due to 

plasmon loss are rarely sharp in insulators but very prominent in the metals. The 

plasmon effect is normally observed as additional oscillations at higher binding 

energy respect to the main peak of lower intensity but with the same splitting in 

energy of the main feature. More than one set of plasmon satellites can be observed 

in case when the surface and the bulk are characterized by different plasmons.  
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Also Auger electrons emission occurs when X-rays impinge a sample. Auger 

electron is initiated by the photoemission, with the creation of an ion with an inner 

shell vacancy. Auger electrons are emitted during the non-radiative relaxation of the 

excited ion: an electron from a higher lying energy level decays in the inner shell 

vacancy promoting the simultaneous emission of an Auger electron. It is thus a three-

electron process. 

We have already seen that in order to perform quantitative and semiquantitative 

analysis it is important to know the elements cross-section (). This depends not only 

on the atomic initial state and on the photon energy but also on the inelastic mean 

free path (λ). The inelastic mean free path is defined as the average distance that an 

electron with a given energy can travel through successive inelastic collisions. One λ 

is defined as the 32% of all photoelectrons coming from the surface without 

collisions, while the majority of photoelectrons (98%) will come from 3 λ. For most 

core electrons excited by Al Kα X-rays this depth is in the order of a few nm. On the 

basis of this, it is possible to estimate the thickness of a film deposited on top of a 

substrate by tilting the sample orientation with respect to the analyser. In an Angle-

Resolved XPS (AR-XPS) is thus possible to collect information about thin surface 

layers composition and also about segregation in complex matrices. The effective 

inelastic mean free path is given by the following formula               

                       𝜆 =  𝐸𝑘 ([28.8√
𝑁𝑣𝜌

𝑀
]

2

{𝛽 ln(𝛾𝐸𝑘) − 𝐶𝐸𝑘
−1 + 𝐷𝐸𝑘

−2})

−1

                  ( 20 ) 

where Ek is the kinetic energy of the involved electron, Nv is the number of valence 

electrons per atom/molecule of the matrix, is the density of solid, M is the 

molecular weight and , , C and D are material parameters (depending on the 

electronic structure of the material).   
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Figure 13. Schematic representation of AR-XPS. 

The distance x that the electrons have to travel through the sample is crucial in 

determining their probability of escape from the material without inelastic 

scattering. It is given by: 

                                                              𝒙 = 𝟑𝝀𝒔𝒊𝒏𝜽 ( 21 ) 

where is the collecting angle between the normal to the surface and the collection 

angle. Therefore knowing the of the sample the XPS sampling depth can give 

important information like: 

- the thickness of a layer of material deposited on a substrate by the 

attenuation of the intensity of the substrate signal; 

- the profile of the stoichiometry by measuring at different  collection angles, 

because on increasing the distance that the electron has to travel 

increases thus reducing the sampled thickness.  

 

This particular evolution of XPS, was used in addition with LEIS, to investigate 

LSMO topmost layers, estimating a possible element segregation and define atomic 

concentration profiles for this system.4 

 

5.4.2 Ultraviolet-Photoelectron Spectroscopy (UPS) 

Ultraviolet-Photoelectron Spectroscopy (UPS) is the most powerful and versatile 

technique to study the electronic structure of the valence bands in atoms, solids and 

molecules (ionization energy of molecules, HOMO). This PE process depends on 

parameters such as Emission angles, Spin polarization, Photon energy (hν). 
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Commonly the used energy range is between 16.6 and 40.8 eV, being the most 

common ionization sources Ne(I) at 16.6eV, Ne(II) at 26.8eV and He(I) at 21.2eV, 

He(II)  at 40.8eV. These lines are produced by cold cathode capillary discharge 

causing the excitation of the gas. Each line is due to the resonance fluorescence 

produced when the gas is excited by the discharge and then decays back to its ground 

state. The nomenclature refers to light emitted from neutral atoms, i.e. He(I) and to 

light emitted by singly ionized atoms, i.e. He(II). The resonance line produced by 

transition from the first excited state to the ground state is usually the most intense 

one (called raie ultime).  

 

Figure 14. Grotian diagram for He(I) and He(II).  

In Figure 14 the strongest resonance lines of He are reported, where 98% of the 

emission intensity is given by the line at 21.22 eV  and the residual 2% is given by the  

other lines present in a He discharge (23.09 eV, 23.74 eV and 40.81 eV). UPS, allowing 

the study of the valence band, provides useful information about the electronic 

structure of the surface and of molecular films. By comparison of the UPS spectrum 

at different sample temperature, it has been possible to follow the temperature 

conversion from the high-spin or low-spin state in a Spin Cross-Over molecule, 

deposited with thermal evaporation procedure. Generally, it is possible, by 

comparison of the UPS spectrum with the calculated Density Of State (DOS) of the 

isolated molecule, to evaluate the intactness of the molecules and the extent of 

interaction with the substrate. 
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5.5 X-ray synchrotron radiation based experiments 

An electromagnetic radiation can be efficiently generated by the deviation of an 

electron beam accelerated at relativistic energies: the energy loss involved in this 

process is released to give a continuous spectrum, this concept is exploited in a 

synchrotron light facility.  

In a synchrotron electrons are produced by an electron gun and accelerated by a 

linear accelerator up to several tens of MeV. Then “bunches” of electrons are then 

moved into the so called “booster ring”, where their energy is increased up to the 

GeV range, and subsequently they are passed into a “storage ring”. Once introduced 

in this higher diameter ring, linear trajectory of electrons is deviated by means of 

magnetic fields, this process leads to the emission of electromagnetic radiation along 

the tangent to the electrons trajectory that can be used for a very large range of 

experiments. Depending on the specific purpose a portion of the electromagnetic 

radiation can be selected by adopting specific “curved sections”. When intense and 

monochromatic radiation is required like in XMCD experiments “insertion devices” 

are used. Those devices are made by periodic arrays of magnets placed above and 

below the electron pathway (Figure 15). The insertion devices are divided in two 

classes the wigglers and the undulators.  

 

Figure 15. Schematic representation of an insertion device. In the undulator the gap 

distance between the two rows can be modified to tune the spectral emission 
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Wigglers are composed by several magnetic sections causing a large oscillation 

amplitude of the electrons, due to high static magnetic fields. These deviations leads 

to an overall high energy emission of light (10-20KeV) that is poorly collimated and 

which polarisation (linear horizontal or vertical) depends on the distance from the 

horizontal plane of the ring plane. In undulators the magnetic field of each section is 

weaker thus electrons are less deviated (induced oscillation are smaller in 

amplitude). This results in a narrow emitted radiation cone and a smaller spectral 

width. In these devices, by changing the distance between the upper and lower rows 

of magnets (Figure 15) the energy interval can be tuned into the appropriate range. 

Moreover, both circularly and linearly polarisations of X-ray radiation can be easily 

achieved by a relative horizontal displacements of the upper and lower rows of 

magnets thus allowing polarised-light dependent experiments.  

In this thesis all synchrotron-based measurements where obtained using Total 

Electron Yield (TEY) detectors. This type of detection mode is based on the 

measurement of the drain current originated when absorption occurs: absorption, 

induces the emission of electrons due to the following relaxation processes; thus 

TEY, by indirectly measuring this effect results proportional to the number of 

photons absorbed by the sample at a given energy. We notice that the sampling 

depth of TEY measurements is limited by the mean free path of the electrons that 

are emitted in the absorption process. These secondary electrons have limited 

energy thus limiting the escape depth of an electron to 5-10 nm depending on the 

involved excitation radiation. For this reason TEY-based spectroscopies result surface 

sensitive techniques. In certain cases the combination of TEY measurements with 

more depth sensitive fluorescence yield measurements can be used to provide a 

more complete picture of the electronic structure of a material.  

 

5.5.1 X-ray Absorption Spectroscopy (XAS) 

X-ray Absorption Spectroscopy (XAS) is an experimental technique that yields 

information concerning the local electronic structure of the sample, as well as about 

the magnetism and the structure of investigated materials. In particular, in this thesis 

XAS has been exploited to understand structural and magnetic features of 

metalorganic systems in bulk as well as at the nanoscale. This information can be 

extracted once measurements are made using polarized X-rays.  
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XAS is based on the selective excitation of core electrons to unoccupied electronic 

states by means of photons, according to the dipole selection rules. If the incident 

photons have an energy equal or larger than the difference in energy between the 

initial state and the unoccupied final electronic state, X-rays are absorbed. The fine 

structure of the obtained spectrum recorded is a fingerprint of the atomic species 

present as well as of the oxidation state and the coordination geometry of the 

absorbing atom. The phenomenon of X-ray absorption is useful in the investigation 

of metalorganic compounds due to its unique atomic selectivity, the high sensitivity 

to charge state, as well as to the sensitivity to spin state. It also provides a direct 

insight on the coordination symmetry of the investigated atoms. Moreover, by using 

circularly polarised light it is possible to selectively promote transitions involving only 

spin up or spin down electrons that can be used to gain insight of the local magnetism 

of the absorber, by simply evaluating the dichroism (XMCD), i.e. the difference 

between the absorbed light using left and right polarizations. On the other hand, by 

using linearly polarized light it is possible to collect information about the anisotropy 

of the charge distribution around the absorbing atom, recovering information about 

the orientation of the orbitals and thus the orientation of the molecules assembled 

on a surface. This can be done by simply evaluating the natural linear dichroism 

(XNLD) extracted as the difference between vertically and horizontally polarised 

light.  

The above mentioned description of X-rays absorption by matter is defined as the 

“one electron approximation”.21  This treatment is also referred as the “active 

electron approximation”,21 being all other electrons in the atom ignored and 

considered passive during the excitation process. Such description has the advantage 

of being intuitive even if cannot be used to describe rigorously the XAS process. In 

fact, electrons not directly involved in the excitation are not actually passive, but 

rather influence the active electron. This oversimplification for this reason cannot be 

used to treat on a quantitative basis the spectra of metal ions. A more correct way 

to describe the phenomenon is the configuration picture.21 Transitions involved in 

soft X-ray absorption are governed by the dipole selection rules where 

configurations can be described by their total angular momentum (J) which can be 

calculated with the (j-j) coupling scheme. The rules place limits on the excited states 

that can be created via the absorption of a photon in absorption measurements. The 

dipole selection rules are described in terms of the allowable changes in the various 

quantum numbers, and are summarized in Table 1. 
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Table 1. Dipole selection rules  

Quantum Number Selection Rule 

n (not constrained) 

l                                                + 1 

s 0 

j 0,  + 1 

mj 0, + 1; mj = 0 to mj’= 0 are forbidden if j = 0 

 

These selection rules mean that only certain electronic states contribute to the 

measured spectra, thus the measurements are not indicative of the total density of 

states but rather of a partial density of states. In general, an absorption process, 

causing the excitation of a particular core level will involve transitions to an excited 

states of only one type.  

Table 2. Notation used in soft X-ray spectroscopy 

X-ray 

notation 

Atomic 

Notation 

Quantum Numbers 

n nlj N l j 

K 1s 1 0 1/2 

L1 2s 2 0 1/2  

L2,3 2p 1/2, 3/2 2 1 1/2 , 3/2 

M1 3s 3 0 1/2 

M2,3 3p 1/2, 3/2 3 1 1/2 , 3/2 

M4,5 3d 3/2, 5/2 3 2 3/2, 5/2 

X-ray absorption spectra are most often described with atomic notation, using 

the quantum numbers of the core electron, in the format nlj. For instance K-shell 

absorption denotes the complete set of measurements involving the creation of a 1s 

core level. The notation used to describe several relevant absorption edges is 

summarised in Table 2. 

The phenomenon of X-rays absorption by matter can be rationalised as a time 

dependent perturbation of the atomic levels (described by the stationary 

Hamiltonian containing electron/nucleus and electron/electron interactions).21  
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Figure 16. Co L2,3 spectrum of a monolayer of Cobalt Valence Tautomer.  

In a non-relativistic approach, the transition probability Tif for this process can 

thus be expressed using the formalism developed by Dirac 22 as: 

𝑻𝒊𝒇 = 
𝟐𝝅

ℏ
|⟨𝒇|𝓗𝒊𝒏𝒕|𝒊⟩ + ∑

⟨𝒇|𝓗𝒊𝒏𝒕|𝒏⟩⟨𝒏|𝓗𝒊𝒏𝒕|𝒊⟩
𝓔𝒊−𝓔𝒏

𝒏 |
𝟐

𝝆(𝓔𝒇)𝒅(𝓔𝒊 − 𝓔𝒇) ( 22 ) 

where f and i are the energy of the final and the initial state respectively, (f) is 

the density of the final state per unit of energy, and ℋ𝑖𝑛𝑡 is defined by 

                                                          𝓗𝒊𝒏𝒕 =
𝒆

𝒎𝒄
�⃗⃗� ∙�⃗⃗�  ( 23 ) 

The Hamiltonian is related to the interaction between the excited electron of rest 

mass mc, charge e and momentum p and the electromagnetic field of the radiation, 

of potential vector A. Just to clarify the electric field of the radiation can be obtained 

from A according to �⃗� =  
𝛿𝐴 

𝛿𝑡
. The explicit equation describing the X-ray absorption 

cross section (), which, after an integration in the domain of energies, will provide 

the intensities of the transitions: 

                        𝝈 =
𝑻𝒊𝒇

𝚽𝟎
= 𝟒𝝅𝜶|⟨𝒃|�⃗�  ∙  �⃗� |𝒂⟩|𝟐𝛛[ℏ𝝎 − (𝑬𝒃 − 𝑬𝒂)]𝝆(𝑬) ( 24 ) 

where 

                                                        𝜶 =
𝒆𝟐

𝟒𝝅𝜺𝟎ℏ𝒄
≈

𝟏

𝟏𝟑𝟕
 ( 25 ) 
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The calculation of the transition matrix element depends on the wave functions |𝑎⟩ 

and |𝑏⟩.  

XAS has been used in this thesis for all in situ thermal evaporations of SMM, and 

ex situ deposited SMM and VT to verify the integrity of the molecular systems as well 

as to follow the temperature dependence of the VT phenomenon. 

 

5.5.2 X-ray magnetic Circular Dichroism (XMCD) 

X-ray magnetic circular dichroism (XMCD) is an experimental technique that 

enables quantitative determination of the magnitude, direction of the spin and 

orbital moments of each investigated element.23 Noticeably, if again associated to 

TEY detection mode, this technique allows the magnetic characterisation of very 

diluted samples including ultrathin magnetic films and two dimensional arrays of 

magnetic nanostructured samples. The XMCD technique relies on spin selective 

photon excitation from the spin orbit split core electronic levels.21 

Considering the left circular polarisation, 𝜎+, the one with the helicity pointing 

to the photon propagation direction and the reverse for the right polarisation, 𝜎−, r 

the XMCD spectrum is given by the subtraction of spectrum registered at 𝜎− minus 

the spectrum registered at 𝜎+: 

                                                           𝑿𝑴𝑪𝑫 = 𝝈−−𝝈+ ( 26 ) 

Circularly polarized X-ray light is used here to transfer the photon angular 

momentum ℏ to the sample along the magnetization direction. This leads to 

consider XMCD as a vector magnetometry, the dichroic intensity being proportional 

to k·M.  

According to the dipole selection rules, using circular light, transitions from the 

2p3/2, and 2p1/2 initial states to the empty 3d levels are allowed with spin selectivity. 

The unbalance of the empty 3d final states caused by the exchange splitting of the 

3d final state leads to a spin selective absorption process and yields information 

about the spin polarization of the 3d states. The spin moment (ms) is simply given by 

the difference between the number of spin up (N+) and spin down (N-) 3d holes, 

reflected in the intensity of the 2p 3/2, and 2p 1/2 white lines. 24,25 
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The absorption in the exchange split valence states is different for circularly 

polarized light. According to the previously mentioned XAS selection rules we have: 

Δj = 0, ±1 ; Δs = 0; Δm = +1 (left circular) -1 (right circular) 

Considering the L2,3 edges (the transition within 2p3/2 and 2p1/2 and 3d levels) the 

XMCD experiment can be described in the “one electron approximation” using a two-

step picture.26  

In the first step photoelectron are excited by X-rays absorption. If the 

photoelectron originates from a spin-orbit split level, like the  

2p3/2 level, the angular momentum of the photon can be partially transferred to the 

spin through the spin-orbit coupling (j = l + s). For this reason right circularly polarized 

photons will transfer the opposite momentum to the electrons respect to the one 

excited by left circularly polarized photons. Photoelectrons with opposite spins are 

created in the two cases: since the 2p1/2 (L2) and 2p 3/2 (L3) levels have opposite spin-

orbit coupling, the spin polarization will be opposite at the two edges. For this 

reason, in the absorption process, “spin-up” and “spin-down' are defined in respect 

to the photon helicity, which is parallel (right) or antiparallel (left) to the X-ray 

propagation direction.  

 

Figure 17. Schematic representation of the circular polarised light absorption. The different 

probability of the two transitions gives rise to the XMCD signal. 



5. Experimental methods 

165 
 

After the excitation of photoelectron the spin-split d valence shell acts as a 

detector for the spin of the excited photoelectron. If the d states possesses an orbital 

momentum electrons can also act as orbital momentum detector allowing to 

separate the spin and orbital contribution to the magnetic moment. The 

quantification of the two contributions can be achieved by using the sum rules. As 

illustrated in Figure 17 we shall denote the differences of intensities recorded with 

right and left circular polarization for metals, e.g. the XMCD intensities. 

The strong dichroism at the L2,3 edges of transition-metal ions and M4,5 edges of 

rare-earth ions provides information about their ground-state magnetic properties. 

Exploiting the chemical sensitivity of X-ray absorption edges contributions from 

different transition-metal and rare-earth ions within the molecule can be easily 

separated.  In XMCD technique the maximum dichroism is observable when the 

polarization of the light lays on the same direction of the magnetisation direction. In 

this thesis the XMCD technique has been used in order to confirm the SMM 

behaviour after the deposition process and to get information about the easy axis 

magnetization direction of adsorbed molecules in respect to the surface. 

 

Figure 18. Circularly polarized XAS (red, ; blue, ) and XMCD (green) spectra of the Fe4C5 
monolayer at the iron L2,3 edges (T=650(50) mK, H=30 kOe). a.u., arbitrary units. In the inset 
the geometry of the experiment is presented.27 
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5.5.3 X-ray Natural Linear Dichroism (XNLD) 

X-ray Natural Linear Dichroism or XNLD is defined as the difference between XAS 

measured with vertical (𝝈𝑽) and horizontal (𝝈𝑯) light polarisation and is due to an 

anisotropic charge distribution. 

                                                       𝑿𝑵𝑳𝑫 =  𝝈𝑽 − 𝝈𝑯 ( 27 ) 

This information can be useful to locate a preferential orientation in molecules lying 

on surfaces.28,29 The easiest way to visualize the polarization dependence underlying 

XNLD is the “search light effect”.21,30 This effectt can be demonstrated for the case 

of K- and L-edges, where the electronic transitions involve 1s → 2p and 2p → 3d core 

to valence excitations. From the spatial charge distribution of the empty valence 

states involved in the transitions it is possible to picture the valence states by p and 

d orbitals. In a cubic ligand field d orbitals form the eg and t2g irreducible 

representations, the sum of the orbitals within each representation is spherically 

symmetric while p orbitals are not split in cubic symmetry and their sum is also 

spherically symmetric. Therefore, in the cubic symmetry the X-ray absorption 

intensity in nonmagnetic materials is independent from the orientation of E-vector 

relative to the sample. It is clear that the charge distribution of the individual p and 

d orbitals is asymmetric in space, and therefore as the symmetry is lowered below 

cubic, transitions to individual p and d orbitals will depend on the orientation of the 

E-vector relative to the x, y, z coordinate system of the crystal. This is the origin of 

the natural linear dichroism effect. For the K-edge it is possible to recognise the 

foundation of the search light effect, since the p orbitals have directions of maximum 

charge density and perpendicular nodal planes where the charge density is zero. The 

X-ray absorption intensity is maximum when E is aligned along the orbital and is zero 

when E lies in the nodal plane. The photoelectron is ejected from the spherically 

symmetric core state along the direction of the E-vector. The E-vector “search light” 

then detects the hole density of the valence orbital. If the density in the direction of 

E is zero the transition intensity vanishes. In general, the transition intensity scales 

directly with the orbital density along E. For L-edges the transition intensity is zero if 

the E-vector lies along the d orbital nodal axis, which is the intersection of two nodal 

planes.  
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Figure 19. Experimental (black) and calculated (grey) isotropic XAS (1/3V+2/3H) of the 

Fe4C5 monolayer at the iron L2,3 edges together with the experimental (orange) and 

calculated (dark red) XNLD spectra (V-H), normalized to the isotropic signal (T=10(1) K, 

H=20 kOe). As shown in the insets, the photon propagation vector is collinear with the 

applied field (H) and lies at 45u to it.27 

 

5.6 Scanning Probe Microscopy 

The Scanning Probe Microscopy (SPM) techniques are the main tools for the study 

of morphology of surfaces with high spatial resolution. Using a local probe that 

interact with the sample is possible to achieve sub-Å spatial resolution. The type of 

interaction between the probe and the surface, defines the specific SPM.  Scanning 

Tunnelling Microscopy (STM) and Atomic Force Microscopy (AFM) are among the 

most utilised techniques to obtain morphological information at the nanoscale and 

are based on quantum electrical tunnelling effect and tip/surface interaction forces 

respectively. Starting from these two techniques several other SPMs have been 

released allowing to get more specific and local information depending on the 

specific interaction between the probe and the sample.31 

Piezoelectric scanners are usually employed to guarantee the probe (or the 

sample) displacements. By changing the voltage applied to the piezoelectric 

material, the relative tip-sample position can be controlled. By applying a voltage to 
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the different electrodes on the piezotube scanner is possible to produce a scanning 

(raster) motion in x and y thus obtaining the point by point 2D image acquisition. The 

z component of each point depends to the type of the specific interaction used in 

the SPM. By using a feedback controlled acquisition the z value corresponds to the 

one imposed to maintain constant the interaction within the probe and the surface. 

By excluding the feedback circuit is instead possible to directly monitor the variation 

of the specific interaction intensity at constant height that can be locally mapped for 

each point of the image. 

 

5.6.1 Scanning Tunnelling Microscopy (STM) 

STM microscopy is one of the most powerful imaging technique for surface 

morphological characterization, reaching atomic and sub-molecular resolution. By 

using this technique it is possible to achieve lateral resolution of the 0.1 Å order and 

0.01 Å in z. The impulse imposed to nanotechnologies by the STM is unquestionable 

being both vertical and lateral sub-nanometric resolution achievable even in a “low-

cost” setup. In the STM technique a bias voltage is applied between a sharp metal 

tip and a conductive sample; when the tip is “near” the surface of the sample (5-15Å) 

electrons tunnel from the tip to the surface or vice-versa depending on the sign of 

the applied bias voltage. In STM measurement is possible to work in constant current 

mode using the feedback loop system described above or in height constant mode 

excluding the feedback loop circuit. STM contrast is based on the tunnelling current 

variation. Constant current mode is the operative mode allowing rough surfaces 

investigations reducing the probability of tip crashing. Constant height mode 

requires an atomically flat surface in order to prevent tip crashing. This latter 

technique allows higher lateral resolutions.  

The electron tunnelling cannot be described using classical physics: an electron 

cannot pass through a potential barrier if its energy 𝐸 is smaller than the potential 

𝜙  describing the barrier. On the other hand, by using a quantum mechanics 

approach, is possible to predict the existence of an exponential decay solution 

depending on the length (d) of the barrier describing the electron wave function out 

of the barrier. In a mono-dimensional model (see Figure 20) where the electrons can 

be described by the following wave equation:  

                                                   𝜳(𝒅) = 𝜳(𝟎)𝒆−𝒌𝒅 ( 28 ) 
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where 𝛹(𝑑) is the solution of Schrondinger’s equation outside a solid and 𝛹(0) the 

solution inside the solid, while 𝑘 can be expressed as: 

                                                 𝒌 =
√𝟐𝒎(𝝓 − 𝑬))

ℏ
⁄  ( 29 ) 

where 𝑚 is electron mass, 𝜙 is the electron energy and 𝐸 is the energy barrier. The 

probability to find an electron out of the barrier is thus: 

                                         𝑾(𝒅) = |𝜳(𝒅)|𝟐 = |𝜳(𝟎)|𝟐𝒆−𝟐𝒌𝒅 ( 30 ) 

The probability, i.e. electron density, to find an electron at a distance 𝑑 from the 

barrier, decays exponentially increasing the distance (d).  

 

Figure 20. Scheme of a potential barrier. 

If two identical metals are take very close each other and 𝜙1 = 𝜙2 (Figure 21) the 

current must be the same in each direction.  

 

Figure 21. Scheme of a two metallic surfaces keep in quasi-contact at the same energy 

By appling a potential V to an electron of one of the two metal, tunnelling occurs 

from filled states within in metal to an empty states in metal 2. 

 

Figure 22. Two very close metallic surface.   

The electron flux direction depends on the sign of applied voltage on metal “1”,32 

i.e. when it is negative the electron comes from “filled” states of metal “1” (with 
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lower Fermi energy) to “empty” states of metal “2” where the energy is higher than 

Fermi. The opposite scenario is possible with a positive applied voltage. Depending 

on applied voltage is thus possible study “empty” states or “filled” states namely by 

moving electrons from sample to tip and vice-versa.  

The tunnelling from a metallic tip to a sample constituted by a metallic surface 

can be described using a simple model. The barrier is expressed by using an 

approximated work function obtained as the average of the tip and sample: 

                                                𝜱′ ≈
(𝜱𝒕𝒊𝒑 + 𝜱𝒔𝒂𝒎𝒑𝒍𝒆)

𝟐
⁄  ( 31 ) 

If the applied potential 𝑒𝑉 ≪ 𝛷′,  𝑘 , from Eq. ( 29 ) can be described as: 

                                                        𝒌 ≈  √(𝟐𝒎𝜱′) ℏ⁄     ( 32 ) 

and the tunnelling current can be described as: 

                                              𝑰 ∝  ∑ |𝜳(𝒅)|𝟐𝒆−𝟐𝒌𝒅𝑬𝒇

𝑬𝑵=𝑬𝑭−𝒆𝑽  ( 33 ) 

One can note that by using a low current set point (below 1 pA) the distance 

between tip and sample is larger than the distance obtained by imposing a high 

current constrain (nA). For this reason working with surfaces decorated with 

molecules, a low current-based setup is mandatory to avoid the damaging of the 

molecular sample.  We notice that, in the more complex case of an hybrid molecular-

inorganic sample an STM characterization can provide information about the local 

density of states involved during the tunnelling process thus leading to information 

related to the molecular orbitals of molecules.33  

 

5.7 Sample Preparations 

Here below we briefly describe the main preparation protocols adopted during 

this thesis work. 

5.7.1 Gold substrates 

Polycrystalline gold surfaces have been used as substrate for several molecular 

depositions. These substrates ware obtained using a home-made evaporation 

chamber operating in HV conditions (10-7 mbar). The chamber is equipped with a 



5. Experimental methods 

171 
 

heating filament to anneal the substrates and with a QCM to estimate the deposition 

rate. High purity gold pellets (99.999%) were mounted in molybdenum crucible and 

brought to evaporation temperature, by varying the current flowing through the 

crucible deposition rate is optimised.  

 

Figure 23. STM images of the same surface before (a) and after (b) annealing procedure 
(Bias = 0.4 V, I = 0.4 nA). 

Gold is annealed using a hydrogen flame immediately before the use; the gold 

coated substrates are then rinsed in ethanol and dried under nitrogen to avoid 

contamination.  This annealing process is useful to eliminate surface impurity and to 

have an atomically flat surface (see Figure 23). All the gold substrates employed in 

this work were approximately 120 nm and have been obtained with a deposition rate 

of 1.7 Å/min estimated by the QCM.  

 

5.7.2 Self-Assembling Monolayer 

A chemisorption process allows a high control of the deposition process where 

molecules chemically linked to a surface can form a high order monolayer. When this 

process is carried out using specific conditions this technique take the name of Self-

Assembling Monolayer (SAM) technique34 and permits to assemble molecules on the 

surface with a significant bidimensional ordering. These molecules need a particular 

chemical structure with a linker group specifically selected to promote a chemical 

interaction with a desired surface. In particular we employed sulphur family and 

phosphonic family linker groups to promote the specific chemisorbtion on gold and 

metal-oxide surfaces respectively. All the SAM were incubated using clean glassware 

with standard procedure. All preparation was performed in a portable glove bag to 

avoid the air exposure.  
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5.7.3 Thermal evaporations 

As alternative sample preparation for epitaxial molecular deposition we 

employed thermal sublimation under UHV conditions (down to 10-10 mbar). The 

extreme conditions guarantee a higher quality of the final monolayer deposit respect 

to the SAM preparation even if longer preparation procedure are requested. All the 

thermal sublimations were performed using home-made cells formed by a quartz 

crucible surrounded by a tantalum wire acting as heating component and with a K 

thermocouple to monitor the temperature. The K thermocouple is connected to a 

molybdenum foil inserted inside the crucible in order to guarantee a proper 

measurement of the temperature of the molecular powders. The system is 

assembled on DN20 feedthrough and it can be connect to UHV systems (see Figure 

24). 

By applying a voltage on the tantalum wire, the powder sample can be heated up 

controlling the temperature. The electron flowing process is controlled by using a 

standard power-supply. The film preparation is thus achieved by heating up the 

powder to the sublimation temperature while the surface is directly exposed to the 

incoming flux of molecules.  

 

Figure 24. Scheme of the home made sublimating system. 

The unique limitation of thermal sublimation is the stability of the molecules to 

the thermal treatment. Only a few SMMs are stable enough to be sublimated in UHV, 

as in the case of the TbPc2 system35 and Fe4 star-shaped family36,37,38 SMMs. The big 

advantage of using thermal sublimation respect to the SAM technique is the 

possibility to deposit the same molecule on different substrates, including particular 

surfaces which are not stable in ambient conditions or in solution. With SAM only a 
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monolayer can be achieved but using thermal sublimation there is the possibility of 

controlling the thickness of deposited molecules, from sub-monolayer sample that 

can be investigated by SPM techniques to thick films that can be studied with 

traditional bulk characterization tools. 
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6. Conclusions 
 

In this thesis I summarised the most relevant results I obtained during my PhD 

activity that has been focused on the nanostructuration of several molecular 

systems with relevant magnetic properties. The studied systems belong to the 

families of Nitronyl Nitroxide Radicals (NNRs), Single Molecule Magnets (SMMs), 

Valence Tautomers (VTs) and Spin-crossovers (SCOs). The aim of this wide range 

activity was to explore the possibilities of organising magnetic molecules on solid 

surfaces in order to advance in the preparation of novel devices based on these 

fragile molecules for spintronic purposes. 

A NNR was functionalized with phosphonate linker group to be chemically 

grafted on the LSMO surface, one of the most employed ferromagnetic spin 

injection electrode used in molecular spin valves. By XPS and ToF-SIMS techniques 

we investigated massive phase deposits and monolayers of this system confirming 

the presence of intact NNRs on surface. On the basis of this evidence we proceeded 

toward the realization of a first spin valve based on NNR-LSMO hybrid surface 

evidencing the occurrence of a remarkable magneto-resistance effect on this new 

device. This result indicates that the presence of paramagnetic species at the spin-

injection interface is not detrimental for application purposes thus increasing the 

interest on this type of surface modifications.  

We then moved to the TbPc2 complexes, featuring interesting SMM properties 

and considered as one of the best candidates to alter the spin injection interface in 

molecular spin valve. We demonstrated that magnetic properties of this 

mononuclear system are strongly influenced by the surface and by the deposition 

processes. Our study has been focused on depositing TbPc2 on top of the LSMO and 

on silicon surfaces. The results presented here suggest that no significant 

polarisation of the TbPc2 magnetic moments is induced by the LSMO substrates. On 

the other hand the Si(100) seems to stabilise the oxidised form of the TbPc2 

complex inducing to an enhancement of the magnetic properties of the 

chemisorbed SMM. Magneto-transport experiments on devices embedding TbPc2 

molecules at LSMO interface and a new family of molecular spin valve devices 

based on TbPc2 molecules on silicon are likely to be the focus of this research in the 

near future.  
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The third class of magnetic molecules we explored is constituted by cobalt-

catecholate (Co-cat) complexes featuring a VT behaviour. Deposition of these VT 

systems on surfaces opens the possibility to create an hybrid interface in which is 

possible to modulate molecular properties with temperature and with light 

irradiation. Initially we tested a Co-cat system in the massive phase with 

synchrotron light experiments and the comparison with in house XPS experiments 

validated the latter as a precious tool to investigate thin films of these bistable 

materials. Subsequently we modified the Co-cat system in order to promote their 

chemisorption on Au(111) surface. The temperature induced conversion of a 

monolayer film was demonstrated by in house experiments qualitatively observing 

the behaviour of the massive phase. Additionally synchrotron has been used to 

confirm these data and to be able to demonstrate that also light induced switching 

is achievable at the nanoscale. 

The last series of experiments were carried out on a particular class of Fe(II)-

based  spin-crossover (SCO) system with a “multi-functional” behaviour. In this 

system the SCO conversion can be induced both by temperature as well as by light. 

This system was thermally evaporated on cellulose acetate in HV retaining its 

switchability accordingly to our DC magnetometry investigations. Moreover, by 

reducing the thickness of the evaporated deposit, the thermal and light 

switchability was confirmed via XPS without synchrotron experiments. Our 

characterisation has allowed to address the switchability at the nanoscale thus 

providing also in this case a good strategy to assemble new multifunctional devices 

for spintronic purposes.  

Concluding with this thesis work the panorama of magnetic molecules that can 

be deposited by wet chemistry of via UHV compatible approaches (maintaining 

intact their magnetic properties) has been extended, thus extending the 

playground for developing new hybrid molecular devices opening the way to new 

series of experiments in the field of molecular spintronics.   
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