
Faculty of Engineering

Department of Information Engineering

Ph.D. in Informatics, Systems and Telecommunications
Cycle XXVII

Curriculum: Telematics and Information Society

Coordinator: Prof. Luigi Chisci

Model and framework for multimodal
and adaptive user interfaces
generation in the context of

business processes development

ING-INF/05

Ph.D. Student
Ivan Zappia

Tutor
Prof. Dino Giuli

Tutor
Dr. Federica Paganelli

Coordinator
Prof. Luigi Chisci

Years 2012/2014

Acknowledgements

I would like to express my gratitude to my tutors Professor (and mentor)

Dino Giuli and Dr. Federica Paganelli for encouraging my research and for

allowing me to grow professionally and personally. I would also like to thank

Dr. Paolo Cianchi and Dr. Leonardo Landi for giving me the opportunity

to be a Ph.D. student on such an interesting research topic while working at

Negentis and for all the stimulating discussions on themes both addressed in

this work and not.

I also want to thank my cotutor Dr. Lucia Ciofi for her invaluable sup-

port and for still being my friend after a so stressful and intense final month.

Moreover, I am grateful to Professor Monica Gherardelli for her great under-

standing.

A special thanks goes to all the colleagues and workmates who are actually

more friends than anything else and contributed to create an enjoyable work

environment.

Last but not least, I want to thank my parents who supported me during

this long journey.

Firenze, 31 Dicembre 2014

Ivan Zappia

“ Back off man, I’m a scientist.”

Dr. Peter Venkman

Abstract
This thesis addresses issues related to the automatic generation of user

interfaces, in order to identify methods to effectively support the constant

evolution of processes and, at the same time, to put the emphasis on fun-

damental concepts for the user such as usability, plasticity, adaptability and

multi-modality. The proposed methodology foresees the definition of a set

of four meta-models for the design of the various aspects of both the UI

and the application development processes, with the definition of the dif-

ferent users involved in the different steps and the indication of the models

produced at the end of each step of the process; said methodology is synthe-

sized in a specific framework covering both the design and runtime phases of

multimodal adaptive UIs and application life cycles, thus embracing a more

holistic model-driven approach foreseeing the integration of methods for the

automatic generation of user interfaces with the tools used for business pro-

cess management. In particular the framework envisions: a Domain Model,

to represent all the concepts characterizing each application domain; a Pro-

cess Model, to represent the tasks fulfilling the application requirements; an

Abstract User Interface Model, automatically generated from the two previ-

ously introduced models and describing any possible user interface generated

for the specific use case; a Concrete User Interface Model, automatically gen-

erated from the abstract model and describing the family of concrete user

interfaces for a specific use case once a particular target technology has been

chosen.

iii

Contents
Introduction vii

I State of the Art 1

1 Approaches to User Interface Development 2

1.1 Historical overview: UI Management Systems 3

1.2 Model-Based UI Development 4

1.2.1 Different Generations in MBUID Systems 6

1.2.2 Cameleon Reference Framework 7

1.3 Model-Driven Software Development 10

1.3.1 Model-Driven UI Development 12

1.3.2 Adaptive Model-Driven UI Development 14

2 Languages for User Interface Development 18

2.1 User Interface Description Languages 19

2.1.1 USer Interface eXtensible Markup Language 20

2.1.2 Useware Markup Language 20

2.1.3 Dialog and Interface Specification Language 21

2.1.4 ConcurTaskTrees . 22

2.1.5 MARIA . 22

2.1.6 User Interface Markup Language 23

2.1.7 eXtensible Interface Markup Language 24

2.2 User Interface Transformation Languages 24

2.2.1 Graph Transformations 25

2.2.2 Atlas Transformation Language 25

iv

Contents

2.2.3 TXL Transformation Language 26

2.2.4 UIML Transformations 26

2.2.5 XSL Transformations 27

II Proposed Solution 28

3 Approach Overview 29

3.1 The representation models . 31

3.1.1 Domain Model . 32

3.1.2 Process Model . 32

3.1.3 Abstract User Interface Model 33

3.1.4 Concrete User Interface Model 34

3.2 The proposed framework . 34

III Framework Design 39

4 Domain Model 40

4.1 Domain elements description 41

4.1.1 Concepts . 41

4.1.2 Properties . 42

4.1.3 Property functions . 42

4.1.4 Attributes . 43

4.1.5 Relationships . 44

4.1.6 Access control lists . 45

4.1.7 Persistence . 46

4.2 Formal representation . 46

4.3 Instances Model . 48

4.3.1 Buckets and Records 49

4.3.2 Bucket filtering . 50

4.3.3 Notes on persistence 51

5 Process Model 52

5.1 Process elements overview . 53

5.1.1 Activities . 54

5.1.2 Blocks . 55

5.1.3 Signaling . 56

v

Contents

Signals for transition triggering 57

Block to block signaling 58

Activity to block signaling 59

5.1.4 Distributed workflow 59

5.1.5 Access control lists . 60

5.2 Formal representation . 61

6 Abstract User Interface Model 63

6.1 Model generation . 64

6.2 Abstract UI Model elements 66

7 Concrete User Interface Model 68

7.1 Model generation . 69

7.2 Basic mapping . 70

8 Concrete User Interface 72

8.1 The client device . 72

8.2 Widgets . 73

8.2.1 Widgets architecture 74

8.2.2 Low-tech clients . 77

8.3 Widgets composition . 78

IV Implementation 80

9 Demonstrator 81

9.1 Demonstrator modules . 81

9.1.1 Domain repository . 82

9.1.2 Domain services . 82

9.1.3 Process repository and workflow engine 84

9.1.4 Text-based user interface client 86

9.2 Implemented framework features 87

Conclusions 90

Bibliography 95

vi

Introduction
The user interface (UI) layer is considered one of the key components

of software applications since it connects their end-users to functionalities.

Well-engineered and robust software applications could eventually fail to be

adopted due to a weak UI layer [ABY14]. Since the beginning of the personal

computing era, a growing interest and a continuous evolution have involved

user interfaces; new paradigms have been usually paired with the launch of

new input peripherals. At first there were cryptic textual interfaces with the

keyboard as the only input device, then graphical interfaces and the mouse;

more recently touch and vocal interfaces have been introduced in everyday

use. A continuous evolution has contributed to the diffusion of “post-PC

devices” to a wide range of users, from tech enthusiast, early adopters and

users with an high technological skill level to average people without any

prior knowledge in such domain.

The interest has not ceased and the search for new kind of interfaces is

still fully active: as an example haptic interfaces are starting to gain atten-

tion in the hand-held sector for its adoption by widely appealing commercial

products (e.g., the soon to be commercialized Apple Watch).

In the recent years, as a consequence of the great proliferation of mobile

devices with different form factors, the same application is required to adapt

to different characteristics like, for example, screen resolution and orienta-

tion; a concept called plasticity [CCT+02]. The approach “one design fits all”

[ABY14] has been proved inadequate to answer this call and was abandoned

in favor of more adaptive techniques (e.g., responsive web design in the case

of graphical web interfaces). Moreover the multiplicity of devices adopted by

a single user (e.g., desktop personal computer, laptop, smartphone, tablet)

vii

Introduction

needs to address more advanced behaviors such as, for example, the seamless

migration of the application status from a device to another; moreover, it

must be kept in mind that each device could operate with different tech-

nologies (e.g., graphical, tactile, vocal) so the UI, or its provider, should

implement a multimodal approach.

Also new needs for user experience improvements have arisen. First of all

there is high demand for more user-friendly designs: a wide public, also com-

posed by users without a technical background, needs interfaces intuitively

easy to understand and exploit without the need for a manual or an exten-

sive onboarding phase; this concept is called usability. Users diversity also

implies that one interface can’t possibly satisfy all their needs; users have

in fact different necessities, capabilities or impairments and require adaptive

interfaces able to change on the base of different user profiles. Such user

profiles can’t be static but have to change as the context of utilization of the

interface changes; as an example the UI should be different whether the user

is relaxing on the sofa or is running to catch a bus or just walking in the

park. The interface could also adapt to user emotions implementing traits of

affective computing [Pic00].

Solving all these different problems in an efficient and effective way implies

a great effort in terms of costs, time, complexity and the need for ongoing

maintenance to keep the pace with a sector in constant evolution. All these

aspects are specific to the user interface field and these themes have been

usually addressed independently of the rest of the interactive system they

are actually part of [MPV11]. Research has paid attention to such issues and

with the intent of dealing with them has moved in two main directions: the

first one is to focus on the automatic creation of a UI model derived from a

formal description of the application tasks (i.e., a formal description of what

the application has to do), the tasks model [GLCV08, EVP01] or discourse

model [PRK13, PSM+08]; in the second one the focus is on the direct design

of the UI model taking into account the application requirements. Both

approaches, usually adopting transformational techniques [PFRK12], share

the common goal of creating a UI model that can be used to generate the

concrete UI model used to instantiate the actual interface [MPV11]. Many

domain specific languages were designed for this purpose [MDZ13, BCPS04].

These UI models are intended to represent the entire interface with all

its aspects and this can lead to a method, whether automatic or not, of

great overall complexity. The resulting interfaces are well structured but

viii

Introduction

poor in terms of usability and general appearance [PRK13]. This latter

aspect is traditionally of secondary importance for academics more involved

in resolving technical and scientific problems.

On the other hand organizations and companies that design and produce

the available software development tools, have only partially adopted the

results of the previously introduced researches due to the already explained

and still unsolved problems. On the contrary, aesthetic quality is of primary

importance on the market [HPBL00] and UIs underwent great enhancements

from that standpoint following the wide diffusion of smartphones and tablets;

this is due both to the high activity and competitiveness in the sector and to

the new capabilities and the always increasing computational power of cur-

rently available commercial devices. Consequently the end user expectations

have also increased and high quality UI design has become not only essential

but also expected.

The most part of UI developers usually still work with a very different

technique: custom interfaces are built on top of frameworks; these are sup-

plied in the form of libraries and toolkits (e.g., JavaScript frameworks for web

development) or as part of more complete Software Development Kits (SDK)

that, for their own nature, results in solutions tightly tied to the addressed

target platforms. In either case these tools provide simple building blocks

that are used to assemble and control the developed user interfaces. For

example, in the mobile operating systems world, all big players (i.e., Apple

with iOS, Google with Android and Microsoft with Windows Phone) adopt

this very philosophy: the SDK represents the principal, and often only, way

to develop full featured applications for their platforms; different languages

are employed to write business logic and implement user interfaces making

use of the provided UI elements, called widgets, in accordance to the clas-

sic Model-View-Controller architectural pattern [GHJV95]; said languages

are all third-generation programming languages (3GL) [Tha84] so the style

adopted is primarily imperative, although object-oriented and therefore are

employed to describe how everything should work. Also the widgets are inte-

grated with the same programming style and, starting as simple presentation

and interaction devices, must be configured and supported by the application

control logic. It is also possible that the provided widgets are not suitable

for the particular use case and new custom elements have to be created and

used.

A really important component of the SDK is represented by the docu-

ix

Introduction

mentation that, among other things, comprises platform specific guidelines

the developers have to comply with in order to build applications well in-

tegrated, also aesthetically, with the chosen platform and with good levels

of usability and accessibility. In this task the Integrated Development En-

vironment (IDE) can only support, even though with really advanced and

effective tools in some cases, the developer’s work which is substantially left

alone with his competence and expertise.

Compared with the aforementioned research approach, the most part of

UI developers and companies usually still adopt very different techniques;

notwithstanding it appears clear that it isn’t favorable at the moment to

change such an approach because it lets the developers free to exploit their

personal abilities in the production of custom but usable, accessible and

appealing UIs in accordance with application level requirements. Obviously

such an approach encounters all the limits that the automatic UI generation

wants to overcome.

To follow this path, a new widget class is required: the present work

proposes the adoption of complex widgets that encapsulate the required UI

features such as usability, accessibility and context awareness. This implies

that said widgets have to work as small applications instead of simple UI

components and therefore a technique is needed to compose them in or-

der to shape applications complying with functional and non-functional re-

quirements. Said composition is achieved through the adoption of a frame-

work designed to combine the generative research approach with the widely

adopted custom development philosophy. This idea is similar to what already

happened in the backend domain with Service-oriented Architectures (SOA)

[Erl05]. This new way of thinking distributed computing helped overcome

the problems originated from the monolithic client-server approach thus en-

abling a more efficient way of interoperation in which functionalities exposed

as services can be combined by other software applications; each service is

built in a way that ensures it can exchange information with any other ser-

vice in the network without human interaction and without the need to make

changes to the underlying program itself [Bel10].

The research community has applied the model-driven approach both on

UI specific aspects and in the development of complex interactive systems

but has often considered these two fields of work as independent areas, con-

sequently producing different methodologies and tools: a first “technology-

oriented” approach led to the creation of formal tools for the description

x

Introduction

and validation of specific elements; a second “business-oriented” approach

centered on the strategic orchestration of services, processes, people and re-

sources. In particular, this second category, close to the enterprise world,

has always been more focused on the back-end information flow; since this

type of approach is also entering more operative contexts, where there is

the need to present not just some forms but more complex data, this aspect

is undergoing a marked evolution led by the strong need of advanced user

interfaces.

This work wants to bridge the “technology-oriented” and the “business-

oriented” approaches introducing an holistic model-driven development pro-

cess [MPV11] for the whole interactive system development, foreseeing the

integration of methods for the automatic generation of user interfaces with

the tools used for business process management.

The proposed framework uses the same model-driven engineering (MDE)

techniques employed by the generative approaches to formally describe, in a

declarative style, the application domain and tasks models. From this knowl-

edge an abstract UI description is derived and used to produce a concrete

UI model. The distinction between these two levels of abstraction is needed

to create multimodal interfaces since from an agnostic abstract description

the transformation process takes as input the specific destination UI type to

create the concrete description. Finally this concrete UI model is used to

assemble the actual interface combining, as previously introduced, the ap-

propriate complex widgets. This step adds a further layer of flexibility since

the concrete UI model refers to widgets through a description of the required

features so the party responsible for the actual composition, typically a client

device the user is directly interacting with, can adopt a context-aware choice

for the actual selection.

This schema identifies at least two different developers profiles: the first

type of developer uses declarative techniques to define the elements that con-

stitute the application workflow and delegates the UI composition phase to

the framework almost completely; a second type of developer actually creates

the complex widgets without constraints, except for the framework integra-

tion requirements, and with a complete user-centric approach (i.e., focusing

on usability, accessibility and context-awareness concepts and practices).

The proposed approach leverages the declarative MDE techniques em-

ployed for UI generation and combines them with the imperative develop-

ment process predominantly adopted by companies and developers in order

xi

Introduction

to offer a framework fast to exploit but potentially at the state of the art

regarding user-centric themes like usability, accessibility, context-awareness

and aesthetic appeal.

Following the SOA analogy, it is possible to envision a scenario in which

the introduced complex widgets are supplied as services by UI providers,

the required business logic is generated from models also obtained through

composition from different sources and the final application is pushed to an

heterogeneous set of client devices used in diverse situations. Expanding this

pattern the resulting applications could be used as building blocks for even

more complex systems.

This thesis is articulated in four parts: State of the Art, Proposed Solution,

Framework Design and Implementation.

In the State of the Art part, technologies relevant to the topic are dis-

cussed; in particular, chapter 1 introduces the different approaches to user

interface development adopted by the research community and distinguishing

between model-based and model-driven techniques; chapter 2 examines the

main user interface description and transformation languages.

In the Proposed Solution part, chapter 3 introduces the proposed method-

ology and describes the role of each meta-model providing a reference overview

for the production system.

The Framework Design part is devoted to the description of the four

meta-models; in particular, chapter 4 described the Domain Model, chapter 5

described the Process Model, chapter 6 described the Abstract User Interface

Model and chapter 7 described the Concrete User Interface Model. Chapter 8

described the widgets architecture and addresses the composition problem.

Finally, in the Implementation part, chapter 9 introduces the Java demon-

strator used to test and validate the framework with a simple but effective

use case.

xii

Part I

State of the Art

Chapter

1
Approaches to

User Interface Development

The development of User Interfaces (UI) has been a topic of interest both

for academia and industry since the early 1980s. During the time a constant

evolution has occurred in the field and such an evolution has been coupled

with a continuous effort to develop new methods and strategies to create UIs

in effective and efficient ways. This effort can be explained considering that

the UI layer is regarded as one of the key components of software applications

since it allows users to access the functionalities offered by a specific applica-

tion [ABY14]. The UI layer is so endorsed to determine or not the success of

an application typically without any concern regarding the effective value of

the functionalities offered [ABY14]. The main problems encountered during

the time have been faced by the HCI community and the industry developing

a large quantity of different methods and tools.

Currently, the need to focus on cost-effective development of UIs, both

in terms of time and effort, has led to the adoption of principles of Model-

Driven Engineering (MDE) resulting in methodologies going under the name

of Model Driven UI Development (MDUID). MDUID can be considered as

an evolution of the previous approach, the so called Model Based UI Devel-

opment (MBUID) [MPV11].

It can be of interest to recall also the oldest approach to UI development:

2

Approaches to UI Development Historical overview: UI Management Systems

the User Interface Management Systems (UIMS). UIMSs have represented

the first historic effort to create UIs in an efficient and effective way. Within

this context it will be reported only a brief list of the different generations

envisioned in UIMS by Meixner et al. [MPV11] and by Mla�an et al. [MDZ13].

One of the key point of the paradigm in the MDUID is the capability of

supporting the so called context-sensitive UIs; this term indicates UIs aware

of the context of use and able to (automatically) react to context changes in

a continuous way (e.g., by changing the UI presentation, contents, navigation

and even behavior) [Fon10].

Nowadays such a feature has gained great interest in the domain of appli-

cation development as a result of the diffusion of pervasive computing and the

wide adoption of smartphones and mobile devices among the great public.

The contents of this chapter are organized as follows: first an overview

of the beginning of UI development methodologies and tools represented by

the User Interface Management Systems, then a presentation of the Model-

Based development approach. Then some considerations regarding the new

paradigm that led to the Model-Driven development in the UI sector. At

last some concepts about the adaptive model driven development where the

main focus is in the creation of context-sensitive UIs: a brief explanation of

the terms related to context-sensitive UI and context of use will be given.

1.1 Historical overview: UI Management Sys-

tems

The first historically adopted approach in the UI development was repre-

sented by the User Interface Management Systems (UIMS). The term and the

first concepts related to UIMS date back to early 1980s [MPV11]. A tool can

be considered a UIMS if it satisfies the following definition: “A User Interface

Management System is a tool (or tool set) designed to encourage interdis-

ciplinary cooperation in the rapid development, tailoring and management

(control) of the interaction in an application domain across varying devices,

interaction techniques and UI styles. A UIMS tailors and manages (controls)

user interaction in an application domain to allow for rapid and consistent

development. A UIMS can be viewed as a tool for increasing programmer

productivity. In this way, it is similar to a fourth generation language, where

the concentration is on specification instead of coding” [BBF+87].

3

Approaches to UI Development Model-Based UI Development

Within the UIMS approach four different generation have been devised

where each one takes into account a specific target audience and adopted

methods [Hix90]. The first generation was set about in the period 1968–1984

while the second overlapped part of the first in a period from 1982-1986. Both

these two generations concerned only the creation of teletype UIs (text-based

UI) in a period when the most of peripherals were keyboard and monitor. As

a matter of fact the UIMSs themselves adopted teletype UI to interact with

the users and the methodology was centered in the programming of the UI.

For this reason, these two generations targeted only programmers as users

because the UI were created by means of common programming languages.

Otherwise the third (approximately 1985-1988) and fourth (approximately

1988-1990) generation drew their attention to graphical direct manipulation

UI and shifted their main concern from UI programming to its design. Fur-

thermore the fourth generation, in order to ease the user interaction with

the UIMS, itself adopted the WIMP paradigm. The term WIMP stands for

Windows, Icons, Mice and Pointing, and it is used to refer to the desktop, di-

rect manipulation style of user interface. This allowed other new professional

figures, such as designers, to start using UIMSs [MPV11].

Notwithstanding the great interest of academic world the UIMSs were not

adopted in the industry and remained a research field of HCI area mainly

due to three motivations [Mye87]. The first problem lay in the difficulty of

use of the UIMS: as a matter of fact only very skilled programmers were able

to interact with them. The second one consisted in the fact that UIMS were

mainly able to create teletype UI and not WIMP UI which were much more

complex to develop. In the late 1980s, GUIs and WIMP UIs had encountered

the favor of a wide audience due to their simplicity of use with respect of

older teletype UIs. The third problem was that the UI generated by UIMS

were deeply bound to a specific platform and it was not possible to use them

in different environments other than the one they were created for.

1.2 Model-Based UI Development

To overcome the main problems arisen with the UIMS, another approach

in UI development gained more and more interest. Its central paradigm was

the realization of high-level models for representing the characteristics of a UI

in the analysis and design phases: it was the Model-Based UI Development

(MBUID). Its origin dates back the late 1980s [MPV11]; two criteria has

4

Approaches to UI Development Model-Based UI Development

been identified for a UI tool to be a MBUID environment [Sch96]:

1. a MBUIDE must include a high-level, abstract and explicitly repre-

sented (declarative) model about the interactive system to be developed

(either a task model or a domain model or both);

2. MBUIDE must exploit a clear and computer-supported relation from

the model described in 1 to the desired and running UI. This means

that there must be some kind of automatic transformation such as a

knowledge-based generation or a simple compilation to implement the

running UI.

These two criteria allow to highlight the driving concepts which repre-

sent the basis of such an approach. The first criteria has its focus on giving

the UI designer the capability to concentrate more on a semantic level than

to be distracted by the details involved in the implementation level. The

designer can create models without the concern of what will be the tools

adopted for the implementation of the UI. Specific languages have to be

adopted to create these models enabling the integration within development

environments. These specific languages are the so called User Interface De-

scription Language (UIDL) which allow to describe the model in a declarative

way without any concern on how the model will be converted in a running

UI [Pat05].

The second criteria, instead, focuses on the capability of the MBUIDE

to create a running UI starting from the high-level model. In other words,

such a criteria implies only that the model is the basis for the realization of

the running UI. It implies the capability to generate semi-automatically the

code of the UI starting from the model description but no further details are

required to describe how the process of UI development has to be made. From

the point of view of software engineering there isn’t the clear request to define

precisely the different steps related to the appropriate software development

life cycle [FV10].

Since the late 1980s the approach of model-based development has evolved

into different generations bound to different visions 1.2.1. At first, the main

idea was to have a single high-level model to describe the UI. Then it was

devised the need to define different models to describe the different aspects of

a single UI. At last, the issues related to the growing use of many different de-

vices for a single user and the increased user mobility have led to the need to

5

Approaches to UI Development Model-Based UI Development

create different UIs specific for different devices and different contexts of use.

The production of so many different models, showed its shortcomings and

the need to try to fully automate the UI development life cycle increased.

Consequently, the effort to define a specific methodology for UI life cycle

became of interest and this also led to the definition of the Cameleon Ref-

erence Framework (CRF) [CCT+03] which envisions four UI development

steps for multi-context interactive applications where each development step

is devoted to manipulate any specific artifact of interest as a model or a UI

representation [Van05]. The definition of a specific methodology has some-

how paved the way to an evolution in the paradigm of UI development which

has shifted towards the approach of Model-Driven Engineering which has led

to MDUID.

1.2.1 Different Generations in MBUID Systems

Four generations have been devised in MBUID systems [MPV11]. The

first generation (approximately 1990–1996) focused on identifying and ab-

stracting relevant aspects of a UI. Tools in this generation mainly used one

universal declarative UI model which integrated all relevant aspects of a UI.

The “one design fits all” can summarize the first generation vision. The main

trends focused on the fully automatic generation of the UI instead of an inte-

grated holistic MBUID process. Examples for the first generation are UIDE,

AME or HUMANOID [MPV11].

The second generation (approximately 1995–2000) focused on the exten-

sion of the UI model by integration of other distinct models into the MBUID

and expressing the high-level semantics of a UI. Therefore, the UI model is

structured into several other models like e.g., task model, dialog model or

presentation model. With the second generation, developers were able to

specify, generate and execute UIs. Much emphasis has been done on the

integration of task models (e.g., CTT described in 2.1.4) into MBUID. Fur-

thermore, a user-centered development (UCD) approach for UI on the basis

of a task model has been recognized as crucial for the effective design of UIs.

Examples for the second generations are ADEPT, TRIDENT or MASTER-

MIND [MPV11].

The third generation (approximately 2000–2004) was mainly driven by

the plethora of new interaction platforms and devices. Mobile devices like

e.g., smartphones or PDAs, became popular. Indeed, as Myers, Hudson and

6

Approaches to UI Development Model-Based UI Development

Pausch indicated while discussing the future of UI tools, the wide platform

variability encourages a return to the study of some techniques for device-

independent UI specification [MHP00]. Then, the system might choose ap-

propriate interaction techniques taking all of these into account. Developers

and designers had to face the challenge of developing a UI for several different

devices with different constraints (e.g., screen size). An expressive integrated

MBUIDE became more relevant than in the previous generations. Examples

for the third generation are TERESA or Dygimes [MPV11].

The fourth and current generation has been mainly interested by context

sensitive UIs and has taken into account the lesson learned by the Cameleon

Reference Framework (CRF), described in 1.2.2, which has led to new tools

and to the shift towards the MDE approach described in 1.3, giving birth

to a new approach in the UI development, the so called Model-Driven UI

Development (described in 1.3.1) [MPV11]. Examples for this generation are

UsiXML and MARIA XML [MPV11].

1.2.2 Cameleon Reference Framework

The Cameleon Reference Framework (CRF) serves as a reference for clas-

sifying user interfaces supporting multiple targets, or multiple contexts of

use in the field of context-aware computing [CCT+03]. A multi-target (or

multi-context) UI supports multiple types of users, platforms and environ-

ments (as described in 1.3.2 at page 15). Multi-user, multi-platform and

multi-environment UIs are specific classes of multi-target UIs which are, re-

spectively, sensitive to user, platform and environment variations [CCT+03].

The CRF is a unified user interface reference framework that is based on

two principles [Fon10]: a model-based approach and the coverage of both the

design and runtime phases of multi-target user interfaces. As opposed to con-

ventional UI development techniques that merely construct a concrete level

(e.g., graphical buttons, text boxes, etc.), CRF introduces additional levels

of abstraction that help in building multi-context user interfaces moving in

the direction of a new paradigm in the UI development, the one represented

by MDE [ABY14].

In figure 1.1, it is reported a simplified version of the Cameleon Reference

Framework to ease the comprehension. This simplified version structures the

development processes for two different contexts of use into four development

steps (each development step being able to manipulate any specific artifact

7

Approaches to UI Development Model-Based UI Development

of interest as a model or a UI representation) [Van05]:

• Final UI (FUI) Model: is the operational UI i.e. any UI running on a

particular computing platform either by interpretation (e.g., through

a Web browser) or by execution (e.g., after compilation of code in

an interactive development environment) [Van05]. The actual UI can

be rendered with an existing presentation technology such as HTML,

Windows Forms, Windows Presentation Foundation, Swing, and so

on. [ABY14];

• Concrete UI (CUI) Model: concretizes an abstract UI for a given con-

text of use into Concrete Interaction Objects (CIO) [VB93] so as to

define widgets layout and interface navigation. It abstracts a FUI into

a UI definition that is independent of any computing platform. Al-

though a CUI makes explicit the final Look and Feel of a FUI, it is

still a mock-up that runs only within a particular environment. A CUI

can also be considered as a reification of an AUI at the upper level and

an abstraction of the FUI with respect to the platform [Van05]. This

level is modality dependent. For example, it can represent the UI in

terms of graphical widgets such as buttons, labels, and so forth. Pos-

sible UIDLs for representing concrete user interfaces include TERESA

XML, UIML [APB+99], XIML [PE02], UsiXML, and MARIA.

• Abstract UI (AUI) Model: defines abstract containers and individ-

ual components [LVM+05], two forms of Abstract Interaction Objects

[VB93] by grouping subtasks according to various criteria (e.g., task

model structural patterns, cognitive load analysis, semantic relation-

ships identification), a navigation scheme between the container and

selects abstract individual component for each concept so that they are

independent of any modality. An AUI abstracts a CUI into a UI defini-

tion that is independent of any modality of interaction (e.g., graphical

interaction, vocal interaction, speech synthesis and recognition, video-

based interaction, virtual, augmented or mixed reality). An AUI can

also be considered as a canonical expression of the rendering of the do-

main concepts and tasks in a way that is independent from any modality

of interaction. An AUI is considered as an abstraction of a CUI with

respect to interaction modality. At this level, the UI mainly consists of

input/output definitions, along with actions that need to be performed

8

Approaches to UI Development Model-Based UI Development

Figure 1.1: The simplified Cameleon Reference Framework

on this information [Van05]. The AUI model can be represented us-

ing UIDLs such as TERESA XML [BCPS04], UsiXML [LVM+05], and

MARIA [PSS09].

• Task and Domain Models: describe the various user’s tasks to be car-

ried out and the domain-oriented concepts as they are required by these

tasks to be performed. These objects are considered as instances of

classes representing the concepts [Van05]. The task model is the high-

est level of abstraction that represents UI features as tasks. One pos-

sible representation for task models is the ConcurTaskTrees [PMM97]

notion that allows tasks to be connected with temporal operators. The

domain model denotes the application universe of discourse and can be

represented using UML class diagrams.

Between these levels exist different relationships [MPV11]:

• Reification covers the inference process from high-level abstract de-

scriptions to runtime code. The CRF recommends a four-step reifica-

9

Approaches to UI Development Model-Driven Software Development

tion process: a Concepts-and-Tasks Model is reified into an Abstract

UI which in turn leads to a Concrete UI. A Concrete UI is then turned

into a Final UI, typically by means of code generation techniques.

• Abstraction is an operation intended to map a UI representation from

one non-initial level of abstraction to a higher level of abstraction. In

the context of reverse engineering, it is the opposite of reification.

• Translation is an operation that transforms a description intended for

a particular context into a description at the same abstraction level

but aimed at a different context. It is not needed to go through all

steps: one could start at any level of abstraction and reify or abstract

depending on the project.

1.3 Model-Driven Software Development

The model-driven paradigm is gaining more and more interest over recent

years in the field of software engineering [BF14]. Specifically in the develop-

ment of a software system Model-Driven Engineering (MDE) main concern

is represented by models which are abstract representations of the system or

product under construction [BF14]. Nevertheless the idea of using models

doesn’t represent any novelty in software engineering industry where models

have been normally used in the analysis and design phases but they have

been neglected in the implementation and maintenance phases [BF14]. As a

matter of fact the models created in the design phase were simply handled

to software developers which had the task to create the application code tak-

ing them as a reference. Such an approach can be considered model-based

but not model-driven where instead models represent the key drivers of the

creation of an application in each phase of the development process making

also possible the automatic generation of code without any concern of human

intervention.

The model-based approach has had a greater usage than model-driven in

the past years and the motivations to such a situation can be found in the

nature of the software product itself and in the life cycle of its development

process; as a matter of fact it is extremely simple to make changes during

the maintenance phase directly on the source code without any concern in

adjusting the corresponding models and often a software is released and then

10

Approaches to UI Development Model-Driven Software Development

iteratively fixed while in use. Notwithstanding the previous considerations,

MDE has been increasingly adopted in the past two decades mostly due to

the proliferation of different platforms, the scarcity of skilled developers and

the large agreement upon few standards defined by the Object Management

Group (OMG) [BF14].

Since 1997, the OMG has launched an initiative called Model-Driven Ar-

chitecture (MDA) to support the development of complex, large, interactive

software systems providing a standardized architecture with which:

• systems can easily evolve to address constantly evolving user require-

ments;

• old, current and new technologies can be harmonized;

• business logic can be maintained constant or evolved independently of

the technological changes;

• legacy systems can be integrated and unified with new systems; in

MDA, a systematic method is recommended to drive the development

life cycle to guarantee some form of quality of the resulting software

system [Van05].

Four principles underlie the OMG view on MDAs [MSUW04]:

1. models are expressed in a well-formed unified notation and form the

cornerstone to understanding software systems for enterprise scale in-

formation systems. The semantics of the models are based on meta-

models [Van05];

2. the building of software systems can be organized around a set of mod-

els by applying a series of transformations between models, organized

into an architectural framework of layers and transformations: model-

to-model transformations. A MDA-compliant environment for devel-

oping UIs of information systems support any change between models

while model-to-code transformation are typically associated with code

production, automated or not [Van05];

3. a formal underpinning for describing models in a set of meta-models

facilitates meaningful integration and transformation among models,

and is the basis for automation through software [Van05].

11

Approaches to UI Development Model-Driven Software Development

4. acceptance and adoption of this model-driven approach requires indus-

try standards to provide openness to consumers, and foster competition

among vendors [Van05].

Specifically, MDE approaches provide techniques and tools for dealing

with models in an automated way in order to generate executable soft-

ware [MDZ13]. Models, meta-models and model transformations are the key

issues of MDE to increase productivity of software development. If mod-

els can be seen as abstract representation of a system, the meta-models

represents a set of rules and constraints which a model has to undergo to

be formally correct. Model transformations are the process which allow to

generate lower-level models from higher-level models, the model-to-model

(M2M) transformations or eventually to generate code, the model-to-code

(M2C) transformations. At present however the MDE approach is adopted

only to generate code from models in specific tiers because the quality of a

fully generated application is so far lower than one directly developed. More-

over it is still too complex and expensive creating models which allow the

automatic generation of all aspects of a software application [BF14].

Current MDE approaches mostly rely on Unified Modeling Language

(UML) notation to describe models. UML is a widely adopted industrial

standard used in a large number of software engineering fields and with rich

tool support [MDZ13]. UML is actually a collection of languages, includ-

ing collaboration diagrams, activity diagrams, as well as use case support.

These languages are intended to cover all aspects of specifying a computa-

tional system. While they have been used for the interactive part as well,

they have not been expressly designed to support it and they tend to ignore

some specific aspects related to the user interaction [Pat05]. On the other

hand, the Human-Computer Interaction field has brought specific notations

for describing user interfaces such as task models before UML had been pro-

posed. With the advent and the acceptance of UML, existing notations for

user interface descriptions were shaped in UML setting [MDZ13]. Thus far,

several UML models for user interface description were introduced, such as

USIXML [LVM+05].

1.3.1 Model-Driven UI Development

The basics concepts of MDE have been taken into account in the UI de-

velopment resulting in a new approach called Model-Driven UI Development

12

Approaches to UI Development Model-Driven Software Development

(MDUID) [MDZ13]. This approach can be considered the natural evolution

of MBUID, described in 1.2, which has been the main paradigm in the UI

development sector since the early 1990s [MPV11]. As a matter of fact the

fourth and last generation devised in MBUID systems is considered model-

driven and not model-based any more as models and transformations among

models are at the heart of the development process [ABY14].

Generally speaking in the MDUID several models are used to describe

different aspects of user interface when the level of detail varies but more

specifically it is possible to see different trends within this approach which can

be summarized in [ABY14]: Static modeling, Generative runtime modeling

and Interpreted runtime modeling. The first trend adopts static models for

UI design and these models don’t change at runtime so they are not employed

for the code generation and they are adopted only in the analysis and design

phases. In the second trend, models are also adopted to generate code and

are therefore used in the development phase. The third trend doesn’t require

code generation and models are interpreted directly at runtime to create the

UI [ABY14].

The main advantages derived from MDUID are represented by enhancing

traceability, technology independence [ABY14] and reduction of development

costs [Flo06]. The latter two advantages are mainly due to the fact that from

a single high level model UIs are automatically generated for many different

platform and devices. However, there are also some drawbacks in this ap-

proach and the main one is represented by the low usability of automatically

generated UIs; this is a consequence of the difficulty in specifying the details

concerning the layout of the UI in the higher-level models [RPV12].

As it has been introduced when speaking of MBUID generations, it is pos-

sible to say that current approaches in the fourth generation are model-driven

and they can’t be considered model-based anymore [MPV11]. This shift of

paradigm has been made possible by the seminal work in the Cameleon Ref-

erence Framework which has provided an abstraction guidance for devising

Uis with a model-driven approach [ABY14]. This generation (approximately

2004–today) is focusing on the development of context-sensitive UIs for a

variety of different platforms, devices and modalities, called multi-path de-

velopment, and the integration of web-applications. Central elements of most

of the current approaches are models which are mostly stored as XML-based

languages to enable easy import and export into authoring tools. Further-

more, one research focus is on the optimization of the automatically generated

13

Approaches to UI Development Model-Driven Software Development

UIs by ensuring a higher degree of usability [MPV11].

1.3.2 Adaptive Model-Driven UI Development

Recently great interest has raised about situations where an high context

variability is present. Such interest is mainly due to the increased mobility of

the users of software systems and to the large use of many different devices

by a single user which spans his attention from the laptop to his smartphone

in different moments of his or her daily life. In this scenario the users should

not adapt to applications but the applications should adapt to the different

contexts of use. This consideration implies the creation of many different

UIs for the same functionality in order to answer the needs of the different

situations; such an approach can be extremely expensive whereas the UIs

should be “hand-made” developed. On the contrary, the MDE approach

seems to offer the right solution to satisfy such needs as it introduces a

level of abstraction in the software applications which allows to describe the

required UI without the concern of taking into account the context of use.

Moreover, MDE promotes the automatic generation of code starting from the

models created during the design phase. This approach has been considered

as the most promising in literature for such a problem leading to Adaptive

Model-Driven UI development (AMDUID) [ABY14] which aims to create

context-sensitive UI. In order to describe in a plain way such a theme, it is

important to give some details of what “context” means and which are the

properties a UI should posses to be a context-sensitive UI. Moreover, there

are several different types of context-sensitive UIs and it is worth trying to

give some glossary to explain such differences:

• context-awareness“indicates that a system is aware of its context, which

is its operating environment” [ST09]. If the UI is aware of its context

and is able to detect context changes, then it can trigger adaptations

in response to those changes (e.g., based on a set of rules) in order to

preserve its usability.

• self-configuring “is the capability of automatically and dynamically re-

configuring in response to changes” [ST09]. To keep the UI adaptation

rules up to date with an evolving context of use (e.g., if a user’s com-

puter skills improve), there is a need for a mechanism that can recon-

figure these rules by monitoring such changes. Another type of rule

14

Approaches to UI Development Model-Driven Software Development

reconfiguration could be based on the end-user’s feedback; for exam-

ple, the end-user may choose to reverse a UI adaptation or select an

alternative. Keeping the end-users involved in the adaptation process

could help in increasing their awareness and control, thereby improving

their acceptance of the system.

• self-optimizing“is the capability of managing performance and resource

allocation in order to satisfy the requirements of different users” [ST09].

To adapt this definition to user interfaces, we can say that a UI can

self-optimize by adapting some of its properties, for example, adding

or removing features, changing layout properties (e.g., size, location,

type), providing new navigation help, and so forth.

Context literally refers to the meaning that must be inferred from the

adjacent text. As a result, to be operational, context can only be defined

in relation to a purpose, or finality [CCRR02]. In the field of context-aware

computing, a definition of context that has been largely used is provided

by Anind Kumar Dey in [Dey00]: “Context is any information that can be

used to characterize the situation of entities (i.e., whether a person, place or

object) that are considered relevant to the interaction between a user and an

application, including the user and the application themselves. Context is

typically the location, identity and state of people, groups and computational

and physical objects.”

While the above definition is rather general, thus encompassing many

aspects, it is not directly operational. Hence, Fonseca in [Fon10] defines the

Context of Use of an interactive system as a dynamic, structured information

space that includes the following entities:

• a model of the User U who is intended to use or is actually using the

system;

• the hardware-software Platform P which includes the set of computing,

sensing, communication and interaction resources that bind together

the physical environment with the digital world;

• the social and physical Environment E, where the interaction is actually

taking place.

Thus, a context of use is a triple composed by (U, P,E). The User rep-

resents the human being, or a human stereotype, who is interacting with

15

Approaches to UI Development Model-Driven Software Development

the system. The characteristics modeled or relevant can be very dependent

on the application domain (e.g., age, level of experience, preferences, tastes,

abilities and disabilities, short term interests, long term interests). In partic-

ular, perceptual, cognitive and action disabilities may be expressed in order

to choose the best modalities for the rendering and manipulation of the in-

teractive system [Fon10].

The definition of platform can accommodate physical devices (e.g., phone,

tablet, laptop, etc.), operating systems and different types of application

platforms (e.g., web, desktop, rich Internet application, etc.). Variability in

screen size and the available UI widgets are common examples of aspects

that could spur platform-related adaptive UI behavior [ABY14].

The Environment denotes the set of objects, persons and events that are

peripheral to the current activity but that may have an impact on the system

and/or users behavior, either now or in the future [CR02]. According to our

definition, an environment may encompass the entire world. In practice, the

boundary is set up by domain analysts whose role is to elicit the entities that

are relevant to the case at hand. Specific examples are: user’s location, ambi-

ent sound, lighting or weather conditions, present networks, nearby objects,

user’s social networks, level of stress and so on [Fon10].

The relationship between a UI and its context of use leads to the following

definitions:

• A multi-target UI supports multiple types of users, platforms and en-

vironments. Multi-user, multi-platform and multi-environment UIs are

specific classes of multi-target UIs which are, respectively, sensitive to

user, platform and environment variations [CCT+03].

• An Adaptive UI refers to a UI capable of being aware of the context

of use and to (automatically) react to changes of this context in a con-

tinuous way (for instance, by changing the UI presentation, contents,

navigation or even behaviour).

• An Adaptable UI can be tailored according to a set of predefined op-

tions. Adaptability normally requires an explicit human intervention.

We can find examples of UI adaptability on those word processors where

the set of buttons contained by toolbars can be customized by end users.

• A Plastic UI is a multi-target UI that preserves usability across mul-

tiple targets. Usability is not intrinsic to a system. Usability can only

16

Approaches to UI Development Model-Driven Software Development

be validated against a set of properties set up in the early phases of the

development process [CCT+03].

17

Chapter

2
Languages for

User Interface Development

The model-driven user interface development has focused its attention

around the concept of model; the production of a model gains a central role

in the UI life cycle: all the components are models and all models have to be

consistently defined according to a meta-model, the underlying language has

to be based on a meta-language, and the software should be mainly based on

model-to-model (M2M) transformation and model-to-code generation (M2C)

[FV10]. In this context it is possible to speak about different languages used

for UI description and transformations between UI models, namely UIDL

(User Interface Description Language) and UITL (User Interface Transfor-

mation Language) [MDZ13].

A User Interface Description Language (UIDL) is hereby defined as a

language for describing any kind of User Interface (UI) at a higher level of

abstraction than the code used to program it, whether it is a programming

language or a markup language [FV10]. In theory, a UIDL can be defined

according to any programming paradigm and its syntax can be specified ac-

cording to any formal scheme. In practice however, most UIDLs are declara-

tive and are defined as a markup language, typically based on XML [FV10].

In the model-driven approach, even transformations among models and rela-

tionships are described in terms of a meta-model. A mapping model defines

18

Languages for UI Development User Interface Description Languages

the relationships between the models; this mapping model allows the spec-

ification of the link of elements from heterogeneous models and viewpoints.

Several relationships can be defined to explicit the relationships between

models [GLCV08].

User Interface Transformation Languages (UITL) are languages that al-

low to describe transformation mechanisms used to map a model onto an-

other one but the logic and the definition of the transformation rules are

completely hard coded, with little or no control by designers. In addition,

the definition of these representations is not independent of the transforma-

tion engine [LVM+05].

2.1 User Interface Description Languages

A User Interface Description Language (UIDL) consists of a high-level

computer language for describing characteristics of interest of a UI with re-

spect to the rest of an interactive application in order to be used during some

stages of the UI development life cycle. Such a language involves defining a

syntax (i.e., how these characteristics can be expressed in terms of the lan-

guage) and semantics (i.e., what do these characteristics mean in the real

world). It can be considered as a common way to specify a UI independently

of any target language (e.g., programming or markup) that would serve to

implement the UI [GGGCVMA09].

The introduction of UIDLs has allowed professional figures other than

programmers to enter the UI development process. This has been possible

mainly due to the adoption in most UIDL of a declarative approach in place

of the classical imperative paradigm more familiar to a software developer.

These new figures, as for example UI designers, has permitted to pay more at-

tention to usability and accessibility aspects of the user interface. The adop-

tion of models described by UIDLs has eased the process of communication

among the different stakeholders of the development process and has paved

the way to semi-automatically generate the UI code. Since the end of 90s,

UIDLs have quickly multiplied due to these interesting features and thanks

to the great simplicity to create languages based on XML [GGGCVMA09].

In the present chapter only some UIDL languages will be presented and

the choice made has been driven by the capability of the languages to describe

models with respect of the Cameleon Reference Framework (CRF) described

in 1.2.2. This choice has been done mainly because CRF represents a suitable

19

Languages for UI Development User Interface Description Languages

reference for the adoption of a model-driven paradigm (MDUID) [ABY14].

2.1.1 USer Interface eXtensible Markup Language

The USer Interface eXtensible Markup Language (UsiXML) is structured

according to the four levels of abstraction defined by the CRF. UsiXML relies

on a transformational approach that progressively moves among the levels

to the Final UI [LVM+05]. The transformational methodology of UsiXML

allows the modification of the development sub-steps, thus ensuring various

alternatives for the existing sub-steps to be explored and/or expanded with

new sub-steps. As such, UsiXML supports model-driven engineering of UIs

as defined by the Object Management Group (OMG). Designers can shape

the UI of any new interactive application by specifying and describing it in

the UIDL, without requiring programming skills usually found in markup and

programming languages [MPV11]. UsiXML allows cross-toolkit development

of an interactive application. A UI of any UsiXML-compliant application

runs in all toolkits implementing it.

UsiXML supports device independence: a UI can be described in a way

that remains autonomous with respect to the devices used in the interactions

(e.g., mouse, screen, keyboard, voice recognition system). In case of need, a

reference to a particular device can be incorporated. UsiXML supports plat-

form independence: a UI can be described in a way that remains autonomous

with respect to the various existing computing platforms (e.g., mobile phone,

Pocket PC, Tablet PC, kiosk, laptop, desktop, wall screen). In case of need,

a reference to a particular computing platform can be incorporated.

Moreover UsiXML supports modality independence: a UI can be de-

scribed in a way that remains independent of any interaction modality (e.g.,

graphical interaction, vocal interaction, 3D interaction, virtual reality inter-

action). In case of need, a reference to a particular modality can be incorpo-

rated. UsiXML allows reusing elements previously described in other UIs in

order to leveraging them in new applications. Historically, the first version

of UsiXML resulted from the EU-funded FP5 Cameleon Project.

2.1.2 Useware Markup Language

The Useware Markup Language (UseML) 1.0 refers to the Task and Con-

cepts level of the CRF and was developed to support a user-centered de-

20

Languages for UI Development User Interface Description Languages

velopment (UCD) process (ISO 9241-210) with a modeling language repre-

senting the results of the initial task analysis. Accordingly, the use model

(task model) abstracts platform-independent tasks into use objects (UO) that

make up a hierarchically ordered structure. Furthermore, the leaf tasks of a

use model are described with a set of elementary use objects (eUO) repre-

senting atomic inter-active tasks: inform, trigger, select, enter and change.

In Version 2.0, UseML was extended with five temporal operators to support

temporal relationships as well as it provides the possibility to define multiple

executions or conditions that can be attached to tasks of the model [MSB11].

This information can be used later in the transformation process to derive a

dialog model. UseML is supported by Udit, an interactive editor and simu-

lator for task models which is also able to transform use models into Dialog

and Interface Specification Language models (language introduced in 2.1.3).

2.1.3 Dialog and Interface Specification Language

The abstract UI level of the CRF can be modeled with the Dialog and

Interface Specification Language (DISL) [SBM07], which is a User Interface

Markup Language (UIML) subset that extends the language in order to en-

able generic and modality independent dialog descriptions. Modifications

to UIML mainly concerned the description of generic widgets and improve-

ments to the behavioral aspects. Generic widgets are introduced in order

to separate the presentation from the structure and behavior, i.e., mainly to

separate user- and device-specific properties and modalities from a modality-

independent presentation. The use of generic widget attributes enables to

assign each widget to a particular type of functionality it ensures (e.g., com-

mand, variable field, text field, etc.). Further, a DISL rendering engine can

use this information to create interface components appropriated to the in-

teraction modality (e.g., graphical, vocal) in which the widget will operate.

The global DISL structure consists of an optional head element for Meta

information and a collection of templates and interfaces from which one in-

terface is considered to be active at one time. Interfaces are used to de-

scribe the dialog structure, style and behavior, whereas templates only de-

scribe structure and style in order to be reusable by other dialog compo-

nents [GGGCVMA09].

21

Languages for UI Development User Interface Description Languages

2.1.4 ConcurTaskTrees

The ConcurTaskTrees (CTT) notation [Pat99] addresses the Task and

Concepts level of CRF and has represented an important contribution to-

wards engineering task models and making them exploitable in various con-

texts in both design and runtime phases. It has a set of features that make it

suitable to easily represent activities that need to be carried out to reach the

user goals: hierarchical structure, temporal relations, icons to indicate task

allocation and a set of attributes to indicate various aspects (e.g., task type,

task objects, relevant platforms for task execution). Recently, the possibility

of better specifying preconditions has been added. Such preconditions can

also be considered by the associated interactive simulator, which is included

in the ConcurTaskTrees Environment, a publicly available tool for editing

and analyzing task models.

The CTT specifications can be saved in XML format in order to include

and exploit them in other tools and environments. CTT and the associated

tool have been exploited over time in various application domains e.g., inter-

active safety-critical systems, enterprise resource planning applications and

service engineering [MPV11].

2.1.5 MARIA

The Modelbased lAnguage foR Interactive Applications (MARIA) lan-

guage [PSS09] addresses different abstraction layers of CRF: in particular

the Abstract UI and the Concrete UI levels [MPV11]. It is associated with a

publicly available tool (MARIAE). This language has been developed follow-

ing the experiences gathered with previous approaches in order to: i) sup-

port a data model, which is useful for specifying the format of input values

and the association of various data objects to various interactors; ii) specify

events at abstract or concrete level, which can be property change events or

activation events (e.g., access to a web service or a database); iii) include

an extended dialog model, obtained through conditions and CTT operators

for event handlers thus allowing specification of parallel input; iv) support

UIs including complex and Ajax scripts with the possibility of continuously

updating fields without explicit user request; and v) describe a dynamic set

of UI elements with conditional connections between presentations with the

possibility of propagating changes to only a part of the UI.

The associated tool supports the editing of Abstract UIs in the MARIA

22

Languages for UI Development User Interface Description Languages

language, which can be derived from a task model or created from scratch.

The editor supports browsing the specification through an interactive tree

view and a graphical representation of the elements of a selected presentation,

in addition to showing the XML specification. The editor allows the editing

through drag-and-drop of the elements and their attributes.

From the abstract description, it is possible to derive concrete descrip-

tions for various platforms (e.g., desktop, mobile, vocal, multimodal). Each

concrete description can be presented and edited with modalities similar to

those for the abstract specifications. From the concrete descriptions, it is pos-

sible to obtain implementations for various implementation languages (e.g.,

XHTML, HTML5, JSP, VoiceXML, X+V, SMIL) through associated trans-

formations [MPV11].

2.1.6 User Interface Markup Language

User Interface Markup Language (UIML) [APB+99] is an XML-based

language addressing the Concrete UI level of the CRF [MPV11]. UIML pro-

vides: i) a device-independent method to describe a UI; and ii) a modality-

independent method to specify a UI.

UIML allows describing the appearance, the interactions and the connec-

tions of the UI with the application logic. The following concepts underlie

UIML [GGGCVMA09]:

• UIML is a meta-language: UIML defines a small set of tags, used to

describe a part of a UI, that are modality-independent, target platform-

independent (e.g., desktop, mobile) and target language-independent

(e.g., Java, VoiceXML). The specification of a UI is done through a

toolkit vocabulary that specifies a set of classes of parts and properties

of the classes. Different groups of people can define different vocabu-

laries: one group might define a vocabulary whose classes have a 1-to-1

correspondence to UI widgets in a particular language (e.g., Java Swing

API), whereas another group might define a vocabulary whose classes

match abstractions used by a UI designer;

• UIML separates the elements of a user interface and identifies: i) which

parts are composing the UI and the presentation style; ii) the content

of each part (e.g., text, sounds, images) and binding of content to

external resources; iii) the behavior of parts expressed as a set of rules

23

Languages for UI Development User Interface Transformation Languages

with conditions and actions; and iv) the definition of the vocabulary of

part classes;

• UIML logically groups the user interface elements in a tree of UI parts

which dynamically changes over the lifetime of the interface itself.

UIML provides tools to describe the initial tree structure and to dy-

namically modify it;

• UIML allows UI parts and the aforementioned part-trees to be packaged

in templates: these templates may then be reused in various interface

designs.

2.1.7 eXtensible Interface Markup Language

The eXtensible Interface Markup Language (XIML) [PE02], is a language

developed by Redwhale Software, derived from XML and able to store the

models developed in MIMIC [Pue96]. MIMIC is a meta-language that struc-

tures and organizes interface models. It divides the interface into model

components: user-task, presentation, domain, dialog, user, and design mod-

els. The design model contains all the mappings between elements belonging

to the other models. The XIML is thus the updated XML version of this

previous language.

The XIML language is mainly composed of four types of components:

models, elements, attributes, and relations between the elements. The pre-

sentation model is composed of several embedded elements, which correspond

to the widgets of the UI, and attributes of these elements representing their

characteristics (e.g., color, size). The relations at the presentation level are

mainly the links between labels and the widgets that these labels describe.

XIML supports design, operation, organization, and evaluation functions;

it is able to relate the abstract and concrete data elements of an interface;

and it enables knowledge-based systems to exploit the captured data.

2.2 User Interface Transformation Languages

Model-driven engineering of user interfaces assumes that various models

describe different aspects of user interface. Relations between these models

are established through model transformations. In this way, the development

of user interfaces can be seen as a transformation chain starting with models

24

Languages for UI Development User Interface Transformation Languages

at high level of abstraction and ends with executable versions of user inter-

face. An extensive taxonomy of model transformation approaches has been

proposed in [CH06].

Variability of semantics between different models, their formats and tools

produced various transformational approaches in the context of model-driven

development of user interfaces. Some of them operate directly upon models,

while others work with their derived formats; some are integrated in models,

while others are applied externally; finally, some are editable and modifiable,

while others are integrated in tools and cannot be modified [MDZ13].

2.2.1 Graph Transformations

GT (Graph Transformations) presents a formal, declarative approach

for transformations of models with a structure of directed graph [CH03].

UsiXML is a candidate language to use this type of transformation. The

models formed with UsiXML are based on graphs and therefore, the model

mappings of UsiXML are specified with graph transformations consisting of

a set of transformation rules [LVM+05, SVM08]. Each rule consists of a Left

Hand Side (LHS) matching a graph G, a Negative Application Condition

(NAC) not matching G and a Right Hand Side (RHS) which is the result

of the transformation. The transformation is performed by searching LHS

templates in source model and replacing found matching patterns with RHS,

while taking into account the NAC. The main limitation of the approach is

that it requires models with an underlying graph structure [MDZ13].

2.2.2 Atlas Transformation Language

The Atlas Transformation Language (ATL) is an hybrid language for

transformations of UML models [JK06]. In this sense, the user can choose

whether to use the pure declarative features of the language, or to employ

the additional imperative features. The declarative approach is realized by a

system of matching rules, where a source pattern is described through a set of

source types and constraints on provided types. The target pattern is speci-

fied in a similar way by specifying a set of target types together with a set of

bindings used to initialize the target types features. The declarative aspect

offers a pretty straightforward way to specify transformation rules however,

it may be difficult to specify more complex rules; in this case, ATL pro-

25

Languages for UI Development User Interface Transformation Languages

vides imperative constructions organized in action blocks. These blocks can

be added to declarative rules, or even call external code for transformation

logic [MDZ13].

ATL is a good candidate for model transformations according to the fol-

lowing arguments: it is an open-source software with a large user community,

a solid developer support and a rich knowledge base of model transforma-

tions [JABK08].

2.2.3 TXL Transformation Language

TXL is designed as a general purpose transformation language [Cor06].

Among other things, it allows transformations of programming languages

since it is not confined to any source or target format. In general, the lan-

guage comprises the following specifications [MDZ13]:

• specification of a structure to be transformed based on grammars;

• specification of transformation rules based on source/target replace-

ment rules.

TXL is intended to transforming models which have syntax tree structure;

this is the case of most of the programming languages.

2.2.4 UIML Transformations

An important feature of UIML is its capability to define connections to

the back-end logic and to provide mappings to other UIML instances or target

languages. Therefore, language specification includes transformation features

that define explicit mappings of UIML primitives to target format constructs.

A separate section defines connections to the application logic; in particular,

specification prescribes mappings to VoiceXML and HTML formats. How-

ever, these mappings are not necessarily restricted to XML formats, but may

also be defined for other languages (e.g., Java). Considering UIML mapping

technique based on explicit matches to target format primitives, it can be

seen as declarative.

The obvious advantage of the UIML approach is that user interface defi-

nition and transformation are specified in the same language. On the other

hand, transformation rules are too simple to support more complex transfor-

mation tasks [MDZ13].

26

Languages for UI Development User Interface Transformation Languages

2.2.5 XSL Transformations

The eXtensible Stylesheet Language Transformations (XSLT) is a lan-

guage for transforming the XML document submitted as input into a textual,

in most cases XML, output [Kay07]. This language can be used to generate

documents written in languages different from XML. XSLT is comprised of

templates rules. Each rule includes a matching pattern, construction ele-

ments (template) and additional optional attributes. The matching pattern

consists of expressions evaluated against currently processed node of the in-

put XML document. Transformation executes starting from the document

route node and continues until each node is traversed and processed according

to the specified rules. When a pattern is matched, the template is recursively

executed and the target element is generated. Considering rules processing,

XSLT provides constants, variables and literals together with conditions, it-

erations, recursion and sorting as control structures. In addition, XSLT offers

a powerful set of built-in string functions for advanced text processing.

While the XSLT transformation mostly follows a declarative style, it also

allows imperative constructs such as conditions, iterations and recursion.

Therefore, the language can be considered to be an hybrid [MDZ13].

27

Part II

Proposed Solution

Chapter

3
Approach Overview

The research community has applied the model-driven approach both on

UI specific aspects and in the development of complex interactive systems

but has often considered these two fields of work as independent areas, con-

sequently producing different methodologies and tools: a first “technology-

oriented” approach led to the creation of formal tools for the description

and validation of specific elements; a second “business-oriented” approach

centered on the strategic orchestration of services, processes, people and re-

sources. In particular, this second category, close to the enterprise world,

has always been more focused on the back-end information flow; since this

type of approach is also entering more operative contexts, where there is

the need to present not just some forms but more complex data, this aspect

is undergoing a marked evolution led by the strong need of advanced user

interfaces.

This work wants to bridge the “technology-oriented” and the “business-

oriented” approaches introducing an holistic model-driven development pro-

cess [MPV11] for the whole interactive system development, foreseeing the

integration of methods for the automatic generation of user interfaces with

the tools used for business process management. More specifically, the con-

text for this thesis was selected after focusing on the available enterprise

platforms possessing, among their features, the capability to render a user

29

Approach Overview

interface for their business processes; the attention was placed on the NE-

GENTIS Enterprise Software Platform [NEG]; the NEGENTIS Platform is

an applications infrastructure for the Internet of Everything (IoE) able to

integrate, from a process perspective, people, applications and devices in the

context of distributed and net-centric systems.

The NEGENTIS Platform has been effectively adopted in various pro-

duction and research projects such as the SIMOB Project in which it was

employed to shape an InfoMobility Integrated Platform [GPCC13] and, more

recently, the SITMar Project in which it has been used to provide innovative

real-time services for goods monitoring in multimodal transport [ZCA+14].

Both these projects contributed to the beginning of a tight collaboration, still

active, between the Department of Information Engineering of the University

of Florence and NEGENTIS s.r.l.; this collaboration is also based on shared

staff such as the author of the present work of thesis.

From the analyses carried out during the work on these projects, the urge

of overcoming the limitations of the class of tools the NEGENTIS Platform

belongs to, arose. The main aim of the present work is to define a new

methodology for model-driven user interfaces development. This method-

ology allows to create interactive applications integrating UI development

techniques within the context of enterprise platform for the orchestration of

business processes.

Such a methodology foresees the definition of a set of representation mod-

els and it is synthesized in a specific framework covering both the design-time

and runtime phases of multimodal and adaptive UIs life cycle. This frame-

work describes a set of levels and each level addresses different aspects of the

development process leveraging suitable representation models.

Moreover, such a framework envisions a production system made of two

elements: the back-end subsystem and the front-end subsystem.

The proposed framework is divided into four different abstraction levels

and the instances handled by each level belongs to a specific model envisioned

in the representation models depicted in the present work.

This chapter contains the foundation of the vision at the basis of the

present work in relation to the approaches currently available in literature.

Then the representation models and the framework are introduced.

30

Approach Overview The representation models

3.1 The representation models

This thesis proposes a representation model constituted by four core mod-

els each one focused on a specific aspect of the user interface generation global

process; this process includes both automatic phases and phases requiring

the involvement of a developer user who is expert in the field of the specific

element to which is called to contribute. The four envisioned models are:

• the domain model has the purpose to describe the application domain

by means of the concepts constituting it; this model is the result of the

work of an user who is expert in the domain of interest;

• the process model describes the tasks or actions to be performed on the

concepts contained in the domain model in order to meet the applica-

tion requirements; also this model is user-defined;

• the abstract user interface model contains a description of the UI by

means of the interaction elements associated to each task of the process

model; this model is automatically generated from the process model;

• finally, the concrete user interface model describes the concrete com-

ponents, called widgets, that have to be used in the final UI; this model

is automatically generated from the abstract UI model while widgets

are designed and implemented by a specific developer.

This approach, based on the separation of concerns principle, favors de-

coupling between each aspect thus enabling an effective description of each

application scenario: the two authored models, the domain and the process

models, respectively declare the data involved and the tasks the process is

made of, thus stating, in a declarative style, what the application must do

in order to meet specific application requirements. On this basis, the ab-

stract and concrete models are generated in order to produce the final UI

through widgets composition. This clear separation between specific tasks

also implicitly suggests an analogous separation between the developer pro-

files associated to each authored artifact. In particular, as it will be clarified

in the following chapters, it is possible to envision three profiles to address

the three user-defined areas: domain, process and widgets.

In the following sections each core model is described in order to introduce

the features they target and understand their role in the framework.

31

Approach Overview The representation models

3.1.1 Domain Model

The domain model aims at representing the application domain through

the detailed description of every concept directly (to be shown to or manip-

ulated by the application end user) or indirectly (to be used or manipulated

by the process itself as a hidden variable) involved in the process.

This model is tightly coupled with the application domain but completely

decoupled from the specific tasks the application is required to perform. This

means the domain model should be created with the intent to describe the

scenario as much in details as possible instead of being just a support tool

for the tasks described in the process model. With this premise, the same

model could represent the domain for any number of processes.

The main idea consists in defining “enhanced” data types bearing more

context information about the data they contain; these can be used by the

application in place of simple and plain variables; the application domain is

mainly represented by a graph in which the nodes correspond to the concepts

of the domain called entities and characterized by a set of properties and

the arcs correspond to different types of relationships among the concepts;

one particularly interesting relationship is the structural relationship which

conveys the “has a” relationships.

Knowing how the domain elements relate to each other can be useful

to better describe the application context with the aim of exploiting this

knowledge during both the design phase and the generation phase.

3.1.2 Process Model

The process model declares the tasks required to satisfy the application

requirements. A process is modeled at its core as an activity diagram; each

activity could be of different types to accommodate different needs; activities

are used to define the application behavior in terms of the tasks to be exe-

cuted, also without the user’s supervision, and the UI to be generated in order

to enable the desired user interaction with data. In particular said interac-

tion is defined by means of presentation activities and in terms of the data

that, according to the application requirements, the user needs to examine

and manipulate; these especially designed presentation activities are defined

as a graph of blocks ; in this context the arcs that connect the blocks repre-

sent a logical hierarchy; this graph abstractly describes the activity structure

thus complying with the approach intent of describing the application with-

32

Approach Overview The representation models

out coupling with any target technology: as for the structural relationships

defined among the entities of the domain model, the relationships among the

blocks can be exploited during the generation process. Blocks, as activities,

are of different types and are used to describe the simple elements that will

constitute the final UI; in particular they are used to present to the end

user specific domain entities or other data (e.g., temporary variables needed

by the process execution) but also to execute unsupervised tasks; with this

tasks it is possible to define a workflow directly embedded into the UI and

leveraging the data contained in any of the blocks of the same presentation

activity; this workflow complements the one defined among the activities and

represents an important trait of the UI itself since enables this usually passive

component to execute part of the application global business logic.

The flow among activities and blocks is triggered by messages called sig-

nals which are defined at design-time in the process model and sent at run-

time when certain predefined conditions are met.

As anticipated in 3.1.1, the process is defined leveraging the entities con-

tained in the underlining domain model in order to declare operands exploit-

ing the relationships existing among the entities; these operands are then

used inside the declaration of certain types of blocks to describe presenta-

tion activities required by the particular application requirements to enable

interaction with data by the end-user of the application; on the whole, the

process model combines tasks and data to represent the application that the

user will use.

3.1.3 Abstract User Interface Model

Once the domain and the process have been described, an abstract user

interface model is automatically generated; it is abstract since it represents

any possible UI originated from the same application requirements, which,

as already explained, lead to the definition of both the domain model and

the process model; being an agnostic representation, it is not dependent on

a specific UI paradigm or technology and must, adopting a specific language,

therefore describe each element in terms of its user interaction intent and

not focusing on its “appearance”, in a broad sense given the multimodality

requisite, of the final user interface.

In a sense, the abstract model is a destructured representation of the

UI: it collects all elements without any grouping in order to provide a raw

33

Approach Overview The proposed framework

view of the UI that can be exploited in the following generation step. For

this reason, this model is considered as an internal representation of the user

interfaces that needs to be further transformed before it can be effectively

used to describe one of the possible user interfaces.

3.1.4 Concrete User Interface Model

The concrete user interface model is automatically generated directly from

the abstract UI model but this transformation is parametrized in respect

of a specific target technology: as explained in 3.1.3 the abstract model is

completely decoupled from any UI paradigm therefore this step is needed to

fix a particular UI family among those available for the specific use case. For

this reason, from the “intent-based” description of the abstract model, the

concrete UI model must give tangibility to said description: this is achieved

by means of specific concrete UI components called widgets ; in more detail,

the concrete model does not reference the actual concrete components but

identifies widgets by means of a list of required features, a so called abstract

widget. When the model is parsed the most suitable concrete widget, or

simply widget, will be used. With this approach, the concrete model is able

to identify a whole “family” of user interfaces all sharing the same target

technology: UIs in the same family could in fact be used on a great variety

of devices, each one with its peculiar characteristics (e.g., form factor, I/O

features), and it is then needed a mechanism to acknowledge this variety with

a single concrete UI model; the adoption of the abstract widgets addresses

this issue since it delegate its resolution to device composing the final UI

which posses the required context knowledge required to perform the concrete

widgets selection.

Regardless of the particular UI paradigm, widgets are able to implement

the front-end workflow introduced in 3.1.2 in combination with the back-end

workflow executed on the server.

3.2 The proposed framework

The models introduced in 3.1, which will be described in more detail in

chapters 4, 5, 6 and 7, can be associated to four corresponding logical levels.

As previously introduced, each model, and hence each level, is focused on a

specific area and the applied separation actually decouples the sub-tasks the

34

Approach Overview The proposed framework

Figure 3.1: Logical levels and models

main generation problem is divided into; from this analysis it is possible to

produce the representation shown in figure 3.1.

Beyond the areas addressed by these four core models and levels, at least

two other topics deserve to be examined: persistence and application fruition.

As for persistence, the domain model defines the entities involved in a certain

process execution and, as will be explained in 4.3.1, proposes an instance

model defining the way data can be represented; on the other hand, although

not of secondary importance, it is considered out of scope the problem of the

actual data persistence which could be assigned to a level placed under the

domain level.

Instead, the application fruition theme refers to the set of problems re-

lated to the actual platform or device the generated UI can be accessed

from in order to enable the intended interaction with the process: UI and

process together represent in fact the whole application generated from the

models for the end user. Once it is generated, the UI must be submitted

to the user and this is done by means of a specific hardware device; this

device receives the generated concrete user interface model and assembles

the available widgets to produce the interface. This key component could

be implemented with very diverse target technologies (e.g., graphical, vocal,

haptic) in a multimodal approach and the same process could be accessed

from different devices with different interaction paradigms. More details on

this subject are to be found in chapter 8).

A more architectural outlook on the system elements offers the opportu-

nity to understand how each component implementing one or more of the

35

Approach Overview The proposed framework

aforementioned level functionalities interacts with other parts to achieve the

desired outcomes (figure 3.2). The system as a whole can be divided in two

main elements; one, the back-end system, is devoted to all functionalities

related to the actual generation process and to services providing while the

other, the front-end system, is quite exclusively represented by the device

used to access the services offered by the back-end system and present the

application to the end users. Without loosing in generality the couple can

be seen also based on a client-server relationship without binding it with any

implementation architecture.

From an information flow standpoint, two phases are required for the

production of a full application: a design phase and a run phase. The typ-

ical use case starts with the design phase and in particular with definition

by the domain developer of a domain model representing a specific appli-

cations context; then a process developer chooses one among the available

domains as the basis for the process model implementing a particular ap-

plication workflow. Both the domain and the process models are stored in

corresponding repositories on the server; these repositories offer services en-

abling the required interaction with the contained artifacts (e.g., services to

list the available domains, to edit the domains and their concepts, to list

the available processes, to edit the processes). It is also possible to envi-

sion a configuration step in which a deputed user declares specific processes

available for certain target technologies: for example a process designed to

access a photo library could be made available for a graphical UI but not for

a vocal UI, otherwise a process designed to access an audio samples library

could be available for both. At runtime, the client interacts with the server

and requests the desired process to be “prepared” for the client; the back-end

system, from the process and domain models, generates the abstract user

interface model first and the concrete user interface model then, customizing

the latter on the basis of the characteristics of the client in use. The concrete

model is then forwarded to the client which builds the actual UI and enables

the user to interact with the system. Contextually, since the process could

include also some execution activities that must be run on the server, the

back-end starts the process execution carried on by the workflow-engine and

waits for signals from the client or from other active processes. The UI on

the client interacts with the running process and contributes with its own UI

workflow to the global process execution.

The two workflow nodes communicate with each other at runtime ex-

36

Approach Overview The proposed framework

changing commands and data; this behavior ensures that i) each party is

able to trigger an action on the other one thus enabling a workflow distributed

between the back-end and the front-end and ii) data can flow in both direc-

tions in a pull or push fashion among the front-end and the back-end thus

enabling the UIs and hence the application to offer an always updated appli-

cation status.

Although logically separated the two workflow nodes cooperate to deliver

an application perceived as a whole from the user point of view even when

the user changes the device used to access the application. The client side

workflow can be forwarded to the server in order to keep an always up to

date application status that can be exploited to create recovery checkpoints

and/or a seamless client migration.

Figure 3.2: Architecture overview

In summary, with a system as the one delineated in this section, it is

possible to produce complete applications in a multimodal context from the

declarative description of domain elements and the desired business processes.

The automatically generated UI enables users to interact with a workflow

distributed among a back-end system and front-end systems implementing

different UI technologies.

37

Approach Overview The proposed framework

Given this reference overview of the whole system, it is plausible to imag-

ine two degenerate and complementary variants, each one collapsing on one

of the two architecture endpoints.

The first variant is represented by a back-end only process and is obtained

when only execution activities are used for authoring and the process is

completely defined by its business logic; in this case the workflow is not

distributed and relies only on the server side component. This type of process

can be started either by a user or not: in the former case, the client is still

required for process start but the actual workflow is run only on the server;

for the latter case it is possible to start the process on event, for example,

following the reception of a message from another process or from any active

communication channel.

The second variant, more interesting in the context of this work, is rep-

resented by a front-end only process and is obtained when only presentation

activities are used for authoring; in this case the workflow is not distributed

and relies only on the client-side component; while still requiring the back-

end system for transition triggering, non actual workflow is run on the server;

moreover it is possible to envision processes condensed in a single presenta-

tion activity thus not requiring interaction with the server but to start the

process itself; this could be anyway useful, for example, to ensure that the

version of the UI in use is actually the most recent. This style, especially if

independent from the back-end, could be useful for situations in which is not

assured a reliable communication channel between the client and the server.

Moreover, with a similar approach, could be possible to envision a cloud ap-

plication distribution system; the distributed applications would be always

updated and not requiring any installation.

38

Part III

Framework Design

Chapter

4
Domain Model

This model describes, from a structural and relational point of view, all

the entities a specific application domain can be populated by. As previously

stated in chapter 3, this model defines the structured data types each business

process, based on said domain, can present and manipulate. This is useful

also to keep separate contexts for different business processes; this particular

aspect can be effectively exploited to streamline the development and the

management processes. Moreover, this model should convey as much detail

as possible: every piece of information that could be used to better describe

domain entities should be added to this level so to assure that information

is placed where belongs instead of where needed for processing.

Since the main requisite is to represent a graph of entities, each of them

defined by means of their properties and the connection with other entities,

with the intent of formally describe various application contexts, the adoption

of knowledge representation techniques is the natural choice. In particular,

ontologies represent a viable candidate especially due to their wide adoption

and the resulting availability of tools; for this reason this model adopts a

similar approach.

This chapter is dedicated to the description of how specific application

domain knowledge is represented; this is obtained by means of a model, the

Domain Model; a new model must be defined when a new context for business

40

Domain Model Domain elements description

processes is required. In order to define the Domain Model itself, which is

actually an instance of all possible domain models, a Domain Meta-model is

required; this chapter is dedicated to the description of this meta-model.

Finally, this chapter introduces the problem of representing actual data

conforming to a given domain model: in fact, the domain model describes

the data types relevant to a specific application domain therefore the do-

main model is like a schema for the data, borrowing a terminology typical

of databases modeling; the actual data are instances of the data types. This

theme is addressed in 4.3.

4.1 Domain elements description

This model describes the application domain as a graph of concepts; al-

ready introduced entities are just one of the available concept types although

they probably are the most distinctive and important. Each concept is de-

scribed by means of its properties and other “tools” (i.e., property functions,

attributes, access control lists).

The arcs correspond to different types of relationships among the con-

cepts; one particularly interesting relationship is the structural relationship

which conveys the “has a” relationships.

4.1.1 Concepts

Concepts are the nodes of the domain graph and can be of different types:

• Entities are used to describe the elements populating each application

domain and are defined by a name and a set of properties; for example,

in a domain named Warehouse designed to represent data for a logistics

use case, could be useful to design an entity named Item with the

properties Name, Code and Price and an entity named Order with the

properties Code, Date, Items and TotalValue;

• Enumerations are special entities; are used to describe concepts with a

predefined and limited set of values. These concepts typically represent

knowledge that is not directly manipulated by the process but instead

used as special data types; enumerations are used to create reusable

“dictionaries”shared by entities, even among different domains, in order

to assure consistency and uniformity throughout the model which, as a

41

Domain Model Domain elements description

consequence, results as more compact and simpler to manage; a typical

usage for enumerations is represented by and address entity that could

leverage global Country, City and PostCode enumerations;

• Data sources are meant to be used as proxies for external systems

as a way to directly integrate data provided from other systems in

the model. With such a tool could be possible, for example, to keep

updated entity values through a web service.

4.1.2 Properties

Properties are used to characterize each concept in the domain; each

property represents a component of the concept. There are three different

types of properties, namely:

• Terminal Properties are used to define properties with values of a spec-

ified “flat” non-structured data type (e.g., strings, numbers, dates, vec-

tors); each type can be configured to meet specific entity requirements

since the same string property can be shaped in different ways for differ-

ent entities; more data types could be defined and used (e.g., complex

numbers and time series);

• Enumeration Properties are used to define properties with values in

a predefined and limited set establishing a connection with a domain-

visible enumeration;

• Entity Properties are used to define properties based on an entity; are

used to establish a connection with other domain entities.

Entities can be composed of any type of properties. Enumerations are

described just by terminal properties; this limitation ensures that it is al-

ways possible to determine a value for the property. Each of this concept

classes describes what features should posses an instance of this class to be

considered valid.

4.1.3 Property functions

For each entity is possible to define custom functions that, taking as input

an entity instance, return as result an enriched view on its selected properties.

42

Domain Model Domain elements description

Even thought more can be defined, two types of property functions were

introduced:

• Text Functions are used to apply a template string to an entity instance;

referencing particular properties is possible to obtain an interpolated

representation of a subset of the instance data. The resulting output

string could be assimilated to a compound property. For example,

recalling the example introduced in 4.1.1, a text property function like

the following could be employed to obtain a string describing an order.

[<Date>] <Code> : EUR <TotalValue>

• Evaluation Functions are used to apply a specific expression to an entity

instance in order to obtain a result in return. This result in calculated

instead of assembled. The resulting output string could be assimilated

to a compound property. For example, the following function returns

a boolean value stating whether the Value property exceeds the given

threshold.

<TotalValue> > 1000

4.1.4 Attributes

To better characterize the domain entities it is possible to mark one or a

set of its properties with attributes:

• Unique. Unary attribute. This attribute indicates that the entity or

terminal property which is applied to must be considered as a “key” for

the entity: as in databases theory a key is used to identify rows of the

same table, a unique property is used to identify instances of the same

entity; this means that cannot exist more than one instance with the

same value for the property;

• Required. Unary attribute. This attribute is used to mark a certain

property as required for an entity instance to be considered valid;

43

Domain Model Domain elements description

• Label. Unary attribute. This attribute marks the entity or terminal

properties that should be used to “represent” an entity instance when

presented in an application context; for example, a property represent-

ing the name of an entity instance is more suitable to be displayed that

its unique identifying code;

• Group. Nary attribute. This is used to group different terminal prop-

erties that are related from a semantic standpoint; particular use cases

could required this attribute, for example, to group the First and Last

Name in a Person entity;

• Bind. Binary attribute. This attribute is used to declare a group of

two enumeration properties in which the values of a controlled property

depends on the values of the controlling one; for example, in a use

case regarding an address, a Province enumeration controls the City

enumeration;

• Master. Unary attribute. This attributes marks the controlling prop-

erty in a bind group; in the previous example the Province enumeration;

• Slave. Unary attribute. This attributes marks the controlled property

in a bind group; in the previous example the City enumeration;

• Secure. Unary attribute. This attributes indicates that the terminal

property should be handled with particular security policies; typically

this attribute is used to mark properties used to store passwords;

• External. Unary attribute. When imported from an external system,

properties are marked with this attribute to point out that the corre-

sponding value must be retrieved and saved.

Attributes can be used to implement special use cases (e.g., the bind at-

tributes) and to clarify logical or semantic relationships among the properties

of a given entity (e.g., the group attribute). More could be defined in order

to add details to the domain model.

4.1.5 Relationships

Relationships, the arcs of the domain graph, can be of two types, namely:

44

Domain Model Domain elements description

• Structural relationship. This is the fundamental relationship and de-

scribes the “has a” relationship. It is used to highlight the components

each element of the model is made of. This type of relationship is called

“structural” because is used to define the structure of the application

domain itself in regard to those features that characterize the domain

and not to particular, and hence variable, requirements of a selected

application scenario. This type of arc is always directed.

When a “parent” node A is linked with a “child” node B through a

structural arc directed from A to B, it means that A has, among its

components, a set of elements of B type. The cardinality of the re-

lationship is expressed with two numbers respectively indicating the

minimum and the maximum size of the child set. A visual representa-

tion is shown in figure 4.1).

Figure 4.1: Structural relationship

In more detail the structural relationship is actually used to link an

entity property of the node A with the node B. In this regard it is like

that node A “contains”, as a property, a set of B nodes.

• Semantic relationship. When there is the need to describe a relation

between two structurally disconnected groups of entities, is possible to

define special arcs; different colors can be used to give arcs different

meanings, accordingly to the specific application domain, in order to

describe a wide range of relationships. For any other aspect this type

of relationship is equivalent to the structural one.

4.1.6 Access control lists

Adopting an ACL-based security model, each concept in the domain is

considered a resource and therefore is associated to a list of permissions. Each

access rule indicates whether it refers to a group or a specific user, the name

of the actual group or user and the permitted operations. This resembles the

typical approach to file systems ACLs.

45

Domain Model Formal representation

The types of interaction managed for this level is limited to read and

write operations that translate in permissions to read and write instances of

specific enumerations and entities.

Ah hoc rules are set for users qualified to edit the actual model but this

subject is more deployment and platform oriented and therefore less relevant

to this work.

4.1.7 Persistence

Persistence per se is not a problem directly addressed at this level, hence

it is sufficient to indicate which concepts should make use of the storage layer

with a persistence flag.

4.2 Formal representation

The formal representation of the domain meta-model is written using a

slightly modified version of the Extended Backus–Naur Form (EBNF) [CO08]

notation: usually used to describe context-free grammars, some elements

were introduced to make it more suitable to describe sets. For this reason

this representation is intended to be used only to offer a more organized view

on the model elements.

More in detail, sets are represented by curly brackets; a u on the lower

right indicates that the set is unordered while a o that is ordered. A plus

sign on the upper right indicates that the set must have at least one item (or

a precise number of elements if specified).

As in standard notation, nonterminal symbols are written in plain text

while terminal symbols are in italic. In this particular case, terminal symbols

are data types (e.g., string, number, boolean).

The meta-model is represented by the production rules reported in listing

4.1. Rule n.1 declares and describes the root element of the meta-model:

each domain is identified by an id and consists of sets of different concepts:

entities, enumerations, data sources. Entity groups provide a useful tool

for entity management. Each entity (rule n.2) is identified by an id and

consists of a non empty ordered set of properties, a set of property functions,

a set of access rules and a flag which specifies how the instances of this

entity must be treated regarding persistence (rule n. 9). Enumerations (rule

n. 3) are designed to define sets of entities in a structured although “flat”

46

Domain Model Formal representation

1 domain ::= id, {entity}+u , {enumeration}u, {dataSource}u,
{entityGroup}u

2 entity ::= id, {property}+o , {propertyFunction}u, {accessRule}+u ,
persistenceRule

3 enumeration ::= id, {terminalProperty}+o , {propertyFunction}u,

{accessRule}+u

4 dataSource ::= id, sourceType, endpoint, {option}u,
{externalInterface}+u

5 entityGroup ::= {entity.id}2+u

6 property ::= terminalProperty | enumerationProperty | entityProperty
| semanticProperty

7 propertyFunction ::= id, {entity.property}+u , script

8 accessRule ::= accessProfile, accessName, accessLevel

9 persistenceRule ::= boolean

10 terminalProperty ::= id, type, {attribute}u

11 enumerationProperty ::= id, enumeration.id, {attribute}u

12 entityProperty ::= id, entity.id, {attribute}u, cardinality

13 semanticProperty ::= entityProperty

14 cardinality ::= minOccurrence, maxOccurrence

15 id ::= string

16 type ::= string | number | currency | vector | timeSeries | ...

17 attribute ::= unique | required | label | enumeration | group |
bind | master | slave | secure | external | ...

18 accessProfile ::= group | user

19 accessName ::= string

20 accessLevel ::= r | w

21 sourceType ::= webService | ...

22 externalInterface ::= {exportProperty}+o , {importProperty}+o

23 exportProperty ::= property.id

24 importProperty ::= property.id

25 minOccurrence ::= integer

26 maxOccurrence ::= integer | ∞

Listing 4.1: Domain formal representation

47

Domain Model Instances Model

way: each element is an entity with only terminal properties and can be

used to model sets. The enumeration access rules dictates whether it has

a global scope (for general purpose enumerations) or a domain scope (for

enumerations specific to the current domain). Each dataSource (rule n. 4)

has an id, a sourceType (rule n.21) for proper interaction, an endpoint, a

set of options to acknowledge specific parameters and a non empty set of

externalInterfaces. An externalInterface, as stated in rule 22, represents input

and output parameters of the remote service. Entity groups (rule n. 5) can

be used to correlate two or more entities by means of their ids; at least two ids

are required to define a group; the dotted notation entity.id refers to entities

ids. A propertyFunction (rule n. 7) is a script defined on a subset of its entity

properties and returning a terminal symbol, for instance a string value. A

terminalProperty (rule n. 10) is a “flat”, non structured property described

by an id and a type (described in rule n. 16); it’s a single value field even

though it is possible to define advanced data types (e.g., complex numbers

or time series). An enumProperty (rule n. 11) is a property defined through

a domain or global enumeration. With this kind of property is possible to

leverage on known sets of data; said sets can be defined once and used in

any domain. An entityProperty (rule n. 12) is a property defined through

another domain entity. Using this kind of property a structural relationship

is defined between the two entities involved. With this approach the domain,

regarding its entities portion, consists of at least one island of structurally

connected entities. This kind of property can be imported with different

cardinality (rule n. 14). Rule n. 13 defines a semanticProperty simply as

an entityProperty; the rename comes from the necessity to define relations

between two entities but not in a structural way; this allows to connect entity

islands with different semantics compared to the structural ones in order to

obtain, when useful, a completely connected graph. Cardinality (rule n. 14)

is used to characterize the relation between the entity and each attribute:

it’s important to define the number of property item each entity instance

refers to. As described it’s possible to specify the minimum and maximum

numbers.

4.3 Instances Model

The domain model, through its meta-model, enables the definition of enti-

ties, enumerations and so on but without offering any tool to define instances.

48

Domain Model Instances Model

This layer should be kept distinct from an actual persistence layer in order

to implement a decoupled approach. For this reason the concepts introduced

in this section need to expand the domain model without trying to solve

problems related to specific persistence techniques. The two problems are in

fact very diverse: domain data must be represented in order to be read and

edited without the need to to be persistently stored; optionally, this feature

could be enabled for specific entities with the already introduced persistence

flag.

4.3.1 Buckets and Records

Each entity requires the creation of a proper container to hold its in-

stances: the Bucket. Each bucket is characterized by its reference entity,

which indicates which domain entity originated the bucket, and a set of in-

stances. Each instance is represented by a Record ; to uniquely identify each

record in the bucket a key is required and introduced: the RecordKey. Typ-

ically, buckets behave like associative arrays and a key is required to retrieve

the desired record.

Records are created to store instance data and therefore are composed

by a set of values and a set of references. Values are used to store terminal

properties values while reference are used to track other linked records; this

is needed to follow the relationships defined through the use of entityProp-

erty and semanticProperty elements. So, as entities are nodes of a directed

graph in which arcs link containing nodes to the contained ones, records rel-

ative to the containing entity directly reference one or more records from the

contained entity.

In figure 4.2 two generic buckets are visible; records are identified by their

corresponding keys (k1, k2, k3); each record is composed by values (v1, v2,

v4) and references (r3). The references declare, in this particular example,

that the records of the Bucket A with keys k1 and k2 reference the record

with key k2 of the Bucket B while the the record of the Bucket A with key

k3 reference the record with key k1 of the Bucket B.

These aforementioned elements are described in terms of requirements in

an abstract way to delegate to specific implementations any detail or choice.

49

Domain Model Instances Model

Figure 4.2: Instance model, buckets and records

4.3.2 Bucket filtering

Buckets are per-entity homogeneous sets of records; a method to effi-

ciently identify a subset of those records is required in order to interact with

data in an effective way; for this reason a query system must be defined.

Through this service would be possible to request particular instances satis-

fying one or more conditions; the service then returns a filtered bucket with

just the corresponding records.

The proposed filtering approach is based on just two types of filter: the

GreaterThan filter and the Equals filter. Both receive as input two param-

eters: the property path to be evaluated and a terminal value. The path

could imply the need to follow records references in order to apply the filter

to the desired terminal property. Is then possible to combine them through

three logical operators: the AND, OR and NOT operators.

With this approach is possible to apply a compound filter to a bucket and

obtain a subset of its records; each record is validated by conditions on the

record itself and on any contained one.

For the sake of completeness, alongside the aforementioned QuerySer-

vice, a WriteService is required to enclose all functionalities needed to create

buckets and records.

50

Domain Model Instances Model

4.3.3 Notes on persistence

This work is focused on the architectural framework enabling the creation

of user interfaces so the problem of persistence, although important, is not

explicitly addressed. Nonetheless could be useful to highlight some points:

• the instance model closely recalls the way NoSQL techniques approach

the storage problem; the adoption of this style for the persistence layer

could represent the more natural choice;

• relational databases use a different approach to data organization so

some kind of adaptation process must be employed; the domain meta-

model constraints help build models with limited variability; this trait

could be exploited to implement automatic management techniques

(e.g., the object-relational mapping programming technique).This as-

pect offers an interesting research topic;

• finally, the interaction with legacy systems is a topic of great value; a

solution to this problem may be represented by the introduction of an

abstraction layer exposing an SQL interface.

51

Chapter

5
Process Model

This model describes the actual workflow each business process imple-

ments. As previously stated in chapter 3, this model defines the exact

sequence of activities and, for each presentation activity, the desired user

interface elements from a structural point of view. Moreover, this model

leverages the underlying domain layer in order to take advantage of its struc-

tured elements and bring domain level information (e.g., data types, entity

contents, structural relationships) up to process definition level for further

exploitation. In fact, one or more processes can be defined on top of a specific

domain therefore importing and using its entities and others model concepts.

In this model are used typical elements of business process management

theory and others that will be introduced in this chapter; the objective is

to build a workflow enabling users, also represented by other processes, to

interact with domain concepts in accordance with specific application re-

quirements.

This chapter is dedicated to the description of how specific business pro-

cess are represented and interact with domain models; this is obtained by

means of a model, the Process Model; a new model must be defined when a

new workflow is required, whether it requires interaction with a domain or

not. In order to define the Process Model itself, which is actually an instance

of all possible process models, a Process Meta-model is required; this chapter

52

Process Model Process elements overview

is dedicated to the description of this meta-model.

5.1 Process elements overview

This model describes the process as a graph of different types of elements.

Said elements provide a declarative description of the tasks required to fulfill

particular application needs and of the UI to be generated in order to enable

the desired user interaction with data. All elements are introduced avoid-

ing any coupling with other models elements (e.g., specific representation

techniques).

To ease model elements comprehension is useful to provide a basic de-

scription of the main concepts a basic workflow and business process engine

should possess delineating its execution model. The focus of this work is not

in the business process management problem itself and therefore this topic is

examined just as deeply as needed to provide a context for the main subject.

The supposed workflow engine can be described as similar to a Finite

State Machine (FSM): a machine of this type can be in one of a finite number

of states and can change its state when a triggering event is received or a

certain condition is met; this is called a transition. The machine alternates

execution states and wait states: during the former tasks are ran while during

the latter the process is kept on hold until the required event is received. A

representation of this behavior is reported in figure 5.1. When execution

results have to persist outside of the origin task scope, variables should be

used to hold generated values; this variables are said operands.

The workflow delineated in this work is “distributed” among different sys-

tems: when needed by the particular application scenario, a business process

could require that part of it’s activities are performed on a client system and

not just in the main execution environment as already explained in 3.2.

As previously mentioned a process is represented as a graph, an activity

diagram: nodes of this graph are the activities and will be executed by the

workflow engine; directed arcs represent the conditions or events needed to

trigger the transition required to reach the destination activity of each arc.

The execution cycle of the activity diagram should not be confused with the

workflow engine cycle on which it is run; the relation between the two is as

follows: a process execution provides a sequence of activities; when activities

require interaction with the user the workflow engine reaches a wait state

and wait for the required signal to trigger the process transition; between

53

Process Model Process elements overview

Figure 5.1: Workflow engine life cycle

the wait states the workflow engine in in execution state in which are run

unsupervised tasks.

5.1.1 Activities

Activities represent the building blocks of any process and the nodes of

the process model; the arcs represent the available transitions and therefore

define the available “routes” that can be followed; which transitions will be

actually executed is decided at runtime. Activities are of four basic types:

• the Start activity is required as first activity in the process; it is used

by the workflow engine to start the execution loop;

• the Execution activity is the typical activity and represents a task to

be completed before the workflow engine continues the executes loop

triggering the related transitions;

• the Wait activity is used to hold the execution loop; after the associated

tasks are completed the workflow engine enters the wait state until the

required event is received or a certain conditions are met; at that point

a transition is executed;

• the Stop activity is used to declare that the process has ended and

should be terminated; each process requires this activity to be included

once but many transitions could lead to it.

54

Process Model Process elements overview

While Start and Stop activities are required to correctly implement the

execution loop, they are not actually meaningful for the specific application.

Execution and Wait activities on the other hand convey actual business logic;

however these are just generic blocks that must be specialized.

In particular two are the activities that are prominent for this dissertation:

• the Custom activity is an execution activity that can be loaded with

code and can interact with domain elements through the query and

write services introduced in 4.3;

• the Presentation activity is a wait activity that is used to mark the

need to present an interface to the user and wait until the required

prerequisites for transition are fulfilled, typically user interaction; this

activity must be configured with an abstract description of the activity

itself from which, as will be explained, the interface is generated.

Obviously many other activities could be created as required by specifi-

cations and to implement specific tasks in relation to flow management (e.g.,

a split activity that creates two in parallel execution pipelines or a choice

activity that leads the execution flow only on one of the available branches

in accordance to some condition) or different actions (e.g., sending a message

to an activity or another business process).

5.1.2 Blocks

As previously stated, presentation activities must be configured with an

abstract description of its contents in order to avoid coupling with specific

presentation technologies. This descriptions takes the form of a graph in

which the nodes are called blocks ; arcs represent the structural relationship

existing between blocks in a similar way to the relationship defined for domain

entities (as shown in 4.1.5).

Blocks can be of various types, each with a specific task ranging from

data representation to logical evaluation:

• Entity blocks are used to present domain entities thus creating domain-

level operands presentation blocks; each block of this type can be pop-

ulated with a connected set of entities and a filter; also in this case,

selected domain elements must be arranged in a tree in order to form a

55

Process Model Process elements overview

non ambiguous to visit structure; this sets can be considered as struc-

tured operands;

• Process blocks are used to define process-level operands presentation

blocks; this type of blocks can be used to present data, loaded as a do-

main instance or produced during process execution, in different forms;

to do so specialized process blocks can be defined as, for example:

– Field Blocks are used to present single field data (e.g., a string, a

number); must be configured with a reference domain data type or

with a reference process operand; this could be useful, for example,

to implement data validation;

– List Blocks are used to present ordered sets of data; must be

configured with a reference domain entity or data type;

• Execution blocks are used to define activity-level executable code blocks

not destined for data presentation: instead of defining an execution

activity at process level is possible to define a presentation activity

with a variable number of execution blocks in it;

• Signaling blocks are used to create blocks that are configured to send

messages to other blocks in the same activity or to an activity (more

on this aspect is explained in 5.1.3).

Blocks are used to interact with domain elements and can be configured

for usage as ouput as well as input elements in order to enable workflow of

different application requirements.

The resulting activity model defines a hierarchy of blocks; the structural

relationship should be intended as a way to visit the blocks: from a topolog-

ical standpoint each activity should be built as an acyclic undirected graph,

a tree, in which the first block is the root of the tree.

5.1.3 Signaling

Signaling is the method used by activities and blocks to broadcast events

and send data to other domain elements. Exchanged messages are called

signals and it is possible to identify different cases on the basis of different

source/target combinations.

56

Process Model Process elements overview

Signals for transition triggering

Signaling can be used to trigger a transition in the process; as previously

introduced in the process model, activities are “linked” by arcs that represent

the available “routes” the execution can take. These routes are associated to

particular events; when these events are generated the workflow engine can

follow the matching route and execute the corresponding activity. Signals

can be used to deliver those events.

Source of this type of communication can be either a custom activity or

a presentation activity. After the execution of its tasks, each custom activity

has to produce an output in the form of a signal; this is received by the

workflow engine which will use this information to select the appropriate

route; it is important to highlight the difference between the routes statically

defined as arcs of the process model and the signals produced at runtime by

each activity that will be used to select the path the execution will actually

follow. The same approach can be used to send signals to other processes

which are in a wait state.

Presentation activities can be configured with signaling blocks; such a

block can send messages to its parent activity and therefore trigger a tran-

sition in a similar way as what custom activities do. The only difference is

that presentation activities place the workflow engine in a wait state so this

creates a “window” for user interaction.

In either cases the following activity could be a custom or a presentation

activity. A chain of only custom activities could be used to build a conditional

network of processing units while the use of presentation activities can add

the required UI layer. A combination is also possible: a custom activity

could precede or follow a presentation activity in order to pre-process or

post-process data. Finally, the possibility for blocks to send their signals

also to other processes can give further flexibility enabling processing and

presentation tasks synchronization among different processes and devices.

For example, in figure 5.2, is reported an example process: each available

route is labeled; the custom activity could produce a different signal depend-

ing on the result obtained by its task thus advancing the process execution

to the Presentation Activity (OK) or to the End Activity (FAIL). Also, from

the Presentation Activity, the user could activate the Retry or Quit signaling

block.

57

Process Model Process elements overview

Figure 5.2: Signaling for transition triggering

Block to block signaling

This type of communication occurs between blocks defined in the same

activity and it is used to trigger block transitions or to move data among

different blocks.

Since it is possible to define execution blocks it is also possible to create

a workflow inside the activity in a similar way to what already explained for

process-level workflow; signaling blocks are used to trigger also those transi-

tions. In order to do so, signaling blocks can be configured with conditions

that, when fulfilled, trigger the signaling action.

There is also the need to move data in order to implement activity-level

manipulation. Signaling blocks are used to perform this action and, in this

case, the communication payload is represented by an operand.

Interaction between the blocks is enabled by especially designed interac-

tion event/action couples; in particular were designed four trigger events:

• the SELECT/DESELECT events couple is used to execute or negate

a selection for a specific record in an entity block or a process block;

• the ADD/REMOVE events couple is designed to add or remove a record

to or from an entity block or a process block.

For each of these verbs it is possible to define an action that is executed

once the corresponding triggering event is received; with this technique it is

possible to chain actions among the blocks.

In figure 5.3 is represented a presentation activity in which are depicted

both approaches to inter-block signaling: the chain of execution blocks is

58

Process Model Process elements overview

triggered when the appropriate conditions are met; then an ADD action

is performed on the process block; other two signaling blocks execute the

selection and deselection action on the same process block.

Figure 5.3: Block to block signaling

Activity to block signaling

For specific applications could be useful to present processing results as

soon as they are generated and without an explicit action by the user. This

type of interaction adhere to the “push” communication style which is con-

trasted with pull where the request for the transmission should be initiated

by the receiver [BMvD07].

In this case, any custom activity could be the source of this type of

communication; specific blocks could be used as receivers of push messages

that could be presented to the user or trigger a side effect in the presentation

activity workflow; the adoption of this communication adds flexibility and

expressivity to the process model.

5.1.4 Distributed workflow

From the description of this model is apparent that the workflow is de-

signed to run, when needed by the particular application scenario, on different

classes of systems: a back-end system and a front-end system.

59

Process Model Process elements overview

The back-end system is used to execute the main workflow, essentially

composed by custom activities; the front-end system is primarily aimed at

user interaction and therefore used for presentation activities. It is possible

to describe the relationship between back-end and front-end systems as a

client-server relationship; for this reason the main workflow can be called

server-side workflow. The client is the system on which the presentation

activity is executed and also represents the platform hosting the activity

workflow which is then called the client-side workflow.

The combination of server-side workflow and client-side workflow forms

the distributed workflow. In figure 5.4 is shown a process during execution:

the back-end workflow is now in a wait state since the user is interacting with

the presentation activity P on the client.

Figure 5.4: Distributed workflow

5.1.5 Access control lists

Adopting an ACL-based security model, each activity and block in the

process is considered a resource and therefore is associated to a list of per-

missions. Each access rule indicates whether it refers to a group or a specific

user, the name of the actual group or user and the permitted operations.

This resembles the typical approach to file systems ACLs.

60

Process Model Formal representation

The types of interaction managed for this level are read, write and ex-

ecution operations; the execution operation translates in the capability to

trigger signaling while read and write operations are to be intended as an

override, specific to the particular process, in respect of what stated by the

domain model rules, which are imported in the process model.

Ah hoc rules are set for users qualified to edit the actual model but this

subject is more deployment and platform oriented and therefore less relevant

to this work.

5.2 Formal representation

This section is dedicated to a formal representation of the elements con-

stituting the process model. The same considerations expressed in 4.2 are

valid also for this section. The meta-model is represented by the production

rules reported in listing 5.1.

Rule n.1 declares and describes the root element of the meta-model: each

process is identified by an id and consists of sets of different activities, sig-

nals, operands and access rules; start and stop activities are required to

implement the workflow entities. A really important element is the reference

to a domain, through its id, enabling the use of domain concepts inside the

process.

Rules n.2, 3 and 4 set the activity hierarchy; the relative specialized

activities are the custom activity (rule n.5) and the presentation activity

(rule n.6). In particular, the latter is described by means of a set of signals,

an access rule and the relative presentation activity model (rule n.7) which

defines a presentation activity as a set of blocks (rule n.8); the different types

of blocks are described with rules n.9, 10, 11, 12, 13 and 14. Entity blocks are

defined by an id and the id of the domain entity used to populate it as well

as the filter identifying the required subset of records. Field blocks and list

blocks don’t require the filter since are process blocks populated at runtime;

anyway they are characterized by the entity.id to enable records validation.

Operands described by rule n.15 are process operands defined from a type

(rule n.17) which are shared with the domain model.

61

Process Model Formal representation

1 process ::= id, startActivity, {activity}+u , stopActivity,

{operand}u, {signal}+u , domain.id, accessRule

2 activity ::= executionActivity | waitActivity

3 executionActivity ::= customActivity | ...

4 waitActivity ::= presentationActivity | ...

5 customActivity ::= id, processingUnit, {activationRule}+u

6 presentationActivity ::= id, presentationActivityModel, {signal}+u ,
accessRule

7 presentationActivityModel ::= {block}+u

8 block ::= entityBlock | processBlock | executionBlock |
signalingBlock

9 entityBlock ::= id, {domain.entity.id}+u , filter

10 processBlock ::= fieldBlock | listBlock | ...

11 fieldBlock ::= id, {process.operand.id}+u

12 listBlock ::= id, {domain.entity.id}+u

13 executionBlock ::= id, processingUnit, {activationRule}+u

14 signalingBlock ::= id, signal

15 operand ::= id, type, {attribute}u, accessRule

16 activationRule ::= {condition }+u

17 type ::= string | number | currency | vector | timeSeries | ...

18 signal ::= id, accessRule

19 id ::= string

20 attribute ::= length | pattern | min | max | ...

21 accessRule ::= accessProfile, accessName, accessLevel

22 accessProfile ::= group | user

23 accessName ::= string

24 accessLevel ::= r | w

Listing 5.1: Process model formal representation

62

Chapter

6
Abstract User Interface Model

This model describes, in abstract terms, all the elements needed to imple-

ment a specific workflow and to shape the required user interface; all these

elements are generated and composed on the basis of the contents of the

domain and process models. As already introduced, given a single domain is

possible to define a certain number of processes that can leverage the same

application data context, the domain; on the other hand from each process

only one abstract UI model will be generated even though, sharing the same

domain model, some part may be actually very similar.

The abstract UI model represents a really important step for the frame-

work: it works as a decoupling point since it captures the idea of a generic

UI not bound to a specific target technology, platform or language. In a

sense, it is possible to state that the abstract UI model potentially contains

every possible interface for the specific business process. For this reason it is

essential for meeting the multimodality requirement.

In order to define the Abstract User Interface Model itself, which is actu-

ally an instance of all possible abstract UI models, an Abstract User Interface

Meta-model is required; this chapter is dedicated to the description of this

meta-model.

63

Abstract User Interface Model Model generation

6.1 Model generation

This model describes the user interface as a graph of abstract elements.

Since it is used to generate any concrete user interface, its elements should

represent any component needed to effectively present operands and to en-

able interaction with operands themselves and with the application in gen-

eral. Aiming at being the base for the subsequent derivation of UIs of any

implementation technology, the abstract model describe each component in

terms of the intent of interaction with users and not focusing on the “appear-

ance” of the final UI. Each element is also enriched with all the information

required by the concrete application to execute its tasks; this means this

model must incorporate all the references needed to obtain and send data

to the server-side infrastructure. Finally, the client-side workflow defined at

process level and introduced in 5.1.3 must be included to keep the model

independent in the form of trigger events, messages and transitions.

Since the abstract model is based on both the domain and the process

models, the procedure required to generate it has to deal with data produced

at different levels: for this reason the domain model needs to be integrated

with the activity structure defined in the process model in order to produce

a single abstract model.

The process model, with its activities, represents the macro workflow

layer of the process and defines the macro sections of the resulting applica-

tion, regardless of the specific target technology employed. For each activity,

the contained blocks are used to define the micro workflow layer executed

in the UI itself. Inside each block and activity, domain concepts are used to

populate and exploit the particular block features; this level could be seen as

a data layer placed below both the workflow levels. In figure 6.1 is reported

this three levels representation. The transformation process must take into

account all these details in order to compile an effective abstract model of

the application.

In relation to these three levels, the transformation process maps the

user-defined elements to abstract elements of different types:

• activities are seen as macro steps in the global workflow execution; this

steps can be seen as different moments inside the application; for ex-

ample, a web-based graphical user interface could later translate these

elements as different pages in its concrete model; in the abstract in-

terface only the presentation activities will be modeled and must be

64

Abstract User Interface Model Model generation

Figure 6.1: Three levels structure

kept track of the signaling needed to implement the transitions be-

tween every type of activity: even though the execution activities are

not directly represented in the abstract model, this must contain all

the information needed by the generated UI to trigger their execution;

• blocks inside each activity are used to structure the single activity;

each block has a place in the hierarchy of the activity and this infor-

mation must be preserved in order to be exploited during the following

transformation phases and produce layout data; moreover, all client-

side related aspects must be reflected in the abstract model in order,

for the generated UI, to trigger transition execution and data flow; in

general, blocks are of different types (as described in 5.1.2) and each

must be treated accordingly to its function and to other information

contained in the process model such as the relative ACLs; briefly, for

each block type:

– Entity blocks are used to present domain entities; this block is in-

terpreted as a abstract container for entity records; said records

are homogeneous since they are associated to the same domain

entity and since the reference to the domain entity is kept at this

abstraction level, it is possible to associate to this abstract con-

tainer at least two actions : one to add and one to remove a record

in the domain; both actions will be enabled or disabled on the ba-

sis of the corresponding process and domain ACLs; this actions

will be treated as predefined micro workflow use cases;

– Process blocks are used to define process-level operands presenta-

tion blocks; as already introduced in the same section of chapter 5

65

Abstract User Interface Model Abstract UI Model elements

this type of blocks has been specialized in two types of blocks: field

and list blocks ; both are interpreted as abstract container but the

associated actions depend on the specific micro workflow declared

for the block: when the block represents the start of a client-side

workflow chain an action is added to the block;

– Execution blocks are used to define activity-level executable code

blocks but, even though this block contents are not destined to

be presented to the user, the associated code must be part of the

micro workflow; this block is then interpreted as a code container

and add an action to a block when activated after an user inter-

action;

– Signaling blocks are used to create blocks that are configured to

send messages to other blocks in the same activity or to an activity

as explained in 5.1.3); this blocks are interpreted as actions which

could interact with the micro or macro workflow;

• entities are used inside specific blocks to create structured operands;

entities, and concepts in general, have a place in the hierarchy of the

domain and this information must be preserved in order to be exploited

during the following transformation phases and produce layout data.

6.2 Abstract UI Model elements

This section describes the elements constituting the generated abstract

model. As already introduced and explained, this model represents an ab-

stract description of a specific UI family: a group of concrete user interfaces

all corresponding to the same process but tailored for different modalities and

devices. Without bringing concepts described in other chapters forward, the

abstract model must contain all the information needed to build the actual

concrete interfaces expressed in terms of data, actions, formats, available in-

teraction modes and so on in order to create an autonomous summary of the

user interface.

All nodes in the abstract user interface model graph are either Abstract

Interaction Objects (AIO) or Abstract Execution Objects (AEO); the former

are used to describe abstract objects conveying information to and from the

user while the latter are used to describe abstract objects especially designed

66

Abstract User Interface Model Abstract UI Model elements

to enable the delineation of a workflow at UI level, the client-side workflow

described in 3.2 first and in 5.1.4 then. AEOs are characterized by a trigger

event, selected among the ones defined in 5.1.3, or by a set of conditions.

AIOs are divided into three main categories: Data AIOs (DAIO), Action

AIO (AAIO) and Layout AIOs (LAIO). DAIOs are used to represent abstract

elements with a strong data connotation: they are used to reference a set of

any size of domain records, through the corresponding query, or a process

operand, entity or type based. AAIOs are used to represent action elements

the user can activate to start an event chain inside the user interface or to

perform an operation on a field/record; these elements can also be connected

to AEOs to trigger the client-side workflow. LAIOs are used to combine

several DAIOs and AAIOs enforcing a relationship among them; this tool

can be used to group several DAIOs (e.g., when a certain set of fields need

to be treated as a whole) or to group DAIOs with the corresponding AAIOs.

The arcs in the abstract user interface model graph describe the rela-

tionships among the different types of nodes. The connections that existed

among the elements of the domain and process models are translated into

the connections defined among the AIOs and the AEOs; once the model is

compiled, the application is represented as a graph of abstract objects. The

various types of elements are distributed according to the hierarchical and

logical relationships among the abstract elements of the user interface; the

patterns that form in the abstract model can be exploited in order to produce

the concrete user interface model.

67

Chapter

7
Concrete User Interface Model

This model describes a user interface in terms of the UI components

employed to shape the application represented by the process and domain

models precedently used to automatically generate the abstract model; the

concrete model is the next step in the framework methodology and it is

obtained through automatic generation from the abstract model once the

specific target UI technology has been set. From a single abstract model

one or more concrete models can be derived, one for each supported target

technology; it is possible to refer to this group of concrete interfaces as a UI

family since all the members share the same abstract “seed” but each one

is customized by the generation process to tackle different presentation and

interaction modalities.

Being specific to a particular UI paradigm, this model has to describe the

actual components the final application UI is built of; these components are

the nodes of the graph constituting the model itself; the concrete model must

incorporate all the information needed to instantiate and configure each UI

component of the final application following the requirements expressed by

the domain and process models.

In order to define the Concrete User Interface Model itself, which is actu-

ally an instance of all possible concrete UI models, a Concrete User Interface

Meta-model is required; this chapter is dedicated to the description of this

68

Concrete User Interface Model Model generation

meta-model.

7.1 Model generation

This model describes the user interface as a graph of concrete elements.

Since it is used to assemble the actual interface, this model should convey

all the information needed to select the appropriate UI components and con-

figure them in such a way as to allow the implementation of the application

requirements in regards of both the front-end workflow and the interaction

with the back-end workflow. In summary, the type of information enclosed

in this model is similar to what is enclosed in the abstract model described

in chapter 6. The main difference consists in the representation of the UI el-

ements; while the abstract model adopts a description centered on the intent

each model unit has in the context of the interaction between the user and

the application, the concrete model aggregates such elements to identify the

required UI components.

In fact, the generation process translates specific patterns found in the

abstract UI model into a description of the UI components required to im-

plement them, a set of configuration parameters needed by each component

category and a description of the exchanged messages used to implement the

client-side workflow. The aforementioned UI components are described with

a loose-coupling approach: instead of pinpointing the exact concrete compo-

nent to be used for the concrete user interface, this model declares a list of

the required features the actual component should conform to, de facto iden-

tifying a component class instead of a component instance; this design choice

leaves the various UI developers to implement the same requirement set with

different UI components even for different target technologies. Moreover,

this approach completely decouples the application requirements represented

by the four models and the concrete UI itself which needs only an abstract

description of its features to fully interact with the rest of the application.

Since the UI components are usually called widgets, these model elements

will be called abstract widgets. The freedom provided by this additional

abstraction level is exploited during the actual UI composition phase.

69

Concrete User Interface Model Basic mapping

7.2 Basic mapping

The concrete UI model is generated from the abstract model and the ap-

plied transformation has to translate the knowledge already extracted from

the domain and process models into layout knowledge; must be kept in mind

that the concept of layout is to be intended in a broad way given the multi-

modal general approach of the framework.

The main idea on which the transformation is based consists in the trans-

lation of the hierarchical relationships set among the elements of the domain

and process models by the corresponding developers into layout relationships.

This information has already been used to create an abstract model of the

UI through the automatic generation of the abstract user interface model.

In particular, referring to the three levels structure introduced in 6.1 and

focusing on the macro workflow and the data layer, it is possible to observe

the following:

• as explained in 5.1.2, each activity is modeled as a graph of blocks and

this structure defines a hierarchy among the blocks; these relationships

represent the logical model the process designer defined for the single

activity; an appropriate layout must be derived in order to preserve

that vision; in this particular case, structural relationships among the

blocks are used to infer a layout and identify sections in the presentation

activity;

• blocks are of different types, some are invisible to the final user since

are part of the client-side workflow; the remaining types are designed to

enable data presentation and manipulation and are therefore defined by

a reference domain data type. In particular, entity blocks are defined

by a tree of domain entities; the structural relationships defined among

the entities by the domain designer represents a hierarchy based on

the “has a” relationships; process blocks are populated by records of a

single domain entity and, even though no structural information among

the concepts is used, can still leverage the information contained in the

domain model;

• each entity is constituted by properties and attributes are used to char-

acterize those properties; all this information can be exploited to derive

an appropriate layout; in this particular case, focusing on a language

for graphical UIs, the properties represent the actual data fields, the

70

Concrete User Interface Model Basic mapping

attributes contribute in defining a priority among the properties and

the relationship between the entities are used to infer a layout for the

group of fields.

In summary two main mapping strategies are taken into account, one for

each of the authored models in the framework: at domain level the relation-

ships defined among the concepts are used to derive a structure for the fields

inside each widget while at process level the relationships among the blocks

are used to derive a structure for the widgets inside each activity.

To generate the concrete user interface model a mapping between the

aforementioned abstract model elements and the appropriate abstract wid-

gets is required. The available abstract widgets are different for each tar-

get technology since each of them uses different interaction paradigms. The

mapping function selects the abstract widgets required to cover each detected

abstract model pattern and, when needed, compose them in special widget

containers that are used to define the layout of the activity in accordance

with the aforementioned logical/hierarchical relationships.

For the same group of elements found in the abstract model, one or more

widgets could be required: the mapping function is not necessarily a one-to-

one correspondence; moreover the number could change for different target

technologies. The way each abstract widget or widget container is treated

is decided during the actual UI composition phase. Moreover, each abstract

interaction element should have at least one corresponding abstract widget to

properly work: otherwise no resulting UI could be described; if an abstract

element is mapped to only one abstract widget, the process is straightfor-

ward but if the mapping is one to many, it is possible to adopt a rule-based

approach to select the most appropriate candidate or leave the decision to a

specific user.

71

Chapter

8
Concrete User Interface

As explained in chapter 3 the framework aims at the production of mul-

tiple user interfaces from a declarative description of the data and the pro-

cesses fulfilling the application requirements. To achieve this result, said

models are used to automatically generate an abstract UI model and a con-

crete UI model. The concrete model is forwarded to the device the final user

selected to access the application and is used as a blueprint for the actual UI

composition leveraging the widgets available on the device at runtime. As

explained in 3.2 the whole system can be divided in two main elements: the

back-end system is devoted to all functionalities related to the actual gener-

ation process and to the services providing support for application business

process execution while the front-end system, the client, is used to assemble

the UI and enable user-interaction with the application.

This chapter is dedicated to the analysis of the approach to widgets com-

position and user interface creation executed on the aforementioned client

device.

8.1 The client device

The client device represents the actual interface between the user and

the process. To enable this interaction the client builds the UI using just the

72

Concrete User Interface Widgets

received concrete model as a blueprint; as explained in chapter 7, the concrete

model contains a description of the UI in terms of abstract widgets. From

this description the client composes the available concrete widgets, or simply

widgets, and shapes the application. Different clients could support diverse

UI and implementation technologies to serve the same process to different

users.

The step that leads from the abstract widgets to the concrete widgets is

really important for this framework: the concrete model is generated from the

abstract model once the target technology is set; from the family of possible

concrete models one is produced and forwarded to the client that requested

it. This model defines the actual widgets to use to shape the interface;

leveraging the loose-coupling approach described in 7.1, the client is able to

comply with the requirements and select the most appropriate among a set

of feature-equivalent widgets. The set of widgets the client has access to is

obviously dependent on the specific target technology but could vary also on

the basis of the particular device class: taking as example the world of the

graphical user interfaces it is easy to understand that a web-based application

should use different UI components if run on a desktop, on a tablet or on a

smartphone.

This aspect can be seen as a first layer of context-awareness, from the

point of view of the concrete model itself, offered by the framework. In this

particular case, this context-awareness trait is used to support plasticity of

the interface defined in the concrete model. Obviously there is a trade off

between two possible solutions: using the same concrete model to target

different devices or using different concrete models altogether; this kind of

choice should be made on a case by case basis and taking into account the

“distance” between the devices features.

8.2 Widgets

Final user interfaces are the result of the composition of UI units called

widgets; this components are hosted on the client itself and are designed to

accommodate different application needs; using the received concrete model

as a blueprint, the client is able to select the more appropriate concrete

widgets for each particular abstract widget.

The independence between the system producing the UI specification, the

concrete model, and the system producing the final UI, the client, requires

73

Concrete User Interface Widgets

that the latter is ready to shape UIs with the same expressive level the

concrete model has in defining them: an agreement among the two parts is

required. For this reason the notion for a “complete” set of widgets called

theme is required; a theme is a set of widgets able to cover all possible

abstract widgets defined in any concrete model for the specific technology

the client refers to. For this reason each client should host at least one

theme for each supported target technology: even though client are usually

tailored for a specific interaction paradigm, the same device could support

different approaches to be accessible fr different user categories. While, for

example, one theme could be enough for any voice-based client, several could

be necessary for devices designed for graphical interfaces in order to comply

with different users needs; each theme could be different simply in style or

in the implementation of different accessibility policies or just in offering

alternate versions of the same widgets to meet different users tastes.

As will be more apparent in the following sections, the employed widgets

need to be especially developed components in order to integrate with the

others framework elements.

8.2.1 Widgets architecture

To design these fundamental components with coherence and uniformity,

all widgets share a common architecture. Consequently, this standardiza-

tion also produces more easy to design and implement widgets. The cho-

sen architectural style is the Model-View-Controller (MVC) pattern, always

keeping in mind the multimodality context. Given the particular nature of

the framework, the description in these terms of the widgets layer should be

accompanied by the analysis of the full framework. Regardless of the spe-

cific architecture used to implement it, it is possible to describe the whole

resulting system as an MVC organized as follows (as shown in figure 8.1):

• the Model is represented by the data layer containing the domains

records and, in general, the system status; to enable interaction this

layer offers the query and write services introduced in 4.3.2;

• the Controller corresponds to the workflow engine which executes the

process and communicates with the other components and with other

processes through a messaging system; interaction with the data layer

is performed by the aforementioned write and query services;

74

Concrete User Interface Widgets

Figure 8.1: Back-end Model-View-Controller

• the client and the widget-based UI covers the role of the View thus

completing the MVC architectural pattern; could be useful to note

that this third component is actually optional from the point of view

of the process itself: as already explained in 3.2, even though the main

aim of the framework is to deliver a methodology for the production

of applications with a UI, it is still possible to define processes without

any presentation activity.

In the previous paragraph, the client has been represented as a black box;

in more details, also this component adopts the MVC style; it is possible to

map the three elements of this architectural pattern as follows (as shown in

figure 8.2):

• the Model is represented by the back-end system storing the data pro-

duced by both the server-side workflow and the client-side workflow and

providing the tools needed to read and write records and, in general,

the system status;

• the Controller widget layer provides all the mechanisms required to

implement the inter-widget communication, data exchange and view

control; it offers a unified and coherent interface towards the view layer

thus providing a tool to easily interact with a potentially extremely

variegated world;

• the View widget layer is completely dedicated to providing the tools

needed to enable the user interaction with data and with the application

in general.

75

Concrete User Interface Widgets

Figure 8.2: Front-end Model-View-Controller

The adoption of this pattern for the widgets layer is required by the multi-

modal nature of the framework: given the same abstract user interface model,

a new concrete model must be generated for each target technology; the con-

crete model defines which abstract widget must be used; even though the

abstract widget are coupled with a particular UI paradigm and thus possess

specific parameters and configurations, it is easy to understand that different

abstract widgets mapped on the same abstract pattern in the abstract model,

share the same underlying “intent”. This intent is tightly coupled with the

way each widget behaves and therefore with the controller layer implement-

ing that behavior each concrete widget is constituted by. This implies that

it is possible to create widgets with the same controller but different look, or

“skin”. For example, a GUI component displaying a set of elements could be

implemented as a vertical list of elements taking a limited amount of horizon-

tal space or as a grid taking a large amount of both vertical and horizontal

space and also capable of including more information for each element.

The Controller is specialized for each use case and, offering a similar in-

terface towards the workflow and data levels, contributes in decoupling the

specific target technology from the communication protocol, agnostic regard-

ing the specific UI type, working as the sole endpoint for communications.

With this approach it is easier to develop and manage many sets of UI

components in a multimodal scenario since many share a common controller.

Taking the two parts together, it is possible to describe the whole as

a distributed MVC system in which the Model is represented by the data

model, the client covers the role of the View while the Controller is distributed

76

Concrete User Interface Widgets

Figure 8.3: Combined Model-View-Controller

among the workflow engine and the controller layer of the composed widgets

(as shown in figure 8.3); the server-side workflow and the client-side workflow,

combined, work as an abstraction layer for the records contained in the data

layer and, in general, the system status beyond the process execution and,

ultimately, the UI.

Finally, regarding the completed application, each activity is perceived

as a whole: the individual widgets that shape the interface form a graph of

components and the result works as an interconnected structure with single

controller and view layers.

With this approach it is possible to define different widgets sharing the

same controller layer and consequently the same functionalities but with

different view layers.

8.2.2 Low-tech clients

In this chapter the client was treated as an advanced device, able to parse

the received concrete model, perform choices, select widgets among those

stored on the client itself and finally compose the final UI. The rendered

interface is run on device which should be able to execute the client-side

workflow and support the interaction with the user.

All these operations require a minimum level of computational power

77

Concrete User Interface Widgets composition

which is delivered by most of the devices we typically use but that could be

unavailable on more simple and lightweight hardware (e.g., wearable devices).

Could be useful implementing a method capable of supporting this class of

devices; thanks to the distributed nature of the framework, this goal could be

easily achieved introducing an ad hoc component that works as a proxy for the

actual device. This component could take on the responsibility of executing

all the computationally onerous tasks and leaving just the essential functions

to the device. In fact, the functionalities of the client, kept together in the

framework description, are split among the proxy, which makes all the “hard”

work, and the device which simply acts as an I/O module.

For example, a GUI-oriented low-capabilities device could be implemented

with a raster UI whose only purpose is the display of the UI and the forward-

ing of the user-inputs to the proxy which, on the other hand, would be in

charge of the actual rendering, the implementation of the client-side workflow

and the interaction with the back-end.

8.3 Widgets composition

Should be already clear that the widgets described in this framework are

fairly complex components: instead of being simple UI elements, they are

designed as small applications encapsulating all the high-level UI features so

important for delivering an effective and engaging user interface (e.g., usabil-

ity, accessibility and context-awareness). This implies that said widgets, that

it is possible to describe as complex widgets, require a composition technique

in order to be shaped into an applications complying with specific functional

and non-functional requirements.

These complex widgets must be written following the framework commu-

nication and interaction constrains in order to enable integration with other

widgets and other components in general. As described in 8.2.1, widgets

adopt a layered architecture: the View is completely customizable while the

Controller is inherited from the Software Development Kit (SDK). Each tar-

get platform has a different SDK tightly coupled with the specific technology

employed by the client and providing the tools needed to implement basic

and advanced features.

With this approach, the widget developer is completely in control of all

the aspects specifically related to the final user interface, e.g. being free to

implement the most recent usability and accessibility practices, to adopt new

78

Concrete User Interface Widgets composition

engaging UI elements and paradigms and to follow the updated guidelines

for the platform or technology in use periodically released by the platform

vendors. Moreover, this freedom is achieved in the context of the automatic

generation and composition framework drastically reducing maintenance and

update costs thanks to its declarative approach in domain and process defi-

nition. This aspects are clearly really important in a field so susceptible to

technological advancements and users tastes.

79

Part IV

Implementation

Chapter

9
Demonstrator

To test and validate the proposed framework a Java demonstrator was

developed. For obvious reasons, it can’t be considered a production sys-

tem but can be used to highlight and show the main concepts introduced

and described in the previous chapters. In particular the focus was placed

on the generation and composition phases which constitute the core of the

framework.

In summary, this demonstrator enables a user to i) define a domain with

its entities and enumerations; ii) create records for the domain concepts;

iii) design a process leveraging the domain elements composed of block of

different types; and iv) use the generated interface to accomplish the tasks

the process was designed for. All this operations are done programmatically

and every piece of information is exchanged as a Java object without, for

example, resorting to a serialized format. Moreover, this is an “in memory”

system and every computation is volatile; configurations such as domains,

processes and so on can be loaded from a file at system start.

9.1 Demonstrator modules

Several modules were developed to implement the demonstrator; a de-

scription of each of this modules is given in this section.

81

Demonstrator Demonstrator modules

9.1.1 Domain repository

The Domain Repository module implements the tools needed to declare

a domain through the definition of the corresponding model: leveraging a

specific API, de facto reifying the domain meta-model described in chapter

4, it is possible to declare entities and enumerations; for each concept it is

possible to define properties and configure said properties with attributes.

In particular TerminalProperties are configured with type factories; from

those the actual values will be generated. Each element is represented as a

node in the domain graph while arcs correspond to structural or semantic

relationships. Each element, domain included, is identified by a specific string

handle. The repository allows the definition of multiple domains. In Listing

9.1 a simple domain definition is reported: entities, properties and entity

functions are used.

Another API in the same module provides interfaces for the creation and

management of buckets and records according to the instance model intro-

duced in 4.3.1. In this module this aspect is implemented only with interfaces

and abstract classes in order to delegate the concrete implementation to spe-

cific services and to keep separated the domain specification from the actual

instance model. With this API, it is possible to define buckets, associated to

specific entities or enumerations, and create records, identified by a Record-

Key, to populate them. When a record is added to a Bucket, it is checked

against the domain model for validation.

Finally, a third API provides the tools needed to define filters; these are

used to select specific subsets of relevant records in a specific bucket. Com-

posite filters can be defined through the combination, via the AND, OR and

NOT logical operators, of the two basic EqualsFilter and GreaterThanFilter.

The arguments of these basic filters are the path to the property, also nested,

to be evaluated and the value used for comparison. This API provides a

fluent interface to enhance code readability as apparent from the example

reported in Listing 9.2.

9.1.2 Domain services

The Domain Services module implements the services needed to interact

with records. In particular two interfaces were developed: the QueryService

interface and the WriteService interface which are respectively used to read

and write records grouped in buckets. From the generic Bucket interface

82

Demonstrator Demonstrator modules

1 Entity asset = new Entity("asset");
2 Property assetName = new TerminalProperty(
3 "name", new TextTypeFactory()
4);
5 asset.addProperty(assetName);
6
7 Entity person = new Entity("person");
8 Property authorName = new TerminalProperty(
9 "name", new TextTypeFactory()

10);
11 Property authorAsset = new EntityProperty(
12 "asset", asset, new Cardinality(1, 1)
13);
14 person.addProperty(authorName, authorAsset);
15
16 Entity event = new Entity("event");
17 Property eventDate = new TerminalProperty(
18 "date", new DateTypeFactory()
19);
20 Property eventValue = new TerminalProperty(
21 "value", new TextTypeFactory()
22);
23 Property eventAuthor = new EntityProperty(
24 "author", person, new Cardinality(1, 1)
25);
26 event.addProperty(eventDate, eventValue, eventAuthor);
27
28 TextFunction textFunction = new TextFunction(
29 "label",
30 "[<date>] Value is <value>, sampled by <author.surname>",
31 String.class
32);
33 event.addPropertyFunction(textFunction);
34
35 Domain log = new Domain("log");
36 log.addEntity(event, person);

Listing 9.1: Example domain definition

83

Demonstrator Demonstrator modules

1 Filter authorFilter = new EqualsFilter(
2 "author.name", new TextType("John Doe")
3);
4
5 Filter dateFilter = new GreaterThanFilter(
6 "date", new DateType(new Date())
7);
8
9 Filter filter = new FilterBuilder()

10 .addFilter(authorFilter).addFilter(dateFilter)
11 .notJoin().andJoin()
12 .getFilter();

Listing 9.2: Example filter definition

defined in the domain module, a concrete ListBucket class has been imple-

mented; the service ListBucketService implements the two service interfaces

and uses the ListBucket as records container; in this particular case, the

RecordKey has been implemented as the index of any record in the in mem-

ory ArrayList constituting the base structure of the ListBucket. In Listing

9.3 an example of records definition is reported. Moreover, an entity func-

tion defined in listing 9.1 is executed to generate a description of the selected

record (line 18).

This module is also in charge of applying filters defined with the elements

provided by the domain module. An example of usage of this feature is

reported in Listing 9.4; the entity is inferred from the bucket and the specific

service implementation, in this specific case the ListBucketService, applies

the filter and returns a filtered bucket in response.

9.1.3 Process repository and workflow engine

This module implements the process repository and a basic workflow en-

gine. Reifying the process meta-model described in chapter 5, this module

provides the tools required to define processes as graphs of activities; aside

from the required Start and End activities, it is possible to define Presen-

tation activities and Custom activities; the former are used to define the

abstract user interface model elements for the process while the latter are

used to execute custom Java code. Each presentation activity is in fact mod-

eled as a graph of blocks of different types: an EntityBlock is configured

84

Demonstrator Demonstrator modules

1 ListBucketService service = new ListBucketService();
2
3 Record assetRecord = service.buildRecord(asset)
4 .setField("name", new TextType("ASSET-001"));
5 service.addRecord(assetRecord);
6
7 Record personRecord = service.buildRecord(person)
8 .setField("name", new TextType("John Doe"))
9 .setField(authorAsset, assetRecord);

10 service.addRecord(personRecord);
11
12 Record eventRecord = service.buildRecord(event)
13 .setField("date", new DateType(new Date()))
14 .setField("value", new TextType("42"))
15 .setField("author", personRecord)
16 service.addRecord(eventRecord);
17
18 String label = service.execute("label", eventRecord);

Listing 9.3: Example buckets and records creation

with a domain entity and is used to display records retrieved, with a filter if

needed, from the corresponding buckets; a FieldBlock is configured to con-

tain a value generated from a particular type factory; finally, a ListBlock can

be used to display records of a given entity. An example activity definition

is reported in listing 9.5;

It is also possible to define the client-side workflow as a set of event/action

couples; four trigger events were implemented: ADD, REMOVE, SELECT

and DESELECT; when a record is added or removed from a FieldBlock

or ListBlock or when a record is selected or deselected in an EntityBlock,

the corresponding action, called script, is triggered; two scripts were imple-

mented: AddScript and RemoveScript. An example is reported in listing

9.6; In this particular case, when events are selected or deselected from the

events block, the corresponding records are added to or removed from the

shelf block; as a consequence, the value contained in those records is added

1 Entity event = log.getEntity("event");
2 Bucket filteredBucket = service.getBucket(event, filter);

Listing 9.4: Example filter usage

85

Demonstrator Demonstrator modules

1 Entity event = log.getEntity("event");
2
3 EntityBlock eventsBlock = new EntityBlock(
4 new Id("Events"), log, service, service
5);
6 eventsBlock.addEntity(event);
7
8 Block shelfBlock = new ListBlock(new Id("Shelf"), event);
9

10 Block sumBlock = new FieldBlock(
11 new Id("Total value"),
12 event.getTerminalProperty("value").getTypeFactory()
13);
14 eventsBlock.addBlock(shelfBlock, sumBlock);

Listing 9.5: Example presentation activity definition

to or removed from the value contained in the sum block.

Moreover this module implements basic mechanisms required to start,

execute and stop processes and to enable interaction between the active pro-

cesses and the client controlling them. In fact, this module implements a

basic process manager which works also as a repository.

9.1.4 Text-based user interface client

This module represents a text-based client; its main objective is to gen-

erate the user interface from the abstract model and enable the final user

to interact with the process. In order to do so, this module implements a

simple wrapper that connects to the manager to get the list of available pro-

cesses and controls them. This particular implementation is based on the

System.out Java interface and relies on a numeric input as a selection from a

menu of actions displayed to the user after each update of the process state

or the UI itself. A set of widgets implement the functionalities required to

present the records to the user and the menu of available actions: for this par-

ticular case there is a one-to-one mapping between the blocks in the abstract

model and the UI widgets (i.e., an EntityBlockWidget, a FieldBlockWidget

and a ListBlockWidget were developed).

In summary, the UI wrapper talks with the process manager; the user se-

lects the process and the managers starts its execution; when a presentation

activity becomes active, the manager forwards the abstract activity model to

86

Demonstrator Implemented framework features

1 eventsBlock.addBlockAction(new BlockAction(
2 TRIGGER_EVENT.SELECT, new AddScript(shelfBlock, null)
3));
4 eventsBlock.addBlockAction(new BlockAction(
5 TRIGGER_EVENT.DESELECT, new RemoveScript(shelfBlock, null)
6));
7
8 shelfBlock.addBlockAction(new BlockAction(
9 TRIGGER_EVENT.ADD, new AddScript(sumBlock, "value")

10));
11 shelfBlock.addBlockAction(new BlockAction(
12 TRIGGER_EVENT.REMOVE, new RemoveScript(sumBlock, "value")
13));

Listing 9.6: Example presentation activity definition

the manager which maps the abstract elements on the available widgets and

assembles the actual UI and a menu that can be used to interact with the UI.

In particular, the menu offers commands for process navigation and for UI

navigation; the former are used to signal the workflow engine and therefore

to trigger the activity level transitions (described in 5.1.3); the latter are

required since, for the particular nature of the UI paradigm adopted, only

one block at the same time is shown to the user. In listing 9.7 a sample of a

generated UI is reported; each block of text in the listing correspond to one

UI widget for a total of 4 distinct widgets: the first block (lines 3-7) corre-

sponds to the user authentication widget, the second and the third blocks

(lines 9-15 and 17-23) to the main menu widget, the fifth block (lines 31-41)

to the process menu and the fourth block (lines 25-29) to an EntityBlock-

Widget. Only this last widget is not from the wrapper required to manage

the interaction; the EntityBlockWidget is derived from the abstract descrip-

tion of the presentation activity partly defined in listing 9.5 and populated

with records defined in listing 9.3 and automatically loaded from the domain

repository module.

9.2 Implemented framework features

Although the developed UI module is rather rudimentary and the ar-

chitecture is not at production level, the demonstrator implements the core

framework features needed for generation and UI composition. In particular

87

Demonstrator Implemented framework features

1 ---
2 ------------------------ WELCOME ----------------------------
3
4 USER AUTHENTICATION
5 Login: user
6 Password: ********
7
8 ---
9

10 MAIN MENU
11 1) Start process: "Events manager"
12 2) Quit
13
14 user > 1
15
16 ---
17
18 MAIN MENU:
19 1) View process: "Events manager"
20 2) Quit
21
22 user > 1
23
24 ---
25
26 == EVENTS ==
27
28 1) [] [2014-12-11 10:02] Value is 42, sampled by Doe
29
30 ---
31
32 PROCESS MENU
33 1) Send signal: "View selected events details"
34 2) Send signal: "Close"
35 3) Show block: "Shelf"
36 4) Show block: "Total value"
37 5) Select element: "1"
38 6) Back
39
40 user > _
41 you cant connect the dots looking forward you can only connect them

looking backwards SJ

Listing 9.7: Text-based UI sample

88

Demonstrator Implemented framework features

models described in chapters 4, 5, 6 and 7 a the respective main features

were implemented and employed.

Every model works as a decoupling and data exchange point between the

architecture levels; in particular, the information reaching the UI client is

abstract and represents all the structural data needed to choose and configure

the appropriate widgets and to assemble them into the UI; each widget is

then capable of connecting to the domain repository to fetch the contextually

relevant data even adopting a continuous query approach for live-update UI

elements.

Widgets are effectively in charge of data presentation and interaction

and an ad hoc development of advanced UI components is also correctly de-

coupled from domain and process models. This means that the generation

process resolves in the widgets that are assembled on the basis of hierarchi-

cal relations and a UI developer can concentrate on the user-central themes

and technologies with a minimal “distraction” from communication and data

access problems.

89

Conclusions
As stated by Meixner in [MPV11] the realization of an holistic Model-

driven development process is a step of primary importance for the effective

and efficient design and development of complex interactive systems in the

future. This means that the UI development process has to be integrated in

the development of the entire software system it belongs to. As a matter of

fact, the research has focused its attention on the UI life cycle giving birth to

methodologies and tools specific for the UI creation independently of the rest

of interactive system. Model-driven engineering constitutes one of the main

approaches used in the development of complex systems and even though

this approach has been successfully adopted in the UI development there is

still no integration of the two fields in a unique methodology.

This thesis addresses this research challenge defining a new methodol-

ogy in the form of a framework for the automatic generation of user inter-

faces in the context of business processes development; the generated UIs are

produced with a multimodal approach and with a methodology aiming at

overcoming the limitations of the currently available solutions in delivering

usable, adaptive and appealing user interfaces. This approach follows the

model-driven paradigm and aims at defining the different steps that have to

be performed in the process for the creation of an application and of the asso-

ciated UI. Specifically, are defined the different users involved in the different

steps and the models produced at the end of each step of the process.

The context for this thesis was selected after focusing on the available

enterprise platforms possessing, among their features, the capability to ren-

der a user interface for their business processes; in particular, the attention

was placed on the NEGENTIS Enterprise Software Platform [NEG]; the NE-

90

Conclusions

GENTIS Platform has been effectively adopted in various production and

research projects such as the SIMOB Project in which it was employed to

shape an InfoMobility Integrated Platform [GPCC13] and, more recently, the

SITMar Project in which it has been used to provide innovative real-time ser-

vices for goods monitoring in multimodal transport [ZCA+14]. Even though

the NEGENTIS Platform has been considered the reference environment for

this thesis, it is important to emphasize that the present work constitues a

general approach and it is also appliable in other contexts.

The proposed methodology in fact foresees the definition of a set of meta-

models for the design of the various aspects of both the UI and the application

and said methodology is synthesized in a specific framework covering both

the design and the runtime phases of the multimodal and adaptive UI and

global application life cycle. This framework describes a set of levels and

each level addresses different aspects of the development process leveraging

suitable representation models.

The framework is divided into four different abstraction levels and the

instances handled by each level belongs to a specific model envisioned in the

meta-model depicted in the present work. In particular were designed: a

Domain Model, to represent all the concepts characterizing each application

domain; a Process Model, to represent the tasks fulfilling the application

requirements; an Abstract User Interface Model, automatically generated

from the two previously introduced models and describing any possible user

interface generated for the specific use case; a Concrete User Interface Model,

automatically generated from the abstract model and describing the family

of concrete user interfaces for a specific use case once a particular target

technology has been chosen.

The envisioned production system is made of two elements: the back-

end subsystem and the front-end subsystem. The design phase involves the

creation of two artifacts, namely the Domain and the Process models, cor-

responding to different steps in the application definition process; these two

models are created by two corresponding users: the domains designer and the

processes designer; these two models are hosted on the back-end subsystem

in two corresponding repositories. Once the design phase is concluded, the

end user can access the desired application by means of a compliant client

device, the front-end subsystem, and a set of services provided by the back-

end subsystem; at this point the back-end “prepares” the business process

execution and, knowing the characteristics of the client, is able to automati-

91

Conclusions

cally generate the concrete user interface model and forward it to the client;

the client uses it as a blueprint to assemble the final user interface from the

set of complex widgets, the UI building blocks, available at runtime on the

device itself; these complex widgets are components designed by a specific

UI developer in accordance to the framework guidelines and loaded on the

client.

To test and validate the proposed framework a Java demonstrator has

been developed. This component has proven useful to show that was possible

to create a user interface from the declarative description of the application

domain and the required business process without any type of coupling with

the framework models or with any particular technology.

Future works comprehend the production from the present work of a set

of specifications and requirements for the design and implementation of a

reference architecture. In particular, it is foreseen the implementation of

the aforementioned specifications and requirements as an extension to the

functionalities of the NEGENTIS Enterprise Software Platform.

92

List of Figures
1.1 The simplified Cameleon Reference Framework 9

3.1 Logical levels and models . 35

3.2 Architecture overview . 37

4.1 Structural relationship . 45

4.2 Instance model, buckets and records 50

5.1 Workflow engine life cycle . 54

5.2 Signaling for transition triggering 58

5.3 Block to block signaling . 59

5.4 Distributed workflow . 60

6.1 Three levels structure . 65

8.1 Back-end Model-View-Controller 75

8.2 Front-end Model-View-Controller 76

8.3 Combined Model-View-Controller 77

93

Listings
4.1 Domain formal representation 47

5.1 Process model formal representation 62

9.1 Example domain definition . 83

9.2 Example filter definition . 84

9.3 Example buckets and records creation 85

9.4 Example filter usage . 85

9.5 Example presentation activity definition 86

9.6 Example presentation activity definition 87

9.7 Text-based UI sample . 88

94

Bibliography
[ABY14] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Adaptive Model-

Driven User Interface Development Systems. ACM Computing Surveys

(CSUR), 47(1):9:1–9:33, May 2014.

[APB+99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,

Stephen M. Williams, and Jonathan E. Shuster. UIML: An Appliance-

independent XML User Interface Language. Comput. Netw., 31(11-

16):1695–1708, May 1999.

[BBF+87] Bill Betts, David Burlingame, Gerhard Fischer, Jim Foley, Mark Green,

David Kasik, Stephen T. Kerr, Dan Olsen, and James Thomas. Goals

and Objectives for User Interface Software. SIGGRAPH Computer

Graphics, 21(2):73–78, April 1987.

[BCPS04] Silvia Berti, Francesco Correani, Fabio Paternò, and Carmen Santoro.

The TERESA XML Language for the Description of Interactive Systems

at Multiple Abstraction. In Leveles, Proceedings Workshop on Develop-

ing User Interfaces with XML: Advances on User Interface Description

Languages, pages 103–110, 2004.

[Bel10] M. Bell. SOA Modeling Patterns for Service Oriented Discovery and

Analysis. Wiley, 2010.

[BF14] Marco Brambilla and Piero Fraternali. Large-scale Model-Driven Engi-

neering of web user interaction: The WebML and WebRatio experience.

Science of Computer Programming, 89, Part B(0):71 – 87, 2014. Special

issue on Success Stories in Model Driven Engineering.

[BMvD07] E. Bozdag, A. Mesbah, and A. van Deursen. A Comparison of Push and

Pull Techniques for AJAX. In Web Site Evolution, 2007. WSE 2007. 9th

IEEE International Workshop on, pages 15–22, October 2007.

[CCRR02] James L. Crowley, Joëlle Coutaz, Gaeten Rey, and Patrick Reignier.

Perceptual Components for Context Aware Computing. In Gaetano

Borriello and LarsErik Holmquist, editors, UbiComp 2002: Ubiquitous

95

BIBLIOGRAPHY BIBLIOGRAPHY

Computing, volume 2498 of Lecture Notes in Computer Science, pages

117–134. Springer Berlin Heidelberg, 2002.

[CCT+02] Gaelle Calvary, Joelle Coutaz, David Thevenin, Quentin Limbourg,

Nathalie Souchon, Laurent Bouillon, Murielle Florins, and Jean Van-

derdonckt. Plasticity of User Interfaces: A Revisited Reference Frame-

work. In In Task Models and Diagrams for User Interface Design, pages

127–134. Publishing House, 2002.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Lau-

rent Bouillon, and Jean Vanderdonckt. A Unifying Reference Framework

for multi-target user interfaces. Interacting with Computers, 15(3):289 –

308, 2003. Computer-Aided Design of User Interface.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transfor-

mation approaches. In Proceedings of the 2nd OOPSLA Workshop on

Generative Techniques in the Context of the Model Driven Architecture,

volume 45, pages 1–17. Citeseer, 2003.

[CH06] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transfor-

mation Approaches. IBM Syst. J., 45(3):621–645, July 2006.

[CO08] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications:

ABNF. RFC 5234 (INTERNET STANDARD), January 2008.

[Cor06] James R Cordy. The TXL source transformation language. Science of

Computer Programming, 61(3):190–210, 2006.

[CR02] Joëlle Coutaz and Gaëtan Rey. Foundations for a Theory of Contextors.

In Computer-Aided Design of User Interfaces III, pages 13–33. Springer

Netherlands, 2002.

[Dey00] Anind Kumar Dey. Providing Architectural Support for Building Context-

aware Applications. PhD thesis, Atlanta, GA, USA, 2000. AAI9994400.

[Erl05] T. Erl. Service-oriented architecture: concepts, technology, and design.

The Prentice Hall Service-Oriented Computing Series from Thomas Erl

Series. Prentice Hall Professional Technical Reference, 2005.

[EVP01] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying

Model-based Techniques to the Development of UIs for Mobile Com-

puters. In Proceedings of the 6th International Conference on Intelligent

User Interfaces, IUI ’01, pages 69–76, New York, NY, USA, 2001. ACM.

[Flo06] Murielle Florins. Graceful Degradation: a Method for Designing Multi-

platform Graphical User Interfaces. PhD thesis, Université catholique de

Louvain, Louvain-la-Neuve, Belgium, July 2006.

[Fon10] José Manuel Cantera Fonseca. Model-Based UI XG Final Report, 2010.

96

BIBLIOGRAPHY BIBLIOGRAPHY

[FV10] David Faure and Jean Vanderdonckt. User Interface Extensible Markup

Language. In Proceedings of the 2Nd ACM SIGCHI Symposium on En-

gineering Interactive Computing Systems, EICS ’10, pages 361–362, New

York, NY, USA, 2010. ACM.

[GGGCVMA09] J. Guerrero-Garcia, J.M. Gonzalez-Calleros, J. Vanderdonckt, and

J. Muoz-Arteaga. A Theoretical Survey of User Interface Description

Languages: Preliminary Results. In Web Congress, 2009. LA-WEB ’09.

Latin American, pages 36–43, November 2009.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-oriented Software. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[GLCV08] Josefina Guerrero Garćıa, Christophe Lemaigre, Juan Manuel González

Calleros, and Jean Vanderdonckt. Model-Driven Approach to Design

User Interfaces for Workflow Information Systems. 14(19):3160–3173,

November 2008.

[GPCC13] D. Giuli, F. Paganelli, S. Cuomo, and P. Cianchi. Toward a Cooperative

Approach for Continuous Innovation of Mobility Information Services.

Systems Journal, IEEE, 7(4):669–680, Dec 2013.

[Hix90] Deborah Hix. Generations of User-Interface Management Systems. IEEE

Softw., 7(5):77–87, September 1990.

[HPBL00] Mare Hassenzahl, Axel Platz, Michael Burmester, and Katrin Lehner.

Hedonic and Ergonomic Quality Aspects Determine a Software’s Ap-

peal. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’00, pages 201–208, New York, NY, USA, 2000.

ACM.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:

A Model Transformation Tool. Sci. Comput. Program., 72(1-2):31–39,

June 2008.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL.

In Proceedings of the 2005 International Conference on Satellite Events

at the MoDELS, MoDELS’05, pages 128–138, Berlin, Heidelberg, 2006.

Springer-Verlag.

[Kay07] Michael Kay. XSL transformations (XSLT) Version 2.0. W3C recom-

mendation, W3C, jan 2007. http://www.w3.org/TR/2007/REC-xslt20-

20070123/.

[LVM+05] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent

Bouillon, and Vı́ctor López-Jaquero. USIXML: A Language Supporting

Multi-path Development of User Interfaces. In Rémi Bastide, Philippe

Palanque, and Jörg Roth, editors, Engineering Human Computer Inter-

action and Interactive Systems, volume 3425 of Lecture Notes in Com-

puter Science, pages 200–220. Springer Berlin Heidelberg, 2005.

97

BIBLIOGRAPHY BIBLIOGRAPHY

[MDZ13] Jovanović Mla�an, Starčević Dušan, and Jovanović Zoran. Languages

for model-driven development of user interfaces: Review of the state of

the art. Yugoslav Journal of Operations Research, 23(3):327–341, 2013.

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, Present, and Fu-

ture of User Interface Software Tools. ACM Transactions on Computer-

Human Interaction - Special issue on human-computer interaction in the

new millennium, Part 1, 7(1):3–28, March 2000.

[MPV11] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, Present,

and Future of Model-Based User Interface Development. i-com, 10(3):2–

11, 2011.

[MSB11] Gerrit Meixner, Marc Seissler, and Kai Breiner. Model-Driven Useware

Engineering. In Model-Driven Development of Advanced User Interfaces,

pages 1–26. Springer, 2011.

[MSUW04] S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled: Principles

of Model-Driven Architecture. Addison-Wesley, New York, 2004.

[Mye87] B. A. Myers. Gaining General Acceptance for UIMSs. SIGGRAPH

Comput. Graph., 21(2):130–134, April 1987.

[NEG] NEGENTIS s.r.l. Official website: http://www.negentis.com/.

[Pat99] Fabio Paternò. Model-Based Design and Evaluation of Interactive Ap-

plications. Springer-Verlag, London, UK, UK, 1st edition, 1999.

[Pat05] Fabio Paternò. Model-based tools for pervasive usability. Interacting

with Computers, 17(3):291–315, 2005.

[PE02] Angel Puerta and Jacob Eisenstein. XIML: A Common Representation

for Interaction Data. In Proceedings of the 7th International Conference

on Intelligent User Interfaces, IUI ’02, pages 214–215, New York, NY,

USA, 2002. ACM.

[PFRK12] Roman Popp, Jürgen Falb, David Raneburger, and Hermann Kaindl. A

Transformation Engine for Model-driven UI Generation. In Proceedings

of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-

puting Systems, EICS ’12, pages 281–286, New York, NY, USA, 2012.

ACM.

[Pic00] R.W. Picard. Affective Computing. MIT Press, 2000.

[PMM97] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. ConcurTask-

Trees: A Diagrammatic Notation for Specifying Task Models. In Proceed-

ings of the IFIP TC13 Interantional Conference on Human-Computer

Interaction, INTERACT ’97, pages 362–369, London, UK, UK, 1997.

Chapman & Hall, Ltd.

98

BIBLIOGRAPHY BIBLIOGRAPHY

[PRK13] Roman Popp, David Raneburger, and Hermann Kaindl. Tool Support for

Automated Multi-device GUI Generation from Discourse-based Commu-

nication Models. In Proceedings of the 5th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS ’13, pages 145–150,

New York, NY, USA, 2013. ACM.

[PSM+08] Fabio Paternò, Carmen Santoro, Jani Mantyjarvi, Giulio Mori, and San-

dro Sansone. Authoring Pervasive Multimodal User Interfaces. Int. J.

Web Eng. Technol., 4(2):235–261, May 2008.

[PSS09] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA:

A universal, declarative, multiple abstraction-level language for service-

oriented applications in ubiquitous environments. ACM Transactions on

Computer-Human Interaction (TOCHI), 16(4):19, 2009.

[Pue96] Angel R. Puerta. The MECANO Project: Comprehensive and Inte-

grated Support for Model-Based Interface Development. In Computer-

Aided Design of User Interfaces I, Proceedings of the Second Interna-

tional Workshop on Computer-Aided Design of User Interfaces, June

5-7, 1996, Namur, Belgium, pages 19–36, 1996.

[RPV12] David Raneburger, Roman Popp, and Jean Vanderdonckt. An Auto-

mated Layout Approach for Model-driven WIMP-UI Generation. In

Proceedings of the 4th ACM SIGCHI Symposium on Engineering In-

teractive Computing Systems, EICS ’12, pages 91–100, New York, NY,

USA, 2012. ACM.

[SBM07] Robbie Schaefer, Steffen Bleul, and Wolfgang Mueller. Dialog Modeling

for Multiple Devices and Multiple Interaction Modalities. In Proceedings

of the 5th International Conference on Task Models and Diagrams for

Users Interface Design, TAMODIA’06, pages 39–53, Berlin, Heidelberg,

2007. Springer-Verlag.

[Sch96] Egbert Schlungbaum. Model-based User Interface Software Tools Cur-

rent state of declarative models. Technical report, Graphics Visualiza-

tion and Usability Centre, Georgia Institute of Technology, GVU Tech

Report, 1996.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive Software: Land-

scape and Research Challenges. ACM Trans. Auton. Adapt. Syst.,

4(2):14:1–14:42, May 2009.

[SVM08] A. Stanciulescu, J. Vanderdonckt, and T. Mens. Colored graph trans-

formation rules for model-driven engineering of multi-target systems.

In Proceedings of the third ACM international workshop on Graph and

model transformations GRaMoT 08, pages 37–44. ACM, 2008.

[Tha84] Alan L. Tharp. The Impact of Fourth Generation Programming Lan-

guages. SIGCSE Bull., 16(2):37–44, June 1984.

99

BIBLIOGRAPHY BIBLIOGRAPHY

[Van05] Jean Vanderdonckt. A MDA-compliant Environment for Developing

User Interfaces of Information Systems. In Proceedings of the 17th In-

ternational Conference on Advanced Information Systems Engineering,

CAiSE’05, pages 16–31, Berlin, Heidelberg, 2005. Springer-Verlag.

[VB93] Jean Vanderdonckt and François Bodart. Encapsulating knowledge for

intelligent automatic interaction objects selection. In Proceedings of the

INTERACT’93 and CHI’93 conference on Human factors in computing

systems, pages 424–429. ACM, 1993.

[ZCA+14] I. Zappia, P. Cianchi, G. Adembri, M. Gherardelli, D. Giuli, and F. Pa-

ganelli. SITMar project: An integrated platform for goods monitoring

in multimodal transport. In Euro Med Telco Conference (EMTC), 2014,

pages 1–6, Nov 2014.

100

	Introduction
	I State of the Art
	Approaches to User Interface Development
	Historical overview: UI Management Systems
	Model-Based UI Development
	Different Generations in MBUID Systems
	Cameleon Reference Framework

	Model-Driven Software Development
	Model-Driven UI Development
	Adaptive Model-Driven UI Development

	Languages for User Interface Development
	User Interface Description Languages
	USer Interface eXtensible Markup Language
	Useware Markup Language
	Dialog and Interface Specification Language
	ConcurTaskTrees
	MARIA
	User Interface Markup Language
	eXtensible Interface Markup Language

	User Interface Transformation Languages
	Graph Transformations
	Atlas Transformation Language
	TXL Transformation Language
	UIML Transformations
	XSL Transformations

	II Proposed Solution
	Approach Overview
	The representation models
	Domain Model
	Process Model
	Abstract User Interface Model
	Concrete User Interface Model

	The proposed framework

	III Framework Design
	Domain Model
	Domain elements description
	Concepts
	Properties
	Property functions
	Attributes
	Relationships
	Access control lists
	Persistence

	Formal representation
	Instances Model
	Buckets and Records
	Bucket filtering
	Notes on persistence

	Process Model
	Process elements overview
	Activities
	Blocks
	Signaling
	Signals for transition triggering
	Block to block signaling
	Activity to block signaling

	Distributed workflow
	Access control lists

	Formal representation

	Abstract User Interface Model
	Model generation
	Abstract UI Model elements

	Concrete User Interface Model
	Model generation
	Basic mapping

	Concrete User Interface
	The client device
	Widgets
	Widgets architecture
	Low-tech clients

	Widgets composition

	IV Implementation
	Demonstrator
	Demonstrator modules
	Domain repository
	Domain services
	Process repository and workflow engine
	Text-based user interface client

	Implemented framework features

	Conclusions
	Bibliography

