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Abstract

Marginal and Peripheral forest populations (MaPP), can be a very important resource to be

investigated and preserved. Their  genetic structure,  their  adaptability to particular local

climate conditions and ecological dynamics could play a key role in developing mitigation

strategies and actions for preserving species in view of the climate change effects on forest

ecosystems. In addition, many of them are located in the Mediterranean region, an area

well known as biodiversity hotspot.

The Black pine of Villetta Barrea (Pinus nigra ssp.  nigra var  italica) is a variety of the

nigra  subspecies and is naturally distributed only in Abruzzo Region near the village of

Villetta Barrea. This MaPP is about 400 hectares and represents a geographically isolated

population, due to its distance from the core of the natural distribution of Black pine in

Europe.  More  in  particular,  it  is  split  in  two  populations,  an  altitudinally  marginal

population growing in the Camosciara area and a lower-altitude stand near Villetta Barrea,

nowadays  registered  as  a  seed  stand.  In  addition,  past  studies  on  genetics  and

morphological traits of the population and comparison with Northern (nigra  subspecies)

and Southern (laricio subspecies) Italian populations, have pointed out the possibility that

the Back pine of Villetta Barrea can be considered a real MaPP.

With the aim of studying the most probable interactions among MaPP, the Villetta Barrea

population  and  the  effects  of  Global  change  in  the  Mediterranean  area,  the  whole

population has been analysed as a study-case. Some of the widely used global climate data

(WorldClim)  were  tested  and  compared  with  those  derived  from  regional  climate

monitoring networks concerning accuracy and fitness to local studies. Dendrochronology

was used to assess the growth trends and climatic tolerance of the species, whereas a study

based on Species  Distribution  Modelling  approach (SDM) was carried  out  in  order  to

predict the spatial future development for the species under two different future climate
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scenarios for the Mediterranean area. To detect the most important climate factors, general

correlation function and moving correlation functions with a 30 years window were used.

General  correlation  was  used  to  consider  the  entire  life  of  the  trees  whereas  moving

correlation functions were used to subdivide growth of the population in sub-periods and

highlight  particular  periods.  In  both  cases,  averaged  monthly  temperatures  and  total

monthly precipitations, starting from October of the year before the ring formation (t-1)

and up to September of the reference year (t) were used as climate input data. After that a

Species Distribution Model was built.

As a result, global climate data compared with local data demonstrated to be accurate but

not enough to describe ecological niche of the MaPP. Errors were very high for annual

precipitations  with  a  mean  value  of  +90%  whereas  mean  annual  temperature  was

overestimated of about +25%. The dendrochronological approach revealed different trends

depending on the method and periods considered. Concerning the entire lifespan of the

population,  comparable  to  the  available  climate  information  (1901-2009),  Black  pine

showed a positive and statistically significant correlation between ring-width and average

temperatures of previous December, February and March (t-1) and negative correlation

with temperatures of July, September and October of the current year (t). At the same time,

the  analysis  with  moving correlation  functions  suggested  that,  in  the  last  decades,  the

population has reacted to very few climate factors and mainly to changes in temperatures,

especially  concerning  September  of  the  year  of  ring  formation  (both  minimum  and

maximum temperature). The use of local data and dendrochronological information applied

to SDM demonstrate that global warming could seriously affect the distribution of Black

pine in Abruzzo. According to the first scenario where an increase of temperature between

1°C and 2°C and the reduction of -25% / -40% of total  precipitations were simulated,

models predicted a decrease of -72% of the suitable area for Black pine in Abruzzo. With a
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second and heavier sceanario (+2°C / +4°C and -45% / - 60%) nearly the total loss (95%)

was forecasted.

In conclusion,  the dendrochronological  study suggested that  Villetta  Barrea Black pine

may be able to react to future climate change effects. Data demonstrated an ability to adapt

to  climate  effects  very  quickly  in  the  past.  A quite  low sensitivity  to  climate  factors,

especially concerning precipitations was detected whereas, in the last decades, very few

correlations  were  found.  In  addition,  SDM predicted  the  possibility  for  the  species  to

migrate, highlighting three different zones which could be suitable in the heaviest scenario.

In any case, changes in environmental conditions due to Global change effects are thought

to  be  faster  as  ever  before  and,  maybe,  too  fast  to  allow  species  to  adapt  to  new

environmental  driving  forces  or  to  migrate.  For  this  reason,  in  order  to  preserve  the

population, an  in situ  adaptive management protocol with the possibility to perform an

assisted migration should be taken into account.

Key Words

European  Black  pine;  Marginal  and  peripheral  forest  populations;  Mediterranean  area;

Forest  Genetic  Resources  management;  dendrochronology;  climate  change;  Species

Distribution Models.
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1. Introduction

1.1 Marginal and Peripheral forest populations

The spatial  distribution  and the  genetic  structure  of  forest  populations  is  the  result  of

decades of interaction between many factors, both biotic and abiotic (Jimenez et al., 1999;

Guisan  and Zimmermann,  2000;  Guo 2014).  Species  adaptation  to  new environments,

resilience  to  disturbances,  genetic  variability  and  stability, glacial  refugia,  competition

abilities and, above all, human activities played a key role in that field and especially in

Europe.  However,  in  the  last  years,  despite  the  fast  arise  of  global  information  and

knowledge, little attention has been paid to small forest populations located at the margin

of the species ranges. Those populations, that could seriously be endangered by  Global

Change effects with possible loss of valuable genetic variability (Eckert et al. 2008) may

play a key role in the future due to its important genetic structure and ecological dynamics

(Hampe and Petit, 2005).

Even if marginality is a quite simple concept in geography, it can become more complex if

linked to  ecological  localization or  genetic  aspects  and to  define forest  populations  as

“marginal”  many  approaches  are  used  and  a  lot  of  different  aspects  are  connected.

Marginal  and Peripheral  forest  Populations  (MaPP) can  be defined as  small  groups of

living trees located at the margins of the distribution including tree communities growing

in particular environmental conditions or owning a particular genetic structure (Yeh and

Layton,  1979). Anyway, in  general,  significant  lower  diversity  (number  of  alleles  and

expected heterozygosity) is generally found in the most isolated and small size populations

in contrast to central forests. In these cases the inter-population diversity can indicate both

extensive gene flows or recent postglacial expansion which are both connected to MaPPs

dynamics (Jimenez et al., 1999).

In  recent  years,  many  classifications  and  definitions  were  created  to  organize  the
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knowledge about MaPPs and to highlight different genetic and ecological dynamics. More

in general, four groups were identified:

• Geographical MaPPs;

• Ecological MaPPs;

• Altitudinal MaPPs;

• Artificial MaPPs.

However, despite definitions and classification rules, it is quite easy to find MaPPs sharing

common traits. For example, a Geographical MaPP is very likely to be also ecologically

marginal. At the same time, a population quite far away from the core of the distribution

could  be  very  similar  for  genetic  and/or  ecological  qualities  to  populations  which  are

located near the core of the distribution.

Geographically-marginal populations, also called peripheral populations, are the easiest to

be  detected  and  are  located  at  the  spatial  edge  of  natural  distributions.  They  may  be

genetically well distinct from other populations and geographical distance from the core of

the  natural  distribution  higher  than  a  critic  threshold  is  the  main  tool  to  detect  them.

Geographically marginal populations may be genetically divergent due to joint effects of

genetic drift and natural selection. For that reason, they may be more likely to disappear in

the future. In addition, geographically marginal populations may themselves be “strictly

marginal”  or  “disjunct”  (=isolated).  The first  ones  are  connected  with  the  core  of  the

distribution  both  spatially  and  genetically,  while  the  latter  are  not.  For  strictly

geographically-marginal populations,  ‘leading edge’ and ‘rear edge’ populations can be

identified  (Figure  1),  which  are  very  important  concepts  to  be  considered  particularly
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under changing environmental conditions. The first group represents populations which are

expanding into new territories. They are generally younger groups than the others and the

major  driving forces  are  founder effect,  long-distance dispersal,  and adaptation to cold

stresses. In general, in the Mediterranean area, leading edge populations are located at the

northern side of the species range.  Differently, rear-edge populations occupy the stable

edges of the species range and are composed by groups persisting in a territory that is

becoming more and more unsuitable for the species. They are generally older than the

leading ones and the core of distribution and are characterized by a good genetic stability

(Hampe  and  Petit,  2005).  Main  ecological  issues  of  these  populations  are  a  warming

climate,  drought  stresses  and  genetic  drift  and  they  may  conserve  important  genetic

diversity  as  a  result  of  adaptation.  During  time,  two  scenarios  can  appear:  i)  range

fragmentation (trailing edge) due to extinction of the species in such environment; ii) a

small group of trees (and genotypes) which may persist in locally suitable environments

(stable edges) as a result of adaptation to a new environment (Aparicio et al., 2012).
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Ecologically-marginal populations belongs to the second group. Concerning geographical

distribution, which is not the key issue which characterize them, they can be found almost

anywhere in the range of a species, including the core. The discriminant characteristic is

the  species  ecological  niche  coverage  and  the  main  qualities  of  these  populations  are

ecological environment and inter-specific competition. Ecologically-marginal populations

are adapted to grow in very particular environment with marginal climate condition with

respect to the species  optimum. Reduced precipitations during the growing season or the

whole year, thin soils high inter- and intra-annual variability and extreme events (cold or

hot temperatures) are the main ecological threats for such populations. Thus, exactly for

their ability to adapt to particular environmental conditions, they can be a very important

source of information to study the adaptation dynamics of species (Tigerstedt, 1994; Arana

et al., 2009; Aparicio et al., 2012).

Altitudinally-marginal  populations are  distributed  near  the  species  altitudinal  tolerance

limit which may vary in different local climatic conditions and due to local conditions.

They can be quite easily recognised on the ground due to the distribution and conformation

of trees, usually small groups characterized by short and deformed trees living on rocks or

inaccessible sites on top of mountains. Their biological trend is usually very slow due to

cold stresses and, in global warming scenarios, they could become a new focal point for

further species expansion.

Artificially marginal populations are the last group and are connected to human activities,

with living trees constrained by human management, timber production and modification

of the environment.

While  MaPPs'  classification  and  definition  is  quite  easy,  a  deep  analysis  ad  a  good

knowledge of the species charachters and the study area are compulsory to detect them

correctly on the ground. MaPPs are also usually smaller in size and number of trees and
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range-wide  patterns  of  populations  and  genetic  diversity  are  usually  shaped  by  past

climate-driven  dynamics  (Hewitt  2000,  2004).Geography,  ecology  and  genetic  of

populations,  as well  as the biotic and abiotic drivers,  responsible  for the direction and

speed of range shifts, must be well understood. Generally, main approaches to identifying

existing MaPPs include the use of geographic distances as thresholds when considering

geographically  marginal  populations.  Ecological  distances  such  as  the  Mahalanobis

Euclidean distance (Mahalanobis, 1936) may highlight ecologically-marginal populations.

In addition,  every case of MaPPs may be genetically distinct from the core population

(Lawton 1993, Vucetich and Waite 2003) and the use of genetic tools play a key role and

should be always performed to support geographical or ecological criteria. Isolation on one

side and adaptation on the  other  are  the  main driving forces  that  can produce genetic

diversity among populations. Another tool to detect MaPPs is the  Principal Components

Analysis (PCA) approach which is widely used to study environmental variability and to

compress available information into few not-correlated variables which can be used for

ecological modelling activities (Giannini et al., 2011; Marchi et al., 2013; Metzger et al.,

2013; Cardenas et al., 2014).

The key role of marginal populations for biodiversity maintenance make them extremely

important for the conservation of intra- and inter-specific biodiversity in the face of climate

change  (Soulé 1973, Hampe and Petit,  2005, Eckert  et  al.  2008). The  vulnerability of

MaPPs, the quality and ability to adapt and avoid extinction, the speed with which they can

colonize new territories and their genetic importance relay on how such species are likely

to change in response to future climate change.

1.2 Climate data and Global Change impacts in the Mediterranean area

Together with genetic information,  climatic data have become the main tool to support
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management of forest genetic resources (FGR) in view of global change effects (Marris

2009;  Borghetti  et  al.,  2012).  Climate  change and species  response are  considered the

driving factors that will  modify species range in the future (Parmesan 1996; Martinez-

Meyer 2005; Thuiller et al., 2005; Csaba et al., 2009; Schueler et al., 2014; Isaac-Renton et

al.,  2014).  Relationships  between  climatic  data  and  other  research  fields  such  as

phenologycal studies (Aletà et al., 2009), dendrochronology (Amodei et al., 2012; Mazza

et al., 2013), delineation of “Climatic Zones” (Tercek et al., 2012) and Species Distribution

Modelling (Elith et al. 2009; Porfirio et al., 2014) were evaluated with the general aim to

connect species' attitude and/or spatial distribution with climate environmental variables

(Zaniewski et al., 2002; Pearson and Dawson 2003; Sinclair et al., 2010; Wang et al., 2012;

Yu et  al.,  2014). Especially  in  the  Mediterranean region,  the  climate  change issue has

quickly emerged in the last twenty years as the major environmental problem in agriculture

and forestry fields. The effects may be evident especially in MaPPs, frequently smaller

populations  where  climatic  conditions  can  already  extreme  for  the  species  (rear-edge

MaPPs) and the effects of climate change are likely to be much faster and stronger than

elsewhere.

The Mediterranean area  is  an  important  basin  for  biodiversity  and many  studies  have

focused on species' distribution, with the aim of (i) defining the present ecological niche of

species at scales relevant for useful management plans (Guisan and Zimmermann 2000;

Warren  et  al.,  2008;  Broennimann  et  al.,  2012;  McInerny  and  Etienne  2012)  and

(ii) predicting Global Change effects on organisms and populations (Willis et al., 2009;

Sinclair et al., 2010; Attorre et al., 2011; Cheaib et al., 2012; Pellat et al., 2012; Forester et

al., 2013). These studies require long-term climate baseline data, future predictions and, in

some  cases,  information  about  past  climate  variability.  In  forestry,  as  in  many  others

environmental  disciplines,  climatic  data  (temperatures  and  precipitations)  are  used  as
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limiting factors for species distribution through GIS and statistical techniques. The most

relevant  problems  are  data  access  and  spatial  density/resolution  on  small  areas  for  a

comprehensive set of biologically-relevant climate variables.

To model future climate scenarios, source of interest are current and future levels of energy

use from burning of fossil  fuels  and clearing of forests  for cultivation which can have

relevant  effects  on  the  global  environment.  The  Intergovernmental  Panel  on  Climate

Change (ICPP), the main subject involved in Climate Change studies, was established in

1988 as a scientific  intergovernmental  body under  the auspices  of  the United Nations.

Every  year,  an  annual  report  is  published  which  describes  the  state  of  the  art  and

modifications in climate conditions at the global scale. For future predictions, the Special

Report  on  Emissions  Scenarios  (SRES)  is  the  main  reference  where  scenarios  are

developed, based on human activities and economy directions (Figure 2). Starting several

years ago, with four storylines (A1, A2, B1, B2) different tendencies were explored: one

set varying between strong economic values and strong environmental values A vs B), the

other  set  between increasing globalization and increasing regionalization (1 vs  2).  The

storylines can be summarized as follows (Nakicenovic et al., 2000):

 A1: a future world of very rapid economic growth, global population that peaks in

mid-century  and  declines  thereafter,  and  rapid  introduction  of  new  and  more

efficient technologies.

 A2: a very heterogeneous world with continuously increasing global population and

regionally oriented economic growth that is more fragmented and slower than in

other storylines.

 B1: a convergent world with the same global population as in the A1 storyline but

with  rapid  changes  in  economic  structures  toward  a  service  and  information
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economy, with reductions in material intensity, and the introduction of clean and

resource-efficient technologies.

 B2: a world in which the emphasis is on local solutions to economic, social, and

environmental sustainability, with continuously increasing population (lower than

A2) and intermediate economic development.

After  determining  the  basic  features  of  each  of  the  four  storylines,  they  were  fully

quantified using integrated assessment models, resulting in families of scenarios.

Figure 2: SRES scenarios

IICPP, in  the  last  report  (AR5),  used  a  new classification  for  scenarios,  following the

Representative Concentrations Pathway (RCP) approach. Predictions are quite similar to

the former ones but the increasing concentration of CO2 in the atmosphere is expressed by
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the expected amount of solar radiation at soil level (W/m2, Figure 3). In such new code,

RCP2.6  corresponds  to  B1  scenario  whereas  RCP8.5  to  A2.  In  any  case,  we  must

remember that CO2 plays an important role in inhibiting the escape of the heat radiated by

the  earth.  The  sun  beams  short-wave  radiation  to  the  earth,  which  sends  long-wave

radiation back to space. Greenhouse gases in the earth's atmosphere (carbon dioxide, water

vapour,  methane,  nitrous  oxide,  and  the  chlorofluorocarbons)  absorb  the  outgoing

radiation,  thereby  holding  heat.  It  should  be  considered  that  this  process  occurs  also

naturally and without the natural greenhouse effect, our planet would be freezing. Instead,

this process keeps the earth to its current mean temperature of about 15°C.

Figure 3: Representative Concentration Pathways

While  ICPP  provides  background  about  climate  change  scenarios,  other  climatology

groups  developed  many  climatic  models  on  predictions.  As  a  result,  several  Global

Circulation Models (GCMs) have been published and are often used to forecast the effects

of  greenhouse  gas  increases.  GCMs are  mathematical  models  used  to  predict  climate
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change effects at global scale. The spatial resolution is generally quite low and about 5° x

5° of latitude and longitude (approximately 500 km at the equator) and is (obviously) too

coarse to  perform analysis  on organisms, especially  over  complex and relatively small

areas (such as the Mediterranean region). As a consequence, many downscaling techniques

were developed to be applied to  GCM results  in  order  to  get  higher  resolution results

(Wilby and Wigley, 1997; Moriondo and Bindi, 2006; Ramirez-Villegas and Jarvis, 2010;

Jones and Thornton, 2013). On the average, all model simulations for Europe agree that the

range of temperature rise is expected to be higher in North Europe in comparison to the

Mediterranean areas. Despite that prediction of temperature change varies widely, most of

the models suggest that the winter temperature will increase mainly in northern  Europe

while in summer the major increase will affect southern Europe. All model simulations,

however, have one common feature: temperature will increase considerably during the next

decades. These results could be positively correlated with the observed general increase in

North Europe in the 20th century. Concerning rainfall, most of the models agree on winter

increase over North Europe and give some indications about increase in summer. On the

contrary, all models suggest that the summer temperature in South Europe will decline

whereas there are some indications about an increase in summer precipitations.

However, even if for continental Europe there is some agreement, it is very difficult to

agree on future climate conditions in the Mediterranean basin (Giannakopoulosu et  al.,

2005; Giorgi  and  Lionello  2008;  Giannakopoulosu  et  al.,  2009).  Detection  of  climate

change on this scale is extremely difficult as the high variability in local environmental and

local micro-climates tend to masks trends in the 'noise' of natural fluctuations. Moreover,

the  short  period  of  observations  makes  the  identification  of  clear  trends  difficult  and

creates  uncertainty  over  the  scale  of  natural  variability. However, a  lower  temperature

increase  is  expected  over  the  sea  and  the  coastal  regions  compared  to  the  inland

Page 18 of 132



Mediterranean  areas.  While  global  temperatures  are  expected  to  increase  about

0.2°C/decade and climb by between 1.7 and 4°C by the year 2100, it is a widely shared

opinion that  temperatures will  rise in  the next  50-100 years especially in mountainous

regions. Results from many simulations show a mean global warming in the range of 1.5 to

4.5°C by the end of the next century (Giannakopoulos et  al.,  2005, 2009). In addition,

when the effects of other forces are included in the projections (e.g. sulphate aerosols), the

best estimate for 2100 is a temperature increase in the range of 1.0 to 3.5°C. More in

particular:

• the high latitudes are likely to  have greater warming than the global mean and

warming, especially in winter;

• the  hydrological  cycle  is  likely  to  intensify,  bringing  more  floods  and  more

droughts;

Concerning rainfalls, a common feature of many projections is that an increase of annual

precipitation over much of the Mediterranean region north of 40 or 45° N is more likely,

whereas to more southern latitudes will be lower. In addition, a very important role will be

played  by  extreme  events.  Despite  the  uncertainties  on  how  climate  variability  and

extremes will change in the Mediterranean region, the overall picture suggests an increase

in frequency of extreme events and, in particular, drought in the western Mediterranean. In

general, warmer conditions in the Mediterranean region should lead to an increase in the

occurrence of extremely high temperatures and a decrease in extremely low temperature

events.  In  areas  experiencing a  general  decrease  in  precipitations,  drought  is  likely  to

become more frequent as the probability of dry days.
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1.3 Management of FGR in view of Global Change

Forests  are  the  main repository of  terrestrial  biological  diversity. They provide  a  wide

range of services for terrestrial species, are important carbon sink and have influence on

mitigation of climate. Anyway, they are also one of the most threatened biological system

by the climate change effects. Forests harbour most of planet's biodiversity and genetic

diversity, which is a critical component of biodiversity. Even if genetic diversity is well

known to be the power which allows the species to evolve and to survive during adverse

situations, it is not properly considered due to its long-term relevance for human welfare.

Resilience  of  forest  ecosystems  and  reaction  to  disturbances  are  strictly  connected  to

genetic variability and phenotypic plasticity of populations (Friedman, 1997).

Climate  change  may  have  different  impacts  on  different  forest ecosystems.  Expected

changes in tree growth will influence the competitive relationships between species, the

potential species composition and the choice of species available (Lindner, 2000). Under

climate change effects, it is likely that forest species will migrate or will have to adapt to

new  environmental  conditions  (Parmesan  1996,  2006).  Anyway,  even  when  species'

adaptability is well know and proved, in the next decades, the main driving force will be

speed in the changing environment that could bring populations to extinction. For example,

while populations living under  optimum climate conditions could “simply” reduce their

growth  trend,  small  and  isolated  populations  with  low  gene  flow  and  low  genetic

variability (genotypes) could disappear, with a huge loss of genetic variability (Hampe and

Petit,  2005;  Eckert  et  al.  2008).  In  such framework,  to  make a  better  use  of  existing

potentials and to minimize negative impacts of climate change on forests,  conservation

strategies  can  be  developed  especially  in  southern  Mediterranean  area  where  a  huge

number “rear edge populations” is located as consequence of glacial refugia (Petit et al.,

2003).
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In general, the conservation of FGR can be divided into two main groups:

 group of  the  ex-situ conservation,  to  be  divided  in  static (as  seed  storage  and

genotypes archive and collections) and dynamic (when genotypes are moved in a

new environment but managed to adapt and react);

 group of the in-situ conservation.

The approach of the first  group  is  generally followed when the aim is  to  move living

genotypes to avoid interaction between species and environmental changes (for human

activities or bio-ecological reasons) and to preserve them from local threats. The second is

used when the aim is to support and enforce species adaptability (when available) in native

zones. Among them, seed storage is the easiest method whereas genotypes archive and

collections imply many efforts to select families and progeny. On the other side,  in-situ

conservation is followed when the population's size and genetic structure is thought to be

able to adapt to new climate condition and/or to migrate to new surrounding territories

(Palmberg-Lercheand and Hald, 2000). In such conditions, forest management is used to

support  population's  natural  dynamic  to  speed  up  selective  processes  and  enforce

colonization of new lands. An adaptive forest management (Stankey et al.,2005) or integral

reserve in  natural  parks  (e.g.  Sasso Fratino  or  Camosciara area in  Abruzzo)  where  no

management is allowed, are two possible ways to be followed. Between those two extreme

approaches  there  is  the  ex-situ  dynamic  conservation  which  is  a  way  to  move  a

representative sample or, as in case of the relict species Abies nebrodensis (Vendramin et

al., 1997). In such case, 28 scions, one for each living genotype, were collected in the the

original site “Vallone della Madonna” in Sicily and grafted on  Abies alba rootstock in

Tuscany where the species is actively managed to produce seeds to be planted (Ducci et al.,
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1999; Ducci, 2014). Unfortunately it is very expensive and many efforts are necessary to

achieve the goal of adaptation.  However, despite  in-situ or  ex-situ definitions, when an

active action is made to allow species to move in new territories the general definition is

assisted migration.

1.4 Aim of the study and thesis structure

In these background of MaPP dynamics, Climate change effects and forest management in

view of  Global Change,  the Black pine of Villetta Barrea (Pinus nigra J.F.Arnold ssp.

nigra var. italica) in its natural area (Abruzzo) has been studied. This population has been

treated as a study case of an isolated MaPP due to geographical distance from core of the

species'  natural  distribution  across  Europe. Literature  reported  also  some adaptive  and

genetic traits in this population which aid to define it as a possible MaPP (Giacobbe, 1933,

1937; Gellini, 1968, Blasi et al., 2005; Bruschi et al., 2006). The possible effects of climate

change will be forecasted and modelled with the aim of analysing the future development

of the population.  More in particular, different  issues connected to  MaPPs studies and

management were considered:

1. How can a MaPP be classified and detected? And,  if  recognized,  what  kind of

MaPP is the Black pine of Villetta Barrea?

2. Are global climate data reliable for local studies at higher spatial scale?

3. Does past forest management influence growth trends and population's response to

climate factors? 

4. Will the climate change effect influence the distribution of Black pine of Villetta

Barrea in Abruzzo?

Page 22 of 132



5. Will this MaPP need conservation strategies in the future? And could an adaptive

management be useful to preserve this endemic population?

Black pine MaPP has been firstly analysed at  European scale following the taxonomic

division. Then Italian populations were described. Local climate data were interpolated to

solve global data accuracy's problems and to compare different interpolation methods for

local studies. Then such climate data were used to forecast future scenarios for Abruzzo

region. Working on the field, due to already available data about some parts of the MaPP

(Giacobbe, 1933; Biondi and Visani, 1993) more attention was paid to the description of

the  seed  stand  of  Villetta  Barrea  (the  unique  for  the  subspecies  in  the  whole  Italy)

following the management plan of the Villetta Barrea Municipality. Dendrochronology and

ecological  modelling  approaches  were  used  to  consider  adaptability  of  the  species  to

climate change and to  support  forest  adaptive management  in  view of  the more likely

future dynamics of the detected MaPP.
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2. Target species and study area

2.1 The European Black pine in Europe and Italy

European Black pine (Pinus nigra J.F. Arnold 1785) can be considered a Tertiary relict

species already growing in sites where it occurs at present since the Pliocene (Vidakovic,

1974). It continued its spreading during the Quaternary age (Gellini and Grossoni, 2003)

and due to its wide and very discontinuous distribution, genetic and phenotypic variability

is very high among populations. The species is actually distributed in the mountain regions

of  the  Mediterranean  basin,  with  a  complex  and  fragmented  range  across  all  Europe

(Figure  4).  Taxonomy  of  the  species  follows  the  geographical  distribution  and  the

morphology  of  trees,  even  in  there  is  no  consensus  between  researchers  (Arbez  and

Millier,1971).  Provenances  differs  generally  for  needles  length,  total  height  of  trees,

colours and shape of stem and bark.

Figure 4: Pinus nigra natural range
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During  19th  and  early  20th  century  reforestation programmes  Black  pine  spp.  were

intensively used in whole Europe because of its ability to grow well on open lands and in

ecologically-demanding situations. The species was generally planted for soil protection

and is  quite  common to  find  populations  made  with  more  than  one  single  subspecies

(Isajev et al., 2004). For that reasons, most of research activities on Black pine ssp. are

aimed to identify autochthonous areas.

Even if at least fifteen subspecies were described by botanists in the time (Fenaroli and

Gambi 1976) there is a general agreement on the division into six subspecies (Quézel and

Médail, 2003), ranging from Spain to Turkey:

I. Pinus nigra ssp. mauretanica, located in northern part of Morocco and Algeria with

a very small range;

II. Pinus nigra ssp. salzmanni which is distributed in Spain and South of France;

III. Pinus nigra ssp. laricio is in Corsica, Calabria and Sicily with a small and probably

artificial stand of medieval age in Tuscany;

IV. Pinus nigra ssp. nigra occupies some areas of central and north-eastern side of Italy

(Abruzzo and Friuli-Venezia-Giulia), Austria and Balkan’s area up to Greece;

V. Pinus nigra ssp. dalmatica can be found on the Adriatic side of Croatia, and Serbia;

VI. Pinus nigra ssp. pallasiana is the last one, it growths in Turkey and Eastern Europe

and covers the majority of the range.

As mentioned, concerning only the Italian peninsula, it is nowadays accepted that Black

pine is present with the three mentioned subspecies. Both of them are very common across

the  Country  as  pure  or  mixed  stand  with  other  species  as  beech,  oaks  and  chestnut.

Anyway, it is very common to find single trees in open and abandoned lands due to its own
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auto-ecology  and  seed  dispersal.  Main  accepted  and  discriminant  differences  between

subspecies are leaves morphology and soil-growing types (Fukarek, 1958; Gellini, 1968;

Arbez and Millier,1971; Debazac, 1971). Southern provenances (ssp. laricio) have longer

and less rigid needles than northern and are use to grow on acids granitic or sandy soils. On

the other side, spp.  nigra can be found only on calcareous or dolomitic soils but is often

smaller  concerning diameters  an  total  height  (between 25-50 meters).  Anyway, despite

their  ecological differences,  both were generally used for the same goals, especially in

overexploited, abandoned and cultivated lands and  according to the last National Forest

Inventory  (INFC 2005;  Gasparini  and Tabacchi,  2011),  Black  pine  ssp.  in  Italy  cover

236,467 ha.

The genetic diversity of Black pine is strictly connected to morphological traits and have

been often studied at European level aimed to detect differences among populations and

origin of artificial stands (Arbez and Miller 1971; Arbez et al. 1974;  Afzal-Rafii et al.,

1996; Bojovic et al., 2005; Afzal-Rafii and Dodd 2007). Main protocols were made using

terpenes and, only in the last years, a suite of  chloroplast DNA microsatellites (Afzal-Rafii

and  Dodd  2007).  In  some  cases,  geographic  variation  was  detected  and  in  insular

populations (such as Sicily or Corsica) were unique due to long isolation supporting the

hypothesis that they represent the most original form of Black pine (Afzal-Rafii et al.,

1996). Bojovic et al. (2005) used a similar approach to study genetic variability between

Pinus nigra populations in south-western Europe. In such case, the analysis demonstrated

that Corsican Black pine was widely used in southern part of France and Spain. On the

other side, very few genetic analysis were made on Italian's populations and many of them

were about Pinus nigra ssp. laricio from Calabria and Sicily (Bonavita et al., 2013).

Concerning management aspects of Black pine forests, very few populations are managed

for timber production, especially in Italy and in the Mediterranean area. Across Europe,
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forest  management  is  strictly  connected  to  nature  of  populations  and  the  connection

between  gaps  and  natural  regeneration  is  a  well  know  issue  (Muscolo  et  al.,  2007;

Mercurio et al., 2009; Tiscar et al., 2011). In natural areas (such as MaPPs) silvicultural

treatments  are  aimed  to  conserve  the  richness  and  to  improve  the  stability  of  the

populations (Hermanin, 1980; Dida et al., 2002; Isajev et al., 2004; Ciancio et al., 2006;

Climent et al., 2006, Gugliotta et al., 2006). In planted forests it is oriented to accelerate

successions'  dynamics, enforcing restoration of of autochthonous broadleaves following

the natural spatial distribution and regeneration and localized treatments (Nocentini, 1995;

Ciancio et al., 2004; Ordóñez et al., 2005; Nocentini and Puletti 2009; Tiscar and Linares

2011). However, in many Black pine plantations, no thinning activities were made during

the  time.  Many  stands  (especially  in  private  lands)  have  been  abandoned  and  are

concluding their  ecological  function to  prepare soils  for more exigent  species.  In  such

conditions, management planners need to find the most economic solution to solve the

problem, which is, in general, a strong thinning activity (30% - 40% of the total basal area)

and the exploitation of trees for bioenergy.

2.2 The natural MaPP of Abruzzo

The Italian peninsula is a well known hotspot of genetic diversity due to its morphological

conformation and geographic position (Petit et al., 2003). The target species of these study

is the Black pine of Villetta Barrea a variety of nigra subspecies (Pinus nigra Arnold ssp.

nigra var.  italica Hochst),  naturally  distributed  only in  Abruzzo on approximately  400

hectares. However,  during  the  years  and  similar  to  any  other  Italian  region,  many

plantations  were  artificially  made  also  in  Abruzzo,  mixing  different  subspecies  and

provenances introduced for soil protection of bare lands abandoned by agriculture.

Concerning needles size and morphological traits, which were often demonstrated to be
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strictly connected to the genetic structure of populations (Giacobbe, 1933, 1937; Gellini,

1968; Blasi et al., 2005; Bruschi et al., 2006), Black pine of Villetta Barrea is intermediate

between the two Italian subspecies (nigra and  laricio). Concerning both leaves and total

height it is generally smaller than others but is more drought-resistant especially for total

annual precipitations. About soils preferences, despite the geographical distance, it is more

similar  to  Austrian  pine  than  to  Calabrian  preferring  calcareous  soils.  A summary  of

morphological traits is reported in Table 1.

Table 1: Main features of Italian Black pines (from (Gellini and Grossoni, 2003)

ssp.   laricio ssp.   nigra   var.   italica ssp.   nigra

Max height (range) 40-50 m 15-20 m 25-50 m

Stem characters slender never slender rarely slender

Leaves
8-16-20 cm

not much rigid
clear green

5-7-10 cm
rigid

dark green

8-14 cm
very rigid
dark green

Native areas Sicily and Calabria Abruzzo Friuli-Venezia-Giulia

Soil acidic calcareous calcareous

Annual precip. 1400-1800 mm 1400 mm 1700-2300 mm

Summer prec. 80-120 mm 100-130 mm 300-400 mm

Since the first part of XX century, several studies were made on these particular variety to

describe  and  classify  it  properly.  Giacobbe  (1933;  1937)  was  the  first  highlighting

differences  with  northern  provenances  and  ecological  traits.  Gellini  (1968)  with  a

morphological  comparison  demonstrated  the  particularity  and  singularity  of  the

provenance.  Later,  other  studies  were  conducted  on  Black  pines  of  Villetta  Barrea's

population  and  surroundings  areas  and  mainly  with  dendrochronology  approaches

(Hermanin, 1980; Schweingruber 1985; Biondi and Visani, 1993). Anyway, again, general

aims were to detect differences among populations, to describe natural dynamics and to

search  for  the  natural  and  autochthonous  area  of  the  variety  in  Abruzzo.  Recently,  a
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taxonomic and genetic study on some populations into the National Park of Majella in the

Municipality of Fara San Martino (Bruschi et al., 2006) reported the presence of a very old

population,  morphologically  not  significantly  different  from  trees  of  italica  variety

sampled from the area of Camosciara into the natural Park of Abruzzo Lazio and Molise.

The studied Black pine's population is composed by two different parts (Figure 5).

Figure 5: The MaPP of Villetta Barrea with the seed stand (1) and the Camosciara area (2)

The first one is a seed stand registered in the Forest Basic Materials Register of Abruzzo

Region  (code  ABR041)  extended  105 hectares  and  located  near  the  village  of  Villetta

1 In Italy the management of Forest Reproductive Materials (see 1999/105/CE) has been demanded to
Regional Administrations since 2003.
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Barrea (41.7768 N, 13.9374 E - Figure 6) and even if 21 registered seed stands for Pinus

nigra spp. are distributed across Italy (16 concerning ssp  laricio in Calabria), this is the

only one for the italica variety of nigra subspecies.

The remaining part is an older population, located in to the Camosciara wood and included

within a protected area. This is a forest included into the Natural Park of Abruzzo Lazio

and  Molise  and  some  zones  can  be  classified  as  an  “altitudinally-marginal  forest

population” due to small,  old and deformed tress growing on rocks around 1700-2000

metres  a.s.l  (Figure  7).  However  gene-flows among these  different  parts  of  the  whole

natural population are abundant and continuous and, in the end, those different parts can be

treated and considered as a unique MaPP.
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Figure 7: Higher part of the altitudinally MaPP

2.3 Geographical and forest environment of Abruzzo Region

The research has been conducted at regional scale, covering the whole Abruzzo territory.

Abruzzo is a wide geographic and administrative region in central peninsular Italy on the

eastern Adriatic side. It is about 10,700 km2 and is a mainly mountainous (65%) and hilly

(34%) region, with only a small narrow coastal plain (1%). The climate is highly variable,

being strongly influenced on one side by the presence of the Adriatic sea and the Balkans

dominant winds and, on the other by the Apennines, with mountains among the highest in

the  whole  chain  (“Gran  Sasso  d'Italia”  reach  2,912  m  a.s.l.).  Due  to  this  orographic

structure,  the  climate  of  the  coastal  part  is  typically  Mediterranean,  with  hot  and dry

summers  and maximum precipitations  in  autumn whereas  the interior  part  has  a  more

continental climate with hot summer and snowy winters.
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According to the last national forest inventory (INFC 2005, Gasparini and Tabacchi, 2011),

forests in Abruzzo cover approximately 4,500 km2 of the region (42%). The main forest

categories  are  pure beech (30% of  the  total  forest  area)  and oak forests  (about  20%),

mainly represented by Turkey and Downy oaks. Conifers represent only 7% of the total,

mainly spread by reforestation activities. Abruzzo is hots of a quantity of Balkan an Alpine

endemic  taxa very relevant for their  rarity in Italy and released in post-glacial  refugia.

Among  the,  forest  species  are  silver  birch  (Betula  pendula)  generally  growing  above

abandoned pastures, mugo pine (Pinus mugo Turra) and some populations of Abies alba in

the south of the region.  Black pine forests cover in Abruzzo an area of 19,185 ha which

2,896 hectares only are classified as native pure stands of  Pinus nigra J.F. Arnold ssp.

nigra var. italica whereas the remaining 16,289 ha are mixed or planted with Black pines

from Calabria (Pinus nigra J.F. Arnold ssp. laricio Maire), Austrian Pine (Pinus nigra J.F.

Arnold ssp. nigra var. nigra) and Bosnian Pine (Pinus heldreichii H.Christ. 1863).
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3. Materials and methods

3.1 Climate data and marginality analysis at European level

As reported in introduction (chapter 1.1) it is relatively difficult to detect and define the

status of MaPPs on the ground. The geographical distance as thresholds is a quite simple

method but it is useful for geographical marginality only and does not give any information

about  local  climate conditions  where populations  are  growing neither  genetics.  On the

other  side,  ecological  distances (e.g.  multivariate  distances  based  on  landscape

heterogeneity)  may  highlight  ecologically-marginal  populations  but  are  dependent  to

climatic data reliability, availability and abundance. In addition, when statistical analysis

are forced to consider not-correlated variables, such as regressive models or evaluation of

climatic heterogeneity (Metzger et al., 2013) all ecological information are not easy to be

considered together with their interactions.

When  the  ecological  niche  of  forest  species  and  relationships  between  organisms  and

climate  have  to  be  investigated,  it  is  very  important  to  use  reliable  data.  In  addition,

relationships between different climate factors have to be carefully considered (Braunish et

al., 2013). To achieve these goals, several climatic and bioclimatic indices were calculated

and proposed since the first years of the XX century, in order to study climatic variability

and the dynamics of forest's envelopes. For instance, the most famous classification in Italy

was created by Aldo Pavari in 1916, as an adaptation for the Italian environment of the

scheme  proposed  by  Mayr  in  1906  and  finally  reviewed  by  De  Philippis  (1937).  At

European level, other classifications were created. Among them the De Martonne's aridity

index (1927), the Emberger's pluviotermic quotient (1930) and the Rivas-Martinez indices

(2009) are considered the most efficients.

Due  to  the  wide  spreading  of  web  knowledge  and  data  storage  tools,  many  climatic
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datasets are freely available on the web (temperature, rainfall, climatic indices, etc.) both at

national  or  global  scale  (e.g.  PRISM,  ClimateNA,  ClimateEU,  ClimateSA,  and  many

others). One of the most important climate database is WorldClim (Hijmans et al., 2005),

which  is  widely  used  in  research  activities  (4,986  citations  on  Google  Scholar  at  the

present time). This is a Global climate database with a spatial resolution is 30-arc second

(approximately 1 Km at the equator) even if other coarser resolution are available (2.5 - 5 -

10 minutes). Available data for the whole world are:

 minimum, maximum and mean temperature;

 total annual precipitation;

 19 bioclimatic variables, calculated with previous data (Table 2).

WordlClim precipitation maps were created extracting data from about 47,500 locations,

mean  temperature  records  derived  from 24,542  stations  and  minimum  and  maximum

temperatures from 14,835. The averaged period is 1950-2000 and data were interpolated

with  the  thin-plate  smoothing  spline  algorithm  (Hijmans  et  al.,  2005).  However,

bioclimatic variables are the most used and complete dataset and are derived from monthly

temperature  and  rainfall  values  in  order  to  generate  more  biologically  meaningful

variables.  The  bioclimatic  variables  represent  annual  trends  (e.g.,  mean  annual

temperature,  annual  precipitation)  seasonality  (e.g.,  annual  range  in  temperature  and

precipitation)  and  extreme  or  limiting  environmental  factors  (e.g.,  temperature  of  the

coldest and warmest month, and precipitation of the wet and dry quarters). In addition,

WorldClim provides predictions for two future temporal thresholds (2050 and 2080) for

each of the four different Representative Concentrations Pathways scenarios (Figure 3) as a

result of the work of many working groups from every part of the world.
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Table 2: list of available bioclimatic data from www.worldclim.org

Label Variable Scaling Factor Units 

BIO1 Annual Mean Temperature 10 Degrees Celsius

BIO2
Mean Diurnal Range

(Mean of monthly (max temp - min temp))
10 Degrees Celsius

BIO3 Isothermality (BIO2/BIO7) 100 Dimensionless

BIO4
Temperature Seasonality
( Standard Deviation )

100 Degrees Celsius

BIO5 Max Temperature of Warmest Month 10 Degrees Celsius

BIO6 Min Temperature of Coldest Month 10 Degrees Celsius

BIO7 Temperature Annual Range (BIO5-BIO6) 10 Degrees Celsius

BIO8 Mean Temperature of Wettest Quarter 10 Degrees Celsius

BIO9 Mean Temperature of Driest Quarter 10 Degrees Celsius

BIO10 Mean Temperature of Warmest Quarter 10 Degrees Celsius

BIO11 Mean Temperature of Coldest Quarter 10 Degrees Celsius

BIO12 Annual Precipitation 1 Milimeters

BIO13 Precipitation of Wettest Month 1 Milimeters

BIO14 Precipitation of Driest Month 1 Milimeters

BIO15
Precipitation Seasonality
(Coefficient of Variation )

100 Fraction

BIO16 Precipitation of Wettest Quarter 1 Milimeters

BIO17 Precipitati on of Driest Quarter 1 Milimeters

BIO18 Precipitation of Warmest Quarter 1 Milimeters

BIO19 Precipitation of Coldest Quarter 1 Milimeters

In this background and in this study, due to the need to analyse the MaPP of Abruzzo and

to compare it with the other populations of the Black pine across Europe, two different

approaches  were  used  and combined.  The first  was the  evaluation  of  the geographical

distance combined with ecological features. Using the EUFORGEN distribution map as

baseline  (www.euforgen.org)  and  the  bioclimatic  dataset  from  WorldClim, the  “eco-

geographical” distance between the target area (the MaPP) and the whole range of the

species in Europe was checked applying the Mahalanobis distance method (Mahalanobis
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1936), The Mahalanobis distance is a multi-dimensional generalization of measuring how

many standard deviations away a specific location is from the mean of another location or

group of them. This distance is zero if means are the same whereas it grows as the first

moves  away. Mahalanobis  distance  is  not  affected  by  units  and scales,  and takes  into

account the correlations of the data set (Camussi et al., 1991). In our case, geographical

distance was measured in metres and climate data were obtained from WorldClim raster

maps with 30 seconds of arc resolution. To avoid redundancy on the following analysis,

high-correlated  variables  (Pearson's  coefficient  higher  than  1.0)  were  detected  and

removed from the database, similar to most recent studies (Metzger et al, 2013).

The second step was an ecological analysis which was performed using only the climatic

information and considering Pinus nigra's range as a domain. To characterise Black pine

subspecies growing sites, the polygonal shapefile of the distribution map was rasterized

with a spatial resolution of I km (the same of Worldclim maps) and divided into six parts,

corresponding to the six subspecies of  Pinus nigra. For each of them, climate data were

extracted  into  GIS  environment  and  a  Principal  Component  Analysis  (PCA)  with

correlation  matrix  (due  to  different  scales  between  variables)  was  used  to  analyse

ecological data and compress the information in to few not-correlated variables. The first

two Principal Component were then used to create a new “XY plot” where each location (=

pixel with an area of 1 km2) was projected, detecting differences between subspecies. In

such  new  environment  the  “ecological  position”  of  each  nigra subspecies  and  of  the

population of Villetta Barrea were investigated.

3.2 Climate data at Regional level: the interpolation of local data

As any other globally-interpolated data, WorldClim database has its pros and cons. Even if

it  is  widely  appreciate  for  the  Global  coverage  and  1  Km of  spatial  resolution,  it  is
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demonstrated that  accuracy on some regions  (e.g.  the Mediterranean area  or  mountain

regions)  is  quite  low  (Gonzalo,  2010).  As  reported  by  Hijmans  et  al.  (2005)  in  the

conclusion  section  of  their  published  paper,  WorldClim  data  is not  adequate  for  very

detailed  analysis  and  local  studies.  Reasons  lay  on  the  low  representativeness  of

mountainous  environment  (very  few  meteorological  stations  were  located  at  high

elevations). So, in many European cases and local studies, some problems could arise due

to the morphology of Mediterranean basin or fragmentation of the target species.

When a more detailed dataset is required, statistical  downscaling (Jones and Thornton,

2013) and interpolation of climatic data obtained by local monitoring network are the only

possible  ways.  Downscaling  methods  are  generally  based  on  regressions  (singular,

polynomial  or  splines)  or  on statistical  relationships  between climate  data  and widely-

measured  ancillary  data  (e.g.  elevation)  and  are  often  used  to  improve  prediction  at

national  level  of  Global  Circulation  Models  (GCMs).  On  the  other  side,  interpolation

methods are very common in climatology and connected studies but those represent a quite

complex  and  time-consuming  way  (Kurtzman  and  Kadmon  1999; Yang  et  al.,  2004;

Attorre and others 2007; Blasi et al., 2007; Ferrari and others 2007; Hofstra et al., 2008;

Huixia and others 2011; Brunetti et al., 2013). In both cases, to increase spatial resolution

and to obtain reliable surfaces, representativeness of meteorological network and statistical

relationships between climate and widely measured variables (elevation, distance from sea,

slope, aspect, etc.) are compulsory (Bhowmik and Costa, 2014). 

Concerning the study case and available data (Worldclim maps), a new climate dataset was

developed for this area interpolating regional monitoring network data to tackle problems

connected to global climate data in Mediterranean area and Abruzzo Region. Abruzzo has

a  relatively  abundant  and  well-distributed  meteorological  network  with  137  stations

(approximately 1/100 km2) for rainfall observation and, among the 137 stations, 57 for
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temperature (approximately 1/200 km2). The distribution is geographically-homogeneous

(Figure  8)  and quite  similar  to  other  Italian  regions  (e.g.  Lazio;  Attorre  et  al.,  2007).

Anyway, a known critical issue of this database was that, due to orographic conformation

of  Abruzzo,  the  spatial  environment,  especially  high  elevations,  was  not  properly

represented (Table 3). Meteorological data are stored by the Regional Agro-meteorological

Centre of the Region and freely distributed under request.

In this study, minimum, mean and maximum annual temperature were calculated averaging

a survey period of 40-50 years, depending on the lifespan of each meteorological station.

The same was done for precipitation data,  using a mean value of annual  and monthly
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precipitation. In both cases, climatic data were geo-referenced in WGS84 UTM 33 North

reference system (code EPSG 32633). 

Table 3: Range covered by Abruzzo's meteorological networks (percentage)

Network ELEV (m) SLO (%) ASP (degrees) DSEA (m) GSR (W/m  2  )

Temperature
0 - 1531
(52%)

0 - 197
(85%)

0 - 360
(100%)

0 - 99942
(95%)

558 - 2382
(98%)

Precipitation
0 - 1967
(67%)

0 - 197
(85%)

0 - 360
(100%)

0 - 99942
(95%)

558 - 2382
(98%)

Tested algorithms

Literature is full of examples of parametric and nonparametric interpolation methods. Most

of them enclose different algorithms of distance weighting (Kurtzman and Kadmon 1999),

single and multiple linear regressions (Maselli 2001; Blasi et al., 2007; Hofstra et al., 2008;

Brunetti et al., 2013), nearest neighbour algorithms (Yang et al., 2004), spline functions

(Sboarina  2001;  Hofierka  et  al.,  2002)  and  geostatistical  methods  like  kriging  and

cokriging in their forms (Cressie 1991; Ashraf et al., 1997; Attorre et al., 2007; Brunetti et

al.,  2013).  Anyway, it  is  very  hard  to  select  the  best  interpolation  method.  Quality  of

interpolation mainly depends on nature of data, statistical relationships between climatic

variables and physiographic parameters (elevation, slope, aspect and distance from sea),

study  scale  and  required  spatial  resolution  (Caruso  and  Quarta  1998;  Kurtzman  and

Kadmon 1999; Wong et al., 2004; Yang et al., 2004; Attorre et al., 2007; Blasi et al., 2007;

Hofstra et al., 2008; Huixia et al., 2011). As a consequence, comparative studies applied to

study  cases  are  very  frequent  in  literature  (Caruso  and  Quarta  1998;  Kurtzman  and

Kadmon 1999; Rea and Eccel 2004;  Wong et al., 2004; Yang et al., 2004;  Attorre et al.,

2007; Ferrari et al., 2007; Huixia et al., 2011; Brunetti et al., 2013).

To perform interpolation of climate data in Abruzzo, following the available literature and

especially  those  concerning  the  Italian  peninsula  (Attorre  et  al.,  2007;  Brunetti  et  al.,
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2013), nine of the most commonly-used or important algorithms were compared with the

same dataset. The aim was to obtain climate maps with 100 meters of spatial resolution.

Algorithms  were  grouped  in  two  big  families,  parametric  (with  the  subsections

geostatistical methods) and nonparametric. More in detail:

 Multivariate Linear Regression (MLR) was used as an example of general ordinary

least squares estimators;

 Inverse Distance Weighted (IDW) and k-nearest neighbor (K-NN) were detected as

quick and easy deterministic methods;

 Regularized  Spline  with  Tension (RST)  was  considered  as  the  main  method of

GRASS GIS software often used in many situation (Sboarina 2001; Yilmaz and

Tolunay 2012);

 kriging (Ordinary,  OK;  Universal,  UK;  and  Regression,  RK)  and  Cokriging

(Ordinary, OcoK;  and Universal;  UcoK)  were  used  as  most  powerful  and  well

referenced parametric and geo-statistics methods.

Comparisons were performed calculating four bioclimatic indices and the corresponding

climatic factors used to generate them. The four indices were calculated with the following

formulas for each meteorological station where both temperature and precipitation were

available (57 cases only).
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1) De Martonne Aridity index (1927):

where:

MAP = Mean Annual Precipitation

DMP = Driest month Mean Precipitation

MAT = Mean Annual Temperature

DMT = Driest month Mean Temperature

2) Emberger Pluviotermic quotient (1930):

where:

MAP = Mean Annual Precipitation

HMTx = Hottest month Maximum Temperature

CMTm = Coldest month Minimum Temperature

3) Rivas-Martinez Continentality index (2009):

where:

HMT = Hottest Month mean Temperature

CMT = Coldest Month mean Temperature

4) Rivas-Martinez Termic index (2009):

where:

MAT = Mean Annual Temperature

CMTx = Coldest month Maximum Temperature

CMTm = Coldest month Minimum Temperature
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Five  physiographic  parameters  were  used  as  co-variables  for  the  computation  in  the

analysis, adding them to Latitude (LAT) and Longitude (LON). From the Digital Elevation

Model (DEM) provided by the Regional Cartographic Office with a spatial resolution of 10

meters, a new DEM was obtained re-sampling the first one to a coarser resolution of 100

meters. After the re-sampling procedure, Elevation (ELEV), Aspect (ASP), Slope (SLO),

Distance from sea (DSEA) and Global Solar Radiation (GSR) were calculated for each

meteorological station  through GRASS GIS modules (GRASS Development Team 2014).

Brief description of tested algorithms

Multivariate Linear Regression (MLR) is a quite simple parametric method which

uses mathematical relationships between the parameter to be interpolated and one or more

variables known in the whole territory. It is well known that in case of climatic data and

especially for temperature, elevation is the main driving factor and this assumption has

been sometimes used to interpolate temperatures with regressive methods or to remove the

trends from the data (Ashraf et  al.,  1997; Rea and Eccel  2004;  Maracchi  et  al.,  2005;

Attorre et al., 2007). For the whole Italian territory, Blasi et al., (2007), for example, used a

weighted regression method with elevation to interpolate temperature data, weighting the

nearest meteorological station for each pixel at a geometrical resolution of 250 meters.

Multivariate techniques are also commonly used (Maselli, 2001) including slope, aspect or

distance  from the  sea as  independent  variables.  In  our  case,  for  each  parameter  to  be

calculated  (temperature,  precipitation  or  bioclimatic  index),  a  stepwise  regression

(backward type) based on the  Akaike's information criterion  (AIC,  Akaike H, 1974) was

performed to select best predictors and estimate regression coefficients.

Inverse Distance Weighted (IDW) is a deterministic and nonparametric method for

local interpolation where values at unknown points are calculated as the weighted average
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of  the  values  available  at  the  known  points  (meteorological  stations  in  climatology).

Weights  are  calculated  in  relation  to  the  (geographical)  distance  from the  point  to  be

interpolated  and  the  nearest  known  points.  Typical  problems  of  this  method  are  that

maximum and  minimum values  are  always  known  points  of  the  dataset  and  distance

between points does not  consider  differences  in  elevation.  For  that  reasons,  with IDW

algorithm, temperatures on relieves are very difficult to be estimated and, in such cases, to

avoid spatial drifts and when correlation between data to be interpolate and a co-variable is

high enough, a detrended-IDW (D-IDW) can give better results (Ashraf et al., 1997; Rea

and Eccel 2004;  Attorre et al., 2007). The interpolation process through the IDW, in this

study, was considered as an easy and fast-to-use interpolation method.

K-Nearest Neighbour (K-NN) algorithm (Cover and Hart 1967) is a nonparametric

method for classification and is also one of the simplest of all machine learning algorithms.

It  is  based  on  multidimensional  proximity  between  objects  and,  similar  to  IDW, the

unknown object is classified by a majority vote of its neighbours. The main difference

between  IDW  and  K-NN  is  that,  with  the  second  algorithm,  proximity  between

observations is evaluated not in a geographical sense but in a new multidimensional space.

In such case, new coordinates are two or more variables which are available for the whole

area and highly-correlated with the data to be estimated. Even if K-NN have been widely

used  in  forestry  to  predict  forest  variables  such  as  volumes,  forest  indices  or  forest

ecotypes (Mäkelä and Pekkarinen 2004; Hector et al., 2001; Chirici et al., 2012) in some

cases it was also performed to predict climatic scenarios (Yates et al., 2003; Sharif et al.,

2007). Anyway, even if the application of the K-NN in interpolation of climatic data is

limited, it may be successful for dense measurement networks.

Regularized Spline with Tension (RST, Mitas and Mitasova 1999; Neteler et al.,

2008) is a nonparametric interpolation method which belongs to numerical analysis. Unlike
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polynomial interpolation, RST works dividing the interval of analysis in more sub-intervals

and using  Tension,  smoothing,  segmax (i.e. maximum number of points in the segment)

and  npmin (i.e.  minimum  number  of  points  used  for  interpolation)  as  parameters  to

modulate the interpolation process. These parameters describe how far from the real values

the  interpolated  surface  will  be  and optimal  parameters  are  tuned-up through a  cross-

validation procedure, typically leave-one-out (Yilmaz et al., 2012). High parameters force

the surface shape (especially smoothing) while with low parameters the surface is more

regular. For further information see Neteler et al., (2008). Splines functions were used very

often  to  interpolate  climate  data due  to  its  speed  and  usability.  WorldClim  database

(Hijmans et al., 2005) is the most famous example and was created fitting a second-order

thin plate spline using latitude, longitude, and elevation as independent variables.

Kriging is a parametric and geostatistical method for interpolation introduced by

D. G. Krige in 1984 (Krige, 1984). Kriging is usually known as "The gaussian process"

and is believed to be the Best Linear Unbiased Method (Nalder and Wein 1998; Li and

Heap  2008).  The  variogram (or  semivariogram  depending  on  statistical  packages  and

software)  analysis  is  the  core  of  kriging  algorithm  and  is  an  evaluation  of  spatial

autocorrelation among observational points, as function of the distance between them. The

(semi)variogram model is the main option to be set and most used are Linear, Exponential,

Circular, Spherical and Gaussian. Parameters of each (semi)variogram model are:, range,

sill and nugget. The range is the distance value at which the model begins to become flat

(end of autocorrelation), sill is the value of (semi)variance at the range value and nugget is

the  value  of  (semi)variance  at  zero  distance.  In  the  complex,  many  different  types  of

kriging are available, which can work differently with the same dataset. Main differences

refer to statistical assumptions and construction of the (semi)variogram. Considering our

dataset  and  literature,  three  different  types  were  considered:  Ordinary  Kriging (OK),
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Universal Kriging (UK) and Regression Kriging (RK). With OK the spatial variation of the

variable that has to be interpolated is assumed to be statistically homogeneous in the whole

area  of  study.  In  addition,  the  mean  is  not  known  but  is  determined  during  the

interpolation.  In  UK  instead,  the  spatial  variation  (and  the  mean)  is  not  statistically

homogeneous but is driven by an external drift which is added to the Kriging model to

improve the prediction. For this reason, UK is alternatively called “Kriging with external

Drift” and very often used in climatology, giving best results when correlation with co-

variables is high enough (Attorre et al., 2008). Concerning RK, many attention must be

paid  about  the  theory  of  this  method,  due  to  many confusion  in  literature  and among

researchers. “Regression kriging” is a term that has been used to define many different

types  of  methods.  Antonic  et  al.,  (2001)  for  example,  defined  RK  as  “Kriging  after

detrending”  where  the  trend  function  and  estimated  residuals  are  modelled  separately.

However this is the same definition of UK and results are exactly the same. In other cases,

RK was used to define an ensemble method merging a regressive interpolation of data and

the ordinary kriging of regression residuals (Odeh et al., 1995; Attorre et al., 2007; Tveito

et  al.,  2008)  In  our  study,  RK  has  been  calculated  following  the  second  form  and

considering it as a variant of OK.

Cokriging is an extension of Kriging and follows the same statistical assumption

(normalized  data,  random  distribution  of  points,  analysis  of  autocorrelation)  but  deep

differences  exist  between  them  which  rely  on  internal  functions  and  complexity  of

calculations. In this case, only  ordinary and  universal cokriging are available. Cokriging

works  with  a  multivariate  (semi)variogram  (the  co-(semi)variogram),  uses  cross-

covariance functions and is  a  method that  needs  more time for  computation and more

efforts in modelling steps. It is proved to be very powerful when secondary information is

abundant and easy to sample and, in meteorology, it is often used combined with radar data
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(Schuurmans 2007) and when there is a high number of co-variables all over the area of

study, strongly correlated with the climatic data. For interpolation in Abruzzo region, in

this study, both Ordinary cokriging (OcoK) and Universal cokriging (UcoK) were tested.

Data analysis and comparison method

A statistical  analysis  of  available  data  is  very  important  to  ensure  the  quality  of  the

interpolation process and to improve the accuracy of results (Huixia et al.,  2011). Not-

normally  distributed  data  (in  case  of  parametric  methods),  errors  in  data  storage  and

outliers are the most common issues that must be detected and solved.

After  a  dataset-screening  and  before  any  other  statistical  analysis,  the  normality  of

distribution was tested for all variables (temperature, precipitations and indices) with the

Kolmogorov-Smirnov normality test (Dallal and Wilkinson 1986) and followed by a data

normalization  when  necessary. In  case  of  negative  values  of  temperatures  (e.g.  the

minimum temperatures of the coldest month - CMTm), a transformation from Celsius to

Kelvin degrees was preferred. Secondly, a screening for detection of statistical trends in

data  structure  was  made,  performing  a  multivariate  linear  regressions  between  each

climatic variables or indices and all physiographic parameters.

After data check, each interpolation method was set-up properly. For MLR each climatic

factor  or  bioclimatic  indices  had  its  own  regression  model  as  output  of  a  stepwise

regression of  backward  type.  For  OK,  UK,  RK,  OcoK and UcoK,  the(semi)variogram

model  (generally  an  Exponential-class  or  Spherical  model)  and  the  optimal  values  of

range,  sill nugget were selected through the analysis of scatterplots and (co)variograms.

For K-NN, the optimal number of neighbours and the kernel were calculated automatically

and concerning IDW and RST, default parameters were used. IDW's power was set equal

to 1 with n = 12 whereas for RST tension=100, smoothing=0.2, segmax = half number of
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observations, segmin = total number of observations available were used.

To compare models and in order to asses differences and rank them, a cross-validation

procedure was performed with a leave-one-out (LOO-CV) approach (Pichard et al., 1984)

due  to  small  number  of  observations.  Three  indices  were  used  to  assess  accuracy  of

prediction and calculated with the following formulas:

RMSE=√ ∑
i=0

n=57

( predicted−observed)2

n
MAE=

∑
i=0

n=57

|predicted−observed|

n

RMSE%=√ ∑
i=0

n=57
( predicted−observed)

2

observed
n

Root Mean Square Error (RMSE) was used to assess algorithms' accuracy as a simple and

efficient parameter, easy to measure and widely used in literature (Attorre et al.,  2007;

Blasi  et  al.,  2007;  Cencetti  et  al.,  2007).  Absolute  Mean Error  (AME) and percentage

RMSE (RMSE%) were calculated to add more information and to compare results with

different  scales  (Celsius  degrees  for  temperatures,  millimetre  for  precipitation,  pure

numbers for indices). RMSE% was also used to perform a nonparametric ANOVA through

the Kruskal-Wallis rank sum test (Kruskal and Wallis 1952) to rank all performances and

compare them also with WorldClim's results in Abruzzo region.

All acronyms of tested algorithms, bioclimatic indices, climatic factors and physiographic

parameters are reported in Table 4.
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Table 4: List of acronyms

GROUP Name Acronym

Interpolation methods

Linear Regression REG

Inverse Distance Weighted IDW

K Nearest Neighbors K-NN

Regularized Spline with Tension RST

Ordinary Kriging OK

Universal Kriging UK

Regression Kriging RK

Ordinary Cokriging OcoK

Universal Cokriging UcoK

Physiographic parameters

Latitude LAT

Longitude LON

Elevation ELEV

Slope SLO

Aspect ASP

Distance from sea DSEA

Global Solar Radiation GSR

Climate variables

Mean Annual Precipitation MAP

Driest Month mean Precipitation DMP

Mean Annual Temperature MAT

Driest Month mean Temperature DMT

Hottest Month mean Temperature HMT

Hottest Month maximum Temperature HMTx

Coldest Month mean Temperature CMT

Coldest Month minimum Temperature CMTm

Coldest Month maximum Temperature CMTx

De Martonne Aridity index DMAi

Emberger Pluviotermic quotient EMPq

Rivas-Martinez Continentality index RMCi

Rivas-Martinez Termic index RMTi

3.3 Structure of the seed stand (in space and time)

As reported  before,  the MaPP of  Villetta  Barrea can  be divided in  two different  parts

(chapter 2.2). While the Camosciara areas are covered by strict management rules and no

silvicolture is allowed due to the institution of the National Park, the seed stand is currently

managed  by  the  municipality  of  Villetta  Barrea.  Considering  the  aim  of  this  study
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(relationships between Black pine of Villetta Barrea in its natural range, silvicolture and

climate),  the  dendrometric  measurements  and  the  dendrochronological  analysis  were

performed only on the managed part of the MaPP. More in particular:

 dendrometric  measurements  were  used  to  characterize  the  seed  stand  and  to

describe the spatial structure of that part of the MaPP;

 tree-rings analysis was used to detect climate growth trends between the species

and the local climate to describe the temporal structure of the population and to

select most important driving factors for further analysis (Ecological Modelling).

The seed stand covers an area of about 105 hectares and, in the last management plan of

the  Municipality  of  Villetta  Barrea  (approved  for  the  time  period  2002-2011),  it  was

divided into five management units (Figure 9). To achieve our goals, 5 circular plots with

20 meters of radius were distributed across the managed area. Plots' position were initially

chosen  following  a  random but  stratified  criteria  (one  for  each  management  units)  to

describe the population variability and to investigate the most important areas for seed

production. However, after a first survey on the field, two management units (n.17 and

n.20) were not investigated due to small extension and similarity to others (n.17 was equal

to n.18 and only divided by the street) and species abundance (n.20 was mainly occupied

by  beech).  Consequently,  2  of  the  5  circular  plots  were  re-assigned  to  the  two  main

management  units  (18  and 21).  Each plot  was  localised  on the  ground with  GPS and

sampled trees were numbered to make areas permanent for further analysis, future surveys

or future projects.
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Dendrometric measurements

Diameter  at  breast  height  (DBH)  of  all  trees  in  each  plot  were  measured  and  10-15

representative heights were sampled to build hypsometric curve. Volumes were calculated

with ForIT package of R Cran software (Puletti et al., 2014) which is the implementation

of  the  biomass  and volume models  carried out  by Gasparini  and Tabacchi  (2011) and

Tabacchi et al. (2011) during the 2nd Italian National Forest Inventory.

The  dendrometric  data  were  used  to  determine  the  forest's  structure  in  relation  to

physiographic  parameters  of  the  site  and  the  past  management.  To assess  differences

between plots, an ANOVA on DBH was performed. Each plot was considered as a different

treatment while differences between them concerning slope and aspects were included into

the error's variance. Main features of the 5 plots are summarized in Table 5.
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Table 5: Main characters of plots

Plot Elevation Slope Aspect Manag. unit

I 1210 m 70% Est 21

II 1180 m 45% South 21

III 1200 m 50% West 19

IV 1170 m 10% South-Est 18

V 1180 m 60% South 18

Dendrochronology

Tree-rigs analysis is becoming a quite common step approaching MaPPs (Amodei et al.,

2012, Mazza et al., 2013) due to the possibility to investigate past dynamics and to detect

correlation  between  species  and  climate.  Anyway,  some  principles  must  be  carefully

considered and followed to perform an optimal analysis.

The technique is based on the “Principle of aggregate tree-rings” (Cook, 1987) which is the

most accepted in dendrochronology and considers a tree-ring series as a linear aggregate of

several  unobserved  sub-series  as  a  consequence  of  various  interactions.  This  principle

states that any individual tree-growth series can be "decomposed" into an aggregate of

environmental factors both "endogenous" and "exogenous" affecting the patterns of tree

growth over time. The terms "endogenous" and "exogenous" are used to differentiate forest

disturbances  that  were  developed  by  the  forest  trees  themselves  (endogenous)  from

disturbances that arise from processes independent of the forest (exogenous). For instance,

gap-phase stand dynamics are endogenous processes in the forest while an insect attack or

thinning activities are exogenous processes.
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The aggregate series in a fixed moment “ t ” can be expressed with the following formula:

where:

• Rt is the observed ring-width series;

• At is the age-size related trend in ring-width;

• Ct is the climatically-related environmental signal;

• D1t is the disturbance pulse caused by a local endogenous disturbance;

• D2t is the disturbance pulse caused by a stand-wide exogenous disturbance;

• Et is the largely unexplained year-to-year variability not related to the other signals.

At, Ct, and Et are assumed to be continuously present in Rt while D1t and D2t may or may

not be present depending on the intervention of a disturbance has occurred at a considered

time or not. When the aim is to study the relationships between growth (R t) and climate

(Ct,) the other factors should be minimized and consequently, a correct sampling of trees is

very important.

Following the structure of the formula, the data collection and the subsequent pre-analysis

on the seed stand of Villetta Barrea were made in order to minimize the effects of A, D1

and  D2  and  maximise  C.  After  dendrometric  measurements,  5-7  cores  for  each  plot

(depending  on  abundance  of  suitable  trees)  were  extracted  with  a  5-mm  diameter

increment  borer at  breast  height  on the stem of healthy dominant and straight  trees  to

maximize the effect of “C”. Later in laboratory, each series was prepared on a wooden
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support, measured with LINTAB6® and cross-dated to remove error due to missing rings

or human mistakes. After that,  each tree-ring series was standardized separately with a

double detrending procedure. The negative exponential curve was used to remove trends

due to the increasing tree circumference due to age (A) whereas low-frequency variance

and other disturbances (D1 and D2) were removed using a spline function (Cook, 1981)

with a 50% frequency response (cut-off)  of  10 years to  emphasize higher  inter-annual

frequency variance (Cook, 1981; Biondi and Visani, 1993; Amodei et al., 2012).

Before classical climatic correlation analysis, to complete the information derived from

ANOVA on DBH, also not-standardized and standardized tree ring series were used to

asses differences between plots (on the common growing period only). The analysis was

performed to check dissimilarities and to verify if plots would be grouped on the same way

of DBHs.

After  that,  the  influence  of  climate  on  tree-ring  growth  was investigated  using  mean

correlation  function  (CF)  and moving correlation  functions (MCF)  based on Pearson’s

correlation coefficients (Fritts, 1976). CF and MCF are based on the same assumptions but

they use different  principles  and time-period.  While  CF is  used to  consider  the  whole

growing period of trees, MCF uses a smaller period of time (generally 20-30-40-50 years

depending on available data and species sensitivity), repeated for the entire interval. In this

case, a 30 year window was used to avoid biases induced by extreme events and to retain

the influence of mid-frequency climate variations. In both cases (CF and MCF) monthly

climate variables were sequenced from October of the previous year (t-1) to September of

the year of growth (t) and results of correlation functions were tested for significance using

the 95% percentile range method after a bootstrap process with 1000 replications.

Concerning historical climate data used to estimate the degree of correlation between tree

rings  series  and climate,  data  from a  meteorological  station near  the MaPP of  Villetta
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Barrea and located in Barrea village (41.7570 N, 13.9919 E, approx. 1,000 metres a.s.l.)

were  initially  obtained.  However,  the  data  series  were  very  discontinuous,  especially

concerning precipitation data. To solve this problem, a complete dataset was derived from

ClimateEU  database,  an  unpublished  software  for  interpolation  of  climate  data  from

PRISM database (Daly et al. - http://www.ualberta.ca/~ahamann/data/climateeu.html) with

monthly  precipitations  and  temperatures  from  1901  to  2009.  ClimateEU  data  were

compared with local data calculating the fitness of ClimateEU which was tested with a

regression method. In addition, Mann-Kendall nonparametric test was applied to assess the

presence of climatic trends which could influence the analysis (Brunetti et al., 2006).

3.4 Ecological Modelling

The identification of potentially-suitable areas for forest  species in view of the  Global

Change effects  is  becoming  mandatory  to  support  the  management  of  forest  genetic

resources (Willis et al., 2009; Wang et al., 2012; Isaac-Renton et al., 2014; Porfirio et al.,

2014; Yu et  al.,  2014).  To apply climate change prediction in forestry activities,  many

different  subjects  and  researchers'  skills  are  involved.  On  one  side,  climatology  is

fundamental to forecast future scenarios (Giannakopoulos et al., 2005, 2009; IPCC, 2013;

Bellucci et al., 2013). On the other side, ecology and biology skills are basic to forecast

true impacts on ecosystems and species distributions. In addition, a matter of interest is

also the interaction of biotic versus abiotic factors at margins of the natural range (Guisan

and  Zimmermann,  2000)  and  especially  for  planted/introduced  species.  In  such

background, prediction of future impacts on forest ecosystems are a mixture of climatic

prediction and adaptability of the species that must be considered in a holistic view and

tackled under many different aspects (Pearson and Dawson, 2003; Austin, 2007; Trivedi et

al., 2008; Sinclair et al., 2010).
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Ecological Niche Models (ENM) and Species Distribution Models (SDM) are well known

methods  used  to  link  the  ecological  niche/distribution  of  forest  species  with  a  set  of

environmental variables, that can be used as predictors in a modelling procedure (Elith and

Leathwick, 2009). However, even if, in both cases, the aim is to predict the environmental

suitability  for  a  species  (i.e.  survival  or  performance)  and  they  are  generally  used  as

synonyms, literature is full of discussions about that issue due to the real possibility to

perform ENMs properly (Guisan and Thuiller, 2005; Elith and Leathwick, 2009; McInerny

and Etienne, 2012; Warren, 2012; McInerny and Etienne, 2013; Warren, 2013). The kernel

of the discussion is about the real possibility to perform ENMs which would require a full

knowledge  of  ecological  dynamics  that  are  impossible  to  include  into  a  mathematical

model.  For  instance,  inter-  and  intra-specific  competition,  seed  dispersal,  biological

connection between the target forest species and animals and many other issues should be

incorporated in into SDM to obtain areal ENM. In few words, to perform a real ENM

researchers should be able to define and model the real and the potential niche of a species.

• In ENM the core of the computation is the ecological niche and predictors are used

to  define  and  compare  it  with  the  background  ecological  environment  and

competitors;

• In SDM ecological niche concept is supplied by specie's geographical distribution

and, in such case, it is supposed that the natural range explicate all the ecological

power of the species.

In addition, both can also be used to incorporate future climate predictions and, in such

case, future distribution of species can be forecast. That become a very interesting way to

study and predict climate change effects on populations (Willis et al., 2009; Sinclair et al.,
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2010;  Attorre  et  al.,  2011;  Cheaib et  al.,  2012;  Pellat  et  al.,  2012;  Wang et  al.,  2012;

Forester et al., 2013; Isaac-Renton et al., 2014).

Tested algorithms

In this  study and as many other cases, the SDM approach was used due to amount of

information available and the biased geographical distribution of Black pine in Abruzzo

(see chapter 2.2).  A huge number of different algorithms for SDMs were performed in

literature,  often  compared  each  other  to  assess  algorithms'  power  and  suitability  for

different nature of data and ecological zones (Stockwell and Peterson, 2002; Zaniewski et

al., 2002; Pearson et al., 2003; Elith et al., 2006). Similar to interpolation of climatic data,

also  performances  of  SDMs  are  strictly  connected  to  data  accuracy  and  reliability.

Autocorrelation  between  presence  points,  collinearity  between  predictors,  biased

distribution  and  information  of  species  occurrence  (presence,  absence  and  pseudo-

absences) are  only few of the most  common problem in Ecological Modelling.  In this

work, through a SDM approach, four algorithms were compared:

• Generalized Linear Model (GLM)

• Surface Range Envelop (SRE, also known as BIOCLIM)

• Multivariate Adaptive Regression Splines (MARS)

• Random Forest (RF)

Each method is widely used in literature, each with its pros and cons. In this study, the four

methods  were  selected  to  study  differences  between  regression  methods  (GLM  and

MARS)  and  classification  methods  (SRE and  RF).  All  methods  were  implemented  in
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biomod2 package (Thuiller et al., 2014) which was adopted to perform the spatial analysis.

GLM is generally known as “Logit Model” it is used for binomial regression (1, 0)

and  it  is  widely  available  in  statistical  packages  (Bedia  et  al.,  2011)  and  the  optimal

regression  formula  is  generally  calculated  through  a  stepwise  procedure,  using  AIC

criteria. A purpose of this algorithm in this study was to compare specific algorithms for

species distribution modelling with a general and simple regressive method.

SRE, generally  known as BIOCLIM, is  a  simple and fast  algorithm (very few

computational-time is required for modelling) considered as example of profile-technique.

It is a presence-only algorithm (Beaumont and Hughes, 2002; Zaniewski et al., 2002; Tsoar

et  al.,  2007)  and  computes  the  similarity  of  a  location  by  comparing  the  values  of

environmental variables at any location to a percentile distribution of the training sites. The

closer to the median, the more suitable the location is. Anyway tails of the distribution are

not distinguished, so the 10th percentile is treated as equivalent to 90th percentile (Hijmans

et al., 2013). The algorithm has been often used for species distribution modelling for its

ready-to-use quality and is the classic “climate-envelope-model” even if,  as reported in

Elith et al. (2006) it generally does not perform as good as some other modelling methods,

especially predicting climate change effects (Hijmans and Graham, 2006).

MARS (Friedman, 1991) is a powerful nonparametric tool, mainly used for data

mining. It is an adaptive procedure and similar to GLM it is based on regressive methods

and well suited for high-dimensional problems (i.e, a large number of inputs). It can be

considered as a generalization of stepwise linear regression or a modification of the CART

method (Hasie et al., 2008). The main feature of MARS is that the algorithm works sub-

setting the dataset in different subsections which are modelled separately and connected at

the end of computation.

RF regression-model algorithm (Breimann, 2001) belongs to the machine-learning
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group and derives from Classification and Regression Trees. In this case, the regression is

built using predictors to classify object which are sampled randomly through a bootstrap

procedure. The number of randomly-sampled predictors is, in general, the square root of

the total  number for classification and one-third for regression.  Tree nodes are  created

using the randomly-sampled predictors (generally climatic variables or bioclimatic indices

as our case)  that  had the smallest  classification error  and,  for each step,  RF created a

different regression tree, splitting data into groups, the “bagged sample” and the “out-of-

bag sample”. The first is used to create the tree and the second is used to calculate the

classification error (OOB-error). After a specific number of trees (ntree parameter with is

generally set to 500) the “forest” is created and the computation ends.

Presence/Absence data

As  reported  before,  SDMs  works  with  species  occurrence.  Even  if  “presence”  and

“absence” concepts are quite easy to understand, they must be carefully considered before

modelling.  Indeed  at  the  present  time,  due  to  human  history  and  activities  on  forest

ecosystems, a quantity of the current geographical distribution of the target species was/is

influenced by human activities. Forest management for timber production, reforestation on

poor  and  vulnerable  soils  or  on  abandoned  lands,  etc...  have  strongly  modified  the

distribution of forest species especially in Europe as well as in most of the world. As a

result, in some cases such as  Pinus nigra spp., the present distribution, which could be

used as “presence points” in an Ecological Modelling activities, may not represent the real

ecological niche of the species.  In such context,  planted forests, for example, could be

considered in two different ways: i) “presence” if the target of the study is to analyse the

suitable envelope of the species, ii) “absence” if only the natural distribution should be

investigated.  Consequently,  and  similar  to  presence  points,  absence  data  could  be

Page 60 of 132



considered “true-absence” only when referred to natural distribution and when absence

data identify a real and completely unsuitable zone for the specie (for soil, climate and

ecological conditions). In addition, absence points are generally much more abundant than

presence and, when the proportions of presences and absences are not equal (or not equally

weighted), SDMs prediction can be asymmetric, deviating towards the extreme that has got

a  greater  number  of  cases  (Real  et  al.,  2006).  To solve  that  problems,  presence  and

absences must be carefully analysed and considered. However, despite definitions, which

brought researchers to define ENM only a theoretical model (McInerny GJ and Etienne

2012;  McInerny  GJ  and  Etienne 2013),  a  widely  adopted  solution  is  to  use  all  the

information  available  and  to  consider  presence  as  “true  presence”  and  absence  as  as

“pseudo-absence”.

Black pine of Villetta Barrea is a very interesting and significant species for Ecological

modelling due to its current distribution. The species has been widely used for afforestation

activities and was planted much far away from ts natural range. However a lot of artificial

stands are well adapted and well growing and this is something that must be considered

and included into  the  modelling  steps.  For  this  reasons,  in  this  study, the  concepts  of

“potential-presence”  and  “pseudo-absence”  were  adopted,  using  the  entire  current

distribution of the species in Abruzzo. Presence data were extracted from Abruzzo forest

eco-types map (Corona et al., 2009) considering as presence all polygons of the “Natural

stand of  Villetta  Barrea pine”  and any  other  population  of  Abruzzo  included  into  the

“Afforestation in mountainous areas” category. However, SDMs work with coordinates of

presence points as input data and with a simple extraction algorithm, polygonal data were

converted in coordinates, considering the centroid of each rasters' cell covered (in total or

in part) by a polygon belonging to the first or the second category.  As a result, 10,047

presence points in WGS84 UTM 33N reference system were obtained. On the other side,

Page 61 of 132



the same was done with pseudo-absences  data  (444,143 locations)  using all  the others

polygons. To solve the problem of prevalence, from the full dataset (10,047 presences and

444,143  absences)  an  equal  number  of  presence  and  absence  points  were  randomly

extracted weighting them equally during the computation (Barbet-Massin et al., 2012). As

a result, five different datasets (PArepI, PArepII, ParepIII, ParepIV, PArepV) with the same

total number of points (20,094), the same presence data but different pseudo-absences were

created.

Climate data preparation, future scenarios, model scores and evaluation methods

To model the present or future distribution of species with SDMs, it is very important to

respect some statistical and mathematical assumptions. Collinearity between predictors and

autocorrelation between presence/absence data are the most relevant issues that must be

analysed and removed.  To achieve that,  presence points were carefully  controlled with

geostatistical methods, whereas the 19 bioclimatic layers plus the soil map were tested for

collinearity (Montgomery and Peck, 1982).

To model  the  current  distribution,  climate  layers  were  obtained  interpolating  climatic

regional data whereas to predict the future distribution in Abruzzo two future scenarios

(ABR1  and  ABR2)  were  developed  at  regional  scale  from  them.  Following

Giannakopoulos  et  al.  (2005) predictions  for  the  Mediterranean  area,  present  climatic

layers were modified as reported in Table 6. On the other side, considering that predictions

were calculated for a small time period (from 2030 to 2060) the soil map was kept as

stable.  The two new dataset were developed for Abruzzo territory only, with the same

spatial resolution of current climate data (100 metres).
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Table 6: Climatic scenario for Abruzzo

SEASON
ABR1 ABR2

Temperature Precipitation Temperature Precipitation

Spring +1°C -25% +2°C -45%

Summer +2°C -40% +4°C -60%

Autumn +1°C stable +2°C stable

Winter +1°C -25% +2°C -45%

Accuracy of the four algorithms were assessed using a bootstrapping procedure with 30

runs for each dataset (Stockwell and Peterson 2002; Wisz et al., 2008; Liu et al., 2011).

During the computation, the importance of each predictors was estimated as an average

over the 30 runs.  At  the same time, to rank algorithms'  performances the  Area  Under

Receiver Operating Characteristic Curve (AUC; Phillips et al., 2006; Liu et al., 2011) and

True Skill  Statistics (TSS; Allouche et  al.,  2006)  were calculated.  AUC and TSS were

calculated with a split-sample approach (Van Houwelingen and Le Cressie, 1990), dividing

each dataset in “training sites” and “test sites” with a 80% - 20% splitting size (Boslaugh

and Watters, 2008; Melini, 2013) for both presence and pseudo-absence points. AUC and

TSS are both indicators of goodness of prediction and while the first varies between 1 and

0 the second ranges between -1 and 1.  TSS corresponds to  the sum of sensitivity and

specificity-minus-one and has the additional advantage of being fully independent from the

species prevalence and the size of the validation dataset. Results of evaluation processes

were  used  to  perform a  nonparametric  ANOVA on TSS values  considering  models  as

treatments and the five Presence/Absence datasets as Blocks.

After  model  comparison,  to  avoid  lack  of  information  and  biases  during  the  random

extraction, predictions of models with TSS higher than 0.7 (Araùjo et al., 2005; Forester et

al., 2013) were used to calculate an ensemble model. The whole procedure is graphically-

reported in Figure 10.
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With the ensemble model,  three different  suitability  maps were obtained,  one for  each

scenario (ABR0, AB1, ABR2). To calculate the potential suitable area for Black pine in

Abruzzo, maps were transformed rescaling pixel values between 1 (perfect possibility to

survive) and 0 (not suitable for the species). The binary transformation was carried out

using the threshold which maximize TSS, a method known to improve the accuracy of

prediction (Jimenez-Valverde and Lobo, 2007; Barbet-Massin et al., 2012). Pixels (1 pixel

= 1  ha)  with  a  value  equal  or  higher  than  a  specific  threshold  (0.7)  were  counted  to

estimate the potential suitable area for each scenario. The same procedure was performed
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for  elevation  values  computing  general  statistics  (minimum,  median,  mean,  mode  and

maximum) to check a possible rising at  higher elevation of the suitable envelope.  The

ROC-Optimized  Probability  Threshold  (ROC-OPT)  was  not  used  due  to  its  known

tendency to overestimate the true occurrence of species with low prevalence (Orallo et al,

2012).

3.5 Softwares, packages and desktop environment

Most of the work has been carried out with open-source software, freely available and

multi-platform.  QGIS  2.6  (QGIS  Development  Team  2014)  was  used  for  map

visualization, analysis and management whereas GRASS GIS 6.4.4 and R 3.1.1 (R Core

Team 2014) with eight added packages were used for statistical and geostatistical analysis:

• biomod2 (Thuiller et al., 2014) for SDM tools;

• bootRes (Zang and Biondi, 2012) for climatic correlation;

• dismo (Hijmans et al., 2013) for SDM tools;

• dplR (Bunn 2008; Bunn 2010; Bunn 2014) for tree-rings series analysis;

• gstat (Pebesma 2004) for geostatistical analysis and data interpolation;

• raster (Hijmans 2014) for managing raster data and interpolation;

• rgdal (Bivand et al., 2014) for managing vector data in R;

• usdm (Naimi, 2013) for data analysis.
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4. Results

4.1 Marginality detection

Results of the estimation of the Mahalanobis distance are reported in Figures 11 and 12 as

density-plot  and QQ-plot.  The analysis  detected a  relatively long distance between the

MaPP site and the remaining zones of the Pinus nigra range. The density function showed

a bivariate distribution mainly around 10 and 15 values and QQ-plot confirmed an overall

high value distance. Elevation was the main driving force and as long as it increased the

difference increased too.

Concerning PCA plots (Figure 13) only mauretanica and dalmatica subspecies were totally

enclosed into the “ecological cloud” of  Pinus nigra spp. (black points), which probably

mean  that  they  did  not  include  any  population  located  at  margins  of  the  ecological

distribution. The distributions of the others four subspecies were instead much wider and

partially overlapped. In that case, some ecological features could be probably shared.
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Figure 11: Mahalanobist distance between MaPP area and Pinus nigra range in Europe.
X axis = distance; Y axis = density/frequency. Higher values corresponds to higher elevations
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A more detailed plot on nigra subspecies and the population of Villetta Barrea is projected

in Figure 14, showing that the MaPP of Abruzzo (yellow points) is totally enclosed into the

nigra “environment” (red cloud).

Concerning Italian environment and the distribution of Balck pine spp. (only  nigra  and

laricio subspecies) Figure 15 reports Walter and Lieth diagrams for the main Seed stands

across Italy. The diagrams demonstrated the differences between southern locations from

Calabria (Sila and Aspromonte) and northern locations (Cles, Prato allo Stelvio, Resia and

Carso  Triestino).  Calabrian  provenances  present  a  typical  diagram  of  “Mediterranean

regions”  whereas  northern  provenances  are  adapted  to  colder  climate  without  winter

rainfalls.  Villetta  Barrea  (red  outline)  is  located  between  those  two  extremes,  without
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Figure 12: QQ-plot of mahalanobis distance. Black dots are the position of pixels of MaPP area while red
line is the y=x equation



higher winter rainfalls but with a small aridity period.

Figure 13: Principal Components coordinates plots. Each subspecies (colored dots) is projected against the
global distribution (black dots)

Figure 14: Principal Components coordinates plots for nigra subspecies (red)
and MaPP of Abruzzo(yellow).
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Figure 15: Walter and Lieth diagrams for the main Seed stands of Pinus nigra spp. Across Italy.
Villetta Barrea is outlined with red colour.



4.2 Interpolation of local climatic data

The  preparatory  analysis  on  climate  data  detected  that,  in  many  cases,  data  were  not

normally distributed (Table 7) and not strongly correlated with physiographic parameters

(Table  8).  Pearson  correlation  coefficients  were  relatively  low,  varying  between  0.62

(EMPq ~ ELEV) and 0.24 (DMP ~ SLO) and only 14 couples on 65 were statistically

significant. The regression-analysis'  results are reported in Table 9. Adjusted R2 ranged

between  0.15  of  the  temperature  of  the  coldest  month  (CMT)  and  0.41  of  Emberger

Pluviotermic Quotient (EMPq).

Table 7: Kolmogorov-Smirnov normality test for climatic variables and indices (α 0.05)

Data D value p-value

MAP 0.0973 0.0029

Transformed MAP 0.0577 0.3210

DMP 0.0917 0.0067

Transformed DMP 0.0604 0.2542

MAT 0.1150 0.0582

Transformed MAT 0.1049 0.1228

CMT 0.1365 0.0099

Transformed CMT 0.1100 0.0987

DMT 0.1184 0.0453

Transformed DMT 0.1114 0.0755

HMT 0.1012 0.1552

CMTm 0.1436 0.0051

Transformed CMTm 0.1140 0.0654

CMTx 0.1260 0.0247

Transformed CMTx 0.1131 0.0666

HMTx 0.1160 0.0539

DMAi 0.0959 0.2141

EMPq 0.1220 0.0340

Transformed EMPq 0.0970 0.2012

RMCi 0.1064 0.1115

RMTi 0.1308 0.0164

Transformed RMTi 0.0959 0.2148
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Table 8: Correlation Matrix (Spearman) between climatic data and physiographic parameters. In bold are
p-value < 0.005 (n=57)

MAP DMP MAT CMT DMT HMT CMTm CMTx HMTx DMAi EMPq RMCi RMTi

ELEV 0.45 0.18 -0.26 -0.23 -0.31 -0.30 -0.19 -0.26 -0.43 0.55 0.62 -0.41 -0.24

SLO 0.34 0.24 0.04 0.12 0.01 0.01 0.23 -0.02 -0.25 0.26 0.33 -0.34 0.08

ASP -0.11 -0.08 0.36 0.36 0.38 0.38 0.40 0.29 0.26 -0.37 -0.36 0.23 0.37

DSEA 0.36 -0.15 -0.32 -0.33 -0.38 -0.37 -0.40 -0.19 -0.22 0.32 0.34 -0.21 -0.33

GSR 0.02 -0.08 -0.03 -0.05 -0.08 -0.06 -0.05 -0.02 -0.04 0.02 0.05 -0.11 -0.04

Table 9: Regression models analysis. For each variables, significance of parameters are reported with the
following legend: p<0.1 (.), p<0.05 (*), p<0.01 (**), p<0.001 (***) not significant (ns), not used (-)

Variable
R  2  /

adj R  2 Interc. LAT LON ELEV SLO ASP DSEA GSR

MAP 0.22 / 0.20 *** - - * * - ns -

DMP 0.18 / 0.16 *** - - *** - ns *** -

MAT 0.20 / 0.17 *** - - - - * . -

DMT 0.22 / 0.19 *** - - - - * * -

HMT 0.22 / 0.19 *** - - - - * * -

HMTx 0.20 / 0.17 *** - - ** - ns - -

CMT 0.18 / 0.15 ** - - - - * . -

CMTm 0.24 / 0.20 ns - - - ns . * -

CMTx 0.14 / 0.11 *** - - ns - . - -

DMAi 0.33 / 0.29 *** - - ** - * - ns

EMPq 0.43 / 0.41 ** - - *** - - - *

RMCi 0.17 / 0.14 *** - - ns . ns - -

RMTi 0.17 / 0.14 *** - - ns - * - -

Concerning interpolation processes, RMSE, AME and RMSE% from each interpolation

method for all analysed climatic factors and indices are reported in  Table 10, showing a

very wide range of errors. RMSE for temperature varied between 2.08°C of RK for CMTx

and 2.87°C with K-NN for CMTm whereas for MAP was between 142.1 mm of UK and

230.2 mm for RK and for DMP was between 5.47 mm of OK and 10.04 mm with RST.

Minimum values  of  RMSE% were  found  interpolating  RMCi  with  UcoK  (3.8%)  and

maximum with interpolation of for CMTm with K-NN (295.3% of ). 
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Table 10: Cross-validation results for climatic factors and indices. Best results are reported in bold

ALGORITHMS

IDW RST MLRG K-NN OK RK UK OcoK UcoK

MAP

166.78 181.90 174.1 197.62 144.4 230.2 142.1 150.0 149.1 RMSE

130.95 103.34 149.55 147.43 102.5 176.8 96.8 102.0 102.8 MAE

17.7% 17.1% 20.5% 19.2% 13.4% 22.3% 12.8% 13.3% 14.8% RMSE%

DMP

7.28 6.17 10.04 7.95 5.47 5.56 5.65 6.03 5.83 RMSE

5.95 4.48 7.81 6.04 4.22 4.22 4.14 4.40 4.29 MAE

18.1% 20.1% 22.3% 24.1% 12.3% 12.3% 12.1% 12.6% 12.4% RMSE%

MAT

2.39 2.40 2.43 2.47 2.38 2.46 2.40 2.32 2.33 RMSE

1.85 1.83 1.97 1.91 1.90 2.04 1.91 1.82 1.83 MAE

22.7% 21.7% 23.1% 24.1% 23.1% 23.1% 23.4% 21.9% 22.0% RMSE%

CMT

2.21 2.34 2.32 2.43 2.33 2.17 2.33 2.22 2.23 RMSE

1.74 1.77 1.82 1.95 1.80 1.69 1.78 1.71 1.73 MAE

50.0% 255.8% 53.0% 57.2% 54.8% 50.4% 53.0% 53.0% 54.0% RMSE%

DMT

2.49 2.63 2.52 2.62 2.57 2.49 2.63 2.51 2.52 RMSE

2.03 2.06 2.04 2.08 2.06 2.04 2.08 2.00 2.00 MAE

12.9% 13.3% 13.1% 13.4% 13.4% 12.9% 13.6% 13.0% 13.1% RMSE%

HMT

2.65 2.61 2.51 2.61 2.54 2.46 2.60 2.48 2.49 RMSE

2.00 2.03 2.01 2.07 2.04 2.01 2.06 1.98 1.97 MAE

13.7% 13.1% 12.9% 13.9% 13.2% 12.7% 13.4% 12.8% 12.9% RMSE%

CMTm

2.46 2.53 2.74 2.87 2.47 2.42 2.58 2.47 2.50 RMSE

1.96 1.96 2.17 2.34 1.91 1.90 1.99 1.93 1.97 MAE

130.2% 291.6% 281.9% 295.3% 145.0% 138.5% 125.1% 103.8% 149.7% RMSE%

CMTx

2.14 2.31 2.14 2.17 2.17 2.08 2.18 2.09 2.13 RMSE

1.67 1.79 1.66 1.68 1.76 1.65 1.74 1.65 1.68 MAE

43.5% 36.1% 39.3% 45.1% 44.9% 40.9% 41.7% 41.1% 39.7% RMSE%

HMTx

2.22 2.36 2.20 2.14 2.27 2.21 2.25 2.12 2.17 RMSE

1.79 1.89 1.76 1.61 1.80 1.79 1.76 1.67 1.71 MAE

8.7% 9.0% 8.7% 8.8% 8.9% 8.7% 8.8% 8.4% 8.5% RMSE%

DMAi

6.46 6.13 6.87 6.59 6.11 5.98 5.79 5.97 6.13 RMSE

5.00 4.60 5.23 5.13 4.72 4.68 4.39 4.64 4.70 MAE

21.4% 23.6% 22.7% 22.0% 21.2% 20.7% 19.1% 19.1% 19.8% RMSE%

EMPq

36.01 45.24 90.84 37.16 38.27 84.83 43.71 35.60 37.28 RMSE

29.08 29.09 38.04 27.57 28.44 35.13 28.25 26.31 27.32 MAE

28.3% 31.5% 62.2% 28.8% 25.5% 58.0% 29.9% 23.9% 26.0% RMSE%

RMCi

0.67 0.67 0.66 0.65 0.67 0.67 0.65 0.65 0.65 RMSE

0.52 0.53 0.49 0.50 0.53 0.52 0.49 0.50 0.48 MAE

3.9% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% RMSE%

RMTi

70.07 70.96 73.56 72.96 70.92 69.56 70.96 68.80 70.09 RMSE

53.29 53.99 56.49 57.87 56.39 55.49 53.92 52.58 52.92 MAE

65.3% 55.2% 56.3% 58.2% 62.8% 58.2% 56.3% 56.5% 57.0% RMSE%
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Kruskal-Wallis rank sum test  on RMSE% showed a chi-square value of 1.7932 with 8

degrees of freedom and a p-value of 0.9867, assessing no difference between RMSE%.

Boxplots of errors are reported in Figure 16.

The comparison between WorldClim database and interpolated data is reported in Table 11

demonstrating the improvement of interpolation of local data. WorldClim showed higher

errors up to 90.4% in case of annual precipitation.
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Figure 16: Boxplots of RMSE% for the nine interpolation methods. Interpolation methods are in
alphabetic order and, as evident, many outliers are present



Table 11: WordClim data vs local interpolated data on bioclimatic variable number 12 (mean annual
precipitation) and 1 (mean annual temperature)

Variables Data or Method RMSE MAE RMSE%

MAP (bio12)
WorldClim 845.1 mm 816.7 mm 90.4 %

UK of local data 142.1 mm 96.8 mm 12.8 %

MAT (bio1)
WorldClim 2.87 °C 2.01 °C 24.5 %

OcoK of local data 2.32 °C 1.82 °C 21.9 %

4.3 Structure and growing trends of the seed stand

Dendrometric data were collected during the 2012 growing season and are summarized in

Table 12 and Figures 17 and 18. Mean DBH ranged between 22.8 cm of plot III and 28.3

cm of plot  and extreme cases were represented by plots number III and IV. Highest mean

height (19.5 m), maximum trees number (1178 tr/ha), maximum basal area per hectare

(60.2 m2) and maximum volume per hectare (574.5 m3) were measured in plot IV. On the

other hand, plot III represents the area with lowest trees (mean height was 11.8 m), smaller

basal area (39.6 m2) and volume per hectare (259.7 m3) and highest variation of diameters

(64%). In addition, plots III and IV were also characterized respectively by the oldest and

the youngest dominant trees. Hypsometric curves are compared in Figures 18. Plots I, II

and III had a very similar curve with the same slope but different values. the tallest trees

were measured in plot IV.

More in general, the structure of the population was very variable especially concerning

the mean height and volumes.
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Table 12: summary of dendrometric values for each plot. M_dbh = mean diameter at breast height (cm);
M_ht = mean height (m); Tr/ha = trees per hectare; G/ha_P = basal area of Pinus trees per hectare (m2);
Vol/ha_P = volume of Pinus trees per hectare (m3); G/ha_B = broadleaves' basal area per hectare (m2);

Age = range of sampled dominant trees (years).

PLOT
(M.unit)

M_dbh CV_dbh M_ht Tr/ha G/ha_P Vol/ha_P G/ha_B Age

I (21) 24.5 42% 13.9 1138 46.6 321.0 1.3 124-179

II (21) 26.4 56% 14.3 923 50.6 372.5 0.2 104-145

III (19) 22.8 64% 11.8 1082 39.6 259.7 0.7 143-184

IV (18) 28.0 35% 19.5 1178 60.2 574.5 0.8 80-99

V (18) 28.3 41% 16.52 724 45.7 266.0 2.0 104-118

Figure 17: Dbh frequecy
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Figure 18: Hypsometric curves

The  ANOVA on  DBH  confirmed  high  variability  and,  as  expected,  grouped  the  plots

following exactly the structure of the management plan (Table 13 and Figure 19).

Table 13: Results of Kruskal-Wallis Rank Sum Test and relative post-hoc test (Wilcoxon Rank Sum and
Signed Rank Tests)

Statistical Mean DBH Plot (management unit) Group

26.43089 IV (18) A

26.28571 V (18) A

23.02586 II (21) B

22.62903 I (21) B

19.18852 III (19) C
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Figure 19: Boxplot of DBHs

The dendrochronological sampling was made during the following year (2013) before the

beginning of the growing season. As for ANOVA on DBH, also the analysis on raw tree

rings series showed statistically significant differences among plots. However plots were

grouped differently but,  as expected,  following the age of sampled trees (Table 14 and

Figure 20). On the other hand, ANOVA on detrended (=standardized) chronologies on the

common growing period (1933-2012) did not demonstrate the same differences and mean

increment  were  not  significantly  different  (Figure  21).  In  such  condition,  the  mean

standardized chronology of the whole population could be calculated as a simple mean of

all the detrended series.
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Table 14: Results of Kruskal-Wallis Rank Sum Test and relative post-hoc test (Wilcoxon Rank Sum and
Signed Rank Tests) on raw chronologies

Statistical Mean ringwidth Plot (management unit) Group

1.515 mm IV (18) A

1.137 mm V (18) B

0.973 mm II (21) B

0.744 mm III (19) C

0.710 mm I (21) C

Figure 20 & 21: Boxplots of ring-width of the 5 mean raw chronologies and 5 mean detrended chronologies
on the common growing period (1914-2012)

In Table 15 the main statistics about tree rings series, plots chronologies and the mean

chronology of the population are reported. Ages of dominant trees ranged between 80 and

184 years with a mean annual increment between 0.627 mm (Plot IV Tree n.1 - P4T1) and

1.967 mm ( Plot V Tree n.1 - P5T1). Sensitivity was generally low whereas the first order

autocorrelation was quite high emphasizing the high inter-annual correlation between tree-

ring widths. Anyway, calculating first-order autocorrelation coefficients on standardized

indices,  absolute  values ranged between 0.11 and 0.22 which means that  only a  small

amount of low-frequency year-to-year variation was not corrected with the standardization

procedure.
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Table 15: Main statistics of tree rings series. M = mean increment; SD = standar deviation; SK = Skewness;
S1 & S2 = sensitivity of first and second order; G = Gini coefficient; AR = Autocorrelation;

ARS = Autocorrelation after standardization.
Values are expressed in millimetres and calculated on the whole length of the cores

Series First Last Years M SD SK S1 S2 G AR ARS

P1T1 1834 2012 179 0.896 0.281 0.924 0.160 0.162 0.172 0.751 -0.119

P1T2 1889 2012 124 1.016 0.340 0.767 0.192 0.188 0.185 0.679 0.041

P1T3 1868 2012 145 0.887 1.011 3.045 0.262 0.217 0.478 0.858 0.062

P1T4 1870 2012 143 1.022 0.747 4.240 0.210 0.210 0.298 0.688 0.091

P1T5 1867 2012 146 1.146 0.737 1.975 0.188 0.179 0.307 0.921 -0.077

P1T6 1864 2011 148 0.954 1.212 3.144 0.179 0.166 0.502 0.913 0.066

P1T7 1869 2012 144 1.054 0.720 2.585 0.184 0.178 0.304 0.874 0.144

M-P1 1834 2012 179 1.080 0.847 2.287 0.123 0.127 0.287 0.926 0.142

P2T1 1868 2012 145 0.989 1.256 2.648 0.254 0.209 0.538 0.911 -0.150

P2T2 1909 2012 104 1.341 0.572 0.752 0.233 0.229 0.232 0.728 0.101

P2T3 1873 2012 140 1.108 0.983 2.129 0.270 0.240 0.418 0.911 0.187

P2T4 1898 2012 115 1.241 0.659 0.453 0.184 0.176 0.299 0.883 0.126

P2T5 1886 2012 127 1.053 1.159 1.959 0.321 0.239 0.508 0.913 -0.046

P2T6 1892 2012 121 1.515 0.770 1.258 0.250 0.232 0.269 0.801 0.032

M-P2 1868 2012 145 1.137 1.493 1.163 0.156 0.157 0.359 0.899 0.100

P3T1 1870 2012 143 0.790 0.262 0.587 0.206 0.207 0.183 0.666 -0.177

P3T2 1858 2012 155 0.857 0.289 0.574 0.221 0.222 0.189 0.601 -0.114

P3T3 1837 2012 176 0.896 0.638 1.239 0.255 0.239 0.375 0.840 -0.013

P3T4 1829 2012 184 0.885 0.608 2.255 0.230 0.205 0.319 0.892 -0.095

P3T5 1829 2012 184 1.203 0.911 2.085 0.239 0.254 0.359 0.851 0.073

M-P3 1829 2012 184 1.036 0.679 2.692 0.147 0.151 0.279 0.925 0.067

P4T1 1914 2012 99 1.672 0.627 0.581 0.232 0.223 0.208 0.719 -0.056

P4T2 1933 2012 80 1.941 0.756 -0.033 0.206 0.203 0.218 0.718 -0.166

P4T3 1925 2012 88 1.659 0.843 1.747 0.194 0.174 0.258 0.791 -0.098

P4T4 1927 2012 86 1.631 1.344 1.161 0.264 0.227 0.427 0.888 -0.004

P4T5 1922 2012 91 1.718 1.519 1.684 0.282 0.247 0.437 0.822 0.205

P4T6 1918 2012 95 1.390 0.898 1.665 0.251 0.257 0.324 0.790 0.127

M-P4 1914 2012 99 1.745 0.785 0.698 0.165 0.162 0.249 0.872 0.060

P5T1 1907 2012 106 1.967 1.479 1.322 0.222 0.203 0.390 0.855 -0.030

P5T2 1908 2012 105 1.154 0.861 1.753 0.241 0.246 0.375 0.751 0.029

P5T3 1905 2012 108 1.758 1.072 1.375 0.276 0.258 0.321 0.766 -0.067

P5T4 1909 2012 104 1.512 0.926 0.920 0.183 0.190 0.334 0.891 0.070

P5T5 1895 2012 118 1.841 1.618 2.081 0.226 0.196 0.417 0.843 0.022

M-P5 1895 2012 118 1.984 1.62 1.916 0.156 0.157 0.402 0.852 0.078

chrono 1829 2012 184 1.578 0.823 1.165 0.141 0.146 0.278 0.873 0.081
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Before climatic correlations, ClimateEU data were carefully checked and compared local

data for the common time-period available (1955-2010). Regressions were always highly

significant with a very high adj-R2 for temperature but not for precipitations which due to

many missing values (mainly for and storage errors) in Barrea's  database.  However, in

every cases, slope of functions showed a very high p-level, which means that both the

ClimateEU's and Barrea's trends were statistically comparable (Table 16).

Table 16: Results of regressions analysis based on the linear formula y = mx + q. Significance of parameters
are reported with the following legend: p<0.1 (.), p<0.05 (*), p<0.01 (**), p<0.001 (***)

Variable Adj R  2 Intercept (q) Slope (m)

Minimum temperature 0.927 -0.655*** 0.918***

Maximum temperature 0.977 2.617*** 0.955***

Annual precipitation 0.369 15.705** 1.143***

The Mann-Kendall  test  assessed the absence of climate trends and an increasing linear

trend  in  annual  maximum  and  minimum  temperatures  was  clearly  observed  with

+0.009°C/year for minimum and +0.004°C/year for maximum. However particular trends

were detected in the periods 1900-1940, 1941-1975 and 1976-2010. In the first period,

minimum temperatures,  compared  with  the  maximum ones,  were  detected  as  growing

more  rapidly  (+0.015°C/year  versus  +0.006°C/year).  In  the  central  period  minimum

temperatures remained quite stable while maximums had a sensible decrease as long as

1960 and up to the same values of first years of 1900. In the third period, temperature

continued to rise with very similar mean values (+0.029°C/year for minimum temperatures

and +0.026°C/year for maximum).

Concerning precipitations, the same periods and trends were analysed, even if very low

adjusted-R2 (0.07  –  0.04)  demonstrated  a  lack  of  statistical  relationships.  Anyway,  a

general decrease between 1901 and 2010, even if relatively low and about -1.02 mm/year,
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was undeniable (Figure 22, third plot with green line) 

Figure 22: Time-series of the three climatic
parameters (Minimum Temp = blue;

Maximum Temp= red; Precipitation = green)

Concerning correlation between the species  growth and climate,  CF and MCF showed

different trends and results. With CF a significant and positive correlation was found with

minimum temperatures of previous December, current February and March and negative in

July  and  September.  The  maximum  temperatures  of  the  same  winter  months  were

correlated on the same way (positive) but the negative correlation was detected only in

May  of  the  growing  season.  Concerning  precipitation,  growth  was  significant  and

negatively correlated only with the events of the previous December (Table 17).

On  the  other  side,  the  analysis  with  MCF (Figure  23)  underlined  many  periods  with

significant relationships between radial growth and climate and while some were roughly

temporally stable, others appeared unstable throughout the period. Main correlations with
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temperatures were generally confirmed, even if  not continuous,  across the whole time-

series.  More  evident  and  continuous  correlations were  detected  with  minimum

temperatures  of  current  February  and  March  but  only  as  long  as  1950.  Further,  only

minimum temperatures of the current March were significant but only between 1975 and

1982.  Other  positive  correlations were  present  and  more  continuous  in  the  considered

period and concerning maximum temperatures of the same months. In the end, concerning

the last decades, significant correlations were found with October (minimum) December

and September (maximum) only.

Concerning precipitations very low and fragmented events were detected, especially in the

last years (1973-2010) and regarding May and June of the growing period (t).
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Table 17: Results of mean CF between mean detrended chronology and climate variables
CI = Confidence Interval

Variables Coef Significant CI.lower CI.upper

Tmin.prev.oct -0.0688 FALSE -0.2196 0.0956

Tmin.prev.nov 0.0985 FALSE -0.0695 0.2600

Tmin.prev.dec 0.2313 TRUE (+) 0.0347 0.4132

Tmin.curr.jan 0.0670 FALSE -0.1036 0.2601

Tmin.curr.feb 0.2223 TRUE (+) 0.0325 0.3900

Tmin.curr.mar 0.2660 TRUE (+) 0.1042 0.4197

Tmin.curr.apr 0.0488 FALSE -0.1261 0.2198

Tmin.curr.may -0.1062 FALSE -0.2838 0.0781

Tmin.curr.jun -0.1227 FALSE -0.2648 0.0248

Tmin.curr.jul -0.1861 TRUE (-) -0.3446 -0.0255

Tmin.curr.aug -0.1444 FALSE -0.3156 0.0302

Tmin.curr.sep -0.2209 TRUE (-) -0.3747 -0.0562

Tmax.prev.oct 0.0410 FALSE -0.1386 0.2226

Tmax.prev.nov 0.1196 FALSE -0.0755 0.3018

Tmax.prev.dec 0.2088 TRUE (+) 0.0360 0.3798

Tmax.curr.jan 0.0270 FALSE -0.1670 0.2141

Tmax.curr.feb 0.2250 TRUE (+) 0.0486 0.3811

Tmax.curr.mar 0.2989 TRUE (+) 0.1454 0.4287

Tmax.curr.apr 0.0088 FALSE -0.1475 0.1875

Tmax.curr.may -0.1712 TRUE (-) -0.3319 -0.0019

Tmax.curr.jun -0.0904 FALSE -0.2853 0.1016

Tmax.curr.jul -0.1361 FALSE -0.3187 0.0572

Tmax.curr.aug -0.1272 FALSE -0.3114 0.0617

Tmax.curr.sep -0.1864 FALSE -0.3583 0.0072

Prec.prev.oct -0.1830 TRUE (-) -0.3532 -0.0082

Prec.prev.nov -0.0227 FALSE -0.2215 0.1678

Prec.prev.dec 0.0958 FALSE -0.0967 0.2558

Prec.curr.jan 0.1304 FALSE -0.0222 0.2931

Prec.curr.feb -0.1115 FALSE -0.2909 0.0767

Prec.curr.mar -0.0417 FALSE -0.2236 0.1457

Prec.curr.apr 0.0407 FALSE -0.1401 0.2099

Prec.curr.may 0.1269 FALSE -0.0426 0.2758

Prec.curr.jun 0.2643 FALSE 0.0671 0.4326

Prec.curr.jul -0.0428 FALSE -0.2146 0.1332

Prec.curr.aug -0.0641 FALSE -0.2360 0.0919

Prec.curr.sep -0.0241 FALSE -0.2384 0.1695
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4.4 Future scenarios for Black pine in Abruzzo

Mean AUC and TSS values of 30 bootstrap runs and of full models for each dataset are

reported in Table 18, whereas global means and standard deviations are reported in Table

19. In every cases RF performed better than other three algorithms, with the highest AUC

and TSS and the smallest standard deviation. On the other side, SRE was the worst method

especially concerning TSS, which is also a more sensible index of goodness of prediction

than AUC (Allouche et al., 2006). With ANOVA only this high difference between SRE

and RF was detected as statistically significant (p-value < 0.05). Boxplots of Friedman test

on TSS are shown in Figure 24.

Table 18: Mean AUC and TSS of 30 bootstrap trials of partial (80% - 20%) and full models

Model PArep AUC TSS AUC_full TSS_full

MLR I 0.953 0.782 0.953 0.782

SRE I 0.813 0.626 0.813 0.626

MARS I 0.978 0.863 0.978 0.865

RF I 0.999 0.983 1.000 1.000

MLR II 0.954 0.784 0.955 0.784

SRE II 0.811 0.622 0.812 0.624

MARS II 0.975 0.849 0.979 0.865

RF II 1.000 0.983 1.000 1.000

MLR III 0.955 0.787 0.955 0.787

SRE III 0.816 0.632 0.815 0.629

MARS III 0.978 0.865 0.977 0.864

RF III 0.999 0.985 1.000 1.000

MLR IV 0.955 0.786 0.955 0.786

SRE IV 0.813 0.626 0.813 0.626

MARS IV 0.979 0.865 0.979 0.862

RF IV 0.999 0.984 1.000 1.000

MLR V 0.954 0.782 0.954 0.782

SRE V 0.810 0.621 0.811 0.623

MARS V 0.977 0.857 0.980 0.865

RF V 0.999 0.984 1.000 1.000
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Table 19: Global mean and standard deviation of AUC and TSS values

of partial (80% - 20%) and full models

Model ROC TSS ROC_full TSS_full

MLR
0.954 0.784 0.954 0.784

0.0009 0.0023 0.0009 0.0023

SRE
0.813 0.625 0.813 0.626

0.0022 0.0043 0.0015 0.0023

MARS
0.977 0.860 0.979 0.864

0.0014 0.0068 0.0011 0.0013

RF
0.999 0.984 1.000 1.000

0.0001 0.0008 0.0000 0.0000

Concerning predictors, the importance of each variable is reported in Table 20 with bio5

(Max Temperature of Warmest Month) that was detected as the more important variable for
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all models. Climatic data were much more important than soil data, especially in MARS

model where they were not useful at all.

Table 20: Variables importance (full models only)

Variables GLM SRE MARS RF

bio4 0.040 0.107 0.091 0.115

bio5 0.829 0.512 0.943 0.495

bio7 0.004 0.160 0.121 0.191

bio14 0.055 0.176 0.109 0.134

bio19 0.040 0.080 0.052 0.174

Ecopedology 0.155 0.254 0.000 0.108

The ensemble  model  was  then  created  to  forecast  future  distribution  of  Black pine  in

Abruzzo, as a weighted mean of prediction of full models with TSS > 0.7. Tables 21 and 22

report values related to potential suitable area and elevation limits for the three modelled

scenarios.  In  ABR0 scenario  the  ensemble  model  calculated  229,991  hectares  of

potentially-suitable area (pixels values > 0.7), much higher than the present distribution

which is 19,185 ha. In  ABR1 and  ABR2 this estimated area decreased very strongly and

respectively of -72.1% and -96.5%. According to this prediction, also elevation of suitable

envelope  was  predicted  to  change.  Minimum elevation  of  Black  pine's  populations  in

Abruzzo  was  predicted  to  increase  from  342  metres  a.s.l.  of  the  present  potential

distribution to 1,530 metres of the second scenario (+347.4%). Mean elevation shifted of

approximately +700 metres and maximum elevation reached 2,431 metres (+18.4%).

Table 21: Potential distribution in hectares for model and scenario (cells value > 0.7)

EM_ABR0 EM_ABR1 EM_ABR2

229,991 ha
64,107 ha
(-72.1%)

2,244 ha
(-96.5%)
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Table 22: Elevation variation in metres (and percentage referring to ABR0) for model and scenario
(cell value > 0.7)

Model Minimum Median Mean Mode Maximum

EM_ABR0 342 1,265 1,259 1,272 2,054

EM_ABR1
392

(+14.6%)
1,638

(+29.5%)
1,634

(+29.8%)
1,657

(+30.3%)
2,488

(+21.1%)

EM_ABR2
1,530

(+347.4%)
2,010

(+58.9%)
1,979

(+57.2%)
2,096

(+64.8%)
2,431

(+18.4%)

Finally, Figures 25 and 26 represent a graphical comparisons between the current (ABR0)

and the worst (ABR2) modelled scenarios in the surrounding area of Villetta Barrea. Green

colours (dark green and clear green) correspond to “potentially-suitable area” whereas red

colours (yellow, orange and red) were used for the not suitable lands. The model correctly

predicted the current natural distribution in  ABR0,  which was drawn as black polygons

(Figure  25).  However  in  ABR2 the  situation  was  completely  changed  and  current

distribution was not predicted to be suitable anymore. In this last scenario, three different

zones were selected as suitable by the model on the mountains surrounding the Sangro

river. The first one was on the higher parts of the Camosciara area (“Monte Capraro”,

“Monte Petroso” and “Monte Tartaro”) whereas other two were on the opposite side of the

valley on “Monte Greco”, “Monte Marsicano” and “Monte della Corte”.
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Figure 25: ABR0 scenario. Green colours correspond to areas where the species can survive at the present
time whereas red and yellow are not suitable for the species

Figure 26: ABR2 scenario. Green colours correspond to areas where the species could probably could move
to survive in future whereas red and yellow areas are not suitable for the species
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5. Discussion

5.1 Ecologically-marginal population or not?

The  marginality  analysis  showed  different  results  and,  apparently,  the  Mahalanobis

distance and PCA plots seemed to be discordant. On one side the Mahalanobis distance

detected a considerable difference between the ecological environment of the MaPP of

Abruzzo and the ecological feature of Black pine subspecies across Europe. On the other

hand, the PCA showed that the MaPP was apparently well included into the “Black pine

ecological  environment”.  Anyway,  in  both  cases,  some  additional  issues  must  be

considered  and,  as  the  main  aspect,  the  characteristics  of  climate  data  used  for  this

analysis. As mentioned before, WorldClim's spatial resolution is 1 km which is probably

good at European scale and continental zones but not for Mediterranean area neither for

Abruzzo.  Many  studies  suggested  WorldClim  dataset  as  a  good  reference  map  but

preferred  interpolation  at  local  level  especially  in  mountainous  zones  (Hijmans  et  al.,

2005).  Concerning  that,  other  dataset  were  available  for  these  study,  for  example

ClimateEU  software.  This  is  an  unpublished  software  package  for  the  European

environment  and  equivalent  to  ClimateWNA,  which  was  created  for  Western  North

America  (Wang  et  al.,  2012;  Hamann  et  al.,  2013).  In  both  cases  the  databases  were

generated with the Parameter-elevation Regressions on Independent Slopes Model (PRISM

- Daly et al., 2008). The software can be used to query climate data at any location of the

entire European Union countries  (from 34.26° to 71.24° of Latitude and from -10.74° to

44.24°  of  Longitude) and  to  generate  gridded  climate  surfaces  in  Albers  Equal  Area

projection. Anyway, climate data are often very similar to WorldClim, the interpolation

method and the spatial resolution is coarser (4 km) and, in conclusion, WorldClim remains,

in any cases, the most detailed and used global reference layer. That's why, even in this
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study, WorldClim database was preferred. Another problem of many Global climate data is

the  interpolation  method  which  influenced  also  our  results.  In  Mahalanobis  analysis

elevation was detected as the main driving force to discriminate differences. Elevation is

well known to be a very important variable which influence climate variations but it is not

the only one. Even distance from sea, slope, aspect, solar radiation and soil's nature must

be considered in models as predictors of environmental variability. In WorldClim database

(and ClimateEU too) elevation was the only physiographic parameters  (Hijmans et  al.,

2005). As a consequence, elevation as main driving force for variability was an expected

result.

As a second issue, the use of PCA 2D plot mus be carefully weighted. In our case, the first

and the second components explained only the 60% (approximately) of the total variance

which means that a huge amount of variation is not considered, probably hiding many

other features. More simply, it is very likely that two observations which seem to be very

close each other in a 2D plot would be very far away in a 3D plot and in a multivariate

environment.

Concerning genetic data, the knowledge about the population of Villetta Barrea is quite

scarce.  As  reported  in  others  sections,  many  investigations  were  conducted  in

Meidterranean area but most of them considered only populations from Calabria, Sicily,

Corsica  and  Northern  part  of  Italy  (Alps).  However,  recent  studies  have  enforced  the

correlation  between  morphological  traits  and  genetic  structures  of  the  Black  pine's

populations  (Bruschi  et  al.,  2006;  Rafii  and  Dodd,  2007)  and  it  was  evident  that  the

population of Abruzzo is quite different from the others (see Table 1).

Finally, summarizing the collected results, available genetic information and the quality of

performed analysis, the MaPP of Villetta Barrea partially match some requirements that

were indicated by Hampe and Petit (2005). The isolation from the core and the possibility
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to find very old trees, as long as 500 years old in Camosciara area (Biondi and Visani,

1996), suggested the possibility to classify it as a “rear-edge, isolated and Altitudinally-

MaPP”. Anyway, genetic aspects such as heterozigosity, within-population diversity and

Gst should be provided with further specific analysis to classify the population properly,

comparing it with other natural stands from Italy and/or Europe (maybe from Calabria,

Sicily, Corsica, Trentino South-Tyrol and Friuli-Venezia-Giulia).

5.2 Interpolation of climatic data at local level

Analysing the bare results (RMSE) of the spatial interpolation at regional level, bad results

seemed to be obtained. The comparison demonstrate that none of the nine algorithms was

suitable for the interpolation of all variables at the same time, RMSE for climatic factors

were often quite high (around 2°C) and no significant differences were detected between

models.  In  addition  results  were  worse  than  others  cases  of  study  performed  in  Italy

(Attorre et al.,  2007; Blasi et al.,  2007). Reasons rely on fact that Abruzzo, despite the

relatively  small  geographic  extension,  has  a  very  particular  orographic  conformation,

determining a high climatic variability without possibility to determine a specific external

drift. Abruzzo’s geographic position (Mediterranean region and eastern side of Italy) and

the altitudinal ranges (from sea level to 2912 metres) nearby the coast which represent a

barrier to continental winds and precipitations from central Europe and the Balkans (Di

Lena  et  al.,  2013)  enforce  the  complexity  of  interpolation.  An  additive  problem  that

increased  difficulties  of  interpolation  in  Abruzzo  is  the  distribution  of  meteorological

stations.  Several  studies  demonstrated  the  importance  of  the  amount  of  data  for

interpolation (Sluiter, 2009) but very few discussed about their distribution (Wong et al.,

2004;  Bhowmik and Costa, 2014).  As explained before (see Methods chapter), Abruzzo

has a good network (1 station on every 100 squared km for precipitation and on 200 for
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temperatures)  but  it  is  not  representative  of  higher  elevation  and  consequently,  more

complex and time-consuming methods (as OcoK and UcoK) didn't performed properly in

mountain  zones  and  at  higher  elevations.  As  reported  in  Cencetti  et  al.,  (2007),  this

demonstrates that model's complexity and prediction's accuracy are not always connected

to each other.

Anyway, there are many other features that must be considered and discussed. First of all,

even if  very slight,  we can  say that  interpolating  temperatures  and precipitations  with

geostatistical parametric methods (especially RK and OcoK) gave best performances. RK

and OcoK were generally the best algorithms for temperature interpolation (5 cases on 7

for RK and 2 on 7 for OcoK) whereas UK and UcoK performed well for MAP and OK

with DMP data. Also concerning indices, best results were obtained with UK (for DMAi),

OcoK (for EMPq and RMTi) and UcoK (for RMCi). In addition, even if ANOVA did not

demonstrate statistical difference between models, parametric methods always performed

better than nonparametric. Parametric methods, despite of all compulsory requirements like

normality of data,  analysis autocorrelation,  etc.  use more information and geostatistical

relationships  between  available  points  (Rea  and Eccel  2004,  Cencetti  et  al.,  2007).  In

addition, geostatistical methods provide also variance of prediction, which describes the

spatial quality of the results helping researchers in understanding the results.

Secondly, it is indubitable that errors of predictions were quite higher than similar studies

at regional or national scale. For instance, not very far from Abruzzo, but on the opposite

side of Apennines (the region of Lazio), Attorre et al., (2007) interpolated similar climate

factors and indices with lower RMSE. Anyway reasons rely on statistical  relationships

between climatic  factors  and physiographic  parameters.  In  Lazio  very  high  correlation

were detected and, in these cases geostatistical methods such as UK (kriging with external

drift) as the best interpolation method. Anyway, in some cases such as our case of study,
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the aim of the comparison is to solve the problem of low spatial resolution of global data.

In this  case,  if  we compare  the  interpolated  data  with  WorldClim data  (Table  22)  the

improvement is evident. RMSE of WorldClim maps,  calculated as Root Mean Squared

Error  of  differences  between  the  value  of  each  meteorological  station  and  the

correspondent raster cell of WorldClim layers, is around 2.8 °C higher than RMSE derived

from local interpolation. 

As  additional  issue,  interpolation  of  climate  indices  must  be  discussed.  The  study

demonstrated also that the interpolation of DMAi, EMPq RMCi and RMTi reduced both

computational  time  and  RMSE%  (Table  10).  This  happened  because  mathematical

operation  between climatic  factors  worked  as  data  transformation  which  increased  the

relationships  between  dependent  and  independent  variables.  Anyway,  correlations

remained low and even regressions had small, R-squared (Table 7). Nevertheless, available

data must be considered and statistically weighted before decision. When more rainfalls

data than temperatures data (and vice versa) are available (as our study case) the loss of

information in case of interpolation of bioclimatic indices must be considered. In fact, in

our case, to calculate indices we used only 57 points, the same as for temperature but less

than  the  precipitation  dataset.  In  such  cases  a  sensible  loss  of  information  must  be

considered  and,  even  if  with  lower  errors,  in  such  case  the  decision  was  not  to  use

interpolated indices.

So, with the necessity of a high spatial resolution maps  in a heterogeneous and complex

area,  representativeness  of  climatic  data  is  the  main  driving  factor  to  obtain  reliable

prediction.  If  statistical  relationships  between  climatic  factors  and  physiographic

parameters is missing, it is impossible to use most complex and powerful algorithms (such

as  Universal  cokriging)  and comparison become the  only  way to  work.  Consequently,

interpolation  of climatic  and  bioclimatic  indices  is  very  time-consuming  and  must  be
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studied very carefully. Often temperature and precipitation data are provided by different

meteorological  networks  and  can  have  different  consistency. The  more  accurate  (and

detailed)  will  be  interpolated  layers,  the  more  reliable  could  be  predictions  of  climate

change effects. MaPPs are a fragile ecosystems located at margins of species distribution

where Global change will be more dangerous for forest populations, with loss of adaptive

genetic diversity (Csaba et al., 2009).

5.3 Seed stand structure and interactions with climatic factors

Results  stressed  that  the  seed  stand was  structured  as  a  pure  Black pine  forest  where

broadleaves were very rare and more present where local conditions (such as ditches or

more fresh expositions) allowed them to be more competitive. As overall, concerning the

vertical  structure,  the population had two well  separated levels with the Black pine as

dominant species. Beech and ash were mainly present as stumps due to selective cutting in

the past years and animals effects. Anyway in many areas, especially where beech was not

able to compete, such as southern exposures or thinner soils, Black pine occupied both

levels.

Dendrometric data collected in 2012 did not reported any significant difference between

the  present  time  and  the  situation  before  the  management  plan's  approval.  In  fact  no

management activities were conducted during the last years, as reported into the economic

book of the management plan.

Data from plots and ANOVA on DBH demonstrated that the structure of the forest was

influenced by the  (past)  forest  management  but  also  that  mean  increment  was  mainly

influenced by age,  fertility and ecological dynamics.  As a  consequence,  three different

structures were dominating the population:
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• Adult sections (management unit 18 - plots 4 and 5):  parts of the seed stand

which can be assimilated to even-aged populations with big diameters and small

variation between them. In these parts, volumes were mainly related to the total

number of trees and variable from 280 m3/ha up to 570 m3/ha. Maximum age of

dominant trees varied between 80 and 120, small  diameters were very rare and

mainly referred to young broadleaves. Maximum heights of trees were around 21

metres.

• Old sections (management unit 21 - plots 1 and 2): trees were smaller than the

previous group, mainly due to the lower fertility. Trees number was less variable

but coefficient of variation of DBH was higher. Volumes were quite homogeneous

around 350 m3/ha but ages of bigger trees were very different, from 104 to 179

years. In this case, structure was assimilated to uneven-aged populations.

• Very old sections (management unit 19 - plot 3): mean DBH and height were the

smallest of the whole area. Density was very high, mainly due to high number of

small  trees and coefficient of variation was high too,  indicating a very variable

composition. Volumes were the lowest, around 250 m3/ha and both vertical levels

were populated by Black pine. Also these part could be assimilated to and uneven-

aged populations, were the Black pine was able to regenerate naturally. In this area

the oldest (dominant) trees were found, from 143 to 184 years old.

Concerning seed production, it was very good in every part. Abundant amount of cones

were stored on the branches each year the population was surveyed (2012-2013-2014) and

concerning health of tree no dizziness were registered. Only in some cases and some areas,
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trees had deep injuries due to past activities of resin extraction (Figure 27).

Figure 27: An adult pine with the consequences of past resin exploitation

Concerning  climate-growth  relationships,  dendrochronology  demonstrated  that,  despite

different mean increment between the zones, which was mainly connected with the age of

trees, the entire population had reacted at the same way. In this case, as expected, forest

(past) management didn't play a key role on that. As reported in many other studies on

Black  pine  spp.  sensitivity  to  high  summer  temperatures  was  confirmed  (Génova  and

Fernández 1999; Martin-Benito et al. 2010; Amodei et al., 2012). On the other hand, no

correlation with precipitations effects was detected and reasons probably rely on two main

causes. On one side there is the autoecology of Black pine of Villetta Barrea which is a
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little bit more tolerant drought stresses than others subspecies (Gellini and Grossoni, 2003).

On the other side, it is known that soils' nature and local ecological conditions can enforce

or reduce water availability during different seasons as well as amount snow on winter. It

was demonstrated that growth response and climate should be considered according to soil

substrate characteristics and that pines on quartzite bedrock were much more sensitive to

precipitations than similar populations on dolomite and calcareous bedrock (Génova and

Martinez-Morillas 2002). In calcareous soils the effect of chemical alteration of calcareous

may offer the opportunity to pine roots to explore deeper levels of the soil (Amodei et al.,

2012).

The positive correlation between radial growth and late-winter temperatures (February and

March) in CF results was also mentioned by Linares and Tiscar (2010) on Salzmann pine

in southern Spain. In these case, trees may open buds earlier and, consequently, increase

the length of the growing season. These effect is very likely to happen in Villetta Barrea,

where water availability was demonstrate not to be a problem. Results from MCF analysis

dove the attention on few months with very unstable correlation and without statistical

significance in the last decades. Months that were detected as main driving forces with CF,

proved to be relevant only for past events such as temperatures of February and March. On

the opposite, some factors that were not relevant with CF become important with MCF

analysis and especially in the last decades, such as minimum temperatures of the previous

October and current September. In this case connection is probably linked to cold stresses

in which are likely to happen in late September at high elevation. High temperatures in the

late  summer  can  induce  a  longer  growing  season  which  can  suddenly  stop  when  an

extreme event occurs. In this case the moving windows approach of MCF demonstrated to

be a very good tool to study adaptability to climate change of forest species. Anyway, the

genetic provenance must also be considered as a possible driver for variability.
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5.4 Ensemble modelling and future scenarios for the MaPP in Abruzzo

Despite  many recent  works  used  RF as  unique  (or  unique-based)  algorithm to  predict

present and future distribution of forest species (Wang et al., 2012; Henderson et al., 2014;

Isaac-Renton et al., 2014), even regression-based models (GLM and MARS) performed

quite well in this study. However, as expected, RF was the model that showed higher TSS

and AUC and contribute more consistently in projections whereas SRE confirmed its poor

ability in SDM applications and its unsuitability to predict climate change effects (Hijmans

and Graham, 2006). Anyway, the use of a group of algorithms, runs and datasets  with

biomod2 ensemble  weighting  method,  can  consistently  contribute  to  improve  RF

prediction which is often affected by random extraction of trees and variables. On the other

side, the possible overfitting of some models (such as GLM and MARS) can be reduced by

RF. In these context,  ensemble model  of  biomod2  package  can correct  some biases  in

calculations, making the prediction more stable than the classical packages of the various

algorithms (randomForest - Liaw and Wiener, 2002;  earth - Milborrow 2014;  stats - R

Core Team, 2014).

Concerning TSS values for selecting models, many works used 0.7 as a useful threshold

(Araùjo et  al.,  2005; Forester  et  al.,  2013).  In our case,  the same level was used and,

analysing  ANOVA results,  it  is  evident  that  the  only  one  model  that  was  statistically

different from RF was also the only one that had TSS values under 0.7. So, in this case,we

could add that RF could be even considered as a “decision-maker” algorithm confirming

its supremacy to other methods.

Analysing changes in species distribution and elevation movement, models reported a very

high variation of suitable area. Anyway, the first aspect that must be considered is why the

suitable area in ABR0 was so overestimated than the real distribution (+2,000%!!!). SDMs
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rely only on occupied ecological niche, compared to the environmental variability. On the

opposite, forest ecosystems are a dynamic and complex system with a mixture of species

which interact and compete for natural resources and where,  the modelled species can

prevail or not for ecological dynamics (illness, slope, aspect, nature of soils, seed dispersal,

etc.) or human-connected reasons (thinning activities, timber production, etc...). Anyway,

this  is  a  quite  common issue  happening  in  ecological  modelling  activities  and  due  to

impossibility of including in model inter-specific competition. In addition, we must also

consider that Black pine is a very plastic species which can grow in a very wide spectrum

of areas. As a consequence, it has been widely planted in the past across the region and

even in areas where it couldn't grow naturally due to competition between species (Beech

and Oaks above the others) or spatial distance between natural areas and planted zones.

However this is a know aspects, due to the concept of “potential suitable area” that was

used in this study as a measurement of the complete interaction between the climate and

the species in Abruzzo.

Concerning future distribution, no one of present part of the MaPP is forecast to be stable

in ABR2 scenario and the predicted loss of suitable area was very close to total extinction

(-95%).  Abruzzo's  topographic  morphology  was  predicted  to  play  a  key  role  in

conservation of the MaPP. In addition, the model suggested that, in some cases, trees at

higher elevation in Camosciara area, that are not able to develop cones at the moment, will

probably become reproductive due to warming climate. In this case, those trees may allow

the species to colonize new territories at higher elevations, increasing migration capacity of

Black pine of Villetta Barrea. In this context, that “new” source of seeds will be a huge

advantage versus competitors such as the beech. Beech and/or Oaks are frequently mixed

with Black pine in many zones across Abruzzo, Italy and Europe competing for the natural

resources. However those species are not able to migrate at higher elevation without the
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help of animals.  In addition future-suitable lands are actually bare and inhospitable for

trees  species  and,  maybe,  in  this  scenario,  Black pine  will  probably  be more  adapt  to

colonize those new environments.
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6. Conclusions and future development of the research

In this work a case study with a very important forest species for Mediterranean area was

presented. The Mediterranean regions harbour most of the European genetic variability and

many micro-habitats occur in this area that can supply suitable conditions for populations

of many forest species. However some gained information and results must be summarized

and enforced:

• The  MaPP of  Villetta  Barrea  is  a  “rear-edge  and  altitudinally-marginal  forest

population” but no reliable information were added concerning ecological traits or

genetics in this  study. Field data (not  reported in  this  work) confirmed that  the

population of the Camosciara area is composed by old and small trees living in the

higher parts of mountains but, even if not sampled, we can assume that these trees

had reacted in the same way of the ones sampled in this study from the seed stand.

• Global climate data are not accurate enough for local studies.  The Mahalanobis

distance and PCA detected a very high environmental variability but analysis were

too less reliable due to nature of WorldClim data and spatial resolution. Errors of

WorldClim in Abruzzo were higher than those derived from regional monitoring

network and interpolation at regional level was preferred. Errors were lower and

spatial  resolution was increased.  In addition,  most importantly in the context of

rear-edges populations, bioclimate models often rely on climate data derived from

global  circulation models and ignore that regional-scale climate changes  can be

buffered locally by topographic heterogeneity (Hampe and Petit, 2005).

• Past  forest  management  and  local  conditions  (fertility  of  soil,  aspect,  slope)

influenced forest structure but tree-rings analysis showed that the correlation with
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climate factors was not affected by that. In addition, this work demonstrated that

influence of climate factors is no longer active and that the species is probably

adapting to a new changing environment. This will probably play a key role in

future and is a issue that must be carefully considered during ecological modelling

activities and management planning.

• SDMs are a very powerful tool to forecast future scenarios. However, to use SDMs'

properly and not as a simple exercise (especially when they are used to forecast

future scenarios for a target species), they should never be considered as a way to

predict the future dynamics, but as a method to understand what is more likely to

happened in the future.  In fact,  nobody knows exactly  how fast  the changes  in

temperature  and rainfall  will  be,  and how different  species  will  adapt  to  future

environments. It should be also considered that different biotic and abiotic factors

are involved (Pearson and Dawson, 2003).

• A specific conservation strategy for the species should be considered in order to

observe future development  and manage the FGR properly.  Even if  models  are

generally  very  pessimistic  predicting  a  huge  loss  of  suitable  area  in  very  few

decades, Black pine (and forest species in general) seems to own the ability to react

to future climate scenarios and to have already the possibility to migrate to areas

that  will  probably  be  suitable  and used  as  “refugia”.  It  is  also  true  that  future

climate developments are likely to be faster than the migration-ability of the species

(Csaba et al., 2009)  and there are a lot of unknown aspects of forest populations

that need to be deeper investigated.  Biological, genetic and ecological skills are

requested to contribute to these studies, to validate models and to combine different

approaches. Hiwever, species-specific analysis like dendrochronology has proved

to be a very useful tool to study the phenotypic plasticity of the species.
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In conclusion, many other questions and issues must be developed to cover all possible

studies connected to MaPPs. For instance, genetic information about species and their local

adaptation must be carefully considered. Comparing the MaPP of Villetta Barrea with other

populations and subspecies (mainly  nigra  and  laricio) to assess if it is a  case of genetic

adaptation or an example of phenotypic plasticity should be encouraged. At the same time,

ecological modelling with multiple species should be added. In such case, if we introduce

the SDM of a competitor of Black pine (e.g. Beech) the potential area would probably

decrease.  In  addition,  a  subsequent  modelling  of  different  provenances  should  be

performed in order to consider local adaptation of forest populations (Isaac-Renton et al.,

2014).  Information about  growth rate  (e.g.  site  index)  would be very useful  to weight

presence  points  differently  and  to  transform the  SDM output  from “survival  map”  to

“productivity map”.

Adaptation of species is then an evident and complicated issue that must be included into

Ecological modelling. The MaPP, especially concerning the Camosciara area, is one of the

oldest forest populations living at the rear-edge of European Black pine distribution and it

could play a key role in understanding the future development of the whole species. Due to

the small size of the natural group, a specific conservation strategy of this MaPP should be

developed.  Seed orchards, dynamic  ex-situ conservation and assisted migration, added to

an  in-situ adaptive management could be very useful to manage such a valuable genetic

material in view of the effects of a rapidly changing climate.
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