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Chapter 1

Introduction

A picture is worth a thousand words an old Chinese saying stated. The

forcefulness of this claim has been kept itself over the centuries, and, if pos-

sible, it is reinforced itself nowadays. At the beginning was the painting the

vehicle to describe the reality through pictures instead of ”thousand words”.

In the 19th Century, this role was assumed by the photography and then by

the cinema, which told us about wars, revolutions and daily news until today.

At the beginning of the 21th Century, the ”digital revolution” changed not

only the way in which a picture is acquired, through digital devices as pho-

tocameras, cellphones and tablets (just to name a few), but also the way in

which such contents are stored and given out. Personal Computer, Compact

Disc, USB key are all examples of digital devices capable of storing pictures

in a digital format; in addition to these, new ”unmaterialized” systems able

to save (and share) digital contents are strongly arising: social networks (as

Facebook), websites (Flickr) and Cloud Systems (e.g. Google Drive) allow

to store and to deliver images in an easy way, everywhere and anytime, by

using digital devices connected to a network, as Internet.

Besides this, the availability of low cost software for image editing (as

Adobe Photoshop, GIMP, IrfanView and many others) allowed to common

people to easily modify images, to save them in several different formats and

to generate new contents from several sources, for example by combining

the contents coming from different images or employing Computer Graphics

techniques. In a such complex environment, where images can be stored

and shared on different platforms and subjected to any processing, the old

idea that a picture is something of unchangeable, as an artwork or a picture

1



2 Introduction

of the 19th Century, is overshoot. In our age, a picture in form of digi-

tal image, is something similar to a living organism with its own evolution

over time. The same picture can be stored in many copies, often on dif-

ferent devices, generating different ”organisms”, which usually change their

appearance. Such an evolution is allowed by using image editing tools, by

means of several operations: color and geometrical transformations are the

most common processing people employ to enhance some characteristics of

an image or to make nicer a picture. Moreover, such editing tools allow to

modify the content of an image in a very easy way, so everyone is able to do

it. Canceling a detail, or making some composition of contents, for example

faces of celebrities, are common operations.

In such a dynamic world, several issues arise: the first question is about

the intellectual properties of each entity (or ”organism”) generated from

the same picture. Secondly, since an image could be generated by image

editing tools, is its own content representative of a fact happened in the real

world? Such a question is not a purely intellectual exercise: in a newspaper,

a breaking news website, or even within a court, there are images (or more

in general multimedia content) that stand as proof of something, and are

claimed to be a credible proof. Such questions about the copyright and the

integrity of a digital image highlight the growing interest in reconstructing

the evolution of digital contents.

Scientific community and industrial companies tried to answer to this

questions by using digital watermarking techniques: by inserting an addi-

tional information (watermark) within an image, it is possible to track an

image during its entire evolution. Although this solution appears promis-

ing, it is hard to put into practice. First of all, the watermark has to be

included at the instant in which an image was acquired, but, nowadays, not

every devices are equipped with an embedding watermark system, and also

standardization is far from to be accepted. Secondly, tracing the evolution

of an image would require two types of watermark: the first type would be

robust, that is the watermark has to be recognizable even if the image is

undergone any processing, to track the intellectual property of an image; the

second one would be fragile, that is capable of revealing if a processing has

been applied to an image, in order to understand what kind of mutation an

image suffered.

Along this, in the past decade the attention of the scientific and industrial

communities focused on new passive approach, able to recover the history
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of the image without the need of inserting additional information when an

image has been acquired. This hot research field is named Image Forensics,

which is a multidisciplinary science aiming at acquiring important informa-

tion on the history of digital images, including the acquisition chain, the

coding process, and the editing operators. The extraction of such data can

be exploited for different purposes, one of the most interesting is the verifi-

cation of the trustworthiness of digital data. Image forensic techniques [1]

work on the assumption that digital forgeries, although visually impercepti-

ble, alter the underlying statistics of an image. These statistical properties

can be interpreted as digital fingerprints characterizing the image life-cycle,

during its acquisition and any successive processing. One of the tasks of

Image Forensics is then to verify the presence or the absence of such digital

fingerprints, similar to intrinsic watermarks, in order to uncover traces of

tampering. For this reason, image forensic techniques seem to be an effec-

tive tool to reconstruct the evolution of the images, as it will be shown in

this Thesis.

1.1 Overview and Contribution

Our Thesis is divided in two Parts: the first one deals with the case

in which images evolve keeping its own semantic content. In Chapter 2 we

boost a framework capable of reconstructing the phylogeny of a set of images

subjected to small geometrical, color and compression transformations. In

Chapter 3, we deal with the case of reconstruction of the evolution of a single

image, without knowing who was the parent image. As case of study, we

develop two approaches able to detect if a JPEG image has been saved in the

same format (with an arbitrary quality factor) after a contrast enhancement

has been applied.

In the second Part of this Thesis, we analyze the case in which an image

changes its own semantic content, by the composition of multiple parent

images. In Chapter 4, a framework to reconstruct the genealogy of a set

of images is developed. In the two last chapters, we investigate the case of

unavailable parent images, as done in the first Part. In Chapter 5 we develop

a system to detect and localize, within a given image, the parts of the image

coming from other images. As case of study, we use the artifacts introduced

by Color Filter Array within color digital cameras. In the final Chapter, we

integrate this tool within a general framework able to localize such regions
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by means of a multi-clue analysis.

1.2 Publications List

The research activity related to this Thesis resulted in the following pub-

lications, in chronological order:

� International, peer reviewed journals:

1. P. Ferrara, T. Bianchi, A. De Rosa, A. Piva, ”Image Forgery

Localization via Fine-Grained Analysis of CFA Artifacts,” IEEE

Transactions on Information Forensics and Security, vol. 7, no.

5, Oct. 2012, pp. 1566-1577.

� International, peer reviewed conferences:

1. P. Ferrara, T. Bianchi, A. De Rosa, A. Piva, ”Reverse engi-

neering of double compressed images in the presence of contrast

enhancement,” Proceedings of IEEE 15th International Work-

shop on Multimedia Signal Processing, Pula, Sardinia, Italy, Sept.

2013.

2. A. Oliveira; P. Ferrara; A. De Rosa; A. Piva; M. Barni; S. Gold-

stein; Z. Dias; A. Rocha, ”Multiple Parenting Identification in

Image Phylogeny,” in IEEE International Conference on Image

Processing, Oct. 2014, Paris, France.

The author of this Thesis also contributed to the publications listed below;

they are not discussed in details in the Thesis as they deal with image pro-

cessing applied to biomedical images and automatic texture mapping of 3D

models.

1. A. Pelagotti, P. Ferrara, F. Uccheddu, ”Improving on fast and au-

tomatic texture mapping of 3D dense models,” Proceedings of 18th

International Conference on Virtual Systems and Multimedia, Milan,

Italy, Sept. 2012.

2. F. Uccheddu, A. Pelagotti, P. Ferrara, ”Automatic registration of

multimodal views on large aerial images,” Proceedings of SPIE 8537,

Image and Signal Processing for Remote Sensing XVIII, Edinburgh,

United Kingdom, Sept. 2012.
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3. P. Ferrara, F. Uccheddu, A. Pelagotti, ”Improvements on a MMI-

based method for automatic texture mapping of 3D dense models,” Pro-

ceedings of SPIE 8650, Three-Dimensional Image Processing (3DIP)

and Applications 2013, Burlingame, California, USA, Feb. 2013.

4. A. Pelagotti, P. Ferrara, L. Pescitelli, C. Delfino, G. Gerlini, A. Piva,

L. Borgognoni, ”Multispectral imaging for early diagnosis of melanoma,”

Proceedings of SPIE 8668, Medical Imaging, Lake Buena Vista, Florida,

USA, Feb. 2013.

5. A. Pelagotti, P. Ferrara, L. Pescitelli, G. Gerlini, A. Piva, L. Bor-

gognoni, ”Noninvasive inspection of skin lesions via multispectral imag-

ing,” Proceedings of SPIE 8792, Optical Methods for Inspection, Char-

acterization, and Imaging of Biomaterials, Munich, Germany, May

2013.

1.3 Activity within Research Projects

Most of the research activity presented in this Thesis has been carried out

in the framework of the REWIND project (REVerse engineering of audio-

VIsual content Data), funded by the European Commission under the FP7-

FET programme and expired on June 2014. The goal of the project was

to develop new theories and tools for investigating the digital history of

multimedia contents. Also according to project reviewers opinion, REWIND

reached and in some cases exceeded its objectives, so that it can be regarded

as a successful story we are proud of being part of. Also, it was thanks to the

REWIND project that the collaboration with other Universities flourished,

in particular the Universidade Estadual de Campinas (UNICAMP), leading

to some of the results presented in this Thesis. This participation brought a

significant contribution: we learned the importance of establishing contacts,

sharing knowledge with other partners, and we hopefully advanced in the

ability to focus the efforts toward specific objectives.

Moreover, we participated to the Multispectral Imaging Diagnostics of

Skin Tumors (MIDST) project, funded by Tuscan Regional Health Research

Program 2009. In this project, a new device for early diagnosis of early

melanoma has been developed using a multispectral imaging system, ac-

quiring high spatial and spectral resolution images in the visible and near-

infrared range. The images acquired reveal layering of structures in the
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epidermal and dermal layer. Such images have been correlated with der-

moscopic and histopathological data. Differences between healthy skin and

melanoma lesions have been detected and investigated. Our contribution

was the development of a software for the analysis and the use of multi-

spectral images by dermatologists. The activity in such a project resulted

in several publications and has boosted our knowledge in biomedical image

processing.



Part I

Image Phylogeny: from

parent to child
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Abstract

Images have always played a key role in the transmission of information,

mainly because of their immediacy. Nowadays, digital images can be taken,

processed and distributed in several easy ways, generating more and more

entities, or ”organisms”, of the same picture. In this Part, we deal with the

case in which each picture (which is treated as a ”specie”) evolves keeping

its semantic content. Firstly, we show as Image Phylogeny is able to trace

back to the evolution of a picture, given a set of images, by means of a

suitable dissimilarity measure between images and a reconstruction graph

algorithm. Then, we study the case in which it is possible to reconstruct the

evolutionary history of an image, without the availability of other organisms

of the same specie. Due to the large amount of combinations of possible

ways in which an image can evolve, we propose a case study, wherein two

different approaches to trace back the evolution of a JPEG image subjected

to a linear contrast enhancement and a further compression.
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Chapter 2

Image Phylogeny

Given a set of semantically similar images obtained from a Near-Duplication

detector, Image Phylogeny is the problem of reconstructing the structure

that represents the history of generation of these images. Typical Image

Phylogeny approaches break the problem into two steps: the estimation of

the dissimilarity between each pair of images (it is not symmetrical, thus

it is not a metric), and the reconstruction algorithm. In this Chapter, we

propose new alternatives to the standard dissimilarity calculation formula-

tion for image phylogeny. The new formulations explore a different family

of color adjustment, local gradient, and mutual information.

2.1 Introduction

Image Phylogeny has been developed recently [2,3] in an attempt to find

the relationship structure between a set of near-duplicates images [4]. We

model these relationships as a tree where the root is the patient zero (the

original image), where the edges represent “father-son” relationships, and

where the leaves of the tree represent “terminal” images that have more

modifications than their ancestors. In some cases, the near-duplicate set did

not come from a single original document, they are images with the same

semantic content but generated either from different sources or from the

same source but at distinct time instances. In these cases, the set of near-

duplicates can be represented by a forest correlating semantically similar

images [5, 6].

11



12 Image Phylogeny

Dias et al. [2, 3] formally defined the problem of Image Phylogeny fol-

lowing two steps: the calculation of the dissimilarity between each pair of

near-duplicate images and the reconstruction of the phylogeny tree.

Thus far, researchers mainly focused on proposing different phylogeny

reconstruction approaches [2,3,5–8] often using a standard methodology for

dissimilarity calculation as originally proposed by [3]. This dissimilarity

calculation involves the transformation estimation applied for mapping the

source image onto the target image’s domain followed by the their compar-

ison in a point-wise fashion. As the transformation estimation is not exact,

the point-wise comparison method may be affected by artifacts generated in

these processes.

Considering the dissimilarity calculation effects on the result of the final

phylogeny reconstruction [3], here we introduce alternative methods to per-

form the dissimilarity calculation between images. We introduce a better

family of color transformations, and rather than comparing pixels directly

after mapping, we calculate the dissimilarity on the image gradients, rather

than directly on the color domain, using the mutual information between

them.

2.2 Dissimilarity calculation for Image Phy-

logeny

Dias et al. [2,3] formalized the image phylogeny problem, separating the

problem in two basic steps: The dissimilarity calculation between images

and the reconstruction of the phylogeny forest.

About the dissimilarity calculation, let T be a family of image transfor-

mations, and T be a transformation such that T ∈ T . Given two images Is
(source) and It (target), the dissimilarity function d between them is defined

as the lowest value of dIs,It , such that

d(Is, It) = min
T−→
β

|It − T−→β (Is)| point-wise comparison L, (2.1)

for all possible values of the parameter β in T . Equation 2.1 calculates the

dissimilarity between the best transformation mapping Is onto It, according

to the family of transformations T and It. Then, the comparison between

the images can be performed by any point-wise comparison method L.
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For the estimating of the transformation T used to transform Is in It,

the authores follow three basic steps:

1. Image Registration: first, we find interest points in each pair of

images, using SURF [9], which will be used to estimate warping and

cropping parameters robustly using RANSAC [10];

2. Color matching: the pixel color normalization parameters are cal-

culated using the color transfer technique based in mean and standard

deviation, proposed in [11];

3. Compression matching: the image Is is compressed with the same

JPEG compression parameters as the image It.

As a final step, both images are uncompressed and compared pixel-by-

pixel according to the minimum squared error (MSE) metric.

This dissimilarity is calculated for each pair of images. After this, we

have a dissimilarity matrix Mn×n, where n is the number of near-duplicates

and each region of the matrix represents the dissimilarity between one pair

of images. Note that the matrix M is asymmetric, once that the dissim-

ilarity d(Ii, Ij) 6= d(Ij , Ii),∀i, j = 1, 2, ..., n|i 6= j. After calculating this

dissimilarity matrix, we perform an algorithm for reconstruct the phylogeny

forest. There are several approaches in the literature based on graphs algo-

rithm [2,3,5,8], but these algorithms are not the main focus of this Chapter.

2.3 Dissimilarity Calculation

We now turn our attention to new approaches for improving the dissim-

ilarity calculation.

2.3.1 Gradient Comparison

Image gradients describe the value and direction of pixel intensity vari-

ation. They can be used to extract different information about the image,

such as texture and location of edges. Here se use the Sobel [12] gradient

estimator [13].

As contrast enhancement and color transformations are ofter used when

creating near duplicates, which directly affects the gradients of the image,

this becomes an important information to add to the dissimilarity calcula-

tion. By comparing the gradients of transformed image I ′s = Tβ(Is) and It,
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it is possible to compare both the intensity values (encoded in the gradient),

as well as their variation throughout the image.

While the image comparison metric L stays the same, we first compute

the gradients in the horizontal and vertical directions, by convolving the

images to be compared with the 3×3 Sobel kernels Sh (horizontal direction)

and Sv (vertical direction). The R, G and B channels of I ′s and It are

treated separately resulting in a total of six gradients (two directions per

color channel). The image comparison metric L is applied to each respective

pair of gradient images of I ′s and It, and the mean of the six values obtained

in each position is taken as the final dissimilarity value.

2.3.2 Mutual Information Comparison

In Information Theory, mutual information (MI) is a measure of statis-

tical dependency of two random variables, which represents the amount of

information that one random variable contains about the other [14]. The

mutual information between two random variables X and Y is given by:

MI(X,Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ), (2.2)

where H(X) = −Ex[log(P (X))] is the entropy (i.e., the expected value of

the information associated to a random variable) of X and P (X) is the

probability distribution of X. In the case of discrete random variables, MI

is defined as:

MI(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)(p(y)

)
, (2.3)

where p(x, y) is the joint Probability Distribution Function (PDF) [15] of

X and Y , and both p(x) and p(y) are the marginal PDFs of X and Y ,

respectively.

MI has been widely employed in several image applications, such as

gender identification [16], multi-modal data fusion [17], feature selection [18],

and in image registration problems [19, 20] as a similarity measure (or cost

function) to maximize when aligning two images (or volumes).

Applying MI to images means that the two random variables are the

image X = I ′s and the image Y = It, x and y are the value of two pixels

belonging to I ′s and It, respectively. Thus, p(x, y) is the joint PDF of the

images I ′s and It, evaluated for the values (x, y), where x, y ∈ [0 . . . 255].
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Figure 2.1: Bi-dimensional representation of two joint histograms. White pix-
els mean zero values while the other pixels represent values greater
than zero (the images were inverted for viewing purposes). Left, we
show the joint histogram of two (gray-scale) images perfectly aligned.
Right, we show the joint histogram of two slightly misaligned images.

Clearly, the previous definitions involve the knowledge of the PDFs of

pixels and, in particular, the joint PDF p(x, y), from which it is easy to

obtain p(x) and p(y) by marginalization. In general, such joint PDF is not

a priori known, and needs to be estimated. Several methods [21] have been

conceived to estimate the PDF of one or more random variables from a finite

set of observations, such as the approximation of the joint PDF by the joint

histogram

p̂(x, y) =
h(x, y)∑
x,y h(x, y)

, (2.4)

where h(x, y) is the joint histogram of the images X and Y . MI has the

following property: given two images I ′s and It, MI(I ′s, It) is bounded

as 0 ≤ MI(I ′s, It) ≤ min(H(I ′s), H(It)). It can be demonstrated that

MI is maximum when the two images are completely aligned (in terms of

geometrical, color and compression transformation). Figure 2.1(a) shows a

perfectly aligned case.

If we assume a good transformation T−→
β

that maps an image Is onto an

image It, the mutual information MI(T−→
β

(Is), It) is maximum. Moreover,

since each transformation is not completely reversible, if we apply the inverse

transformation T−1
−→
β

to It to obtain Is, their joint histogram is similar to the
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right plot of Figure 2.1.

2.3.3 Gradient Estimation and Mutual Information Com-

bined

Here we consider the combination of the gradient information and the

mutual information. First, we calculate the gradient of the images I ′s and

It as descried on Section 2.3.1. After this, we compare each correspondent

gradient of both images with mutual information, instead of using the im-

age comparison metric L. The final dissimilarity is the average of mutual

information values for each gradient image.

With this approach, we aim at better capturing the information about

variation in certain directions of the image (gradient information), as well as

at seeking to avoid effects caused by slight misalignments during the mapping

(mutual information estimation). This method also takes into consideration

the amount of texture information preserved between two near duplicates

for calculating the dissimilarity.

Unfortunately, the combined method slightly increases the computational

cost of the dissimilarity calculation, once we need to estimate the mutual

information six times after the gradient calculation. However, this method

provides better reconstruction results as we shall discuss in Section 2.4.4.

2.3.4 Histogram Color Matching

As previously discussed, the second step of the transformation estimation

T is mapping the color space of the source image Is onto the target’s image

It color space, by normalizing each channel of Is by the mean and standard

deviation of It’s corresponding channel [11]. This method, although sim-

plistic, works reasonably well, specially when the color changes are minor.

However, it leads to some problems when the transformations applied to the

image when generating a child are stronger, specially in the case of contrast

changes, which affects the distribution of pixel intensities throughout the

image.

We propose to use the histogram matching technique [22] for color esti-

mation between images.

To match the histograms of two images Is and It, we compute their his-

tograms, Hs and Ht. Then we compute the Cumulative Distribution Func-

tion (CDF) [15]. For a gray-scale image F , with L gray levels, the gray level



2.4 Experiments and Validation 17

i has the probability of

pF (i) =
ni
n
, 0 ≤ i < L (2.5)

where n is the number of pixels in the image and ni is the number of pixels

of gray value i in the histogram of the image. The CDFs of an image F is

CF (i) =

i∑
k=0

pF (k). (2.6)

With Cs and Ct, the CDFs for Is and It, we find a transformation M that

maps Cs onto Ct. For each gray level i of Is, finding the gray level j of It
whose Ct(j) is the closest in Ct to Cs(i). Once the mapping is found, each

pixel with gray level i in Is has its value replaced by j. We treat each channel

of these images independently, matching their histograms individually.

2.4 Experiments and Validation

In this section, we validate the proposed methods and compare them

to the state-of-the-art MSE method for the dissimilarity calculation used

in [2, 3, 5–8].

2.4.1 Phylogeny reconstruction

After calculating the dissimilarity matrix, we use an algorithm for recon-

structing the phylogeny forest. Here, we use the Extended Automatic Opti-

mum Branching (E-AOB) algorithm proposed by Costa et al. [6] currently

the state-of-the-art for phylogeny reconstruction. This method is based on

an optimum branching algorithm [23]. We use the best parameter reported

by the authors (γ = 2.0).

2.4.2 Dataset

Here, we used the set of near-duplicate images from [6] – freely avail-

able. This set comprises images randomly selected from a set of 20 different

scenes generated by 10 different acquisition cameras, 10 images per cam-

era, 10 different tree topologies (i.e., the form of the trees in a forest) and

10 random variations of parameters for creating the near-duplicate images.
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Figure 2.2: Results of forest reconstruction in multiple cameras (MC) and one
camera (OC) scenarios considering the metrics Roots, Edges and
Ancestry. Similar results are obtained for the Leaves metric.
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We considered 2,000 forests of images generated by a single camera (Sce-

nario One Camera – OC) and 2,000 forests generated by multiple cameras

(Scenario Multi Camera – MC). The forests vary in the number of trees

(size) |F | = {1..10}. The dataset has 2× 2, 000× 10 = 40, 000 test cases.

The image transformations used to create the near-duplicates are the

same used in [3, 6]: re-sampling, cropping, affine warping, brightness and

contrast adjustment, and lossy compression using the standard JPEG algo-

rithm.

2.4.3 Evaluation metrics

For a better assessment of the proposed methods, we consider scenarios

in which the ground truth is available. We used the metrics introduced in [5]

in the experiments: Roots, Edges, Leaves and Ancestry given by:

EM(IPFR, IPFG) =
SR ∩ SG
SR ∪ SG

(2.7)

where EM is the evaluation metric, IPFR is the reconstructed forest with

elements represented by SR, and IPFG is the forest ground truth with el-

ements SG. For instance, when considering the Edges metric, we calculate

the intersection of the set of reconstructed edges with the set of edges in the

ground truth normalized all edges present in both groups.

2.4.4 Results and discussion

In this section, we analyze the impacts of calculating the dissimilarities

using image gradients instead of image intensities, the replacement of the

point-wise comparison metric with a mutual information dissimilarity cal-

culation, and the incorporation of color matching for better representing

the mapping of a source image onto a target image before calculating the

dissimilarity.

Figure 2.2 shows the results for the different approaches considered herein

for calculating the dissimilarities. In all cases, the mapping of one source im-

age onto a target image is already performed as discussed in Section 2.3. The

phylogeny reconstruction part uses the E-AOB algorithm for all methods.

The first dissimilarity calculation considered is the MSE, the state of the art,

which compares two images point-wise using the pixel intensities. The pro-

posed modifications are gradient estimation (GRAD), which still compares
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the images point-wise but using image gradients instead of pixel intensities;

mutual information (MINF), which replaces the point-wise comparison using

pixel intensities with the mutual information calculation of pixel intensities;

gradient estimation plus comparison with mutual information (GRMI), in-

corporating the calculus of dissimilarity using mutual information of image

gradients; and, finally, and histogram color matching plus gradient estima-

tion with mutual information (HGMI), extending the GRMI to incorporate

a better color matching approach before comparison.

First of all, the dissimilarity calculation does not benefit directly from the

replacement of point-wise pixel intensity comparison by a point-wise compar-

ison of image gradients as the results show MSE outperforming GRAD for

OC and MC scenarios. The gradient itself only captures directionality vari-

ations and small misaligments when comparing two gradient images affect

the results more than slight misalignments in the pixel intensities.

If we change the point-wise comparison method to mutual information

but still use the pixel intensities, we have MINF outperforming MSE for

the MC case. With MINF, small misalignments are not as important as

for the GRAD case. One interesting behavior, however, is the decrease in

performance for the OC case (Root and Ancestry metrics). In the OC case,

as all of the images come from the same camera, the color matching for such

images should be more refined than just the mapping using the mean and

standard deviation to differentiate an image and its descendant. A point-

wise comparison, in this case, is more effective for small differences (MSE

method).

The results improve when combining the gradient calculation with mu-

tual information (GRMI). The first reason is that, by not comparing the

intensities, the color information artifacts are not as strong. Second, the

comparison is not done in a point-wise fashion but rather, in a probability

distribution-like form better capturing the different variations in the gradi-

ent images as well as accounting for slight misalignments. Finally, solving

the color matching problem when using MINF, we end up combining GR +

MI + Color matching and creating the final method HGMI. As we can see,

HGMI outperforms the MSE baseline for all cases, due to the fact that, with

this approach, we can reduce the dissimilarity errors by better matching the

color transformations involved in the process of near-duplicate generation

and by comparing the images using gradients instead of pixel intensities and

in a distribution-like form instead of a point-wise one.
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According to a Wilcoxon signed-rank test [24], the best proposed ap-

proach, HGMI, is statistically better than the state-of-the-art MSE method

for all cases and metrics, with 95% of confidence.

To compare a pair of typical images (each with about one megapixel),

including the time to register both images, MSE takes about 0.6s, GRAD

takes 0.8s, and MINF takes 0.7s. The best performing methods GRMI and

HGMI take both about 1.5s. The experiments were performed in a machine

with an Intel Xeon E5645 processor, 2.40GHz, 16GB of memory, and Ubuntu

12.04.5 LTS.

2.5 Conclusion

In this Chapter, we presented approaches for improving the dissimilarity

calculation between images for the problem of image phylogeny forest recon-

struction. Our approaches were based on gradient comparison and mutual

information estimation. We also studied the incorporation of a more robust

color matching approach for better estimating the involved changes during

the generation of near duplicates.

This Chapter shows that comparing distributions is better than direct

point-wise comparisons, it shows that gradient distributions are better color

distributions, and it also shows that a more powerful family of color trans-

formations enables better tree reconstruction at the end of the pipeline. In

the supplemental material we provide direct comparison, using the Wilcoxon

signed-rank test, between the GRMI and all combinations of these methods.

For future work, we intent to investigate other ways to calculate the dis-

similarity between images. We can investigate the use of mutual information

for estimating the step of image registration [20]. Finally, we will investi-

gate the use the impacts of the new dissimilarity calculations to phylogeny

estimation in different medias such as video and text.
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Chapter 3

Blind parent reconstruction: a

case of study.

Two forensic techniques for the reverse engineering of a chain composed

by a double JPEG compression interleaved by a linear contrast enhance-

ment are presented in this Chapter. The first approach is based on the well

known peak-to-valley behavior of the histogram of double-quantized DCT

coefficients, while the second approach is based on the distribution of the

first digit of DCT coefficients. These methods have been extended to the

study of the considered processing chain, for both the detection of the chain

and the estimation of its parameters. More specifically, the proposed ap-

proaches provide an estimation of the quality factor of the previous JPEG

compression and the amount of linear contrast enhancement.

3.1 Introduction

A variety of tools have been proposed so far for the analysis of fingerprints

left by specific processing, leading to the detection of resampling [25,26], the

detection of contrast enhancement [27], the tracing of compression history

[28–30], just to name a few. A common characteristic of most of the proposed

works is to consider a single processing step at a time; on the contrary, in

realistic scenarios a chain of such operations is employed to obtain the final

processed image. Thus, to go one step further, the forensic analysis should

consider the identification of operators in the presence of multiple processing

steps. As an example in this sense, several methods have been proposed to

23
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study the double JPEG compression that can be seen as a chain composed by

two subsequent coding [28–30]. But if we consider heterogeneous chain, i.e.

composed by two different processing operators, only a small effort has been

made so far, for example in [31], where authors propose to analyze double

JPEG compressed images when image resizing is applied between the two

compressions, and provide a joint estimation of both the resize factor and

the quality factor of the previous JPEG compression.

In this Chapter, we consider a chain composed by double JPEG compres-

sion interleaved by a linear contrast enhancement. A wide literature has been

written about double compression (as mentioned previously) or contrast en-

hancement artifacts, but these fingerprints were treated separately. Usually,

contrast enhancement detectors are based on the analysis of histograms of

pixels as in [27, 32, 33], whose performance dramatically decreases when a

lossy compression is subsequently applied.

Here, we assume the following processing chain: the luminance Y of a

JPEG color image with quality QF1 is linearly stretched and then re-saved

in another JPEG color image with quality QF2. We propose two approaches,

borrowed by double JPEG compression detection and extended for the iden-

tification of the considered chain; furthermore, assuming QF2 to be known,

the methods provide the joint estimation of the chain operator parameters,

i.e. the first quality QF1 and the amount of contrast enhancement.

3.2 Proposed Approaches

In [28, 30, 34], the effects of double compression on DCT coefficients are

well explained and exploited to detect double or single JPEG compression,

to localize forged regions, or for steganalysis [35, 36]. Briefly, double com-

pression involves a double quantization of DCT coefficients. Each quanti-

zation introduced a periodic peak-to-valley pattern across DCT coefficients

histograms, due to the rounding to integers.

If we denote ckl a generic unquantized coefficient, and qkl1 and qkl2 (where

k, l = 1, . . . 8) the quantization matrix of the first and the second compres-

sion, respectively, the quantized coefficient ckl1 is

ckl1 = Qqkl1
(ckl) =

[
ckl

qkl1

]
(3.1)
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and the corresponding dequantized dkl1 is

dkl1 = Q−1
qkl1

(Qqkl1
(ckl)) =

[
ckl

qkl1

]
qkl1 . (3.2)

Now we introduce the linear contrast enhancement as a linear mapping

of pixel values, namely:

Yout = αYin + β. (3.3)

When a Discrete Cosine Transform (DCT) is applied to a linear contrast

enhanced grayscale image (as could be the luminance Y of a color image)

each DCT coefficient is linearly mapped into another value by the same

parameters α and β, due to the linearity of the transform, apart from an

error term due to the rounding to 8-bit in pixel domain. In order to simplify

the model, we can assume that the processing depends on α only, and thus

we have β = 0, and we can neglect the effects of clipping to the range [0, 255].

By applying the enhancement considering the relation (3.3) with β = 0, and

introducing an additive noise term ε taking into account the rounding to

8-bit in pixel domain, we have that the DCT coefficient after the processing

will become:

d
′kl
1 = α

[
ckl

qkl1

]
qkl1 + ε, (3.4)

and after the second quantization we will obtain the double quantized coef-

ficient:

ckl2 =

[(
α

[
ckl

qkl1

]
qkl1 + ε

)
1

qkl2

]
. (3.5)

3.2.1 DCT Coefficients Histograms

The periodic pattern of the histogram of doubly compressed DCT coef-

ficients can be modeled as in [34] by computing the number n(ckl2 ) of bins

of the original histogram contributing to bin ckl2 in the doubly compressed

histogram, that in this case is given by

n(ckl2 ) =qkl1

{⌊ 1

αqkl1

(
qkl2

(
ckl2 +

1

2

)
− ε
)⌋

−
⌈ 1

αqkl1

(
qkl2

(
ckl2 −

1

2

)
− ε
)⌉

+ 1

} (3.6)
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It is possible to demonstrate that n(ckl2 ) is periodic with a period which

can be computed as follows. Let us consider the following function

fa(x) = bx+ ac − dx− ae (3.7)

where a is a real number. It can be easily demonstrated that the period of

fa(x) is 1, for all real a. It is also easy to show that fa(x− b) has still period

equal to 1, whereas the scaled version

fa

(
x

γ

)
=
⌊x
γ

+ a
⌋
−
⌈x
γ
− a
⌉

(3.8)

has period equal to γ. By using the previous properties, we can write n(ckl2 )

using fa as

n(ckl2 ) = qkl1

{
fa

(
qkl2

αqkl1

ckl2 −
ε

αqkl1

)}
(3.9)

where a =
qkl2

2αqkl1
and the period is, as for the function (3.8),

τ
′kl = γ =

αqkl1

qkl2

(3.10)

The result can be seen as a generalization of that found in [34], with the

difference related to the presence of α and ε. In particular, we can observe

that the periodicity of the function n(ckl2 ) depends on the value α, while it is

not modified by ε. The period could not be an integer but a rational number.

We can now describe a method to detect the presence of such a chain

leveraging on the previous analysis. To do this, we need to know the dis-

tribution of DCT coefficients histograms of an image in the presence and in

the absence of double compression. Let us suppose that we are observing

a double compressed image; as in [28, 37], a method to obtain a histogram

of DCT coefficients without periodical pattern from a doubly compressed

image is to compute the DCT coefficients by misaligning the grid of 8 × 8

blocks employed in JPEG standard. In such a way, we can observe two his-

tograms for DCT coefficients at frequency kl: the first one, which we name

h(ckl2 ), is obtained directly from the image, whereas the second one, which

we name hs(c
kl
2 ), is obtained as explained before and it represents the hy-

pothesis of absence of a double compression (smoothed histogram). From

these histograms, we estimate the probability density functions (pdf) of a
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given DCT coefficient, p(ckl2 ) and ps(c
kl
2 ), respectively, as in [37]. Ideally,

p(ckl2 ) = ps(c
kl
2 ) in a single compressed image, whereas p(ckl2 ) 6= ps(c

kl
2 ) in

double compressed images, because of the presence of a periodic pattern in

p(ckl2 ) that does not appear in ps(c
kl
2 ).

We propose to use two different measures of similarity between two prob-

ability distributions: the Kullback-Liebler divergence (DKL) [38] and the

Kolmogorov-Smirnov distance (DKS) [29]. These measure are defined for

each DCT coefficient histogram of Y . In order to obtain a scalar value, we

assume to sum the Kullback-Leibler distances of each DCT histogram, as for

the Kolmogorov-Smirnov divergences.

If the image is considered processed by the supposed chain, to estimate

the first compression quality QF1 and α is an interesting task from a research

perspective. In [39], a Maximum Likelihood Estimation (MLE) approach has

been proposed to detect JPEG compression in raster bitmap format images

and to estimate the quantizer used. Although MLE approach may seem the

trivial way to estimate the triplet (QF1, QF2, α), the computational cost of

this approach grows considerably by increasing the number of parameters to

be estimated.

Therefore, as in [40], [41] and others, we employ a Discrete Fourier Trans-

form based analysis of DCT histograms. Before this, we pre-process p(ckl2 )

in order to reduce the effects of low-pass frequencies due to the shape of the

histograms: the spectrum is then calculated on pn(ckl2 ) = p(ckl2 ) − ps(ckl2 ) .

After that, the period τ̂
′kl is estimated by finding the peak with maximum

amplitude through a smooth interpolation [31], in order to achieve a better

estimate of the frequency F = 1/τ̂kl.

An exhaustive search is performed over all possible α and QF1, by dis-

cretizing them, to minimize the distance between the theoretical period τ
′kl,

computed according to Equation (3.10), and the estimated period τ̂
′kl. This

distance is the median value of residues defined as

ρkl =

(
τ̂
′kl − τ ′kl

τ ′kl

)2

(3.11)

for a subset nc of DCT coefficients ckl2 . The choice of working on a subset of

coefficients is due to fact that histograms with a small support don’t show

detectable peaks in their spectra, as shown in [40]. The median value is

employed to bound the effects of ambiguities: it can be easily verified that

it is well possible that different (α,QF1) tuples result in equivalent periodic
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artifacts in the histogram of a given coefficient. As we have a set nc of DCT

coefficients, these ambiguities can be present on a number of coefficients

na ≤ nc. In all those cases in which na ≤ bnc/2c, the distance doesn’t take

into account errors due to the ambiguities.

In our analysis we have to take into account that when the period τ
′kl is

greater than 2, we observe in the spectrum the fundamental harmonic with

frequency F = 1/τ
′kl. Conversely, when 1 < τ

′kl < 2, we don’t observe F ,

but the aliased frequency F = 1 − 1/τ
′kl. Finally, when τ

′kl < 1, we can

not observe any fundamental period, because the histogram can be viewed

as a sampled signal, where the sample period is 1. However, high order

harmonics can still be observed if they are greater than 1, but the peaks

associated with them could have undetectable amplitude. Because we do

not know if the theoretical period is less or greater than 2, we test both

τ
′kl = 1/F and τ

′kl = 1/(1 − F ) for each DCT coefficient separately, and

the period giving lower residue is taken into account in (3.11).

3.2.2 Mode Based First Digit Features

In [42], it is observed that the distribution of the first digit of quantized

DCT coefficients can be used to distinguish singly and doubly JPEG com-

pressed images. Briefly, when an image is singly compressed, it is observed

that the magnitudes of DCT coefficients approximately follow an exponen-

tial distribution. Hence, the distribution of the first digit of quantized DCT

coefficients is well modeled by the generalized Benford’s law [42]. Instead,

in case of double compression, the distribution of the first digit is usually

perturbed and it violates the generalized Benford’s law.

In [43], the authors introduce a new feature based on the distribution

of the first digit of DCT coefficients for each separate DCT frequency, or

mode. The features are obtained by measuring the frequencies of the 9

possible nonzero values of the first digit for each of the first 20 DCT modes.

The resulting 9×20 = 180 frequencies form a vector of features named Mode

Based First Digit Features (MBFDF).

The approach based on Benford’s law can be extended also to images

modified by contrast enhancement. Even if contrast enhancement is ex-

pected to modify the distribution of the first digit, the resulting distribution

will still violate the generalized Benford’s law, so that MBFDF can still be

used to distinguish singly and doubly compressed images. Moreover, differ-

ent parameters of the contrast enhancement operator will produce different
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patterns on the distribution of the first digit of DCT coefficients. Hence,

MBFDF can also be used to discriminate different parameters of the pro-

cessing chain.

Similarly to [43], in order to distinguish enhanced and recompressed im-

ages from singly compressed images, we propose to apply a two-class classifi-

cation to MBFDF according to Fisher’s linear discriminant analysis (LDA).

The parameters of the processing chain, i.e., QF1 and α, can be estimated by

using a “one-against-one” multi-classification strategy, where each possible

combination of values for QF1, α is considered as a different class. Given

NC possible classes, we construct NC(NC − 1)/2 two-class LDA classifiers,

where the classifiers consider every possible combination of two classes. Each

classifier “votes” for its winning class, and the class obtaining more votes

corresponds to the estimated values QF1, α.

The above approach works well in presence of a finite set of possible

parameters, like in the case of QF1. However, for continuous valued parame-

ters, like α, it requires a quantization of the parameter space, with a proper

choice of the quantization step, since a fine search of parameter values may

be impractical due to the fact that the number of required classifiers grows

quadratically with the number of parameter values.

3.3 Experimental results

In this section, we show the results about the detection of the considered

processing a chain, i.e., we verify the presence/absence of double compres-

sion interleaved by contrast enhancement, and about the estimation of the

parameters which characterize it. The proposed algorithms have been tested

on a dataset composed by 300 TIFF images coming from 3 different cameras

(Nikon D90, Canon 5D, Panasonic DMC-G2 ), cropped to 1024×1024 pixels,

and representing landscapes, buildings and people, avoiding uniform content

and with different degrees of texture. We fix α ∈ {1.05, 1.15, 1.35, 1.55, 1.75}.
For each α, we generate two datasets: the first dataset contains TIFF images

which are first enhanced and then compressed (i.e. single compression sce-

nario) with a quality factor QF2, whereas the second dataset contains TIFF

images compressed with a quality factor QF1, whose luminance is enhanced,

and then re-compressed with a quality factor QF2 (i.e. double compression

scenario). We compress images by applying the Matlab function imwrite at

different quality factors chosen in [50, 55, . . . , 100], for each α. This policy is
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then repeated for images with size 256× 256 and 64× 64.
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Figure 3.1: AUCs of KS and KL metrics, evaluated for different number of coeffi-
cients, by starting from the DC coefficient and obtained by averaging
over all possible α, QF1 and QF2.

3.3.1 Detection

To compare histogram based features (asDKL andDKS ones) and MBFDF

in detecting the presence of a double compression, we evaluate the perfor-

mance of detectors by measuring the true positive rate and the false positive

rate. The overall performance is evaluated by plotting their receiver operating

characteristic (ROC) curves, obtained by thresholding the distributions of

each feature in both hypotheses using a varying threshold value, and record-

ing the corresponding value of true positive and false positive rate. Finally,

the area under the ROC curve (AUC) is used as a scalar parameter: an AUC

close to one indicates good detection performance, whereas an AUC close to

0.5 indicates that the detector has no better performance than choosing at

random.

First of all, we evaluated the best performance between DKL and DKS ,

by varying the number of coefficients nc. As shown in Figure 3.1, the best

detection capability, in terms of AUC, is recorded by employing DKS with

the first nc = 9 DCT coefficients; we then decided to fix this configuration

for the successive detection analysis.



3.3 Experimental results 31

QF1/QF2 50 60 70 80 90 100

50 0.95 1.00 1.00 1.00 1.00 1.00
60 0.91 0.95 1.00 1.00 1.00 1.00
70 0.91 0.94 0.96 1.00 1.00 1.00
80 0.98 0.98 0.98 0.96 1.00 1.00
90 0.83 0.89 0.96 0.98 0.93 0.99
100 0.5 0.5 0.51 0.55 0.69 0.65

Table 3.1: Detection performance: AUC values of KS metrics for a subset of pairs
(QF1, QF2) with QF1, QF2 = {50, 60, 70, 80, 90, 100}, by fixing nc = 9
and averaging over all possible values of α.

QF1/QF2 50 60 70 80 90 100

50 0.95 1.00 1.00 1.00 1.00 1.00
60 0.99 0.97 1.00 1.00 1.00 1.00
70 1.00 0.99 0.97 1.00 1.00 1.00
80 1.00 0.99 1.00 0.95 1.00 1.00
90 0.90 0.98 0.98 1.00 0.92 1.00
100 0.58 0.60 0.63 0.66 0.82 0.82

Table 3.2: Detection performance: AUC values of MBFDF for a subset of pairs
(QF1, QF2) with QF1, QF2 = {50, 60, 70, 80, 90, 100}, by mediating
over all possible values of α.

To compare histograms based versus MBFDF approach, AUC values have

been evaluated for different couples (QF1, QF2), by mediating over all possi-

ble values of α. The results are reported in Table 3.1 and Table 3.2. For lack

of space, only the subset {50, 60, 70, 80, 90, 100} of all couples (QF1, QF2)

is shown. When QF1 ≤ QF2, both approaches have a very high capability

of detecting double compression, but when QF1 > QF2, MBFDF method

clearly outperforms histogram based ones.

3.3.2 Estimation

We then evaluate the ability of the two approaches to estimate the pa-

rameter α and the first compression quality factor. In order to allow a

fair comparison between the proposed approaches, we have decided to dis-

cretize α = [1, 2] with stepsize 0.05 and QF1, QF2 ∈ {50, 60, 70, 80, 90, 100}.
Whereas the histogram based approach makes an exhaustive search over all
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Figure 3.2: Accuracy of classification of QF1, for different QF2 and α values.
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Figure 3.3: Estimation of α: RMSE for different QF1 and QF2.
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Figure 3.4: Estimation of α values: RMSE for different fixed couples (QF1, QF2).

couples (QF1, α), as explained in 3.2.1, in the MBFDF based approach we

trained a LDA classifier over all possible couples (QF1, α), so that NC =

21×6 = 126, and the results are obtained by testing a subset of α, as in 3.3,

i.e. α ∈ {1.05, 1.15, 1.35, 1.55, 1.75}. From preliminary tests on histograms

based approach, we fixed nc = 5.

To evaluate estimation accuracy of QF1, by fixing QF2 and α, we define

a confusion matrix for QF1 as a matrix where each column of the matrix

represents the instances in a predicted class, while each row represents the

instances in an actual class. By normalizing by the total number of instances,

we obtain the percentage of decisions of each couple of classes. On the main

diagonal, we have the percentage of correct decisions, for each value of QF1.

By averaging the percentage of correct decision over all values of QF1 (i.e.

values on the main diagonal), we obtain an average performance value of

the classification of QF1, for each couple (QF2, α). We name this quantity

accuracy of the estimate of QF1.

To evaluate the estimation of α, we adopt the root mean square error

(RMSE): let α̂ij with i = 1, . . . , N a set of estimated values of αj , where

j = 1, . . . , Nα (i.e. Nα = 1 when estimating a single value of α, otherwise

Nα = 5, equal to the number of tested α), we define the RMSE as:

RMSE =

√√√√ 1

Nα ·N

Nα∑
j=1

N∑
i=1

(α̂ij − αj)2 (3.12)
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DCT Histograms MBFDF
Dimension 1024 256 64 1024 256 64

mean AUC 0.90 0.83 0.72 0.95 0.91 0.85
Accuracy of QF1 0.52 0.51 0.45 0.86 0.77 0.66

RMSE of α 0.23 0.24 0.26 0.07 0.07 0.06

Table 3.3: Performances of the proposed approaches for different image sizes
(1024× 1024, 256× 256 and 64× 64).

The first comparison is about the accuracy of the classification of QF1,

by varying α and for different QF2. The results shown in Figure 3.2, aver-

aged over all QF1 values, demonstrate that MBFDF based approach exhibits

better performance than the histogram based one.

The second comparison is about the RMSE of the estimate of α, for each

couple (QF1, QF2). The results presented in Figure 3.3, averaged over all

α values, show again that MBFDF based approach has better performance

than the histogram based one: the latter method shows performance almost

comparable to the first one only when the second compression is greater

than 90%, but it decreases for lower values of QF2, whereas the perfor-

mance of MBFDF remains good. To better understand this latter result,

we evaluated the RMSE for different values of α, by fixing some couples

of compression quality (QF1, QF2). It is possible to observe in Figure 3.4

that the histogram based approach gives results almost comparable to those

obtained by MBFDF approach when QF2 ≥ QF1, but its performance de-

grades quickly for QF2 ≤ QF1; this behavior is well explained if we take into

account the analysis done in 3.2.1, where we discussed the undetectability

of the periodic pattern through spectrum analysis whenever τ
′kl < 1, which

corresponds to QF2 ≤ QF1. As a last result, we show in Table 3.3 a com-

parison between the proposed approaches by varying the size of the image.

Mean AUC values are obtained by averaging AUC values evaluated for each

(QF1, QF2) in order to compare trained (i.e. MBFDF) and untrained (i.e.

histogram based method) detectors, whereas accuracy of QF1 and RMSE of

α are calculated by mediating over all possible values of QF1, QF2 and α.

As expected, the performance smoothly degrade by reducing the image size

in both approaches, due to the lower number of available features for the

detection and estimation procedures.
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DCT Histograms MBFDF
Dimension 1024 256 64 1024 256 64

Accuracy of QF1 0.38 0.38 0.37 0.86 0.77 0.66
RMSE of α 0.30 0.31 0.29 0.07 0.07 0.06

Table 3.4: Estimation of chain parameters: a comparison between the proposed
approaches for different image sizes (1024×1024, 256×256 and 64×64)
in case of untrained α.

3.4 Conclusions

In this Chapter we have demonstrated how it is possible to detect the

presence of a common image processing operation like contrast enhencement

in the middle of a processing chain composed by two JPEG compressions.

Two approaches previously developed to detect the presence of double com-

pression have been properly modified to allow not only the detection, but

also the estimation of the quality factor of the first JPEG compression and

the parameter of the linear contrast enhancement. Each of the two methods

has its own pros and cons: the approach based on the histogram of DCT coef-

ficients has a low computational complexity, but exhibits good performance

only when QF2 ≥ QF1 and the second compression is mild; the method

based on the distribution of the first digit of DCT coefficients has very good

performance for every combination of quality factors, but its “one-against-

one” multi-classification strategy may become impractical if a fine search

of the processing parameter values is needed. These characteristics could

suggest to use the histogram based approach when the image under analysis

has a high compression quality, and resort to the other method when this

property does not hold.



36 Blind parent reconstruction: a case of study.



Part II

Image Mutations: from

parents to child

37





39

Abstract

In this Part of the Thesis, we tackle with the problem of ”mutations”:

some images are generated by combining contents coming from different im-

ages. In this way, new organisms come out with a new genetic makeup, which

is different from the parent’s one. So, we extend the Image Phylogeny to

an Image Genealogy, also known as Multiple Parenting in Image Phylogeny,

in which an image can have more than one parent. As we done in the first

Part, we investigated also the scenario in which no information about par-

ent images is available. In such a case, we developed an algorithm able to

localize, within an image, regions whose content comes from other images.

Since such an approach provides good performance only in well controlled

scenarios, we extend this approach in order to build a framework based on

a multi-clue analysis and data fusion techniques.
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Chapter 4

Multiple Parenting

Identification

Image phylogeny deals with tracing back parent-child relationships among

a set of images sharing the same semantic content. The solution of this prob-

lem results in a visual structure showing the inheritance of semantic content

among images giving rise to what is now called image phylogeny. In this

Chapter, we extend upon the original image phylogeny formulation to deal

with situations whereby an image may inherit semantic content not only

from a single parent, as in the original phylogeny, but from multiple differ-

ent parents, as commonly occurs during the frequent photomontage cases.

We refer to this new scenario as multiple parenting phylogeny and we aim to

represent the multiple parent relationships existent among a set of images.

We propose a solution that starts from collecting near duplicate groups and

reconstructing their phylogeny; then among the selected groups we iden-

tify the one(s) representing the composition images; finally, we detect the

parenting relations between those compositions and their source images.

4.1 Introduction

Discovering multiple parenting relationships has many applications in

practical scenarios, such as content tracking, forensics or copyright enforce-

ment. As an example, we may consider pornographic compositions using

personalities (such as celebrities or politicians), with the purpose of public

shaming. By taking advantage of the large amount of images shared by users

41
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(a) (b) (c)

Figure 4.1: Example of a composite image (a), obtained by copying an object
(the bear) from the alien image (b) onto an host image (c).

and using multiple parenting phylogeny, it is possible not only to identify

the image as a composition, but also to retrieve the source images used to

create it. Knowing such sources serves as hard evidence that the porno-

graphic image is a forgery, clearing the name of the victim. Finally, multiple

parenting phylogeny can be easily extended to other types of media as well,

such as texts, audio or videos, providing applications in those domains, such

as plagiarism detection.

Multiple parenting phylogeny is a natural extension of the image phy-

logeny problem, allowing us to find the relationships not only between images

with essentially the same content (near duplicates) but also those of seem-

ingly unrelated content. This raises many challenges not present in image

phylogeny, since we need to find relationships among images with no prior

information about the amount of content they share. To do this, it is neces-

sary to accurately reconstruct the phylogenies existent in a set of images, as

well as precisely localize and compare the shared content between images.

By overcoming those challenges, we can go even further in the analysis of

the evolution of documents on the internet, and specially, how a new content

is created by the combination of existing sources.

To find the multiple parenting relationships in a set of images, we in-

troduce a method that works by grouping images into well-separated sets

of near-duplicates, reconstructing their phylogenies, and pointing out which

groups are compositions, finding the sources used to create them.
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4.2 Method

The main objective of multiple parenting phylogeny is to discover the

inheritance of content between compositions and their sources. In the most

common scenario, we have three types of images: hosts and aliens (both

the source images), and compositions, each one related to a near-duplicate

set. The composition is the result of inserting a portion of an alien image

into a host image, as shown in Figures 4.1. We can divide this particular

scenario in three major problems: (1) determining the images depicting the

same semantic content; (2) analyzing each group of near duplicates and

pointing out whether the images therein are sources (images that could be

used in a composition), compositions or unrelated to the rest; and finally, (3)

inspecting each classified group and identifying the phylogeny relationship

of the images therein and the ones actually used to create the compositions.

To solve the aforementioned problems, in this section, we introduce a 3-

step method to automatically (1) find and (2) group near-duplicate images;

and (3) classify nodes as host images (used as backgrounds in a composition),

aliens (image pieces spliced with other images) or compositions (result of a

combination of host and alien images). The following sections show details

of each step of the method, whose full pipeline is depicted in Figure 4.2.

4.2.1 Finding near-duplicate groups

The problem of phylogeny forests arises when, in a set of images with the

same semantic content, not all of them are associated by the same acquisi-

tion process (come from one original source). This happens when multiple

pictures are taken from the same scene, with the same camera and different

parameters or from the same scene with different cameras. In this case, the

set of images will have multiple phylogeny trees, and a forest algorithm is

responsible for identifying them. Dias et al. proposed [44] an approach based

on the modification of their oriented Kruskal algorithm. This modification

works by adding edges to a tree only if the weight of that edge is not higher

than an adaptive threshold calculated on the edge weights already added to

the solution. This threshold is dependent on the higher dissimilarity between

images that have related content but are from different sources. Therefore,

it is intuitive to see how a forest algorithm would also work in a scenario of

different trees of unrelated semantic content.
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Figure 4.2: Pipeline of our multiple parenting approach. Step 1 separates the
images of the set in groups of similar semantic content, using a phy-
logeny forest algorithm. Step 2 looks for shared content between the
scenes of each tree, classifying the trees in compositions and sources.
Step 3 searches for the nodes used to generate the composition. Fi-
nally, the graph with the multiple parenting relationships is recon-
structed.

4.2.2 Group classification

After finding groups of near duplicates we still have no information about

the relations between compositions and parent images. Also, the dissimilar-

ity measure is unsuitable to discover those relations because it is strongly

dependent on the type of composition (e.g., the size of the tampering re-

gion). A content-dependent descriptor, possibly invariant to geometrical,

color and compression transformation, is needed to detect shared content

among groups of images. To detect composition trees, we have adopted a

SIFT-based approach [45].

For simplicity, we assume that a composition image is obtained by the

composition of only two images, by copying a patch or portion cut from an

image (alien) to another one (host). Moreover it is reasonable to assume

that the patch is small with respect to the background, belonging to the

host image.
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Ideally, since each root of the tree obtained at the previous step summa-

rizes the content of each tree, we perform a pairwise comparison between all

possible combinations of the roots. The comparison is based on the extrac-

tion of keypoints and their SIFT descriptors, the matching of the keypoints

as proposed by Lowe [46], and their clustering. In practice, however, this

strategy proves to be error-prone and not sufficient: the presence of outliers

coming from the matching strategy requires a robust clustering. Therefore,

we adopt a J-Linkage clustering algorithm [47] to cluster keypoints in func-

tion of the estimated geometrical transformation applied to parent images.

The method consists of generating a fixed number of geometrical transfor-

mation hypothesis by a random sampling of a neighborhood of matched

keypoints. After that, for each pair of matched keypoints, a preference set

vector (PS) is defined indicating which transformations the pair prefers. The

PSs are used in a hierarchical agglomerative clustering to estimate the trans-

formations. This algorithm starts by assigning each PS to a cluster; then,

for each step of the algorithm, the two clusters with smallest distance are

merged. The PS of a cluster is computed as the intersection of the preference

sets of matched pairs, and the distance between two clusters is computed as

the Jaccard distance between the respective preference sets.

J-Linkage presents some advantages: it is robust to the presence of out-

liers, it can be easily applied in case of more than two parent images and it

does not need a priori information about the percentage of outliers, as in the

case of RANSAC. This last property is suitable in our scenario because the

number of outliers changes in function of the matched keypoints (i.e., on the

content). For instance, when comparing images whose content is completely

unrelated, all matched keypoints are outliers; conversely, when comparing a

composition image with its parent image, the vast majority of the matched

keypoints are inliers, rather than outliers. The main J-Linkage’s limitation is

the generation of small clusters of keypoints with degenerative models, due

to the outliers. To reduce their impact, a threshold on the minimum number

(Nc = 5) of keypoints satisfying the estimated transformation is applied.

Sometimes the aforementioned strategy fails because the composition is

obtained from near duplicate of the roots (instead of the roots themselves),

which have undergone a set of color, compression and geometrical transfor-

mations, altering the SIFT descriptors and making some matching unde-

tectable. Therefore, we also extend the useful information from the roots

to the trees, by randomly sampling an image (node) from each tree. The
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test based on SIFTs is repeated a fixed number of times, and all those trees

which have at least one image with more than one relation with other images

is classified as composition tree.

Finally, to classify the parent trees as either alien or host, we employ

the dissimilarities d(IA, IB), evaluated at the previous step for the pairs

composition-host and composition-alien roots. Since patches are small with

respect to the background, the dissimilarity between host and composition

root is lower than the dissimilarity between alien and composition ones.

4.2.3 Parents identification

In the previous step, relations between different groups of images are

established, but they miss information about the exact sources that have

generated the composition. Due to the different nature of the relations be-

tween host and composition groups and between alien and composition ones,

we employ both dissimilarity measure and SIFT matching based approaches

to trace the images which have exactly generated a composition. In the case

of the host parent, we employ the dissimilarity d(IA, IB) rather than a SIFT-

based approach (which introduces a considerable computational effort), by

observing that the host parent of the composition is the node of the host

tree that has the lowest d(IA, IB) with the composition root. This constraint

is acceptable if we assume that the content coming from the alien parent is

relatively small with respect to the background.

In case of the alien parent, we need to localize the shared content inside

the composition root and evaluate the dissimilarity d(IA, IB) only on that

portion of content, to avoid noise due to the background belonging to the

host. We use the same SIFT-based approach as in the previous step, by

comparing all alien images with the related composition root. After identi-

fying the cluster of matches between one of the aliens and the composition,

we use the mean of the distances between the matches in the cluster as the

dissimilarity between the shared content of both images. We select as the

alien parent the one with the smallest dissimilarity among the tested nodes.

4.3 Experimental setup

This section presents the validation protocol for all experiments.



4.3 Experimental setup 47

4.3.1 Dataset and Test Cases

The dataset1 used comprises 100 host and 150 alien base images, as well

as 5000 compositions. The host images are outdoor and indoor background

scenes, such as rooms, streets or fields, obtained from the Inria Holidays [48]

dataset. The aliens are images of varied objects, such as people, cars or

animals, in common backgrounds. Those images were collected from Berkley

Segmentation [49] and Graz-02 [50] datasets, with segmentation masks from

Interactive Segmentation Tool [51] and Inria Annotations [52], respectively.

The dataset also has a number of phylogeny tree files, associated with

the base images, which describe a tree topology and the parameters of a set

of image processing operations. Using the base image as root, the images

are transformed following the topology and the operations described in order

to generate the whole phylogeny tree. The operations and their parameter

ranges were the same used in Dias et al. work [3]. All host and alien base

images have 25 phylogeny trees (5 different topologies, with 5 parameter

variations each) of 25 nodes. Because compositions are unique, they only

have a single phylogeny tree of 25 nodes.

The test cases are phylogeny forests of 75 nodes, consisting of a host, an

alien, and a composition tree. To generate one, we first randomly select a

pair of host and alien base images, as well as two of their phylogeny tree files,

and build the respective trees. Two random host and alien nodes are then

picked from each tree to create the composition, by automatically cutting

the object from the alien parent (using its segmentation mask) and pasting

it randomly in the host parent. Composition types differ by pasting method,

being either direct pasting, where the object is cut and pasted into the host

with no changes whatsoever, or poisson blending, where the pasted object is

blended into the host using Pérez et al.’s [53] method of gradient adjustment.

Finally, the composition phylogeny tree is built, completing the generation

of the test case. In this work, 300 direct pasting and 300 poisson blending

test cases were used.

4.3.2 Metrics

To evaluate the accuracy of the groups and the reconstructed phylogeny

forest, we use the metrics roots, edges, leaves and ancestry defined by Dias

1The dataset and test cases used in this work are available at
http://dx.doi.org/10.6084/m9.figshare.1050094
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et al. [2, 3] and a new subset metric, all measured considering we have the

groundtruth forest. The roots metric checks whether the roots in the recon-

structed and in the groundtruth forests are the same, while the leaves metric

does the same for the leaves. The edges metric measures the percentage of

right parenting relationships found in the reconstructed forest. Finally, the

ancestry metric evaluates if each node in the reconstructed forest has the

same set of ancestors as in the groundtruth. The subset measure, developed

for this work, measures if images with the same semantic content end up in

the same trees in the reconstructed forest, i.e., it measures if the image phy-

logeny forest algorithm correctly separates the images in meaningful groups.

First, we define the set:

σ(FR, FGT ) ={(IA, IB)|π(IA, FR) = IB ∧
τ(IA, FGT ) = τ(IB , FGT ),

∀IA ∈ FR \ ρ(FR)}
(4.1)

where Fx, with x ∈ {R,GT}, is a reconstructed (R) or a ground truth

(GT) forest, (IA, IB) is a generic couple of images and π(I, F ) is a function

returning the parent of an image I in the forest F . Finally, τ(I, F ) returns

the tree to which the image I belongs in F , and ρ(F ) gives the roots of F .

The subset metric is defined as:

subset =
|σ(FR, FGT )|
|FR \ ρ(FR)|

(4.2)

The subset metric is important because it gives information about the

separation of the host, alien and composition subset.

To evaluate the results of our multiple parenting approach we introduce

the metrics composition root (CR), host parent (HP) and alien parent (AP),

which test if such nodes were correctly found in each test case. Additionally,

we employ the metrics composition node (CN), host node (HN) and alien

node (AN), used to check if the composition root and host and alien parents

are, respectively, composition, host and alien images. This second set of

metrics is used to evaluate the classification of the trees.
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4.4 Results and discussion

This section shows the experiments and results for multiple parenting

identification. First, we present results for finding the groups and the phy-

logeny relations within each group. Then we show results for multiple parent-

ing identification, rates with which the proposed method correctly classifies

the trees in host/alien/composition, and its accuracy at identifying the nodes

that generated compositions.

4.4.1 Forest Algorithm Results

Since there is no solution in the literature yet for the multiple parenting

phylogeny problem, we consider two different forest algorithms in the ex-

periments. The first one is a modification of the Oriented Kruskal [2, 3] to

extract from a dissimilarity matrix exactly three trees, under the assump-

tion that we know the number of trees in the forest, which we call K3T.

The other is the automatic oriented Kruskal (AOK) as presented by Dias

et al. [44], which tries to automatically identify the number of trees in the

forest. As previously discussed, the AOK algorithm relies on a threshold

parameter for adding new edges to the phylogeny forest. Using a smaller

and completely separated set of 100 test cases, it was found that the best

value for this parameter was 3.0. K3T is used just as an upper bound as

in practice everything needs to be automatically calculated and we do not

know the number of trees in the forest. It was also observed that, in most

cases, the number of trees found by AOK was equal to or very close to three

indicating that, even though AOK is automatic, it still has good results in

finding the correct number of trees in the forest, making it a safe choice as

the image grouping algorithm. Table 4.1 shows results for the reconstructed

phylogeny forests, divided by direct pasting and poisson blending types of

image composition.

Both algorithms show similar and good results, with K3T slightly better

in the roots and ancestry metrics as expected. It is also important to note

that K3T and AOK present nearly perfect results for the subset metrics

which means that both algorithms are effective for separating the host, alien

and composition trees. This is specially important for tree identification, as

a bad separation of trees could lead to a wrong classification further on in

the method.
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Table 4.1: Forest algorithm results for finding near-duplicate groups.

Metrics
Type Algorithm root edges leaves ancestry subset

Direct
AOK 81.6% 74.3% 81.4% 65.5% 99.9%
K3T 83.9% 74.4% 81.4% 66.6% 99.9%

Poisson
AOK 78.7% 74.5% 81.3% 63.2% 99.7%
K3T 82.2% 74.6% 81.4% 66.1% 99.9%

4.4.2 Multiple Parenting Results

Table 4.2 shows the results for tree classification and multiple parenting

identification. As detailed in Section 4.2.2, we classify the trees found by

the forest algorithm applied in the first step by choosing random nodes of

each tree and comparing their content to find shared objects, repeating this

process a fixed number of times. The algorithm was tested with the number

of repetitions: {1, 3, 5, 10, 15, 20, 25}. As there were no obvious gains of

accuracy with more repetitions, it was decided to fix the number in five, as

the computational cost tends to rise as more repetitions are used.

Table 4.2: Multiple parenting results.

Metrics
Type Algorithm CR CN HP HN AP AN

Direct
AOK 73.0% 91.7% 76.0% 93.0% 33.7% 98.3%
K3T 74.7% 92.7% 78.0% 94.3% 34.3% 99.0%

Poisson
AOK 66.3% 85.3% 73.0% 88.3% 11.3% 98.7%
K3T 66.3% 87.0% 75.7% 88.3% 11.3% 99.3%

The algorithms present similar performance for the two types of compo-

sitions. Considering that in about 30% of the test cases AOK does not find

three trees, those results are important to show that even when the number

of trees found is incorrect, the classification of the trees, as shown by the

CN, HN and AN metrics, still presents good accuracy. This is due to the

robust process of classification that counts the number of content relation-

ships between different trees in the forest, which keeps valid even if a tree

is broken into sub-trees. When the composition tree is split into two trees,

the low dissimilarity between the two might lead to wrongly classifying one

of them as host tree. However, by comparing AOK with K3T results, those

cases have small impact on the overall accuracy of the method.
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We have good results in finding the original composition and its host

parent, as shown by the CR and HP results. The CR value, in special, is

dependent on the roots found by the forest algorithm, as we always choose the

root of the tree identified as composition as the original composition. Finally,

even though the proposed method shows very good results in identifying the

alien tree, as in about 99% of the cases the alien parent identified is one

of the alien nodes, we still are not very good at finding the correct alien

node used in the composition process. As discussed before, we currently use

the SIFT distance of the shared content existent between composition and

alien as the comparison metric. This measure is not perfect at identifying

the transformations the shared content went through, which might lead to a

wrong classification.

4.5 Conclusion

In this Chapter, we presented a novel method for the identification of

multiple parenting relationships in sets of images. It combines a phylogeny

forest approach for group separation with object detection techniques for

identification of shared content between images. Using this pipeline, the final

result is a graph structure showing both the relationships between images

with the same semantic and images with partially shared content.

The proposed method shows promising results in finding the different

semantic groups (with an effectiveness exceeding 99%) and discovering the

relationships between those groups (at least 85% of the cases), labeling them

as compositions, hosts and aliens. Our future efforts will focus on finding

the correct alien parent with a higher accuracy, by improving the estimation

of the shared content region as well as our metrics to compare them, and

expanding the proposed method to work with other types of compositions.
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Chapter 5

Blind mutation detection: a

case of study

In this Chapter, a forensic tool able to discriminate between original and

forged regions in an image captured by a digital camera is presented. The

main assumption is that the image was acquired using a Color Filter Array, as

the majority of the modern digital camera does, and that tampering removes

the artifacts due to the demosaicing algorithm. The proposed method is

based on a new feature measuring the presence of demosaicing artifacts at a

local level, and on a new statistical model, based on Gaussian Mixture Model,

allowing to derive the tampering probability of each 2×2 image block without

requiring to know a priori the position of the forged region. Experimental

results on different cameras equipped with different demosaicing algorithms

demonstrate both the validity of the theoretical model and the effectiveness

of our scheme.

5.1 Introduction

In the recent literature, the forgery localization problem has been tackled

with in different ways. A first class of forgery localization algorithms adopts

a supervised approach, i.e., they rely on the hypothesis that a user has

previously identified the location of possibly manipulated areas. Such a

category includes all the tools analyzing inconsistencies at the scene level,

like lighting, shadows [54], colors, geometry perspective [55], and those based

on the computation of the difference of properly chosen statistics between

53
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the possibly tampered area and the rest of the image [29].

Being fairly independent on the low-level characteristics of images, the

above techniques (with some noticeable exception like [29]) are extremely

robust to compression, filtering, and other image processing operations, thus

being applicable even when the quality of the image is low. However, it is

worth highlighting that being human assisted and based on rather stringent

hypotheses, such techniques work only on restricted scenarios, and cannot

be used and tested on massive amounts of data.

A first class of unsupervised forgery localization algorithms looks for the

presence of tampered objects by decomposing the image under analysis into

subparts. In region-wise approaches, the image is first segmented into homo-

geneous regions and then each region is analyzed separately [56]; in block-

wise approaches, the image is split into sliding square windows, and each

block is processed independently. Inconsistencies in the presence or the ab-

sence of specific footprints related to acquisition, coding, or editing within

one or more sub-parts of the image indirectly reveal that some processing

has been applied on a particular region of the image [57,58]. Concerning the

limits of these methods, in the region-wise approach very often the segmen-

tation does not produce reliable results without a priori information about

the possible tampered area. In the block-wise approach, usually a sufficiently

large portion of the image (e.g. a B ×B block, with B ≥ 100) is needed for

a reliable statistical analysis of the footprint, so that only a coarse grained

localization of tampering is possible.

A last class of unsupervised tamper localization algorithms is represented

by forensic schemes designed to localize in an automatic way the tampered

regions with a fine-grained scale of B×B image blocks (where usually B = 8),

assuming to have no information on the position of possibly manipulated

pixels. The output of these methods is a likelihood map indicating for each

pixel (or small block) its probability of being tampered.

To the best of our knowledge, only few algorithms exploiting the presence

of double JPEG compression [59–61] or the artifacts due to CFA interpola-

tion [62] belong to this category. The main limit of these approaches is the

strong dependence of the results on local and global properties of the image

(content, dimension, compression etc) and by the noiseness of the output

map, so that it is always necessary to apply a postprocessing (often assisted)

phase to obtain reliable results.

In this Chapter, we focus our attention on the fine grained forgery local-
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ization problem, assuming to have no information on the position of possibly

manipulated pixels. Among the numerous fingerprints considered in image

forensic literature [63, 64], we consider the traces left by the interpolation

process. Image interpolation is the process of estimating values at new pixel

locations by using known values at neighbouring locations. During the image

life cycle, there are two main phases in which interpolation is applied:

� Acquisition processing, to obtain the 3 color channels (red, green, and

blue). The light is filtered by the Color Filter Array (CFA) before

reaching the sensor (CCD or CMOS), so that for each pixel only one

particular color is gathered. Thus, starting from a single layer contain-

ing a mosaic of red, green, and blue pixels, the missing pixel values

for the three color layers are obtained by applying the interpolation

process, also referred to as demosaicing.

� Geometric transformations, to obtain a transformed image. When

scaling (shrinking and zooming), rotation, translation, shearing, are

applied to an image, pixels within the to-be-transformed image are re-

located to a new lattice, and new intensity values have to be assigned

to such positions by means of interpolation of the known values, also

referred to as resampling operation.

The artifacts left in the image by the interpolation process can be an-

alyzed to reveal image forgery. Ideally, an image coming from a digital

camera, in the absence of any successive processing, will show demosaicing

artifacts on every group of pixels corresponding to a CFA element. On the

contrary, demosaicing inconsistencies between different parts of the image,

as well as resampling artifacts in all or part of the analyzed image, will put

image integrity in doubt.

Our effort is focused on the study of demosaicing artifacts at a local level:

by means of a local analysis of such traces we aim at localizing image forg-

eries whenever the presence of CFA interpolation is not present. Obviously

our approach is based on the hypothesis that unmodified images coming

from a digital camera are characterized by the presence of CFA demosaicing

artifacts. Starting from such an assumption, we propose a new feature that

measures the presence/absence of these artifacts even at the smallest 2 × 2

block level, thus providing as final output a forgery map indicating with fine

localization the probability of the image to be manipulated.
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5.2 Related Work

Previous works considering CFA demosaicing as the to be analyzed finger-

print can be divided in two main classes, i) algorithms aiming at estimating

the parameters of the color interpolation algorithm, and ii) algorithms aim-

ing at evaluating the presence/absence of demosaicing traces. Whereas the

second class focuses on forgery detection (inconsistencies in the CFA interpo-

lation reveal the presence of forged regions), algorithms within the first class

are mostly intended to classify different source cameras, though sometimes

they can also be used to detect tampering.

As to the first class, Swaminathan et al. in [65] propose a method

for camera identification by the estimation of the CFA pattern and inter-

polation kernel; while in [66] the same authors exploit the inconsistencies

among the estimated demosaicing parameters as proof of tampering. Cao

and Kot in [67] aim at estimating the demosaicing formulas, employing a

partial second-order image derivative correlation model, in order to classify

different demosaicing algorithms. In [68], Bayram et al. detect and classify

traces of demosaicing by jointly analyzing features coming from two previ-

ous works (see [69] and [70] below), in order to identify the source camera

model. In [71], Fan et al. propose a neural network framework for recog-

nizing the demosaicing algorithms in raw CFA images, and use it for digital

photo authentication.

Regarding the detection of demosaicing traces, Popescu and Farid pro-

pose an approach for detecting the interpolation artifacts left on digital im-

ages by resampling [25] and demosaicing [69] processes. In their approach,

the Expectation-Maximization algorithm is applied to estimate the interpo-

lation kernel parameters, and a probability map is achieved that for each

pixel provides its probability to be correlated to neighbouring pixels. The

presence of interpolated pixels results in the periodicity of the map that is

clearly visible in the Fourier domain. Such an analysis can be applied to

a given image region, however a minimum size is needed for assuring the

accuracy of the results: authors tested their algorithms on 256 × 256 and

512× 512 sized areas.

Gallagher in [70] observed that the variance of the second derivative of

an interpolated signal is periodic: he thus looked for the periodicity in the

second derivative of the overall image by analyzing its Fourier transform.

Successively, for detecting traces of demosaicing, Gallagher and Chen pro-
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posed in [72] to apply Fourier analysis to the image after high pass filtering,

for capturing the presence of periodicity in the variance of interpolated/ac-

quired coefficients. The procedure has been tested only up to 64× 64 image

blocks, whereas a variation yielding a pixel-by-pixel tampering map is based

on a 256-point discrete Fourier transform computed on a sliding window,

thus lacking resolution.

In [73] by Dirik and Memon, the sensor noise power of the analyzed

image is taken into account: its change across the image (i.e. its difference

value for interpolated and acquired pixels) is considered for demonstrating

the presence of demosaicked pixels. In the above paper, a block based CFA

detection was also proposed, however the features proposed therein have

to be computed on 96 × 96 blocks, thus permitting only a coarse grained

localization of tampering.

Demosaicing can also be detected using methods which analyze generic

resampling artifacts. In this area, Kirchner in [74, 75] consider an approach

similar to [25], by observing that the actual prediction weights of the resam-

pling filter are not necessary for revealing periodic artifacts, thus simplifying

the analysis, however experimental results consider only 512 × 512 images.

Mahdian and Saic in [76] consider the derivatives of the interpolated image

and apply the method to suspected windows of size at least 64 × 64, while

in [77] they adopt the spectral correlation function, but only considering

512 × 512 sized images. Finally, in [78] Vazquez-Padin et al. demonstrate

that the interpolated image is an almost cyclostationary process, with a pe-

riod depending on the resampling factor. However, the authors use image

blocks of size 128× 128 pixels for the analysis, which only permits a coarse

forgery localization.

5.3 CFA Modeling

During the CFA interpolation process, the estimation of the values in

the new lattice based on the known values can be locally approximated as a

filtering process through an interpolation kernel periodically applied to the

original image to achieve the resulting image. Thus, the identification of

artifacts due to CFA demosaicing can be seen as a particular case of the

detection of interpolation artifacts, that has been deeply studied in these

last years, as exposed in Section 5.2.

In [74], Kirchner demonstrated that for a resampled stationary and non-
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constant signal s(x), with x ∈ Z, the variance of the residue of a linear

predictor Var[e(x)] is periodic with a period equal to the original sampling

rate. Hence, if we consider the signal resampled according to an integer

interpolation factor r, we have Var[e(x)] =Var[e(x + r)], since the original

sampling period corresponds to r samples of the resampled signal.

For the case of CFA demosaicing, if we consider a single dimension, the

general result presented in [74] turns into Var[e(x)] =Var[e(x + 2)], that is

the variance of the prediction error assumes only two possible values, one

for the odd positions and another one for the even positions. In more detail,

considering for example the interpolation of the green color channel G(x) in

a particular row of the image, the acquired signal sA(x) is

sA(x) =

{
G(x) x even

0 x odd
(5.1)

If we consider a simplified demosaicing model, the resulting signal sR(x),

composed by the acquired component sA(x) and by the interpolated compo-

nent, takes values:

sR(x) =

{
sA(x) = G(x) x even∑
u husA(x+ u) x odd

(5.2)

where hu represents the interpolation kernel. In the above model, we assume

that each color channel is independently interpolated using a linear filter and

that original sensor samples are not modified by the interpolation process1.

In practice, since only odd values of u contribute to the above summation,

we will restrict our attention to the case hu = 0 for u odd. The prediction

error is then defined as e(x) = sR(x)− sP (x), with:

sP (x) =
∑
u

kusR(x+ u) (5.3)

the predicted signal, and ku the prediction kernel. Hence:

e(x) =

{
G(x)−

∑
u kusR(x+ u) x even∑

u husA(x+ u)−
∑
u kusR(x+ u) x odd

(5.4)

1The first assumption is often not verified in practice, however the second one usually
holds since most practical demosaicing algorithms do not change the value of acquired
pixels.
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By assuming to use the same kernel for the interpolation and the prediction

(i.e. hu = ku), the prediction error in odd positions is identically zero, while

in the even positions takes values different from zero. Hence, in such an ideal

case, var[e(x)] is expected to be zero in the positions corresponding to the

demosaicked signal, and different from zero in the positions corresponding

to the acquired signal.

In general, the exact interpolation coefficients may not be known, however

we can assume that ku = 0 for u odd. Moreover, we can also assume
∑
u ku =∑

u hu = 1, which usually holds for common interpolation kernels. In this

case, equation (5.4) above can be rewritten as

e(x) =

{
G(x)−

∑
u ku

∑
v hvG(x+ u+ v) x even∑

u(hu − ku)G(x+ u) x odd
(5.5)

By assuming the acquired signal samples to be independent and identically

distributed (i.i.d.) with mean µG and variance σ2
G, the mean of the prediction

error can be evaluated as

E[e(x)] =

{
µG − µG

∑
u ku

∑
v hv = 0 x even

µG (
∑
u hu −

∑
u ku) = 0 x odd

(5.6)

whereas the variance of the prediction error is

Var[e(x)] =Var
[
(1−

∑
u

kuh−u)G(x)

+
∑
t6=0

(∑
u

kuht−u

)
G(x+ t)

]
=σ2

G

[
(1−

∑
u

kuh−u)2 +
∑
t6=0

(
∑
u

kuht−u)2
] (5.7)

for x even and

Var[e(x)] = Var
[∑

u

(hu − ku)G(x+ u)
]

= σ2
G

∑
u

(hu − ku)2 (5.8)

for x odd. According to the above model, the prediction error has zero mean

and variance proportional to the variance of the acquired signal. However,

when the prediction kernel is close to the interpolation kernel, the variance

of prediction error will be much higher at the positions of the acquired pixels

than at the positions of interpolated pixels.
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(a) (b)

Figure 5.1: (a) the Bayer’s filter mosaic; (b) the quincunx lattice A for the ac-
quired green channels and the complementary quincunx lattice I for
the interpolated green channels.

Leaving the ideal conditions, the acquired signal will be only locally i.i.d.

and its variance only locally stationary: thus σ2
G has to be computed on

small parts of the signal and consequently var[e(x)] will assume different

values depending on the specific signal content. Also, additive noise may be

present on pixel values due to rounding and truncation effects. Nevertheless,

we can still expect the variance of e(x) to be higher at the positions of

acquired pixels.

5.4 Proposed algorithm

In order to extend the previous analysis to the bidimensional case, with-

out loss of generality we will consider as specific CFA the most frequently

used Bayer’s filter mosaic, a 2× 2 array having red and green filters for one

row and green and blue filters for the other (see Fig. 5.1(a)). Furthermore,

we will consider only the green channel; since the green channel is upsampled

by a factor 2, for a generic square block we have the same number of sam-

ples (and the same estimation reliability) for both classes of pixels (either

acquired or interpolated).

By focusing on the green channel, the even/odd positions (i.e. acquired/in-

terpolated samples) of the one-dimensional case turn into the quincunx lat-

tice A for the acquired green values and the complementary quincunx lat-

tice I for the interpolated green values (see Fig. 5.1(b)). Similar to the

one-dimensional case, we assume that in the presence of CFA interpolation

the variance of the prediction error on lattice A is higher than the variance

of the prediction error on lattice I, and in both cases it is content depen-

dent. On the contrary, when no demosaicing has been applied, the variance
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of the prediction error assumes similar values on the two lattices. Hence, in

order to detect the presence/absence of demosaicing artifacts, it is possible

to evaluate the imbalance between the variance of the prediction error in the

two different lattices.

5.4.1 Proposed feature

Let us suppose that s(x, y), with (x, y) ∈ Z2, is an observed image. The

prediction error can be obtained as:

e(x, y) = s(x, y)−
∑
u,v 6=0

ku,vs(x+ u, y + v) (5.9)

where ku,v is a bidimensional prediction filter. In the ideal case, ku,v =

hu,v ∀(u, v) where hu,v is the interpolation kernel of the demosaicing algo-

rithm. In general, we can assume that ku,v 6= hu,v, since the in-camera

demosaicing algorithm is usually unknown.

Because of the local stationarity of the residue, the variance of the predic-

tion error e(x, y) is locally estimated pixel-by-pixel for each position (demo-

saicked or acquired) only from a neighborhood of interpolated (I) or acquired

(A) pixels respectively. In this work, we assume to know the spatial pattern

of the CFA (for example the Bayer CFA). This hypothesis is not a seri-

ous constraint, because it is reasonable to suppose either to know the CFA

pattern or to estimate it by adopting a proper estimation algorithm [65].

By assuming that the local stationarity of prediction error is valid in

a (2K + 1) × (2K + 1) window, it is possible to define the local weighted

variance of the prediction error as:

σ2
e(x, y) =

1

c

[( K∑
i,j=−K

αij e
2(x+ i, y + j)

)
− (µe)

2
]

(5.10)

where αij are suitable weights, µe =
∑K
i,j=−K αij e(x + i, y + j) is a local

weighted mean of the prediction error and c = 1 −
∑K
i,j=−K α

2
ij is a scale

factor that makes the estimator unbiased, i.e., E[σ2
e(x, y)] =var[e(x, y)], for
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each pixel class. The weights αij are obtained as αij = α
′

ij/
∑
i,j α

′

ij where

α
′

ij =

{ W (i, j) if e(x+ i, x+ j) belongs to

the same class of e(x, y)

0 otherwise

and W (i, j) is a (2K+1)×(2K+1) Gaussian window with standard deviation

K/2.

Given a N×N image, we analyze it by considering B×B non-overlapping

blocks, where B is related to the period of Bayer’s filter mosaic: the smallest

period (and block dimension) is (2, 2), but also multiples can be adopted.

The generic block in position (k, l) is denoted as Bk,l with k, l = 0, . . . , NB −1.

Each block is composed by disjoint sets of acquired and interpolated pixels,

indicated as BAk,l and BIk,l , respectively. We then define the feature L:

L(k, l) = log

[
GMA(k, l)

GMI(k, l)

]
(5.11)

where GMA(k, l) is the geometric mean of the variance of prediction errors

at acquired pixel positions, defined as:

GMA(k, l) =

[ ∏
i,j∈BAk,l

σ2
e(i, j)

] 1
|BAk,l

|

(5.12)

whereas GMI(k, l) is similarly defined for the interpolated pixels.

The proposed feature L allows us to evaluate the imbalance between the

local variance of prediction errors when an image is demosaicked: indeed, in

this case the local variance of the prediction error of acquired pixels is higher

than that of interpolated pixels and thus the expected value of L(k, l) is a

nonzero positive amount. On the other hand, if an image is not demosaicked,

this difference between the variance of prediction errors of acquired an in-

terpolated pixels disappears, since the content can be assumed to present

locally the same statistical properties, and the expected value of L(k, l) is

zero. Our inference will be based on these two key observations.

Let us now suppose that a demosaicked image has been tampered by

introducing a new content, and that in order to make this forgery more re-

alistic, some processing (blurring, shearing, rotation, compression, etc.) has
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Figure 5.2: The work flow of our algorithm.

been likely applied to the added content, thus destroying the demosaicing

traces on the forged region. The proposed feature L(k, l) will assume incon-

sistent values within the tampered image: in some regions (the untampered

ones) it will be significatively greater than zero, while in other regions (the

tampered ones) the feature will be close to zero. We can thus employ these

inconsistencies to finely localize forgeries.

In some respects, the proposed feature is conceptually similar to the

approach in [72], where the variance is approximated using the average of

absolute values. However, an important difference is that the technique

of [72] requires a Fourier analysis, thus limiting the resolution of the method

when aiming at the fine-grained localization of CFA artifacts. Moreover,

the proposed feature can be described using a very convenient statistical

model, described in the following, which allows us to associate to each block

a probability of being manipulated.

5.4.2 Feature modeling

By using a Bayesian approach, for each block Bk,l it is possible to derive

the probability that CFA artifacts are present/absent conditioned on the

observed values of L(k, l).

Let M1 and M2 be the hypotheses of presence and absence of CFA arti-

facts, respectively. In order to have a simple and tractable model, we assume

that L(k, l) is Gaussian distributed under both hypotheses and for any pos-

sible size B of the blocks Bk,l. For a fixed B, we can characterize our feature

using the following conditional probability density functions:

Pr{L(k, l)|M1} = N (µ1, σ
2
1) (5.13)
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with µ1 > 0, and

Pr{L(k, l)|M2} = N (0, σ2
2). (5.14)

The above densities hold ∀k, l = 0, . . . , NB − 1, i.e., we assume that the

parameters of the two conditional pdfs do not change over the considered

image, such that they can be globally estimated.

If a demosaicked image contains some tampered regions in which CFA

artifacts have been destroyed (as it may occur in a common splicing oper-

ation), both hypotheses M1 and M2 are present, therefore L(k, l) can be

modeled as a mixture of Gaussian distributions. The first component, with

µ1 > 0, is due to regions in which CFA artifacts are present, whereas the

second component, with µ2 = 0, is due to tampered regions in which CFA

artifacts have been removed2. In order to estimate simultaneously the pa-

rameters of the proposed Gaussian Mixture Model (GMM), we employ the

Expectation-Maximization (EM) algorithm [79]. This is a standard itera-

tive algorithm that estimates the mean and the variance of the component

distributions by maximizing the expected value of a complete log-likelihood

function with respect to the distribution parameters. In our case, the EM

algorithm is used to estimate only µ1, σ1, and σ2, since we assume µ2 = 0.

5.4.3 Map generation

The final aim we point at is to achieve a map indicating for each B ×B
block Bk,l its probability to be original/tampered, based on its probability

to contain or not CFA artifacts. Starting from equations (5.13) and (5.14)

and assuming a-priori probabilities Pr{M1} = Pr{M2} = 1/2, we obtain

the posterior probability of being an original block. By exploiting Bayes’

Theorem and relying on the observed feature L(k, l) for each Bk,l block, we

achieve:

Pr{M1|L(k, l)} =
Pr{L(k, l)|M1}

Pr{L(k, l)|M1}+ Pr{L(k, l)|M2}
(5.15)

2The above model may not be accurate in the case of copy-move forgeries exhibiting a
nonaligned CFA pattern, since these areas will result in negative values of L(k, l). However,
this is only a small subset of the possible forgeries and it does not appears reasonable to
complicate the model to cope with this particular case.
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which can be expressed as:

Pr{M1|L(k, l)} =
1

1 + L(L(k, l))
(5.16)

where L is the likelihood ratio of L(k, l) defined as:

L(L(k, l)) =
Pr{L(k, l)|M2}
Pr{L(k, l)|M1}

. (5.17)

Let us note that equations (5.16) and (5.17) have the same statistical in-

formation. Applying equation (5.17) to each block of an image, we obtain

a likelihood map (LM), where each pixel of the map is the likelihood ratio

associated to a B ×B block.

These maps are usually noisy because they associate a probability (or a

likelihood ratio) value to a single realization of L(k, l), which is very noisy

itself. In order to denoise these maps, we can cumulate feature values on

larger blocks whose size is C × C, where C = n · B with n ∈ Z+. As-

suming blocks to be conditionally independent given either M1 or M2, the

accumulated likelihood ratio is obtained as:

Lcum(L(k′, l′)) =

∏
k,l Pr{L(k, l)|M2}∏
k,l Pr{L(k, l)|M1}

. (5.18)

In order to further improve the localization performance, we note that

in a realistic forged image the manipulated areas are usually connected re-

gions, due to the image semantic content. These connected regions can be

highlighted by applying to the map a simple low-pass spatial filter, like a

mean filter or a median filter. For better numerical stability, such filters are

applied to the logarithm of the likelihood map.

5.4.4 Overall system

In Fig. 5.2 we show the overall system that, given a suspected image,

produces the corresponding forgery map: each pixel in the forgery map in-

dicates for each C ×C image block its probability to contain CFA artifacts,

so that low values in the output map correspond to likely forged areas.

As a first step, the green channel is extracted from the image, and the

prediction error is computed. Because in-camera processing algorithms are

usually unknown, a fixed predictor is used: the choice of the adopted pre-
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dictor will be discussed and validated in Section 5.5. The weighted local

variance is then estimated and the feature L(k, l) is obtained for each B×B
block. The GMM parameters are globally estimated exploiting the EM al-

gorithm and used for the generation of the forgery map. When C = B the

forgery map is generated using the likelihood ratios in (5.17), whereas for

C > B we use the cumulated likelihood map in (5.18). Optionally, the in-

termediate log-likelihood map can be filtered using either a mean filter or a

median filter.

5.5 Experimental Results

The results presented in this section have been obtained on a dataset

consisting of 400 original color images, in TIFF uncompressed format, com-

ing from 4 different cameras (100 images for each camera): Canon EOS

450D, Nikon D50, Nikon D90, Nikon D7000. All cameras are equipped

with a Bayer CFA, thus respecting our requirement that authentic images

come from a camera leaving demosaicing traces, but the in-camera demo-

saicing algorithms of such devices are unknown. Each image was cropped to

512 × 512 pixels, maintaining the original Bayer pattern, which is assumed

to be known3. We will refer to such a dataset as the original dataset.

5.5.1 Model Validation

The first step was to verify the assumption of Gaussian distribution on

L(k, l), both in the presence and in the absence of CFA artifacts. To this

end, starting from 100 images selected from the original dataset, we have

created two datasets satisfying the M1 (presence of CFA) and M2 (absence

of CFA) hypotheses. To create the dataset corresponding to M1, the origi-

nal images have been sampled according to the Bayer CFA pattern and then

re-interpolated using four possible demosaicing algorithms, namely bilinear,

bicubic, gradient-based and median (see [69] for more details on such inter-

polation algorithms). This allowed us to know the interpolation kernel on

the whole image, and then to exactly predict the interpolated values with

the four different predictors (we refer to these cases as ’ideal’). To create

the dataset corresponding to M2, each color channel of the original images

3The correct CFA configuration has been verified by inspecting the technical specifica-
tions of the raw image format.
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has been upsampled by a factor two, blurred with a 7× 7 median filter, and

downsampled by a factor two, thus removing all CFA artifacts. Features are

then computed using again the four predictors as before.

Moving towards realistic conditions, we also computed the value of L(k, l)

under the M1 hypothesis on the original dataset of 400 TIFF uncompressed

images interpolated using their unknown in-camera demosaicing algorithms,

and applying bilinear, bicubic, gradient-based and median predictors.

We verified the approximate Gaussian distribution of the features for all

the classes described so far, i.e.: absence of CFA, presence of CFA with

known interpolation kernel, and the four sets of cameras with unknown CFA

demosaicing algorithms; for each of these six classes, the features have been

computed with the four different interpolation algorithms (bilinear, bicubic,

gradient-based, median) setting B = 8. The approximately Gaussian be-

havior of the features has been verified by fitting them with a generalized

Gaussian distribution (GGD), given by

p(L) =
1

Z
e−(|L−µ|/η)ν (5.19)

where µ is a location parameter (mean), η is a scale parameter, ν is a shape

parameter, and Z is a normalization factor so that p(L) integrates to one.

The Gaussian distribution is a particular case of the GGD for ν = 2. Since

our conjecture is that the Gaussian assumption holds for a single image,

but not necessarily over the whole dataset, the shape parameter has been

independently estimated for each image using the Mallat’s method [80]. In

Table 5.1 we report the median value of the estimated shape parameters for

the six classes and the four interpolation algorithms. The values indicate a

reasonable fit of the proposed model. Interestingly, the model appears more

fitting in the presence of CFA artifacts, and when the predictor is matched

to the actual interpolation algorithm.

Furthermore, we plot the mean value of the features in order to verify how

features in M1 hypothesis can be discriminated by features in M2 hypothesis,

both in ideal and in realistic cases. In Fig. 5.3, we show the results for the

ideal case in absence of CFA (first row) and presence of known CFA (second

row). In Fig. 5.4, we show the 16 histograms of the mean values of L(k, l):

along each row we have histograms referring to the same camera, from top to

bottom, Canon EOS 450D, Nikon D50, Nikon D90, Nikon D7000. For both

the Figures along each column we have histograms referring to the same
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Table 5.1: Median value of the GGD shape parameters estimated from the dis-
tribution of the feature L(k, l) for each image, considering different
predictors on different datasets.

bilinear bicubic gradient-based median

No CFA 1.589 1.558 1.672 1.812
Ideal 2.168 2.134 2.049 2.016

Canon EOS 2.001 1.908 1.897 1.962
Nikon D50 1.736 1.797 1.834 1.814

Nikon D7000 2.206 2.066 1.729 1.899
Nikon D90 1.998 1.924 1.667 1.927
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Figure 5.3: Distribution of the average value of L(k, l) on an image, feature eval-
uated on 8× 8 blocks, in the absence of CFA artifacts (top row) and
when the predictor is the same as the demosaicing algorithm (bot-
tom row), using different predictors: from left to right, bilinear (red),
bicubic (blue), gradient-based (green), median (violet).

predictor, from left to right, bilinear (red), bicubic (blue), gradient-based

(green), median (violet).

Globally, the above results confirm that the proposed features has zero

mean under the M2 hypothesis and mean greater than zero under the M1

hypothesis. The histograms also highlight that the four predictors have

different behaviors. The median predictor does not seem well suited to detect

CFA artifacts, since it produces values of L(k, l) closer to zero than the other

predictors, irrespective of the camera.
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Figure 5.4: Distribution of the average value of L(k, l) on an image, feature evalu-
ated on 8×8 blocks, with unknown in-camera demosaicing algorithms
and using different predictors: along each row we have histograms re-
ferring to the same camera, from top to bottom, Canon EOS 450D,
Nikon D50, Nikon D7000, Nikon D90; along each column we have his-
tograms referring to the same predictor, from left to right, bilinear
(red), bicubic (blue), gradient-based (green), median (violet).
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5.5.2 Detection Performance Validation

In this section, the detection capability of the proposed forgery localiza-

tion algorithm is investigated. Firstly, the behavior with respect to different

predictors is analyzed. Then, in order to characterize the algorithm perfor-

mance in different conditions, a particular predictor is chosen – the bilinear –

and the results are evaluated considering different scenarios, different forgery

sizes, and different choices of algorithm parameters.

Experimental Methodology

The considered scenarios correspond to nine different datasets derived

from the original dataset : a first group of four datasets include uncompressed

images obtained by applying bilinear, bicubic, gradient-based, and median

demosaicing (as described in the previous section), representing the ideal

case; a second group of five datasets include uncompressed images obtained

using the demosaicing algorithm of the respective four cameras and JPEG

compressed images obtained from the previous images using four different

quality factors: 100%, 95%, 90% and 85%. The idea underlying this choice

is to verify the performance on sets of images that completely satisfy the

requirements of the proposed model as well as on more realistic images.

For each dataset, forgery has been simulated by applying to the central

region of the image the procedure for removing CFA artifacts described in

the previous section. As to the size of the forgery, we considered tampered

regions of 128×128, 64×64, and 32×32 pixels. In the case of JPEG datasets,

CFA removal has been simulated before JPEG compression.

The analysis has been carried out under different resolutions and filter-

ing of the likelihood map. Concerning the resolution, in order to permit a

fine-grained localization of the tampered regions, we chose to compute the

proposed metric L starting from 2× 2 blocks (B = 2), the smallest possible

size to detect CFA artifacts. Different resolutions, equivalent to 4× 4 blocks

and 8 × 8 blocks, can be obtained in two ways: the first one is to define

our features on larger blocks (e.g. B = 4 or B = 8). The second way is to

compute the proposed metric on 2× 2 or 4× 4 blocks, and then to cumulate

the posterior probabilities according to (5.18) on C × C blocks (C = 8).

Concerning the filtering of the likelihood map, three cases were considered:

no filtering at all, 5× 5 weighted average filtering using a Gaussian window,

and 5× 5 bidimensional median filtering. In all cases, filtering is applied on
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log likelihood maps to avoid numerical problems.

As to the EM algorithm, we initialized µ1 and σ2
1 to the mean and vari-

ance of the observed features, σ2
2 = σ2

1/10, and α = 0.5. Convergence was

assumed if the increase of the likelihood function with respect to the previous

iteration was less than 10−3 or after 500 iterations.

The performance of the proposed algorithm has been measured by the

true positive rate (RTP ), measuring the fraction of tampered blocks correctly

detected as forgery, and the false positive rate (RFP ), measuring the fraction

of unchanged blocks erroneously detected as forgery. If we assume NR1 the

amount of blocks in the untampered region R1, NR2 the amount of blocks

in the forged region R2, NmR1 the amount of blocks detected as tampered

in region R1 and NmR2 the amount of blocks detected as tampered in region

R2, we have:

RTP =
NmR2

NR2
; (5.20)

RFP =
NmR1

NR1
. (5.21)

The overall performance of the detector is evaluated by plotting its re-

ceiver operating characteristic (ROC) curve, obtained by thresholding the

output maps (i.e. the cumulated and filtered likelihood maps) using a vary-

ing threshold value and recording the corresponding values of RTP and RFP .

Finally, the area under the ROC curve (AUC) is used as a scalar parameter

to describe detector capabilities: an AUC close to one indicates good detec-

tion performance, whereas an AUC close to 0.5 indicates that the detector

has no better performance than choosing at random.

Results

In Fig. 5.5(a), we show the detection performance on the four ideal

datasets, where for each datasets we use a predictor matched to the demo-

saicing algorithm, whereas in Fig. 5.5(b), we show the detection performance

on the dataset using in-camera demosaicing when different predictors are

applied. For each test a 128 × 128 tampered region has been considered.

Detection results are averaged over the four different cameras. As to the

resolution of the likelihood map, we have B = C = 8. The results show that

when the predictor matches the demosaicing algorithm the performance is

nearly optimal, irrespective of the used predictor, whereas in the presence of
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Figure 5.5: ROC curves considering images from the original dataset with
128× 128 tampered regions. Features are computed on 8× 8 blocks:
(a) ideal case: the 400 original images have been sampled according
to the Bayer CFA pattern and then re-interpolated using the four
chosen interpolation algorithms; results from all the 400 images are
aggregated for each of the four predictors and the behaviour is shown
separately; for the sake of readability, we show a zoom of the ROC
curves for RTP > 0.8 and RFP < 0.2; AUC values are: bicubic
0.9975, bilinear 0.9845, gradient-based 0.9975, median 0.9954; (b)
real case: the 400 original images coming from the 4 cameras with
unknown demosaicing algorithms; results from all the 400 images are
aggregated for each of the four predictors and the behaviour is shown
separately.

a realistic and unknown demosaicing algorithm the best average performance

is obtained using the bilinear predictor. It is worth noting that in the latter

case the performance of the median predictor is far worse than that of the

other predictors, which is in accordance with the histograms in Fig. 5.4.

The following results show the detection performance, averaged over the

four cameras, when using the bilinear predictor and different choices of al-

gorithm parameters. In Fig. 5.6 we report the AUC values obtained using

different likelihood map resolutions without filtering the likelihood map, un-

der six different scenarios and considering different sizes of the tampered

area. In all cases, the best performance is obtained when the exact interpo-

lation kernel is known (in this case bilinear). Note also that the ability to

localize forged regions sensibly decreases when the JPEG compression qual-
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ity is below 95%. This is due to the low-pass behavior of JPEG compression,

which drastically attenuates high frequency signals, such as the prediction

error. With a quality factor 85%, our algorithm is unable to discriminate

between the presence and the absence of CFA artifacts.

By comparing the different curves, we observe that defining our features

on larger blocks makes our model more robust. These better performances

are obtained at the expense of map resolution. However, in realistic condi-

tions forgery sizes less than 8 pixels are unusual. It is also worth noting that

computing the features on 2× 2 or 4× 4 blocks and cumulating the proba-

bilities on 8 × 8 block yields slightly worse results than directly computing

the features on 8× 8 blocks. Lastly, the performance of the proposed detec-

tor appears similar for different forgery sizes, even though smaller tampered

areas are more difficult to detect due to the reduced number of tampered

blocks which decreases the reliability of the GMM estimation.

In Fig. 5.7, we compare the performance of the proposed detector using

the most favorable combination of parameters, namely 8×8 resolution with-

out cumulation, with the performance of the algorithms proposed by Dirik

and Memon in [73] (DM) and by Gallagher and Chen in [72], namely the

blockwise version (GC-B) and the version based on local statistics (GC-L).

For a fair comparison, the DM and GC-B algorithms have been applied on

8 × 8 blocks, whereas the features of GC-L algorithm have been computed

using 7×7 local averaging and 16-point discrete Fourier transform. The pro-

posed feature clearly outperforms the previous approaches, demonstrating

far better localization capabilities. It is also evident that the performance of

all CFA-based methods degrades similarly in the presence of JPEG compres-

sion when such methods are used to localize CFA artifacts at a fine-grained

resolution.

We also investigated the use of filtering on the likelihood map. In Figure

5.8, the AUC values are shown in the absence or presence of either mean

or median filtering, using 8× 8-features. The size of the tampered region is

128 × 128 pixels. We can see that filtering improves performances, except

in the ideal case, where the effects of the loss of resolution on the edges of

the tampered region is predominant, and that median filtering gives better

results than mean filtering.
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5.5.3 Examples

In this section, some examples of forgery localization are shown on real-

istically tampered images. In all the cases, the corresponding forgery maps

have been obtained by computing features on 8× 8 blocks (C = B = 8), us-

ing the bilinear predictor and applying median filtering on the log likelihood

map.

In Fig. 5.9 a copy-move forgery on an image acquired with a Nikon D90

is shown. Both the original image, in Fig. 5.9(a), and the tampered copy,

in Fig. 5.9(b), are saved in TIFF uncompressed format. The flower in the

upper-left corner has been pasted disaligning the CFA pattern, whereas the

flower in the upper right corner has been pasted maintaining the same CFA

pattern. In Figs. 5.9(c)-(f) we show the forgery maps obtained with the

proposed algorithm and the DM, GC-B, and GC-L algorithms, respectively.

Even if the case of copy-move forgery does not perfectly fit the proposed

model, since in the case of misaligned CFA artifacts the expected value of

L is less than zero, the proposed algorithm correctly localizes the flower in

the upper-left corner, whereas it is not able to localize the flower in the

upper-right corner. This is not surprising, since the proposed method gives

higher likelihood values for positive values of the feature and reveals local

inconsistencies of the CFA artifacts even when L < 0. As to the other

algorithms, only the GC-B is able to localize the upper-left flower. Moreover,

some false alarms are present in the case of saturated white regions, in which

CFA artifacts are not detectable.

Very often, to make the forgery more convincing some image processing

operations, like smoothing, filtering, stretching, rotating, etc., are applied.

These operations, removing CFA artifacts from the tampered regions, make

easier the forgery localization. In Fig. 5.10, we show an example where a

tampering is done by splicing a geometrically transformed image onto an

image taken by a Nikon D90 camera. In Figs. 5.10(c)-(n) we show forgery

maps obtained with different algorithms, from top to bottom, the proposed

algorithm, DM, GC-B, and GC-L algorithms, assuming that the tampered

image was saved in JPEG format with quality, from left to right, 100%,

95%, and 90%. As can be seen, the forged region can be correctly detected

in high quality images, but false alarms increase abruptly when the quality

of JPEG compression decreases, because lossy compression tends to delete

CFA artifacts. On this example, DM algorithm appears less effective than

the other algorithms.
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The inspection of the forgery maps in Figs. 5.9-5.10 suggests that the

proposed method is less effective in the presence of either almost flat areas

or sharp edges. In the first case, the prediction error is almost zero irre-

spective of the presence of CFA artifacts, so that this appears as an intrinsic

limit of the method. In the second case, this can be ascribed to the signal

adaptive and possibly non-linear behavior of realistic in-camera demosaicing

algorithms. At least in theory, such effects could be eliminated by using

some prior knowledge regarding in-camera CFA interpolation, which should

yield results very close to the ideal behavior shown in Fig. 5.5. An alter-

native approach could be that of reverse engineering the CFA interpolation

algorithm, for example using methods such as in [65] to take into account a

signal adaptive behavior. However, in the presence of heavily manipulated

images this approach is likely to produce a biased estimate and must be

handled with care.

5.6 Conclusions

In this Chapter, a forensic algorithm to localize forged regions in a digital

image without any a-priori knowledge about the location of the possibly tam-

pered areas has been presented. Considering the CFA demosaicing artifacts

as a digital fingerprint, we proposed a new feature measuring the presence of

demosaicing artifacts even at the smallest 2× 2 block level; by interpreting

the local absence of CFA artifacts as an evidence of tampering, the proposed

scheme provides as output a forgery map indicating the probability of each

block to be trustworthy.

The validity of the proposed system has been demonstrated by computing

the ROC curve of a forgery detector based on thresholding the probability

map, considering different scenarios and different algorithm parameters, and

comparing the performance with the approaches in [73] and [72]. The results

show that by a proper parameter configuration CFA artifacts are usually

reliably localized even at 8× 8 block resolution. Results are also confirmed

by tests carried out on realistic forgeries.

The fine-grained localization of tampered regions using CFA artifacts is

the main contribution of this part, since in previous approaches either the

area to be investigated has to be manually selected, or automatic block pro-

cessing obtains poor detection performance when forced to reveal CFA arti-

facts at a fine-grained scale. The results show that the proposed algorithm
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can be a valid tool for detecting and localizing forgeries in images acquired

by a digital camera. However, it should be remarked that the detection

performance is strongly affected by JPEG compression, limiting the appli-

cability to scenarios in which the image under test is either uncompressed

or compressed with high quality factors. Moreover, the present method may

not be directly applicable to cameras using a super CCD [81].

Test on realistically tampered images demonstrate that, due to the pres-

ence of uniform or very sharp regions, automatic detection may give a re-

markable false positive rate. Therefore, in order to limit the incidence of false

positives human interpretation of the forgery maps is still required. Future

work will be then devoted to the study of segmentation algorithms that, by

taking into account the local content characteristics, allow to produce a final

map with reduced false positives.
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Figure 5.6: Effects of the Likelihood Map resolution on the AUC values. We
consider TIFF images with bilinear interpolation (I) and TIFF im-
ages with in-camera demosaicing (II). These latter images are then
compressed in JPEG format with quality at 100% (III), 95% (IV),
90% (V) and 85% (VI). Different forgery sizes are investigated: (a)
32× 32 pixels; (b) 64× 64 pixels; (c) 128× 128 pixels.
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Dirik and Memon (DM) [73] and by Gallagher and Chen (GC-B and
GC-L) [72]. We consider TIFF images with bilinear interpolation
(I) and TIFF images with in-camera demosaicing (II). These latter
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Figure 5.8: Effects of Likelihood Map filtering on the AUC values. We consider
TIFF images with bilinear interpolation (I) and TIFF images with
in-camera demosaicing (II). These latter images are then compressed
in JPEG format with quality at 100% (III), 95% (IV), 90% (V) and
85% (VI). The features are computed on 8 × 8 blocks. Tampered
region is 128× 128 pixels.
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Figure 5.9: Example of a copy-move forgery in an image with CFA artifacts.
The resulting image is saved in TIFF format: (a) original image
acquired by the Nikon D90 camera; (b) tampered image; forgery
maps obtained with the proposed (c), DM (d), GC-B (e), and GC-L
(f) algorithms. Bright areas indicate high probability of presence of
CFA artifacts (unchanged blocks), whereas dark areas indicate low
probability of presence of CFA artifacts (tampered blocks).
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Figure 5.10: Example of a forgery in which a processed content (statue) is pasted
on an image with CFA artifacts: (a) original image; (b) tampered
image; (c)-(n) forgery maps obtained after saving in JPEG format
with quality, from left to right, 100%, 95% and 90%: (c)-(e) pro-
posed algorithm; (f)-(h) DM algorithm; (i)-(k) GC-B algorithm;
(l)-(n) GC-L algorithm.



Chapter 6

Blind mutations detection by

using a multi-clue analysis

Image authenticity verification has usually to be carried out without any

knowledge about the processing undergone by the image or the region that

suffered some forgery. In this setting, it is fundamental to rely on a multi-

clue analysis, that cleverly merges the information stemming from several

complementary tools. In this Chapter we introduce a fully automatic frame-

work for fusing the maps output by a set of unsupervised forgery localization

algorithms. The framework takes into account the forgery maps, their reli-

ability and the compatibility among the different traces considered by the

different tools. The achieved localization map is then refined by exploit-

ing image content, thus improving the overall performance of the proposed

system with respect to state of the art approaches.

6.1 Introduction

An important limit of the approach introduced in Chapter 5 is that it

is based on the observation of a single forensic trace. In practical scenarios,

the simultaneous analysis of different footprints could improve tampering

detection and localization. As to traces detected on the whole image, a

number of techniques have been proposed to fuse the information at the

feature level, i.e., by devising a complex classifier that accounts for multiple

footprints [82–85]. Other approaches work at the score level, meaning that

the scalar output of the tools is considered during fusion [86,87]. The overall

81
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performance of the above methods can be futher improved by taking into

account background information during fusion [88].

As to forgery localization, simple pixel-level fusion of different forensic

tool outputs has been investigated in [89]. The main limitation of this work

is that no information about tools reliability and compatibility has been

used. This is the step forward we take with our framework, in which we

propose a multi-clue approach for the unsupervised localization of forgeries

in digital images. The proposed method is based on Dempster-Shafer Theory

of Evidence (DST) [90]: under this flexible framework, we are able not only to

fuse information coming from different unsupervised forensic tools, but also

to exploit several kinds of background information to increase the reliability

of the results. More precisely, our approach is able to exploit: i) tool-based

information, since the fusion algorithm knows the reliability of each tool

under different working conditions and exploits information about local and

global properties of the analyzed content to better interpret the output of

tools. This fact is usually beneficial for forgery detection [88], and is likely

to be even more important for forgery localization, where the output is a

fine-resolution probability map; ii) trace-based information, meaning that

the fusion algorithm knows the compatibility relationships between traces

and can manage the case where two incompatible traces are simultaneously

present; iii) semantic-based information, which means exploiting the content

of the analyzed image to improve the forgery localization map.

6.2 Elements of Dempster-Shafer Theory of

Evidence

Dempster-Shafer Theory [90,91] is a mathematical tool providing a way to

model uncertainty and to combine information coming from multiple sources.

Let us denote with Θ = {θ1, θ2, . . . , θn} the exhaustive set of mutually exclu-

sive possible conclusions to be drawn. The frame of discernment of Θ is its

power set 2Θ, that is the set of all possible subsets of Θ (whose cardinality is

2|Θ|). A Basic Belief Assignment is a function assigning a mass to elements

of the frame of discernment associated to Θ.

Definition Let Θ be a frame. A function mΘ : 2Θ → [0, 1] is called a
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Basic Belief Assignment (BBA) over the frame Θ if:

mΘ(∅) = 0;
∑
A∈2Θ

mΘ(A) = 1 (6.1)

where the summation is taken over all possible subsets A of Θ.

Intuitively, the mass assigned to a set is the amount of certainty supporting

exactly that set, and not any of its subsets; for example it may be that

mΘ({θ1 ∪ θ2}) < mΘ({θ1}). The function accumulating the certainty about

a set and all its subsets is called belief function:

Definition Given a BBA mΘ over Θ, the Belief function Bel : 2Θ → [0, 1]

is defined as follows:

BelΘ(A) =
∑
B⊆A

mΘ(B). (6.2)

BelΘ(A) summarizes all our reasons to believe in A based on the available

knowledge. Going back to the previous example, we surely have: BelΘ({θ1∪
θ2}) ≥ BelΘ({θ1}). The reader can find more details and properties in [90].

DST is widely known as a tool for combining the evidence coming from

multiple independent sources of information. Indeed, given two BBAs mΘ
1

and mΘ
2 , we can obtain a fused BBA by using Dempster’s Combination Rule:

Definition Let Bel1 and Bel2 be belief functions over the same frame Θ

with BBAs m1 and m2. For all non-empty X ⊆ Θ the function m12 defined

as:

m12(X) =
1

1−K
·
∑

A,B⊆Θ:
A∩B=X

m1(A)m2(B) (6.3)

where K =
∑
A,B:A∩B=∅m1(A)m2(B), is a BBA function defined over Θ

and is called the orthogonal sum of Bel1 and Bel2, denoted by Bel1 ⊕Bel2.

The concept of “independence” in DST is not rigorously defined, it generi-

cally means that information must be provided by unrelated sources. When

new evidence defined on a different domain becomes available, it is necessary

to redefine available and new BBAs over a common frame of discernment be-

fore applying of the combination rule, through belief extension, as defined

in [90].
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Figure 6.1: Block scheme of the proposed framework for forgery localization,
where two tools A and B searching for a forensic trace α are consid-
ered. For the sake of clarity, global variables for Tool A are omitted
in the drawing.

6.3 DST-Based Multi-Clue Analysis

for Forgery Localization

The framework we propose aims at exploiting the output of an arbi-

trary set of unsupervised tamper localization algorithms and several kinds

of background information so as to produce a single comprehensive and more

reliable map.

Our system is reminiscent of the data fusion scheme described in [86].

In this scheme, the user manually selects a sufficiently large region and runs

a set of tools assigning to the region a scalar value measuring the presence

of a certain forensic trace in it. Then, the goal is to merge these outputs,

by also taking into account some local properties of the region that may

influence the reliability of the forensic tools. The way this is performed is

briefly sketched below:

1. output from each tool is interpreted and written as a BBA about pres-

ence/absence of a trace in the selected region;

2. BBAs obtained from different tools are combined using Dempster’s

combination rule [90], after applying belief extension for combining

the information about different traces;

3. compatibility relationships between different traces (modeled through

a BBA) are introduced using Dempster’s rule;

4. final decision: the total belief that the region has been forged is com-

puted based on the merged information.
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The most intuitive approach to extend the above analysis to forgery lo-

calization would be to simply apply the whole procedure separately to each

single element of the map (also called “analysis block”, from now on). How-

ever, this choice is potentially misleading because of the nature of forgery

localization tools. Indeed, as stated in Section 6.1, the accuracy of forgery

localization tools is strongly affected by the local properties of the image: for

example, very smooth or saturated regions are critical for many tools (see,

for example, [60, 62]), so that values assumed by the map in those regions

are less reliable. As a consequence, attention must be paid in properly inter-

preting the output of the tool locally. To this aim, for a forensic trace α, we

define the set Θα = {tα, nα}, where tα is the proposition “trace α is present

in the analysis block” and nα is the proposition “trace α is not present in

the analysis block”. We model this local information provided by the tool τ

with the following BBA over the frame Θα:

mΘα
τ (X) =


Lτ (i) for X = {(tα)}
Nτ (i) for X = {(nα)}
Dτ (i) for X = {(tα) ∪ (nα)}

. (6.4)

In the above equation Lτ (i), Nτ (i) and Dτ (i) are scalar values obtained by

interpreting the output of the tool in the i-th analysis block. It is here that

tool-based background information enters the picture: besides considering

the value of the localization map in the position of block i, a set of local

properties of the image is evaluated (e.g., mean value or variance of pixels

in the analysis block i) and used to determine the mentioned values for

equation (6.4). To perform this mapping from tool outputs and background

information to BBAs, we rely on the method recently proposed in [88]: such

method exploits a set of training images to learn how local properties affect

the output of the tool. Thus, given image and forgery localization map, using

this approach we obtain values for (6.4) for each block of pixels. This stage

of the framework is represented in the left-most side of Figure 6.1 (“BBA

mapping” blocks).

6.3.1 Global variables

There is another fundamental difference between forgery detection and

forgery localization tools. Independently from the analysis domain (e.g.,

pixel or DCT domain), unsupervised forgery localization tools typically as-
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sume that the signal under analysis is the mixture of two components: one

component deriving from parts of the image that were manipulated, and

one deriving from unaltered parts [34, 60, 92]. A statistical model is defined

for each component, and the parameters of the models are estimated from

available data. Finally, each (block of) pixels is assigned a probability of

belonging to each model, thus producing a forgery localization map, like the

one in the center of Figure 6.2. However, when for some reason the two

components are not correctly separated, the produced localization map is

practically useless, although it assigns a sensible value to each region (right

hand of Figure 6.2). A simple yet effective way to understand whether the

tool managed or not to separate the two components is to analyze the pro-

duced localization map as a whole: when the components are not separated,

the whole map takes values in a narrow range, meaning that all pixels belong

to the same component, while the opposite happens when two components

are separated (compare the two maps of Figure 6.2 for an explicative exam-

ple).

The above discussion suggests that we cannot simply interpret elements of

the localization map as “stand alone small blocks”, we must also model the

global information that is obtained from the localization map as a whole.

In order to do that, we propose to introduce for each considered forensic

trace also a global variable. Taking again the general forensic trace α as

reference, we define the frame Γα = {Tα,Nα} where Tα is the proposition

“the two components related to α were separated” while Nα has the opposite

meaning. After running a localization tool searching for α, a BBA over Γα
must be defined. We are not forced to give a binary interpretation: indeed

the border between the two cases is not always sharp. Hence, for a generic

tool τ , we propose to model this information through the following BBA:

mΓα
τ (X) =


(1−Wτ )Gτ for X = {(Tα)}

(1−Wτ )(1−Gτ ) for X = {(Nα)}
Wτ for X = {(Tα) ∪ (Nα)}

. (6.5)

If the tool τ is based on model separation, then Gτ ∈ [0, 1] quantifies the

confidence about the two components of the mixture being successfully sepa-

rated, and Wτ = 0. Instead, if τ is not based on model separation, we assign

all the mass to the doubt by setting Wτ = 1, thus yielding the neutral ele-

ment for Dempster’s combination rule [91] and disabling the contribution of

this BBA.
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Figure 6.2: A forged image (the baloon is pasted) and the forgery localization
map obtained with the tool in [60] on the tampered file (center plot)
and on a re-compressed version of the tampered file (right-most plot).
As we can see, in the latter case the map is not discriminative as it
takes values near to 0.5 everywhere; on the contrary, the same value
in the center plot clearly characterizes not-tampered regions.

This phase of the framework is drawn in the lower part of Figure 6.1.

Notice that, for the moment, the above BBA is not linked in any way

to that in eq. (6.4) (they are also defined on different frames, Γα and Θα

respectively). This means that we are not still logically linking local and

global information about the presence of the trace.

6.3.2 Inclusion of trace-based background information

Decision fusion is particularly interesting when tools searching for differ-

ent traces are merged together. In fact, by knowing the theoretical properties

of each forensic trace, in many cases the analyst can explicitly tell whether

a combination of traces is plausible or not: this is what we call trace-based

background information. As it was shown in [86], DST allows to write rather

easily such information in terms of BBAs, allowing to combine it with the

information provided by single forensic tools.

Also in this case, as we turn to forgery localization some noticeable differ-

ences appear. In the framework proposed in [86] each forensic trace is mod-

elled with one variable, so that only relationships between different traces are

to be considered. In the scenario addressed in this work, instead, each trace

is better represented with two variables (one referring to the local presence

of the trace and one to the suitability of the global model). Hence, we also

have a relationship between these two variables establishing the link between

local and global information about the trace, and allowing to change the in-

terpretation of the local output of the tool based on the global information.
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Table 6.1: Example of traces relationships.

Θα Γα Θβ Γβ Plausible Interpr.

tα Tα nβ Tβ Y Tamp.

nα Tα nβ Tβ Y Auth.

tα Tα tβ Tβ N -

It is worth noting that the global information about the presence of one trace

can also affect the interpretation of different forensic traces. Therefore, we

propose to write together these compatibility relationships. A good way to

do that in practice is to write a table listing on rows the combinations of

variables: each row is then labelled by the analyst as either plausible or not

plausible. For plausible rows, the analyst also specifies the interpretation

associated to that row in terms of authenticity of the block. Of course, this

has to be done only once for a set of forensic traces. An example for two

traces α and β is given in Table 6.1: the first row states that, for any anal-

ysis block of an image where the global models of both trace α and β were

successfully separated, it is plausible to find only the trace α and not the

other; moreover, the interpretation associated to this combination is “the

block is tampered”. The second row of the table tells that local absence of

both traces is plausible and is to be interpreted as the block being authentic

(based on the available information). The last row, instead, states that the

two traces cannot be present simultaneously in the same block. The table

is truncated for the sake of brevity; the complete version has 16 rows, even

though it makes sense to write explicitly only plausible combinations.

Compatibility tables can be easily written in terms of a BBA as follows:

for a given set T of considered traces, let us define as Ψ =
∏
j∈T Θj×Γj the

common frame of discernment, where
∏

and× denote the Cartesian product.

Let us also denote by ΨPL ⊆ Ψ the union set of all combinations that are

considered plausible. Then, the following BBA declares that combinations

that are not plausible have to be considered as conflicting information:

mΨ
rel(X) =

{
1 for X ∈ ΨPL

0 for X /∈ ΨPL
; (6.6)

this phase is denoted in Figure 6.1 by the block whose output is mΨ
rel.
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6.3.3 Obtaining the fused localization map

By applying Dempster’s combination rule to the BBA resulting from

traces relationship and those available from single tools, we obtain a sin-

gle BBA summarizing the available information. Then, it makes sense to

compute the belief of the set composed by all plausible combinations whose

interpretation is “tampered”, using equation (6.2). Notice that this compu-

tation is to be done only once for a given set of forensic traces; the resulting

formula remains the same for every image, so it can be stored and evaluated

when needed. By evaluating the formula for each analysis block of an image,

a map taking values in [0,1] is produced, which tells the total belief for each

block of being tampered.

6.3.4 Map refinement by guided filtering

As the vast majority of forgery localization tools process each analysis

block independently of the others [34, 60, 62], the resulting localization map

are typically affected by noise. In some cases, authors proposed to filter the

map to reduce noise (e.g., in [60] median filtering is advised), but this solu-

tion could be not sufficient when several maps have to be fused. Moreover,

the use of filtering based on fixed window (i.e. as median or mean ones)

rises the problem of how to set the window size: a large window produces

more reliable results, but reduces the effective resolution of the localization

map; conversely, a small window has a better capability to localize forgery

(especially in the case of small tampering), but with limited noise reduction

capability. To this aim, we propose to exploit what we call semantic-based

background information, meaning that we let the content of the analysed

image to drive the map processing. Recently, authors of [93] proposed to

use guided filtering [94] to accomplish this task. Guided filter computes the

filtered output by considering the content of the guidance image. In this

application, the input is the localization map and the guidance image is

the image under inspection. The main advantage is that the guided filter

transfers the structures of the guidance image (i.e. tampered image) to the

filtered output (i.e. filtered map). Moreover, as shown in [94], this filter can

be efficiently computed in O(N) time, and this makes it more efficient than

other edge-preserving filters, as bilateral filter, whose extended version can

be found in [95].
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6.4 Experimental results

In this section we discuss the experiments that we carried out to prove

the validity of the proposed approach.

6.4.1 Case Study

The tools we employ are based on aligned double JPEG compression

(AJPEG) footprints [60], non-aligned double JPEG (NAJPEG) footprints

[92] and Color Filter Array (CFA) inconsistencies [62]. We summarize briefly

their underlying scenarios.

In [60], it is analyzed a scenario in which an original JPEG image, after

some localized forgery, is saved again in JPEG format. Such a forgery dis-

rupts JPEG compression footprints. Examples of this kind of manipulation

are a cut and paste from either an uncompressed image or a resized image, or

the insertion of computer generated content. In this case, DCT coefficients

of unmodified areas undergo a double JPEG compression thus exhibiting

double quantization (DQ) artifacts, while, very likely, DCT coefficients of

forged areas do not show such artifacts. If the image was not cropped be-

tween the first and the second compression, the grid of the DCT coefficients

of the first compression is aligned to the second one.

In [92] a different scenario is proposed for image splicing. Here, it is

assumed that a region from a JPEG image is pasted onto a host image

that does not exhibit the same JPEG compression statistics, and that the

resulting image is re-compressed in JPEG format. In this case, the forged

region exhibits double compression artifacts, whereas the not manipulated

region does not. By assuming a random placement of the spliced region,

there is a probability of 63/64 that the grid of the DCT coefficients of the

first compression is not aligned to the second one (NAJPEG artifacts).

In [62], authors propose a forgery localization method based on the traces

left by CFA interpolation. The scenario is a one in which a local forgery

destroys the correlation introduced by in-camera demosaicing. Thus, the

forged region does not show CFA artifacts, whereas the remaining part of

the image presents them.
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6.4.2 Methodology

To simplify our case study, we set the dimension of each block to 8 × 8

pixels, which represents the minimum resolution on which double JPEG

compression based algorithms work. In order to define the mapping from

the localization maps to BBAs (Eq. (6.4)), we adopt the method proposed

in [88], choosing the following set of properties to locally characterize the

reliability of each tool τ :

1. q2: the value of the last compression factor, if any;

2. µ: mean value intensity of the block of pixels;

3. σ: standard deviation of the intensity of the block of pixels;

4. q1: the value of the first compression factor, if any.

It is worth noting that q1 is not directly observable, but it is estimated

by AJPEG and NAJPEG tools, and it is employed only for CFA, since

as shown in [62], traces of CFA artifacts could be removed by strong past

compression. The generic analysis block is thus described by the vector

v = (oτ , q2, µ, σ, q1), where oτ denotes the value of the block in the map

produced by tool τ (in our case, τ ∈ T = {AJPEG; NAJPEG; CFA}). By

applying the approach proposed in [88], each vector is associated to scalar

values Lτ , Nτ and Dτ (see Eq. 6.4); as to the parameters required in [88],

we used α = 0.85 and η̂ = 12 for each tool, whereas γ̂ = 0.5 for CFA tool,

γ̂ = 512 for AJPEG tool and γ̂ = 2048 for NAJPEG tool. These values were

gathered through 5-fold cross validation and grid search.

Finally, as motivated in section 6.3.2, we define an empirical method to

assign values to global variables, telling to what extent the tool successfully

separated the two components for its own trace. Since all the considered

tools are based on model separation, according to equation (6.5) we set

Wτ = 0 ∀τ ∈ T , and we define a linear piecewise function:

Gτ (ρ) =

{
1 for ρ ≥ a
ρ/a for ρ < a

, (6.7)

where the input ρ is the percentage of blocks belonging to the less populated

model, as explained in Section 6.3.1. By definition, Gτ takes values in [0, 1]

and it also depends on the parameter a, which represents the minimum

percentage of blocks allowing a model to be detected. The value of a was
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derived from experimental evidence, set to a = 1/8. The rationale is that

two components can be separated if at least 1/8 of the blocks shows the

footprints searched for.

6.4.3 Results

Here we show the improvements in localizing forgeries in an unsupervised

scenario. To quantify it, we generate three different sets of images to train

and test the proposed framework. Firstly, we define a training set to train

the BBA mapping module, incorporating tool-based background information.

The second step is to design a proper dataset (we refer as testing) to compare

the performance of each tool employed individually with respect to those of

the framework. It is worth noting that we assume a blind case, i.e. each

tool is applied without any a priori information about the type of tampering

applied to the image. Finally, we build a dataset of realistic spliced images in

order to show the real capabilities of localizing a forged region. The details

are listed below.

Training: Starting from 100 uncompressed TIFF images cropped to

a 1024× 1024 resolution, three different tampering (AJPEG, NAJPEG and

CFA destruction) have been applied separately, in such a way that the traces

detected by each algorithm have been inserted (or deleted) from the left half

of each image. For the AJPEG and NAJPEG traces, the quality factors of the

first and second compression are in {50, 60, 70, 80, 90, 100}, whereas for the

CFA footprint, the quality factors employed are in {50, 60, 70, 80, 90, 100, Inf},
where Inf represents the case of TIFF uncompressed images. By combining

all possible compression factors, we obtain a set composed by 3600 images

for AJPEG, 3600 for NAJPEG and 700 for CFA case.

Testing: Starting from 50 uncompressed TIFF images, with a different

content from the training set, we apply the same tampering as before to

the central block of 512 × 512 of the images. For AJPEG and NAJPEG

traces, the quality factors of the first compression are in {60, 70}, whereas the

quality factors of the second are in {80, 90}. For the CFA based tampering,

a median filtering is applied to remove traces of CFA artifacts. Overall,

750 test images have been created: 200 with AJPEG tampering, 200 with a

NAJPEG tampering, 150 with CFA tampering and 200 containing AJPEG

and NAJPEG traces at the same time.

Realistic: 19 realistic forgeries have been created through a cut and

past strategy, by inserting a content (i.e. an object) coming from an image
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onto another one, and keeping track of the forged region position. The set is

composed of 4 TIFF images, whereby an object (without CFA artifacts) is

pasted onto another (with CFA artifacts), 6 images with AJPEG footprints

, 5 images with NAJPEG footprints and 4 images whereby objects with NA-

JPEG traces have been inserted in images with AJPEG traces. All forgeries

were made in such a way that each footprint is easily detected, since the aim

of this dataset is to evaluate the capability of localizing a realistic forgery.

To prove the validity of the framework, we use the true positive rate

(RTP ), measuring the fraction of tampered blocks correctly detected as

forgery, and the false positive rate (RFP ), measuring the fraction of un-

changed blocks erroneously detected as forgery. The overall performance of

the compared methods are evaluated by plotting its receiver operating char-

acteristic (ROC) curve, obtained by thresholding the output maps with a

varying threshold value and recording the corresponding values of RTP and

RFP . The area under the curve (AUC) is finally employed to summarize the

discrimination capability of detectors.

The first test is carried out on the testing dataset, with the aim to com-

pare our framework to each tool, applied independently and in a blind way.

The performance, evaluated in terms of AUC, show that the DST-based

framework (AUC = 0.895) outperforms the single detectors AJPEG (AUC

= 0.854), NAJPEG (AUC = 0.607) and CFA (AUC = 0.588). It is worth

noting that no post-filtering has been applied to the output of fusion step.

As second step, we make a comparison between the performance of our

framework and those of the methods proposed in [89], based on the sum

and the product of the output map provided by each tool. Moreover, the

performance of the framework are evaluated by employing or not global vari-

ables, as defined in Section 6.3.1. The results are shown in Fig. 6.3 (a) by

means of ROC curves, evaluated on the testing dataset. As we can see, the

proposed framework has the best capability of localizing forgeries, and the

introduction of global variables dramatically impacts the performance. This

is explained by the fact that the introduction of global variables provides

further information about the reliability of the value given by a tool. Fi-

nally, we present the localization capability of the framework in the case

of realistic tampering. In Figure 6.3 (b), we show the performance of the

method without post-filtering and in case of guided filtering at the end of

the fusion framework. Moreover, a comparison with each tool performance is

proposed. As expected, the refinement by using guided filtering increases the
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(a) (b)

Figure 6.3: In Fig. (a), we show a comparison of our framework (blue curve)
with the methods proposed in [89], based on the sum (green) and the
product (purple) of the output map. Moreover, we show the decrease
in the case of absence of global variables (red). The performance are
evaluated on the testing dataset. In Fig. (b), we show a comparison
of the localization capability without post-filtering (blu curve), with
the use of guided filtering (red) and the application of each single
tool AJPEG (green), NAJPEG (purple) and CFA (black), applied to
the realistic dataset.
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accuracy in localizing realistic forgeries. Even in this case, the DST-based

framework has better capabilities with respect to each single tool, applied

independently and in a blind way.

6.5 Conclusions and Future Work

In this Chapter a framework for unsupervised multi-clue forgery local-

ization has been proposed, which merges information provided by a set of

forensic tools with background information freely available to the analyst.

Such a framework exploits the peculiar properties of those localization tools

that are based on mixture models, by introducing global variables that are

taken into account by the system. Although the way we assigned values to

such variables is still rather empirical, their impact on the overall perfor-

mance is dramatic. The formalization of global variable assignments and

the extension to the case of copy-move detectors, whose output map can not

distinguish between original and pasted regions, is left for future work.
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Chapter 7

Conclusions

In this thesis we walked through different approaches, borrowed from

Image Forensics, to attempt to reconstruct the evolution of digital images.

We started from the case in which an image changes over time, keeping its

own semantic content. We defined a new dissimilarity measure to reliably

reconstruct the phylogeny of an image. Moreover, we tackled the same prob-

lem when other images with the same content are not available, by solving

a well defined case study. The step forward was to extend our study to the

case in which images change partially its own content. Our efforts were in

extending the Image Phylogeny approach to the case of multiple parenting.

Moreover, we dealt with the scenario in which the hypothesis on which im-

age Phylogeny works are not satisfied: we developed a new algorithm able to

provide what regions of the image suffered some processing, by using statisti-

cal correlations introduced by Colour Filter Array, and finally we integrated

such a tool in a general multi-clue based framework.

Besides summarizing our contributions, this final chapter outlines some

important open issues that, we believe, should be pursued in the near future,

and provides a few remarks on the reconstruction of image evolution.

7.1 Summary

Image Forensics was proved to be suitable to study how images evolve

over time, and it has received a lot of attention in recent past years in the

academic and industrial community. Today we have tens of different tools,

together with many elegant mathematical formulations of topics like multi-
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ple quantization or resampling. However there is a concern about practical

applicability of image forensic tools, so that only few of them are ready to

be used in real world cases today, especially in the blind reconstruction of

image evolutionary history.

7.2 Open issue

Before drawing the final remarks, we would like to focus the attention

on two topics that have received few consideration up to today, namely con-

textual analysis and sentiment analysis. Contextual analysis refers to the

task of detecting whether an image is used out of the correct context, so to

mislead the user. It is easy to understand that deliberately placing a picture

in the wrong position can totally subvert its meaning, or the meaning of

surrounding content, even without changing one pixel. We may say that al-

tering the semantic meaning of a picture can be done either by manipulating

the picture or by manipulating the context wherein the picture is placed.

Also this represents a sort of evolution of the image. Of course, this kind of

investigation sets big challenges, also due to the difficulty of interpreting the

semantic meaning of multimedia objects and environments. We may con-

sider the existent studies on image phylogeny as a first step in this research

direction: given a set of near-duplicate images, phylogeny methods aim at

recovering the dependency graph telling which picture originated which. A

step forward could be the analysis of metadata associated to image storage

formats as JPEG. Information as camera model, camera parameters, time-

stamp or GPS could be employed in a forensics analysis, especially when

we want to go back to the sources that have generated a composite image.

Sentiment analysis of images has the aim of going back to the motivation

(or causes) of the evolution of images, and how such a processing modifies

the feeling of beholder. Such an information could provide, if available, a

complete vision of how and why an image is evolved.

7.3 Final remarks

We spend some words on the main limitations shared by image forensic

methods for image evolution study. As long as the literature is concerned,

the first enemy of image forensic techniques is counter-forensics, as it aims at

erasing the (already fragile) traces left during image processing. In practice,



7.3 Final remarks 99

however, the real enemy is the way digital contents are commonly archived

and shared. When an image is uploaded on, say, Flickr or Facebook, it is

resized and recompressed by default. Unfortunately, such operations are a

very effective, though involuntary, counter-forensic mean. In general, we can

say that the main problem for the Image Forensics is that it has to work on

contents whose integrity is seldom preserved: such limitation is extremely felt

in the case of blind reconstruction scenarios. The only way for forensic tech-

niques to face with this problem is to devise more robust methods, searching

for traces that survive these kind of processing. One noticeable example

is given by geometrical and physical features (shadows, lighting conditions,

perspective consistency), however such techniques require the manual aid of

a clever and patient analyst, and they are barely applicable on large amount

of data. Another effective counter-measure is the synergic use of many dif-

ferent tools, hoping that at least some traces of manipulation survive the

whole chain linking the forger to the analyst, as we tried to demonstrate in

the final chapter of our Thesis.

Although being aware of all its limits, we believe that image forensics

applied to image evolution study can bring an important contribution in

copyright, security and justice, so that it is easy to foresee an increasing

interest in this topic in the near future.
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[4] A. Joly, O. Buisson, and C. Frélicot, “Content-based copy retrieval using

distortion-based probabilistic similarity search,” IEEE Transactions on Mul-

timedia, vol. 9, no. 2, pp. 293–306, 2007.

[5] Z. Dias, A. Rocha, and S. Goldenstein, “Large-scale image phylogeny: Tracing

image ancestral relationships,” IEEE Multimedia, vol. 20, no. 3, pp. 58–70,

2013.

[6] F. O. Costa, M. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha, “Image phy-

logeny forest reconstruction,” IEEE Transactions on Information Forensics

and Security, vol. 9, no. 10, pp. 1533–1546, 2014.

[7] Z. Dias, A. Rocha, and S. Goldenstein, “Video phylogeny: Recovering near-

duplicate video relationships,” in IEEE Workshop on Information Forensics

and Security, 2011, pp. 1–6.

[8] Z. Dias, S. Goldenstein, and A. Rocha, “Exploring heuristic and optimum

branching algorithms for image phylogeny,” Elsevier Journal of Visual Coim-

munication and Image Representation, vol. 24, pp. 1124–1134, October 2013.

[9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Elsevier Computer Vision and Image Understanding, vol. 110, no.

3, pp. 346–359, 2008.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,”

Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

101



102 REFERENCES

[11] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between

images,” IEEE Computer Graphics Applications, vol. 21, pp. 34–41, 2001.

[12] I. Sobel and G. Feldman, “A 3x3 isotropic gradient operator for image pro-

cessing,” a talk at the Stanford Artificial Project in, pp. 271–272, 1968.

[13] Rafael Gonzalez and Richard Woods, Digital Image Processing, Prentice-Hall,

3 edition, 2007.

[14] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[15] J. G. MacKinnon, Numerical distribution functions for unit root and cointe-

gration tests, Institute for Economic Research, Queen’s University, 1995.

[16] J.E. Tapia and C.A. Perez, “Gender classification based on fusion of different

spatial scale features selected by mutual information from histogram of lbp,

intensity, and shape,” vol. 8, no. 3, pp. 488–499, March 2013.

[17] R. Bramon, I. Boada, A. Bardera, J. Rodriguez, M. Feixas, and M. Sbert.,

“Multimodal data fusion based on mutual information,” IEEE Transac-

tions on Visualization and Computer Graphics, vol. 18, no. 9, pp. 1574–1587,

September 2012.

[18] R. Battiti, “Using mutual information for selecting features in supervised

neural net learning,” IEEE Transactions on Neural Networks, vol. 5, no. 4,

pp. 537–550, July 1994.

[19] P. Viola and W. M. Wells, “Alignment by maximization of mutual infor-

mation,” International Journal of Computer Vision, vol. 24, pp. 137–154,

1997.

[20] F. Maes, A. Collignon, D. Vandermueln, G. Marchal, and P. Suetens, “Multi-

modality image registration by maximization of mutual information,” IEEE

Transaction on Medical Imaging, vol. 16, pp. 187–198, 1997.

[21] K. A. Brownlee, Statistical theory and methodology in science and engineering,

Wiley series in probability and mathematical statistics: Applied probability

and statistics. Wiley, 1965.

[22] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition),

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[23] J. Edmonds, “Optimum branchings,” Journal of Research of National Insti-

tute of Standards and Technology, vol. 71B, pp. 48–50, 1967.

[24] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bul-

letin, pp. 80–83, 1945.

[25] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting traces

of resampling,” IEEE Transactions on Signal Processing, vol. 53, no. 2, 2005.



REFERENCES 103

[26] M. Kirchner, “Fast and reliable resampling detection by spectral analysis

of fixed linear prediction residue,” ACM Multimedia and Security Workshop

(ACM MM&Sec), pp. 11–20, 2008.

[27] M. C. Stamm and K. J. R. Liu, “Forensic detection of image manipulation

using statistical intrinsic fingerprints,” IEEE Transactions on Information

Forensics and Security, vol. 5, no. 3, pp. 492–506, 2010.

[28] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in

double compressed JPEG images,” in Proc. of DFRWS, 2003.

[29] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Transaction

on Information Forensics and Security, vol. 4, no. 1, pp. 154–160, 2009.

[30] A.C. Popescu, Statistical Tools for Digital Image Forensics, Ph.D. thesis,

Department of Computer Science, Dartmouth College, Hannover, 2005.

[31] T. Bianchi and A. Piva, “Reverse engineering of double JPEG compression

in the presence of image resizing,” in IEEE International Workshop on Infor-

mation Forensics and Security, 2012, pp. 127–132.

[32] M. Stamm and K. J. R. Liu, “Forensic estimation and reconstruction of a

contrast enhancement mapping,” in International Conference on Acoustics,

Speech, and Signal Processing, 2010, pp. 1698–1701.

[33] M. Stamm and K.J.R. Liu, “Blind forensics of contrast enhancement in digital

images,” in IEEE International Conference on Image Processing, 2008, pp.

3112–3115.

[34] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained

tampered JPEG image detection via DCT coefficient analysis,” Pattern Recog-

nition, vol. 42, no. 11, pp. 2492–2501, 2009.

[35] J. Fridrich, M. Goljan, and D. Hogea, “Steganalysis of JPEG images: Break-

ing the F5 algorithm,” in International Workshop on Information Hiding.

2002, pp. 310–323, Springer-Verlag.

[36] J. Fridrich, “Feature-based steganalysis for JPEG images and its implications

for future design of steganographic schemes,” in Information Hiding, 2005,

pp. 67–81.

[37] T. Bianchi and A. Piva, “Image forgery localization via block-grained anal-

ysis of JPEG artifacts,” IEEE Transactions on Information Forensics and

Security, vol. 7, no. 3, pp. 1003–1017, June 2012.

[38] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math.

Statistics, vol. 2, pp. 79–86, 1951.

[39] Z. Fan and R.L. de Queiroz, “Identification of bitmap compression history:

Jpeg detection and quantizer estimation,” IEEE Transactions on Image Pro-

cessing, vol. 12, no. 2, pp. 230–235, 2003.



104 REFERENCES

[40] T. Gloe, “Demystifying histograms of multi-quantised dct coefficients,” in

IEEE International Conference on Multimedia and Expo, 2011, pp. 1–6.

[41] Shuiming Ye, Q. Sun, and E.-C. Chang, “Detecting digital image forgeries

by measuring inconsistencies of blocking artifact,” in IEEE International

Conference on Multimedia and Expo, 2007, pp. 12–15.

[42] D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG co-

efficients and its applications in image forensics,” in SPIE Conference on

Security, Steganography, and Watermarking of Multimedia Contents, 2007,

vol. 6505.

[43] B. Li, Y. Q. Shi, and J. Huang, “Detecting doubly compressed JPEG images

by using Mode Based First Digit Features,” in Multimedia Signal Processing,

2008, pp. 730–735.

[44] Z. Dias, A. Rocha, and S. Goldenstein, “Toward image phylogeny forests:

Automatically recovering semantically similar image relationships,” Elsevier

Forensic Science International, vol. 231, no. 1–3, pp. 178–189, 2013.

[45] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, L. Del Tongo, and G. Serra,

“Copy-move forgery detection and localization by means of robust clustering

with J-Linkage,” Signal Processing: Image Communication, vol. 28, no. 6, pp.

659–669, 2013.

[46] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

Springer International Journal of Computer Vision, vol. 60, no. 2, pp. 91–

110, 2004.

[47] R. Toldo and A. Fusiello, “Robust multiple structures estimation with J-

Linkage,” in Springer European Conference on Computer Vision, 2008, pp.

537–547.

[48] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak geomet-

ric consistency for large scale image search,” in Springer European Conference

on Computer Vision, 2008, pp. 304–317.

[49] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics,” in IEEE International Conference on Com-

puter Vision, 2001, vol. 2, pp. 416–423.

[50] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer, “Generic object recogni-

tion with boosting,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 3, pp. 416–431, 2006.

[51] K. McGuinness and N. E. O’Connor, “A comparative evaluation of interactive

segmentation algorithms,” Elsevier Pattern Recognition, vol. 43, no. 2, pp.

434–444, 2010.



REFERENCES 105

[52] M. Marszatek and C. Schmid, “Accurate object localization with shape

masks,” in IEEE Conference on Computer Vision and Pattern Recognition,

2007, pp. 1–8.
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