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3.1 Introduction 

In the previous section we observed the early responses to ionic- and non-ionic 

hyperosmotic stress leading to PCD. It was shown that in response to ionic- and non-

ionic hyperosmotic stresses, the early 1O2 generation and subsequent [Ca2+]cyt increase 

were not involved in PCD, while a delayed O2
.- generation could be involved in the 

events leading to PCD. One of the most important differences observed between non-

ionic and ionic hyperosmotic stresses induced PCD in BY2 tobacco cells was the role of 

NSCCs in case of NaCl treatment. In fact, Na+ influx through NSCC causes a 

mitochondrial depolarization probably involved in PCD. After sorbitol treatment we 

observed a hyperopolarization correlated with a decrease in anion currents. However the 

cell shrinkage observed after sorbitol treatment, could not be explained by the early 

anion current decrease. Since anion current increase was reported to participate in toxins 

and ozone induced cell shrinkage and death (Errakhi et al., 2008; Gauthier et al., 2007; 

Kadono et al., 2010) and in addition biphasic regulation of anion fluxes were previously 

reported in response to non-ionic hyperosmotic stress (Shabala et al., 2000; Teodoro et 

al., 1998), we investigated if a putative delayed increase in anion currents could 

participate to non-ionic hyperomotic-induced cell death. Becouse SLAC channel allows 

long term efflux of anion and it’s a candidate for the anion current evoked during such 

PCD (Kadono et al., 2010), we used A. thaliana cultured cells due to the availability of 

the SLAC1 mutant (Negi et al., 2008). 
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Abstract 

Hyperosmotic-stress represent one of the most serious abiotic factors that limit 

plant development. In this study we showed dual responses of cultured plant 

Arabidopsis thaliana cultured cells to sorbitol-induced hyperosmotic stress. A 

first set of events, namely cytosolic Ca2+ increase, singlet oxygen production or 

hypepolarization due to anion channel activity decrease could participate to 

signalisation or osmotic adjustment allowing cell adaptation and survival, when 

a second set of events, namely superoxide anion (O2
•-) generation by NADPH-

oxidase and anion channel activation could participate in PCD development of a 

part of the cell population raising the question of how a survival pattway and a 

death pathway could be induced by the same hyperomotic conditions.  

 

Key words: anion channels, Arabidopis thaliana, hyperosmotic stress, 

programmed cell death 

 

Abbreviations: 9-AC, 9-anthracen carboxylic acid; AD, actinomycin D; AVD, 

apoptosis volume decrease; RVI, regulatory volume increase; RVD, regulatory 

volume decrease; PM, plasma membrane BAPTA, [Ca2+]cyt, cytosolic Ca2+ 

concentration; Chx, cycloheximide; ∆Ψm, mitochondrial membrane potential; 

FDA, fluorescein diacetate; Gli, glibenclamide; PCD, programmed cell death; 

ROS, reactive oxygen species; Vm, resting membrane potential. 
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Introduction 

Most of the living organisms have to support shift in extracellular osmolality 

which lower the water potential of the cellular external medium during their life. 

The influence of such change is determined both by its strength and duration and 

by the interaction between this shift and the genetic peculiarities of the 

organism. The way the organism respond to such change can be a matter of life 

or death since there always exists the so-called “stability limit”. Each deviation 

out of this stability limit of the live system results in stress, which to a different 

degree disturbs it functional activity. For plants, drought represent some of the 

major stress that should adversely affect their development. Plants can tolerate 

drought by maintaining sufficient cell turgor to allow metabolism to continue 

under increasing water deficits. This tolerance involves osmotic adjustment as 

the water potential of the cell’s environment decreases, enabling water uptake 

(Munns, 1988). Hyperosmotic change due to addition of osmotica such as 

sorbitol, are thus frequently used to simulate drought (Verslues et al., 2006). 

Such addition makes it harder for plants to extract water, simulating what 

happens in drying soil. In such conditions, a rapid modulation of the activities of 

their plasma membrane ion transport systems generally allows counteracting 

perturbations due to the hyperosmotic change, as observed whatever the cell 

types, from bacteria to metazoans, fungi, and plants. Early modulation of K+ and 

Cl- flux (Li and Delrot, 1987; Shabala et al., 2000; Shabala and Lew, 2002) and 

regulation of H+-ATPase activity (Meijer et al., 2002) supposed to participate to 

osmotic adjustement were effectively reported in plants, although the inhibition 

of anion efflux was shown to be restored rapidly (PENNARUN and Maillot, 

1988; Teodoro et al., 1998). Recently we showed that sorbitol-induced 

hyperosmotic stress could induce the programmed cell death (PCD) of part of a 

plant cell culture population (Monetti et al., 2014b) . We thus decide to use such 

model to study the question of how the same initial perturbation could cause 

opposite physiological responses, survival or death. The sorbitol-induced PCD in 

BY2 cell culture were shown to be dependent on delayed production of reactive 

oxygen species (ROS) (Monetti et al., 2014b). In this study we focused on the 
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role of anion channel regulation since (i) H2O2 could stimulate anion channel 

activity in our cells (Kadono et al., 2010), (ii) regulation of anion fluxes seemed 

to be complex and time dependent under hyperosmotic condition (PENNARUN 

and Maillot, 1988; Teodoro et al., 1998), (iii) these channels were shown to play 

fundamental roles in plant cell PCD or by reduction of their activity (Reboutier 

et al., 2007; Reboutier et al., 2005) either by increasing this activity (Errakhi et 

al., 2008; Gauthier et al., 2007; Kadono et al., 2010; Tran et al., 2013b) and (iv) 

they are involved in response to hyperosmotic stress in animal cells (Dezaki et 

al., 2012; Lang et al., 1998). Our data showed upon hyperomoctic stress a 

biphasic regulation of anion channel activity occurs, and that delayed sustained 

anion current increase through SLAC1 channels could participate in the 

deviation of the stability limit leading to the death of part of the cell population. 
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Materials and Methods 

Cell culture conditions 

Arabidopis thaliana L. cell suspensions of the cell line T87 (Axelos et al., 1992) 

were maintained in Gamborg culture medium complemented with 20 g.L-1 

sucrose, 2 mg.L-1 2,4 D, 0.1 mg.L-1 kinetin at 22 ± 2 °C under continuous white 

light (40 µE.m-2.s-1) with continuous shaking (gyratory shaker at 120 rpm), as 

previously described (Kadono et al., 2010). Cell suspensions were sub-cultured 

weekly using a 1:10 dilution. All experiments were performed at 22 ± 2 °C using 

log-phase cells (4 days after sub-culture). Cell density was about 3.104 cells mL-1.  

For the freshly prepared cell suspensions derived from Arabidopsis Col 0 and 

slac1 mutant, the seeds were sterilized in 1% (w/v) sodium hypochlorite and 

allowed to germinate on sterilized MS agar plates containing vitamin B5, but 

lacking 2,4-dichlorophenoxy acetic acid (2,4-D). The seedlings were grown on 

agar plates under a 12/12 h light/dark regime at 23 ± 1˚C for three weeks. Excised 

tissues from harvested seedlings were transferred onto agar medium containing 

0.2 mg/ml 2,4-D to promote callus formation. Microcalli in suspension were 

initiated by addition of cut pieces of the resulting microcalli Calli are maintained 

on Gamborg culture medium complemented with 20 g.L-1 sucrose, 2 mg.L-1 2,4 

D, 0.1 mg.L-1 kinetin and agar 0.8%. The suspension cells were obtained after 

about 2 months and 5-6 subculture in 1 L round bottom flasks containing 350 ml 

liquid Gamborg culture medium (pH 5.8). Only the smallest calli were selected at 

each subculture to obtain suspensions culture as thin as possible. 

Osmolality changes 

The osmolality changes were systematically obtained by addition of 50 µL of 

sorbitol from various stock solutions. Measurement of osmolality changes after 

sorbitol treatment were determined using 100 µL supernatant of cell suspensions 

and the freezing depression method using an Automatic Micro-Osmometer Type 

15 (Löser Messtechnik, Berlin, Germany). 
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Cell viability assays 

Sorbitol-induced cell death in the cell suspension culture was quantified using 

fluorescein diacetate (FDA) as previously described (Reboutier et al., 2007). 

Briefly, after the appropriate treatment, 1 mL of cell suspension was gently stirred 

with a magnetic stirrer before FDA was added to a final concentration of 12 µM. 

The fluorescence increase was monitored over a 120 s period using a F-2000 

spectrofluorimeter (Hitachi High-Technologies Corporation, Japan). Results are 

presented as the percentage of cell death = (slope of treated cells/slope of non 

treated cells) • 100 ± SE. 

Cell viability was also determined by staining the dead cells with the vital dye 

Evans blue (0.005%, w/v) by mixing and incubating the cells and the dye for 10 

min. Then stained cells were observed under microscope. When appropriate a 

pretreatment of 15 min with pharmacological effectors was done prior to sorbitol 

exposures. Cells were counted under a microscope and cells that accumulated 

Evans blue were considered dead. At least 500 cells were counted for each 

independent treatment and the procedure was repeated at least three times for each 

condition. All the pharmacological agents tested were added 5 min before sorbitol 

treatment 

 

Voltage clamp measurements 

Experiments were conducted on 4-day-old cells maintained in their culture 

medium to limit stress (main ions in Gamborg medium after 4d 9 mM K+ , 11 mM 

NO3 (Reboutier et al. 2002)). Individual cells were immobilized by a microfunnel 

(approximately 50 to 80 µm outer diameter) and controlled by a micromanipulator 

(WR6-1, Narishige, Japan). Impalements were carried out with a piezoelectric 

micromanipulator (PCS-5000, Burleigh Inst., USA) in a chamber (500 µl) made 

of perpex. Voltage-clamp measurements of whole-cell currents from intact 

cultured cells presenting stable running membrane potential were carried out 

using the technique of the discontinuous single voltage-clamp microelectrode 

(Finkel and Redman, 1984). In this technique, both current passing and voltage 

recording use the same microelectrode. Interactions between the two tasks are 

prevented by time-sharing techniques (sampling frequency 1.5 to 3 kHz). 
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Microelectrodes were made from borosilicate capillary glass (Clark GC 150F, 

Clark Electromedical, Pangbourne Reading, UK) pulled on a vertical puller 

(Narishige PEII, Japan). Their tips were less than 1 µm diameter; they were filled 

with 600 mM KCl, and had electrical resistances between 20 and 50 MΩ with the 

culture medium. The capacity compensation of the microelectrode amplifier 

(Axoclamp 2A, Molecular Devices, Sunnyvale, USA) was set to a sub-critical 

level to produce the fastest electrode response. The relatively large size of the 

cells ensured a sufficiently high membrane time constant despite a relatively low 

input resistance (about 40 MΩ). Specific software (pCLAMP 8) drives the voltage 

clamp amplifier. Voltage and current were simultaneously displayed on a dual 

input oscilloscope (Gould 1425, Gould Instruments Ltd, Hainault, UK), 

digitalised with a Digidata 1322A (Molecular Devices, Sunnyvale, USA). In 

whole-cell current measurements the membrane potential was held to the value of 

the resting membrane potential. Current recordings were obtained by various 

polarizing pulse protocols. We systematically checked that cells were correctly 

clamped by comparing the protocol voltage values with those really imposed. 

Only microelectrodes presenting a linear relationship were used.  

 

Monitoring of ROS Production  

The production of ROS was monitored by the chemiluminescence of the 

Cypridina luciferin analog (CLA) as previously described (Kadono et al., 2010; 

Kadono et al., 2006). CLA is known to react mainly with O2
•- and 1O2 with light 

emission (Nakano, 1998) and allows measuring extracellular ROS in plant cells 

(Tran et al., 2013b). Chemiluminescence from CLA was monitored using a FB12-

Berthold luminometer (with a signal integrating time of 0.2 s). The ROS 

scavengers 1,2-dihydroxybenzene-3,5-disulfonic acid disodium salt (Tiron), 1,4-

diazabicyclo[2.2.2]octane (DABCO) and inhibitor of the NADPH-oxidase 

diphenyleneiodonium chloride (DPI), were added 5 min before sorbitol treatment. 

 

Aequorin luminescence measurements 

The [Ca2+]cyt variations were recorded with A. thaliana cell suspension expressing 

the aequorin gene (Brault et al., 2004). Aequorin was reconstituted by overnight 
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incubation in Gamborg medium supplemented with 2.5 µM native coelenterazine. 

Cell culture aliquots (500 µL) were transferred carefully into a luminometer tube, 

and the luminescence counts were recorded continuously at 0.2 second intervals 

with a luminometer. Treatments were performed by pipette injection of 50 µL of 

sorbitol. The residual aequorin was discharged by addition of 500 µL of a 1 M 

CaCl2 solution dissolved in 100% methanol. The resulting luminescence was used 

to estimate the total amount of aequorin in each experiment. Calibration of 

calcium measurement was performed by using the equation: pCa = 0.332588(-

logk)+5.5593, where k is a rate constant equal to luminescence counts per second 

divided by total remaining counts (Knight et al., 1996). Results are expressed in 

µM of Ca2+ and correspond to the mean ± SD of three to five independent 

experiments. The Ca2+ channel blocker La3+ and Ca2+ chelator BAPTA were 

added 5 min before sorbitol treatment. 
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pH measurements of the culture medium  

Extracellular pH was measured directly in the medium (Brault et al., 2004). The 

experiments were run simultaneously in 6 flasks (control and tests) each 

containing 2 g FW for 10 mL of suspension medium under continuous orbital 

shaking (60 rpm). Simultaneous changes in pH were measured from suspension 

cells presenting an initial pH around 5.6 by using ELIT 808 ionometer with pH 

sensitive combined electrodes functioning in parallel.  

 

Chemicals  

All chemical products were purchased from Sigma-Aldrich (Saint-Quentin 

Fallavier, France). Stock solution of DPI (10 mM) was dissolved in DMSO in 

order to have 0.01 % DMSO in final concentration. All other chemicals were 

solved in water.  

 

Statistical analysis 

Data were analyzed by variance analysis (ANOVA), and the mean separation was 

achieved by Newman and Keuls multiple range test. All numeric differences in 

the data were considered significantly different at the probability level of p≤0.05.  

 

Results 

Sorbitol-induced hyperosmotic changes induce cell death in A.thaliana cultured 

cells 

We first evaluated the impact of sorbitol additions on osmolality changes in A. 

thaliana cell medium (Table 1). The shifts in osmolality induced by 200 mM 

sorbitol did not induced a large cell death when 400 and 600 mM sorbitol led to 

the death of more of the half of the cell population (Figure 1A), dead cells 

displaying a large cell shrinkage (Figure 1B) the hallmark of the PCD process 

(Van Doorn et al., 2011). The cell death scoring at various concentrations of 

sorbitol further showed a time dependent progression (Figure 1A). The cell death 

reached a plateau in about 6h after the treatment with 400 mM sorbitol, about half 

of the cells remaining alive whatever the cell death detection used, FDA or Evans 

blue staining (Figure 1A,C). In order to confirm whether these cell death was due 
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to an active process requiring active gene expression and cellular metabolism, cell 

suspensions were treated with actinomycin D (AD), an inhibitor of RNA 

synthesis, or with cycloheximide (Chx), an inhibitor of protein synthesis, at 20 

mg.mL-1 each, 15 min prior to 400 mM sorbitol exposures. In both cases, AD and 

Chx significantly reduced cell death (Figure 1C). These results indicated that this 

cell death required active cell metabolism, namely gene transcription and de novo 

protein synthesis. Taken together, these data suggest that sorbitol induced a rapid 

PCD of a part of the arabidopis suspension cell population.  

 

 Medium Sorbitol (mM) 

 - 200 400 600 

Osmolality (mosmol) 128 330 524 762 

 

Table 1: Osmolality changes in medium after treatment with sorbitol. 

 
Figure 1: Sorbitol-induced cell death A.thaliana cells (A) Time course of the dose dependent 

cell death induced by sorbitol treatment. (B) Light micrographs of A. thaliana cells treated with 

400 mM sorbitol for 6 hours and stained with Evans blue (upper panel) or neutral red (lower 

panel). (C) Effect of pretreatment with actinomycin D (AD, 20 µg/ml) or cycloheximide (Chx, 20 

µg/ml) on a 400 mM sorbitol-induced cell death. Each data point and error bar reflect the mean 

and SD respectively of at least 5 independent replicates. * significantly different from controls, P 

<0.05 and ** significantly different from the sorbitol treated cells, P <0.05. 
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Sorbitol induces transient changes in membrane potential and anion channel 

activity 

Non-saline hyperosmotic stresses are well known to modify plasma membrane 

potential (Vm) of cells (Monetti et al., 2014b; Shabala and Cuin, 2008; Teodoro et 

al., 1998; Wegner et al., 2011; Zingarelli et al., 1999). By using an 

electrophysiological technique (dSEVC) we searched for the impact of sorbitol on 

arabidopsis cultured cell membrane potential. In control conditions in their culture 

medium, the Vm of cells was -34 ± 10 mV (n=39) similar to those we founded in 

previous studies ((Brault et al., 2004; Kadono et al., 2010; Tran et al., 2013a). 

Addition of sorbitol induced a hyperpolarization of the cells (Fig. 2A) reaching its 

maximal value in 15 ± 5 minutes (n=11) after the treatment as previously reported 

in other models (Li and Delrot, 1987; Monetti et al., 2014b; Shabala and Lew, 

2002; Zingarelli et al., 1999). This hyperpolarisation was followed by a slow 

repolarisation during 40 minutes for the longer recordings we could maintain (Fig 

2A). Because it is difficult to record free-running PM potential time-courses more 

than 1h, we further compared PM potentials of cell populations exposed to 400 

mM sorbitol during 20 min and 2h. After 20 min cell polarization distribution 

clearly showed a shift to hyperpolarization (Figure 2C) with a mean PM potential 

of -52 ± 9 mV (n=22). After 2h the cell polarization distribution showed a shift to 

depolarizition with a mean PM potential of -20 ± 12 (n=38). However, two 

populations seemed to appear one being polarized like the control, another one 

more depolarizied (Figure 2C) suggesting that the repolarization (Fig. 2A) 

sometimes goes on in depolarization for some cells.  

In Gamborg medium after 4d of culture, the main ions are 9 mM K+, 11 mM NO3
- 

(Reboutier et al. 2002), thus, the equilibrium potential estimated for K+, EK is 

about -60 mV ([K+]out = 9 mM with [K+]in estimated at 100 mM). The equilibrium 

potential estimated for NO3
- is of about –30 mV ([NO3

–]out = 11 mM with [NO3
–]in 

estimated at 3 mM). As previously observed with cultured cells of Arabidopsis 

thaliana (Reboutier et al. 2002, Kadono et al. 2010, Tran et al. 2013), the 

occurrence of anion currents in most of the A. thaliana cells in their culture 

medium could explain their mean polarization around -30 mV we recorded in 

control and non-stressing conditions. The mean control value of these currents at -
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200 mV and after 1.8s of voltage pulse was of -1.73 ± 0.2 nA (n=11). These 

currents presents characteristics of slow type anion channel (SLAC) (Reboutier et 

al., 2002) (Supplemental Figure 1) and were shown to be sensitive to structurally 

unrelated anion channel inhibitors, 9-anthracen carboxylic acid (9-AC) (Brault et 

al., 2004)(Supplemental Figure 1) and glibenclamide (Kadono et al., 2010; 

Reboutier et al., 2005) reinforcing the hypothesis of an anionic nature for these 

currents. 

The sorbitol-induced PM-variations were correlated with anion current variations. 

A decrease in anion currents was observed during the first 20 min (Fig. 2B,D). 

The hyperpolarization seemed thus correlated with this decrease in anion currents, 

these currents reaching a mean of -0.72 ± 0.24 nA (n=11). After 2h, two 

populations could be discriminate (Fig. 2D), one corresponded to depolarized 

cells and presented an increase in anion currents to a mean of -3.3 ± 1.4 nA (n=6), 

the second one corresponded to depolarized cells and maintained reduced anion 

currents with a mean of -0.66 ± 0.12 nA (n=5).  
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Figure 2: Biphasic regulation of A. thaliana cell polarization by 400 mM sorbitol (A) Typical 

modulation of cell plasma membrane (PM) potential variations observed in response to sorbitol. 

(B) Typical changes in whole cell current profiles after treatments with 400 mM sorbitol. The 

protocol was as illustrated, holding potential (Vh) was Vm. (C) Distribution of PM potentials 

recorded in control conditions, 20 min and 2 hours after treatment with 400 mM sorbitol. (D) 

Mean values of whole cell current variations (recorded at -200 mV and 1.8 s) in control conditions, 

20 min and 2 hours after treatment with 400 mM sorbitol with or without 9-AC (200 µM).  

 

 

 

Anion channels are involved in sorbitol-induced PCD  

In order to check whether the delayed increase in anion channel activity could be 

involved in the process leading to cell death of half of the population after a 400 

mM sorbitol treatment, cells were pre-treated with the anion channel inhibitors 9-

AC or glibenclamide (200 µM each), before the addition of 400 mM sorbitol. Cell 

death was then quantified 6 hours after the treatment. These two inhibitors 

contributed to decrease the sorbitol-induced cell death (Fig. 3A). To further get 

insight into the molecular nature of the ion channel responsible for the anion 
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currents, we further test the extent of cell death induced by 400 mM sorbitol on 

freshly prepared wild type and SLAC1 mutant (Geiger et al., 2010; Vahisalu et 

al., 2008) cultured cells. Although the basal cell death was higher in freshly 

prepared cultured cells, the sorbitol induced cell death was avoided in SLAC1 

mutant (Fig. 3B) strongly suggesting that SLAC1 channels were involved in the 

sorbitol induced pathway leading to cell death.  

 

 

Figure 3: Anion channels are involved in sorbitol-induced PCD. (A) Effect of the anion 

channel blockers 9-AC and glibenclamide (200 µM each) on cell death induced by 400 mM 

sorbitol after 4h treatment. (B) Effect of 400 mM sorbitol on cell death extent in freshly prepared 

cultured cells from the wild type (Col) and SLAC1 mutant. The data correspond to means of at 

least 5 independent replicates and error bars correspond to SD. * significantly different from 

controls, P <0.05. 

 

Avoiding of the sorbitol induced cell death 

Since we recorded an early hyperpolarization and anion channel activity decrease 

in most of the cells (Figure 2D) when depolarization and anion channel activity 

increase seem related to sorbitol-induced PCD (Figure 2E,F), we further test the 

impact of sorbitol removal before the increase in anion currents. We thus rinced 

the cells 30 min after treatment with sorbitol with Gamborg medium free of 

sorbitol or with Gamborg medium with 400 mM sorbitol. When sorbitol was 

removed 30 min after the treatment no cell death development was observed when 

sorbitol was maintained in the medium the cell death extent was the same as the 

one of the control with sorbitol (Fig. 4) confirming that early hyperpolarization 

and anion channel activity decrease were not involved in PCD. 
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We then tried to follow in our model cells the kinetics of some early events 

classically detected upon hyperosmotic stress, namely increase in cytosolic Ca2+ 

([Ca2+]cyt), ROS production, H+-ATPase activity, upon challenge with 400 mM 

sorbitol, a concentration inducing cell death in half of the cell population to 

analyse their putative involvements in sorbitol-induced PCD . 

 

 

 

Figure 4. Impact of sorbitol (400 mM) removal after 30 min on the A. thaliana cell death 

extent. Cells were rinced 30 min after treatment with sorbitol with Gamborg medium free of 

sorbitol (Sorbitol/medium) or with Gamborg medium with 400 mM sorbitol (Sorbitol/sorbitol) and 

the cell death progression was compared with sorbitol treated cells without rincage as control 

(Sorbitol). Each data point and error bar reflect the mean and SD respectively of at least 3 

independent replicates. * significantly different from controls, P <0.05. 

 

Changes in [Ca
2+

]cyt are not involved in the sorbitol-induced cell death  

The changes in [Ca2+]cyt were monitored by the Ca2+-dependent emission of blue 

light from aequorin (Knight et al., 1996). Treatment of arabidopis cells with 400 

mM sorbitol resulted in a rapid transient increase in aequorin luminescence (Fig. 

5A) reflecting an increase in [Ca2+]cyt of about 0.6 µM. This short lived increase 

was considerably inhibited when cells were pre-treated with the PM Ca2+ channel 

inhibitor La3+ or with the Ca2+ chelator BAPTA and then stressed with sorbitol 

400 mM (Fig. 5A). This indicates that the sorbitol-induced increase in [Ca2+]cyt 

was mostly due to influx of Ca2+ across the plasma membrane through Ca2+ 

channels. In order to check wheter the influx of Ca2+ was involved in the 

induction of the cell death, the effect of 400 mM sorbitol was tested on cell death 

in presence or absence of La3+ or BAPTA. Even if the pre-treatment of A. thaliana 

cells with Ca2+ channel inhibitor or with BAPTA induced a slight increase in cell 
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death, the sorbitol-induced cell death did not significantly decrease after such pre-

treatments (Fig 5B). These results strongly suggest that the rapid Ca2+ influx 

induced by sorbitol is not involved in the pathway leading to cell death. 

 

 

Figure 5: Induction of [Ca
2+

]cyt increase in aequorin expressing-A. thaliana cells by 400 mM 

sorbitol. (A) Typical kinetic of sorbitol-induced increase in [Ca2+]cyt and inhibition by the calcium 

channel blocker LaCl3 (500 µM), and the calcium chelator BAPTA (1 mM). Each data point and 

error bar reflect the mean and SD, respectively (n = 5). (B) Effect of a pre-treatment with La3+ 

(500 µM) or BAPTA (1 mM) on cell death induced after 6 hours in presence of 400 mM sorbitol. 

Each data point and error bar reflect the mean and SD respectively of at least 3 independent 

replicates. * significantly different from controls, P <0.05. 

 

 

Sorbitol-induced ROS generation  

To study the effect of sorbitol on production of ROS in arabidopis cell culture we 

used the chemiluminescence of CLA which indicates the generation of O2
•- and 

1O2. Addition of sorbitol to cell suspension culture resulted in transient production 

of ROS that reaches the maximal level immediately after treatment (Fig. 6A). This 

sorbitol-induced ROS generation was dose-dependent (Fig. 6B) and could be 

blocked using DABCO, a 1O2 scavenger, but not Tiron, a O2
•- scavenger (Fig. 

6C,D). Thus, the early increase in CLA-chemiluminescence seemed to be 

dependent on 1O2 generation but not on O2
•- generation. We further checked the 

impact of the DABCO on sorbitol-induced PCD. This scavenger of 1O2 failed to 

decrease sorbitol-induced cell death (Fig. 6E), but 10 µM diphenyleneiodonium 

chloride (DPI), an inhibitor of the NADPH-oxidase, decreased the sorbitol-
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induced cell death (Fig. 6E). Since no early O2
•- generation were detected (no 

effect of Tiron, Fig. 6C,D), we thus further searched for a possible delayed 

NADPH-oxidase dependent O2
•- generation after treatment with 400 mM sorbitol. 

We effectively could detect after such hyperosmotic stress an increase in CLA-

chemiluminescence (Fig. 6F). The chemiluminescence drastically increased after 

30 min and reached a maximal level after 1h to decrease to control level after 2h 

(Fig. 6F). The increase in CLA-chemiluminescence could be reduced by 

pretreatment with 10 µM DPI (Fig. 6G) suggesting that the generation O2
•- 

through enhancement of NADPH oxidase activity were involved in the delayed 

ROS generation after treatment with sorbitol. 
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Figure 6. Induction of ROS generation in A. thaliana cells by sorbitol. (A) Typical kinetic of 

sorbitol-induced early increase in CLA-chemiluminescence reflecting the production ROS. (B) 

Effect of concentration of sorbitol on early ROS generation. (C) Modulation of sorbitol-induced 

ROS generation by DABCO, scavenger of singlet oxygen or Tiron, scavenger of anion superoxide. 

(D) Effect of DABCO or DPI, a NADPH oxidase inhibitor, on cell death induced by 400 mM 

sorbitol after 4h treatment. (E) Time course of CLA chemiluminescence during 6h treatment with 

400 mM sorbitol. (F) Inhibition of sorbitol-induced delayed ROS generation by DPI. Each data 

point and error bar reflect the mean and SD, respectively (n = 5). * significantly different from 

controls, P <0.05 and ** significantly different from the sorbitol treated cells, P <0.05. 
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Discussion 

In this study we confirmed using A. thaliana cultured cells that sorbitol-induced 

hyperosmotic treatments lead to different early cellular responses previously 

reported such as, transient [Ca2+]cyt increase (Donaldson et al., 2004; Kim et al., 

2007; Lin et al., 2006; Parre et al., 2007; Ranf et al., 2008; Xiong et al., 2002), 

production of ROS (Lin et al., 2006; Xiong et al., 2002; Zhang et al., 2013; Zhu, 

2001) and early modulation of ion fluxes responsible for plasma membrane 

hyperpolarization (Li and Delrot, 1987; Shabala et al., 2000; Shabala and Lew, 

2002). As also expected from previous studies (Huh et al., 2002; Monetti et al., 

2014a; Wang et al., 2010) the death of a part of A. thaliana cell population was 

observed depending on the sorbitol concentration and the duration of treatment. 

This cell death presents hallmarks of PCD since cells it requires active gene 

expression and de novo protein synthesis. Indeed, treatment with AD, an inhibitor 

of RNA synthesis, or with Chx, an inhibitor of protein synthesis, prior the 

exposure to sorbitol significantly reduced the extent of cell death. The early events 

recorded with A. thaliana suspension cells were not involved in this PCD since 

Ca2+ chelator (BAPTA), Ca2+ channel inhibitor (La3+) or singlet oxygen scavenger 

(DABCO) failed to reduced the sorbitol-induced PCD as observed on BY-2 cells 

(Monetti et al. 2014). It is further noteworthy that removal of the sorbitol after 30 

min, thus after the induction of these early responses and the initial 

hyperpolarization of the cells by sorbitol, allows to block the PCD progress, 

comforting the idea that these early events were not involved in PCD 

development. Sorbitol-induced PCD was effectively showed to depend on a 

delayed superoxide anion generation probably through NADPH-oxydase, both 

being reduced upon pretreatment with the inhibitor of NADPHoxydase DPI, as 

also observed on BY2 cells (Monetti et al. 2014). This delayed ROS generation 

could participate in activation of anion channels since they were shown to be 

activated by H2O2 in A. thaliana cultured cells (Kadono et al., 2010). Effectively 

by following the kinetics of cell polarization and anion current intensity after the 

addition of 400 mM sorbitol we could observed that, after the initial 

hyperpolarization and decrease of anion currents recorded for more than 80% of 
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the cells, about 60% the cell population showed a large increase in anion current 

and depolarized when 40% of cells maintained low anion currents and repolarized 

to the control level. Since anion current increase was reported to be key event in 

PCD induced by abiotic stress like ozone (Kadono et al. 2010) or biotic stress 

(Errakhi et al., 2008; Gauthier et al., 2007), we further test the effect of 

structurally unrelated anion channels blockers (gli and 9-AC) efficient in our 

model (Reboutier et al., 2005) (Supplemental fig. 1) on sorbitol induced PCD. 

Both inhibitors allowed to reduce the sorbitol-induced cell death. Moreover, 

cultured cells of the SLAC1 mutant impaired in slow type anion channels (Geiger 

et al., 2009; Vahisalu et al., 2008) did not showed any increase in cell death upon 

treatment with 400 mM sorbitol strongly suggesting that slow type anion channels 

were involved in this PCD. Thus two different behaviors occur in the A. thaliana 

cell population and it seems the stability limit could depend on cells since for a 

same stress strength and duration (eg. 400 mM sorbitol during 4h, about 60% of 

the population died).  

Among the early event we recorded in response to sorbitol addition, the initial 

decrease in anion current observed in our model could be considered as an event 

participating to osmotic adjustement since it allows maintaining anion in the cells 

and it is noteworthy that this regulation is observed in most of the cells. Morover 

the increase in mitochondrial membrane potential (∆ψm) (supplemental fig. 2) 

suggests an increase in metabolic activity wich could be correlated to adaptation 

to hyperomotic conditions. The singlet oxygen production and Ca2+ influx could 

be related to signalization process (Monetti et al. 2014). Thus in our model (Fig 

7), the first early reponses to sorbitol observed could allow the cells to survive to 

the hyperomotic conditions.  

 



Chapter 3:Dual responses of cultured plant cells  

to hyperosmotic stress 

85 

 

 
Figure 7: Events involved in sorbitol induced cell death 

 

These data are reminiscent of what described in animal cells for which a rapid 

regulatory volume increase (RVI) occurs in response to hyperosmotic-induced cell 

shrinkage (Burg et al., 2007). This RVI is associated with regulation of ion 

transport system to participate to osmotic adjustement. However in our model 

when the delayed ROS generation and delayed anion channel increase observed in 

half the cells seemed to be the result of a death pathway induced in cells for which 

the stability limit was overcome. In some animal cells RVI could be followed by 

switch to apoptosis volume decrease (AVD) which involved anion efflux and 

leads to apoptosis (Maeno et al., 2000), a well know form of PCD. Although RVI 

and AVD cannot be taking place at the same time, it is supposed that parallel 

activation of survival and death pathways could be induced by hyperosmotic 

stress but the latter develops slower and becomes detectable at a relatively late 

stage (Cheong et al., 2010) when RVI "dysfunction" led to AVD and apoptosis 

(Subramanyam et al., 2010). Further study will be needed to describe precisely the 
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stability limit of the cells, and what control the switch between osmotic 

adjustment and PCD induction in plant cells submitted to hyperomotic conditions.  
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Supplementary matherials 

 

 

 

Supplemental figure 1: Slow activation of current upon depolarization of the cell (A). Slow 

deactivation of current upon hyperpolarization of the cell (B). Inhibition of the current by the 

anion channel blocker 9-anthacen carboxilic acid (C). 

 

 

 

 

 

 

Supplemental figure 2: Variations of mitochondrial membrane potential (∆ψm) of A. thaliana 

cells after treatments with 400 mM sorbitol.  
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4.2 Introduction 

In addition of understanding the role of the ion currents during saline and non-

saline hyperosmotic-induced PCD, we aimed to search for putative regulators of such 

PCD in plants. Numerous cellular features are conserved in eukaryotic cells (Baluška 

and Mancuso, 2009; Grémiaux et al., 2014). Since most of the living organisms, from 

bacteria to metazoans, fungi and plants have to face hyperosmolarity and the 

establishment of an appropriate response can be a matter of life or death, we 

investigated if some regulators belonging to another kingdom could be efficient in 

regulating plant response to hyperosmotic stress. The importance of small peptides 

belonging to the FMRFamide-like peptides (FLPs) family have been shown to 

participate in osmoregulation in metazoans (Khan et al., 1999; López-Vera et al., 2008). 

These FLPs were shown to target various ion channels in response to osmotic shock 

(Vandorpe et al., 1994). Thus we searched if putative FLPs could exist in plant and be 

involved in physiological processes related to hyperosmotic stress responses. 
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4.3 Could FaRP-like peptides participate in regulation of hyperosmotic stress 

responses in plants?  

François Bouteau, Yann Bassaglia, Emanuela Monetti, DanielTran, Sandra Navet, 

Stefano Mancuso, Hayat El-Maarouf-Bouteau and Laure Bonnaud-Ponticelli  
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The results described in this thesis enable discussion about the role of plasma 

membrane ion channels in the events leading to hyperosmosis-induced PCD. It is known that 

ion channels are critical components of apoptosis in animal cells; for example, the activation 

of Cl- channel is an early prerequisite to apoptotic events, including cell shrinkage (termed 

AVD for apoptotic volume decrease). The volume changes are involved in numerous cellular 

process including cell death. (Lang et al., 2007; Yu and Choi, 2000). The aim of my project 

was to investigate the role of ion channels in response to ionic and non-ionic hyperosmotic 

stress involved in the events leading to PCD. The BY2-tobacco suspension cell system was 

used to follow ion channes activity and other early cell responses under ionic- (NaCl) and 

non-ionic (sorbitol) hyperosmotic stress (chapter 2). We found that (ionic and non-ionic) 

stresses are accompanied by ROS generation and [Ca2+]cyt increase. The early generation of  

1O2 was detected after NaCl and sorbitol exposure. This early ROS generation seems not to be 

involved in the events leading to PCD in both case (ionic and non-ionic stress) since treatment 

with DABCO (scavenger of 1O2) failed to decrease sorbitol- and NaCl-induced cell death. 

Moreover in this model [Ca2+]cyt increase appears to have no role in inducing cell death. This 

study also highlights linked responses such as 1O2 generation and cytosolic Ca2+ increase are 

not involved in PCD. A difference observed between sorbitol- and NaCl-induced PCD was 

the role of ion channels. In the case of NaCl treatment, a rapid depolarization was observed 

due to flux of Na+ ions into the cells through NSCCs, and this depolarization was involved in 

cell death. In contrast to this, sorbitol treatment caused a hyperpolarization due to the decrease 

of anion efflux. This early anion efflux inhibition could be involved in adaptative processes, 

as confirmed by the use of bromotretramisole, an activator of anion channels which failed to 

limit sorbitol-induced PCD, in contrast to its previously observed effect upon treatment with 

the HR-inducing elicitor HrpNea (Reboutier et al., 2005). Another important difference found 

between sorbitol and NaCl treatment was the role of mitochondria. Only upon NaCl treatment 

we observed a mitochondrial depolarization involved in cell death; sorbitol did not appear to 

affect mitochondrial polarization. Collectively, these findings highlight the importance of ion 

channels in response to hyperosmotic stresses, suggesting they may play an important role in 

the events that lead to cell adaptation or PCD. In chapter 3 we better clarified the role of anion 

channels in response to sorbitol. By using A. thaliana cells we tested if a delayed anion 

current activation was involved in PCD. Sorbitol treatment induced a hyperpolarization due to 

a decrease inanion currents during the first 20 minutes. After 2h of sorbitol treatment we 
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observed two responses due to the presence of two cell populations. One cell population 

(about 40% cells) repolarized to levels comparable to  the control polarization (before 

hyperosmotic stress). The rest of the population displayed strong depolarization. A possible 

explanation for this is that the first cell population displays anion flux reduction which could 

be involved in the mechanisms of adaptation. The second population displayed an increase in 

anion activity which seems to be involved in the events leading to PCD. Our model study 

sheds light on the role of anion channels in non-ionic hyperosmotic stress-induced cell death. 

In particular a delayed increase in anion currents could participate in non-ionic hyperomotic-

induced cell death. In the hypothesis paper in chapter 4, we investigated the physiological 

effects in sorbitol- hyperosmotic stress responses of synthetic peptides belonging to the 

FMRF amide-like peptides (FLPs) family that have been shown to participate in 

osmoregulation in metazoans (López-Vera et al., 2008) through regulation of ion channels. 

By using synthetic peptides, we conducted a set of experiments to verify a possible 

involvement of these peptides in osmoregulation in plants. These preliminary experiments 

indicate that such peptides could have a role in ion channel regulation in A.thaliana 

suspension cells. Indeed, pre-treatments with FLRF induced a cell plasma membrane 

hyperpolarization, correlated with a decrease in inward currents (anion currents). We also 

checked a possible involvement of these peptides in the regulation of the events leading to 

PCD. In Fig 20 a scheme is shown of the main findings reported in chapter 2 and chapter 3. 

 

 

 

Figure 20: Cartoon showing the possible pathways induced by NaCl and sorbitol leading to cell death. The right 

side of figure shows the role of delayed anion channel activity in sorbitol induced cell death. 
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In terms of future perspectives it is necessary to better understand the molecular nature 

of the role of anion channels modulation in the events involved in non-ionic hyperosmotic 

induced cell death. How the anion channels are integrated with other cell responses such as 

apoplast alkalinization, is however an open question that require further research. Another 

important aspect to clarify is the involvement of caspase-like enzymes (Van Doorn et al., 

2011) in response to the hyperosmotic response and their overlapping effect with ion channel 

activity.  

In chapter 4 is provided a hypothesis about the presence of FLPs in plants and their 

involvement in osmoregulation. These preliminary results show that some putative genes are 

present in the A. thaliana genome and could be involved in osmoregulation trough regulation 

of different events such as PCD and ROS generation. These FLPs were able to induce a 

decrease in sorbitol-induced ROS generation and anion currents involved in PCD. Further 

investigations on the related molecular aspects will be necessary to understand the 

involvement of these peptides in ROS production and anion channel regulation, especially the 

result of cross-talk of signaling pathways of these peptides and others. Another aspect to 

study is the possible involvement of these peptides in the regulation of caspase-like protein 

activity.  

To better understand the biological role of these peptides it will be also of interest to 

determine the receptor of these peptides by homology with other organisms such as 

Drosophila melanogaster in which the FMRF amide receptor was identified (Meeusen et al., 

2002). 

Another important aspect to study is the involvement of these peptides in regulation of ionic 

hyperosmotic stress, it could be interesting goal or task if there is a regulation of NSCCs, that 

as previously reported in chapter 2 are involved in the early response to ionic-hyperosmotic 

stress. 

Therefore, investigating the peptide-dependent  regulation of POXs at the molecular level 

could shed light on their involvement in ROS production.  

Moreover, it the role of FLPs in stomatal opening regulation was also studied, showing that 

these peptides inhibit anion channel activity which is known to regulate stomatal opening 

(Negi et al., 2008; Sirichandra et al., 2009). The role of FLPs could be part of a sophisticated 

mechanism involved in stomatal closure regulation in response to drought as recently report 

for acetylated 1,3-diaminoprapane (DAP) which counteracted the canonical abscissic acid-

induced stomatal closing (Sirichandra et al., 2009) upon mild stress, but not upon severe 

stress (Jammes et al., 2014). Such regulators which could allow plant to cope with osmotic 
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stress could be of particular interest since, as mentioned above, drought frequency may 

increase by more than 20% in some regions of the globe by the end of the twenty-first 

century. 
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