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Chapter 1

Introduction

Adaptive regularized methods have been recently studied as an alternative to
classical globalization techniques for nonlinear constrained and unconstrained
optimization [1–3,7–9,15,16,20,21,23]. This thesis is devoted to the numerical
solution of the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : R
n → R is a smooth function, by means of the ARC framework

[8, 9, 16, 21, 23].

The adaptive cubic regularization of Newton method for (1.1) gives rise to
a local cubic overestimator of the objective function f which is employed for
computing the step from one iterate to the next one. Under mild assumptions,
ARC iterates converge to first-order critical points; by strengthening the con-
ditions on the acceptance of the trial step, second-order variants of ARC show
global and fast convergence to second-order critical points [9, 16, 21].

Besides the good numerical performance of ARC compared to a standard
trust-region approach [9], its distinguishing features from linesearch and trust-
region techniques are the results on worst-case iteration and gradient evaluation
complexity [8, 21]. Specifically, a worst-case iteration count of order ǫ−3/2 has
been established to drive the norm of the gradient of f below a prefixed accu-
racy ǫ. This bound is sharp and represents a substantial improvement over the
Newton’s method which may be as slow as the steepest descent method (in the
worst case) and require a number of iterations of order ǫ−2 [6].

The good complexity bound of ARC can be achieved by minimizing the cu-
bic model approximately within some suitable accuracy requirement and under
conditions that can all be ensured if the step taken at each iteration is a global
minimizer of the model in a subspace of Rn [8]. The second-order variant of
ARC, denoted as ARC(S) in [8], algorithmically ensures the conditions required
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and one possible implementation relies on linear algebra. In fact, in ARC(S) the
approximate minimization of the cubic model can be performed over evolving
subspaces by using the Lanczos method until a suitable termination criterion is
met.

Despite the good complexity properties, the practical efficiency of ARC de-
pends on the way the cubic model is minimized. Therefore the main objective
of this thesis is to investigate how to preserve the complexity properties of the
ARC(S) framework when procedures alternative to the Lanczos method are used
for minimizing the cubic model.
In particular the interest is focused on iterative descent methods, such as gra-
dient methods, limited memory Quasi-Newton methods, conjugates gradients
methods, which are matrix-free and either reduce or avoid the cost of the linear
algebra phase.

Following the approach described in [4] , a strategy that fits into ARC(S)
framework is introduced, thus retaining its worst-case complexity count. This
can be done with any arbitrarily computed approximate minimizer for the
mode.l To achieve this goal the approximate minimization of the model is
combined, if necessary, with the exact optimization of the model in a suit-
able one-dimensional space. Further, is presented a new termination criterion
(called early stopping) which monitors the value of f along the minimization of
the model and can prevent an “over-solving” phenomenon when the objective
function is not adequately represented by the cubic model. Also this stopping
criterion has been introduced in [4].

The resulting variant of ARC has been extensively tested using a non-
monotone gradient method as iterative solver for step computation. This pro-
posal showed to be a viable alternative to the implementation of ARC using the
GLRT routine, available in the GALAHAD library [14], for step computation.

This thesis also investigates the use of nonmonotone techniques within the
ARC framework. A nonmonotone variant of the ARC algorithm is introduced,
its convergence properties are discussed and some numerical results on the com-
parison against the monotone version are presented.

This thesis is organized as follows. Chapter 2 reviews the ARC framework,
investigates the worst-case complexity bounds for ARC and compares ARC
methods with TR methods. In Chapter 3 we discuss the minimization of the
cubic model by iterative descent methods and their use in conjunction with the
early stopping criterion. The new variant of ARC presented in [4] that preserves
the good iteration complexity is discussed. In Chapter 4 we present a non mono-
tone variant of ARC algorithm, which aims to improve the performances of the
monotone version.

Notations. The gradient ∇xf(x) of f and the Hessian ∇xxf(x) of f are
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denoted by g(x) and H(x) respectively. The 2-norm is denoted by ‖x‖. The
identity matrix of appropriate dimension is indicated by I.
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Chapter 2

Adaptive cubic

regularization algorithms

2.1 ARC algorithms and convergence properties

Adaptive cubic regularization of Newton method for unconstrained optimiza-
tion gives rise to globally convergent procedures recently investigated in many
papers, see e.g. [8,9,16,21]. The key feature of this approach is the computation
of the step from one iterate to the next by minimizing a cubic overestimator of
the objective function f .

If the Hessian H of f is Lipschitz continuous (with constant 2L), the Taylor
expansion of f around xk gives

f(xk + p) = f(xk) + pT g(xk) +
1

2
pTH(xk)p+

+

∫ 1

0

(1− τ)pT (H(xk + τp) −H(xk))p dτ

≤ f(xk) + pT g(xk) +
1

2
pTH(xk)p+

1

3
L||p||3 def

= mC
k (p),

for all p ∈ R
n. Thus, for every step p such that mC

k (p) ≤ mC
k (0) = f(xk), the

point xk + p improves f .

In order to define a model of practical interest, the constant L may be
replaced by a dynamic positive parameter σk and H(xk) may be approximated
by a symmetric matrix Bk. This gives rise to the model

mk(p) = f(xk) + pT g(xk) +
1

2
pTBkp+

1

3
σk‖p‖3, (2.1)

which is employed in the ARC algorithm proposed by Cartis et al. in [8, 9].
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The k-th iteration of the ARC method is sketched in Algorithm 2.1.

Algorithm 2.1: k-th iteration of ARC

Given xk and the scalars σk > 0, 1 > η2 ≥ η1 > 0, γ2 ≥ γ1 > 1.

1. Compute an approximate minimizer pk of mk such that

mk(pk) ≤ mk(p
c
k), (2.2)

where pck is the Cauchy point

pck = −αkg(xk), αk = argmin
α≥0

mk(−αg(xk)). (2.3)

2. Compute

ρk =
f(xk)− f(xk + pk)

f(xk)−mk(pk)
. (2.4)

3. Set

xk+1 =

{

xk + pk if ρk ≥ η1,

xk otherwise.

4. Set

σk+1 ∈







(0, σk] if ρk ≥ η2 (very successful iteration),
[σk, γ1σk ) if η1 ≤ ρk ≤ η2 (successful iteration),
[γ1σk, γ2σk] otherwise (unsuccessful iteration).

In Step 1 the trial step pk is computed as an approximate minimizer of the
model mk guaranteeing a decrease in mk greater than or equal to the reduction
attained by the Cauchy point (2.3). Then, in Step 2 the ratio ρk is computed
and in Step 3 pk is accepted, and the new iterate xk+1 is set to xk + pk, if a suf-
ficient decrease in the objective is achieved; otherwise, the step is rejected and
xk+1 is set to xk. Since the denominator in (2.4) is strictly positive whenever
the current iterate is not a first-order critical point, then ARC algorithm is well
defined and the generated sequence {f(xk)} is monotonically non-increasing.
The rules in Step 4 for updating the parameter σk take into account the agree-
ment between f and mk and parallel those for updating the trust-region radius
in trust-region methods [22].

Condition (2.2) on pk imposes at least as much decrease in the model as that
obtained by the Cauchy point pck. A lower bound on the decrease achieved by
pck with respect to mk(0) = f(xk) is given below.
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Lemma 2.1. [9, Lemma 2.1] Suppose that the step pk satisfies (2.2). Then for
k ≥ 0, we have that

f(xk)−mk(pk) ≥ f(xk)−mk(p
c
k) ≥

‖g(xk)‖
6
√
2

min





‖g(xk)‖
1 + ‖Bk‖

,
1

2

√

‖g(xk)‖
σk





(2.5)

By imposing (2.2), global convergence to stationary points of problem (1.1)
can be enforced as stated by the proposition below.

Proposition 2.1. [9, Corollary 2.6] Let f ∈ C1(Rn) and {xk} be the sequence
generated by the ARC Algorithm. Suppose that ‖Bk‖ is uniformly bounded for
all k ≥ 0 and that the gradient g is uniformly continuous on the sequence {xk}.
Then,

lim
k→∞

‖g(xk)‖ = 0. (2.6)

In order to enforce local fast convergence, more model reduction than (2.2)
is sought and this requires to approximately minimize mk. We now discuss the
stationary points and values of mk analyzed in [9, 16]. Any stationary point p̂
of mk satisfies

(Bk + λ̂I)p̂ = −g(xk), (2.7)

λ̂ = σk‖p̂‖. (2.8)

A stationary point p∗k is a global minimizer of mk over Rn if and only if there
exists a positive scalar λ∗k such that the pair (p∗k, λ

∗
k) satisfies (2.7) and (2.8)

and Bk + λ∗kI is positive semidefinite. Clearly, if Bk + λ∗kI is positive definite
then p∗k is unique.

The stationary values mk(p̂) are strictly decreasing in ‖p̂‖ and they are up
to 2ℓ + 1 values if Bk has ℓ negative eigenvalues. If Bk is indefinite then the
stationary values include one global minimum and possibly a second local min-
imum.

When the model is convex, equations (2.7) and (2.8) characterize any global
minimizer. This occurrence is verified for k sufficiently large when the iterates
converge to a point with positive definite Hessian and the approximate Hessian
Bk becomes positive definite asymptotically. Another occurrence is when Bk is
a ℓ-BFGS Hessian approximation. Finally, a convex model can be obtained from
the application of ARC method to nonlinear least-squares problems [2, 15]. In
this case f(x) = ‖F (x)‖2 for some vector-valued function F and the model used
is a variant of (2.1) of practical interest for computing zero or small-residual
solutions of the problem. Specifically, it consists of the Gauss-Newton model
regularized by a cubic term

mk(p) =
1

2
‖F (xk) + J(xk)p‖2 +

1

3
σk‖p‖3, (2.9)
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where J is the Jacobian matrix of F . For any positive σk the model (2.9) is
strictly convex.

The use of an approximate global minimizer is considered in [9] and a viable
strategy for its approximate computation is derived using (2.7) and (2.8). We
briefly review the main issues for approximating the optimal pair (p∗k, λ

∗
k). Let

p(λ) solve
(Bk + λI)p(λ) = −g(xk), (2.10)

λk be an approximation to the optimal value λ∗k, and pk = p(λk). The scalar λk
can be obtained applying a root-finding solver to the so-called secular equation,
i.e. the scalar nonlinear equation

λ− σk‖p(λ)‖ = 0,

which can be reformulated as

ψ(λ) =
1

‖p(λ)‖ − σk

λ
= 0. (2.11)

Letting λmin(Bk) be the smallest eigenvalue of Bk and ζ = max{0,−λmin(Bk)},
the function ψ(λ) is concave and strictly increasing when λ > ζ. Hence, ei-
ther the Newton or the secant method applied to (2.11) converges globally and
monotonically to the positive root λ∗k for any initial guess in the open interval
(ζ, λ∗k) [9, Theorem 6.3]. Clearly, the application of these methods requires the
solution of system (2.10) for various λ and the use of a Krylov method repre-
sents a relevant alternative in this respect.

Using the Lanczos method mk can be minimized over evolving subspaces of
R

n. Specifically, the Lanczos method can be used to build an orthogonal basis
{q1, . . . , qj} for the Krylov space Kj = {g(xk), Bkg(xk), . . . , B

j−1
k g(xk)}. Then,

letting Qj ∈ R
n×j be the matrix Qj = (q1, . . . , qj), the minimizer pk,j of mk

over Kj is the vector

pk,j = Qjyj such that yj = argmin
y∈Rj

mk(Qjy). (2.12)

Solving the problem on each expanding subspace Kj is computationally con-
venient and the minimization process is carried out on evolving subspaces until
a specified accuracy requirement is met. In particular, the procedure is repeated
until a vector yj∗ satisfying

‖∇mk(pk,j∗)‖ = ‖∇mk(Qj∗yj∗)‖ ≤ ηk‖∇mk(0)‖, (2.13)

is computed for a given ηk ∈ [0, 1).
Once yj∗ is computed, the approximate minimizer pk,j∗ can be evaluated either
by recomputing the vectors qj , 1 ≤ j ≤ j∗, or by recovering them from mem-
ory. It has been found advantageous to store a small number t of the first qj ,
1 ≤ j ≤ t, vectors and to start from j = t, if necessary, the so-called second-pass
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iteration to determine pk,j∗ . Further economies can be made recording all the
generated values mk(pk,j), 1 ≤ j ≤ j∗, picking an iteration h ≤ j∗ which gives
a specified fraction of the best value obtained, and then accepting Qhyh as the
required approximation [9, 12].

Under suitable assumptions, the sequence {xk} generated by the ARC al-
gorithm shows superlinear or quadratic convergence rate if the steps satisfy
(2.13) and ηk → 0 as k → ∞ [9, Corollary 4.8, 4.10]. For instance, superlinear
convergence rate can be ensured provided that

‖∇mk(pk)‖ ≤ min{θ, ‖g(xk)‖1/2}‖g(xk)‖, (2.14)

and quadratic convergence rate can be achieved if

‖∇mk(pk)‖ ≤ min{θ, ‖pk‖}‖g(xk)‖, (2.15)

with θ > 0.

2.2 Worst complexity case bound

In this chapter, following [8], we preliminary recall the necessary ingredients
to obtain the complexity bound in ARC. Then, we present the new procedure
explained in [4] that uses a simple steepest descent method with backtrack-
ing for computing the step and that can be employed in connection with ARC
framework attaining the same complexity bound. The procedure is matrix-free
and does not require to store vectors or to recover them from memory, as in a
Krylov method, whose number can be, in principle, equal to the dimension of
the problem.

Global convergence properties and worst case complexity of the ARC algo-
rithm have been established in [8]. The worst case complexity bound of order
ǫ−3/2 was shown to be sharp and represents a substantial improvement over the
Newton’s method which may be as slow as the steepest descent method (in the
worst case) and requires a number of iterations of order ǫ−2 [6].

The complexity analysis is based on the fact that, for the ARC algorithm, it
is possible to bound the cardinality of any subset of successful iteration indices
provided that, at the iterates of the subsequence, the step pk yields a sufficient
predicted reduction. This is shown in the following proposition.

Proposition 2.2. [8, Theorem 2.2] Let {f(xk)} be bounded from below and
Ks an index set of successful iterates generated by ARC algorithm defined as

Ks = {k ≥ 0 : k successful or very successful in Algorithm 2.1, ‖g(xk)‖ ≥ ǫ},

for some positive ǫ. Assume that

f(xk)−mk(pk) ≥ ρǫ3/2 ∀k ∈ Ks, (2.16)



14 Adaptive cubic regularization algorithms

where ρ is a positive constant independent of k. Then, the cardinality |Ks| of
Ks satisfies

|Ks| ≤ Cǫ−3/2,

for some C > 0.

The key point in Proposition 2.2 is condition (2.16) which can be accom-
plished, for instance, by requiring that, for all k ≥ 0, pk satisfies (2.15) and

g(xk)
T pk + pTkBkpk + σk‖pk‖3 = 0, (2.17)

pTkBkpk + σk‖pk‖3 ≥ 0. (2.18)

The variant ARC(S) introduced in [8, Algorithm 4.1] for all k ≥ 0 uses a

step such that (2.15), (2.17) and (2.18) are met and (2.2) remains satisfied.
A situation in which such conditions hold is when the step pk is computed by
approximately minimizing mk over nested subspaces as in (2.12) and termina-
tion criterion (2.15) is adopted. This feature is a consequence of the following
result.

Lemma 2.2. [8, Lemma 4.1] Suppose that pk is the global minimizer of mk(p),
for p ∈ Lk, where Lk is a subspace of Rn. Then pk satisfies (2.17) and (2.18).

On the other hand, if the step pk is computed by a procedure other than
the minimization of mk over evolving subspaces, conditions (2.17) and (2.18)
may not hold thus making the analysis in [8] useless and, possibly, loosing the
complexity property of the ARC algorithm. For this reason, in the following
Algorithm 2.2 we introduce a strategy that produces an approximate minimizer
for mk satisfying conditions (2.2), (2.15), (2.17) and (2.18). Thus, condition
(2.16) holds and the properties in terms of worst case complexity bound are
ensured.
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Algorithm 2.2: A variant of Step 1 of ARC.

At each iteration of ARC algorithm, perform Step 1 as follows

a. Compute an approximate minimizer pk,0 of mk(p), such that

mk(pk,0) ≤ mk(p
c
k). (2.19)

b. Set dk,0 = pk,0.

c. For j = 0, 1, . . .

c.1 Compute

pk,j+1 = βdk,j , β = argmin
β∈R

mk(βdk,j).

c.2 If pk,j+1 satisfies (2.15)
set pk = pk,j+1 and stop.

Else
apply a backtracking linesearch and find

zk,j+1 = pk,j+1 − ζk,j+1∇mk(pk,j+1), (2.20)

such that

mk(zk,j+1) ≤ mk(pk,j+1)− µζk,j+1‖∇mk(pk,j+1)‖2.

c.3 Set dk,j+1 = zk,j+1, j = j + 1.

The for-loop at Step c of Algorithm 2.2 alternates between an exact min-
imization of mk over a one-dimensional subspace (Step c.1), and an inexact
minimization of mk (Step c.2). This latter minimization is performed starting
from the point generated at Step c.1 and applying an Armijo-type line search
along the steepest descent direction. The point thus obtained defines the vector
that will be used, at the next inner iteration (in Step c.1), to perform the exact
minimization over the corresponding one-dimensional subspace.

Note that the point pk,j+1 produced at Step c.1 is the global minimizer of
mk over a one-dimensional subspace and, by Lemma 2.2, it satisfies (2.17) and
(2.18). Moreover the descent properties of the scheme imply that condition (2.2)
holds. Taking into account that mk is coercive and that an Armijo-type line
search is performed, we can show that Step c terminates in a finite number of
iterations with a point pk,j+1 satisfying the accuracy requirement (2.15). All
these properties allow us to prove that condition (2.16) holds. Formally, we can
state the next result.
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Proposition 2.3. Assume f ∈ C2(Rn), g(xk) 6= 0. Then, Algorithm 2.2 termi-
nates in a finite number of iterations producing a step pk satisfying conditions
(2.15), (2.17) and (2.18).

Proof. Let J be the set of iterations j executed at Step c of Algorithm 2.2. We
first show that J is finite, that is the test at Step c.2 is satisfied in a finite
number of iterations. By contradiction, let us suppose that the test at Step c.2
is never satisfied so that the set J of iterations j of Algorithm 2.2 is infinite.
Since mk is coercive, the properties of the backtracking procedure ensure that

lim
j→∞

‖∇mk(pk,j+1)‖ = 0. (2.21)

Considering the gradient of the model function mk(p),

∇mk(p) = g(xk) +Bkp+ σk‖p‖p,

and g(xk) 6= 0, from (2.21) we get that ‖pk,j+1‖ ≥ η > 0 for all j. Hence, we can
write min{θ, ‖pk,j+1‖}‖g(xk)‖ ≥ min{θ, η}‖g(xk)‖ which is a constant. Thus,
using again (2.21), it follows that, for j sufficiently large

‖∇mk(pk,j+1)‖ ≤ min{θ, η}‖g(xk)‖ ≤ min{θ, ‖pk,j+1‖}‖g(xk)‖,

that is, pk,j+1 satisfies condition (2.15). Then, Algorithm 2.2 would stop at
Step c.2 thus contradicting the assumption that J is infinite.
Now, let ̄ be the iteration such that pk,̄+1 satisfies (2.15). Then, by the in-
struction of the algorithm, we also have that pk satisfies (2.15).
Furthermore, since pk,j+1, for all j ≥ 0 is the global minimizer of mk over the
subspace generated by dk,j , Lemma 2.2 implies that pk,j+1, and in particular
pk, satisfies (2.17) and (2.18), which concludes the proof.

Now we can prove the main result of this Chapter, namely that, at every
successful iteration k, condition (2.16) holds.

Proposition 2.4. Let

(i) f ∈ C2(Rn);

(ii) ‖g(x)− g(y)‖ ≤ K‖x− y‖, for all x, y ∈ X an open convex set containing
the iterates and K ≥ 1;

(iii) ‖H(x)−H(xk)‖ ≤ L‖x− xk‖, for all x ∈ [xk, xk + pk] and all k ≥ 0;

(iv) ‖(H(xk)−Bk)pk‖ ≤ C‖pk‖2, for all k ≥ 0 and some positive constant C;

(v) σk ≥ σmin for all k ≥ 0 and some positive σmin.
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Then, Algorithm 2.2 is such that condition (2.16) holds at every successful iter-
ation k of ARC satisfying

min{‖g(xk)‖, ‖g(xk+1)‖} > ǫ.

Proof. Since Algorithm 2.2 ensures that (2.17) and (2.18) hold, from [8, Lemma
4.2] it follows that

f(xk)−mk(pk) ≥
1

6
σk‖pk‖3. (2.22)

Then, by [8, Lemma 5.2] and considering that (2.15) is satisfied, the step pk is
such that, for all successful iterations k and some positive ν,

‖pk‖ ≥ ν
√

‖g(xk+1)‖.

The above lower bound along with (2.22) and min{‖g(xk)‖, ‖g(xk+1)‖} > ǫ

implies

f(xk)−mk(pk) ≥
1

6
νσminǫ

3/2,

which concludes the proof.

2.3 Parallelism between ARC and Trust Region

methods

In this Section we investigate main analogies and main difference of a typical
ARC algorithm respect to another kind of regularization algorithm less recent
than ARC but still studied: the Trust Region framework.

Suppose we are given a scalar ∆k > 0, a sufficiently smooth objective func-
tion f : Rn → R and a current point xk ∈ R

n. we denote with

Bk = {x ∈ R
n : ‖x‖ ≤ ∆k}

the ball centered in the origin of radius ∆k and with

mTR
k (p) = gTk p+

1

2
pTBkp

the quadratic model associated to f , where the notation is the same as previous
Chapters.
This is not the only possible choice for the model mk: the only properties that
mTR

k is required to satisfy are
{

mTR
k (0) = f(xk)

∇mTR
k (0) = gk

but for our purpose we can simply think to mk as the previous presented
quadratic model. In Algorithm 2.3 we sketch the basic procedure of a clas-
sical TR algorithm.
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Algorithm 2.3: Basic TR algorithm

Given an initial point x0, an initial Trust Region radius ∆0 and the scalars
1 > η2 ≥ η1 > 0, 1 > γ2 ≥ γ1 > 0.
Set k = 0.

1. Define a model mTR
k in Bk.

2. Compute a trial step pk ∈ Bk that “sufficiently” reduces mTR
k .

3. Compute the ratio

ρk =
f(xk)− f(xk + pk)

f(xk)−mTR
k (pk)

.

If ρk ≥ η1 then define xk+1 = xk + pk.
Otherwise define xk+1 = xk.

4. Set

∆k+1 ∈







[∆k,∞) if ρk ≥ η2 (very successful iteration),
[γ2∆k,∆k] if η1 ≤ ρk ≤ η2 (successful iteration),
[γ1∆k, γ2∆k] otherwise (unsuccessful iteration).

Set k = k + 1 and go back to Step 1.

Under suitable assumptions, very similar to the assumptions used for ARC
convergence theory, the same convergence rates as ARC can be proved for TR.
For more details on TR convergence, we remand the interested reader to [10].

It’s immediate to see that the sketchs of both Algorithms 2.1 and 2.3 are
very similar: a trial step is calculated solving a regularized subproblem and the
model used is adaptively modified according to the ratio between the reduction
observed on the real objective function and the reduction observed on the model.
The rule used to adapt the parameters σ and ∆ is the same if we think to σ ∼ 1

∆ .

Both models have the property
{

mk(0) = f(xk)

∇mk(0) = gk

but the two subproblems have a great difference: the subproblem that must
be solved in ARC framework is unconstrained, while the subproblem of TR
methods is a constrained optimization problem. So, in principle, the methods
used for solving the subproblem may be different. Indeed this consideration is
not valid for linear algebra methods: in fact the approximate minimizers of both
subproblems can be found using similar Lanczos methods over evolving Krylov
subspaces. A detailed description of such a method for TR framework can be
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found in [10].

Another difference between the two methods is of course the degree used for
the regularization: the model used in Algorithm 2.3 is a polynomial of degree
2, while in Algorithm 2.1 is a polynomial of degree 3. But even in this case the
difference is only ostensible. In fact the cubic term of mk is a penalty as bigger
as greater is the norm of the trial step found. In a certain way this penalty can
be seen as a relaxation of the constraint imposed on the TR model to be solved
within a ball of radius ∆. In order to better explain this analogy, let’s suppose
that at a fixed iteration k the minimizer p∗k of the cubic model mk is known to
have 2-norm ∆. So we have that

mk(p
∗
k) = f(xk) + p∗k

T
g(xk) +

1

2
p∗k

T
Bkp

∗
k +

1

3
σk∆

3.

Hence

m(p∗k) = min
p∈Rn

mk(p) = min
∆∈R+

qk(∆) +
1

3
σk∆

3,

where
qk(∆) = min

‖p‖≤∆
mTR

k (p).

The main difference between the two different frameworks of regularization
is the worst case complexity iterations bound: while, as showed in the previous
Section, ARC algorithm requires at most O(ǫ−

3
2 ) to attain ‖g(xk) < ǫ, TR al-

gorithms requires O(ǫ−2) and this bound is known to be strict.
This peculiarity of ARC algorithms respect to TR algorithms, make cubic reg-
ularization a very interesting field to be investigated.



20 Adaptive cubic regularization algorithms



Chapter 3

An ARC algorithm using

iterative methods and early

stopping

3.1 An iterative method in ARC framework

As discussed in the preceding chapter, a key issue of ARC algorithm concerns
the computation of the trial step pk as a suitable (approximate) unconstrained
minimizer of the cubic model at each iteration. Therefore following [4] we focus
on the approximate minimization of mk and on the employment of a stopping
criterion, the “early stopping”, which advantageously combine the model and
the “true” objective function f . In this section, we focus on the employment of
gradient methods to reduce the computational cost of linear algebra operations
required by Krylov-type algorithms.

From a theoretical point of view we may observe that:

- in order to guarantee global convergence, it is sufficient that the trial step
is such that

mk(pk) ≤ mk(p
c
k),

where pck is the Cauchy point;

- a complexity bound is guaranteed to hold, provided that condition (2.16)
holds.

Hence, as regards the convergence properties, any globally convergent iter-
ative method, employing at the first iteration an exact line search along the
steepest descent direction, can be employed to solve the problem

min
p

mk(p) = f(xk) + g(xk)
T p+

1

2
pTBkp+

1

3
σk‖p‖3, (3.1)
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and compute the step pk.
Concerning the stopping criteria, condition (2.14) can be used to solve (3.1)
while condition (2.15) has to be imposed within Algorithm 2.2 to guarantee the
worst-case complexity property. In the following we present a further stopping
criterion that takes into account the objective function f during the minimiza-
tion process of the model.

3.2 The early stopping criterion

As said before, in order to suitably combine the cubic model and the objective
function f , we adopt a new stopping criterion, that we call early stopping. This
kind of stopping criterion is a technique widely adopted in machine learning
(see, e.g., [5]). When a machine learning model is trained, a descent algorithm
is applied to minimize the error on the training data. In order to prevent the
overfitting phenomenon (which happens when the model over-learns the train-
ing data and the generalization capability deteriorates), the performance of the
model in terms of generalization capability (which is the true objective of the
learning) are periodically evaluated during the optimization process using a dif-
ferent data set, the so-called validation set. The optimization is stopped when
the error on the validation set starts to increase.

By drawing inspiration from the above early stopping strategy, during the
minimization process of the cubic model mk, the true objective function f is
periodically evaluated (say every N iterations of the adopted iterative method)
and the minimization method is stopped when f starts to increase.

As an example, with reference to the CUTEr test function CHAINWOO,
Figure 3.1 shows the behavior of both mk(p(j)) and f(xk +p(j)) as functions of
the inner iteration counter j, where xk is the current iterate and {p(j)} denotes
the sequence generated by a descent method applied to the minimization of the
model function mk(p). As it can be seen, after a few inner iterations, there is no
agreement between the cubic model and the true objective function, so that the
algorithm could take advantage of the early stopping condition just described.

Formally, we denote by {p(j)} the sequence generated by an iterative method
applied to minimize mk(p), where p(0) is set equal to the Cauchy point pck.
We propose to terminate the method whenever either criterion (2.14) is satisfied,
or

f(xk + p(j)) ≥ f(xk + p(j −N)), with mod (j,N) = 0, (3.2)

for some N ∈ N, N ≥ 1 and to consider respectively p(j) or p(j−N) as the new
trial step.
Specifically, in order to guarantee the bound on the global worst-case iteration
complexity, a further test (related to condition (2.16)) on the reduction of the
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Figure 3.1: An example of a situation in which early stopping may be useful.

model must be considered. When this test is satisfied, the temptative step can
be accepted as pk, otherwise Algorithm 2.2 must be applied to compute pk.

3.3 The minimization scheme of the cubic model

We observe that, in principle, the early stopping criterion could be used in con-
nection with the Krylov-type algorithms described in Chapter 2. In this case
the adoption of the early stopping, which requires the periodic evaluation of
the true objective function, involves some critical issues that may drastically
influence the computational cost. In fact the minimization in nested Krylov
subspaces requires to store the elements of the basis of the subspace, which will
be used to reconstruct the trial step pk. Since in general this operation may
require a large amount of memory, it is a common practice to keep in memory
only the first few elements of the basis. In this case, the so-called second-pass
iteration (see Chapter 2) is required to rebuilt the approximate minimizer pk,j ,
which is used for computing the objective function value in the updated point,
i.e., f(xk +pk,j). Such a second-pass iteration may determine a drastic increase
of the computational cost.

Therefore, we focus our attention on iterative descent methods that:

(i) “directly” generate the approximate minimizers p(j) of the cubic model,
so that the evaluation of the true objective function can be performed
without additional costs or the need of memory requirements;
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(ii) are matrix-free methods (as, for instance, gradient methods, limited mem-
ory Quasi-Newton methods, conjugate gradient methods) in order to re-
duce the computational cost of linear algebra operations.

On these bases, in Algorithm 3.1 we report the conceptual scheme of an iterative
method, using the analyzed stopping criteria, for the minimization of the model
mk(p). Then, for the sake of completeness, in Algorithm 3.2 we report the
k-iteration of the proposed version of ARC.

Algorithm 3.1: Sketch of an iterative method

Given p(0) = pck, ǫ > 0 and integers N ≥ 1, jmax ∈ [1,+∞]. Set j = 0.
While (2.14) and (3.2) are not satisfied and j ≤ jmax

Set p(j + 1) = p(j) + α(j)d(j)

where d(j) is a descent direction and α(j) is computed by means of a
line search.

Set j = j + 1.

End While

If (2.14) holds, then set p̃k = p(j).

If (3.2) holds, then set p̃k = p(j −N).

If j > jmax, then set p̃k = p(jmax).
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Algorithm 3.2: k-th iteration of the proposed version of ARC

Given xk, the scalars σk > 0, 1 > η2 ≥ η1 > 0, γ2 ≥ γ1 > 1, ǫ > 0, α > 0,
and the integer N ≥ 1.

1. Compute the Cauchy point pck, and apply Algorithm 3.1 to compute p̃k.

If
f(xk)− f(xk + p̃k)

f(xk)−mk(p̃k)
≥ η1 (3.3)

then, if
f(xk)−mk(p̃k) ≥ αǫ3/2, (3.4)

then set pk = p̃k and go to Step 3; otherwise, apply Algorithm 2.2 to
compute pk.

2. Compute

ρk =
f(xk)− f(xk + pk)

f(xk)−mk(pk)
. (3.5)

3. Set

xk+1 =

{

xk + pk if ρk ≥ η1,

xk otherwise.

4. Set

σk+1 ∈







(0, σk] if ρk ≥ η2 (very successful iteration),
[σk, γ1σk ) if η1 ≤ ρk ≤ η2 (successful iteration),
[γ1σk, γ2σk] otherwise (unsuccessful iteration).

Note that the trial point p̃k must satisfy condition (3.4) for the successful
iterations. This condition aims to ensure the bound on the global worst-case
iteration complexity.

The global convergence of Algorithm 3.2 follows from Proposition 2.1 while
its complexity bound is stated below.

Proposition 3.1. Let {xk} be the sequence generated by Algorithm 3.2, and let
{f(xk)} be bounded below. Assume that:

(i) f ∈ C2(Rn);

(ii) ‖g(x)− g(y)‖ ≤ K‖x− y‖, for all x, y ∈ X an open convex set containing
the iterates and K ≥ 1;

(iii) ‖H(x)−H(xk)‖ ≤ L‖x− xk‖, for all x ∈ [xk, xk + pk] and all k ≥ 0;

(iv) ‖(H(xk)−Bk)pk‖ ≤ C‖pk‖2, for all k ≥ 0 and some positive constant C;
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(v) σk ≥ σmin for all k ≥ 0 and some positive σmin.

Then Algorithm 2.1 requires at most O(ǫ−3/2) iterations to attain

‖g(xk)‖ ≤ ǫ.

Proof. Let Ks be the index subset of successful iterations such that

min{‖g(xk)‖, ‖g(xk+1)‖} > ǫ.

For all k ∈ Ks the step pk satisfies (2.16) either because p̃k does or because pk is
computed by Algorithm 2.2 and by virtue of Proposition 2.4. Then, the result
follows from Proposition 2.2.

3.4 Numerical results

In this Section we report the results of the computational experiments performed
in [4] in order to assess the effectiveness of ARC algorithms using iterative meth-
ods and early stopping.

3.4.1 Implementation details

Iterative cubic subproblem solvers

As iterative descent method applied to the cubic model mk(p) (see Algorithm
3.1) for computing the trial step pk, we employ the Barzilai-Borwein Non-
Monotone GRADient method (NMGRAD) defined in [19]. The proposed version
of ARC algorithm, called ARC-NMGRAD, has been compared with the orig-
inal ARC version (ARC-GLRT) proposed in [9], and using the Lanczos-based
inexact solver implemented in GALAHAD-GLRT [12,14].

Test problems

We considered two sets of test problems. The first set is taken from the CUTEr
collection [13], the second one is taken from the Luksan’s collection of dense test
problems for unconstrained minimization1. As regards the CUTEr collection,
we selected all the variable dimension nonlinear and unconstrained problems,
thus coming up with a set of 52 CUTEr medium-sized (n ∈ [1000, 2000]) prob-
lems. The Luksan’s collection is a set of 92 problems whose dimension n has
been chosen in the range [961, 1000].

1The collection is available at http://www.cs.cas.cz/luksan/test.html
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ARC implementation details

We have implemented the ARC algorithms in Fortran90, with Bk set to the
true Hessian H(xk). For the test problems from the Luksan’s collection, the
Hessian/vector product is obtained by finite differences.

The parameters defining the original ARC method (Algorithm 2.1) and the
proposed ARC algorithm (Algorithm 3.2) have been chosen as described in [9].
The parameter α of condition (3.4) in Algorithm 3.2 has been set equal to 10−8.

For all algorithms, the maximum number of outer iterations has been fixed
equal to 50000, and a limit of 500 seconds on the computing time has been
imposed. The algorithms terminate successfully when

‖g(xk)‖ ≤ ǫ, with ǫ = 10−5.

Implementation details on subproblem solution

The GALAHAD-GLRT solver of the original ARC method has been run with a
memory parameter m = 10 and requiring 90% accuracy in solution reconstruc-
tion [15].

Concerning the early stopping parameter N of Algorithm 3.1, we conducted
an experiment to understand its influence on the overall algorithm. In par-
ticular, we compared three versions of the algorithm with the early stopping
parameter N = 5, 10,∞, where the symbol ∞ indicates that the early stop-
ping criterion was inhibited. In the comparison, to distinguish the versions of
algorithm ARC-NMGRAD with respect to the early stopping parameter N , we
denote them as ARC-NMGRAD(N).

The subproblem solvers have been invoked specifying a limit of 1000 itera-
tions (i.e., jmax = 1000 in Algorithm 3.1), and using 10−4 as value of θ in the
relative stopping criterion (2.14).
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3.4.2 Numerical results on CUTEr problems

Algorithms have been compared by means of the performance profiles proposed
in [11]. Failures are accounted for by setting the performance index tp,s for the
pair (p, s), relative to a given problem (p) and solver (s), to a reference high
value.
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Figure 3.2: Performance profiles for ARC-NMGRAD(5), ARC-NMGRAD(10),
and ARC-NMGRAD(∞) on the CUTEr problems.

First we compare the relative efficiency of ARC-NMGRAD(5), ARC-NMGRAD(10)
and ARC-NMGRAD(∞) to show the effectiveness of the introduced early stop-
ping criterion. The results are plotted in Figure 3.2. The benefits deriving
from the adoption of the early stopping are evident. Indeed, both the versions
using the early stopping criterion clearly outperform the version with N = ∞
in terms both of efficiency and robustness. Furthermore, it can be noted that
ARC-NMGRAD(5) and ARC-NMGRAD(10) are substantially comparable and
in the following we compare ARC-GLRT against ARC-NMGRAD(5).

For the sake of completeness the complete results of the comparison be-
tween ARC-GLRT and ARC-NMGRAD(5) are reported in Tables 3.1 and 3.2
respectively. The symbols ni, nf , ng, f

∗, and cpu denote the number of it-
erations, the number of function evaluations, the number of gradient evalu-
ations, the final objective function value and the cpu time (in seconds), re-
spectively. The performance profiles relative to this comparison are plotted in
Figure 3.3. We note that the number of wins of ARC-GLRT is higher than that
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Figure 3.3: Performance profiles for ARC-NMGRAD(5), and ARC-GLRT on
the CUTEr problems.

of ARC-NMGRAD(5) but on almost 70% of the tests ARC-NMGRAD(5) is
within a factor 2 of the CPU time required by ARC-GLRT. Remarkably, ARC-
NMGRAD(5) compares favorably with ARC-GLRT in terms of robustness. On
the whole, ARC-NMGRAD(5) can be considered competitive with ARC-GLRT.
To further support this conclusion, we have performed a comparison between
ARC-GLRT and ARC-NMGRAD(5) on a set of runs representing the slower
ones. In particular, by eliminating the test problems where both algorithms
require a cpu time lower than 1 second, we obtained the performance profiles in
Figure 3.5 which show the effectiveness of ARC-NMGRAD(5).

Concerning the actual failures reported by the two algorithms, we observe
that:

- ARC-GLRT solves 45 over 52 problems; six of these failures are due to
the CPU time limit, and one is due to the limit on the number of outer
iterations

- ARC-NMGRAD(5) solves 47 over 52 problems; four of these failures are
due to the CPU time limit, and one is due to the limit on the number of
outer iterations.

Finally, to get more insight into the performance of ARC-NMGRAD and
ARC-GLRT, we further analyze the effects of using both NMGRAD and the
early stopping criterion and in Figure 3.4 we compare ARC-NMGRAD(∞) and
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Figure 3.4: Performance profiles for ARC-NMGRAD(∞), and ARC-GLRT on
the CUTEr problems.

ARC-GLRT.
From the performance profiles plotted in Figure 3.3 and in Figure 3.4 we can
observe that the adoption of the early stopping criterion is crucial to make
ARC-NMGRAD competitive with ARC-GLRT.

Table 3.1: Results obtained by ARC-GLRT on the CUTEr problems

Name ni nf ng f∗ cpu(secs.)

ARWHEAD 8 9 9 0.000000e+00 8.001000e−03
BDQRTIC 19 20 20 3.983818e+03 8.000501e−02
BROWNBS Not solved within 500 secs. CPU time
BROYDN7D 111 112 105 3.649243e+02 7.000430e−01
BRYBND 30 31 25 3.905249e−14 2.240140e−01
CHAINWOO 855 856 788 5.660338e+02 8.088505e+00
CRAGGLVY 23 24 24 3.364231e+02 1.240080e−01
CURLY10 162 163 153 -1.003163e+05 1.721109+01
CURLY20 303 304 231 -1.003163e+05 3.0173885+01
CURLY30 229 230 152 -1.003163e+05 3.2834049+02
DIXMAANA 17 18 18 1.000000e+00 3.200200e−02
DIXMAANB 16 17 17 1.000000e+00 3.200200e−02
DIXMAANC 16 17 17 1.000000e+00 4.800300e−02
DIXMAAND 21 22 21 1.000000e+00 6.800400e−02
DIXMAANE 51 52 52 1.000000e+00 3.960250e−01
DIXMAANF 34 35 35 1.000000e+00 3.520220e−01
DIXMAANG 32 33 33 1.000000e+00 3.560220e−01
DIXMAANH 35 36 35 1.000000e+00 4.360270e−01

continued on next page
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Table 3.1 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

DIXMAANI 99 100 100 1.000000e+00 4.988312e+00
DIXMAANJ 44 45 45 1.000000e+00 3.388211e+00
DIXMAANK 39 40 37 1.000000e+00 2.124132e+00
DIXMAANL 47 48 44 1.000000e+00 4.092256e+00
DQRTIC 42 43 43 3.264570e−07 3.600300e−02
EDENSCH 23 24 24 1.200328e+04 9.200601e−02
ENGVAL1 13 14 14 1.108195e+03 2.400100e−02
EXTROSNB 5800 5801 1340 1.276625e−08 4.435717e+02
FLETCBV2 12 13 13 -5.014290e−01 1.316082e+00
FLETCBV3 Not solved within 50000 outer iterations
FLETCHBV Not solved within 500 secs. CPU time
FLETCHCR 1678 1679 1514 9.091554e−15 4.772298e+00
FMINSRF2 246 247 240 1.000000e+00 3.500218e+00
FREUROTH 38 39 31 1.214697e+05 7.600500e−02
GENHUMPS Not solved within 500 secs. CPU time
GENROSE 1012 1013 556 1.000000e+00 4.204263e+00
LIARWHD 17 18 18 2.147984e−18 2.000100e−02
MOREBV 4 5 5 1.683811e−09 3.720230e−01
NONCVXU2 935 936 935 2.317705e+03 1.751309e+01
NONCVXUN Not solved within 500 secs. CPU time
NONMSQRT Not solved within 500 secs. CPU time
NONDIA 5 6 6 2.944539e−17 8.000001e−03
NONDQUAR 101 102 84 1.007064e−06 8.720540e−01
OSCIPATH 6 7 7 9.999667e−01 4.000001e−03
POWELLSG 26 27 27 4.010935e−08 1.600100e−02
QUARTC 42 43 43 3.264570e−07 2.800100e−02
SINQUAD 36 37 30 -2.942505e+05 6.800400e−02
SPARSINE Not solved within 500 secs. CPU time
SPARSQUR 19 20 20 1.767216e−08 6.000400e−02
SPMSRTLS 23 24 23 5.173202e−12 2.400150e−01
SROSENBR 9 10 10 1.278262e−19 4.000999e−03
TOINTGSS 20 21 21 1.001002e+01 4.800300e−02
TQUARTIC 38 39 39 2.557968e−13 3.200200e−02
WOODS 58 59 59 1.570289e−23 5.200300e−02

Table 3.2: Results obtained by ARC-NMGRAD(5) on the CUTEr problems

Name ni nf ng f∗ cpu(secs.)

ARWHEAD 6 14 7 0.000000e+00 1.200100e−02
BDQRTIC 10 67 11 3.983818e+03 1.080070e−01
BROWNBS Not solved within 500 secs. CPU time
BROYDN7D 69 478 66 3.456708e+02 5.640350e−01
BRYBND 21 501 17 3.590946e−13 9.160580e−01
CHAINWOO 611 7876 586 4.595685e+02 6.624414e+00
CRAGGLVY 16 114 17 3.364231e+02 1.320090e−01
CURLY10 141 20096 128 -1.003163e+05 1.377686e+01
CURLY20 149 21290 132 -1.003163e+05 1.986524e+01
CURLY30 151 21397 131 -1.003163e+05 2.601362e+01
DIXMAANA 16 46 17 1.000000e+00 5.600400e−02

continued on next page
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Table 3.2 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

DIXMAANB 15 42 16 1.000000e+00 5.200300e−02
DIXMAANC 15 48 16 1.000000e+00 6.000300e−02
DIXMAAND 68 235 62 1.000000e+00 3.000180e−01
DIXMAANE 46 271 47 1.000000e+00 3.600220e−01
DIXMAANF 29 209 30 1.000000e+00 3.600230e−01
DIXMAANG 32 265 33 1.000000e+00 4.360270e−01
DIXMAANH 88 556 81 1.000000e+00 8.800550e−01
DIXMAANI 76 1424 77 1.000003e+00 1.944121e+00
DIXMAANJ 33 789 34 1.000003e+00 1.276079e+00
DIXMAANK 37 1797 38 1.000006e+00 2.844178e+00
DIXMAANL 105 3882 97 1.000009e+00 7.064441e+00
DQRTIC 42 155 43 8.665368e−08 5.200300e−02
EDENSCH 16 63 17 1.200328e+04 9.600600e−02
ENGVAL1 9 35 10 1.108195e+03 2.400200e−02
EXTROSNB 522 74577 481 1.390821e−06 6.204388e+01
FLETCBV2 7 1112 8 -5.014268e−01 8.760550e−01
FLETCBV3 Not solved within 50000 outer iterations
FLETCHBV Not solved within 500 secs. CPU time
FLETCHCR 1512 16297 1511 1.675118e−13 1.155672e+01
FMINSRF2 147 3912 144 1.000012e+00 5.116320e+00
FREUROTH 22 216 20 1.214697e+05 2.000120e−01
GENHUMPS 33208 129369 20367 5.058678e−14 1.594540e+02
GENROSE 1053 7126 578 1.000000e+00 4.696294e+00
LIARWHD 17 63 18 5.043585e−23 4.400200e−02
MOREBV 2 241 3 1.527327e−09 1.520090e−01
NONCVXU2 866 19162 866 2.317235e+03 2.740971e+01
NONCVXUN Not solved within 500 secs. CPU time
NONMSQRT Not solved within 500 secs. CPU time
NONDIA 6 17 7 1.595894e−23 1.200100e−02
NONDQUAR 73 3246 61 1.833421e−06 1.780112e+00
OSCIPATH 2 7 3 9.999667e−01 4.000001e−03
POWELLSG 25 134 26 3.460945e−08 6.000300e−02
QUARTC 42 155 43 8.665368e−08 5.200300e−02
SINQUAD 36 191 30 -2.942505e+05 2.440160e−01
SPARSINE 127 13490 116 1.935705e−09 2.356147e+01
SPARSQUR 19 88 20 9.255839e−09 1.160070e−01
SPMSRTLS 19 142 18 4.585779e−13 1.960120e−01
SROSENBR 14 48 15 1.942930e−20 2.400200e−02
TOINTGSS 17 55 18 1.001002e+01 6.000300e−02
TQUARTIC 38 162 39 2.497239e−10 1.440090e−01
WOODS 56 403 57 2.769636e−18 2.360150e−01
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Figure 3.5: Performance profiles for ARC-NMGRAD(5), and ARC-GLRT on
the CUTEr problems where at least one algorithm requires a CPU time greater
than 1 second.
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3.4.3 Numerical results on Luksan’s problems

For this set of test problems, the Hessian/vector product H(xk)d is approxi-
mated by finite differences as follows

H(xk)d ≃ g(xk + δd)− g(xk)

δ
,

where

δ = 2 · 10−6 (1 + ‖xk‖)
max{10−5, ‖d‖} .
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Figure 3.6: Performance profiles for ARC-NMGRAD(5), ARC-NMGRAD(10),
and ARC-NMGRAD(∞) on the Luksan’s problems.

First we compare the relative efficiency of ARC-NMGRAD(5), ARC-NMGRAD(10)
and ARC-NMGRAD(∞) to show the effectiveness of the introduced early stop-
ping criterion. The results are plotted in Figure 3.6 and confirm the validity of
the early stopping criterion.

Then we have compared ARC-GLRT versus ARC-NMGRAD(5). The com-
plete results relative to this comparison can be found in Tables 3.3 and 3.4
respectively. The symbols ni, nf , ng, f

∗, and cpu denote the number of itera-
tions, the number of function evaluations, the number of gradient evaluations,
the final objective function value and the cpu time (in seconds), respectively.
The performance profiles representing this comparison are plotted in Figure 3.7.
We note that for these problems, ARC-GLRT and ARC-NMGRAD(5) are al-
most equivalent in terms of wins. On the other hand, ARC-GLRT is slightly
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Figure 3.7: Performance profiles for ARC-NMGRAD(5), and ARC-GLRT on
the Luksan’s problems.

more efficient than ARC-NMGRAD(5) while this latter shows good performance
in terms of robustness.

As done for CUTEr collection, we have compared ARC-GLRT and ARC-
NMGRAD(5) by eliminating “easy” problems, that is, the test problems where
both algorithms require a cpu time lower than 1 second. The performance pro-
files are reported in Figure 3.9 showing again a satisfactory behavior of ARC-
NMGRAD(5).

Concerning the actual failures reported by the two algorithms, we point out
that:

- ARC-GLRT solves 78 over 92 problems; twelve failures are due to the
CPU time limit, and two are due to the iterations limit;

- ARC-NMGRAD(5) solve 81 over 92 problems; the eleven failures are due
to the CPU time limit.

Finally, we report the performance profiles relative to the comparison be-
tween ARC-NMGRAD(∞) and ARC-GLRT. Figure 3.8 shows that, also for this
set of problems, the use of the early stopping criterion in ARC-NMGRAD is
crucial to be competitive with ARC-GLRT.
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Figure 3.8: Performance profiles for ARC-NMGRAD(∞), and ARC-GLRT on
the Luksan’s problems.

Table 3.3: Results obtained by ARC-GLRT on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1705 1706 1525 2.666630e−14 4.252265e+00
LUKSAN 2 992 993 887 6.980949e+02 8.264516e+00
LUKSAN 3 20 21 21 1.310668e−09 4.000200e−02
LUKSAN 4 26 27 27 2.694995e+02 4.680290e−01
LUKSAN 5 14 15 15 5.745074e−12 8.800500e−02
LUKSAN 6 15 16 16 6.625240e−11 2.920180e−01
LUKSAN 7 13 14 14 3.369372e+02 1.280070e−01
LUKSAN 8 Not solved within 500 secs. CPU time
LUKSAN 9 50 51 51 3.164361e+02 1.244077e+00
LUKSAN 10 172 173 71 -1.331500e+02 5.358735e+01
LUKSAN 11 60 61 55 1.077659e+01 1.080060e−01
LUKSAN 12 27 28 28 9.989331e+01 2.800100e−02
LUKSAN 13 13 14 14 1.666597e−24 4.000200e−02
LUKSAN 14 1 2 2 2.149546e−08 3.720230e−01
LUKSAN 15 29 30 30 1.924016e+00 4.354672e+01
LUKSAN 16 19 20 20 -4.274045e+02 1.396087e+00
LUKSAN 17 27 28 28 -3.799211e−02 3.880242e+00
LUKSAN 18 19 20 20 -2.457412e−02 1.832114e+00
LUKSAN 19 57 58 58 5.959862e+01 5.608350e+00
LUKSAN 20 86 87 81 -1.000135e+00 1.028864e+01
LUKSAN 21 42 43 43 2.138664e+00 1.401287e+01
LUKSAN 22 Not solved within 500 secs. CPU time
LUKSAN 23 64 65 48 2.344534e+01 2.416150e+00
LUKSAN 24 Not solved within 500 secs. CPU time

continued on next page
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Table 3.3 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 25 36 37 37 4.183369e−22 2.400100e−02
LUKSAN 26 31 32 32 6.586576e−09 3.200200e−02
LUKSAN 27 52 53 40 4.843106e−03 3.600200e−02
LUKSAN 28 37 38 38 3.094958e−22 1.600100e−02
LUKSAN 29 3 4 4 1.947689e−13 2.240130e−01
LUKSAN 30 8 9 9 2.743256e−11 2.048128e+00
LUKSAN 31 13 14 14 7.904777e−13 2.400100e−02
LUKSAN 32 14 15 15 3.262056e−13 2.000100e−02
LUKSAN 33 14 15 15 2.087061e−12 1.080060e−01
LUKSAN 34 36 37 29 6.070537e+04 6.000300e−02
LUKSAN 35 46 47 41 1.095373e−07 1.184874e+01
LUKSAN 36 Not solved within 500 secs. CPU time
LUKSAN 37 23 24 18 1.911663e+02 2.640165e+00
LUKSAN 38 3814 3815 3437 4.562540e−20 1.348084e+01
LUKSAN 39 Not solved within 50000 outer iterations
LUKSAN 40 77 78 23 1.31234018+5 2.920180e−01
LUKSAN 41 19 20 16 1.085179e+02 2.168136e+01
LUKSAN 42 70 71 17 1.817631e+01 3.396212e+00
LUKSAN 43 23 24 20 2.511097e+00 3.421014e+01
LUKSAN 44 Not solved within 500 secs. CPU time
LUKSAN 45 99 100 99 1.088574e−13 9.040560e−01
LUKSAN 46 50 51 51 6.278438e−13 3.200200e−01
LUKSAN 47 16127 16128 16128 1.075591e−10 2.109332e+02
LUKSAN 48 46 47 43 6.507736e+02 1.720100e−01
LUKSAN 49 27 28 24 4.486970e+03 6.280390e−01
LUKSAN 50 38 39 30 5.054050e−14 3.172998e+01
LUKSAN 51 47 48 41 1.417404e−11 2.560150e−01
LUKSAN 52 12 13 13 7.086282e+00 1.760110e−01
LUKSAN 53 1485 1486 1282 3.000935e+05 2.694888e+02
LUKSAN 54 18 19 19 3.052255e−08 6.800400e−02
LUKSAN 55 788 789 561 4.998163e−01 6.320395e+00
LUKSAN 56 525 526 423 3.158296e−01 5.776361e+00
LUKSAN 57 113 114 114 1.224606e+04 5.600300e−02
LUKSAN 58 39 40 40 4.098448e−07 8.800500e−02
LUKSAN 59 14 15 15 1.806224e−12 3.200200e−02
LUKSAN 60 2454 2455 2455 9.360219e−05 6.696418e+00
LUKSAN 61 446 447 435 7.331583e−18 4.200260e−01
LUKSAN 62 Not solved within 500 secs. CPU time
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 114 115 115 3.453677e−07 8.489330e+01
LUKSAN 65 570 571 570 1.251357e−04 4.014011e+02
LUKSAN 66 298 299 298 1.372173e−07 1.746429e+02
LUKSAN 67 103 104 104 2.080020e−11 4.110657e+01
LUKSAN 68 153 154 154 3.691512e−12 8.396524e+00
LUKSAN 69 Not solved within 500 secs. CPU time
LUKSAN 70 63 64 64 7.861817e−10 1.605300e+01
LUKSAN 71 38 39 39 7.386779e−12 2.020126e+00
LUKSAN 72 223 224 224 7.563986e−09 1.875477e+02
LUKSAN 73 Not solved within 500 secs. CPU time
LUKSAN 74 34 35 35 1.275229e−11 1.974923e+01
LUKSAN 75 Not solved within 500 secs. CPU time
LUKSAN 76 21 22 22 5.366343e−18 1.200000e−02

continued on next page
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Table 3.3 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 77 10 11 11 2.642602e−11 2.396149e+00
LUKSAN 78 0 1 1 4.980050e−10 0.000000e+00
LUKSAN 79 41 42 42 1.694190e−11 1.120070e−01
LUKSAN 80 12 13 13 4.423241e−13 8.800500e−02
LUKSAN 81 11 12 12 2.874604e−12 5.600300e−02
LUKSAN 82 12 13 13 4.031545e−20 3.200200e−02
LUKSAN 83 79 80 80 4.302980e−07 6.925233e+01
LUKSAN 84 12 13 13 2.731366e−13 3.600200e−02
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 11 12 12 3.899674e−11 5.528346e+00
LUKSAN 87 85 86 86 4.403826e−07 3.496218e+01
LUKSAN 88 Not solved within 500 secs. CPU time
LUKSAN 89 Not solved within 50000 outer iterations
LUKSAN 90 0 1 1 1.664531e−08 0.000000e+00
LUKSAN 91 107 108 108 5.510381e−11 1.407688e+01
LUKSAN 92 218 219 219 3.127943e−11 8.328520e+00

Table 3.4: Results obtained by ARC-NMGRAD(5) on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1520 16465 1517 3.986624e+00 9.884617e+00
LUKSAN 2 607 7177 587 2.480440e+02 4.184261e+00
LUKSAN 3 16 274 17 4.999968e−09 2.520150e−01
LUKSAN 4 19 349 20 2.694995e+02 1.024064e+00
LUKSAN 5 12 44 13 1.399421e−11 1.000060e−01
LUKSAN 6 13 83 14 3.379594e−12 2.800170e−01
LUKSAN 7 7 27 8 3.369372e+02 8.800500e−02
LUKSAN 8 79 462 7 7.617750e+05 1.140471e+01
LUKSAN 9 47 142 48 3.164361e+02 2.140133e+00
LUKSAN 10 140 1992 62 -1.336300e+02 3.117395e+01
LUKSAN 11 41 433 40 1.077659e+01 1.044065e+00
LUKSAN 12 27 69 28 9.989331e+01 7.200400e−02
LUKSAN 13 13 37 14 5.232574e−23 1.240070e−01
LUKSAN 14 1 175 2 2.146466e−08 1.680100e−01
LUKSAN 15 Not solved within 500 secs. CPU time
LUKSAN 16 7 150 8 -4.274045e+02 9.080560e−01
LUKSAN 17 17 2297 18 -3.799211e−02 5.248327e+00
LUKSAN 18 16 2606 17 -2.457412e−02 1.756109e+00
LUKSAN 19 29 3110 30 5.959862e+01 5.772360e+00
LUKSAN 20 47 2745 41 -1.000135e+00 6.824426e+00
LUKSAN 21 34 5113 35 2.138664e+00 1.205675e+01
LUKSAN 22 511 8240 85 1.000000e+00 6.544408e+00
LUKSAN 23 106 807 43 2.344534e+01 2.616163e+00
LUKSAN 24 Not solved within 500 secs. CPU time
LUKSAN 25 37 133 38 6.984929e−21 7.200400e−02
LUKSAN 26 28 151 29 3.938530e−08 1.000060e−01
LUKSAN 27 50 120 40 4.843088e−03 7.200400e−02
LUKSAN 28 36 73 37 3.317687e−18 4.400200e−02
LUKSAN 29 2 5 3 1.948019e−13 3.880240e−01

continued on next page
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Table 3.4 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 30 5 16 6 4.227790e−17 2.528158e+00
LUKSAN 31 6 25 7 7.931709e−19 2.000100e−02
LUKSAN 32 7 24 8 3.559841e−20 2.400100e−02
LUKSAN 33 7 38 8 3.233905e−13 6.000300e−02
LUKSAN 34 21 228 20 6.073486e+04 2.360140e−01
LUKSAN 35 57 5461 52 2.447920e−06 4.961510e+01
LUKSAN 36 218 628 202 2.216459e+03 7.880490e−01
LUKSAN 37 13 111 9 1.911663e+02 1.388087e+00
LUKSAN 38 3488 31681 3359 1.614838e−13 2.766573e+01
LUKSAN 39 78 658 66 2.223755e+04 1.388086e+00
LUKSAN 40 18 148 17 1.312340e+05 2.160130e−01
LUKSAN 41 4 31 5 1.085179e+02 3.316207e+00
LUKSAN 42 13 45 8 1.817631e+01 1.096068e+00
LUKSAN 43 12 579 13 2.511097e+00 2.181336e+01
LUKSAN 44 45 1023 36 4.218847e−03 8.080500e−01
LUKSAN 45 2856 347989 2680 4.432440e−17 3.192640e+02
LUKSAN 46 43 1233 44 1.648348e−15 1.768110e+00
LUKSAN 47 10123 103701 10124 3.107663e−09 1.156152e+02
LUKSAN 48 14 138 15 6.476961e+02 1.920120e−01
LUKSAN 49 17 225 17 4.486970e+03 1.036064e+00
LUKSAN 50 81 321 60 8.017310e−17 5.038715e+01
LUKSAN 51 34 658 29 4.908125e−15 6.600410e−01
LUKSAN 52 13 47 11 1.761899e−17 3.280200e−01
LUKSAN 53 938 28929 884 3.093525e+03 2.735691e+02
LUKSAN 54 17 97 18 2.092815e−08 8.400500e−02
LUKSAN 55 660 10475 549 4.998163e−01 1.162873e+01
LUKSAN 56 393 2415 324 3.158296e−01 2.460153e+00
LUKSAN 57 100 351 101 1.224606e+04 1.960120e−01
LUKSAN 58 38 160 39 4.863680e−07 3.080190e−01
LUKSAN 59 8 41 9 2.882457e−12 2.800100e−02
LUKSAN 60 Not solved within 500 secs. CPU time
LUKSAN 61 275 8529 257 1.939807e−10 6.456403e+00
LUKSAN 62 Not solved within 500 secs. CPU time
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 51 5679 52 1.382230e−05 1.873317e+01
LUKSAN 65 Not solved within 500 secs. CPU time
LUKSAN 66 152 27412 153 6.347841e−06 3.928245e+01
LUKSAN 67 117 20726 118 6.458919e−06 7.115645e+01
LUKSAN 68 85 4662 86 1.095757e−07 8.368523e+00
LUKSAN 69 Not solved within 500 secs. CPU time
LUKSAN 70 65 9143 66 5.346279e−07 1.516495e+01
LUKSAN 71 29 1024 30 7.329030e−12 1.952121e+00
LUKSAN 72 Not solved within 500 secs. CPU time
LUKSAN 73 Not solved within 500 secs. CPU time
LUKSAN 74 31 94 32 1.784223e−14 3.400613e+01
LUKSAN 75 2841 66630 1267 1.485122e−05 4.209863e+01
LUKSAN 76 21 59 22 2.718483e−17 3.200100e−02
LUKSAN 77 9 29 10 2.312421e−13 4.756297e+00
LUKSAN 78 0 1 1 4.980050e−10 0.000000e+00
LUKSAN 79 35 161 36 3.619068e−12 9.600600e−02
LUKSAN 80 5 25 6 1.005674e−16 5.200300e−02
LUKSAN 81 6 26 7 1.730203e−15 3.600200e−02

continued on next page
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Table 3.4 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 82 12 33 13 8.413166e−19 5.200300e−02
LUKSAN 83 21 2863 22 1.128760e−05 7.816488e+00
LUKSAN 84 7 23 8 3.308213e−13 3.200100e−02
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 9 27 10 1.049445e−16 8.228515e+00
LUKSAN 87 24 3433 25 1.218843e−05 3.084192e+00
LUKSAN 88 Not solved within 500 secs. CPU time
LUKSAN 89 132 16687 124 1.063317e−05 4.737856e+02
LUKSAN 90 0 1 1 1.664531e−08 0.000000e+00
LUKSAN 91 59 4043 60 9.602579e−10 1.912919e+01
LUKSAN 92 134 4303 135 1.375732e−08 7.404462e+00
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Figure 3.9: Performance profiles for ARC-NMGRAD(5), and ARC-GLRT on the
Luksan’s problems where at least one algorithm requires a CPU time greater
than 1 second.
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3.4.4 On the influence of Algorithm 2.2 on overall perfor-

mance

In all the runs reported above, condition (3.4) of Algorithm 3.2 was tested with
α = 10−8 and resulted to be satisfied; hence Algorithm 2.2 was never invoked.
Therefore, in order to test the behavior of Algorithm 2.2, we have increased the
value of α up to 10−4, and we have analyzed the differences in the solution of
CUTEr problems.

In Table 3.5 we show the 15 CUTEr problems where Algorithm 2.2 was in-
voked and report the results obtained with both α = 10−4 and α = 10−8. The
results reported in Table 3.5 show that in 14 over 15 tests Algorithm 2.2 does
not significantly influence the performance of the overall algorithm, while only
in one case (SPARSINE) it drastically deteriorates the performance. We have
verified that the strong increase of the CPU time in the solution of SPARSINE
is due to the fact that Algorithm 3.1 performs the maximum number (50000)
of iterations without satisfying the stopping criterion.

ni nf ng cpu(secs.)
Name 10−8 10−4 10−8 10−4 10−8 10−4 10−8 10−4

ARWHEAD 6 6 14 15 7 7 0.01 0.01
BDQRTIC 10 10 67 68 11 11 0.10 0.18
CHAINWO 611 611 7876 7877 586 586 6.61 6.66
CURLY20 149 142 21290 19898 132 125 19.86 19.48
CURLY30 151 147 21397 20601 131 125 26.01 25.24
DIXMAANA 16 16 46 47 17 17 0.05 0.05
DIXMAAND 68 68 235 236 62 62 0.30 0.30
ENGVAL1 9 9 35 36 10 10 0.02 0.03
LIARWHD 17 17 63 64 18 18 0.04 0.04
NONDIA 6 6 17 18 7 7 0.01 0.12
OSCIPATH 2 2 7 8 3 3 0.001 0.01
SINQUAD 36 36 191 192 30 30 0.24 0.25
SPARSINE 127 124 13490 12939 116 113 23.56 230.15
SROSENBR 14 14 48 49 15 15 0.02 0.02
WOODS 56 56 403 404 57 57 0.23 0.24

Table 3.5: Comparison of the results obtained by ARC-NMGRAD(5) with α =
10−8 and α = 10−4

In general, we may expect that Algorithm 2.2 is inefficient when the Hessian
matrix becomes ill conditioned. On the other hand, our numerical experience
indicate that such an algorithm does not have a crucial practical role, since
condition (3.4) is typically satisfied for fairly small values of α.
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3.4.5 General comments on the comparison between ARC-

GLRT and ARC-NMGRAD

Summarizing, the results of the computational experiments show that the em-
ployment of a gradient-based method as inexact solver is a valid alternative to
ARC-GLRT, and the adoption of the early stopping criterion enhances the per-
formance of ARC-NMGRAD and leads to an efficient variant of ARC. Indeed,
it appears that the early stopping strategy is a useful tool to properly manage
the “over-solving” issue arising whenever the objective function may not be ad-
equately represented by the cubic model.

The results reported previously show that, in most runs, ARC-NMGRAD
requires a lower number of iterations than those required by ARC-GLRT. How-
ever, because of the early stopping rule, the number of function evaluations
required by ARC-NMGRAD is much higher than that required by ARC-GLRT.
This may be a serious issue whenever the function evaluation is the dominant
cost. In this case, the parameter N in the early stopping should be taken large
enough to reduce the computational burden while preserving the potential ben-
efits of the early stopping criterion.
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Chapter 4

A non-monotone ARC

algorithm

It’s trivial to verify that the sequences {f(xk)} generated by the Algorithms 2.1
and 3.2 are monotonically decreasing. This is due to the trial step acceptance
procedure in Step 3. This property ensures that each successful iteration gener-
ates a point that is the best ever found. The main idea behind a nonmonotone
method is to abandon this algorithmic restriction; this relaxation allows the
sequence of iterates to better follow the objective function contours, especially
in difficult nonlinear problems [17, 18]. In our knowledge, any nonmonotone
method has been developed within ARC framework.

4.1 Non-monotone method sketch

Given a positive integer M ∈ N, for each iteration k we define with Sk,M the
set of indexes of last M successful iteration before the kth, with the convention
S0,M = {0} and that if for a certain k the number of previous successful itera-
tion is less than M , then Sk,M contains all successful iterations before the kth.

We propose to substitute in the acceptance criterion the value of f of the last
iterate with the maximum value obtained in the last M successful iterations.
Hence at the beginning of each iteration we find an index m(k) such that

f(xm(k)) = max
j∈Sk,M

f(xj) (4.1)

and we use the ratio
f(xm(k))− f(xk + pk)

f(xk)−mk(pk)

to accept or to reject the candidate point. Since f(xm(k)) ≥ f(xk) we can have
that the new point can be accepted even if f(xk + pk) ≥ f(xk).
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Another idea that we introduce in our algorithm is to look at the trial step
pk obtained by approximately minimizing the cubic model from a different per-
spective: we can imagine the trial step as a sort of descent direction for the
real objective function. In order to get a better reduction of f we can try
to perform an extrapolation along pk and to find a scalar α > 0 such that
f(xk + αpk) < f(xk + pk). In such a way we try to reduct as much as possible
the value of f with a single subproblem optimization.

Keeping in mind the new role of pk, another kind of modification that can
be done is to make a nonmonotone line search over pk in order to get a sort
of sufficient reduction of the real objective function compared against f(xm(k)).
In particular we propose to perform a nonmonotone Armijo line search that
satisfies the following condition for a fixed constant β ∈ (0, 1)

f(xm(k))− f(xk + λkpk) ≥ −λkβg(xk)T pk, (4.2)

where λk > 0 is the step obtained by mean of the line search.
Without imposing some conditions on the search direction pk we are not sure
that the line search ends in a finite number of steps producing a value λk that
satisfies (4.2). For this reason in the proposed algorithm we activate the non-
monotone line search procedure only if pk satisfies the following conditions

g(xk)
T pk ≤ −c1‖g(xk)‖2 (4.3)

‖pk‖ ≤ c2‖g(xk)‖ (4.4)

for some constants c1, c2 > 0.

All these changes to the standard ARC algorithm have the aim to exploit
as much as possible the result of the approximate minimization of the cubic
problem. In this way we try to take advantage of the computation effort made
to obtain the candidate step pk, that represent the dominant cost of the whole
algorithm.

Before introducing the sketch of the proposed algorithm, we need first the
following definition.
Let σ : [0,+∞) → [0,+∞) be a function of one real variable. We say that σ is
a forcing function if for every sequence {tk} ⊂ [0,+∞) we have that

lim
k→∞

σ(tk) = 0 =⇒ lim
k→∞

tk = 0.

The proposed algorithm is formally described below.



4.1 Non-monotone method sketch 47

Algorithm 4.1: k-th iteration of the proposed non-monotone algo-

rithm

Given xk, two positive integers L,M ∈ N, and the scalars c1 ∈ (0, 1), c2 > 1,
ω ∈ (0, 1), β ∈ (0, 1), σk > 0, 1 > η2 ≥ η1 > 0, γ2 ≥ γ1 > 1, α > 1.

1. Compute an approximate minimizer pk of mk such that mk(pk) ≤
mk(p

c
k) and find the index m(k) defined in (4.1).

1.a. If the trial step pk is such that (4.3) and (4.4) hold then set j = 0.

While j < L and f(αj+1pk) < f(αjpk), set j = j + 1.

Choose λk ∈ {αj , αjω, αjω2, . . .} such that (4.2) holds.

1.b. Otherwise if
f(xk)− f(xk + pk) ≤ σ̂(‖pk‖), (4.5)

where σ̂ is a forcing function, set λk = 1.

1.c. If (4.5) is not satisfied, take pk = −g(xk) and go back to Step 1.a.

2. Compute

Redk =

{

f(xk)− f(xk + λkpk) if Step 1.b. has been performed
f(xm(k))− f(xk + λkpk) otherwise

Predk =

{

f(xk)−mk(p
c
k) if Step 1.c. has been performed

f(xk)−mk(pk) otherwise

ρ̂k =
Redk

Predk

3. Set

xk+1 =

{

xk + λkpk if ρ̂k ≥ η1,

xk otherwise.

4. Set

σk+1 ∈







(0, σk] if ρ̂k ≥ η2 (very successful iteration),
[σk, γ1σk ) if η1 ≤ ρ̂k ≤ η2 (successful iteration),
[γ1σk, γ2σk] otherwise (unsuccessful iteration).

It’s straightforward that in this case the acceptance criterion allows that
an iterate can be accepted even if it doesn’t result in an improvement of the
objective function.
If conditions (4.3) and (4.4) are satisfied, in Step 1.a. we first perform an ex-
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trapolation on the direction of the trial step pk. This extrapolation is limited
by a maximum number L of inner iterations.
After that a non-monotone line search is performed over the direction previous
computed. Condition (4.2) guarantees a “sufficient decrease”. If one of con-
ditions (4.3) and (4.4) fails we check (4.5) in Step 1.b. that requires that the
trial step produces a sufficient decrease on the real objective function; if this
happens we perform a standard monotone ARC iteration. If even this condition
is not satisfied we force conditions (4.3) and (4.4) to be satisfied using the anti-
gradient as trial step and we perform the strategy of Step 1.a. Since in this case
is not guaranteed that the anti-gradient is a minimizer as good as the Cauchy
point, we have to take care about it in ρ̂k updating procedure performed in Step
2.
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4.2 Convergence analysis

Let’s first recall two useful Lemmas from [9] on the predicted reduction given
by the minimizer of the subproblem.

Lemma 4.1. [9, Lemma 2.1] Suppose that the step pk satisfies mk(pk) ≤
mk(p

c
k). Then for all k ≥ 0

f(xk)−mk(pk) ≥
‖g(xk)‖
6
√
2

min







‖g(xk)‖
1 + ‖Bk‖

,
1

2

√

‖g(xk)‖
σk







. (4.6)

Lemma 4.2. [9, Lemma 2.2] Suppose that the step pk satisfies mk(pk) ≤
mk(p

c
k) and that ‖Bk‖ ≤ κB for all k ≥ 0. Then

‖pk‖ ≤ 3

σk
max

{

κB,
√

σk‖g(xk)‖
}

. (4.7)

We are now able to prove a result analogous to [9, Lemma 2.3].

Lemma 4.3. Suppose f ∈ C1(Rn) and ‖Bk‖ ≤ κB for all k ≥ 0. If exists an
infinite set I and ǫ > 0 such that

‖g(xk)‖ ≥ ǫ ∀ k ∈ I and

√

‖g(xk)‖
σk

−→ 0 for k → ∞, k ∈ I (4.8)

then

‖pk‖ ≤ 3

√

‖g(xk)‖
σk

∀ k ∈ I sufficiently large. (4.9)

Additionally, if the subsequence {xk}k∈I is convergent, then for each k ∈ I, k
sufficiently large, the iteration is very successful.

Proof. Since (4.8) implies

√

σk‖g(xk)‖ = ‖g(xk)‖
√

σk

‖g(xk)‖
≥ ǫ

√

σk

‖g(xk)‖
−→ ∞

for k ∈ I, k → ∞, the inequality (4.7) asymptotically becomes (4.9), and hence
the first part of the Lemma is proved.
A simple Taylor expansion of f(xk + λkpk) around xk gives that for each k

f(xk + λkpk)−mk(pk) = λk(g(ξk)− g(xk))
T pk −

λ2k
2
pTkBkpk −

σkλ
3
k

3
‖pk‖3

≤ λk(g(ξk)− g(xk))
T pk −

λ2k
2
pTkBkpk

(4.10)
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for some ξk ∈ (xk, xk + λkpk). By employing (4.9) we obtain

f(xk+λkpk)−mk(pk) ≤ 3

√

‖g(xk)‖
σk







λk‖g(ξk)− g(xk)‖+
3λ2kκB

2

√

‖g(xk)‖
σk







(4.11)
for all k ∈ I sufficiently large.
Since f(xm(k)) ≥ f(xk) and mk(p

c
k) ≥ mk(pk) for each k, we have that the ratio

ρ̂k used in the acceptance step of Algorithm NMARC can be bounded from
below by

ρ̂k ≥ f(xk)− f(xk + λkpk)

f(xk)−mk(pk)
.

The inequality
f(xk)− f(xk + λkpk)

f(xk)−mk(pk)
≥ η2

holds if and only if

rk = f(xk + λkpk)−mk(pk) + (1− η2)[mk(pk)− f(xk)] ≤ 0. (4.12)

In order to get that we prove for each k ∈ I, k sufficiently large, the iteration
is very successful, we’ll show that (4.12) holds if {xk}k∈I converges.
Now from (4.11) and Lemma 4.1 we obtain that

rk ≤ 3

√

‖g(xk)‖
σk







λk‖g(ξk)− g(xk)‖+
3λ2kκB

2

√

‖g(xk)‖
σk

− ǫ
1− η2

12
√
2







.

(4.13)
Note that λk is bounded from above by αL and hence we cannot have λk → ∞.
Since f ∈ C1(Rn) and ξk ∈ (xk, xk+λkpk) and due to the fact that (4.9) implies
pk −→ 0, we obtain that the right term of (4.13) asymptotically becomes

−3ǫ

√

‖g(xk)‖
σk

· 1− η2

12
√
2
< 0

and hence for each k ∈ I, k sufficiently large

ρ̂k ≥ f(xk)− f(xk + λkpk)

f(xk)−mk(pk)
≥ η2

and then the iteration is very successful.

The previous Lemma is crucial to prove that the Algorithm NMARC stops
to produces successful iteration only if a stationary point has been found.

Lemma 4.4. Let f ∈ C1(Rn) and ‖Bk‖ ≤ κB for all k ≥ 0 hold. Suppose
that Algorithm NMARC produces only finitely many successful iterations. Then
xk = x∗ for all sufficiently large k and x∗ is a critical point.
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Proof. Let k0 be the last successful iteration. Then for each j ∈ N we have
that xk0+j = xk0

:= x∗ due to the structure of Algorithm NMARC. In addition
to this we have that σk → ∞ as k → ∞ since all iteration that follow k0 are
unsuccessful and so σ is increased by at least a fraction γ1. If ‖g(x∗)‖ = ǫ > 0,
we have that for Lemma 4.3 each sufficiently large iteration is very successful,
that contradicts the fact that k0 + j is unsuccessful for each j ∈ N. This means
that must be ‖g(x∗)‖ = 0.

Before proving the convergence properties of Algorithm NMARC we need
to focus on the “sufficient reduction” guaranteed at each successful iteration
produced by the the algorithm.

Combining together the conditions (4.3) and (4.4) we have that

g(xk)
T pk ≤ −c1‖g(xk‖2

≤ −c1
c22
‖pk‖2.

Employing the previous inequality in (4.2) we obtain that at each successful
iteration in which Step 1.a. is performed (and this includes also iterations that
reach Step 1.c.) we have

f(xk+1) = f(xk + λkpk) ≤ f(xm(k)) + λkβg(xk)
T pk

≤ f(xm(k))− β
c1

c22
λk‖pk‖2

and since λk < αL is straightforward that

f(xk+1) ≤ f(xm(k))− β
c1

c22α
L
‖λkpk‖2

= f(xm(k))− σ̄(‖xk+1 − xk‖)
(4.14)

where
σ̄(t) = β

c1

c22α
L
t2.

is a forcing function.
On the other hand we have that in Step 1.b.

f(xm(k))− f(xk + λkpk) ≤ σ̂(‖λkpk‖) (4.15)

since f(xm(k)) ≥ f(xk) and λk = 1.
Hence due to (4.14) and (4.15) we can state that

f(xm(k))− f(xk + λkpk) ≤ σ(‖xk+1 − xk‖) (4.16)

holds for each successful iteration, where

σ(t) = max {σ̄(t), σ̂(t)} .
It’s trivial to verify that the function σ is itself a forcing function.

We can now state the main result of this Chapter, that guarantees the con-
vergence of Algorithm NMARC under suitable assumptions.
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Theorem 4.1. Let f ∈ C1(Rn) be bounded from below, ‖Bk‖ ≤ κB for all
k ≥ 0, and suppose that f is Lipschitz continuous over the compact set L0 =
{x ∈ R

n : f(x) ≤ f(x0)}. Then

(i) {f(xm(k))} and {f(xk)} converge to the same limit;

(ii) {xk} contains a subsequence that converges to a stationary point.

Proof. The result is guaranteed by Lemma 4.4 if the number of successful iter-
ations is finite.
Suppose now that the set of successful iteration S is infinite. Let k ∈ S. For eas-
iness of notation we enumerate the iterations that belong to S with {1, 2, . . .}.
From the definition of m(k) we have that for k large enough

f(xm(k+1)) = max
j∈Sk+1,M

f(xj)

≤ max
j∈Sk,M∪{k+1}

f(xj)

= max

{

max
j∈Sk,M

f(xj), f(xk+1)

}

= f(xm(k)).

This means that the sequence {f(xm(k))} is monotonically non increasing and,
since f(xm(0)) = f(x0) we have that each point of the sequence {xk} is contained
in the level set L0 that is compact. Hence {f(xm(k))}, that is bounded from
below, converges to a value f∗.
We prove by induction on j that

lim
k∈S,k→∞

‖xm(k)−j+1 − xm(k)−j‖ = 0, (4.17)

lim
k∈S,k→∞

f(xm(k)−j) = lim
k∈S,k→∞

f(xm(k)) (4.18)

where k is supposed to be large enough to have m(k) ≥ k − M > 1. The
condition (4.16) ensures that

f(xm(k)) ≤ f(xm(m(k)−1))− σ(‖xm(k) − xm(m(k)−1)‖). (4.19)

The limit for k → ∞ gives that σ(‖xm(k) − xm(m(k)−1)‖) → 0, and hence due
to the definition of forcing function we obtain (4.17) for j = 1. Consequently
(4.18) for j = 1 is straightforward since f ∈ C1(Rn). Let (4.18) be valid for a
fixed j > 1. The condition (4.16) gives that

f(xm(k)−j) ≤ f(xm(m(k)−j−1))− σ(‖xm(k)−j − xm(k)−j−1‖).

The limit for k → ∞ and the inductive hypothesis give that

lim
k→∞

‖xm(k)−j − xm(k)−j−1‖ = 0

and hence, since f ∈ C1(Rn) and employing (4.18),

lim
k∈S,k→∞

f(xm(k)−j−1) = lim
k∈S,k→∞

f(xm(k)).
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This completes the induction.
Hence (4.17) and (4.18) must be valid even if we considerM(k) = m(k+M +1)
instead of m(k). In addiction to this, for k sufficiently large we can write

xM(k) = xk + (xk+1 − xk) + . . .+ (xM(k) − xM(k)−1)

= xk +

M(k)−k
∑

j=1

(xM(k)−j+1 − xM(k)−j).
(4.20)

Now we obtain from (4.18) and (4.20) that

lim
k→∞

‖xk − xM(k)‖ = 0.

Since f is Lipschitz continuous

lim
k→∞

f(xk) = lim
k→∞

f(xM(k)) = lim
k→∞

f(xm(k+M+1)) = f∗

and hence, due to (4.16), we have that part (i) of the Theorem is proved.
The conditions (4.2) and (4.3) give that for every successful iteration in which
Step 1.b. is not performed

f(xm(k))− f(xk+1) ≥ λkβc1‖g(xk)‖. (4.21)

Therefore if the subsequence of iterates in which Step 1.b. is not performed is
infinite we have that that subsequence converges to a stationary point.
If starting from a certain k0 > 0 the algorithm performs only Step 1.b. this
means that the monotone version of ARC is applied starting from iterate k0
and hence part (ii) of the Theorem is guaranteed by [9, Theorem 2.5].

If the gradient is of f is uniformly continuous on the sequence of iterates
{xk}, then we are able to prove the following strong convergence result.

Theorem 4.2. Let f ∈ C1(Rn) be bounded from below and ‖Bk‖ ≤ κB for all
k ≥ 0, suppose that f is Lipschitz continuous over the compact set L0 = {x ∈
R

n : f(x) ≤ f(x0)}, and suppose that the gradient g is uniformly continuous
on the sequence of iterates {xk}. Then

lim
k→∞

‖g(xk)‖ = 0. (4.22)

Proof. Let first note that only successful iterations have effect on the sequence
of gradients {g(xk)} since on all unsuccessful iterations the gradient remains
constant.
If Algorithm NMARC produces only finitely many successful iteration, the re-
sult is guaranteed by Lemma 4.4.
Suppose hence that the set of successful iterations S is infinite. If the subset
Ŝ ⊆ S of successful iterations obtained after that Step 1.b. has been performed
is finite, it means that after a certain iteration k0 the successful iterations nec-
essarily follow Step 1.a. (we recall that Step 1.c. itself leads to Step 1.a.). In
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this case (4.22) follows directly from inequality (4.21).
On the other hand, if S \Ŝ is finite, it means that after a certain iteration k0 the
only successful iterations follows Step 1.b. and hence the standard monotone
ARC algorithm is applied. Therefore we obtain that (4.22) is valid from [9,
Corollary 2.6].
It remains to show that the sequence of gradient norms evaluated on the iterates
produced by the Algorithm NMARC converges to 0 even if both Ŝ and S \ Ŝ
are infinite subsets. Suppose by contradiction that (4.22) is not valid and hence
that exist an infinite subsequence {ti} ⊂ S and a scalar ǫ > 0 such that

‖gti‖ ≥ 2ǫ ∀i > 0. (4.23)

We show that {ti} cannot contain an infinite subsequence {t̂i} of successful
iterates where Step 1.a. is applied. The conditions (4.2) and (4.3) give that

f(xm(t̂i)
)− f(xt̂i) ≥ λt̂iβc1‖g(xt̂i)‖. (4.24)

for each i > 0. Due to part (i) of Theorem 4.1, {f(xm(k))} and {f(xk)} converge
to the same value and hence the limit for i→ ∞ of (4.24) give

‖g(xt̂i)‖ −→ 0,

that contradicts (4.23). For this reason we can suppose that {ti} ⊂ Ŝ.
For all i > 0 let li > ti be the first successful iteration in which ‖g(xli)‖ < ǫ

and let K = {k ∈ S : ti ≤ k < li}. Hence for all i > 0 and for all ti ≤ k < li we
have that

‖g(xk)‖ ≥ ǫ. (4.25)

Suppose by contradiction that K contains an infinite subsequence I ⊆ K of
iterates in which Step 1.a. is applied. With the same argument as above we can
prove that

‖g(xk)‖ −→ 0 for k ∈ I,

that contradicts (4.25).
Hence without loss of generality we can assume that the whole set K is con-
tained in the set Ŝ of successful iterates obtained after that Step 1.b. has been
performed. Due to (4.25) and by Lemma 4.1 we can say that for all k ∈ K

f(xk)− f(xk+1) ≥
η1ǫ

6
√
2
·min







ǫ

1 + κB
,
1

2

√

‖g(xk)‖
σk







.

Since {f(xk)} converges by Theorem 4.1, we obtain that the previous inequality
asymptotically becomes

f(xk)− f(xk+1) ≥
η1ǫ

12
√
2

√

‖g(xk)‖
σk
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for k ∈ K sufficiently large and

√

‖g(xk)‖
σk

−→ 0

as k → ∞, k ∈ K. So the hypothesis of Lemma 4.3 are satisfied by the set K
and hence

f(xk)− f(xk+1) ≥
η1ǫ

36
√
2
‖pk‖ (4.26)

for all ti ≤ k < li, k ∈ S, i sufficiently large. The sum of (4.26) over k and the
triangular inequality give

36
√
2

η1ǫ
(f(xti)− f(xli)) ≥

li−1
∑

k=ti,k∈S

‖pk‖ =

li−1
∑

k=ti

‖xk+1 − xk‖ ≥ ‖xti − xli‖,

for all i sufficiently large. Since {f(xk)} converges, {f(xti)− f(xli)} converges
to 0 and hence also ‖xti − xli‖ → 0. The fact that g is uniformly continuous
on the sequence of iterates implies that ‖g(xti) − g(xli)‖ → 0 but this is a
contradiction since ‖g(xti)− g(xli)‖ ≥ ‖g(xti)‖ − ‖g(xli)‖ ≥ ǫ for all i > 0.
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4.3 Numerical results

Test problems

We made numerical experiments using the Luksan’s collection, available online
at http://www.cs.cas.cz/luksan/test.html. The Hessian/vector product
for each one of these problems is obtained by finite differences.

4.3.1 Implementation details

We tested Algorithm 4.1 against the standard non-monotone Algorithm 2.1 on
an Intel Core i7 CPU 870 @ 2.93GHz. The code has been written in Fortran90,
with Bk set to the true Hessian H(xk). The parameters defining the origi-
nal ARC method (Algorithm 2.1) have been chosen as described in [9]. The
additional parameters of Algorithm 4.1 have been chosen as follows:

L = 5

M = 5

c1 = 10−4

c2 = 102

ω = 0.75

β = 0.5

α = 2

In addition we chose σ̂ = σ̄. A maximum cpu time of 500 seconds has been
imposed. We consider failures when the norm of the trial step is less than 10−12

or the non-monotone line search in Step 1.a. of Algorithm 4.1 fails.

Implementation details on subproblem solution

We tested the behavior of Algorithm 4.1 for both solvers described in Section
3.4.1. For NMGRAD we set the early stopping parameter N = 5.

4.3.2 Numerical results with solver GLRT

In Tables 4.1 and 4.2 we report the results obtained using GLRT as solver for
Algorithm 2.1 (ARC-GLRT) and 4.1 (NMARC-GLRT). The symbols ni, nf , ng,
f∗, and cpu denote the number of iterations, the number of function evaluations,
the number of gradient evaluations, the final objective function value and the
cpu time (in seconds), respectively.
In Figure 4.1 we compare the obtained results by means of the performance
profiles proposed in [11] in term of cpu time.
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Table 4.1: Results obtained by ARC-GLRT on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1704 1705 1522 9.93e-015 2.2561409
LUKSAN 2 917 918 831 481.4295925421 4.4122758
LUKSAN 3 20 21 21 1.31e-009 2.40e-002
LUKSAN 4 26 27 27 269.4995434872 0.12800701
LUKSAN 5 14 15 15 5.75e-012 4.80e-002
LUKSAN 6 15 16 16 6.63e-011 0.148009
LUKSAN 7 13 14 14 336.9371812776 5.60e-002
LUKSAN 8 Produced step with norm less than 10−12

LUKSAN 9 50 51 51 316.4361406766 0.33602098
LUKSAN 10 208 209 75 -133.25 32.326019
LUKSAN 11 60 61 55 10.7765878896 5.20e-002
LUKSAN 12 27 28 28 99.8933068389 2.00e-002
LUKSAN 13 13 14 14 1.67e-024 2.40e-002
LUKSAN 14 1 2 2 2.15e-008 0.18401101
LUKSAN 15 30 31 31 1.9240159855 9.2085752
LUKSAN 16 18 19 19 -427.4044763748 0.70804399
LUKSAN 17 27 28 28 -3.80e-002 1.0400651
LUKSAN 18 19 20 20 -2.46e-002 0.93605798
LUKSAN 19 55 56 56 59.5986241321 1.8841181
LUKSAN 20 86 87 81 -1.0001352001 2.876179
LUKSAN 21 42 43 43 2.1386637718 4.796299
LUKSAN 22 698 699 94 1 65.028061
LUKSAN 23 63 64 47 23.4453429939 0.67604196
LUKSAN 24 Produced step with norm less than 10−12

LUKSAN 25 36 37 37 4.19e-022 1.60e-002
LUKSAN 26 31 32 32 6.27e-009 2.00e-002
LUKSAN 27 52 53 40 4.84e-003 2.00e-002
LUKSAN 28 37 38 38 2.94e-022 2.00e-002
LUKSAN 29 3 4 4 1.95e-013 0.12400699
LUKSAN 30 8 9 9 2.74e-011 2.1121318
LUKSAN 31 13 14 14 7.90e-013 2.40e-002
LUKSAN 32 14 15 15 3.26e-013 2.00e-002
LUKSAN 33 14 15 15 2.09e-012 7.60e-002
LUKSAN 34 68 69 29 60705.3688270019 7.20e-002
LUKSAN 35 42 43 37 1.76e-007 4.4682789
LUKSAN 36 312 313 293 2216.4587065611 1.3800861
LUKSAN 37 23 24 18 191.1662898661 0.59603697
LUKSAN 38 3799 3800 3435 4.86e-014 6.776423
LUKSAN 39 108 109 75 22237.5481131278 0.31201899
LUKSAN 40 55 56 23 131234.018444958 0.144008
LUKSAN 41 Produced step with norm less than 10−12

LUKSAN 42 66 67 17 18.1763145769 1.196074
LUKSAN 43 23 24 20 2.5110967742 8.7085447
LUKSAN 44 66 67 64 6.15e-010 4.2042627
LUKSAN 45 90 91 90 5.17e-013 0.472029
LUKSAN 46 47 48 48 6.23e-013 0.20801301
LUKSAN 47 16461 16462 16461 3.70e-011 121.17558
LUKSAN 48 67 68 43 650.77362946 0.14400901
LUKSAN 49 27 28 24 4486.9702387635 0.172011
LUKSAN 50 38 39 30 5.05e-014 9.388587
LUKSAN 51 46 47 41 1.44e-010 0.160009

continued on next page
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Table 4.1 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 52 12 13 13 7.0862816479 8.00e-002
LUKSAN 53 1551 1552 1481 3135.5211263348 94.153885
LUKSAN 54 18 19 19 3.08e-008 4.80e-002
LUKSAN 55 757 758 550 0.4998163336 3.708231
LUKSAN 56 529 530 425 0.315829621 3.3642101
LUKSAN 57 113 114 114 12246.0634198099 3.20e-002
LUKSAN 58 39 40 40 4.19e-007 2.80e-002
LUKSAN 59 14 15 15 1.81e-012 2.80e-002
LUKSAN 60 2440 2441 2441 8.62e-005 1.5040941
LUKSAN 61 447 448 436 8.97e-014 0.23601501
LUKSAN 62 Not solved within 500 secs. CPU time
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 108 109 109 3.77e-007 28.33777
LUKSAN 65 529 530 530 1.25e-004 196.99231
LUKSAN 66 111 112 112 2.98e-007 35.682228
LUKSAN 67 92 93 93 3.96e-010 11.02469
LUKSAN 68 151 152 152 5.62e-011 3.828239
LUKSAN 69 Not solved within 500 secs. CPU time
LUKSAN 70 60 61 61 1.22e-010 7.8164878
LUKSAN 71 39 40 40 9.88e-012 1.056066
LUKSAN 72 211 212 212 9.63e-009 99.366211
LUKSAN 73 Not solved within 500 secs. CPU time
LUKSAN 74 34 35 35 1.28e-011 10.872681
LUKSAN 75 Not solved within 500 secs. CPU time
LUKSAN 76 21 22 22 5.37e-018 8.00e-003
LUKSAN 77 10 11 11 2.64e-011 0.88005501
LUKSAN 78 0 1 1 4.98e-010 0
LUKSAN 79 41 42 42 1.69e-011 6.80e-002
LUKSAN 80 12 13 13 4.42e-013 6.00e-002
LUKSAN 81 11 12 12 2.87e-012 2.40e-002
LUKSAN 82 12 13 13 4.55e-020 1.20e-002
LUKSAN 83 64 65 65 5.76e-007 18.41715
LUKSAN 84 12 13 13 2.73e-013 2.80e-002
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 11 12 12 3.90e-011 2.4561532
LUKSAN 87 71 72 72 5.72e-007 13.164823
LUKSAN 88 Not solved within 500 secs. CPU time
LUKSAN 89 122 123 100 7.53e-007 47.294952
LUKSAN 90 0 1 1 1.66e-008 0
LUKSAN 91 108 109 109 7.40e-011 4.0282507
LUKSAN 92 215 216 216 3.07e-011 4.1962619

Table 4.2: Results obtained by NMARC-GLRT on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1526 3279 1521 1.90e-014 1.936121
LUKSAN 2 716 1989 706 530.8381597082 3.9122441
LUKSAN 3 16 40 17 2.25e-012 2.00e-002
LUKSAN 4 21 48 22 269.4995434872 0.120007

continued on next page
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Table 4.2 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 5 12 27 13 7.75e-012 4.00e-002
LUKSAN 6 27 168 22 1.59e-011 0.25201499
LUKSAN 7 12 26 13 336.9371812776 6.00e-002
LUKSAN 8 27 87 28 761774.953705696 0.39602399
LUKSAN 9 10 36 11 316.4361406766 0.112007
LUKSAN 10 286 2070 125 -133.53 34.950184
LUKSAN 11 48 319 39 10.7765878895 4.40e-002
LUKSAN 12 10 27 11 99.8933068389 8.00e-003
LUKSAN 13 6 18 7 7.97e-014 1.60e-002
LUKSAN 14 1 3 2 2.15e-008 0.180011
LUKSAN 15 25 58 26 1.9240159855 7.7284827
LUKSAN 16 17 36 18 -427.4044763748 0.30801898
LUKSAN 17 21 51 22 -3.80e-002 0.896056
LUKSAN 18 16 37 17 -2.46e-002 0.86405396
LUKSAN 19 39 99 40 59.598624132 1.6041
LUKSAN 20 62 184 60 -1.0001352001 2.360147
LUKSAN 21 118 550 116 2.1386637718 7.8244886
LUKSAN 22 Nonmonotone line search failure
LUKSAN 23 40 233 35 23.4453429939 0.66804099
LUKSAN 24 463 3305 399 3513623.16130011 1.056066
LUKSAN 25 15 45 16 2.56e-014 8.00e-003
LUKSAN 26 15 44 16 6.75e-008 2.00e-002
LUKSAN 27 31 92 32 4.84e-003 1.20e-002
LUKSAN 28 16 46 17 9.64e-022 1.20e-002
LUKSAN 29 3 7 4 1.95e-013 0.132008
LUKSAN 30 8 18 9 1.66e-012 2.0641291
LUKSAN 31 15 37 16 2.10e-013 2.40e-002
LUKSAN 32 13 28 14 7.22e-013 2.00e-002
LUKSAN 33 13 28 14 2.25e-012 8.00e-002
LUKSAN 34 26 118 24 60705.3688270049 3.20e-002
LUKSAN 35 44 152 43 3.88e-009 5.6043496
LUKSAN 36 54 365 39 2214.225553103 1.0320641
LUKSAN 37 31 125 28 191.1662898661 0.81204998
LUKSAN 38 3347 6957 3343 3.73e-026 7.1004429
LUKSAN 39 103 815 72 22287.9069170113 0.20001201
LUKSAN 40 32 126 30 131234.018444959 9.60e-002
LUKSAN 41 29 190 22 108.5178880501 8.2525158
LUKSAN 42 15 35 16 18.1763145769 0.36002198
LUKSAN 43 53 232 48 2.5110967742 14.164886
LUKSAN 44 55 172 53 8.20e-010 3.3642101
LUKSAN 45 Not solved within 500 secs. CPU time
LUKSAN 46 31 80 32 2.22e-013 0.156009
LUKSAN 47 9059 26991 9054 3.91e-011 57.911617
LUKSAN 48 40 194 36 650.7654123463 0.16801001
LUKSAN 49 39 174 35 4486.9701258325 0.22801401
LUKSAN 50 Nonmonotone line search failure
LUKSAN 51 35 119 34 3.18e-011 0.148009
LUKSAN 52 12 25 13 7.0862816479 7.60e-002
LUKSAN 53 1007 3452 972 3019.1929426356 94.621918
LUKSAN 54 11 36 12 1.99e-009 3.20e-002
LUKSAN 55 718 3835 708 4.9471582212 2.6361639
LUKSAN 56 428 2515 415 0.315829621 2.6281641

continued on next page
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Table 4.2 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 57 27 83 28 12246.0634198099 1.20e-002
LUKSAN 58 17 56 18 1.60e-009 2.40e-002
LUKSAN 59 13 29 14 2.98e-013 2.40e-002
LUKSAN 60 68 209 69 9.20e-005 4.80e-002
LUKSAN 61 171 577 164 4.22e-015 0.108006
LUKSAN 62 Nonmonotone line search failure
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 75 197 76 3.09e-007 19.017189
LUKSAN 65 489 1047 486 1.25e-004 174.11089
LUKSAN 66 115 243 116 2.59e-007 35.602226
LUKSAN 67 77 203 78 6.78e-011 9.7326078
LUKSAN 68 96 268 97 2.71e-011 2.540159
LUKSAN 69 Not solved within 500 secs. CPU time
LUKSAN 70 56 231 51 7.90e-011 7.8364887
LUKSAN 71 26 67 27 6.68e-012 0.71604401
LUKSAN 72 174 352 175 1.11e-008 77.884872
LUKSAN 73 Not solved within 500 secs. CPU time
LUKSAN 74 16 50 17 5.75e-011 6.7604232
LUKSAN 75 3766 23357 3738 2.02e-009 345.86963
LUKSAN 76 7 22 8 1.25e-018 4.00e-003
LUKSAN 77 12 28 13 9.38e-012 1.0240639
LUKSAN 78 0 1 1 4.98e-010 0
LUKSAN 79 26 68 27 3.01e-012 6.40e-002
LUKSAN 80 12 25 13 4.33e-013 5.60e-002
LUKSAN 81 10 22 11 2.78e-012 3.20e-002
LUKSAN 82 6 18 7 1.82e-019 8.00e-003
LUKSAN 83 47 117 48 6.43e-007 12.048754
LUKSAN 84 10 22 11 9.00e-013 2.80e-002
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 9 21 10 6.00e-011 2.388149
LUKSAN 87 55 136 56 5.44e-007 9.2165766
LUKSAN 88 Nonmonotone line search failure
LUKSAN 89 82 257 79 8.90e-007 34.406147
LUKSAN 90 0 1 1 1.66e-008 0
LUKSAN 91 72 197 73 3.32e-011 2.832176
LUKSAN 92 125 359 126 5.71e-011 2.6361639



4.3 Numerical results 61

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
τ

ρ

algorithm

ARC−GLRT

NMARC−GLRT

Figure 4.1: Performance profiles for ARC-GLRT and NMARC-GLRT on the
Luksan’s problems.
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4.3.3 Numerical results with solver NMGRAD

In Tables 4.3 and 4.4 we report the results obtained using NMGRAD as solver for
Algorithm 2.1 (ARC-NMGRAD) and 4.1 (NMARC-NMGRAD) and in Figure
4.1 we compare the obtained results by means of the cpu time performance
profiles.

Table 4.3: Results obtained by ARC-NMGRAD on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1509 15840 1507 3.9866238543 5.5243449
LUKSAN 2 574 7091 555 343.5654989855 2.7161689
LUKSAN 3 16 255 17 5.12e-009 0.16001
LUKSAN 4 19 306 20 269.4995434872 0.26001599
LUKSAN 5 12 44 13 1.40e-011 5.20e-002
LUKSAN 6 13 83 14 3.38e-012 0.132008
LUKSAN 7 7 26 8 336.9371812776 3.60e-002
LUKSAN 8 Produced step with norm less than 10−12

LUKSAN 9 47 142 48 316.4361406766 0.55203396
LUKSAN 10 150 1861 66 -133.7099999998 13.528845
LUKSAN 11 39 412 38 10.7765878895 0.200012
LUKSAN 12 27 69 28 99.8933068388 3.20e-002
LUKSAN 13 13 37 14 5.23e-023 5.60e-002
LUKSAN 14 1 171 2 2.15e-008 0.112006
LUKSAN 15 1110 151866 1110 1.9240159871 275.02118
LUKSAN 16 7 160 8 -427.4044763749 0.24401501
LUKSAN 17 17 2274 18 -3.80e-002 1.368085
LUKSAN 18 16 2580 17 -2.46e-002 1.0480649
LUKSAN 19 30 3207 31 59.5986241328 2.100131
LUKSAN 20 46 2657 40 -1.0001351999 1.808112
LUKSAN 21 31 4566 32 2.1386637772 3.6962311
LUKSAN 22 384 8080 80 1 3.644227
LUKSAN 23 105 793 42 23.4453429938 0.71604401
LUKSAN 24 Not solved within 500 secs. CPU time
LUKSAN 25 37 133 38 4.75e-023 5.20e-002
LUKSAN 26 28 162 29 3.86e-008 0.100006
LUKSAN 27 50 121 40 4.84e-003 5.20e-002
LUKSAN 28 36 73 37 3.45e-018 3.20e-002
LUKSAN 29 2 5 3 1.95e-013 0.21201299
LUKSAN 30 5 16 6 4.22e-017 2.5041568
LUKSAN 31 6 25 7 2.41e-018 2.40e-002
LUKSAN 32 7 24 8 5.67e-020 2.00e-002
LUKSAN 33 7 38 8 3.24e-013 4.40e-002
LUKSAN 34 21 225 20 60734.8550547264 0.148009
LUKSAN 35 48 6015 48 2.61e-006 22.793425
LUKSAN 36 218 628 202 2216.4587065611 0.46402898
LUKSAN 37 13 117 9 191.1662898661 0.34002098
LUKSAN 38 3559 31864 3360 7.17e-017 14.796924
LUKSAN 39 79 650 66 22237.5481131281 0.52803302
LUKSAN 40 18 135 17 131234.018444959 0.116007
LUKSAN 41 4 35 5 108.5178880501 1.292081
LUKSAN 42 13 45 8 18.1763145769 0.39602399
LUKSAN 43 12 540 13 2.5110967742 5.3483338

continued on next page



4.3 Numerical results 63

Table 4.3 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 44 35 818 30 5.29e-003 0.41602501
LUKSAN 45 3546 446376 3370 1.46e-017 248.93156
LUKSAN 46 43 1232 44 1.50e-014 1.6841049
LUKSAN 47 10113 102515 10114 1.02e-008 65.232079
LUKSAN 48 14 130 15 647.69613606 0.104006
LUKSAN 49 18 230 17 4486.9702387635 0.240015
LUKSAN 50 78 293 59 2.64e-021 11.340709
LUKSAN 51 48 673 34 4.18e-013 0.68404198
LUKSAN 52 10 38 11 4.72e-020 0.26001599
LUKSAN 53 933 29095 882 3098.5873877796 70.276398
LUKSAN 54 17 95 18 2.09e-008 6.00e-002
LUKSAN 55 621 8648 513 0.4998163336 5.9443712
LUKSAN 56 363 2366 315 0.315829621 1.468091
LUKSAN 57 100 349 101 12246.0634198102 0.120007
LUKSAN 58 38 145 39 5.17e-007 7.60e-002
LUKSAN 59 8 41 9 2.89e-012 2.80e-002
LUKSAN 60 Not solved within 500 secs. CPU time
LUKSAN 61 308 12972 281 4.64e-010 8.7005434
LUKSAN 62 Not solved within 500 secs. CPU time
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 57 6864 58 1.27e-005 7.940496
LUKSAN 65 2239 411741 2240 2.31e-004 367.65497
LUKSAN 66 162 29237 163 6.34e-006 24.453527
LUKSAN 67 116 20722 117 6.43e-006 20.981312
LUKSAN 68 88 5127 89 6.38e-009 4.2282639
LUKSAN 69 Not solved within 500 secs. CPU time
LUKSAN 70 69 10196 70 5.25e-007 9.6646042
LUKSAN 71 29 1104 30 1.37e-012 1.104069
LUKSAN 72 Not solved within 500 secs. CPU time
LUKSAN 73 715 130935 716 3.72e-006 365.05881
LUKSAN 74 31 94 32 1.78e-014 17.825113
LUKSAN 75 2549 59812 1183 1.77e-005 21.597349
LUKSAN 76 21 59 22 2.72e-017 2.80e-002
LUKSAN 77 9 28 10 2.31e-013 1.628101
LUKSAN 78 0 1 1 4.98e-010 0
LUKSAN 79 35 166 36 1.85e-014 7.60e-002
LUKSAN 80 5 25 6 1.01e-016 3.60e-002
LUKSAN 81 6 26 7 1.73e-015 2.80e-002
LUKSAN 82 12 33 13 8.66e-019 2.40e-002
LUKSAN 83 25 3718 26 1.12e-005 3.436214
LUKSAN 84 7.00e+000 23 8 3.31e-013 2.40e-002
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 9 27 10 1.05e-016 3.448215
LUKSAN 87 27 4014 28 1.07e-005 2.0081251
LUKSAN 88 Produced step with norm less than 10−12

LUKSAN 89 80 9570 72 7.50e-006 33.286079
LUKSAN 90 0 1 1 1.66e-008 0
LUKSAN 91 58 3758 59 3.08e-008 5.0563159
LUKSAN 92 135 4192 136 2.97e-009 4.0322509
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Table 4.4: Results obtained by NMARC-NMGRAD on the Luksan’s problems

Name ni nf ng f∗ cpu(secs.)

LUKSAN 1 1456 15694 1457 6.91e-013 4.8803039
LUKSAN 2 396 3995 397 121.9636793701 1.176073
LUKSAN 3 9 139 10 9.49e-009 6.80e-002
LUKSAN 4 12 246 13 269.4995434872 0.21201301
LUKSAN 5 9 44 10 1.07e-010 4.40e-002
LUKSAN 6 11 87 12 3.17e-012 0.13600801
LUKSAN 7 5 28 6 336.9371812776 4.00e-002
LUKSAN 8 5 33 6 761774.953705698 0.148009
LUKSAN 9 7 44 8 316.4361406768 0.112007
LUKSAN 10 Nonmonotone line search failure
LUKSAN 11 33 323 34 10.7765878895 0.12800799
LUKSAN 12 10 50 11 99.8933068389 2.40e-002
LUKSAN 13 6 27 7 7.97e-014 2.80e-002
LUKSAN 14 1 172 2 2.15e-008 0.108006
LUKSAN 15 224 27517 225 1.9240159855 56.18351
LUKSAN 16 6 139 7 -427.4044763748 0.208012
LUKSAN 17 11 1823 12 -3.80e-002 1.1320701
LUKSAN 18 8 1458 9 -2.46e-002 0.60403699
LUKSAN 19 17 1998 18 59.5986241324 1.2960811
LUKSAN 20 26 2172 27 -1.0001351989 1.4200881
LUKSAN 21 28 2894 29 2.1386637719 2.2921429
LUKSAN 22 131 3410 109 1 1.28808
LUKSAN 23 32 465 30 23.4453429938 0.36802301
LUKSAN 24 Produced step with norm less than 10−12

LUKSAN 25 20 108 21 4.70e-021 2.80e-002
LUKSAN 26 13 90 14 2.48e-008 3.60e-002
LUKSAN 27 33 135 34 4.84e-003 4.00e-002
LUKSAN 28 16 248 17 1.72e-019 4.3802729
LUKSAN 29 2 7 3 1.95e-013 0.21201301
LUKSAN 30 4 17 5 5.02e-015 1.8601159
LUKSAN 31 4 24 5 2.91e-015 2.40e-002
LUKSAN 32 4 21 5 7.06e-018 1.60e-002
LUKSAN 33 7 53 8 2.54e-019 5.60e-002
LUKSAN 34 10 144 11 60734.8550547261 9.20e-002
LUKSAN 35 23 1860 24 8.35e-007 7.0244389
LUKSAN 36 28 193 29 2214.225553103 0.176011
LUKSAN 37 8 104 9 191.1662898661 0.288017
LUKSAN 38 3016 29250 3017 3.17e-017 11.944746
LUKSAN 39 40 660 40 22226.9546264401 0.52003199
LUKSAN 40 13 140 14 131234.018444959 0.104006
LUKSAN 41 4 22 5 108.5178880501 0.55603498
LUKSAN 42 6 28 7 18.1763145769 0.18401101
LUKSAN 43 9 353 10 2.5110967742 3.2082
LUKSAN 44 54 5896 55 8.75e-003 2.88818
LUKSAN 45 Not solved within 500 secs. CPU time
LUKSAN 46 20 789 21 2.77e-012 0.69604301
LUKSAN 47 2241 45656 2242 2.32e-010 24.365522
LUKSAN 48 22 208 23 650.745506124 0.14400899
LUKSAN 49 21 258 22 4486.9702387635 0.356022
LUKSAN 50 8 83 9 26483.4791026691 4.852303
LUKSAN 51 1553 282867 1554 1.92e-004 147.82524

continued on next page
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Table 4.4 – continued from previous page
Name ni nf ng f∗ cpu(secs.)

LUKSAN 52 8 40 9 5.79e-016 0.108006
LUKSAN 53 552 14879 547 3184.5659338247 29.781862
LUKSAN 54 6 69 7 9.32e-011 6.40e-002
LUKSAN 55 679 8832 671 9.2277223676 4.8603029
LUKSAN 56 360 2821 356 6.3558202685 1.0640661
LUKSAN 57 19 120 20 12246.0634198099 3.60e-002
LUKSAN 58 16 111 17 3.54e-008 5.20e-002
LUKSAN 59 6 47 7 1.58e-016 2.40e-002
LUKSAN 60 72 1237 73 9.21e-005 33.10207
LUKSAN 61 95 4410 96 5.90e-012 2.0481279
LUKSAN 62 Nonmonotone line search failure
LUKSAN 63 Not solved within 500 secs. CPU time
LUKSAN 64 20 2081 21 9.40e-006 2.3561471
LUKSAN 65 549 101416 550 2.26e-004 89.933617
LUKSAN 66 49 8662 50 3.74e-006 7.1804481
LUKSAN 67 13 1753 14 3.33e-008 1.804112
LUKSAN 68 46 2237 47 9.54e-009 1.6601031
LUKSAN 69 Nonmonotone line search failure
LUKSAN 70 29 3050 30 5.04e-007 2.844177
LUKSAN 71 14 641 15 3.96e-014 0.59603697
LUKSAN 72 155 28816 156 2.75e-007 34.92218
LUKSAN 73 148 26997 149 3.22e-006 74.060631
LUKSAN 74 10 57 11 4.71e-012 6.604413
LUKSAN 75 1541 35366 1542 1.27e-007 12.404775
LUKSAN 76 7 33 8 9.66e-018 1.20e-002
LUKSAN 77 6 28 7 1.86e-019 1.216076
LUKSAN 78 0 1 1 4.98e-010 0
LUKSAN 79 13 104 14 5.50e-014 4.80e-002
LUKSAN 80 5 30 6 9.45e-017 4.00e-002
LUKSAN 81 5 28 6 3.21e-015 2.40e-002
LUKSAN 82 6 27 7 4.28e-018 2.00e-002
LUKSAN 83 26 3883 27 3.71e-006 3.492218
LUKSAN 84 6 28 7 2.25e-018 2.80e-002
LUKSAN 85 Not solved within 500 secs. CPU time
LUKSAN 86 4 19 5 3.92e-014 1.980123
LUKSAN 87 15 1804 16 1.17e-005 0.88805503
LUKSAN 88 Nonmonotone line search failure
LUKSAN 89 85 11524 86 9.71e-006 25.517595
LUKSAN 90 0 1 1 1.66e-008 0
LUKSAN 91 36 2263 37 1.34e-009 2.904181
LUKSAN 92 67 2122 68 6.42e-009 1.728107
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Figure 4.2: Performance profiles for ARC-NMGRAD and NMARC-NMGRAD
on the Luksan’s problems.
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4.3.4 General comments and comparison between solvers

GLRT and NMGRAD

For the sake of completeness in Figure 4.3 we report the cpu time performance
profiles for NMARC-GLRT and NMARC-NMGRAD.
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Figure 4.3: Performance profiles for NMARC-GLRT and NMARC-NMGRAD
on the Luksan’s problems.

Both Figures 4.1 and 4.2 show that introducing non-monotone techniques
improves the efficiency of a standard ARC algorithm, independently by the
solver used to obtain the approximate minimizer of the cubic subproblem.
This is due to the operations performed in Step 1.a.,that plays a key role in
the efficiency of the new algorithm: in fact with the choice of the parameters
presented above we observed that the other steps are performed just a couple
of times. Hence we tested the effectiveness of both the operations performed in
Step 1.a. of Algorithm 4.1 by isolating the extrapolation and the nonmonotone
line search. For this purpose we compared the presented version of the algorithm
with a version in which only the extrapolation is performed and another one
that uses only nonmonotone line search in Step 1.a. Both solvers GLRT and
NMGRAD have been used in these tests.

In Figures 4.4 and 4.5 we report the performance profiles relative to this
comparison.
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Figure 4.4: Performance profiles of the variants of Step 1.a. with solver GLRT
on the Luksan’s problems.
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Figure 4.5: Performance profiles of the variants of Step 1.a. with solver NM-
GRAD on the Luksan’s problems.
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