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Abstract—The paper presents some experimental results of
autonomous underwater navigation, based on the fusion of
acoustic and inertial measurements. The work is in the framework
of the Thesaurus project, funded by the Tuscany Region, aiming
at developing techniques for systematic exploration of marine
areas of archaeological interest through a team of Autonomous
Underwater Vehicles (AUVs). The test was carried out with
one Typhoon vehicle, a 300m depth rated AUV with acoustic
communication capabilities, during the CommsNet13 experiment,
organized and scientifically coordinated by the NATO S&T
Org. Ctr. for Maritime Research and Experimentation (CMRE,
formerly NURC), with the participation of several research
institutions. The fusion algorithm is formally casted into an
optimal stochastic filtering problem, where the rough estimation
of the vehicle position, velocity and attitude, are refined by using
the depth measurement, the relative measurements available on
the acoustic channel and the vehicle surge speed.

I. INTRODUCTION

The problem of navigation and self-localization is partic-
ullary challenging in an underwater context due to the tight
environmental constraints, such as the absence of an absolute
positioning system, i.e. GPS, and the small communication
bandwidth of the acoustic channel.

A thorough review on Autonomous Underwater Vehicle
(AUV) navigation can be found in [1] and references within.
As there stated, many techniques have been investigated and
classified in three main categories, depending on the purpose of
the sensors employed: inertial navigation, acoustic navigation
and geophisical navigation [2]–[4]. To support navigation,
AUV commonly mount on-board sensors of different nature,
both inertial and acoustic. Sensor data fusion plays so a
fundamental role in achieving a navigation accuracy such that
a vehicle can perform an underwater mission autonomously.
Basically, the Inertial Measurement Unit (IMU) provides in-
formation that allow to continuously calculate the vehicle
position, velocity and orientation via dead reckoning. Since
dead reckoning is subject to cumulative errors due to the IMU
inaccuracies, the navigation status of the vehicle needs to be
periodically fixed with measurements from other more precise
sensors, e.g. Doppler Velocity Log (DVL), depth sensor, com-

pass, Ultra-Short Base Line (USBL).
Most of data integration methods underlie linear or non-

linear state estimators. Many examples of position and ve-
locity estimation via sensor fusion algorithm can be found
in literature. Particularly interesting are the experimental re-
sults reported in some of these works. In [5] and [6] the
measurement integration process is realized using a particle
filter. The first combines DVL data with USBL observations
to obtain the trajectory estimate of a lawn-mower path mission,
showing how USBL corrections are able to reduce the long-
term drift of the DVL estimate. The simultaneous equipment of
a DVL and an USBL can however be too much expensive on
a low-cost vehicle. In [6] the authors improve dead-reckoning
navigation by integrating USBL measurements, proving even
in this case the benefit of sensor fusion on experimental
data. The results obtained in the previous works are relevant
in terms of the estimate error, but the computational cost
required by a particle filter is considerable. For instance, the
approach presented in [6] relies in a dedicated CPU for the
filtering algorihtm. In [7] an Extended Kalman Filter (EKF) is
implemented to tighly couple the inertial-based estimate with
USBL differential range and time measurements. Performance
is reported on experimental data sets with a large number of
USBL fixes.

In our previous work [8], we report a preliminary anal-
ysis of some raw navigation data, addressing the potential
of using them in data fusion procedures to improve local-
ization accuracy and navigation capabilities. The data were
collected with one Typhoon vehicle, shown in Figure 1, a
300m depth rated low-cost AUV with acoustic communi-
cation capabilities [9], during the CommsNet13 experiment,
which took place in September 2013 in the La Spezia Gulf,
North Tyrrhenian Sea. The experiment was organized and
scientifically coordinated by the NATO S&T Org. Ctr. for
Maritime Research and Experimentation (CMRE, formerly
NURC), with the participation of several research institutions;
it included among its objectives the evaluation of on-board
acoustic USBL systems for navigation and localization of
AUVs. In the presented experiment, the vehicle was equipped
with a USBL modem and a low-cost, low-accuracy IMU.



Fig. 1. Typhoon AUV during CommsNet13 experiment

The USBL modem could communicate with a fixed sensors
network consisting of four acoustic modems, placed on the
seabed and cable-connected to the shore so that they could
be continuously operated and monitored. The vehicle could
use its USBL modem to estimate its relative position with
respect to the fixed installation. The role of the Typhoon in this
experimentation was to perform both surface and underwater
navigation in autonomous modality, while trying to localize
itself with respect to the known positions of the fixed modems,
by employing the USBL measurements. It is worth to notice
that the acoustic positioning observations can not be received
very frequently or at a constant rate when the communication
is performed within a sensor network, due to the overhead of
the network itself. This work takes the previous elaboration
one step further, presenting some experimental results on
underwater navigation, based on the fusion of the acoustic and
inertial measurements. The fusion algorithm is formally casted
into an optimal stochastic filtering problem, where the rough
estimation of the vehicle position and velocity are refined
by using the relative measurements available on the acoustic
channel and the surge speed estimated as a function of the
longitudinal propeller thrust.

The paper is organized as follows: in Section II the model
of the system is developed and Section III gives details about
the proposed filtering method. Section IV shows the main
results obtained on the data collected on Sept. 12. Finally,
Section V reports the conclusions.

II. MODELING AIDED-INERTIAL NAVIGATION

The inertial mechanization equations [10] are a set of non-
linear differential equations relating vehicles attitude, velocity
and position – the state of the system – to known/measured
inertial quantities. In the general theory of strapdown iner-
tial navigation, the equations are integrated given the mea-
surements of inertial sensors, accelerometers and gyroscopes,
measured in the body frame, which usually represent the inputs
of the navigation system. For the purposes of this work, the
classical formulation of the inertial mechanization equation
is simplified, due to some assumptions made. The main one
is that the navigation frame (NED) can be considered not
to change its orientation with respect to the global (ECEF)
frame, during the whole navigation task. This means that the

Earth is approximated as a flat surface in the neighborhood
of the starting point. By putting the NED reference frame
on the Earth surface at the location corresponding to the
starting point, the set of the inertial navigation equations can be
transformed in local coordinates. This is a realistic assumption
in the framework of the proposed work, since the motion of the
vehicle was assumed to be enclosed inside a small enough area,
such that a sufficient number of acoustic measurements could
be detected. These were the conditions actually met during
the experimental tests conducted. Moreover, the attitude of the
vehicle was assumed known. More specifically, the attitude θ
was pseudo-measured by the inertial unit on-board the vehicle,
via integration of the gyroscopes measurements together with
the sensed gravity and the Earth magnetic field measurements
in an Attitude-Heading Reference System (AHRS) fashion
[11], [12].

Upon the above hypothesis, the local continuous-time
navigation equations in the NED frame can be written as:

ṗn = vn
v̇n = nRb(θ) (ab − εb + νa) + gn (1)
ε̇b = νε

where pn and vn are respectively the position and velocity
of the system, both expressed in the NED frame, whereas εb
denotes the the accelerometers bias term. Since we assume
not to have a prior information regarding the nature of bias
time evolution, their dynamics were modeled as random walks,
where νε ∼ N (0,Qε) is a zero-mean white noise with
constant variance. Note that the velocity dynamics employ the
body accelerations measured by the accelerometers depurated
by the bias term and then converted in the local navigation
frame through the transformation matrix nRb(θ). Finally, the
vehicle acceleration is obtained by compensating for the grav-
ity term g. The body-to-navigation matrix nRb is evaluated
based on the vehicle attitude θ, expressed in Euler angles,
computed by the inertial sensors suite. The random variable
νa ∼ N (0,Qa) accounts for the noise that intrinsically affects
the inertial sensor. This latter noise term was supposed white
as well.

In this work it is assumed that the navigation system relies
on the measurements from the USBL, depth sensor and surge
velocity, pseudo-measured from the propellers thrust [8]. The
further measurement from the GPS device was used as a
navigation aid in the first time instants only, to initialize the
navigation algorithm. Then, this latter measurements were used
as ground truth only, meaning that the navigation system did
not take advantage of the global localization system during
the normal operation phase. The measurement equations can
be thus written as:

ygps = pgps,n + ηgps (2)

yusbl = pmi,n −
nRb(θ)

bRu (pu-mi,u + ηusbl) (3)
ydepth = pdepth,n + ηdepth (4)
yprop = nRb(θ)

(
vprop,b + ηprop

)
(5)

Each measurement is affected by a measurement noise, de-
noted with the η symbol, that we assume white, with zero mean
and constant covariance matrix Rgps, Rusbl, Rdepth and Rprop
respectively. The GPS measure contains the N-E coordinates
of the vehicle position in the local navigation frame with
respect to the starting position, computed employing the flat



Earth surface approximation [10]. In (3), the actual measure
from the USBL is the relative position of the vehicle with
respect to the i-th acoustic source, namely pu-mi,u, expressed
in the coordinate frame of the device. In order to make such
measurement reflect the absolute position of the vehicle, we
first convert the measure in the body-fixed frame through the
transformation matrix bRu and then in the local navigation
frame with the matrix nRb(θ). Finally, we compose the result
with the absolute position of the i-th acoustic source pmi,n to
obtain the absolute vehicle position. The depth sensor evaluates
the vertical direction (D) of the absolute vehicle position. Fi-
nally, the surge speed of the vehicle vprop,b is roughly estimated
from the propellers thrust, which is supposed aligned with the
vehicle nose, as in [8]. Thus, we obtain the vehicle velocity in
NED coordinates by transforming the surge speed through the
matrix nRb(θ), eq. (5). Note that vprop,b = [ vprop,b 0 0 ]

T .
In order to fuse such measurements with the inertial navigation
system, it is convenient to make explicit the dependence of the
above measurements with the inertial mechanization states. For
this reason, we can write:

ygps = [I2 02×7]x+ ηgps (6)

yusbl = [I3 03×6]x+ nRb(θ)
bRuηusbl (7)

ydepth = [0 0 1 01×6]x+ ηdepth (8)
yprop = [03×3 I3 03×3]x+ nRb(θ)ηprop (9)

For notational simplicity, the model (1) together with the
above measurement model can be written in a more compact
form, that is:

ẋ = f (x,u) + g (x,u)ν (10)
y = Hx+ J (θ)η (11)

III. FILTER DESIGN

According to the motion and sensitivity parameters dynam-
ics in Equation (1), given the defined measurements model,
an Extended Kalman Filter [13] was designed and tested.
The aim of the filter is to simultaneously estimate both
navigation variables, position and velocity of the vehicle, and
the accelerometers bias term. The filtering process is composed
by two steps: in the prediction step, a rough estimation of
the state is obtained by evolving the dynamical model (1) of
the system, by using the measured inertial measurements. The
second step is the correction step, which is executed when
a new measurement is available from one or more of the
auxiliary sensors, in order to reduce the error of the predicted
state estimate.
For the purpose of numerical implementation, the motion and
measurements model equations were time-discretized using the
Euler integration method. The model of the system can be thus
rewritten in the following compact form:

xk+1 = f (xk,uk) + g (xk,uk)νk (12)
yk = Hxk + J (θk)ηk (13)

Here, the subscript k indicates that the quantity is referred to
the k-th time instant.

The prediction step is executed at each time instant k > 0
when a new inertial measurement is made available, by cal-
culating the predicted state x̂−

k+1 and the predicted covariance

matrix of the estimation error P−
k+1, starting from the initial

conditions x̂0, P0:

x̂−
k+1 = f

(
x̂+
k ,uk

)
P−
k+1 = FkP

+
k F

T
k +GkQGT

k

(14)

The variables with the ’+’ superscript in the prediction equa-
tion are the refined estimations of the state and of the covari-
ance matrix at the previous time step, obtained by running
a Kalman update step with the past measurements from the
available auxiliary sensors. In (14), the matrices Fk and Gk

are obtained from (10) as follows:

Fk =
∂f (x,u)

∂ξ

∣∣∣∣
x̂+

k ,uk

, Gk = g
(
x̂+
k ,uk

)
and Q = diag (Qa,Qε) is the noise covariance matrix.

When a new measurement from the auxiliary sensors is
available, the Kalman update step is executed, in order to
correct the prediction obtained in the current step.
It is worth to mention that each measurement has its own
notification rate, thus it usually happens that at a given time
step, not all the measurements can be available. Under these
assumptions, the correction step is made by employing the
available measurements at the current time and by selecting the
entries in the matrices of the output model which correspond
with the currently available maesurements. The correction step
is then executed by calculating the state estimate x̂+

k+1 and the
covariance matrix of the estimate error P+

k+1 as:

x̂+
k+1 = x̂−

k+1 +Kk

(
yk −Hkx̂

−
k+1

)
P+
k+1 = (I−KkHk)P

−
k+1

(15)

where

Kk = P+
k+1H

T
k

(
HkP

+
k+1H

T
k + JkRJTk

)−1

is the Kalman gain matrix, being Jk = J (θk) and R =
diag (Rgps,Rusbl, Rdepth,Rprop).

IV. RESULTS

The navigation filter has been tested off-line on real data,
collected during the sea-trial of Sept. 12, 2013. In the presented
trial, the Typhoon has executed an autonomous surface mission
within the La Spezia harbour, consisting in the repetition of
a triangle-shaped path with vertices placed in the waypoints
WP1, WP2 and WP3. In this area, some battery-operated
modems were deployed to build an ad-hoc installation of fixed
nodes. Knowing the absolute position of the modems, the
vehicle can localize itself using the on-board USBL.

The prediction step of the filter is executed at the rate of
the inertial unit, 10Hz, that is the highest rate among those
of the sensors. Since the fixes from the auxiliary sources have
different rates, the correction step can not be performed at the
same frequency. In particular, the depth and the surge speed
information are notified by the respective sensors at the same
rate of the inertial unit, so the relative correction is done at
each time instant. On the other hand, the USBL measurements
have not a periodic time of notification, so the correction of the
absolute position is executed as soon as a new measurement
becomes available.

A preliminary analysis of the raw data was carried out in
order to tune the filter parameters, i.e. the covariance matrixes
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Fig. 2. Estimation of the North-East path. The solid yellow line shows the triangle-shaped path that Typhoon had to follow. In the first part of the path (solid
green line), the GPS was used to feed absolute position correction to the estimation filter. During the remaining part (solid blue line), the GPS signal loss is
simulated and the forward speed and the USBL measurements only were used as position correction feeds to the estimation filter. The black circle on the map
indicates the point where the GPS signal loss begins; starting from here, GPS was used as ground truth only.

TABLE I. ERROR BETWEEN GPS AND USBL FIXES

Fix no. Error (m) Fix no. Error (m)
1 2.27 10 8.48
2 3.38 11 2.15
3 8.18 12 5.94
4 3.04 13 8.44
5 13.23 14 4.26
6 2.91 15 9.83
7 1.89 16 11.55
8 3.11 17 1.32
9 5.09 18 1.16

of the noises. For example, the covariance matrix of the USBL,
Rusbl, was set by considering the errors between the absolute
position evaluated on the basis of the USBL fixes and the
corresponding GPS measurement. These errors, reported in
our previous work [8], are repeated here in Table I for self-
concistency.

Figure 2 shows the North-East path estimated by the de-
signed filter. During the first part of the simulation, represented
with a solid green line, the GPS measurements were used as
auxiliary corrections in order to calibrate the estimation of the
accelerometers bias. Starting from the point indicated by the
black circle, the loss of the GPS signal was simulated, as in an
underwater mission, and the GPS fixes are used as ground truth
only. In this part, the auxiliary sensors used to feed correction
to the navigation filter are the USBL, the depth sensor and the
surge speed only.
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Fig. 3. Attitude estimation obtained by fusing in an AHRS fastion the
measurements from the gyros, accelerometers and magnetometers.

Figure 3 illustrates the vehicle attitude parametrized with
Euler angles (RPY). The attitude is estimated by the inertial
unit on-board the vehicle by integrating the inertial measure-
ments together with the Earth magnetic field measurements
into an AHRS fashion.

In Figure 4 is shown the estimate of the accelerometers
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bias decomposed in the x-y-z coordinates. We note that, after
about 500 seconds, the accelerometers bias converges to its
steady-state value.

Figure 5 presents the norm of the error between the
estimated path and the GPS position, starting from the begin of
the diving simulation. As it can be seen, the acoustic fixes, even
if coming at intervals of minutes one from the other, are indeed
succesfull in bounding the navigation error and in mitigating,
if not zeroing, the error induced by the inertial estimation drift.
A time lag in acoustic fixes as in the experiment reported here
would indeed be typical in a multi-vehicle situation in which
communication and ranging occur in a networked fashion.

V. CONCLUSION

The paper presented some experimental results of au-
tonomous underwater navigation, based on the fusion of acous-
tic and inertial measurements. The test was carried out with
one low-cost AUV with acoustic communication capabilities,
during the CommsNet13 experiment, organized and scientifi-

cally coordinated by the NATO S&T Org. Ctr. for Maritime
Research and Experimentation. To integrate the navigation
data, we first modeled the kinematics of the vehicle and the
measurements from the available sensors. Thus, on the basis
of the model, an Extended Kalman Filter has been designed to
implement the vehicle navigation algorithm. The field results
reported shows a performance similar to that of other field
experiment with comparable set-up, although in our case we
have larger delays from one USBL update to the next. We
remark that a low reception rate of the acoustic corrections
from the USBL is typical in an acoustic sensors network, and
thus in a multi-AUV communication scenario.
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