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Abstract 

 

Detecting cancer at early stage is one of the most important factors associated with 

successful treatment outcome.  

Cancer biomarkers are able to detect a specific disease early and help to provide 

treatments before it becomes incurable in later stages. Biomarkers are also extremely 

important to determinate the recurrence of the disease and to evaluate the follow-up of the 

patients after a chemio- or radio- therapic and surgery treatments. 

The classical methods (such as ELISA immunoassays) for detection of cancer biomarkers 

may take several hours, or even days from when tests are ordered to when results are 

received. These methods can be tedious, time consuming and often require extra care and 

expensive instruments making early diagnosis of cancer more difficult especially for the 

cancer patients who are admitted to an emergency department. In addition, if we consider 

that qualified personnel are needed for clinical analysis, the natural necessity for 

alternative analytical technologies is presented.  

For this purpose, electrochemical biosensors can act as an option for solving problems 

mentioned before, or become a helpful tool at least. 

 

The advance in nanotechnology have led to the discovery and the employment of a great 

number of new materials in nanoscale dimensions (comprise between 1 and 100 nm, even 

for biological application dimensions can raise up to 500 nm and rarely up to 700 nm). 

Because the common biological systems (such as protein, viruses, membrane etc.) are 

nanostructured and their interaction take place at nanometric scale, nanomaterials 

becomes an ideally candidates for the development of advanced biosensing devices. 

Nanostructures present several advantages in analytical applications and can be mainly 

used as transducers (due to their unique optical, chemical, electrical, and catalytic 

properties) or as a component of the recognition element of a biosensing device (due to 

increase of the area/volume relationship that increases the number of attached 

bioreceptors in the sensing surface). 

In this thesis different strategies for the development of electrochemical nanostructured 

biosensors for the determination of a pattern of cancer biomarkers (in particular CA125, 

HER2, VEGF, MUC1) related to the early detection of ovarian and breast cancers were 

presented. 
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In particular this dissertation is subdivided in seven chapters. 

 

In Chapter 1 the definitions of electrochemical biosensor and biomarker were introduced. 

Moreover, the use of antibodies, aptamers and Affibodies® as bioreceptors in 

electrochemical biosensors for clinical applications were discussed. Finally, recent 

applications of nanostructured biosensors for detection of cancer biomarkers were 

reviewed.  

 

In Chapter 2 the electrochemical techniques (cyclic voltammetry, differential pulse 

voltammetry and electrochemical impedance spectroscopy) used in this work were 

introduced. 

 

From Chapter 3 to Chapter 7 the development of nanostructured electrochemical 

biosensors for the determination of CA125, VEGF, HER2 and MUC1 cancer biomarkers 

were presented. 

 

Chapter 3: a label-free impedimetric immunosensor for the detection of tumour marker 

CA125 based on gold nanoparticles-modified graphite screen-printed electrodes was 

reported. Experimental conditions of each step for the developed immunosensor were 

studied and optimised. The electrochemical immunosensor allowed unambiguous 

identification of CA125, while no significant non-specific signal was detected in the case 

of all negative controls. The analytical usefulness of the impedimetric immunosensor was 

finally demonstrated analysing human serum samples. 

 

Chapter 4: two simple and sensitive approaches for CA125 detection were presented by 

using antibody immobilized on poly-anthranilic acid-modified graphite screen printed 

electrodes. The first proposed approach was a label free impedimetric immunosensor. The 

immunoassay was based on poly-anthranilic acid (PAA) modified graphite screen-printed 

electrodes with subsequent covalently monoclonal antibody anti-CA125 immobilization. 

The modified screen-printed electrodes were used to capture the protein from the sample 

solutions. The second approach was based on a sandwich format. The monoclonal anti-

CA125 antibodies immobilized on poly anthranilic acid-modified graphite screen-printed 

electrodes were used to capture the protein from the sample solution. The sandwich assay 
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was then performed by adding secondary anti-CA125 antibodies labelled with gold 

nanoparticles (AuNPs). The antibody-AuNPs captured onto immunosensor surface 

induced the silver deposition from a silver enhancer solution. The deposited AgNPs were 

measured by anodic stripping voltammetry (ASV) in acid solution. The performance of 

both immunosensors in terms of sensitivity, reproducibility and selectivity were studied. 

 

Chapter 5: an aptamers sandwich biosensor based on gold nanostructured (AuNPs) 

graphite screen-printed electrodes for the determination of VEGF cancer biomarker was 

proposed. First, thiolated anti-VEGF aptamer was covalently immobilized on the surface 

of gold nanoparticles-modified graphite screen printed electrodes (AuNPs-GSPEs) 

followed by the formation of a mixed self-assembly monolayer SAM. VEGF antigen was 

then incubated with the sensors and subsequently the sandwich was completed by 

interaction with secondary biotinylated anti-VEGF aptamer. Streptavidin-alkaline 

phosphatase was finally incubated with the sensors and the electrochemical behaviour of 

alpha-naphthol was analysed by differential pulse voltammetry (DPV) in order to 

construct the calibration curve. Each phases involved in the assembly of the aptasensors 

were evaluated by electrochemical impedance spectroscopy (EIS) technique. The 

performance of the immunoassay in terms of sensitivity, reproducibility and selectivity 

has been also studied. 

 

Chapter 6: the development of a label-free gold nanostructured biosensor using anti-

HER2 Affibody® as bioreceptor for the detection of HER2 breast cancer biomarker was 

reported. The biosensor was based on the immobilization of the terminal cysteine-

modified Affibody® on the surface of AuNPs-modified GSPEs via Au-SH bond. After 

the formation of self-assembly monolayer, bioreceptor-antigen affinity reaction was 

evaluated by means of electrochemical impedance spectroscopy (EIS) technique. 

Preliminary experiments in commercial serum samples spiked with HER2 protein were 

also conducted. Each phases of the construction of the assay were characterized and 

evaluated by means of EIS measurements. Finally, the reproducibility and selectivity 

were determined. 

 

Chapter 7: different electrochemical bioassays for Mucin1 (MUC1) tumor marker using 

magnetic beads coupling screen-printed arrays were developed and used for analysis in 
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biological samples. The bioassays were based on a sandwich format in which aptamers or 

antibodies were coupled respectively to Streptavidin or Protein G-modified magnetic 

beads. The modified beads were then used to capture the protein from the sample solution 

and the sandwich assay is performed by adding a secondary aptamer or antibody. The 

enzyme alkaline phosphatase (AP) and its substrate (1-naphthyl phosphate) were then 

used for the electrochemical detection by differential pulse voltammetry (DPV). All 

parameters involved in each step of the affinity sensors were optimized. The analytical 

performance of the designed assays was compared in terms of sensitivity, selectivity and 

reproducibility. The results showed that although a comparable sensitivity was obtained 

for all tested assays, however, the aptamer-based approaches exhibit higher selectivity for 

MUC1, allowing also the detection of the protein in complex matrices. The developed 

aptasensor for multiplex detection was applied on serum samples obtained from cancer 

patients, providing promising perspectives for future clinical applications. 
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for gold nanostructured graphite screen-printed electrodes (AuNPs/GSPEs). The 

measurements were repeated at least 3 times using different GSPEs. 

 

Figure 3.5. A) Cyclic voltammograms obtained in 0.5 M H2SO4 solution for the bare 

GSPEs (- -) and AuNPs/GSPEs (—). B) Cyclic voltammograms obtained in 0.01 M 

[Fe(CN)6]
3-/4-

 0.1 M KCl solution for the bare GSPEs (- -) and GSPEs modified with 

AuNPs (—). 
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Figure 3.6. SEM image of AuNPs electrodeposed onto graphite screen-printed electrodes 

prepared in optimised experimental conditions (0.0006 M HAuCl4, 25 cycles 0.1 V s
-1

), 

using different detectors: A) In-Lens and B) EsB detector. 

 

Figure 3.7. Nyquist plot of AuNPs-modified GSPEs (, curve a) and after the MUDA 

chemisorption (■, curve b) obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 

M KCl. Inset: average and standard deviation respect to the Rct for gold nanostructured 

graphite screen-printed electrodes (AuNPs/GSPEs) and after the MUDA chemisorption 

(MUDA/AuNPs/GSPEs). The measurements were repeated at least 3 times using 

different GSPEs. 

 

Table 3.1. Sensor surface characterisation of the single steps of the immunoassay 

performed in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture solution in KCl 0.1 M, PBS 0.1 

pH 7.4. Each measurement was repeated at least 3 times using different screen-printed 

electrodes. Legend: A) AuNPs electrodeposed on GSPEs, B) Functionalization of gold 

nanostructured graphite screen-printed electrodes with MUDA, C) mixed SAM formation 

with MCH; D) immobilisation of mAb-CA125, E) blocking step with rIgG, F) affinity 

reaction with 30 U mL
-1

 CA125 solution. 

 

Figure 3.8. A) Calibration curve for CA125 antigen. Inset: aspecific calibration curve 

with PSA (0, 50, 100 mg L
-1

). B) Nyquist plot of mAb-CA125-CA125 interaction. EIS 

measurements were obtained using 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture prepared 

in 0.1 M PBS pH 7.4. Each concentration was repeated at least 3 times using different 

gold nanostructured screen-printed electrodes. 

 

Figure 3.9. A) Average and standard deviation respect to the Rct for the immunosensor 

response in buffer, serum and serum samples spiked with CA125 (20 and 30 U mL
-1

) and 

PSA (aspecific control, 100 mg L
-1

) obtained in 0.01 M [Fe(CN)6]
3-/4-

. B) Nyquist plot of 

the immunosensor response in buffer, serum and serum samples spiked with CA125 (20 

and 30 U mL
-1

) and PSA (aspecific control, 100 mg L
-1

) obtained in 0.01 M [Fe(CN)6]
3-/4-

 

equimolecular mixture in 0.1 M PBS pH 7.4. The measurements were repeated at least 3 

times using different GSPEs. 

 



XIX 
 

Figure 4.1. UV-Vis spectra of AuNPs colloidal solution obtained by citrate reduction 

method. Inset: bright red colour of AuNPs (16 nm) colloidal solution synthesized by 

citrate reduction method. 

 

Figure 4.2. Scheme of the immunosensors: electropolymerization of anthranilic acid 

(AA) (a), activation of polymer (b), mAb-CA125 immobilization on the modified GSPEs 

surface (c), COOH-free sites blocking with ethanolamine (d), incubation with CA125 

protein (e). Route A): EIS measurements for label-free CA125 detection. 

Route B): reaction with AuNPs/pAb-CA125 conjugate (f), silver enhancement (g) 

dissolution of silver nanoparticles in HNO3 1M (h) ASV for silver detection (i). 

 

Figure 4.3. Cyclic voltammograms of anthranilic acid electropolimerization. A) Cyclic 

voltammograms: bare graphite screen-printed electrode (GSPE, curve a); 15
th

 cycle of 

poly-anthranilic acid modified graphite screen-printed electrode (curve b, PAA/GSPE) in 

1 M H2SO4, 0.1 M KCl solution. The scan rate was 0.05 mV s
-1

. B) Magnification of 1, 5, 

10, 15 cycles obtained using 0.05 M anthranilic acid (AA) in 1 M H2SO4, 0.1 M KCl 

solution, and with a scan rate of 0.05 mV s
-1

. 

 

Figure 4.4. Rct responses of bare graphite screen-printed electrodes (GSPEs) and poly-

anthranilic acid modified graphite screen-printed electrodes (PAA/GSPEs) using 0.01 M 

[Fe(CN)6]
3-/4-

 redox probe prepared in different buffered solutions. Each point was 

repeated at least 3 times using different graphite screen-printed electrodes. The 

polymerization was carried out using 50 mM AA by cyclic voltammetry. 

 

Figure 4.5. Optimization of acid anthranilic acid (AA) concentration for 

electropolymerization. A) Rct measurements of PAA/GSPEs prepared starting from 

different monomer concentrations (0.01, 0.05, 0.08 mM), using 15 cycles and a scan rate 

of 0.05 V s
-1

. B) Nyquist plot of bare GSPE (■) and of PAA-modified GSPEs using 

different AA concentrations: 0.01 M (●), 0.05 M (), 0.08 M (). Electrochemical 

impedance spectra were performed in 0.01 M [Fe(CN)6]
3-/4-

 in 0.01 M TRIS (pH 7.4). 

Each point was repeated at least 3 times using different screen-printed graphite 

electrodes. 

 



XX 
 

Figure 4.6. Optimization of electropolymerization cycles. A) Rct measurements of poly-

anthranilic acid modified graphite screen-printed electrodes (PAA/GSPEs) prepared 

starting from AA 50 mM, with a scan rate of 50 mV s
-1

, using different cycles (1, 5, 10, 

15). B) Nyquist plot of bare GSPE (■) and of poly-anthranilic acid modified graphite 

screen-printed electrodes (PAA/GSPEs) using different polymerization cycles: 1 (●), 5 

(), 10 () and 15 (). Electrochemical impedance spectra were performed in 0.01 M 

[Fe(CN)6]
3-/4-

 prepared in 0.01 M TRIS (pH 7.4). Each point was repeated at least 3 times 

using different screen-printed graphite electrodes. 

 

Figure 4.7. Optimization of primary antibody anti-CA125 (mAb-CA125) concentration: 

20 mg L
-1

 (■), 30 mg L
-1

 (●), 40 mg L
-1 

() on the EIS response for CA125 using 0.01 M 

[Fe(CN)6]
3-/4-

 prepared in TRIS 0.01 M pH 7.4. The values reported in the graphics 

represent the mean value of 3 different measurements. 

 

Figure 4.8. Calibration curve for label-free CA125 detection by EIS measurements 

performed in 0.01 M [Fe(CN)6]
3-/4-

 prepared in TRIS 0.01 M pH 7.4. Inset: aspecific test 

with PSA (0, 50, 100 mg L
-1

). Each point was repeated at least 3 times using different 

modified graphite screen-printed electrodes. 

 

Figure 4.9. A) Calibration plots for CA125 detection through sandwich assay using pAb-

CA125 antibody labelled-gold nanoparticles and silver enhancement. Inset: aspecific 

signal obtained with PSA (50, 100 mg L
-1

). B) Voltammograms by differential pulse 

anodic stripping voltammetry of silver using different CA125 concentrations, from down 

to top: 0, 5, 10, 25 U mL
-1

, respectively. Each point was repeated at least 3 times using 

different modified screen-printed graphite electrodes. 

 

Table 5.1. List of the aptamers sequences (form 5’ to 3’) used in this work. 15 thymine 

nucleobases – T(15) – were used as spacer. 

 

Figure 5.1. Schematic representation of the steps involved in the development of 

aptamers sandwich assay for VEGF detection: a) electrodeposition of gold nanoparticles 

AuNPs on graphite screen-printed electrodes (GSPEs); b) incubation with thiolated 

primary anti-VEGF aptamer (Apt1-VEGF); c) incubation with MCH protein; d) affinity 
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reaction with VEGF; e) addition of biotinylated secondary anti-VEGF aptamer (Apt2-

VEGF); f) incubation with streptavidin-alkaline phosphatase (streptavidin-AP); g) 

addition of the substrate (alpha-naphthyl phosphate) h) DPV measurements as described 

in materials and methods section. 

 

Figure 5.2. A) Nyquist plot of bare graphite screen-printed electrode (GSPE, ●) and of 

gold nanoparticles-modified graphite screen-printed electrode (AuNPs/GSPE, ■). Inset: 

magnification of AuNPs/GSPEs EIS spectrum. B) Average and standard deviation respect 

to the Rct for bare GSPEs and for (AuNPs/GSPEs). EIS measurements were performed as 

reported in materials and methods section using 3 different electrodes. 

 

Figure 5.3. A) Nyquist plot of gold nanoparticles-modified graphite screen-printed 

electrode (AuNPs/GSPEs, ■) and after the functionalization with thiolated primary anti-

VEGF aptamer (Apt1-VEGF/AuNPs/GSPEs, ●) and after formation of mixed SAM 

monolayer with 6-mercapto-1-hexanol (MCH/Apt1-VEGF/AuNPs/GSPEs,). B) 

Average and standard deviation respect to the Rct for bare AuNPs/GSPEs, Apt1-

VEGF/AuNPs/GSPEs and MCH/Apt1-VEGF/AuNPs/GSPEs. EIS measurements were 

performed as reported in materials and methods section using 3 different electrodes. 

 

Figure 5.4. A) Calibration plots for VEGF detection through aptamers sandwich assay 

obtained by DPV measurements. Inset: aspecific signal obtained with HER2 protein (50, 

100 µg L
-1

). B) DPV voltammograms obtained through aptamers sandwich assay for 

VEGF concentration: 0, 50, 100, 200, 250 nM. Each point was repeated at least 3 times 

using different modified screen-printed graphite electrodes. 

 

Figure 6.1. Schematic representation of Affibody®-based label-free gold nanostructured 

biosensor for HER2 breast cancer biomarker detection. a) electrodeposition of gold 

nanoparticles (AuNPs) on graphite screen-printed electrodes (GSPEs) b) functionalization 

with anti-HER2 Affibody® molecules); c) Incubation with MCH; d) affinity reaction 

with HER2 protein; e) label-free HER2 determination by electrochemical impedance 

spectroscopy (EIS) measurements. 
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Figure 6.2. A) Nyquist plot of gold nanoparticles-modified graphite screen-printed 

electrodes (AuNPs/GSPEs, ■), after the functionalization with anti-HER2 Affibody® 

(anti-HER2 Af/AuNPs/GSPEs, ●) and with 6-mercapto-1-hexanol (MCH/anti-HER2 

Af/AuNPs/GSPEs, ) obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M 

PBS, pH 7.4. B) Average and standard deviation respect to the Rct for AuNPs/GSPEs, 

anti-HER2 Af/AuNPs/GSPEs, MCH/anti-HER2 Af/AuNPs/GSPEs. The measurements 

were repeated at least 3 times using different GSPEs. 

 

Figure 6.3. A) Calibration curve for HER2 cancer biomarker and aspecific test with 40 

µg L
-1

 VEGF (●). B) Nyquist plot of Affibody®-HER2 affinity reaction obtained in 0.01 

M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M PBS, pH 7.4. The measurements were 

repeated at least 3 times using different GSPEs. 

 

Figure 6.4. Nyquist plot of the biosensors response in serum samples spiked with HER2 

(10, 20, 30 μg L
-1

) obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M PBS 

pH 7.4. The measurements were repeated at least 3 times using different GSPEs. 

 

Figure 7.1. A) Schematic representation of the steps involved in the development of 

different MUC1 assays: a. Antibody – Antibody assay (Ab – Ab): 1) incubation of protein 

G-modified magnetic beads with primary anti-MUC1 antibody (mAb-MUC1); 2) 

blocking step with milk powder 5% prepared in 0.1 M PBS buffer pH 7.4; 3) affinity 

reaction with MUC1 protein; 4) incubation with secondary anti-MUC1 antibody (pAb-

MUC1); 5) incubation with alkaline phosphatase (AP)-labelled anti-rabbit IgG tertiary 

antibody (Ab-AP). b. Aptamer – Antibody assay (Apt – Ab): 1) incubation of 

streptavidin-modified magnetic beads with biotinylated primary anti-MUC1 aptamer 

(Apt1-MUC1); 2) blocking step with biotin; 3) incubation with MUC1 protein; 4) 

incubation with secondary anti-MUC1 antibody (pAb-MUC1); 5) incubation with 

alkaline-phosphatase (AP) labelled anti-rabbit IgG tertiary antibody (Ab-AP). c. Aptamer 

– Aptamer assay (Apt – Apt): 1) incubation of streptavidin-modified magnetic beads with 

biotinylated primary anti-MUC1 aptamer (Apt1-MUC1); 2) blocking step with biotin; 3) 

incubation with MUC1 protein; 4) incubation with secondary biotinylated anti-MUC1 

aptamer (Apt2-MUC1); 5) incubation with streptavidin-alkaline phosphatase. 
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B) Electrochemical measurements: screen-printed array were placed on a magnetic 

support and modified-magnetic beads were deposited on the surface of each working 

electrode of the array. 

 

Table 7.1. Experimental parameters optimization for antibody – antibody sandwich 

assay. IMUC1/Iblank represent the ration between the current obtained using respectively 5 

ng mL
-1

 and 0 ng mL
-1

 MUC1 buffered solution. Letters and numbers present in Assay 

step column are referred in accordance of Figure 7.1 A. 

 

Figure 7.2. Selectivity of the different developed assays performed in MUC1 (5 ng mL
-1

), 

MUC4 (5 ng mL
-1

) and MUC16 (35 U mL
-1

) buffered solution (a. Ab – Ab assay; b. Apt 

– Ab assay; c. Apt – Apt assay). Blank signal was substracted from each measurements. 

 

Table 7.3. Experimental parameters optimization for aptamer – aptamer sandwich assay. 

IMUC1/Iblank represent the ratio between the current obtained using respectively 5 ng mL
-1

 

and 0 ng mL
-1

 MUC1 buffered solution. Letters and numbers present in Assay step 

column are referred in accordance of Figure 7.1 A. 

 

Table 7.4. Analytical performances of antibody – antibody (Ab – Ab), aptamer – 

antibody (Apt – Ab), aptamer – aptamer (Apt – Apt) assays performed in MUC1 buffered 

solutions. Letters a, b., c. are referred in accordance of Figure 7.1 A. 

 

Figure 7.2. Selectivity of the different developed assays performed in MUC1 (5 ng mL
-1

), 

MUC4 (5 ng mL
-1

) and MUC16 (35 U mL
-1

) buffered solution (Ab – Ab assay: white 

histograms; Apt – Ab assay: dark grey histograms; Apt – Apt assay light grey 

histograms). Blank signal was subtracted from each measurement. 

 

Figure 7.3. Experiments with commercial serum sample 1:200 diluted spiked with 

MUC1 at different concentrations using aptamer assay. 

 

Table 7.5.MUC1 determination in 1:200 diluted serum sample form cancer patients 

performed with aptamers sandwich assay using standard addition method. 
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List of abbreviations and symbols 
 

AA Anthranilic Acid 

Ab Antibody 

AC Alternate Current 

AgNPs Silver nanoparticles 

Ag Antigen 

AP Alkaline Phosphatase 

Apt Aptamer 

ASV Anodic Stripping Voltammetry 

AuNPs Gold nanoparticles 

BSA Bovine Serum Albumin 

CA125, MUC16 Carbohydrate Antigen CA125 

CA15-3, MUC1 Carbohydrate Antigen 15-3 

CEA Carcinoembryonic Antigen 

CNTs Carbon nanotubes 

CV Cyclic Voltammetry 

DC Direct Current 

DEA Diethanolamine 

DNA Deoxyribonucleic acid 

DPV Differential Pulse Voltammetry 

EA Ethanolamine 

EDAC 1-Ethyl-3-(3’-dimethylaminopropyl) 

carbodiimide 

EGFR Epidermal Growth Factor Receptor  

EIS Electrochemical Impedance Spectroscopy 

ELISA Enzyme-Linked Immunosorbent Assay 

Fab  Fragment-antigen binding domain 

Fc Fragment crystallisable domain 

GOx Glucose Oxidase 

GSPEs Graphite Screen-Printed Electrodes 

HER2,  Human Epidermal Growth Factor Receptor 2 

HRP Horseradish Peroxidase 
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IgG Immunoglobulin G 

LSPR Localized Surface Plasmon Resonance 

MAb Monoclonal antibody 

MCH 6-mercapto-1-hexanol 

MES 2-(N-morpholino) ethanesulfonic acid 

MNPs Magnetic nanoparticles 

MUDA 11-Mercaptoundecanoic acid 

MWCNTs Multi-Walled Carbon Nanotubes 

NHS N-hydroxysuccinimide 

PAA Polyanthranilic acid 

PAb Polyclonal antibody 

PANI Polyaniline 

PBS Phosphate Buffer Saline 

PCR Polymerase Chain Reaction 

PLGF Placenta Growth Factor 

PSA Prostate Specific Antigen 

RIAs Radiation Immunological Assays 

RNA Ribonucleic acid 

SAM Self-assembly monolayer 

SELEX Systematic Evolution of Ligands by 

Exponential Enrichment 

SEM Scanning Electron Microscope 

TRIS Tris(hydroxymethyl) aminomethane 

hydrochloride 

VEGF Vascular Endothelial Growth Factor 
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CHAPTER 1 
 

1. Biosensors: introduction 
 

1.1. Definitions 

 

As define by International Union of Pure and Applied Chemistry (IUPAC), a chemical 

sensor is a small and compact device composed by a chemical (molecular) recognition 

system (receptor) in spatial connection with a physic–chemical transducer that transforms 

chemical information, related to the sample or total concentration of a specific 

component, into an analytically useful signal. 

Biosensors are chemical sensors in which the recognition system utilizes a biochemical 

mechanism. 

 

 

Figure 1.1. Schematic representation of biosensor. 

 

According to the nature of the biorecognition process, biosensors can be classified in two 

main categories: catalytic (in which the bioreceptor is constituted by mono- or multi-

enzymes, whole cells, i.e. bacteria, fungi or eukaryotic cells, or by animal or plant tissue 

slice) and affinity biosensors (in which the bioreceptor is capable to bind selectively and 

reversibly a specific ligand in order to obtain a useful analytical signal) [1]. 

Biosensors can be also classified in relation of the transduction methods in: 

electrochemical (based on the determination of electroactive species that can be bound, 

produced or consumed on the surface of the electrochemical cell [2]), optical (which 

exploits the change in the optical property of biomolecule as a results of its interaction 

with the target analyte, or the use of different kinds of labels and probes [3]), 

piezoelectric (in which the analytical signal is produced by the application of a 

mechanical stress on the surface of a piezoelectric crystal related to the interaction 
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between the bioreceptor and the analyte [4]), thermometric (based on the measurement of 

the heat absorbed or evolved during a biochemical reaction [5]) and magnetic (which 

reveals the variation of the magnetic properties of the system for the detection of the 

analyte [6]). 

Among this, electrochemical biosensors have found a broad range of application due to 

their low cost, speed of detection, high sensitivity, portability and high compatibility with 

miniaturization techniques. 

Electrochemical detection techniques are normally divided into six main categories: 

amperometric, voltammetric, impedimetric, conductimetric, potentiometric and field-

effect. 

Amperometric and voltammetric biosensors are based on the application of a potential to 

a working electrode (respect to a reference electrode) and on the measurement of the 

current resulting from the electrochemical reduction or oxidation of an electroactive 

substance.  

In particular, in amperometry technique, the changes in the current generated by the 

electrochemical reaction are evaluated continuously respect to the application of a 

constant DC (or stepped DC, for chronoamperometry) potential, while for voltammetric 

measurements (including cyclic voltammetry, linear sweep voltammetry, differential 

pulse voltammetry, stripping voltammetry etc.), the potential is scanned over a selected 

potential range.  

In both cases the measured current is proportional to the concentration of the electroactive 

specie [7]. 

In contrast, in the impedimetric measurements the impedance of an interface in AC 

(alternate current) steady state with constant DC bias condition was measured.  

With this approach the change in the impedance values at the electrode-solution surface is 

related to the analyte-probe biorecognition [8]. 

In conductimetric, potentiometric and field-effect techniques the evaluation of the 

biological reaction were performed recognizing the charge or ion concentration changes. 

Conductometric system measure the capability of an analyte to conduct an electrical 

current between electrodes, while in potentiometry the accumulation of a charge potential 

at the working electrode (compared to the reference electrode) when no or square-wave 

current (for chronopotentiometry) flows into the system, was measured. At last, in field-

effect transistor an electrical field was used to control the conductivity of a channel (a 
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zone depleted of charge carrier) between two electrodes (defined as source and drain) in a 

semiconducting material (gate). Briefly, the biocatalytical reaction changes the presence 

of accumulated charge carrier producing thus an electrical signal (drain current) 

proportional to the analyte concentration 

 

1.2. Electrochemical biosensors for clinical applications 

 

Today’s situation in clinical diagnostics and monitoring requires rapid and accurate 

analyses. Very important factors complicating these procedures are mainly related to the 

prices of analytical devices and expenses for whole measurements. In addition, if we 

consider that qualified personnel are needed for clinical analyses, the natural necessity for 

alternative analytical technologies is presented.  

For this purpose, biosensors can act as an option for solving problems mentioned before, 

or become a helpful tool at least. 

Electrochemical devices are extensively applied in the field of detection of cancer 

biomarkers, which are tumour associated antigens and mutations. 

While cancer-related assays are more complex than home self-testing of glucose, modern 

electrochemical bioaffinity sensors, such as DNA- or immunosensors, have recently 

demonstrated great potential for monitoring cancer-related protein markers and DNA 

mutations. 

The classical methods (such as ELISA immunoassays) for diagnosis of cancer may take 

several hours, or even days from when tests are ordered to when results are received. 

These methods can be tedious, time consuming and often require extra care and expensive 

instruments making early diagnosis of cancer more difficult especially for the cancer 

patients who are admitted to an emergency department. Therefore, measurement of 

carcinomatous markers is critical in assisting the diagnosis of cancer and electrochemical 

biosensors can satisfy the rapid diagnosis requirements in cancer marker detection during 

early stages of the disease [9-12]. 

 

2. Biomarkers 
 

2.1. Definitions 

 

According to the US National Institutes of Health’s (NIH) and Biomarkers Consortium, a 

biomarker is a “characteristic that is objectively measured as an indicator of normal 
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biological processes, pathogenic processes, or a pharmacological response to a 

therapeutic intervention” (www.biomarkersconsortium.org).  

Moreover, the NIH’s National Cancer Institute (NCI), describes biomarkers in its 

dictionary of cancer terms as “a biological molecule found in blood, other body fluids, or 

tissues that is a sign of a normal or abnormal process, or of a condition or disease. A 

biomarker may be used to see how well the body responds to a treatment for a disease or 

condition. Also called molecular marker and signature molecule” 

(http://www.cancer.gov).  

Finally, the United Nations’ World Health Organization (WHO) defines a biomarker as 

“indicator of changes or events in biological systems. Biological markers of exposure 

refer to cellular, biochemical, analytical, or molecular measures that are obtained from 

biological media such as tissues, cells, or fluids and are indicative of exposure to an 

agent” (WHO, IPCS Risk Assessment Terminology). 

 

2.2. Cancer biomarkers 

 

It is now well established that early detection of cancer represents the best opportunity to 

cure. The diagnosis of cancer when a tumor is still small to be completely removed 

surgically, drastically increases the survival rate of patients. Unfortunately, most cancers 

dot not produce symptoms until the tumors are either too large to be removed or until 

metastatic processes are presents [13]. 

 

 

Figure 1.2. Schematic representation of the uses of cancer biomarkers in the different phases of evolution 

of cancer [14]. 

 

http://www.biomarkersconsortium.org/
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It is also known that in every disease, there is a latency period and that, if it is possible to 

detect the disease in this stage, treatments can be performed before it become lethal.  

Cancer biomarkers are able to detect a specific disease early and help to provide 

treatments before it becomes incurable in later stages. Biomarkers are also extremely 

important to determinate the recurrence of the disease and to evaluate the follow-up of the 

patients after a chemio- or radio- therapic and surgery treatments [14]. 

 

Ideally cancer biomarker should possess common characteristics [15]:  

1. High sensitivity and specificity with low false negatives and low false positives 

results. 

2. High differentiation rate between healthy and tumor patients. 

3. High prediction of early recurrence and prognostic properties. 

4. Easily assayable and able to identify changes in cancer patients receiving 

treatments. 

 

Nevertheless, in reality, an ideal tumor marker does not exist.  

In fact if we consider the prostate specific antigen (PSA), the most common used cancer 

biomarker, it suffers from several major limitations: for instance, PSA concentration 

could increase in individuals with benign conditions (prostate enlargement, inflammation 

or infection) and its level do not correlate well with tumor aggressiveness [16].  

Similar behaviour can be found considering CA125 (carbohydrate antigen 125), a 

biomarker related to the ovarian cancer.  

CA125 is used for early detection of ovarian cancer (since increased levels of CA125 may 

precede clinical detection by more than a year) and can be also useful to evaluate 

chemotherapy responses, to distinguish malignant pelvic masses from benign masses, to 

detect the recurrence of the cancer, and to improve clinical trial design.  

However, its level in serum can be found high in patient with other not tumoral diseases 

(such as peritoneal irritation, endometriosis, and pelvic inflammation) or pregnancy status 

[17]. 

To solve this problem, during the last decades the evolution of -omics sciences (i.e., 

genomics, transcriptomics, proteomics, peptidomics, and metabolomics) led to the study 

and the discovery of a large number of new molecules eligible to become a new cancer 

biomarkers. Despite this, the number of biomarkers receiving US Food and Drug 
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Administration (FDA) clearance has declined substantially over the last 10 years to less 

than one protein biomarker per year. 

For this reasons, in the future, cancer screening tests will probably combine the results of 

multiple diagnostic tests or biomarker assays with prior testing histories and patient 

specific risk factors. Recent advances in quantitative methods use all of this information 

to identify individuals with positive test results who are most in need of surgical 

intervention.  

The ability to optimally combine information on multiple markers is important because 

single markers typically lack the sensitivity and specificity that is necessary for useful 

mass screening [18]. 

 

2.2.1. Classification of cancer biomarkers 

 

Different strategies have been suggested to define and classify cancer biomarkers, but 

general consensus has yet to be established.  

Theoretically, any biologically derived entity or processes which lead to the cancer 

detection, at the stage of diagnosis (and allow to determinate the prognosis) or post 

diagnosis (in therapy and treatment modules) are potential candidates to become cancer 

biomarkers [19]. 

Mainly it can be classified, referred to the disease state, in: prognostic (based on the 

recognizing features between benign and malignant tumors and on the differentiation 

status of tumors which can influence clinical treatments), predictive (utilized to assess the 

effect of administer drug and to select the best chemotherapeutic agent for a patient), 

pharmacodynamics (utilized to select the doses of chemotherapeutic agents for a specific 

set of tumor-patient conditions) and diagnostic (that can help to determinate the stage and 

the recurrence of a tumor or the clinical follow-up of patients). 

 

Biomarker can also divide respect to the nature of biomolecules in: DNA, RNA (and 

micro-RNA) and protein biomarkers. 

Circulating DNA was probably the first evaluated markers to detect the cancer staging. 

DNA serum levels can be also related to the presence of metastatic cancer. Moreover, 

single nucleotide polymorphism in many genes was used as cancer biomarker. For 

instance, mutations in XRCC1 (X-ray Repair Cross-Complementing protein 1), ATM 
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(Ataxia Telangiectasia Mutated) or cellular tumor antigen p53 genes were extensively 

studied to detect the presence of lung, head and neck cancers.   

Analysis of epigenetic regulation of transcription and translation and of the associated 

protein (histones and non-histones) is also important to define carcinogenesis process. For 

instance, gene silencing by CpG (regions of DNA where a cytosine nucleotide occurs 

next to a guanine nucleotide in the linear sequence of bases along its length) methylation 

is one of the best studied epigenetic modification and the degree of methylation in 

prostate cancer tissue or serum are strictly related to the severity of the lesions [20].  

While most DNA markers were evaluated singularly, most RNA-based biomarkers 

consist in the analysis of multi-gene molecular patterns or “fingerprints”. This kind of 

procedures are more accurate than a single-molecule marker, but new development in 

biostatistics and bioinformatics is needed to select which gene includes in the evaluated 

patterns [20]. 

Moreover, expression of specific populations of micro-RNA (miRNA, small and non-

coding RNAs) in a tissue and in time-dependent way, is associated with clinical 

behaviour of several cancer types (such as leukaemia, prostate, colorectal, lung and 

pancreatic) and can be used to classify, to determinate the diagnosis and the prognosis as 

well as the stage, the risk and drug-response of human tumors. 

 

Protein-based cancer biomarkers are the most studied and the most used biomarkers. 

Because proteins influence the molecular pathways in normal and malignant cells, they 

are strictly related to disease state, initiation and progression.  

In fact, the only FDA (US Food and Drug Administration)-approved cancer biomarkers 

available for clinical use are protein markers [21]. 

Cancer-specific alterations in proteins may occur at the level of protein abundance or 

post-translational protein modification (such as glycosylation or phosphorylation). If the 

protein biomarker is present in a body fluid, bioreceptors to these specific changes 

represent a formidable instrument for the development of cancer biomarkers detection 

assays.  

Many cancer biomarkers proteins were discovered first immunizing animals with extracts 

from tumors or cancer cell lines and after selecting the monoclonal antibodies that 

recognize “cancer-associated” antigens [22]. Recently, the complete discovery of human 

genomic coupled with the advance in proteomic and nano-proteomic (which aims to 
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characterize the entire protein complement expressed by the genome) technologies led to 

an exponential increase on the discovery and the study of new and low abundant protein 

cancer biomarkers.  

Up to date, tumour-associated protein are studied by the use of classical two-dimensional 

(2-D) fluorescence difference gel electrophoresis (DIGE); polycarylamide gel 

electrophoresis (PAGE); and high throughput platforms, such as Mass Spectroscopy 

(MS), Matrix Associated Laser Absorption Desorption Ionization Time of Flight 

(MALDI-TOF), Surface Enhanced Laser Absorption Desorption Ionization Time of 

Flight (SELDI-TOF), and reverse phase microarray [23-28]. 

 

In this thesis, different strategies were investigated for the development of nanostructured 

biosensors for the detection of several cancer biomarkers associated with the diagnosis 

and the prognosis of ovarian and breast cancers.  

In particular, in the next paragraph, the properties of CA125, MUC1, HER2 and VEGF 

cancer biomarkers will be detailed described from biological and clinical point of view. 

 

2.2.2. Mucins 

 

Mucins are large, abundant, filamentous glycoproteins that are present at the interface 

between epithelia and their extracellular environments. This interface is often the lumen 

of a hollow organ within the body such as the gastrointestinal tract, lungs and urogenital 

tract. Several of these mucins are known to form mucus layers, whereas others form the 

glycocalyx on the intestinal enterocytes. 

Physiologically, these bulky and abundant glycoproteins are strategically positioned to 

mediate the interactions between epithelial cells and their milieu. They act both keeping 

unwanted substances and organisms at an arm’s length either serving as an outside-to-

inside signal that alters the proliferation, differentiation or cell adhesion status of the 

epithelial cells.  

The mucins family includes proteins that contain tandem repeat structures with a high 

proportion of prolines, threonines and serines (known as PTS domain). Mucins are further 

defined by extensive glycosylation of the PTS domain through N-acetylgalactosamine 

linked with O‑linkages at the threonine and serine residues. Mucins are classified into 

two main classes: membrane-bound mucins (MUC1, MUC3A, MUC3B, MUC4, MUC12, 
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MUC13, MUC15, MUC16, MUC17, and MUC20) and secreted or gel-forming mucins 

(MUC2, MUC5AC, MUC5B, MUC6, MUC7, MUC8 and MUC19) in which the numbers 

represent the protein-coding gene.  

Cancer cells express aberrant forms and larger amounts of mucins (compared with normal 

cells). These forms arise as a consequence of the deregulation of expression of mucin 

core proteins and the enzymes that modify them during the transformation of tumour 

cells. The expression of distinct oligosaccharide structures, together with differential 

glycosylation of mucin core proteins, confers on tumour cells an enormous range of 

potential ligands for interaction with other receptors at the cell surface. These facts 

suggest that the aberrant expression of mucins may be implicated in the development and 

progression of different kind of cancers diseases [29-31]. 

 

MUC16 (also known as carbohydrate antigen 125, CA125) was discovery by Bast et al. 

in 1981 using monoclonal antibody OC125 [32]. 

CA125 is an O-linked glycoprotein of high molecular mass ranging in normal conditions, 

from 2.5 to 5 MDa. The core domain retains the capacity to bind both OC125 and M11 

class monoclonal antibodies. 

As with other mucins belong to this class, MUC16 has a large ectodomain (estimated to 

extend up to 500 nm from the cell surface into the glycocalyx), a single pass membrane-

spanning domain, and a small cytoplasmic tail.  

The ectodomain is composed of a heavily O-glycosylated N-terminus area (composed by 

tandem repeat region with over 60 tandem repeats of 156 amino acids each), and a region 

with several SEA domains near the membrane-spanning sequence.  

The cytoplasmic tail is not well characterized, but it contains several potential tyrosine 

phosphorylation sites [33, 34]. 

Measurement of serum CA125 concentration plays a central part in the clinical 

management for EOC (Epithelial Ovarian Cancer) patients. Elevated presence of CA125 

in serum (> 35 U/mL) is common in patients with advanced disease (~ 90%). Moreover, 

the rise and the fall of CA125 concentration in serum are correlated with progression and 

regression of the disease.  

However, up to 20% of patients with advanced EOC have normal serum level of CA125 

and, furthermore, CA125 levels can be elevated in various benign diseases including 

menstruation, first trimester pregnancy, endometriosis, adenomyosis, salpingitis, uterine 



Chapter 1 

10 
 

fibroids, chronic renal failure or in inflammation of the pleura, peritoneum or pericardium 

[35, 36].  

MUC1 (also known as carbohydrate antigen 15-3, CA15-3) is a type I transmembrane 

glycoprotein, that is mainly overexpressed in breast and ovarian carcinomas. 

CA15-3 possesses a molecular mass ranging from 300 to 600 kDa, which is apically 

expressed in the majority of glandular and ductal epithelia of various organs.  

It consists of two subunits, which are proteolytically derived from a common precursor 

peptide, and form a stable heterodimeric complex.  

The smaller subunit contains a C-terminal cytoplasmic domain of 72 amino acids, 

followed by the hydrophobic membrane-spanning domain (or transmembrane domain) of 

31 amino acids, and a short extracellular sequence which is non-covalently linked to the 

larger extracellular subunits.  

The extracellular subunits contain the VNTR (variable number tandem repeat) domain 

varying from 20 to 125 repeats, which exhibits high contents of proline, serine and 

threonine (PTS region). 

The expression of the MUC1 protein is greatly upregulated on tumors, where it undergoes 

changes in glycosylation and distribution, resulting in the exposure of the core protein of 

the tandem repeat regions. The overexpression of mucin and distribution on cell surface 

are assumed to influence the biological behaviour of the tumor cells during malignant 

transformation and tumor progression, suggesting that the protein may be important for 

the maintenance or generation of the tumor[37, 38]. 

The disease status in breast and recently in ovarian cancer patients is routinely assessed 

by monitoring the serum levels of circulating CA15-3 protein.  

Elevated levels of CA15-3 (> 20 U/mL) in the serum are always associated with poor 

survival.  Moreover, the determination of CA15-3 protein has been exploited as a 

measure of tumor burden and used to monitor the response on of the patients to clinical 

treatments [39-41]. 

 

2.2.3. Human Epidermal Growth Factor Receptor 2 (HER2) 

 

Human Epidermal Growth Factor Receptor 2 (HER2), also known as ErbB2, c-erbB2 or 

HER2/neu, is a 185 kDa protein with an intracellular tyrosine kinase domain and an 

extracellular ligand binding domain. In humans, HER family includes four structurally 
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related members, HER1 (ErbB1, also known as EGFR), HER2 (ErbB2), HER3 (ErbB3) 

and HER4 (ErbB4).  

In particular, HER2 is a type 1 transmembrane glycoprotein composed of three distinct 

regions: an N-terminal extracellular domain (ECD), a single α-helix transmembrane 

domain (TM), and an intracellular tyrosine kinase domain. As the largest part of HER2, 

the N-terminal ECD contains approximately 600 residues (90–110 kDa) which could be 

divided into four subdomains (I–IV). Subdomains I and III can form a binding site for the 

receptor's potential ligands, while the subdomains II and IV are involved in the 

homodimerization and heterodimerization processes.  

It has been demonstrated that HER heterodimers are more potent in signal transduction 

than homodimers and HER2 represent the preferred dimerization partner of all other HER 

receptors. In normal cells, HER2 is mainly involved in the enhancement of signaling 

pathways which activate biological responses such as cell proliferation, apoptosis 

inhibition, angiogenesis, migration and invasion. 

HER2 is frequently overexpressed in breast cancer, gastric cancer, ovarian cancer and 

prostate cancer.[42-44] 

Overexpression of HER2 usually results in malignant transformation of cells accounts for 

∼25% of all breast cancer cases (clinical cut off: 15 ng/mL) and it is always associated 

with more aggressive tumor phenotypes. The overall survival rate and relapse time for 

HER2 positive breast cancer patients are significantly shorter than patients without HER2 

overexpression [45, 46]. The role of HER2 in ovarian cancer is not clear as in breast 

cancer. However, it was suggested that the HER2 overexpression is more frequent in 

advanced stage of ovarian tumor [47, 48]. 

 

2.2.4. Vascular Endothelial Growth Factor (VEGF) 

 

Vascular Endothelial Growth Factor is referred to a family of dimeric glycoprotein 

including five members (VEGF-A, VEGF-B, VEGF-C, VEGF-D, placenta growth factor, 

PGF) and their associated receptors (VEGFR-1, VEGFR-2, VEGFR-3). Homologs of 

VEGF protein are also discovered in the genome of some viruses (VEGF-E) [49] or in the 

venom of some snakes (VEGF-F) [50, 51]. Because VEGF-A was the first and the most 

studied protein (in particular related to oncology and cancer biology), often in literature 

(and in this text) the term VEGF strictly indicate the VEGF-A member. 
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VEGF is a dimeric glycoprotein which is covalently linked by 2 disulfide bridges, 

encoded by the gene located at chromosome 6p213 constituted by 8 exons separated by 7 

introns. Related to alternative exon splicing of exons 6 and 7, it can be distinguished in 

many different isoform of which VEGF121, VEGF165 and VEGF189 (constituted 

respectively by 121, 165 and 189 amino acids) were the most well-studied [52]. 

Crystallographic research conducted by Muller et al. [53] reveal that VEGF is formed by 

an antiparallel homodimer covalently linked by two disulfide bridges, in similar way of 

platelet-derived growth factor (PDGF). Respect to VEGF121 and VEGF189, VEGF165 

shown intermediate properties because is both secreted (as diffusible protein or as 

bioactive fragments) and partially bound to the cell surface and to the extracellular matrix 

(ECM) [54].  

From biological point of view, VEGF and its receptors play a main role in the formation 

of cardiovascular system.  

Briefly, the first of this process, consist in the differentiation of the angioblasts into the 

hemangioblast, followed by the reorganization of the endothelial cells (angiogenesis 

process) which start the production of VEGF that lead to the formation of new blood 

vessels [55]. 

VEGF importance in angiogenesis were furthermore demonstrated in several studies in 

which the targeted disruption of VEGF and its receptor during embryogenesis, led to 

early embryonic mortality due to severe defects in vascular system [56, 57]. 

VEGF play also a critical role in carcinogenesis and in tumor metastasis: in fact, recent 

studies revealed the ability of the tumoral cells to create new vasculatures (increasing the 

production of VEGF proteins) in order to receive a large number of nutrient and oxygen 

necessary for their growth.  

Moreover, because new tumoral vasculatures are functionally abnormal (highly 

disorganized, tortuous, dilated) and consequently blood tumor flow is chaotic and 

variable, hypoxic and acidic zones surrounding the tumor are formed. Thus, tumoral cells 

increase in the production VEGF to form new vessels and VEGF concentration in blood 

raise up [58, 59]. 

VEGF concentration in blood and serum (which values is much higher than 100 pM in 

pathological condition) can be thus used as biomarker associated with diagnosis and 

prognosis of different type of cancer diseases with particular reference to the presence of 

metastasis processes [60, 61].  
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3. Bioreceptors 
 

In order to develop an optimal device for the determination of cancer biomarkers useful 

for clinical diagnosis, the selection and the immobilization of the biorecognition element 

play a critical step. 

The most widely used bioreceptor is represented by the antibody molecules, because 

provides the specificity and sensitivity required for low levels of molecular detection. 

However, recently, synthetic molecular recognition elements have been fabricated as 

affinity receptors and used for analyte detection and analysis with the aim to overcome 

the limitation related to the own nature of the antibodies. 

In the next paragraphs the characteristic and the structure of antibodies, aptamer and new 

engineered scaffold protein molecules will be discussed.  

Subsequently, the use of these bioreceptors for the detection of cancer biomarkers 

coupled with nanomaterials will be reviewed. 

 

3.1. Antibodies 

 

Antibodies (Abs), also called immunoglobulin (Ig), are proteins found in the plasma and 

in the extracellular fluids that are produce by the specialized lymphocyte B cells of the 

host, in order to neutralize and/or eliminate the presence of a foreign molecules or 

organisms (also called antigens, Ags).  

Thus, antibodies represent the first response and comprise one of the principal 

instruments of the adaptive immune system. 

Structurally, antibodies are large Y-shaped glycoprotein (of molecular weight about 150 

kDa) composed by two identical copies of both heavy (H, ~ 50 kDa) and light (L, ~ 25 

kDa) chains bind together by disulphide and non-covalent bonds.  

These chains include variable regions (V), which constitute the Fab (fragment-antigen 

binding) domain, and constant regions (C), which constitute the Fc (fragment 

crystallisable) domain. 

In particular, Fab domain is composed both by heavy and light variable regions 

(respectively VH and VL) bind together to form the Ab-Ag binding domains (called 

complementary-determining regions, CDRs).  

This region is also called paratope and recognizes a complementary site on two antigens 

(generically identical) called epitope. Fc domain is instead composed by two heavy 
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chains that include two or three constant domain (CH), depending on the class of the 

antibodies. This region modulate immune cell activity and, because can bind to various 

cell receptors, it mediates different physiological effects. 

 

 

Figure 1.3. A) Schematic representation of Y-shaped Ab structure: CH 1-3, constant region of heavy chain; 

CL, constant region of light chain; VH, variable region of heavy chain; VL, variable region of light chain; 

CDRs complementary-determining regions, Ag, antigen (adapted from ref. [2] ).B) Ribbon structure of the 

first Ab (IgG2A) every crystallized [62]. 

 

Based on the sequence of their heavy chain constant region, mammals Abs can be divided 

in five classes (IgM, IgD, IgG, IgE and IgA). IgG represents about 75% of serum 

immunoglobulin in human and was the most used Abs in bioaffinity devices and for 

cancer immunotherapy [63, 64]. 

 

3.1.1. Polyclonal and monoclonal antibodies 

 

A high number of antigens possess a very complex structure with numerous epitopes that 

can be recognized. If each lymphocyte is activated to proliferate and differentiate into 

plasma cells, the resulting antibodies response is polyclonal (PAbs). In contrast, 

monoclonal antibodies (MAbs) are produced by a single B lymphocyte clone. 

Both polyclonal and monoclonal antibodies are produced in animal that receive injection 

of antigen or antigen/adjuvant mixture for the induction of complete antibody responses 

(in the case of PAbs) or to induce specific B cells obtained from the spleen of lymph node 

to establish hybridomas (in the case of MAbs). 

The principal advantages of MAbs are their specificity (coupled to their homogeneity) 

and consistency that make them useful to evaluating changes in molecular conformation, 

protein-protein interactions (reducing the probability of cross reaction), or to be used in 

targeted therapy (in particular in cancer disease). However this high monospecificity may 
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also limit their usefulness: in fact, small changes in the structure of an epitope present on 

an antigen can markedly affect the recognizing properties of the specific MAb. 

In contrast PAbs are heterogeneous and recognize different antigen epitopes; furthermore, 

the effect of change on a single or small number of epitopes is less likely to be significant. 

PAbs stability is also less influenced by variations of pH and salt concentrations. 

Finally, PAbs could be useful when the nature of the antigen in unknown and can be also 

obtained within a short time (4-8 weeks) in comparison of MAbs (3-6 months) with a 

significant reduction of the production costs [65, 66]. 

 

3.2. Aptamers 

 

Despite the wide use of Abs for biosensing applications, some limitations still remain 

presents. In particular, antibodies (both monoclonal either polyclonal) are selected and 

produced using animals. Consequently, antibodies generation, as well as presenting 

ethical issues, becomes difficult with molecules which are toxic or not well tolerated by 

the host. 

Furthermore, antibodies are sensitive to temperature variations and the performance of the 

same antibody tends to vary using different batches. 

In order overcome these limitations, recent progresses and advances in biotechnology and 

chemical synthesis have led to the discovery and the introduction of a new class of 

bioreceptor that offers a promising alternative to antibodies. 

Aptamers (from the Latin “aptus” – fit and Greek “meros” – part) are oligonucleotide 

sequences (DNA or RNA) or peptide molecules capable to bind a target molecule with 

high affinity and specificity. Aptamers offer unique properties compared to other 

targeting agents such as chemical synthesis (without the use of animals and with reduced 

cost of production), high degree of purity (which reduce batch to batch variations), high 

temperature stability, the possibility of reversible denaturation and the inclusion in the 

molecule of several functional groups [67]. 

Aptamers (introduced by Ellington and Szoztak [68], and by Tuerk and Gold [69] in 

1990) are isolated from combinatorial libraries by a process of in vivo evolution called 

SELEX (Systematic Evolution of Ligands by Exponential enrichment). 

In this process a random sequence of oligonucleotide library (composed approximately by 

10
15

 – 10
16

 individual molecules), flanked by constant 5’ and 3’ ends (primer) sequences, 
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is incubated with a target of interest in a proper buffer at selected temperature. During this 

step, only a small fraction of the starting sequences is capable to bind the target (generally 

immobilized on a solid support) and the unbound sequences are further separated from 

the rest of the library by a simple washing step. 

 

 

Figure 1.4. Representation of SELEX process. First, random nucleic acid library is incubated with a target 

molecule. Then, unbound molecules are separated from bound molecules by washing step. Bound nucleic 

acids are finally eluted, amplified by PCR and used as an enriched library for the next cycle [70]. 

 

Next, the bound sequences are eluted, amplified by PCR (Polymerase Chain Reaction) 

and prepared for the next cycle of selection. 

Once affinity saturation is achieved after several rounds (generally 8-15 cycles) of 

selection/amplification, the enriched library is cloned and sequenced to obtain the 

sequence information of each member. Selected sequences are then truncated (in order to 

remove the primer sequences that are not important for the aptamer/target interaction) and 

finally characterized on the basis of their affinity to the target of interest. 

 

3.3. Engineered protein scaffolds molecules (Affibody®) 

 

Parallel to aptamers, in order to overcome immunoglobulin limitation, another field of 

investigation is represented by the development of alternative binding proteins (based 

either on scaffold with the immunoglobulin fold or on completely different protein 

topologies), called collectively engineered protein scaffolds. 
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Usually, this scaffold is derived from a robust and small soluble monomeric protein (such 

as the Kunitz inhibitors or the lipocalins) or from a stably folded extramembrane domain 

of a cell surface receptor (e.g. protein A, fibronectin or the ankyrin repeat). Compared 

with antibodies or their recombinant fragments, these protein scaffolds often provide 

practical advantages including elevated stability, high production yield in in vitro systems 

and possibility to modulate desired properties (such as solubility, thermal stability, 

protease resistance etc.) [71-73]. 

Among this classes of engineered protein Affibody® received particular attentions and 

found application in several studies especially for in vivo diagnostic imaging [74, 75] and 

targeted therapy [76, 77] applications. 

Affibody molecules are being developed by a Swedish biotechnology company (Affibody 

AB, www.affibody.com) and are an engineered version (Z domain) of one of the five 

stable three-a-helix bundle domains from the immunoglobulin Fc-binding region of 

staphylococcal protein A. Affibody® molecules are constituted by only 58 amino acids 

without disulphide bonds and can therefore be produced in simpler organism such as 

prokaryote, rather than the animal system required in antibody synthesis [78].  

 

 

Figure 1.5. Schematic representation of the three-helix bundle Affibody® protein Z scaffold (green) with 

the 13 position randomized during affibody protein library development [78]. 

 

Moreover, due to their small size they can also be chemically synthesised using solid 

phase peptide synthesis (SPPS), which eliminates the need for biological systems for 

production, but also means that specific site modification can be performed.  

Affibodies can include specific labels, such as fluorophores, radioactive labels and other 

moieties, such as biotin, which can be used to couple the affibody to surfaces or other 

molecules, including enzymes [79]. 
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4. Nanostructured affinity biosensors for cancer biomarker detection 
 

The advance in nanotechnology have led to the discovery and the employment of a great 

number of new materials in nanoscale dimensions (comprise between 1 and 100 nm, even 

for biological application dimensions can raise up to 500 nm and rarely up to 700 nm).  

Because the common biological systems (such as protein, viruses, membrane etc.) are 

nanostructured and their interaction take place at nanometric scale, nanomaterials 

becomes an ideally candidates for the development of advanced biosensing devices. 

 

Nanostructures present several advantages in analytical applications and can be mainly 

used as transducers (due to their unique optical, chemical, electrical, and catalytic 

properties) or as a component of the recognition element of a biosensing device (due to 

increase of the area/volume relationship that increases the number of attached 

bioreceptors in the sensing surface). 

 

Because the high number of nanomaterials utilized in biosensor technologies, the next 

paragraph is dedicated to the recent works present in literature (from 2009 up to now) 

regarding the employment of gold and magnetic nanoparticles for cancer biomarkers 

detection. 

 

4.1. Gold nanoparticles (AuNPs)-based biosensors for cancer biomarkers detection 

 

Among metal nanomaterials, gold plays a special role. A literature research conducted on 

SciFinder Scholar using “gold nanoparticles” as key word, returned more than 3000 

entries (including journal articles and review in English) only in the current year. If the 

research was expanded from 2010 up to now the results obtained were about 13700. Thus, 

gold nanoparticles (AuNPs) are one the most (if not the most) studied and applied 

nanomaterial. 

In particular due to their properties (common with other nanomaterials) coupled to their 

easy synthesis, high compatibility with biological system and enhanced scattering an 

adsorption, particular attention has been focused on the use of AuNPs for biosensors and 

for in vivo applications (such as cancer cell imaging, cancer therapy and drug delivery) 

[80-84]. Gold nanoparticles are a colloidal suspension of nanometric-dimension particles 

of gold.  
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Even AuNPs first application can be dated to Roman age (utilized to colour glasses, as for 

instance the famous Lycurgus cup) [85], the modern evaluation of colloidal gold began 

with the study of Faraday (in 1850s) [86] which revealed that colloidal gold solution 

shows different properties respect to bulk gold. 

 

 

Figure 1.6. Lycurgus cup in reflected (a) and transmitted (b) light [87]. 

 

In fact, AuNPs colloidal solutions possess an intense colour, varying from red to purple 

(respectively for small and larger particles) in contrast with bright yellow colour of 

massive gold materials. 

This phenomenon is due to their unique interaction with light called localized surface 

plasmon resonance (LSPR). When the oscillating electric field of the incidence light 

interact with AuNPs, the free electrons of metal nanoparticles undergo an oscillation 

respect to the metal lattice. At a particular frequency this process is resonant and allow 

the adsorption of a specific photon (with energy comprise in the visible range of the 

spectrum) that confer the characteristic intense colour of AuNPs dispersions (i.e. 

spherical AuNPs of about 10 nm size shows a LSPR at 520 nm resulting in a brilliant red 

colour of their colloidal solutions) [88]. 

Numerous studies demonstrated also that LSPR a phenomenon is strictly dependent by 

the shape, size, and dielectric constants of both the metal and the surrounding material. 

For instance gold nanorods (AuNRs) solution exhibit a broad range of colour (respect to 

spherical AuNPs) due to the presence of two LSPR band along the short and the long 

axis, mainly related to their aspect ratio (represent by the ratio between length and width). 

Because the longitudinal LSPR of AuNRs can be tuned up to NIR region (~1000 nm) in 
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which biological tissue are transparent to the incident light, these nanomaterials (with 

proper functionalization) have found an interesting applications for cancer cells imaging 

and cancer thermal therapy [89, 90]. 

 

Synthesis of spherical AuNPs is classically achieved by citrate-mediated reduction of 

hydrogen tetrachloroaurate (III) (HAuCl4) in aqueous solution. This procedure pioneered 

by Turkevich in 1951 [91] and subsequently modified by Frens in 1973 [92] provided the 

formation of AuNPs in a range between 15 and 150 nm (depending on the citrate 

concentration). However, particles larger than 20 nm present a high polydispersity and a 

low concentration. 

This problem was then solved by Brown and Natan using a seeding procedure, based on 

the catalytic reduction of Au
3+

 by hydroxylamine, mediated by AuNPs surface [93]. 

Via seed procedures are also extensively used to produce AuNPs with different shapes 

and sizes (rod, triangular, polygonal rods, star etc.); these methods begin with the 

production of small size (1 – 3 nm) gold nanoparticles (called seed) through the reduction 

of hydrogen tetrachloroaurate with a strong reducing agent (generally sodium 

borohydride) followed by the addition of a growth gold solution including weak reducing 

agent (i.e. ascorbic acid), HAuCl4, silver and surfactant (i.e. cetyltrimethylammonium 

bromide; CTAB). Controlling the amount and the nature of reducing agent and the 

condition of the growth, synthesis of AuNPs with different shapes and dimension has 

been achieved [94-97]. 

Other synthetic strategies include physical, photochemical, biological techniques and the 

realization of bimetallic or silica-core based nanoparticles. These procedures have been 

well-reviewed in ref. [98]. 

 

Exploiting the high affinity between gold and thiol groups, AuNPs has been successfully 

coupled with different biorecognition elements (such as aptamers/DNA probe, antibodies 

etc.) and has been extensively used in broad range of sensing/signal amplification 

approaches both in sandwich or label-free assays.  

In this work, two different application procedures, mainly related to the capability of 

AuNPs to immobilize a higher number of biorecognition elements (capture and detection 

probe) respect to bulk material-based support, of AuNPs in biosensors development were 

considered: 
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 in the first one AuNPs were directly deposed onto a solid support (i.e. the working 

electrode of electrochemical cell) in order to be functionalized with more capture 

probe allowing the recognition of an higher number of target of interest (i.e. label-

free biosensors).  

 

 in the second one, after the immobilization of the capture probe on the solid 

support, AuNPs-modified detection probe were introduce in the system to form a 

sandwich assay. The amplification were achieved both by the using an enzyme-

labelled detection probe either exploiting catalytic properties of AuNPs surface 

(i.e. sandwich assay-based biosensors). 

 

 

Figure 1.7. Different approaches utilized for AuNPs-signal amplification: a) Capture probe-modified 

AuNPs can be immobilized on a solid support increasing the number of target that can be recognized by the 

bioreceptor. b) Amplification of analytical signal by AuNPs modified with enzyme-labelled detection 

probes. 

 

Electrode surface can be easily modified by AuNPs. A simple method consists into the 

directly electrodeposition of AuNPs. Several strategies were reposted by different groups. 

Electrodeposition of AuNPs was generally performed starting from an aqueous solution 

of HAuCl4 prepared in acidic medium and containing different types of electrolytes. 

Subsequently, Au(III) was reduced to form AuNPs (in a form of cluster aggregates) by 

the application of a constant negative potential (or step potential) for a fixed time or 

varying the potentials for a different number of cycles at an optimal scan rate [99-103]. 

For instance, Rathod et al. [101] reported the electrodepostion of AuNPs on the surface of 

an working electrode (composed by carbon cloth microfibers) staring from a 0.6 mM 
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HAuCl4 solution prepared in sulphuric acid 0.5 M and cycling the potential from -0.2 to 

1.6 V at 0.1 V s
-1

 vs. Ag/AgCl reference electrode for 25 cycles. 

Electrodeposition of AuNPs was also performed on polycrystalline Au electrodes using a 

6 mM HAuCl4 solution prepared in 0.1 M KNO3 and scanning the potential from -0.2 to -

1.2 V vs. Ag/AgCl for 20 cycles [100]. Moreover, Dai et al. [104] reported the formation 

of AuNPs on ITO electrode by the application of a step potential from 1.055 V to -0.0045 

V for a fixed time. 

Other groups report also the inclusion of pre-formed AuNPs in a monomer solution 

(generally pyrrole, aniline and chitosan) followed by the synthesis of the polymer or the 

growth of AuNPs on a pre-formed polymer [105-111]. 

For instance, glucose biosensors based on chitosan–glucose oxidase (GOx)–AuNPs 

biocomposite was prepared by one-step electrodeposition staring from a solution 

including chitosan monomer, pre-formed AuNPs and GOx. Chitosan hydrogel formed 

during the electrodeposition incorporated AuNPs that enhance the stability of the enzyme 

and facilitate the oxidation of hydrogen peroxide at the electrode [107]. 

Saberi et al. [109] reported the development of DNA biosensor based on the formation of 

polyaniline (PANI) film on the surface of graphite screen-printed cells, followed by 

electrochemical deposition of AuNPs obtained from a HAuCl4 acid solution. This study 

revealed the enhancement of the AuNPs-modified PANI-based DNA biosensor due both 

to the intrinsic increase of the performance of AuNPs-modified PANI sensors at neutral 

pH, either to the correct alignment of DNA capture probe that allowed an improvement of 

hybridization reaction.  

 

Finally, AuNPs can also immobilized on the electrode surface by layer-by-layer 

deposition exploiting the high affinity of Au with several functional group (such as -SH, -

NH2, -CN) or in addition with other nanostructured materials, such as multi-walled 

carbon nanotubes, MWCNTs. 

An interest study was reported by Xiao et al. [112] in which COOH-modified AuNPs was 

immobilized to the surface of Au electrode by means of a dithiol linker. Then, amino 

ethyl-FAD cofactor was covalently linked to COOH-AuNPs and apo-GOx was finally 

reconstituted. Results showed that AuNPs act as nanoelectrode able to transport the 

electrons from the FAD centre to the electrode surface activating the bioelectrocatalytic 

function of the enzyme.  
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With this approach, the turnover rate of electrons from the enzyme redox site to the 

electrode was estimated to be eight time higher than the rate of electron transfer from the 

cofactor site to the native acceptor of the enzyme. 

 

Colloidal AuNPs can be also easily functionalized with different types of signalling 

bioreceptors (such as antibody, DNA, aptamer etc.) by means of covalent or electrostatic 

interactions and used in an ELISA-modified assay. In particular capture probe was first 

immobilized on a solid support, followed by the sandwich formation between antigen and 

AuNPs-functionalized detection probe. 

For instance, Cui et al. [113] described the detection of human-IgG using gold 

nanoparticles AuNPs/CNT modified electrode (to increase the amount and the stability of 

the immobilized capture Ab) coupled with horseradish peroxidase (HRP)-functionalized 

AuNPs label, that allowed an enhancement of analytical signal due to the higher number 

of HRP molecules loaded on the surface of AuNPs. 

Similar assays were also studied for the development of immunochromatographic test 

strips (widely used for pregnancy test) in which AuNPs act as colorimetric label [114, 

115] and also used for the amplification of the detection of DNA hybridization reaction 

[116]. 

 

Another amplification techniques exploit the intrinsic catalytically properties of AuNPs to 

reduce metal (generally silver) allowing the use of the sensible electrochemical stripping 

metal analysis. Wang described this application for the determination of DNA segments 

related to the BRCA1 breast cancer gene. In particular detection DNA probe was 

immobilized on the surface on magnetic beads followed by hybridization with AuNPs-

modified complementary target and finally, functionalized beads was placed in a silver-

enactment solution. AuNPs catalyse the reduction from Ag(I) to Ag(0) with the formation 

a metallic silver nanoparticles tags. Ag(0) was then dissolved in acid medium to form 

Ag(I) ions that are subsequently accumulated at a disposable thick-film carbon electrode 

by the application of a negative potential (-0.8V) and detected using a potentiometric 

stripping protocol [117]. 

AuNPs is also capable to catalyse the reduction of Au(III) to Au(0): in this case an 

increasing of AuNPs dimension was observed and its application in colorimetric assay 

has been reported [118-120]. 
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Finally the chronoamperometric detection of the hydrogen produced from acid medium 

(catalysed by AuNPs) was also studied [121]. 

 

AuNPs-modified electrode and AuNPs-coated detection probe strategies were 

successfully applied for the determination of cancer biomarkers. 

AuNPs were extensively used to improve the sensibility both for classic ELISA tests 

either for immunosensor devices. 

Ambrosi et al. [122] reported the development of AuNPs-modified ELISA immunoassay 

for the determination of MUC1 (CA15-3) antigen. In particular, primary anti-CA15-3 

antibody was immobilized in a classical 96 well microtiter plate followed by the 

interaction with CA15-3 antigen and the addition of AuNPs-modified anti-CA15-3-HRP 

secondary antibody. In comparison with classical assay (Ab-Ag-Ab HRP) the possibility 

to immobilize a higher amount of signalling antibody on AuNPs surface provided both an 

increase of sensibility either a reduction of time required for the completion of the assay. 

In a different approach, AuNPs were used to modified (via chemical plating) the surface 

of ELISA microtiter plate followed by the immobilization with the antigen and by the 

incubation labelled-antibody.  

In this case, the fabrication of AuNPs layer results in a higher efficiencies on the protein 

binding maintaining also unchanged the protein activity. This AuNPs-modified assay was 

successfully applied for the determination of CEA cancer  biomarker (utilized for the 

diagnosis and the monitoring of colorectal carcinoma) and anti-thrombin model protein in 

buffered solutions [123]. The same authors also reported the application of this approach 

for the detection of CEA antigen in human plasma [124].  

AuNPs-based electrochemical immunosensor for cancer biomarkers detection were also 

developed. Elshafer and co-worker reported the development of label-free impedimetric 

immunosensor based on AuNPs-modified Au electrode for the detection of epidermal 

growth factor receptor (EGFR) [100], a cancer biomarker associated with epithelial 

cancer such as breast, bladder, renal, neck gastric etc. cancer [14]. 

In this study, AuNPs were first electrodeposed on the surface on Au electrode followed 

by their functionalization with cysteamine to form a self-assembly monolayer (SAM). 

Protein G was then immobilized to cysteamine SAM and used to bind Fc region of 

specific anti-EGFR antibody. Finally affinity reaction with EGFR antigen was evaluated 

by means of electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]
3-/4-

 as redox 
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probe. AuNPs showed an increase of electroactive area of the electrode by a factor of 3, 

allowing the detection of EGFR with good sensibility and reproducibility both in PBS 

buffer either in human plasma. 

AuNPs-based label free immunosensor was also applied for the detection of CA125;  

Au nanostructures were first electrodeposed on the surface of a microchip (composed by 

a layer of SiO2 covered by Au and by another layer of SiO2 with a circular aperture of 5 

m) and after functionalized with cystamine in order to form a SAM. 

Cystamine residues were coupled with glutaraldehyde and with anti-CA125 antibody.  

Affinity reaction with antigen was evaluated analysing the reduction of [Fe(CN)6)
3-

/
4-

 

oxidation current due to the formation of a layer of protein that block the electron transfer 

from the solution to the surface of the chip. This sensor allowed the detection of CA125 

in serum an blood with good detection limit and reproducibility [125]. 

 

 

Figure 1.8. Representation of AuNPs/MWCNTs/Au immunosensor for detection of PSA antigen through 

multiple-HRP/MWCNTs label strategy [126]. 

 

Another assay, involved the immobilization of AuNPs on thiolated MWCNTs-modified 

Au electrode. This assay was presented in form of ELISA sandwich assay in which 

AuNPs/MWCNTs/Au-modified electrodes were incubated with anti-PSA primary 

antibody, PSA antigen, and anti-PSA secondary attached to the surface of HRP-modified 

MWCNTs. The amplified detection was achieved by the enhanced precipitation of 4-

chloro-1-naphthol using a higher number of horseradish peroxidase (HRP) molecules 

immobilized on MWCNTs, coupled with an higher number of primary Ab bound on the 

surface of Au electrodes [126]. 

A recent strategy for simultaneous determination of three liver cancer biomarkers (alpha-

fetoprotein – AFP –, alpha-fetoprotein variant – AFP-L3 –, and abnormal prothrombin – 
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APT –) based on three redox labels was reported by Li et al.[127]. AuNPs functionalized 

with CNTs were used as carriers to immobilize redox probes labelled (ferrocene, 2,2’-

bipyridine-4,4’-dicarboxylic acid and thionine) antibodies and to amplify the signals. 

Affinity reaction detection was achieved by the analysis of the different electrochemical 

behaviour of the labels by means of differential pulse voltammetry (DPV). 

Mani et al. [128] reported the development of a densely packed gold nanoparticles 

platform combined with a multiple-enzyme labelled detection antibody-magnetic bead 

bioconjugate for the analysis of PSA cancer biomarker in serum samples. 

AuNPs-glutathione colloid was adsorbed layer-by-layer through electrostatic interaction 

on a layer of cationic poly diallyldimethyl ammonium chloride (PDDA), deposited on a 

pyrolytic graphite electrode.  

 

 

Figure 1.9. AuNPs-based immunosensor for detection of PSA in serum, cell lysate and human serum of 

cancer patients [128]. 

 

Anti-PSA Ab was immobilized to the AuNPs-modified electrode via amidization (using 

EDAC/NHS solution) and then casein was used to block free Ab binding site on the 

electrode surface. After the incubation with PSA, the assay was completed adding the 

anti-PSA secondary antibody conjugated with HRP-modified magnetic particles. This 

complex enhanced the catalytic reduction of H2O2 and thus PSA concentration was 

evaluated by amperometric measurements. This approach allowed the detection of PSA in 

serum sample with a very low detection limit (0.5 pg mL
-1

) and was also successfully 

applied for the measurement of PSA in cell lysates and human serum of cancer patients. 

AuNPs/PDDA-modified pencil graphite electrode was later applied for the determination 

of human interleukin-6 (IL-6) cancer biomarker in serum [129]. 
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The assay was based on a sandwich format in which GSH-AuNPs were deposed as in the 

previous reported work. Anti-IL-6 antibody was then bound to the sensor surface and 

bovine serum albumin (BSA) was used to reduce the non-specific binding of other 

proteins. The sandwich was completed by the incubation with a biotinylated secondary 

Ab and with streptavidin-HRP. Also in this approach, the amperometric measurements of 

the reduction of H2O2 were used to determinate the concentration of IL-6.  

Moreover, authors compared the performance of AuNPs- and MWCNTs-based assay 

showing that AuNPs-based biosensor provided a better results and a lower detection 

limits for the measurements of IL-6 cancer biomarker. 

Finally, Chikkaveeraiah et al. [130] utilized coupled this assay with microfluidic system 

using an 8-electrode screen-printed carbon array.  

Another microfluidic system (based on the development of a sandwich assay using 

AuNPs functionalized with HRP-labelled secondary Ab) for the detection of alpha-

fetoprotein was recently developed by Zhang et al. [131]. 

Zhong et al. [132] developed an immunosensor for the detection of CEA cancer 

biomarker based on AuNPs enwrapped graphene nanocomposites. Initially, AuNPs and 

were electrodeposed (applying a constant potential) on the surface of Prussian Blue-

modified glassy carbon electrode and then functionalized with primary anti-CEA Abs and 

BSA. After the reaction with the antigen, the sandwich assay was completed by 

incubation with HRP-labelled secondary anti-CEA antibodies immobilized on the surface 

of multi-AuNPs shell assembled on a chitosan-protected graphene nanocore.  

The sandwich complex allowed the signal amplification on CEA detection promoting the 

electron transfer from HRP(Fe
3+

) to HRP(Fe
2+

) and allowing the reduction of H2O2 in 

water solution.  

This immunosensor was successfully applied for the determination of CEA biomarker in 

serum obtained from cancer patients with good correlation with reference method. 

Potentiometric immunosensor for total PSA detection was reported by Wang et al. [133]. 

The biosensor was assembled by the immobilization of a first layer of AuNPs on PVC 

electrode. Poly(amidoamine) G4 dendrimer was the deposed between this and another 

layer of AuNPs.  

Anti-total PSA Ab was finally absorbed on the surface of the second layer of AuNPs. The 

detection of t-PSA concentration was evaluated analysing the variation of the electric 

potential of the electrode surface (without application of current) before and after the Ab-
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Ag interaction. The developed immunosensor showed good precision, stability and 

reproducibility and consistent results with reference ELISA test. 

 

Catalytic deposition of silver on AuNPs coupled with anodic stripping analysis was also 

exploited for the detection of cancer biomarkers. 

Lin et al. [134] developed a sandwich assay for the detection of CEA (Carcinoembryonic 

Antigen) cancer biomarker using AuNPs-modified detection anti-CEA antibody. 

The immunosensor was assembled by covalent immobilization of capture anti-CEA Ab 

on the surface of chitosan-modified graphene-coated glassy carbon electrode followed by 

the addition of BSA and by the incubation with CEA antigen. 

AuNPs-modified poly(styrene-co-acrylic acid) beads were functionalized with anti-CEA 

detection Ab and finally deposed to the sensor to complete the sandwich assay.  

 

 
Figure 1.10. Schematic representation of silver-enhancement based immunosensor for CEA cancer 

biomarker detection [134]. 

 

The anchored AuNPs induced the catalytically deposition of silver allowing the formation 

of AgNPs-coated AuNPs.  

Compared with AuNPs (detectable by stripping analysis in HCl), silver nanoparticles 

(AgNPs) can be oxidized at more negative potential with a relatively sharp peak, which is 

preferred to overcome the interference of reducing species and improving the detection 

precision and sensitivity. Immunoreaction was evaluated analysing the stripping current 

of silver obtained using linear sweep voltammetry technique. 

Similar approach was developed by Hong Min and co-worker [135]. In this study 

electrochemical stripping analysis of AgNPs-coated AuNPs was used to detect 
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Concavalin A (Con A) and can be used to monitor glycan-leticin interaction and cancer 

related glycans. 

The assay was presented in sandwich format in which Con A was specifically bound to 

mannose self-assembly monolayer formed on the surface of a gold electrode. The sensor 

was the incubated with mannose-coated gold nanoparticles to complete the sandwich. 

Silver deposition on AuNPs was then performed using silver staining solution. AgNPs 

were the dissolved in HNO3 solution and the resulting silver ions electrochemically 

deposed to the electrode surface by the application of specific potential. Finally deposited 

silver was stripped by means of anodic stripping voltammetry. Stripping silver current 

was used to determinate the concentration of Con A protein. 

 

Aptamers were also used, instead of antibodies, in gold-nanostructured electrochemical 

biosensors for the detection of cancer biomarkers. 

Liu et al. [136] described the development of a sensitive aptasensor for the detection of 

prostate specific antigen (PSA) based on the signal amplification of biotin-avidin system 

using AuNPs-modified graphite electrode.  

In particular graphite electrode was covered with AuNPs-modified graphite mesoporous 

nanoparticles (GMCs) prepared by linkage between 1,6-hexanedithiol-functionalized 

GMCs and AuNPs via Au-S binding. Streptavidin was the attached to AuNPs/GMCs-

modified electrode to immobilize a larger amount of biotinylated anti-PSA aptamer. 

Affinity reaction with PSA cancer biomarkers was then evaluated using hexacyanoferrate 

redox probe and differential pulse voltammetry technique. An increase of PSA 

concentration led to a decrease of redox probe current allowing the construction of a 

calibration curve.  

The developed aptasensor was successfully applied to the determination of PSA 

concentration in serum samples showing high specificity, good stability and 

reproducibility. 

Label-free aptasensor based on AuNPs-modified Au electrode for the determination of 

HER2 cancer biomarker was reported by Chun et al. [137]. 

A thin layer of AuNPs were electrodeposed on the surface of gold electrode using 10 mM 

HAuCl4 solution prepared in 0.5 M H2SO4 and applying a potential of -0.2 V (vs. 

Ag/AgCl reference electrode) for 20 seconds. Electrodeposed AuNPs were then 

functionalized with 3-mercaptopropionic acid followed by the attachment of ssDNA-NH2 
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anti-HER2 aptamer via EDAC/NHS chemistry. Free surface of the sensor was finally 

blocked with BSA. 

Evaluation of affinity reaction was carried out by electrochemical impedance 

spectroscopy using [Fe(CN)6]
3-/4-

 as redox probe. The proposed aptasensor showed fast 

HER2 detection with no reported cross reactivity in other species present in human serum 

(such as glucose, IgG, DNA and RNA). Furthermore, the aptasensors could be 

regenerated using acid solution (pH 4). 

Label-free approach was also used to detect MUC1 cancer biomarker. Florea and co-

worker [138] reported the development of two aptasensors based on the immobilization of 

thiolated anti-MUC1 aptamer of AuNPs-modified graphite and gold screen printed 

electrodes.  

In the first strategy, AuNPs were electrodeposed on the surface of graphite screen-printed 

electrode followed by the covalent immobilization of SH-modified anti-MUC1 aptamer 

and by the formation of a self-assembly monolayer with 6-mercapto-1-hexanol (MCH). 

After the interaction with the antigen electrochemical impedance spectroscopy 

measurements (using [Fe(CN)6]
3-/4

 as redox probe) were performed to construct the 

calibration curve.  

In the second approach, AuNPs were electrodeposed on the surface of gold screen-printed 

electrodes. AuNPs were then functionalized with MCH and methylene-blue (MB), used 

as redox probe. The interaction between aptamer and MUC1 antigen caused a decrease in 

MB redox current due to the reduction of the amount of intercalated MB present in the 

immobilized aptamers.  

Recently, an electrochemical aptamer biosensor based on an enzyme–gold nanoparticles 

dual label for the detection of MUC1 antigen was developed [139].  

In particular, AuNPs were functionalized with a hairpin oligonucleotide (HO) anti-MUC1 

(modified with thiol at the 5′-end and biotin at the 3′-end), with HPR enzyme and 

deoxyadenosine triphosphate (dATP).  

In the absence of MUC1, the immobilised hairpin aptamer was in a “closed” state, which 

shielded biotin from being captured by the streptavidin-modified electrode. In contrast, in 

the presence of MUC1, the HO was disrupted, and the biotin was captured by the 

streptavidin molecules immobilized on the transducer. In this case, redox behaviour of 

2,3-diaminophenazine (DAP), catalytically produced by HRP in presence of o-
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phenylenediamine and H2O2, was used to determinate the concentration of MUC1 cancer 

biomarker. 

 

 

Figure 1.11. Schematic diagram regarding MUC1 detection with AuNPs-modified anti-MUC1 HO-

aptamer. (A) In the absence of MUC1, the biotin was shielded and thus inaccessible to the streptavidin 

immobilized on the transducer. (B) Upon target binding, the disruption of the stem-loop makes the biotin 

exposed and easily captured by the streptavidin-modified electrode [139]. 

 

Because platelet-derived growth factor (PDGF) possess two epitopes that can bind 

selectively by two aptamers, an AuNPs-based aptamers sandwich assay was reported 

[140]. Thiolated anti-PDGF aptamer was first immobilized on gold electrode via Au-S 

link followed by the formation of mixed SAM with 6-mercapto-1-hexanol. Parallel, 

AuNPs were synthesized by citrate reduction method and covered with thiolated anti-

PDGF aptamer. After the formation of sandwich between Au electrode/anti-PDGF 

aptamer and AuNPs-modified anti-PDGF aptamer, [Ru(NH3)5Cl]
2+

 was added to the 

sensor. [Ru(NH3)5Cl]
2+ 

molecules were immobilized onto the surface of the above 

sandwich structure and the analysis of its redox behaviour allowed the detection on PDGF 

antigen. 

Aptamer sandwich based assay for the determination of CEA biomarker was also reported 

[141].  

In this approach, CEA antigen was sandwiched between a capture aptamer (immobilized 

on a gold electrode) and a detection aptamer immobilize on AuNPs modified with 6-

ferrocenyl hexanethiol. The presence of the antigen allowed the formation of the 

sandwich and CEA concentration was directly correlated with the redox behaviour of 6-

ferrocenyl hexanethiol redox probe. 



Chapter 1 

32 
 

4.2. Magnetic nanoparticles (MNPs)-based biosensors for cancer biomarkers 

detection 

 

Magnetic beads were used as powerful and versatile tool in a variety of analytical and 

biotechnology applications.  

Magnetic particles were generally synthetized by co-precipitation of Fe (II) and Fe (III) 

aqueous salts by the addition of a base resulting in the formation of solid magnetic iron 

oxide such as magnetite (Fe3O4) and maghemite (γ-Fe2O3). 

The selection of synthesis parameters (such as the type of salts, Fe (II) and Fe (III) ratio, 

pH, ionic strength) allowed the formation of magnetic particles with different shapes, 

sizes and compositions.  

Furthermore the synthesis conducted using organic polymers (including cellulose, 

polystyrene and polyacrylic derivatives) led to the functionalization with different 

functional groups (i.e. amine, carboxylic acid, aldehyde, thiol, epoxy, hydroxyl, 

streptavidin, protein A and G, albumin, biotin) which conferred a proper biocompatibility 

and allowed the modification with biological molecules of interest (such as antibodies, 

DNA, RNA, aptamers etc.). 

These coated magnetic particles are commercially available in nano- and micrometric 

dimensions [142, 143].  

 

Magnetic particles with high magnetic susceptibilities were currently used for sensors and 

biosensors development because they offer benefits such as a large surface area and easy 

immobilization of proteins, DNA, enzymes and antibodies.  

Moreover, because the immobilization of bioreceptors molecules directly on the electrode 

surface presents some problems (such as shielding of the surface by bioreceptors that 

cause hindrance in electron transfer reducing the analytical signals) magnetic particles 

were used as solid support to perform bioreceptor – analyte affinity reaction.  

In this case, because the modified beads were in suspension, the probability that 

bioreceptor met the magnetic beads or that bioreceptor-modified magnetic beads met the 

analyte in very high.  

Furthermore, the matrix effect was minimized due to the improved washing and 

separation steps and for this reason the working electrode surface was easily accessible by 

redox probe since it diffused onto the bare electrode surface. These properties allowed a 
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greater increase of sensibility and a reduction of the time for the development of the assay 

[144, 145]. 

 

 

Figure 1.12. General representation of magnetic beads-based assay for protein of interest detection [146]. 

 

Generically procedure for the realization of a magnetic beads-based sandwich assay 

coupled with electrochemical determination, consists in the functionalization of magnetic 

beads with bioreceptor (in aqueous suspension) followed by the application of a magnetic 

field in order to collect the particles allowing the removal of unbound biomolecules. After 

the affinity reaction with antigen and with the detection probe, the modified particles 

were placed on the surface of bare working electrode (transducer) and finally 

electrochemical analysis of redox probe was carried out.  

This strategy was extensively applied for the detection of cancer biomarkers using 

sandwich-based assay and employing different types of capture and detection probe. 

 

Sakar et al. [147] reported the development of an electrochemical sandwich immunoassay 

for the detection of free PSA (f-PSA) using magnetic beads as solid support.  

In particular, anti-PSA antibody was covalently bound to the surface of polyurethane-

coated magnetic beads followed by several washing steps (using magnetic particles 

concentrator) in order to remove the unbound molecules. Subsequently affinity reaction 

with PSA, washing steps, functionalization with anti-PSA secondary HRP-labelled 

antibody and final washing steps were carried out to realize the sandwich assay. 

Modified-particles were then collect on the surface of the working electrode of screen-

printed cells and the amperometric determination of hydrogen peroxide (produced by 

HRP in presence of TMB) was related to the concentration of f-PSA. This assay was also 
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applied successfully for the determination of f-PSA in human serum samples allowing the 

use for clinical analysis. 

Similar approach was later reported by Zani and co-worker in which PSA antigen was 

detected using protein G-coated magnetic beads as solid support for the immobilization of 

anti-PSA capture probe. The assay was then performed adding PSA antigen, capture anti-

PSA antibody and a tertiary alkaline phosphatase-labelled antibody which bound 

selectively the capture Ab.  

The transducer used for the assay development was constituted by screen-printed 8-sensor 

arrays (based on 8 graphite screen-printed working electrodes each one with its own 

silver pseudo-reference electrode and graphite counter electrode). The analysis of the 

redox behaviour of alpha-naphthol (produced by alkaline phosphatase in presence of 

alpha-naphthyl phosphate as substrate) allowed the development of calibration curve for 

PSA detection.  

The authors also integrated this magnetic-bead based assay in a commercially available 

microfluidic system (GRAVI-Cell, DyagnoSwiss, Monthey, CH) in which GRAVI-Chip 

(composed by 8 microchannel with integrate gold microelectrodes) that allowed the real-

time monitoring of the kinetic enzyme-label reaction. With this approach PSA 

concentration was detected in serum sample with good sensibility and reproducibility 

[148]. 

The same research group also exploited magnetic beads-based sandwich assay for the 

determination of HER2 cancer biomarker in buffered and in serum samples obtained for 

cancer patients [149]. 

Biosensor for the detection of CEA biomarker using anti-CEA antibody-modified-

magnetic beads coupled with a flow-injection electrochemical device was reported by Pan 

et al. [150]. The immunosensor was developed by immobilizing anti-CEA antibody on 

the surface of epoxysilane-modified core–shell magnetic Fe3O4/SiO2 nanoparticles. 

The analytical cycle (including the immobilization of bionanoparticles, the antigen–

antibody interaction, and sensor regeneration) was carried out using a flow-injection 

electrochemical system. Difference in transfer charge resistance before and after Ab-Ag 

interaction were evaluated by means of electrochemical impedance spectroscopy (EIS) 

using 10 mM [Fe(CN)6]
3-/4-

 solution prepared in phosphate buffer saline (PBS) pH 7.4. 

This procedure was also applied for the detection of CEA antigen in human serum 

samples. Core–shell–shell CoFe2O4–MPS/AuNPs composites were also developed and 
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used for the determination of alpha-1-fetoprotein by potentiometric measurements in 

human serum [151]. 

In-flow multiplexed immunoassay for simultaneous electrochemical determination of 

carcinoembryonic (CEA) and alpha-fetoprotein (AFP) in biological fluids was developed 

by Tang et al. [152]. 

The immunoassay was based on biofunctionalized magnetic graphene nanosheets (MGO), 

used as immunosensing probes, and multifunctional nanogold hollow microspheres, used 

(GHS) as distinguishable signal tags. The probes were fabricated by means of co-

immobilization of primary anti-CEA and anti-AFP antibodies on the surface of magnetic 

nanoparticle-coated graphene nanosheets. Reverse-micelle method was then used for the 

synthesis of distinguishable signal tags by the encapsulation of horseradish peroxide 

(HRP) thionine (conjugated with anti-CEA detection probe) and HRP-ferrocene 

(conjugate with anti-AFP detection probe) into nanogold hollow microspheres.  

The detection procedure of CEA and AFP cancer biomarkers was based on the catalytic 

reduction of H2O2 at the various peak potentials in the presence of the corresponding 

mediators. The developed immunosensor enabled the simultaneous detection of AFP and 

CEA with very low detection limit for both analyte (1.0 pg mL
-1

). The proposed 

immunosensor was also evaluated for the analysis of clinical serum specimens, obtaining 

a good correlation between the reference methods. 

 

 

Figure 1.13. Immunosensor development for simultaneous detection of CEA and AFP cancer biomarker by 

graphene-modified magnetic beads [152]. 

 

Magnetic beads-coated bioreceptor molecules were also coupled with AuNPs or used as 

label. 
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Munge et al. [153] developed a nanostructured immunosensor for detection of 

interleukin-8 in attomolar range based on glutathione-coated AuNPs deposed on the 

sensor surface and using anti-PSA detection antibody immobilized on HRP-loaded 

magnetic cluster (achieved by taking the advantage of interactions between streptavidin-

coated magnetic beads and biotinylated HRP). This strategy gave a LOD value for the 

detection of IL-8 30000-fold lower than that of the conventional ELISA and about 1000-

fold lower than that of commercial beads-based protein assays. 

Another approach, involved the use of magnetic bead as immobilization platform for the 

capture of the bioreceptor (in this case pseudorabies virus, PRV), followed by the 

interaction with analytes of interest (PVR antibody) ad by the addition of AuNPs-coated 

detection anti-PVR antibody.  

Functionalized beads were then collected on the surface of magnetic glass carbon 

electrode (MGCE) and the oxidation current of AuNPs (at 1.3 V vs. saturated calomel 

reference electrode, SCE) obtained by DPV measurements was used to the development 

of the calibration curve for the detection of PVR antibody in buffered and real samples 

solutions [154]. 

Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated 

magnetic beads and gold-graphene nanolabels for detection of CEA cancer biomarker 

was also reported [155].  

 

 

Figure 1.14. Schematic representation of nanosilver-coated magnetic beads and gold-graphene nanolabels-

based electrochemical immunoassay for CEA detection [155]. 

 

In this study, magnetic Fe3O4 beads were first immobilized on the surface of magnetic 

carbon paste electrode (MCPE) and then functionalized with o-phenylenediamine 

polymer (PPD), obtained by cyclic voltammetry electropolymerization of o-

phenylenediamine. Subsequently, in order to increase the number of bioreceptor 
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molecules, colloidal silver nanoparticles (AgNPs) were immobilized on the surface of 

PDD-modified MCPE. 

CEA antigen was then incubated with the sensor and the sandwich assay completed by 

the addition of anti-CEA detection probe labelled with HRP conjugated to AuNPs-

modified graphene oxide. Calibration curve was constructed by means of DPV 

measurements analysing the PDD-mediated reduction H2O2.  

The developed immunosensor showed a detection limit of 1 pg mL
-1

 and a good 

comparison with ELISA reference method. 

In another approach CEA cancer biomarker was detected using nanogold coated-magnetic 

particles. First, magnetic particles were prepared by reduction of Fe
3+

 and Fe
2+

 salts in 

presence of NH3 at pH 9, followed by the deposition of Au layer [156]. 

Au/Fe3O4 particles were then functionalized several time with AuNPs by addition of 

thiourea (in order to obtain a multilayer of nanogolds) and modified with anti-CEA 

bioreceptor.  

Detection of cancer biomarker was achieved by competitive methods using CEA and 

HRP-labelled CEA antigen. 

 

Figure 1.15. Biosensor development for CEA cancer biomarker detection using AuNPs/Au/Fe3O4 particles 

[156]. 

 

An interesting electrochemical immunoassay for detection of AFP protein was developed 

by Ding et al. [157]. 

The immunoassay was based on bio-bar-code amplification which possesses the 

Polymerase Chain Reaction (PCR)-like sensitivity without a need of enzymatic 

amplification. AFP was captured between streptavidin-coated magnetic beads and 

AuNPs-modified with detection probe and with CdS nanoparticles modified DNA probe.  
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Once the sandwich is formed, the CdS particles were dissolved in HNO3 acid with the 

production of Cd
2+

 ions finally determined by anodic stripping voltammetry (ASV) 

technique.  

With this approach, a linear dose-response curve in the concentration range of AFP from 

0.02 to 3.5 ng mL
-1

 (limit of detection 9.6 pg mL
-1

) was obtained.  

A nanoparticles-based electrochemical immunoassay for the detection of CA125 was also 

reported [158].  

CA125 protein was sandwiched between anti-CA125 antibody-modified magnetic beads 

and HRP-labelled anti-CA125 secondary antibody-modified silica nanoparticles. 

Moreover, in order to increase the electron communication between the immobilized HRP 

and the electrode, silica nanoparticles were coated with thionine redox mediator.  

Analysis of electrochemical behaviour of H2O2 was used to construct the CA125 

calibration curve.  

 

 
Figure 1.16. CA125 immunosensors development based on magnetic and thionine-modified beads[158]. 

 

DNA aptamer-modified magnetic beads were applied in particular for the detection of 

thrombin biomarker. 

Centi et al. [159] reported the development of a sandwich aptamer assay for detection of 

thrombin. The assay was constructed using streptavidin-modified magnetic beads for the 

immobilization of the primary biotinylated aptamer followed by the affinity reaction with 

thrombin and by the functionalization with a secondary biotinylated aptamer and with 

streptavidin-alkaline phosphatase. The detection of the product generated by the 

enzymatic reaction was achieved by differential pulse voltammetry (DPV). 

The biosensors showed good sensitivity and selectivity both in buffered solution either on 

thrombin-spiked serum and plasma samples. Almost the same authors further 
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demonstrated the detection of thrombin using aptamer-modified magnetic beads by 

different approaches (such as indirect and direct competitive assays) and by the detection 

of thrombin reaction product [160]. 

Similar assay for detection of thrombin using aptamer-modified magnetic beads was 

reported by Wand and co-worker [161]. Briefly, streptavidin-coated magnetic beads were 

used as support to perform the sandwich between thrombin and a capture biotinylated 

aptamer and detection aptamer immobilized on the surface of ferrocenylhexanethiol 

loaded silica nanocapsules (FeSH/SiNCs). After the addition of a base in the 

functionalized-magnetic beads dispersion FcSH residues were released in solution and 

subsequently deposed on the surface of a gold electrode. DPV measurements were then 

used to determinate the peak current related to the FeSH residues present on the surface 

of the electrode. 

The peak current of released FcSH had a good linear relationship with the thrombin 

concentration in the range of 0.1 – 5 nM in buffered solution; this method has been also 

used to detect thrombin in human serum albumin with minimum background interference.
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CHAPTER 2 
 

1. Electrochemical techniques 
 

1.1. Cyclic voltammetry 

 

Cyclic voltammetry (CV) is one of the most widely applied electrochemical techniques 

for the determination of the thermodynamics or kinetic parameters of redox processes. 

Moreover CV is also used for the characterization of electrode surface as well a rapid 

location of redox potentials of electroactive species and the analysis of the effect of the 

media on the redox processes.  

CV measurements were performed applying a triangular potential waveform (Figure 2.1 

A) to the working electrode (in an unstirred solution) and analysing the corresponding 

current variations. Depending on the requested information, single or multiple cycles can 

be performed. 

The results were reported in a characteristic potential vs. current plot called 

voltammograms (Figure 2.1 B). 

 

 
Figure 2.1. A) Potential-time waveform applied in a typical CV experiment. B) Voltammogram obtained 

for a reversible redox process [7]. 

 

The analysis of voltammograms allows the determination of cathodic peak potential (Epc, 

related to the process Ox + ne
-
  Red), anodic peak potential (Epa, related to the process 

Red  Ox + ne
-
) and the correspondent cathodic and anodic peak currents (respectively 

ipc and ipa).  

These parameters can be used for the characterization of the reversibility of the redox 

process and for the comparison with Nernstian system behaviour.  
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In particular for a Nernstian system, the ratio between ipc and ipa should be equal to 1, 

while at 25 °C the difference between anodic and cathodic peak potential (p = Epa – Epc) 

should be 0.059/n, where n in the number of the electron involved in the half-reaction. 

Other important information can be retrieved using Randles-Sevcik equation that, at 25 

°C for a reversible system, has the form of: 

 

   (         
 )               

 

in which ip is the peak current, n the number of the electrons, A the electrode area (in 

cm
2
), C the concentration (in mol/cm

3
), D the diffusion coefficient (in cm

2
/s) and  the 

potential scan rate (in V/s). With this equation is possible to calculate on of the 

parameters (i.e. the electroactive electrode area, A) if the others are known. 

 

1.2. Differential pulse voltammetry 

 

In differential pulse voltammetry a fixed magnitude pulse (superimposed on a linear 

potential ramp) was applied to the working electrode of an electrochemical cell (Figure 

2.2. A). The current was then sampled twice: just before the pulse application (1, Figure 

2.2 A) and just later in the pulse life (generally after about 40 ms, at 2, Figure 2.2 B).  

The difference between these two collected currents (i = i2 – i1) was plotted vs. the 

potential obtaining a voltammogram spectrum constituted by a peak: peak height is 

directly proportional to the concentration of the analyte while its position (redox 

potential) is related to the difference species. 

The main advantage of DPV technique (but also of all pulse techniques) consists in the 

increase of signal-to-noise ratio, due to the reduction of background current (obtained by 

taking the difference between the sampled currents) and to the faster decay of capacitive 

current respect to faradic current.  

High sensibility and low detection limit was thus achieved in comparison with others not-

pulsed measurements. Moreover this peak-shaped response allows the determination of 

species with little differences in its redox potential (about 50 mV) providing for instance, 

the use of DPV measurements in the analysis of metals by anodic stripping voltammetry 

technique (ASV) [7, 162, 163]. 
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Figure 2.2. A) Potential-time waveform applied in a typical DPV experiment. B) Peak-shape 

voltammogram obtained DPV experiment [7]. 

 

 

1.3. Electrochemical impedance spectroscopy 

 

Impedance spectroscopy is a powerful method of analysing the complex electrical 

resistance of a system and is sensitive to surface phenomena and changes of bulk 

properties. 

 

 
Figure 2.3. Sinusoidal applied AC potential (Et, solid line) and sinusoidal AC current response (It, dotted 

line) in a generically EIS experiment [164]. 

 

The impedance Z of a system was determined by the application of an AC voltage 

perturbation (superimposing an applied DC voltage), for potentiostatic mode, or by the 

application of an AC current perturbation (superimposing an applied DC current), for 

galvanostatic mode. In both procedures the AC voltage or AC current amplitudes were 

adjusted in a proper way. 

Then, the analysis of the AC current response (potentiostatic mode) or of the AC voltage 

response (galvanostatic mode) was achieved. 

The rate between the AC voltage-time function and the resulting AC current-time 

response (shifted in phase) allow the determination of Z value by the following equation: 



Chapter 2 

43 
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 ( )
 

       (    )

      (      )
 

 

where E(t) and I(t) are respectively the potential and the current in a time, E0 and I0 are 

respectively the potential and the current at zero point,  the frequency, t the time and  

the phase shift between the voltage- and the current-time functions. 

Since the impedance is a complex value (because the current and the potential differ both 

in phase either in amplitude) its value can be represent by the modulus |Z| and the phase 

shift  or in a different way, by the real part Zr (or Z’) and the imaginary part Zi (or –Z’’) 

of the impedance.  

Thus, the results of an impedance measurements can be represented by the Bode plot (in 

which log|Z| and are plotted vs. log) or by the Nyquist plot (in which Zr values are 

plotted vs. Zi values).  

In electrochemical impedance spectroscopy (EIS) experiments, equivalent circuits were 

used to approximate the experimental results with ideal impedance elements (ohmic 

resistance – R –, capacitance – C –, constant phase element – CPE –, Warbug impedance 

– W –) arranged in series and/or in parallel. 

When an electrolyte is in contact with an electrolyte, one of the most used equivalent 

circuits is the so-called Randles circuit (Figure 3.4 A). 

Randles circuit includes the solution resistance Rs (depending by the ion concentration 

and the electrochemical cell geometry), the charge transfer resistance Rct (representing the 

current flow produced by redox reaction at the interface), the double layer capacitance Cdl 

(resulting from the charge being stored in the double layer ant the interface) and the 

Warbug impedance W (due to the diffusion from the bulk solution to the interface) 

elements. 

If non-Faradic processes were evaluated, Randles equivalent circuit can be simplified 

omitting the Warbug element (Figure 3.4 B). 

Generally, in biosensor application, the bioreceptor was immobilized on the electrode 

surface and the affinity reaction with the analyte was further detected. The use of EIS, in 

this case, allows the monitoring of each phase of the assembly of the biosensor 

(immobilization of the bioreceptor, self-assembly monolayer formation etc.) and provides 

the detection of the affinity reaction in a label-free way, namely without the use of label 
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agents (enzymes, fluorophores etc.) which could affect the properties of biorecognition 

process.  

 

 

Figure 2.4. Nyquist plots and equivalent circuits for: A) Faradic EIS experiments, B) Non-Faradic EIS 

experiment. Legend: Rs: solution resistance, Rct: charge transfer resistance, Cdl: double layer capacitance, 

W: Warbug impedance. 

 

Moreover, the absence of a label step reduces the time and the costs necessary for the 

completion of the bioassay. In this approach, a redox probe (such as [Fe(CN)6]
3-/4-

) and 

DC potential (constant for all the time of the measurement) was applied to control the 

process that occur onto the electrode surface. Charge transfer resistance (Rct) and Δ 

charge transfer resistance (ΔRct) were taken as analytical signal.  

In fact, when a bioreceptor (such as antibody, DNA probe, etc.) was immobilized on the 

surface of the electrode, an increase of Rct value was observed due to the presence of a 

layer of molecules which reduce the electron transfer from the redox probe solution to the 

electrode surface (generally because steric hindrance of electrostatic repulsions). 

Furthermore, because affinity reaction between the bioreceptor and the antigen increases 

the formation of a non-conductive layer, a proportional increase of Rct values respect to 

the increase of analyte concentration was detected [164, 165]. 
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Abstract 
 

This paper describes the optimisation and the analytical performances of a label-free 

impedimetric immunosensor for the detection of tumour marker CA125 based on gold 

nanoparticles modified graphite screen-printed electrode. Experimental conditions of each 

step for the developed immunosensor were studied and optimised. The immunosensor 

response varied linearly (R
2
 = 0.996) with antigen concentration between 0 and 100 U 

mL
-1

. The estimated detection limit was 6.7 U mL
-1

. The electrochemical immunosensor 

allowed unambiguous identification of CA125, while no significant non-specific signal 

was detected in the case of all negative controls. The analytical usefulness of the 

impedimetric immunosensor was finally demonstrated analysing serum samples. 

 

Keywords: tumour marker, CA125, impedimetric immunosensor, gold nanoparticles, 

screen-printed electrode 

  



Chapter 3 

55 
 

1. Introduction 
 

Biomarkers, informative signals derived from the body, are used in clinical practice to 

indicate the diagnosis, prognosis, or status of a specific disease or to guide therapy. More 

recently, some biomarkers from the field of oncology have been used as tumour marker in 

different pathologies [1, 2]. In tumorous process, increased levels of tumour markers in 

human serum are significantly associated in patients with certain tumour or carcinoma. 

Many markers are still going through evaluation to improve their specificity and 

sensitivity in the context of their clinical use [3]. 

Being the detection of tumour marker levels in serum important for early diagnosis of 

cancer, many efforts have been made to develop and improve immunoassays [4-8] for the 

detection of novel biomarkers with the aim of making portable and affordable devices. 

Immunosensors combine the high sensitivity of sensors and the high specificity of 

immunoreactions and can simultaneously monitor the progress of immunoreactions on 

sensor surfaces in real time. Despite many advances in this field, new approaches that can 

improve the simplicity, selectivity and sensitivity of clinical immunoassay have been 

reported [9]. 

In clinical assays, the methods of tumour markers detection in serum include radiation 

immunological assays (RIAs), time-resolved fluorescence, chemiluminescence, etc. 

These conventional techniques have some disadvantages, such as being environmentally 

unfriendly, time-consuming, having poor precision, and experience difficulty in realising 

automation. In some methods, the cost of specific instruments and reagents limit their 

wide application in clinical laboratories.  

Therefore, there is an urgent requirement for the development of a new immunoassay 

method with low-cost, high speed and real-time control in large-scale disease screening 

[10, 11]. 

Compared with conventional immunoassay techniques, electrochemical immunosensors 

are of great interest because they are specific, simple and can have the reduction in size, 

cost and time of analysis. An immunological system was tested for CA125, a useful 

tumour marker with a threshold value of 35 U mL
-1

, high levels of which have been found 

in ovarian cancer [12, 13]. CA125 is a mucin-like glycoprotein, greater than 200 kDa, 

which was first detected over 30 years ago using the OC125 monoclonal antibody [14], 
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providing the basis for assays to detect and monitor the progression of epithelial ovarian 

cancer. 

The development of a radioimmunoassay for the antigen showed that serum CA125 levels 

are elevated in about 80% of patients with epithelial ovarian cancer but in less than 1% of 

healthy women. Numerous studies since that time have confirmed the usefulness of 

CA125 levels in monitoring the progress of patients with epithelial ovarian cancer [15].  

This antigen is also elevated in other cancers including endometrial, lung, breast and 

gastrointestinal [16]. Due to the importance of an early diagnosis of cancer, various 

electrochemical immunosensors for the detection of CA125 tumour marker have been 

reported [17-20]. 

Different impedimetric immunosensors are reported in literature because they are a 

sensitive technique for label-free detection of antigen–antibody binding [21-25]. 

The principle is based on the change in interfacial property between the electrode surface 

and solution when an antibody immobilized onto electrode surface reacts with an antigen 

to form a complex. The formation of a layer of protein produces an increase or a decrease 

of the resistance charge transfer (dependent on pH and ionic strength of the mediator and 

on the isoelectric point of the protein) that is taken as analytical signal to determinate the 

concentration of the antigen. 

A wide variety of nanomaterial, especially nanoparticles with different properties have 

found broad application in affinity biosensors [7, 26, 27]. Among the nanomaterial, gold 

has a special role. The increasing of the area/volume relationship and consequently the 

attached biocomponent on the nanostructured surface improves the sensor response. In 

addition, gold surface can be easily modified by thiol-ended molecules, which makes then 

suitable for many different biological assemblies [28]. 

Many synthetic procedures can be found in the literature in order to control the size, 

monodispersion, morphology and surface chemistry of gold nanoparticles (AuNPs). 

Immobilisation of biomolecules with nanoparticles can effectively increase the stability 

and maintain the activity of biomolecules, and it can be a good option for biomolecular 

immobilisation. Furthermore, gold nanoparticles (AuNPs) permit direct electron transfer 

between redox proteins and bulk electrode materials, thus allowing electrochemical 

sensing to be performed with no need for electron transfer mediators [29]. 

In this work, a label-free impedimetric immunosensor for the detection of tumour marker 

CA125 was reported. The immunoassay is based on self-assembled monolayer (SAM) of 
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electrodeposited gold nanostructures onto graphite screen-printed electrodes (GSPEs) 

with subsequent monoclonal antibody anti-CA125 (mAb-CA125) immobilisation. Each 

step of the developed immunosensor was successfully characterised using cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance 

of the immunoassay in terms of sensitivity, reproducibility and selectivity has been also 

studied. Finally, the immunosensor response in serum samples was also tested. 

 

2. Materials and Methods 

 

2.1 Chemicals 

 

Tetrachloroauric (III) acid (HAuCl4), 6-mercapto-1-hexanol (MCH), 11-

mercaptoundecanoic acid (MUDA), potassium chloride, sodium chloride, IgG from rabbit 

serum (rIgG) and human serum from AB plasma sample were obtained from Sigma-

Aldrich (Milan, Italy). 

1-Ethyl-3-(3’-dimethylaminopropyl) carbodiimide (EDAC) was purchased from 

Calbiochem (Milan, Italy) and N-hydroxysuccinimide (NHS) was obtained from Fluka 

(Milan, Italy). Di-sodium hydrogen phosphate (Na2HPO4), sodium dihydrogenphosphate 

dehydrate (NaH2PO4∙2H2O), sulphuric acid, potassium ferrocyanide (K4[Fe(CN)6]) and 

potassium ferricyanide (K3[Fe(CN)6]) were purchased from Merck (Milan, Italy). Ethanol 

was obtained from CarloErba Reagents (Milan, Italy). 

Monoclonal mouse IgG anti-CA125 antibody (Ab-CA125) and CA125 were obtained 

respectively from Novus Biologicals (Cambridge, UK) and Acris-Antibodies GmbH 

(Herford, Germany). PBS buffer: phosphate buffer solution 0.1 M pH 7.4 containing 

sodium chloride 0.1 M. Human prostate-specific antigen (PSA) (Acris-Antibodies GmbH, 

Herford, Germany) was used as aspecific control. 

All chemicals were used as received without any further purification. Milli-Q water was 

used throughout this work. 

 

2.2 Instrumentations 

 

Electrochemical experiments were performed in a digital potentiostat/galvanostat 

AUTOLAB PGSTAT 30(2)/FRA2 controlled with the General Purpose Electrochemical 

System (GPES) and Frequency Response Analyzer (FRA2) 4.9 software (Eco Chemie, 
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Utrecht, The Netherlands). The immunosensor was assembled using screen-printed cells, 

comprising of a graphite working electrode (2.5 mm in diameter) and counter graphite 

electrode and a pseudo-silver reference [6].  

The screen-printed cells were produced in house on a DEK 248 screen-printing machine 

(DEK, Weymouth, UK). The printing was performed on a polyester film (Autostat CT5) 

from Autotype (Milan, Italy) using the polymeric inks (Electrodag PF-410 (silver)) and 

(Electrodag 423 SS (graphite)), which were purchased from Acheson (Milan, Italy). 

Vinylfast 36–100 was used as the insulting ink and was obtained from Argon (Lodi, 

Italy). 

 

2.3 Electrochemical measurements 

 

2.3.1 Electrochemical impedance spectroscopy (EIS) measurements 

 

Faradic impedance measurements were carried out in the presence of 0.01 M [Fe(CN)6]
3-

/4-
 redox probe (equimolecular mixture in 0.1M KCl or in 0.1 M PBS buffer pH 7.4).  

A voltage of 10 mV in amplitude (peak-to-peak), within the frequency range 100 kHz – 

10 mHz, was superimposed to the applied bias potential.  

The DC potential was set up to +0.13V, the formal potential of [Fe(CN)6]
3-/4-

 redox probe. 

Experimental spectra, presented in the form complex plane diagrams (i.e. Nyquist plot), 

were fitted with proper equivalent circuits (Figure 3.1) using the facilities of the FRA2 

4.9.004 (EcoChemie) software.  

Both charge transfer resistance (Rct) and Δ charge transfer resistance (ΔRct) values were 

taken as analytical signals. 

All potentials were referred to the silver screen-printed pseudo-reference electrode; the 

experiments were carried out at room temperature (25°C). 

 

 

Figure 3.1. Randles equivalent circuit used to fit EIS spectra (Rs: electrolyte resistance, Cdl: double layer 

capacitance, Rct: charge transfer resistance, W: Warburg impedance). 
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2.3.2 Cyclic Voltammetry measurements 

 

Electrodeposition of gold nanoparticles (AuNPs) onto graphite screen-printed electrodes 

(GSPEs) was obtained by cyclic voltammetry in the range 0 and +1.3 V vs. screen-printed 

silver pseudo-reference using HAuCl4 solution in 0.5 M H2SO4 solution.  

Cyclic voltammetry measurements for surface characterization in a range of potential 

between -0.6 and +0.8 V vs. screen-printed silver pseudo-reference in the presence of 

0.01 M [Fe(CN)6]
3-/4-

 (equimolecular mixture in KCl 0.1 M) were carried out. 

Cyclic voltammetry measurements for surface characterization in a range of potential 

between 0 and +1.3 V vs. screen-printed silver pseudo-reference in the presence of 0.5 M 

H2SO4 solution were carried out. 

 

2.4 Scanning Electron Microscopy (SEM) characterization 

 

SEM analysis was carried out by field-emission LEO 1525 microscope (Zeiss, Germany) 

equipped with In-Lens detector and with an Ultra FEG-SEM (Zeiss, Germany) mounted 

with an EsB detector for secondary-electrons imaging. 

The samples were fixed onto conventional stub, without any preliminary pre-treatments. 

 

2.5 Scheme of the immunoassay 

 

 
Figure 3.2. Scheme of AuNPs-based label-free immunosensor for CA125 detection: A) electrodeposition of 

AuNPs on GSPEs, B) Functionalization of gold nanoparticles with MUDA, C) Mixed SAM formation with 

MCH, D) activation of –COOH groups with EDAC/NHS and mAb-CA125 immobilisation, E) blocking 

step with rIgG, F) Ab-Ag affinity reaction. 
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In this work, a label-free impedimetric immunosensor for CA125 was developed and the 

steps are illustrated in Figure 3.2. 

 

2.5.1 Electrodepositing of gold nanoparticles (AuNPs) on graphite screen-printed 

electrodes (GSPEs) 

 

Electrodepositing of AuNPs on graphite screen-printed electrodes (GSPEs) was carried 

out by cyclic voltammetry (CV) between the range potential of -0.2 and +1.6 V vs. 

screen-printed silver pseudo-reference, 25 cycles, at scan rate 0.1 V s
-1

, in a 0.0006 M 

HAuCl4 solution containing sulphuric acid 0.5 M [30]. After, the modified electrodes 

were rinsed with Milli-Q water in order to remove the free ions from the GSPEs surface. 

 

2.5.2 Mixed self-assembly monolayer (SAM) formation 

 

The nanostructured AuNPs/GSPEs was modified with 0.001 M MUDA, prepared in a 

mixture of 1:3 (v/v) of ethanol and water for 3 hours at 25 °C in a wet chamber. Mixed 

SAM formation was then carried out incubating the electrode surface with 10 L of 0.001 

M MCH solution (prepared in a mixture of 4:1 in volume of ethanol and water), for 30 

minutes at 25 ºC. After each modification steps, the electrodes were rinsed with Milli-Q 

water. 

 

2.5.3 Antibody immobilization 

 

The antibody immobilisation was based on preliminary formation of a SAM of a reactive 

thiol followed by carbodiimide coupling with amino groups of mAb-CA125 antibody. 

In order to react with the amino groups of antibody, the carboxyl groups of MUDA need 

to be activated.  

With the addition of EDAC and NHS, carboxyl groups were converted into active esters, 

which lead a formation of an amide bond between the amino groups of antibody and the 

activated carboxyl group of MUDA. Thus, 5 L of a solution containing 0.2 M EDAC 

and 0.05 M NHS, prepared in 0.1 M PBS buffer solution pH 7.4, together with 24 mg L
-1

 

of mAb-CA125 antibody was placed on the nanostructured working electrode and 

incubated for 30 minutes at 25 ºC. In order to limit the nonspecific interaction between 

the assay reagents and the unreacted carboxyl groups eventually present, after the mAb-

CA125 antibody immobilisation, a blocking step was introduced. A 10 mg L
-1

 rIgG 
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solution, prepared in 0.1 M PBS buffer solution pH 7.4, was placed onto the sensor 

surface and incubated for 30 minutes at 25 ºC.  

After each step, the sensors were rinsed with 0.1 M PBS buffer solution pH 7.4. 

 

2.5.4 Affinity reaction  

 

To perform the calibration curve, the immunosensor with different concentrations of 

CA125 protein for 30 minutes at 25 °C was incubated. The sensors were then rinsed with 

0.1 M PBS buffer solution pH 7.4. Finally EIS spectra were recorded in the conditions 

described above.  

The control experiments were performed using prostate specific antigen (PSA). PSA is a 

glycoprotein (such as CA125) mainly related to prostate cancer, with a clinical cut-off of 

4 μg L
-1

. Its level increases in presence of ovarian cancer and in patients with lymphoma 

in the serum, such as CA125 level, as reported in literature [31] and [32]. 

In our work we used a concentration of aspecific protein of 50 and 100 mg L
-1

 to test the 

selectivity of the receptor and to calculate the amount of background signal not caused by 

the immunocomplex at 0 concentration of CA125 protein. 

 

2.5.5 Serum samples analysis 

 

Preliminary experiments for the determination of CA125 protein in serum samples were 

also performed.  

The immunosensor response was tested in 1/10 diluted (in PBS 0.1 M, pH 7.4) filtered 

(0.45 µm) serum sample with standard addition of CA125 protein, in the same condition 

used for the determination of CA125 calibration curve described above.  

Control experiments were performed with diluted serum sample spiked with 100 mg L
-1 

of PSA. 

 

3. Results and Discussion 
 

The immunosensor was optimised with respect to several parameters such as gold 

electrodepositing, antibody immobilisation and blocking agent. In this work, cyclic 

voltammetry and EIS spectra were employed to characterise for studying the interface 

properties of surface-modified electrodes.  
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3.1 Optimization of experimental conditions 

 

Graphite screen-printed electrodes (GSPEs) were modified by electrodeposition of gold 

nanoparticles using cyclic voltammetry. 

First, in order to optimise the electrodeposition process different experimental parameters 

were considered. These included the effect of concentration of HAuCl4, the number of 

cycles and scan rate of cyclic voltammetry 

The concentration of HAuCl4 and the number of cycles for the nucleation of gold 

nanoparticles on the electrode surface play an important role for the morphology, size and 

uniformity of electrodeposed particles [33, 34]. Figure 3.3 shows the influence of these 

variables by analysing the electron transfer resistance values Rct obtained by EIS 

experiments.  

 

 

Figure 3.3. A) Rct as function of number of cycles (1, 10, 20, 50) using different concentrations of HAuCl4: 

(■) 0.0002, () 0.0006 and () 0.001 M; scan Rate: 0.1 V s
-1

. B) Rct as function of scan rate (0.025, 0.05, 

0.1, 0.2 V s
-1

) using 0.0006 M and 25 cycles. EIS measurements were performed in 0.01 M [Fe(CN)6]
3-/4-

 

equimolecular mixture in 0.1 M KCl; each point was repeated at least 3 times using different gold 

nanostructured screen-printed graphite electrodes (AuNPs/GSPEs). 

 

The effect of number of cycles was tested at 1, 10, 20 and 25, and the concentration of 

HAuCl4 at 0.0002, 0.0006 and 0.001 M. It can be seen that an increase in both variables 

lead lower Rct, implying that a high surface area of GSPEs is coated with gold 

nanoparticles (Figure 3.3 A). No significant differences in Rct values starting from a 

concentration 0.001 M or 0.0006 M of HAuCl4 and using 25 cycles for the 

electrodeposited process were obtained. Thus, 0.0006 M of HAuCl4 and 25 cycles were 

used in the following experiments. 
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The effect of scan rate on the nucleation of gold nanoparticles was evaluated at 0.025, 

0.05, 0.1 and 0.2 V s
-1

 using a 0.0006 M HAuCl4 solution and 25 cycles. These variables 

can influence mainly in the size and shape of AuNPs [35]. The lowest Rct value was 

achieved when a scan rate of 0.1 V s
-1

 was applied, being this rate selected for optimal 

electrodeposition parameter. The Rct obtained for each scan rate is presented in Figure 3.3 

B. 

The electrochemical impedance (EIS) spectra of AuNPs-modified GSPEs by using 

optimised conditions for the nucleation of particles in a 0.01 M [Fe(CN)6]
3-/4-

 

equimolecular mixture in 0.1 M KCl were obtained (Figure 3.4).  

 

 

Figure 3.4. Nyquist plot of 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M KCl solution for the bare 

(■, curve a) and AuNPs modified GSPEs (, curve b) obtained using 0.0006 M HAuCl4, 25 cycles and scan 

rate 0.1 V s
-1

. Inset: average and standard deviation respect to the Rct for bare graphite screen-printed 

electrodes (Bare GSPEs) and for gold nanostructured graphite screen-printed electrodes (AuNPs/GSPEs). 

The measurements were repeated at least 3 times using different GSPEs. 

 

Gold nanostructured GSPEs presented a significant difference of the electron transfer 

resistance (Rct) in comparison with bare GSPEs. When the GSPEs were modified with 

AuNPs, the Rct has decreased significantly from 4.0 ± 0.2 to 0.2 ± 0.1 kOhm.  

This demonstrated that the gold nanoparticles make the electron transfer easier. Cyclic 

voltammetry measurements in acid solutions have been used for the identification of 

some features related to the process of formation and reduction of oxide films on noble 
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metals [36]. Therefore, the obtained gold nanostructured-GSPEs were then studied by 

cyclic voltammetry experiments. Voltammograms were obtained for the bare and gold 

nanostructured GSPEs in 0.5 M H2SO4 solution, between the range potential of 0 and 

+1.3 V vs. screen-printed silver pseudo-reference at a scan rate of 0.1 V s
-1

 (Figure 3.5 

A). It can be seen that the bare electrode shows only a background charging current of 

graphite, contributed by the double layer charging and surface faradic reactions involving 

surface oxide groups [37], while AuNPs modified GSPEs present peaks around +1.1 V 

due to the formation of gold oxide and its correspondent reduction around +0.7 V, which 

is in accordance to the inherent feature of a gold electrode surface.  

Moreover, in order to characterise the electrochemical performance of the electrode, the 

CV measurements of bare and gold nanostructured GSPEs in 0.01 M [Fe(CN)6]
3-/4- 

0.1 M 

KCl solution were carried out. The voltammogram of gold nanoparticles-modified GSPEs 

displays higher and narrow peaks of redox couple in comparison with unmodified GSPE; 

this effect is due to the large resistance of the graphite surface (Figure 3.5 B). 

 

 

Figure 3.5. A) Cyclic voltammograms obtained in 0.5 M H2SO4 solution for the bare GSPEs (- -) and 

AuNPs/GSPEs (—). B) Cyclic voltammograms obtained in 0.01 M [Fe(CN)6]
3-/4-

 0.1 M KCl solution for 

the bare GSPEs (- -) and GSPEs modified with AuNPs (—). 

 

3.2 SEM analysis 

 

SEM technique was used in first to verify the presence of AuNPs on the surface of GSPEs 

and then to find the optimal electrodepositing parameters. 

SEM images of graphite electrodes show the presence of amorphous micro and 

macrostructures randomly distributes over the entire electrode surface. It is also possible 

notice the presence of pores and holes of various shapes and dimensions. 
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Electrodeposition performed in optimised condition, provides the formation of evenly 

distributed gold nanostructures (Figure 3.6 A) with dimensions between 40 – 100 nm. To 

confirm the presence of AuNPs on the electrode surface (in order to highlight the 

difference in composition) an analysis with SEM-EsB detector was also performed 

(Figure 3.6 B). The image clearly shows the presence of AuNPs well distributed over the 

entire electrode surface. 

 

 

Figure 3.6. SEM image of AuNPs electrodeposed onto graphite screen-printed electrodes prepared in 

optimised experimental conditions (0.0006 M HAuCl4, 25 cycles 0.1 V s
-1

), using different detectors: A) In-

Lens and B) EsB detector. 

 

3.3 Immunosensor development 

 

Due to the importance of MUDA (as a precursor for further modifications on Au surface 

and for the opportunity to replace the acid end group by other functionalized groups quite 

easy), this system have been studied by EIS measurements for the formation of a well-

ordered monolayer. 

The optimisation of the conditions for the modification of gold nanostructured GSPEs 

with 0.001 M MUDA was done in different incubation times: 3, 6, 9 and 12 hours. EIS 

results are: Rct (3 hours) = 2.9 ± 0.2 kOhm, Rct (6 hours) = 2.9 ± 0.2 kOhm, Rct (9 hours) 

= 2.9 ± 0.2 kOhm, Rct (12 hours) = 2.7 ± 0.1 kOhm. There are no significant differences 

between Rct at all the times studied in these conditions. Thus, for the next experiments an 

incubation time of 3 hours was used. 

The change of electrode behaviour after each assembly steps can be characterised by 

impedance measurements in the presence of [Fe(CN)6]
3-/4-

 redox probe. Figure 3.7 shows 

the comparison of Rct for gold nanostructured GSPEs and after MUDA chemisorption.  
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It can be seen a significant enhancement in Rct (from 0.2 to 2.9 kOhm) after MUDA 

attachment. 

This may be due to the insulating MUDA layer that perhaps hinders diffusion of ions 

toward the electrode surface resulting in increased value of Rct. 

 

 

Figure 3.7. Nyquist plot of AuNPs-modified GSPEs (, curve a) and after the MUDA chemisorption (■, 

curve b) obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M KCl. Inset: average and standard 

deviation respect to the Rct for gold nanostructured graphite screen-printed electrodes (AuNPs/GSPEs) and 

after the MUDA chemisorption (MUDA/AuNPs/GSPEs). The measurements were repeated at least 3 times 

using different GSPEs. 

 

EIS measurements were also used to characterize the other steps (mixed SAM formation 

with MCH, mAb-CA125 immobilization, rIgG blocking step) involved in the assembly of 

the immunosensor. It can be seen that in each assembly the Rct increases over the 

previous step, except in the case of blocking the sites not attached with the mAb-CA125 

with rIgG. It implies that a conductive layer (rIgG) is assembled on the electrode surface 

resulting in accelerate electron transfer between rIgG and the mAb-CA125 modified 

electrode [38]. The Rct values for each assembly steps are presented in Table 3.1.  

The immunosensor performance on the detection of CA125 at different concentration 

useful for clinical applications, was evaluated analysing the change in Rct values obtained 

by electrochemical impedance spectroscopy after the affinity reaction using  0.01 M 

[Fe(CN)6]
3-/4-

 0.1 M PBS pH 7.4 buffer solution. 
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The calibration curve (Figure 3.8 A) for the detection of CA125 was conducted under 

optimised conditions. It can be seen a proportional increase of Rct with antigen 

concentration, which may be attributed to more CA125 molecules binding to the 

immobilized antibodies, providing a kinetic barrier for the electron transfer. 

 
Table 3.1. Sensor surface characterisation of the single steps of the immunoassay performed in 0.01 M 

[Fe(CN)6]
3-/4-

 equimolecular mixture solution in KCl 0.1 M, PBS 0.1 M, pH 7.4. Each measurement was 

repeated at least 3 times using different screen-printed electrodes. Legend: A) AuNPs electrodeposed on 

GSPEs, B) Functionalization of gold nanostructured graphite screen-printed electrodes with MUDA, C) 

mixed SAM formation with MCH; D) immobilisation of mAb-CA125, E) blocking step with rIgG, F) 

affinity reaction with 30 U mL
-1

 CA125 solution. 

 

EIS electrode surface characterisation Rct (k) 

A) AuNPs/GSPEs 0.2  0.1 

B) MUDA/AuNPs/GSPEs 3.5  0.2 

C) MCH/MUDA/AuNPs/GSPEs 4.0  0.3 

EIS immunosensor characterisation Rct (k) 

D) mAb-CA125-MCH/MUDA/AuNPs/GSPEs 4.9  0.2 

E) rIgG/mAb-CA125/MCH/MUDA/AuNPs/GSPEs 3.32  0.02 

F) CA125/rIgG/mAb-CA125/MCH/MUDA/AuNPs/GSPEs 3.58  0.07 

 

A linear relationship between the change in Rct and concentration of antigen was obtained 

in the range of 0 and 100 U mL
-1

. The linear regression from the calibration curve, Rct = 

4.51E-4 + 0.009 x [CA125], has a correlation coefficient of 0.996 with limit of detection 

(LOD) of 6.7 U mL
-1

 (calculated as: LOD = 3Sblank/Slope). 

In order to evaluate the selectivity of the immunoassay, the effect of prostate-specific 

antigen (PSA), as non-specific antigen, was studied. As can be observed in Figure 3.8 A 

inset, a very similar Rct value compared to the blank was achieved. This result confirms 

that the observed relative change in impedance is originated from the specific monoclonal 

Ab-CA125/CA125 interactions, showing that this good selectivity is appropriate to apply 

the immunosensor for the detection of CA125. 

The reproducibility of the immunosensor was analysed by the relative standard deviation 

(RSD) in three different electrodes for each concentration of antigen. The RSD for 30 U 

mL
-1

 was 2%. Thus, the proposed assay presents a good reproducibility, providing a 

convenient platform for CA125 detection. 
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Figure 3.8. A) Calibration curve for CA125 antigen. Inset: aspecific calibration curve with PSA (0, 50, 100 

mg L
-1

). B) Nyquist plot of mAb-CA125-CA125 interaction. EIS measurements were obtained using 0.01 

M [Fe(CN)6]
3-/4-

 equimolecular mixture prepared in 0.1 M PBS pH 7.4. Each concentration was repeated at 

least 3 times using different gold nanostructured graphite screen-printed electrodes. 

 

Once verified the suitability of the immunosensor to detect CA125 in standard solutions, 

experiments on serum samples were carried out.  

 

 

Figure 3.9. A) Average and standard deviation respect to the Rct for the immunosensor response in buffer, 

serum and serum samples spiked with CA125 (20 and 30 U mL
-1

) and PSA (aspecific control, 100 mg L
-1

) 

obtained in 0.01 M [Fe(CN)6]
3-/4-

. B) Nyquist plot of the immunosensor response in buffer, serum and 

serum samples spiked with CA125 (20 and 30 U mL
-1

) and PSA (aspecific control, 100 mg L
-1

) obtained in 

0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in PBS 0.1 M pH 7.4. The measurements were repeated at 

least 3 times using different GSPEs. 

 

Experiments concerned commercial serum spiked with CA125 at a known concentration. 

CA125 was added to commercially available serum after filtration and dilution 1/10 in 0.1 

M PBS buffer solution pH 7.4. Results are reported in Figure 3.9. Increase of Rct was 

obtained with spiked serum samples.  
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Although the concentration of PSA (100 mg L
-1

) is 20 time higher respect the clinical cut-

off value used to determinate the presence of cancer, the Rct signal of serum sample 

spiked with PSA is comparable with the signal of serum sample.  

Thus, the increase of signal of serum sample respect to the signal detected in buffer is 

related to the aspecific adsorption of the matrix protein on the electrode surface and can 

be considered as background noise. 

 

4. Conclusions 
 

A label-free electrochemical immunosensor based on gold nanostructured screen-printed 

graphite electrode for the detection of the tumour marker CA125 was developed. A good 

linear relationship between the electron transfer resistance and CA125 concentration in 

the range of 0-100 U mL
-1

 with a LOD of 6.7 was obtained.  

The sensitivity achieved was adequate for the analysis of serum samples, since 35 U mL
-1

 

was defined as the appropriate cut-off between normal and elevated serum CA125 protein 

levels. The immunoassay was also tested on serum samples, yielding promising results 

for use with real samples. The method can be expanded for detecting other tumour 

markers and has the potential for reliable diagnosis of cancer and other diseases. 
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Abstract 
 

In this paper, two simple and sensitive approaches for CA125 detection are presented by 

using antibody immobilized on poly-anthranilic acid modified graphite screen printed 

electrodes. The first proposed approach is a label free impedimetric immunosensor.  

The immunoassay is based on poly-anthranilic acid (PAA) modified graphite screen-

printed electrodes with subsequent covalently monoclonal antibody anti-CA125 

immobilization. The modified screen-printed electrodes are used to capture the protein 

from the sample solutions. A curve calibration by electrochemical impedance 

spectroscopy (EIS) was obtained.  

The second approach is based on a sandwich format. The monoclonal anti-CA125 

antibody (mAb-CA125) immobilized on poly anthranilic acid modified graphite screen-

printed electrodes is used to capture the protein from the sample solution. The sandwich 

assay is then performed by adding secondary anti-CA125 antibody (pAb-CA125) labelled 

with gold nanoparticles (AuNPs).  

The antibody-AuNPs captured onto immunosensor surface induced the silver deposition 

from a silver enhancer solution. The deposited AgNPs could be measured by anodic 

stripping analysis (ASV) in acid solution. A curve calibration by ASV was obtained.  
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The experimental conditions were examined and were optimized using electrochemical 

impedance spectroscopy. The performance of both immunosensors in terms of sensitivity, 

reproducibility and selectivity were studied. 

 

Keywords: Poly-anthranilic acid, CA125 biomarker, Gold nanoparticles, Silver 

enhancement, Screen-printed electrode 
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1. Introduction 
 

Recently, electrochemical immunoassays have shown their considerable importance in 

the field of clinical analysis for early cancer screening and diagnosis. This is due to their 

higher analytical efficiency as well as the unique advantages of electrochemical 

biosensors including low cost, high sensitivity and good portability [1, 2]. The aim of the 

present work is the investigation of screening devices for the detection of the cancer 

antigen 125 (CA125) based on poly-anthranilic acid (PAA) modified graphite screen-

printed electrodes (GSPEs).  

In clinical analysis, the cancer antigen 125 (CA125) is one of the most important cancer 

biomarkers, which found on the surface of many ovarian cancer cells. Normal blood 

levels are usually less than 35 U mL
-1

 (units per milliliter). More than 90% of women 

have high levels of CA125 when the cancer is advanced. CA125 levels are also elevated 

in about half of women whose cancer has not spread outside of the ovary. If the CA125 

level is increased at the time of diagnosis, changes in the CA125 level can be used to lead 

cancer patients to the most appropriate therapeutic approach [3]. Various immunoassays 

have been proposed in the literature for the determination of CA125 using different 

detection techniques such as nanowire transistors [4, 5], enzyme-labelled beads [6], 

micro-nanoarrays [7] and microfluidic immunoarrays [8] and recently, an imprinted 

polymer on three-dimensional gold nanoelectrode ensembles [9]. 

In this study, we aimed to develop a low cost, sensitive and easy to use immunosensor for 

CA125 biomarker by poly anthranilic acid (PAA) modified graphite screen-printed 

electrodes. The conductive polymers are the most suitable materials to immobilize the 

bioreceptors for efficient biosensor developing. Among them, poly-aniline and its 

derivatives have been the focus of much interest for the immobilization of proteins [10-

12], because of their unique reversible proton dopability, excellent redox behaviour, 

environmental stability, and variable electrical conductivity, low cost and easy synthesis. 

Poly-anthranilic acid (PAA), a carboxylated aniline based polymer capable of self-

doping, is of interest as a soluble derivative of poly-aniline.  

The carboxylic acid groups of the electro-synthesized polymer for covalently antibody 

immobilization can be used. Copolymers of aniline and amino benzoic acids have been 

synthesized by chemical [13, 14] and electrochemical routes [15, 16]. For example, a SPR 

immunosensor based on an electro-polymerized PAA film was constructed for the 
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electrochemically controlled detection of human IgG [15]. Preechaworapun and co-

workers have used an electropolymerized poly-anthranilic acid-modified boron-doped 

diamond electrode as an amperometric immunosensor [17]. 

These types of electrochemical immunosensors have demonstrated to gather useful 

analytical characteristics such high sensitivity, rapid response and easiness of use to 

measure biomarker proteins for early detection and monitoring of cancers [18].  

In this paper, two simple and sensitive approaches for CA125 detection are presented.  

The first proposed approach is a label-free impedimetric immunosensor. Impedance 

measurement is a sensitive technique for label-free detection of antigen–antibody binding. 

The principle is based on the change in interfacial property between the electrode surface 

and solution when an antibody attached to an electrode surface reacts with an antigen to 

form a complex. One way to enhance the response of a label free immunosensor is to 

increase the amount of an immobilized antibody on the electrode so that a larger 

immunological complex can occur, and therefore produce a larger signal. The covalently 

monoclonal anti-CA125 antibody (mAb-CA125) was immobilized on poly-anthranilic 

acid (PAA) modified graphite screen-printed electrodes. After the incubation of 

immunosensor with different concentrations of CA125 protein, a curve calibration by 

using electrochemical impedance spectroscopy (EIS) was performed.  

In order to improve the performances of the immunosensing, a second approach is 

developed by using sandwich polyclonal rabbit anti-CA125 antibody-functionalized gold 

nanoparticles (pAb-CA125/AuNPs) bioconjugates along with silver deposition. The 

application of gold nanoparticles as labels in biosensors is very common lately. They 

have been applied in ultrasensitive detection of DNA hybridization, protein– protein 

interactions, and carbohydrate – protein interactions [19-21]. As reported in literature [22-

24], a signal amplification based on silver staining on the gold nanoparticles, offers a 

distinct enhancement of the immunoreaction response, comparing with conventional 

electrochemical immunosensors.  

The sandwich assay is performed after the antigen was captured from the sample solution 

by adding secondary polyclonal rabbit anti-CA125 antibody-functionalized gold 

nanoparticles (pAb-CA125/AuNPs). The antibody-functionalized AuNPs captured onto 

immunosensor surface induced the silver deposition from a silver enhancer solution. The 

deposited AgNPs could be directly measured by anodic stripping analysis in acid 

solution. A high sensitivity with a detection limit of 2 U mL
-1

 of human CA125 protein 
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was achieved. This level of detection could be attributed to the sensitive electrochemical 

determination of silver ions and to the catalytic precipitation of a large number of silver 

ions on the gold nanoparticles- labelled antibody.  

The performance of the immunosensors in terms of sensitivity, reproducibility and 

selectivity has been studied.  

Because of the simple, specific and sensitive nature of this methodology, the 

immunosensors developed may find potential use in serum-based protein diagnostics. 

 

2. Experimental 
 

2.1 Chemicals 

 

Anthranilic acid, 1-ethyl-3-(3’-dimethylaminopropyl)carbodiimide hydrochloride (EDC), 

bovine serum albumin (BSA), ethanolamine (EA), magnesium chloride, sodium citrate, 

tetrachloroauric (III) acid (HAuCl4), tris(hydroxymethyl) aminomethane hydrochloride 

(TRIS), silver enhancer solution (equal volumes of solutions A and B) and 2.5% sodium 

thiosulfate pentahydrate from a Silver Enhancer Kit were purchased from Sigma-Aldrich 

(Milan, Italy). Potassium chloride, sodium dihydrogen phosphate, disodium hydrogen 

phosphate, potassium ferrocyanide (K4[Fe(CN)6]) potassium ferricyanide (K3[Fe(CN)6]), 

acetic acid, sodium hydroxide, 2-(N-morpholino) ethanesulfonic acid (MES) and sulfuric 

acid were obtained from Merck (Milan, Italy); N-hydroxysuccinimide (NHS) was 

obtained from Fluka (Milan, Italy).  

The immunologic reagents mouse monoclonal CA125 antibody (mAb-CA125), human 

CA125 protein, and rabbit polyclonal CA125 antibody (pAb-CA125) were obtained from 

Novus Biologicals (Cambridge, UK); prostate specific antigen (PSA, Acris-Antibodies 

GmbH, Herford, Germany) was used as aspecific control. All the solutions were prepared 

using MilliQ grade water. 

 

2.2 Apparatus and electrochemical measurements 

 

Electrochemical experiments were performed with an AUTOLAB PGSTAT 30(2) digital 

potentiostat/galvanostat with a GPES 4.9004 software package (EcoChemie, 

Netherlands). Graphite screen-printed cell consists of graphite working electrode (GSPE), 

a graphite counter electrode and a silver pseudo-reference electrode. Materials and 

procedures to screen-print the transducers are described in [1]. 



Chapter 4 

78 
 

All the functionalization steps involved in the assembly of the immunosensor were 

performed using 8 mL of the appropriate solution deposited on the graphite screen-printed 

working electrode surface in order to prevent the fouling of counter and reference screen-

printed electrodes.  

UV-Vis spectra of AuNPs were acquired with a Cary 100 Bio spectrophotometer (Varian, 

USA) between 400 and 900 nm using glass cuvette with a of 1 cm path length.  

The electropolymerization was performed by cyclic voltammetry (CV) between the 0 and 

+1.0 V vs. Ag/AgCl pseudo reference with a scan rate of 0.05 V s
-1

.  

Impedance measurements were carried out in the presence of 0.01 M [Fe(CN)6]
3-/4-

 redox 

probe prepared in 0.01 M TRIS buffer, pH 7.4 with NaCl 0.1 M. A voltage of 0.01 V in 

amplitude (peak-to-peak), within the frequency range 100 kHz–100 mHz, was 

superimposed to the applied bias potential. The dc potential was set up to +0.13 V, the 

formal potential of [Fe(CN)6]
3-/4-

 redox probe.  

Experimental spectra, presented in the form of complex plane diagrams (i.e., Nyquist 

plots), were fitted with proper equivalent circuits using the facilities of the FRA2 software 

4.9004 (EcoChemie). Both charge transfer resistance and Δ charge transfer resistance 

values were taken as analytical signals.  

Anodic stripping voltammetry (ASV) experiments were carried out first applying a 

potential of -0.2 V for 180 s to accumulate the dissolved silver and then, differential pulse 

stripping voltammetry was performed from -0.3 to +0.5 V using a scan rate of 0.05 V s
-1

, 

modulation time 0.05 s; interval time 0.15 s; step potential 0.005 V; modulation 

amplitude 0.07 V. 

 

2.3 Immunosensor development 

 

2.3.1 Electropolymerization of anthranilic acid (AA) 

 

The electropolymerization was performed using a solution of 0.05 M anthranilic acid 

monomer (AA) in 1 M H2SO4, 0.1 M KCl on a graphite screen-printed electrode (GSPE) 

with an applied potential ranging from 0 to +1.0 V at a scan rate of 0.05 V s
-1

 for 15 

cycles.  

The poly-anthranilic acid modified screen-printed electrodes (PAA/GSPEs) were then 

rinsed with distilled water to remove the excess monomer. PAA-modified GSPEs were 

then characterized by EIS measurements. 
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2.3.2 Primary antibody anti-CA125 (mAb-CA125) immobilization on poly-

anthranilic acid modified graphite screen-printed electrodes (PAA-GSPEs) 

 

8 µL of 0.1 M MES buffer solution (pH 5.5) containing 0.4 M of EDC and 0.2 M of NHS 

solution were placed on the working electrode surface of the poly-anthranilic acid 

modified screen-printed electrodes (PAA/GSPE) to activate the carboxylic acid groups of 

the PAA film. Then, the sensors were washed with water and subsequently incubated for 

60 minutes at 25 °C in 8 µL of 30 mg L
-1

 mouse monoclonal anti-CA125 antibody (mAb-

CA125) solution in 0.1 M PBS buffer (pH 7.4).  

The antibody was immobilized onto the PAA/GSPEs through the formation of covalent 

bonds between carboxylic acid groups of the polymer and amine groups of the antibody. 

The immunosensors (mAb-CA125/PAA/GSPEs) were then rinsed thoroughly with the 

PBS buffer to remove the weakly adsorbed antibodies and then in order to deactivate the 

free COOH groups, 8 µL of a 0.01 M ethanolamine (EA) solution was drop cast onto 

each mAb-CA125/PAA/GSPEs and incubated for 15 min. Then, they were washed 3 

times with 0.1 M PBS buffer. 

 

2.3.3 Label-free immunosensor 

 

The immunosensors (mAb-CA125/PAA/GSPEs) were incubated with 8 µL with CA125 

protein at various concentrations (0, 10, 20, 30, 40, 50 U mL
-1

), prepared in 0.1 M PBS 

buffer, for 60 minutes at 25 °C. Then, the electrodes were washed 3 times with 0.01 M 

TRIS buffer, pH 7.4 and finally EIS measurements were carried out in the conditions 

described above. 

 

2.3.4 Immunosensor based on gold nanoparticle-silver enhancement 

 

2.3.4.1 Preparation of secondary antibody anti-CA125 (pAb-CA125) gold 

nanoparticle conjugates 

 

Gold nanoparticles (AuNPs) were prepared according to protocol of the literature [25]. In 

brief, 1.75 mL of 1% sodium citrate solution was added into 50 mL boiling solution of 

0.025 M HAuCl4 prepared in water, which result in a change in solution colour from 

yellow to bright red. Boiling was continued for 15 min, followed by continued stirring 

until the solution reached room temperature. Then the colloidal solution was stored at 4 
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°C. UV-Vis spectra of prepared AuNPs shows a peak cantered at 520 nm with an ABS 

value of 1.67 (Figure 4.1).  

In according with reference [26], the synthesis produces AuNPs with a diameter of 16 nm 

and with a concentration of 6.2 10
-9

 M. 

Polyclonal rabbit anti-CA125 antibody (pAb–CA125)-gold nanoparticle conjugates 

(pAb–CA125/AuNPs-) were prepared following the procedure reported in [27]. First, 1 

mL of colloidal AuNPs (adjusted to pH 9.0 with 0.01 M NaOH) was mixed with 100 mL 

of 100 mg L
-1

 pAb–CA125 for 20 min at 25 °C under continuous stirring. The antibody 

was absorbed onto the surface of AuNPs through a combination of ionic and hydrophobic 

interactions. After, 100 mL of 1 mg L
-1

 solution of BSA was added to the AuNPs- pAb–

CA125 conjugated in order to block the uncovered AuNPs surface (minimizing the 

aspecific adsorptions) and then, the mixture solution was purified by centrifugation at 

11300 rpm for 20 min. Finally, the supernatant was discarded and the resulting AuNPs-

labelled pAb–CA125 were resuspended in water and stored at 4 °C.  

The concentration of gold nanolabels was calculated to be 6.0 10
-9

 M using the same 

procedure described above. This stock solution was diluted 2 times with 0.1 M PBS 

buffer (pH 7.4) for every use in immunosensor procedure. 

 

 

Figure 4.1. UV-Vis spectra of AuNPs colloidal solution obtained by citrate reduction method. Inset: bright 

red colour of AuNPs (16 nm) colloidal solution synthesized by citrate reduction method. 

 

2.3.4.2 Silver enhancement detection 

 

The immunosensors were first incubated with 8 mL with CA125 protein at various 

concentrations (0, 5, 10, 15, 20, 25 U mL
-1

), prepared in 0.1 M PBS buffer, for 60 min. at 
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25 °C. After 3 washing steps with PBS buffer solution, the immunosensor was incubated 

with 8 mL of AuNPs-pAb-CA125 conjugate for 60 minutes at 25 °C and afterward 

washed 3 times with MilliQ water.  

Then, 10 mL of silver enhancement buffer (mixture of the two solutions from the Silver 

Enhancer Kit in a 1:1 volume ratio prepared just prior to use) was added on the 

immunosensor and incubated in the dark for optimum deposition time of 8 min. Next, in 

accordance with the instruction of the producer, Na2S2O3 solution was placed on the 

working electrode surface for 2 minutes. Finally, washing steps were performed 3 times 

with MilliQ water.  

The deposited silver was dissolved by 50 ml of 1 M HNO3, 0.1 M KCl for 5 min and then 

quantified by differential pulse anodic stripping voltammetry (ASV) as reported above. 

 

3. Results and discussion 
 

The two different approaches for CA125 detection are shown in Figure 4.2: 

Route A) label-free immunosensor;  

Route B) sandwich assay with gold nanoparticle silver enhancement.  

 

Briefly, the protocol involves the following steps:  

(a) modification of GSPEs with poly-anthranilic acid (PAA) through 

electropolymerization of anthranilic acid monomer (AA); (b) activation of COOH groups 

using EDC/NHS (c) followed by immobilization of mAb-CA125 primary antibody on the 

PAA-modified GSPEs; (d) blocking of the active sites with ethanolamine (EA); (e) 

affinity reaction with CA125 protein.  

The immunosensor prepared in this way were then used for both approaches. 

 

Route A: Label-free detection of CA125 by EIS measurements using 0.01 M [Fe(CN)6]
3-

/4-
 prepared in TRIS 0.01 M pH 7.4 as redox probe.  

 

Route B: (f) addition of secondary anti-CA125 antibodies-functionalized gold 

nanoparticles (pAb-CA125/AuNPs); (g) catalytic precipitation of silver onto the gold 

nanoparticles label using the silver enhancer solution; (h) silver dissolution in 1 M HNO3; 

(i) ASV measurement of the silver dissolved. 
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Figure 4.2. Scheme of the immunosensors: electropolymerization of anthranilic acid (AA) (a), activation of 

polymer (b), mAb-CA125 immobilization on the modified GSPEs surface (c), COOH-free sites blocking 

with ethanolamine (d), incubation with CA125 protein (e). Route A) EIS measurements for CA125 label-

free detection. 

Route B) reaction with pAb-CA125/AuNPs conjugate (f), silver enhancement (g) dissolution of silver 

nanoparticles in HNO3 1M (h) ASV for silver detection (i). 

 

3.1 Characterization of poly-anthranilic acid (PAA)-modified GSPEs 

 

The electropolymerization of anthranilic acid (AA) onto graphite-screen printed 

electrodes (GSPEs) was performed using a solution of 0.05 M anthranilic acid monomer 

in 1 M H2SO4, 0.1 M KCl on a graphite screen-printed electrode (GSPE) with an applied 

potential ranging from 0 to +1.0 V at a scan rate of 0.05 V s
-1

 for 15 cycles.  

The poly-anthranilic acid modified screen-printed electrodes (PAA/GSPEs) were then 

rinsed with distilled water to remove the excess monomer.  

Electropolymerization spectrum of anthranilic acid on the GSPEs surface by cyclic 

voltammetry is reported in Figure 4.3 A and B.  

Figure 4.3 A shows the voltammograms of bare graphite screen-printed electrodes (a) and 

15th cycle of 50 mM anthranilic acid solution (b) with potential scanning from 0 to +1 V. 

These CV pattern are consistent with the previous studies of electropolymerization of 

PAA on electrode surface, which showed the redox peak of PAA film appearing between 

two redox peaks of polyaniline [15, 28]. 
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Figure 4.3. Cyclic voltammograms of anthranilic acid electropolimerization. A) Cyclic voltammograms: 

bare graphite screen-printed electrode (GSPE, curve a); 15
th

 cycle of poly-anthranilic acid modified graphite 

screen-printed electrode (curve b, PAA/GSPE) in 1 M H2SO4, 0.1 M KCl solution. The scan rate was 0.05 

mV s
-1

. B) Magnification of 1, 5, 10, 15 cycles obtained using 0.05 M anthranilic acid (AA) in 1 M H2SO4, 

0.1 M KCl solution, and with a scan rate of 0.05 mV s
-1

. 

 

3.2 Optimization of EIS measurements and polymerization conditions 

 

 

Figure 4.4. Rct responses of bare graphite screen-printed electrodes (GSPEs) and poly-anthranilic acid 

modified graphite screen-printed electrodes (PAA/GSPEs) using 0.01 M [Fe(CN)6]
3-/4-

 redox probe 

prepared in different buffered solutions. Each point was repeated at least 3 times using different graphite 

screen-printed electrodes. The polymerization was carried out using 50 mM AA by cyclic voltammetry.  

 

First, experiments were performed for optimizing the EIS measurements of PAA-

modified GSPEs. 

EIS measurements were carried out using [Fe(CN)6]
3-/4-

 redox probe prepared in different 

solutions: 0.1 M KCl; 0.1 M acetate buffer pH 4.5; 0.01 M and 0.1 M PBS pH 7.4; 0.01 

M and 0.1 M TRIS pH 7.4. The results obtained showed a higher signal ratio between 
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bare GSPE and PAA-modified GSPE when redox probe was prepared in 0.01 M TRIS pH 

7.4 (Figure 4.4). The effect is due to different composition and ionic strength of the buffer 

solution as reported in literature [29]. Therefore, the following EIS measurements were 

performed using [Fe(CN)6]
3-/4-

 redox probe prepared in 0.01 M TRIS buffer, pH 7.4. 

 

 

Figure 4.5. Optimization of acid anthranilic acid (AA) concentration for electropolymerization. A) Rct 

measurements of PAA/GSPEs prepared starting from different monomer concentrations (0.01, 0.05, 0.08 

mM), using 15 cycles and a scan rate of 0.05 V s
-1

. B) Nyquist plot of bare GSPE (■) and of PAA-modified 

GSPEs using different AA concentrations: 0.01 M (●), 0.05 M (), 0.08 M (). Electrochemical 

impedance spectra were performed in 0.01 M [Fe(CN)6]
3-/4-

 in 0.01 M TRIS (pH 7.4). Each point was 

repeated at least 3 times using different screen-printed graphite electrodes. 

 

In order to optimise the electropolimerization process different experimental parameters 

were considered (including monomer concentration, 0.01, 0.05, 0.08 M and number of 

CV cycles, 1, 5, 10, 15). Optimization of anthranilic acid concentration and cycles of 

electropolymerization were performed with EIS technique measuring the changes in 

charge-transfer resistance (Rct) values. 

As the monomer concentration increases from 0.01 to 0.05 M, the electron transfer 

resistance increases respectively from 65.4 ± 5.4 to 84.7 ± 7.2 kOhm (Figure 4.5). No 

significant change in Rct was observed increasing the anthranilic acid concentration up to 

80 mM (Rct = 82.5±6.5 kOhm). Thus, 50 mM of anthranilic acid solution was selected as 

optimal monomer concentration.  

Optimization of the number of electropolimerization cycles is shown in Figure 4.6.  

EIS results show that the PAA-modified GSPEs obtained using 10 and 15 cycles for 

electropolymerization, exhibit similar values for Rct (respectively, 83.5 ± 5.0 and 84.7 ± 

5.3 kOhm); so, 15 cycles was chosen as the optimized value. In this condition, the 

electrode surface is completely covered with PAA film.  
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Figure 4.6. Optimization of electropolymerization cycles. A) Rct measurements of poly-anthranilic acid 

modified graphite screen-printed electrodes (PAA/GSPEs) prepared starting from AA 50 mM, with a scan 

rate of 50 mV s
-1

, using different cycles (1, 5, 10, 15). B) Nyquist plot of bare GSPE (■) and of poly-

anthranilic acid modified graphite screen-printed electrodes (PAA/GSPEs) using different polymerization 

cycles: 1 (●), 5 (), 10 () and 15 (). Electrochemical impedance spectra were performed in 0.01 M 

[Fe(CN)6]
3-/4-

 in 0.01 M TRIS (pH 7.4). Each point was repeated at least 3 times using different screen-

printed graphite electrodes. 

 

The PAA film introduces a barrier for electron transfer at the electrode interface and an 

enhanced electron transfer resistance is obtained. An increase of charge-transfer 

resistance values due to a bigger repulsion between the negatively charged of the 

[Fe(CN)6]
3-/4- 

 redox probe and the negatively charged polymer film was observed in 

according of what reported in [30].  

The film coverage amount can be calculated using the following equation: 

 

(   )      
      

where represents the apparent electrode coverage; Rct
0
 and Rct are respectively the 

charge transfer resistance of bare and of a film-covered electrode. In the optimized 

condition, the coverage was calculated to be near 80%. 

 

3.3 Optimization of monoclonal antibody anti-CA125 (mAb-CA125) immobilization 

 

An increase of Rct value was observed after the mAb-CA125 immobilization on the PAA-

modified GSPEs (data not shown). The same behaviour was observed when the affinity 

reaction with CA125 was performed. This is due to the formation of protein insulating 

layer that reduce the electron transfer from the redox mediator solution to the electrode 

surface.  



Chapter 4 

86 
 

Different concentrations of primary antibody solution (20, 30 and 40 mg L
-1

) were used to 

optimize the immunosensor response (Figure 4.7). An increase in the sensitivity was 

observed when primary mAb-CA125 solution of 30 mg L
-1

was used (y=0.51x, R
2
=0.98).  

A higher concentration of antibody solution did not improve the immunosensor 

sensitivity probably due to the higher steric hindrance that reduces the recognition or 

CA125 protein. A decrease of sensitivity was also observed using mAb-CA125 solution 

of 20 mg L
-1

. For this reason, a primary antibody solution of 30 mg L
-1

 was chosen for 

further experiments (Figure 4.7). 

 

 

Figure 4.7. Optimization of primary antibody anti-CA125 (mAb-CA125) concentration: 20 mg L
-1

 (■), 30 

mg L
-1

 (●), 40 mg L
-1 

() on the EIS response for CA125 using 0.01 M [Fe(CN)6]
3-/4-

 prepared in TRIS 

0.01 M pH 7.4. The values reported in the graphics represent the mean value of 3 different measurements. 

 

3.4 Detection of CA125 by label-free immunosensor 

 

The first approach developed was based on label free immunoassay as shown in Figure 

4.2, route A. After the affinity reaction, the immunosensors were rinsed with 0.1 M PBS 

(pH 7.4) and then incubated with 10, 20, 30, 40 and 50 U mL
-1

 CA125 antigen as reported 

in the procedure. The impedance measurements for the immunocomplex detection were 

carried out applying +0.13 V using a 0.01 M equimolar solution of [Fe(CN)6]
3-/4-

 prepared 

in 0.01 M TRIS (pH 7.4).  

Varying Rct (ΔRct = Rct,CA125 - Rct,0) values were used as analytical signal in the CA125 

calibration curve (Figure 4.8). A linear response was observed between 0 and 50 U mL
-1

, 
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with a slope value of 0.53 kOhm mL U
-1

. The detection limit (LOD) of the label-free 

immunosensor, calculated as LOD = 3Sblank/slope, was found 7.6 U mL
-1

. 

 

 

Figure 4.8. Calibration curve for label-free CA125 detection by EIS measurements performed in 0.01 M 

[Fe(CN)6]
3-/4-

 prepared in TRIS 0.01 M pH 7.4. Inset: aspecific test with PSA (0, 50, 100 mg L
-1

). Each 

point was repeated at least 3 times using different modified graphite screen-printed electrodes. 

 

Moreover, the limit of quantification, calculated as 10Sblank/slope, was found 25.3 U mL
-1

. 

A very similar Rct value compared to the blank (0 U mL
-1

 of CA125) was achieved for 

PSA aspecific protein 

 

3.5 CA125 detection by gold nanoparticles-silver enhancement 

 

The second approach developed was based on sandwich immunoassay format as shown in 

Figure 4.2, route B.  

Through a sandwich-type immunoreaction, the antibody-functionalized AuNPs could be 

captured on the immunosensor surface by the formation of immunocomplex. After the 

addition of silver deposition solution onto the sensor surface, the AuNPs could act as 

nuclei and catalysts to induce the reduction reaction of silver ion from the silver 

deposition solution. When CA125 concentration increased, the more amounts of AuNPs 

was captured on the sensor surface to produce more AgNPs.  

Finally, anodic stripping analysis of the quantitatively deposited AgNPs on the 

corresponding immunosensors was used for CA125 detection. 
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Figure 4.9. A) Calibration plots for CA125 detection through sandwich assay using pAb-CA125 antibody 

labelled-gold nanoparticles and silver enhancement. Inset: aspecific signal obtained with PSA (50, 100 mg 

L
-1

). B) Voltammograms by differential pulse anodic stripping voltammetry of silver using different CA125 

concentrations, from down to up: 0, 5, 10, 25 U mL
-1

, respectively. Each point was repeated at least 3 times 

using different modified screen-printed graphite electrodes. 

 

Calibration curves for the determination of CA125 protein by silver enhancement 

procedure were achieved under optimal conditions (Figure 4.9).  

It is possible notice, a linear correlation between the current and the CA125 concentration 

in the range of 5 – 25.0 U mL
-1

 (y = 4.81x+68.75, R
2
=0.99).  

LOD and LOQ values, calculated as previously described, were estimated to be 2.0 U 

mL
-1

 and 7.0 U mL
-1

 respectively. Similar current value compared to the blank was 

achieved for PSA aspecific protein.  

The analytical parameters of the proposed method based on gold nanoparticle silver 

enhancement was improved by both the AuNPs-induced silver deposition procedure and 

the well-defined stripping sharp peak of the deposited AgNPs in acid solution. 

 

4. Conclusions 
 

Two strategies for CA125 detection in this work were presented, by using poly-

anthranilic acid modified graphite screen-printed electrodes. 

In both cases, they were used as solid phase to build up a label free immunosensor and a 

sandwich format with gold nanoparticle silver enhancement.  

A good sensitivity and reproducibility was achieved for CA125 detection, with a linear 

response, which matches the request of clinical needs. Future experiments will be 

performed in spiked and real sample to verify the responses of both immunosensors for 

their use in clinical analysis.  



Chapter 4 

89 
 

References 

 

[1] Al-Khafaji QAM, Harris M, Tombelli S, et al. An Electrochemical Immunoassay 

for HER2 Detection. Electroanal 2012; 24:735-42. 

[2] Zani A, Laschi S, Mascini  M, Marrazza G. A New Electrochemical Multiplexed 

Assay for PSA Cancer Marker Detection. Electroanal 2011; 23:91-9. 

[3] Peng NJ, Liou WS, Liu RS, Hu C, Tsay DG, Liu CB. Early detection of recurrent 

ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-

18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. 

Cancer biotherapy & radiopharmaceuticals 2011; 26:175-81. 

[4] Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A. Single Conducting 

Polymer Nanowire Chemiresistive Label-Free Immunosensor for Cancer Biomarker. 

Anal Chem 2009; 81:2168-75. 

[5] Ionescu AM. ELECTRONIC DEVICES Nanowire transistors made easy. Nat 

Nanotechnol 2010; 5:178-9. 

[6] Rissin DM, Kan CW, Campbell TG, et al. Single-molecule enzyme-linked 

immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature 

biotechnology 2010; 28:595-9. 

[7] Das J, Kelley SO. Protein Detection Using Arrayed Microsensor Chips: Tuning 

Sensor Footprint to Achieve Ultrasensitive Readout of CA-125 in Serum and Whole 

Blood. Anal Chem 2011; 83:1167-72. 

[8] Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF. Microfluidic 

electrochemical immunoarray for ultrasensitive detection of two cancer biomarker 

proteins in serum. Biosensors and Bioelectronics 2011; 26:4477-83. 

[9] Viswanathan S, Rani C, Ribeiro S, Delerue-Matos C. Molecular imprinted 

nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosensors and 

Bioelectronics 2012; 33:179-83. 

[10] Jagadeesan KK, Kumar S, Sumana G. Application of conducting paper for 

selective detection of troponin. Electrochem Commun 2012; 20:71-4. 

[11] Mathebe NGR, Morrin A, Iwuoha EI. Electrochemistry and scanning electron 

microscopy of polyaniline/peroxidase-based biosensor. Talanta 2004; 64:115-20. 

[12] Zhang J, Wang J, Zhu J, Xu J, Chen H, Xu D. An electrochemical impedimetric 

arrayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold 

nanoparticles. Microchim Acta 2008; 163:63-70. 

[13] Nguyen MT, Diaz AF. Water-Soluble Poly(aniline-co-o-anthranilic acid) 

Copolymers. Macromolecules 1995; 28:3411-5. 

[14] Yan H, Wang H-J, Adisasmito S, Toshima N. Novel Syntheses of Poly(<i>o</i>-

aminobenzoic acid) and Copolymers of <i>o</i>-Aminobenzoic Acid and Aniline as 

Potential Candidates for Precursor of Polyaniline. Bulletin of the Chemical Society of 

Japan 1996; 69:2395-401. 

[15] Sriwichai S, Baba A, Phanichphant S, Shinbo K, Kato K, Kaneko F. 

Electrochemically controlled surface plasmon resonance immunosensor for the detection 

of human immunoglobulin G on poly(3-aminobenzoic acid) ultrathin films. Sensors and 

Actuators B: Chemical 2010; 147:322-9. 

[16] Wang Y, Knoll W. In situ electrochemical and surface plasmon resonance (SPR) 

studies of aniline-carboxylated aniline copolymers. Anal Chim Acta 2006; 558:150-7. 

[17] Preechaworapun A, Ivandini TA, Suzuki A, Fujishima A, Chailapakul O, Einaga 

Y. Development of Amperometric Immunosensor Using Boron-Doped Diamond with 

Poly(o-aminobenzoic acid). Anal Chem 2008; 80:2077-83. 



Chapter 4 

90 
 

[18] Fowler JM, Wong DKY, Brian Halsall H, Heineman WR, Chapter 5 - Recent 

developments in electrochemical immunoassays and immunosensors. In: Zhang X, Ju H, 

Wang J, editors. Electrochemical Sensors, Biosensors and their Biomedical Applications. 

San Diego: Academic Press, 2008: 115-43. 

[19] Gao J, Liu D, Wang Z. Microarray-Based Study of Carbohydrate−Protein Binding 

by Gold Nanoparticle Probes. Anal Chem 2008; 80:8822-7. 

[20] Guarise C, Pasquato L, De Filippis V, Scrimin P. Gold nanoparticles-based 

protease assay. P Natl Acad Sci USA 2006; 103:3978-82. 

[21] Hou S-Y, Chen H-K, Cheng H-C, Huang C-Y. Development of Zeptomole and 

Attomolar Detection Sensitivity of Biotin−Peptide Using a Dot−Blot GoldNanoparticle 

Immunoassay. Anal Chem 2006; 79:980-5. 

[22] Cheng W, Jin G, Zhang Y. Electrochemical Characteristics of Poly(o-

Aminobenzoic Acid) Modified Glassy-Carbon Electrode and Its Electrocatalytic Activity 

towards Oxidation of Epinephrine. Russ J Electrochem 2005; 41:940-5. 

[23] Gupta S, Huda S, Kilpatrick PK, Velev OD. Characterization and Optimization of 

Gold Nanoparticle-Based Silver-Enhanced Immunoassays. Anal Chem 2007; 79:3810-20. 

[24] Pan Q, Zhang R, Bai Y, He N, Lu Z. An electrochemical approach for detection of 

specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. 

Analytical Biochemistry 2008; 375:179-86. 

[25] Frens G. Controlled nucleation for the regulation of the particle size in 

monodisperse gold suspensions. Nature 1973; 241:20-2. 

[26] Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of Size and 

Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal Chem 2007; 79:4215-

21. 

[27] Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A. 

Double-Codified Gold Nanolabels for Enhanced Immunoanalysis. Anal Chem 2007; 

79:5232-40. 

[28] Cai H, Wang Y, He P, Fang Y. Electrochemical detection of DNA hybridization 

based on silver-enhanced gold nanoparticle label. Anal Chim Acta 2002; 469:165-72. 

[29] Xu Y, Cai H, He P-G, Fang Y-Z. Probing DNA Hybridization by Impedance 

Measurement Based on CdS-Oligonucleotide Nanoconjugates. Electroanal 2004; 16:150-

5. 

[30] Liu J, Cheng L, Liu B, Dong S. Covalent Modification of a Glassy Carbon 

Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a 

Polyoxometalates-Consisting Monolayer and Multilayer Films. Langmuir 2000; 16:7471-

6. 

 

 



Chapter 5 

91 
 

CHAPTER 5 

 

Sandwich aptamers assay based on gold nanostructured graphite 

screen-printed electrodes for VEGF cancer biomarker detection 
 

A. Ravalli 
a
, L. Rivas 

b,c
, A. de la Escosura-Muñiz

 c
, J. Pons 

b
, A. Merkoçi 

c,d
, G. 

Marrazza
a
 

 
a 

Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 

50019 Sesto F.no (FI), Italy. 

 
b 

Unitat de Química Inorgánica, Departament de Química, Universitat Autónoma de 

Barcelona, Barcelona, Spain. 

 
c 

Nanobioelectronics & Biosensors Group, CIN2 (ICN-CSIC), Catalan Institute of 

Nanotechnology, UAB Campus, Bellaterra, Barcelona, Spain.  

 
d
 ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. 

 

Abstract 
 

In this work, an aptamers sandwich assay based on gold nanostructured (AuNPs) graphite 

screen-printed electrode for the determination of VEGF cancer biomarker was proposed. 

First, thiolated aptamer anti-VEGF (Apt1-VEGF) was covalently immobilized on the 

surface of gold nanoparticles-modified graphite screen printed electrodes 

(AuNPs/GSPEs) followed by the formation of a mixed self-assembly monolayer SAM. 

VEGF antigen was then incubated with the sensor and subsequently, the sandwich was 

completed by interaction with secondary biotinylated anti-VEGF aptamer (Apt2-VEGF).  

Streptavidin-alkaline phosphatase was finally incubated with the sensors and the 

electrochemical behaviour of alpha-naphthol (produced by alkaline phosphatase after the 

addition of alpha-naphthyl phosphate) was analysed by differential pulse voltammetry 

(DPV) in order to construct the calibration curve. Each phases involved in the assembly 

of the aptasensors were evaluated by electrochemical impedance spectroscopy (EIS) 

technique. The performance of the immunoassay in terms of sensitivity, reproducibility 

and selectivity has been also studied.  
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1. Introduction 
 

The possibility of performing reliable cancer diagnosis even before any symptom of 

disease appears is crucial for increasing therapeutic treatment success and patient survival 

rates [1-3].  

During the last decade, improved understanding of carcinogenesis and tumour metastasis 

revealed the ability of the tumoral cells to create new vasculatures in order to receive a 

large number of nutrient and oxygen necessary for their growth [4-7]. The main protein 

mediator of this process is the vascular endothelial growth factor, also known as VEGF 

[8-10].  

New tumoral vasculatures formed are irregularly shaped, tortuous, with dead ends. This 

fact results in an insufficient supply of nutrient and oxygen to the tumoral cells with the 

consequent increase in the production VEGF [11, 12]. 

Thus, VEGF concentration in blood raise up and its values can be used as biomarker 

associated with diagnosis and prognosis of different type of cancer diseases [13-16]. 

VEGF is referred to a family of dimeric glycoprotein including five members: VEGF-A, 

VEGF-B, VEGF-C, VEGF-D and placenta growth factor (PLGF) [17]. Among these, 

VEGF-A (which includes three mainly isoforms: VEGF-121, VEGF-165, VEGF-189) 

represents the most abundant and the most studied protein of the family [18].  

Traditionally, immunosensors were applied for the detection of a large number of 

biomarkers. Nevertheless these methods do not satisfy the rapidity requirement and the 

necessity to use simple instrumentation for point of care diagnostics. In this context, rapid 

non-immunochemical sensors based on electrochemical methods using aptamers as 

bioreceptors are emerging [19-21]. 

Aptamers (from Latin aptus, “to fit” and Greek, merus, “part”) are synthetic single strand 

oligonucleotide acids (DNA or RNA) or peptide fragment obtained through systematic 

evolution of ligands by exponential enrichment (SELEX) process [22]. 

Because they offer significant advantages over traditional bioreceptors (i.e. antibodies or 

enzymes), such as easy synthesis, easy chemical modification, good stability and 

resistance to denaturation, high specificity for target molecules and the possibility to 

distinguish between very similar targets [23], they were extensively used in many 

applications, in particular in biosensors field [24, 25]. 
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In recent years, nanostructures have found a wide employment for different purposes 

[26]. Among these, gold nanoparticles (due to their particular properties such as high 

area/volume ratio, easily surface modification, high compatibility with biological 

molecules) were the most used [27-29]. A detailed review of gold nanoparticles-based 

biosensors can be found in ref. [30]. 

In this work, an aptamers sandwich assay based on gold nanostructured (AuNPs) graphite 

screen-printed electrode for the determination of VEGF cancer biomarker was proposed. 

First, thiolated aptamer anti-VEGF (Apt1-VEGF) was covalently immobilized on the 

surface of gold nanoparticles-modified graphite screen printed electrodes 

(AuNPs/GSPEs) followed by the formation of a mixed self-assembly monolayer SAM. 

VEGF antigen was the incubated with the sensors and then, the sandwich was completed 

by interaction with secondary biotinylated anti-VEGF aptamer (Apt2-VEGF).  

Streptavidin-alkaline phosphatase was finally incubated with the sensor and the 

electrochemical behaviour of alpha-naphthol (produced by alkaline phosphatase after the 

addition of alpha-naphthyl phosphate) was analysed by differential pulse voltammetry 

(DPV) in order to construct the calibration curve. Each phases of the assembly of the 

immunosensor was evaluated by electrochemical impedance spectroscopy. The 

performance of the immunoassay in terms of sensitivity, reproducibility and selectivity 

has been also studied. 

 

2. Materials and methods 
 

2.1 Chemicals 

 

Sodium chloride, tetrachloroauric (III) acid (HAuCl4), 6-mercapto-1-hexanol (MCH), 

diethanolamine (DEA), 1-naphtyil phosphate, streptavidin-alkaline phosphatase, 

magnesium chloride, human Vascular Endothelial Growth Factor (VEGF) were obtained 

from Sigma-Aldrich (Milan, Italy). Human epidermal growth factor receptor 2 (HER2) 

protein (R&D Systems) were purchased from Space srl (Milan, Italy) and used as 

aspecific control. 

Sulfuric acid, potassium chloride, potassium ferrocyanide (K4[Fe(CN)6]), potassium 

ferricyanide (K3[Fe(CN)6]), tris(hydroxymethyl)aminomethane hydrochloride (TRIS), 

ethylenediaminetetraacetic acid (EDTA) were purchased from Merck (Milan, Italy). 
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Aptamers used in this work were obtained from MWG Biotech, Germany. Sequences are 

reported in Table 1. 

All chemicals were used as received without any further purification. Milli-Q water was 

used throughout this work. 

Buffers used in this work include: 

TBSE: TRIS 0.01 M, EDTA 0.05 mM, NaCl 0.1 M, pH 7.4 

TBSE KCl: TRIS 0.01 M, NaCl 0.1 M, KCl 0.1 M, EDTA 0.05 mM, pH 7.4 

TBS KCl: TRIS 0.01 M, NaCl 0.1 M, KCl 0.1 M, pH 7.4 

DEA: Diethanolamine 0.1 M, KCl 0.1 M, MgCl2 0.001 M, pH 9.6 

 

Table 5.1. List of the aptamers sequences (form 5’ to 3’) used in this work. 15 thymines nucleobases – 

T(15) – were used as spacer. 

Aptamer Sequence Reference 

Apt1-VEGF 5’-TGTGGGGGTGGACGGGCCGGGTAGA-T(15)-3’-SH [31] 

Apt2-VEGF 5’- GGGCCCGTCCGTATGGTGGGTGTGCTGGCC-T(15)-3’-Biot [32] 

 

Prior the use Apt1-VEGF and Apt2-VEGF were heated at 95 °C and then gradually 

cooled to 25 °C followed by fast cooling in freezer for to keep the folded structure of the 

aptamer. 

 

2.2 Electrochemical instrumentations 

 

Electrochemical experiments were performed in a digital potentiostat/galvanostat 

AUTOLAB PGSTAT 30(2)/FRA2 controlled with the General Purpose Electrochemical 

System (GPES) and Frequency Response Analyzer (FRA2) 4.9 software (Eco Chemie, 

Utrecht, The Netherlands). The sensor was assembled using graphite screen-printed cell, 

comprising of graphite and gold working electrode (2.5 mm in diameter) and counter 

graphite electrode and a pseudo-silver reference. 

The screen-printed cells were produced in house on a DEK 248 screen-printing machine 

(DEK, Weymouth, UK). The printing was performed on a polyester film (Autostat CT5) 

from Autotype (Milan, Italy) using the polymeric inks (Electrodag PF-410 (silver)) and 

(Electrodag 423 SS (graphite)), which were purchased from Acheson (Milan, Italy) and 

gold-based ink (R-464 (DPM-78)) obtained from Ercon Inc. (MA, USA). Vinylfast 36-

100 was used as the insulting ink and was obtained from Argon (Lodi, Italy). 
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2.2.1 Electrochemical impedance spectroscopy (EIS) measurements  

 

EIS measurements were carried out using 0.01 M [Fe(CN)6]
3-/4-

 equimolar solution 

prepared in TBS KCl buffer as redox probe. 

EIS spectra were acquired superimposing a voltage of 0.01 V in amplitude (peak-to-

peak), within the frequency range 100 kHz – 10 mHz, at the bias voltage.  

The DC potential was set up to + 0.13 V (vs. Ag/AgCl pseudo-silver reference), the 

formal potential of redox probe. Nyquist plot were fitted by a proper equivalent circuit 

using the facility of FRA2 4.9.004 (EcoChemie) software. Charge transfer resistance (Rct) 

was taken as analytical parameter. All the potentials were referred to the screen-printed 

pseudo-reference electrode and the experiments were performed at room temperature (25 

°C). 

 

2.2.2 Differential pulse voltammetry (DPV) measurements 

 

DPV experiments were performed from -0.3 V to 0.5 V (vs. Ag/AgCl pseudo-silver 

reference) using the following parameters: scan rate 0.1 V s
-1

, modulation time 0.05 s, 

interval time 0.15 s, step potential 0.005 V, modulation amplitude 0.07 V. All the spectra 

were acquired at room temperature (25 °C). 

 

2.2.3 Cyclic voltammetry (CV) parameters 

 

Electrodeposition of gold nanoparticles (AuNPs) onto graphite screen-printed electrodes 

(GSPEs) was obtained by cyclic voltammetry in the range -0.2 and +1.6 V vs. screen-

printed silver pseudo-reference using HAuCl4 solution prepared in 0.5 M H2SO4.  

 

2.3 Electrodeposition of gold nanoparticles on graphite screen-printed electrodes 

 

Electrodeposition of gold nanoparticles (AuNPs) on the surface of graphite screen-printed 

electrodes (GSPEs), was realized in accordance with the optimized procedure reported in 

our previously work [33]. Briefly, 50 μL of 0.0006 M of HAuCl4 solution (prepared in 0.5 

M H2SO4) were placed onto GSPEs surface. Subsequently, the potential was cycled from 

-0.2 and +1.6 V vs. pseudo-reference silver screen-printed electrode for 25 cycles using a 

scan-rate of 0.1 V s
-1

. AuNPs-modified GSPEs were then washed 3 times with Milli-Q 

water in order to remove the free ions from the GSPEs surface. 
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2.4 Functionalization of AuNPs-modified GSPEs with thiolated anti- VEGF aptamer 

(Apt1-VEGF) and with 6-mercapto-1-hexanol (MCH) 

 

10 μL of 0.1 μM Apt1-VEGF solution prepared in TBSE KCl buffer, were placed on the 

working electrode surface of gold nanoparticle-modified graphite screen printed 

electrodes (AuNPs/GSPEs) and incubated overnight at 25 °C in a home-made wet 

chamber.  

After, the Apt1-VEGF-modified electrodes were rinsed 3 times with TBSE KCl buffer 

and incubated for 60 minutes with 10 uL of 0.001 M 6-mercapto-1-hexanol (MCH).  

Finally, the modified electrodes were washed 3 times with TBSE KCl. 

 

2.5 Incubation with VEGF protein 

 

The MCH/Apt1-VEGF-modified AuNPs/GSPEs were incubated with 10 µL with VEGF 

at various concentrations (0, 50, 100, 200, 500 nM), prepared in TBSE KCl buffer for 45 

minutes at 25 °C. Then, the electrodes were washed 3 times with TBSE buffer in order to 

remove the unbound VEGF molecules. 

Aspecific test was performed using human epidermal growth factor receptor 2 (HER2) 

protein at 50, 100 µg L
-1

 prepared in TBSE buffer instead of VEGF. 

 

2.6 Binding with secondary biotinylated anti-VEGF aptamer and streptavidin 

alkaline-phosphatase 

 

To complete the sandwich assay the VEGF-modified electrodes were incubate with 10 uL 

of 0.5 µM secondary biotinylated anti-VEGF aptamer (Apt2-VEGF) for 30’ at 25 °C. 

After three washing step performed with DEA buffer, streptavidin-alkaline phosphates 

(prepared in DEA buffer containing BSA 10 mg mL
-1

) was added to the system and 

incubated for 15 minutes at 25 °C.  

Finally, the sensors were washed three times with DEA buffer. 

 

2.7 Differential pulse voltammetry (DPV) measurements 

 

50 μL of alpha-naphthyl phosphate were placed on the sensors and incubated for 6 

minutez at 25 °C. The redox peak of enzymatic product (alpha-naphthol) produced by the 



Chapter 5 

97 
 

enzyme was then determined by means of DPV technique and used to calculate the VEGF 

calibration curve. 

 

3. Results and discussion 
 

Electrodepostion of gold nanoparticles (AuNPs) on graphite screen-printed electrodes 

allows the formation of randomly distributed AuNPs (with size comprise between 40 and 

100 nm) all over the working electrode surface. 

Electrodeposed AuNPs provides a useful platform for the immobilization of the 

bioreceptors due to the high affinity and easy functionalization with thiols groups. 

Because aptamers were directly synthesized with thiol functional groups, its 

immobilization on the gold electrode surface can be performed in a single step 

(decreasing the costs and the time request to complete the assay) without alteration of its 

folded structure, necessary for the recognition of the target protein.  

In this work two different aptamers (Apt1-VEGF and Apt2-VEGF) were used to perform 

the sandwich assay in order to detect VEGF cancer biomarker.  

Both aptamers were developed by Ikebukuro’s groups and possess the ability to bind 

selectively with no cross-reactivity to different target domains present on VEGF 

molecules: in particular Apt1-VEGF (in a G-quadruplex folded structure) is capable to 

bind the receptor-binding domain (RBD) of VEGF, while Apt2-VEGF (in three stem loop 

folded structure) shown high affinity for the heparin-binding domain (HBD) of VEGF 

[31, 32]. 

Figure 5.1 shows the schematic representation of the steps involved in the development of 

aptamers sandwich assay based on gold nanoparticle-modified graphite screen printed 

electrodes for the determination of VEGF protein. 

The protocol involves the following steps:  

a) electrodeposition of gold nanoparticles AuNPs on graphite screen-printed electrodes 

(GSPEs) b) functionalization with thiolated primary anti-VEGF aptamer (Apt1-VEGF); 

c) Incubation with MCH; d) affinity reaction with VEGF protein; e) addition of 

biotinylated secondary anti-VEGF aptamer (Apt2-VEGF); f) incubation with streptavidin-

alkaline phosphatase (streptavidin-AP); g) addition of the substrate (alpha-naphthyl 

phosphate) h) DPV analysis of enzymatic product alpha-naphthol. 



Chapter 5 

98 
 

 

Figure 5.1. Schematic representation of the steps involved in the development of aptamers sandwich assay 

for VEGF detection: a) electrodeposition of gold nanoparticles AuNPs on graphite screen-printed electrodes 

(GSPEs); b) incubation with thiolated primary anti-VEGF aptamer (Apt1-VEGF); c) incubation with MCH 

protein; d) affinity reaction with VEGF; e) addition of biotinylated secondary anti-VEGF aptamer (Apt2-

VEGF); f) incubation with streptavidin-alkaline phosphatase (streptavidin-AP); g) addition of the substrate 

(alpha-naphthyl phosphate) h) DPV measurements as described in materials and methods section. 

 

3.1. Electrochemical impedance spectroscopy (EIS) surface characterization 

 

Electrochemical impedance spectroscopy (EIS) measurements were used to characterize 

the modification of the graphite screen-printed electrode surface with AuNPs, to verify 

the functionalization of the electrodeposed AuNPs with thiolated Apt1-VEGF and the 

correct formation of a self-assembly monolayer (SAM) with MCH.  

The measurements were performed using 0.01 M [Fe(CN)6]
3-/4-

 prepared in TBS KCl 

buffer (TRIS 0.01 M, NaCl 0.1 M, KCl 0.1 M, pH 7.4) as redox probe.  

Resistance charge transfer (Rct) was taken as analytical signal to characterize the 

modification of the electrode surface  

Results are shown in the form of Nyquist plot, where the characteristic Faradic impedance 

shape can be observed in a semicircle region lying on x-axis (observed at high 

frequencies, corresponding to the kinetic control of the electron-transfer process), 

followed by a straight line (at low frequencies, related to the diffusive control of electron-

transfer process) [34]. 

EIS spectra of bare graphite-screen printed electrode (GSPEs) and of the AuNPs-

modified GSPEs (AuNPs/GSPEs) were reported in Figure 5.2. 

A decrease in Rct values from 22000 ± 250 Ohm (for bare GSPEs) to 750 ± 70 Ohm for 

(AuNPs/GSPEs) was observed. This result is in accordance with what reported in 
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literature confirming the formation of a randomly distributed AuNPs onto the entire 

electrode surface. 

 

 
Figure 5.2. A) Nyquist plot of bare graphite screen-printed electrode (GSPE, ●) and of gold nanoparticles-

modified graphite screen-printed electrode (AuNPs/GSPE, ■). Inset: magnification of AuNPs/GSPEs EIS 

spectrum. B) Average and standard deviation respect to the Rct for bare GSPEs and for (AuNPs/GSPEs). 

EIS measurements were performed as reported in materials and methods section using 3 different 

electrodes. 

 

 
 
Figure 5.3. A) Nyquist plot of gold nanoparticles-modified graphite screen-printed electrodes 

(AuNPs/GSPEs, ■) and after the functionalization with thiolated primary anti-VEGF aptamer (Apt1-

VEGF/AuNPs/GSPEs, ●) and after formation of mixed SAM monolayer with 6-mercapto-1-hexanol 

(MCH/Apt1-VEGF/AuNPs/GSPEs, ). B) Average and standard deviation respect to the Rct for bare 

AuNPs/GSPEs, Apt1-VEGF/AuNPs/GSPEs and MCH/Apt1-VEGF/AuNPs/GSPEs. EIS measurements 

were performed as reported in materials and methods section using 3 different electrodes. 

 

After the functionalization of AuNPs-modified GSPEs with thiolated Apt1-VEGF 

aptamer, an increase of Rct up to 4000 ± 70 Ohm was determined. 

This result is coherent with the fact that negative charged DNA sequence decrease the 

electron transfer from the solution of [Fe(CN)6]
3-/4-

 redox probe to the electrode surface 
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(thus increasing Rct value) because the electrostatic repulsion between the negative 

backbone of the aptamer and the electrons of the redox mediator [35]. Moreover, after the 

incubation with MCH an increase of Rct values up to 4700±80 Ohm was reported due to 

the formation of the mixed SAM necessary to prevent the non-specific adsorption of the 

protein on the electrode surface without altering the aptamer folding (Figure 5.3) [36]. 

 

3.2. Detection of VEGF by aptamers sandwich biosensor 

 

After the functionalization with biotinylated secondary anti-VEGF aptamer (Apt2-

VEGF), the assay was completed incubating the sensor with streptavidin-alkaline 

phosphatase and with redox substrate alpha-naphthyl phosphate.  

The redox peak of enzymatic product alpha-naphthol was used to calculate the calibration 

curve using differential pulse voltammetry (DPV) technique.  

Results are shown in Figure 5.4 A linear calibration curve (y = 0.01x + 0.73 R
2
 = 0.98) 

was obtained in the range for 0 to 250 nM with a LOD (calculated as LOD = 

3Sblank/Slope) of 30 nM confirming the binding of VEGF protein between the two 

different aptamers. 

 

 
Figure 5.4. A) Calibration plots for VEGF detection through aptamers sandwich assay obtained by DPV 

measurements. Inset: aspecific signal obtained with HER2 protein (50, 100 µg L
-1

). B) DPV 

voltammograms obtained through aptamers sandwich assay for VEGF concentration: 0, 50, 100, 200, 250 

nM. Each point was repeated at least 3 times using different modified screen-printed graphite electrodes. 

 

In order to evaluate the selectivity of the aptasensor, human epidermal growth factor 

receptor 2 (HER2) protein was used as non-specific antigen.  

As can be observed in Figure 5.4 A inset, a very similar current values (compared to the 

blank) was obtained using HER2 (50 and 100 µg L
-1

). This result confirms that the 
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observed increasing of current is originated from the specific recognition of VEGF by 

Apt1-VEGF and Apt2-VEGF. 

 

4. Conclusions 
 

In this work an aptamers sandwich assay based on gold-nanostructured graphite screen-

printed electrodes for detection of VEGF cancer biomarker was realized.  

Thiolated primary aptamer (Apt1-VEGF) and biotinylated secondary aptamer (Apt2-

VEGF) bind with high affinity and selectivity two different domains present of VEGF 

molecule. 

A good linear relationship between the current and the VEGF concentration in the range 

of 0 – 250 nM with a LOD of 30 nM and was obtained. 

The sensitivity and the reproducibility achieved were adequate for the analysis of serum 

samples, since the VEGF levels in pathological conditions (although with high variability) 

is higher the 1 ng mL
-1

. 

Moreover the developed sandwich aptasensor shown good selectivity when HER2 protein 

was used instead of VEGF. Future experiments will be performed in spiked and real 

sample to verify the responses of both immunosensors for their use in clinical analysis. 
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Abstract 
 

In this work we reported the development of a label-free gold nanostructured biosensor 

using anti-HER2 engineered protein scaffolds as bioreceptor for the detection of HER2 

breast cancer biomarker. The biosensor is based on the immobilization of the terminal 

cysteine-modified Affibody® on the surface of AuNPs-modified GSPEs via Au-SH 

bonds. After the formation of self-assembly monolayer, bioreceptor-antigen affinity 

reaction was evaluated by means of electrochemical impedance spectroscopy (EIS) 

technique. Linear calibration curve was obtained using HER2 concentration ranging from 

0 to 40 μg L
-1

. The proposed assay showed a limit of detection (calculated as 

3Sblank/Slope) of 6.7 μg L
-1

. 

Preliminary experiments in human serum samples spiked with HER2 protein were also 

conducted. 

Each experimental step was characterized and evaluated by means of EIS measurements. 

Finally, the reproducibility and the selectivity of the affinity sensor were determined. 
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1. Introduction 
 

Detecting cancer at early stage is one of the largest factors associated with successful 

treatment outcome. The classical methods (such as ELISA immunoassays) for diagnosis 

of cancer may take several hours, or even days from when tests are ordered to when 

results are received. These methods can be tedious, time consuming and often require 

extra care and expensive instruments making early diagnosis of cancer more difficult 

especially for the cancer patients who are admitted to an emergency department. 

Therefore, measurement of carcinomatous markers is critical in assisting the diagnosis of 

cancer and electrochemical biosensors can satisfy the rapid diagnosis requirements in 

cancer marker detection during early stages of the disease [1-4]. 

For this reason, the development of biosensors for the detection and monitoring of cancer 

biomarkers is a major area of recent researches [2]. 

Antibodies (Abs) have been the most used biorecognition elements. Antibodies are 

proteins produced in animals as an immune response to the presence of a foreign 

substance (called antigen) for which they have specific affinity [5, 6]. The quality of the 

designed immunosensor depends on the affinity and selectivity of the selected antibody to 

its antigen, as well as the proper immobilization of the antibody, with an optimum density 

and adjusted orientation for the antigen binding [7]. 

Despite the wide use of Abs for biosensing applications, some limitations still remain 

presents. In particular, antibodies (both monoclonal either polyclonal) are selected and 

produced using animals. Consequently, antibodies generation, as well as presenting 

ethical issues, becomes difficult with molecules which are toxic or not well tolerated by 

the host. In order to overcome immunoglobulin limitation, another field of investigation is 

represented by the development of alternative binding proteins (based either on scaffold 

with the immunoglobulin fold or on completely different protein topologies), called 

collectively engineered protein scaffolds [8-10]. 

Among this, Affibodies® received particular attentions and found application in several 

studies especially for in vivo diagnostic imaging [11, 12] and targeted cancer therapy 

applications [13, 14]. 

Affibody® molecules are being developed by a Swedish biotechnology company 

(Affibody® AB) and are an engineered version (Z domain) of one of the five stable three-

a-helix bundle domains from the immunoglobulin Fc-binding region of staphylococcal 
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protein A. Affibody® molecules are constituted by only 58 amino acids without 

disulphide bonds and can therefore be produced in simpler organism such as prokaryote, 

rather than the animal system required in antibody synthesis [15].  

Moreover, due to their small size they can also be chemically synthesised using solid 

phase peptide synthesis (SPPS), which eliminates the need for biological systems for 

production, but also means that specific site modification can be performed. 

In fact, these biomolecules can include specific labels, such as fluorophores, radioactive 

labels and other moieties, such as biotin or cysteine groups, which can be used to couple 

the Affibody® to surfaces or other molecules, or surfaces. [16] 

In this work, a label-free biosensors based on gold-nanoparticles (AuNPs) graphite 

screen-printed electrodes (GSPEs) using anti-HER2 Affibody® as bioreceptor was 

developed. We chose to use AuNPs as support both because their intrinsic properties 

(such as high area/volume ration, high biocompatibility) either because can be easily 

functionalized exploiting the high stability of Au-SH bonds. 

HER2 is a cancer antigen that can be measured and evaluated as an indicator for normal 

biologic processes, pathogenic processes, or pharmacologic responses to therapeutic 

intervention. Specifically, the HER2 proto-oncogene is amplified and/or over expressed 

in approximately 20–25% of invasive breast cancers. Normal individuals have a HER2 

concentration between 2 and 15 μg L
-1

 in the blood and breast cancer patients have blood 

HER2 levels from higher than 15 μg L
-1

.The screening of HER2 on tumor biopsies is 

often used to evaluate whether a patient may successfully respond to therapy with 

Trastuzumab (Herceptin®), a monoclonal anti-HER2 antibody [17, 18]. 

In this work we reported the development of a label-free gold nanostructured biosensor 

using anti-HER2 Affibody® as bioreceptor for the detection of HER2 breast cancer 

biomarker. The assay is based on the immobilization of the terminal cysteine-modified 

Affibody® on the surface of AuNPs-modified GSPEs via Au-SH bonds.  

After the formation of self-assembly monolayer, bioreceptor-antigen affinity reaction was 

evaluated by means of electrochemical impedance spectroscopy (EIS) technique. 

Preliminary experiments in human serum sample spiked with HER2 protein were also 

conducted. 

Each phases of the construction of the assay was characterized and evaluated by means of 

EIS measurements. Finally, the reproducibility and selectivity were determined. 
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2. Materials and methods 
 

2.1 Chemicals 

 

Sodium chloride, tetrachloroauric (III) acid (HAuCl4), 6-mercapto-1-hexanol (MCH), 

dithiothreitol (DTT), tris(hydroxymethyl)aminomethane hydrochloride (TRIS), human 

serum sample were obtained from Sigma-Aldrich (Milan, Italy).  

Sulfuric acid, potassium chloride, potassium ferrocyanide (K4[Fe(CN)6]), potassium 

ferricyanide (K3[Fe(CN)6]), disodium hydrogen phosphate (Na2HPO4), sodium 

dihydrogenphosphate dehydrate (NaH2PO4∙2H2O), sulphuric acid, potassium ferrocyanide 

(K4[Fe(CN)6]) and potassium ferricyanide (K3[Fe(CN)6]) were purchased from Merck 

(Milan, Italy).  

Anti-HER2 Affibody® was purchased from Affibody® AB, Sweden. Human epidermal 

growth factor receptor 2 (HER2) protein (R&D Systems) was obtained from Space srl 

(Milan, Italy).  

Human vascular endothelial growth factor (VEGF) (Sigma-Aldrich, Milan, Italy) was 

used as aspecific control. Illustra™ NAP-5 column were obtained from GE Healthcare 

Italy (Milan, Italy). 

 

2.2 Electrochemical apparatus 

 

Electrochemical experiments were performed in a digital potentiostat/galvanostat 

AUTOLAB PGSTAT 30(2)/FRA2 controlled with the General Purpose Electrochemical 

System (GPES) and Frequency Response Analyzer (FRA2) 4.9 software (Eco Chemie, 

Utrecht, The Netherlands).  

The immunosensor was assembled using screen-printed cells, comprising of a graphite 

working electrode (2.5 mm in diameter) and counter graphite electrode and a pseudo-

silver reference [6]. The screen-printed cells were produced in house on a DEK 248 

screen-printing machine (DEK, Weymouth, UK).  

The printing was performed on a polyester film (Autostat CT5) from Autotype (Milan, 

Italy) using the polymeric inks (Electrodag PF-410 (silver)) and (Electrodag 423 SS 

(graphite)), which were purchased from Acheson (Milan, Italy). Vinylfast 36–100 was 

used as the insulting ink and was obtained from Argon (Lodi, Italy). 
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2.3 Electrochemical measurements 

 

Faradic impedance measurements were carried out in the presence of 0.01 M [Fe(CN)6]
3-

/4-
 redox probe (equimolecular mixture prepared in 0.1 M PBS buffer pH 7.4). A voltage 

of 10 mV in amplitude (peak-to-peak), within the frequency range 100 kHz – 10 mHz, 

was superimposed to the applied bias potential. The DC potential was set up to +0.13V, 

the formal potential of [Fe(CN)6]
3-/4-

 redox probe. Experimental spectra, presented in the 

form complex plane diagrams (i.e. Nyquist plot), were fitted with proper equivalent 

circuits using the facilities of the FRA2 4.9.004 (EcoChemie) software. Both charge 

transfer resistance (Rct) and Δ charge transfer resistance (ΔRct) values were taken as 

analytical signals. All potentials were referred to the silver screen-printed pseudo-

reference electrode; the experiments were carried out at room temperature (25°C). 

Electrodeposition of gold nanoparticles (AuNPs) onto graphite screen-printed electrodes 

(GSPEs) was obtained by cyclic voltammetry in the range 0 and +1.3 V vs. screen-printed 

silver pseudo-reference using 0.006 M HAuCl4 prepared in 0.5 M H2SO4 solution.  

 

2.4 Experimental procedure for HER2 biosensor development 

 

2.4.1 Electrodeposition of gold-nanoparticles onto graphite screen-printed 

electrodes  

 

Electrodeposition of gold nanoparticles (AuNPs) on the surface of graphite screen-printed 

electrodes (GSPEs), was realized in accordance with the optimized procedure reported in 

our previously work [19]. Briefly, 50 μL of 0.0006 M of HAuCl4 solution (prepared in 0.5 

M H2SO4) were placed onto GSPEs surface. Subsequently, the potential was cycled from 

-0.2 and +1.6 V vs. pseudo-reference silver screen-printed electrode for 25 cycles using a 

scan-rate of 0.1 V s
-1

. Finally, AuNPs-modified GSPEs were then washed 3 times with 

Milli-Q water. 

 

2.4.2 Anti-HER2 Affibody® immobilization onto AuNPs-modified GSPEs 

 

2.4.2.1 Procedure for reduction of the Affibody® cysteine residues 

 

Anti-HER2 Affibody® molecule contains a C-terminal cysteine ideal for directed 

chemical modifications. However, tail-to-tail dimers are spontaneously generated via a 

disulfide bridge between the C-terminal cysteines.  
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Prior to immobilization of bioreceptor molecules onto AuNPs-modified GSPEs, C-

terminal cysteine dimers were reduced. 

As suggested from the producer, lyophilized anti-HER2 Affibody® was dissolved in 500 

mL of 0.02 M dithiothreitol (DTT) prepared in 0.01 M TRIS buffer, pH 8.5 and left to 

incubate for 120 minutes. 

After, the solution was injected into Illustra NAP-5 column (previously equilibrated with 

10 mL of 0.1 M PBS, pH 7.4) and eluted with 1 mL of 0.1 M PBS, pH 7.4. This stock 

solution (100 g L
-1

) was then stored in freezer (-20 °C) and aliquoted for further 

experiments. 

 

2.4.2.2 Functionalization on AuNPs/GSPEs with reduced anti-HER2 Affibody® 

 

10 L of 1 g L
-1

 of cysteine-reduce anti-HER2 Affibody® prepared in 0.1 M PBS pH 

7.4 buffer solution, were placed on the surface of AuNPs-modified GSPEs and incubated 

overnight in a home-made wet chamber at 25° C. 

After, the anti-HER2 bioreceptors-modified electrodes were rinsed three times with 0.1 M 

PBS pH 7.4 buffer in order to remove unbound molecules. 

 

2.4.3 Mixed SAM formation 

 

Anti-HER2 Affibody®-modified AuNPs/GSPEs were incubated with 10 L of 0.001 M 

MCH solution for 30 minutes at 25 ºC in order to block the free surface on AuNPs, thus 

reducing the aspecific adsorption of other molecules. Subsequently, the electrodes were 

washed three times with three times with 0.1 M PBS pH 7.4 buffer. 

 

2.4.4 Affinity reaction with HER2 protein and aspecific protein control experiment 

 

To develop the calibration curve, the sensors were incubated with different concentrations 

of HER2 (0, 10, 20, 30, 40 μg L
-1

) protein for 60 minutes at 25 °C. The sensors were then 

rinsed with 0.1 M PBS pH 7.4 buffer solution.  

Affinity reaction was determined by means of electrochemical impedance spectroscopy 

(EIS) measurements as reported in materials and method section. 

The control experiments were performed using human vascular endothelial growth factor 

(VEGF) protein at 40 μg L
-1

. 
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2.4.5 Serum samples analysis 

 

Preliminary experiments for the determination of HER2 protein in serum samples were 

also performed.  

The anti-HER2 Affibody® biosensor response was tested in 1/200 diluted (in PBS 0.1 M, 

pH 7.4) filtered (0.45 µm) human serum samples spiked with standard addition of HER2 

protein (10, 20, 30 μg L
-1

).  

The response of the biosensor was the determined by EIS measurements in the same 

condition described in materials and methods section. 

 

3. Results and discussion 
 

 

Figure 6.1. Schematic representation of engineered protein scaffolds-based label-free gold nanostructured 

biosensor for HER2 breast cancer biomarker detection: a) electrodeposition of gold nanoparticles (AuNPs) 

on graphite screen-printed electrodes (GSPEs); b) functionalization with anti-HER2 Affibody® molecules); 

c) Incubation with MCH; d) affinity reaction with HER2 protein; e) label-free HER2 determination by 

electrochemical impedance spectroscopy (EIS) measurements. 

 

Figure 6.1 shows the schematic representation of the steps involved in the development of 

anti-HER2 Affibody® label-free assay based on gold nanoparticle-modified graphite 

screen-printed electrodes for the determination of HER2 cancer biomarker. 

The protocol involves the following steps:  

a) electrodeposition of gold nanoparticles (AuNPs) on graphite screen-printed electrodes 

(GSPEs); b) functionalization with anti-HER2 Affibody® molecules); c) Incubation with 

MCH; d) affinity reaction with HER2 protein; e) label-free HER2 determination by 

electrochemical impedance spectroscopy (EIS) measurements. EIS technique was also 

used to characterize each step necessary for the modification of the electrode surface. 
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3.1 Electrodeposition of AuNPs onto graphite screen-printed electrodes (GSPEs) 

 

According with our previous work [19], AuNPs-modified GSPEs shown Rct values about 

30 time lower respect to bare GSPEs (respectively 750 ± 70 Ohm and 22000 ± 250 Ohm) 

demonstrating the formation of randomly distributed AuNPs (with size comprise between 

40 and 100 nm) all over the working electrode surface of GSPEs. 

 

3.2 Electrochemical impedance spectroscopy (EIS) surface characterization 

 

Electrodeposed AuNPs represent a useful platform for the immobilization of the 

bioreceptors due to the high affinity and easy functionalization with thiols groups. 

Because anti-HER2 Affibody® contains C-terminal cysteine, its immobilization on the 

AuNPs-modified electrode surface can be performed in a single step permitting also the 

correct orientation of the bioreceptor for the recognition of the target protein. 

In order to prove the functionalization of the electrodeposed AuNPs anti-HER2 

Affibody® and the following formation of mixed self-assembly monolayer (SAM) with 

6-mercapto-1-hexanol (MCH), EIS measurements were performed using 0.01 M 

[Fe(CN)6]
3-/4-

 as redox probe prepared in PBS buffer (0.1 M, pH 7.4).  

Resistance charge transfer (Rct) was taken as analytical signal to characterize the 

modification of the electrode surface. 

Nyquist plot of EIS measurements conducted on anti-HER2 Affibody®-modified 

electrodeposed gold nanoparticles (anti-HER2 Affibody®/AuNPs/GSPEs) and after the 

formation of SAM with MCH (MCH/anti-HER2 Affibody®/AuNPs/GSPEs) were 

reported in Figure 6.2. 

After the modification of AuNPs/GSPEs with anti-HER2 bioreceptors an increase of Rct 

values respectively form 750 ± 50 Ohm to 1700 ± 80 Ohm is observed.  

Results is coherent with the presence onto the AuNPs/GSPEs surface of a layer of protein 

that hinders (because steric hindrance and electrostatic repulsions) the electron transfer 

from the redox probe solution to the electrode surface confirming the realization of the 

functionalization step. 

The same behaviour was observed after the formation of the SAM with MCH (Rct = 1900 

± 70 Ohm. 
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Figure 6.2. A) Nyquist plot of gold nanoparticles-modified graphite screen-printed electrodes 

(AuNPs/GSPEs, ■), after the functionalization with anti-HER2 Affibody® (anti-HER2 Af/AuNPs/GSPEs, 

●) and with 6-mercapto-1-hexanol (MCH/anti-HER2 Af/AuNPs/GSPEs, ) obtained in 0.01 M [Fe(CN)6]
3-

/4-
 equimolecular mixture in 0.1 M PBS, pH 7.4. B) Average and standard deviation respect to the Rct for 

AuNPs/GSPEs, anti-HER2 Af/AuNPs/GSPEs, MCH/anti-HER2 Af/AuNPs/GSPEs. The measurements 

were repeated at least 3 times using different GSPEs. 

 

 

Figure 6.3. A) Calibration curve for HER2 cancer biomarker and aspecific test with 40 µg L
-1

 VEGF (●). 

B) Nyquist plot of Affibody®-HER2 affinity reaction obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular 

mixture in 0.1 M PBS, pH 7.4. The measurements were repeated at least 3 times using different GSPEs. 

 

3.3 Label-free detection of HER2 cancer biomarker 

 

The calibration curve for the detection of HER2 cancer biomarker was reported in figure 

6.3 A.  

Due to the affinity reaction between the antigen and the bioreceptor s(which led to the 

formation of a layer of protein that reduce the electron transfer from the redox mediator to 

the electrode surface), a proportional increase of Rct was observed. A linear relationship 

(y = 18x + 1700, R
2
 = 0.98) between the ΔRct (calculated as ΔRct,HER2 - ΔRct,0) and 

concentration of HER2 was obtained in the range of 0 and 40 g L
-1

 with a limit of 

detection (calculated as: LOD = 3Sblank/Slope) of 6.7g L
-1

. The selectivity of the 
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proposed assay was evaluated using vascular endothelial growth factor (VEGF) 40 g L
-1

 

as aspecific protein. As can be observed in Figure 6.3 A, a very similar Rct value 

compared to the blank was achieved, proving the selectivity of the developed biosensor. 

 

3.4 Serum samples analysis  

 

 
Figure 6.4. Nyquist plot of the biosensors response in serum samples spiked with HER2 (10, 20, 30 μg L

-1
) 

obtained in 0.01 M [Fe(CN)6]
3-/4-

 equimolecular mixture in 0.1 M PBS pH 7.4. The measurements were 

repeated at least 3 times using different GSPEs. 

 

In order to verify the suitability of the proposed biosensor in clinical applications, 

preliminary experiments using human serum samples was performed.  

Experiments concerned 1/200 diluted and filtered human serum samples spiked with 

HER2 protein solution at a known concentration (10, 20, 30 µg L
-1

). 

Results are reported in the Figure 6.4. Increase of Rct was proportional with the increase 

of HER2 concentration spiked in commercial serum samples, confirming the recognizing 

of HER2 cancer biomarker also in biological samples. 

 

4. Conclusions 
 

A label-free electrochemical biosensor based on the easy immobilization of anti-HER2 

Affibody® bioreceptor on gold nanostructured graphite screen-printed electrode for the 

detection of HER2 cancer biomarker was developed. A good linear relationship between 

the electron transfer resistance (Rct) and HER2 concentration in the range of 0 - 40 g L
-1

. 
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Limit of detection (calculated as LOD = 3Sblank/Slope) was 6.7 g L
-1

, well below respect 

to the cut-off level of HER2 utilized in clinical analysis (15 g L
-1

). 

The proposed Affibody®-based biosensors was also tested on the analysis of serum 

samples spiked with HER2 cancer biomarker, yielding promising results for use in 

clinical applications. 
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Abstract 
 

In this work, different electrochemical bioassays for Mucin1 (MUC1) tumor marker using 

magnetic beads coupling screen-printed arrays were developed and used for analysis in 

biological samples. The bioassays are based on a sandwich format in which aptamers or 

antibodies were coupled respectively to Streptavidin or Protein G-modified magnetic 

beads. The MUC1 protein was captured by bioreceptor-modified beads followed by the 

addition of a secondary aptamer or antibody to complete the sandwhich. The enzyme 

alkaline phosphatase (AP) and its substrate (1-naphthyl phosphate) are then used for the 

electrochemical detection by differential pulse voltammetry (DPV). The analytical 

performance of the designed assays was compared in terms of sensitivity, selectivity and 

reproducibility. Under the optimal conditions, a linear response was obtained ranging 

from 0 to 10 ng mL
-1

 in MUC1 buffered solution for all three assays, with detection 

limits: 2.5, 2.4 and 1.36 ng mL
-1

, respectively for antibodies-based, aptamer-antibody-

based and aptamers-based sandwich assays. The results showed that the aptamer-based 

approaches exhibit higher selectivity for MUC1, allowing the detection of the protein in 

complex matrices. The developed aptasensor for multiplex detection was applied on 

serum samples obtained from cancer patients, providing promising perspectives for 

clinical applications. 

 

Keywords: immunosensor, MUC1, magnetic beads, aptamer, multiarray, electrochemical 

detection  
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1. Introduction 
 

In recent years, increasing efforts have been focused on the development of affinity 

sensors for biomedical, food-safety and environmental applications [1-4].  

A key step in the construction of affinity sensors is represented by the selection of an 

appropriate biorecognition element that binds the target molecule. Antibodies have been 

widely applied as recognition elements [5-7]. The quality of the designed immunosensor 

depends on the affinity and selectivity of the selected antibody to its antigen, as well as 

the proper immobilization of the antibody, with an optimum density and adjusted 

orientation for the antigen binding [8]. 

To overcome problems relating to stability of antibodies and to improve specificity and 

sensitivity of affinity biosensors, synthetic molecules such as peptides and nucleic 

aptamers or molecularly imprinted polymers have been explored [9, 10]. 

In recent years aptamers have been studied intensively because they offer significant 

advantages over antibodies such as easy synthesis, easy labelling, good stability and 

resistance to denaturation, high specificity for target molecules and the possibility to 

distinguish between very similar targets [11-14].  

Different affinity sensors have been designed improving the analytical performances in 

real samples. The use of micro- and nano-particles either as immobilization platforms [15, 

16] or as labels [17, 18] has attracted major attention lately. Their use as a solid support 

for the immobilization of the recognition element has many advantages such as fast and 

specific immobilization of a wide amount of bioelements due to the large binding surface 

conferred by their geometry and small size, leading therefore to an improved sensitivity, 

easy separation after the washing and reaction steps, easy manipulation, reduction of the 

analysis time and reagents consumption. In addition magnetic beads-based assay could be 

successfully applied to biological samples without the requirement of any purification 

steps, reducing at the same time the matrix effect due to the improved washing steps [19, 

20]. The proposed approaches uses disposable screen-printed arrays as transducers and a 

simple target capturing step by aptamers or antibodies functionalised magnetic beads. 

Screen-printed cells (SPCs) are widely used as electrochemical sensing due to their 

simple, rapid and inexpensive manufacturing process, the possibility of mass production 

and the ability to print the entire electrode system on one solid support to obtain 

disposable devices. In the fabrication process of carbon SPCs are particularly of interest 
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due to their advantages of being relatively inexpensive and leading to low background 

currents and broad potential windows. SPC arrays have the advantage of simultaneous 

analysis of different samples, reducing the analysis time. Several disposable 

immunosensors have been developed on SPC arrays in the field of clinical or food 

analysis [21-24]. 

Given the fact that immunosensors for tumor markers detection attracted considerable 

interest lately, MUC1 tumor marker was selected as model molecule. MUC1 is a trans-

membrane glycoprotein expressed on the apical surface of various epithelial cells, which 

loses its apical distribution in case of malignant neoplasm, becomes over expressed and it 

is secreted into the blood circulation [25] serving therefore as potential tumor marker and 

prognosis factor in different types of cancer such as ovarian [26], breast [27], lung [28] or 

pancreatic cancer [29].  

In this study three different approaches were employed in a sandwich format using 

magnetic beads as solid support and antibodies or aptamers as biorecognition molecules. 

The aptamers used in this work were selected from a library of aptamers, designed by 

SELEX, that were shown to have the ability to recognize MUC1 protein, the affinity for 

MUC1 being tested by ELISA tests and SPR [30, 31]. 

The target molecule is captured between the primary antibody or aptamer immobilized on 

the magnetic beads and a secondary antibody or secondary aptamer. The affinity reaction 

is labelled with Alkaline Phosphatase (AP) in different assay configurations. All variables 

concerning the all bioassays were optimized. The electrochemical multidetection is 

achieved on graphite based eight screen-printed cells, by DPV, through the addition of the 

enzymatic substrate (1-naphtyl phosphate) and its subsequent conversion to the 

electrochemical active compound 1-naphthol. In order to assess the suitability of the 

developed aptasensor and to evaluate the influence of the matrix effect, commercial 

serum samples spiked with different known concentration of MUC1 protein were also 

analysed. Moreover, serum samples obtained from hospital patients were analysed and 

the obtained results were compared with the histological diagnosis, demonstrating the 

potential applications for cancer screening. 
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2. Materials and methods 
 

2.1. Chemicals and instrumentation 

 

Dynabeads Protein G-coated magnetic beads and Streptavidin-coated magnetic beads 

were purchased from Invitrogen (Milan, Italy). 

MUC1 protein, MUC1 monoclonal mouse antibody (Ab1), MUC1 polyclonal rabbit 

antibody (Ab2), MUC4 protein, MUC16 protein, polyclonal antibody anti-rabbit IgG 

labeled with alkaline phosphatase (Ab3-AP) were provided by Novus Biological 

(Cambridge, UK). 

Two different aptamers were used in this work, having the sequences:  

 

5’-GCAGTTGATCCTTTGGATACCCTGGTTTTTTTTTTTTTTT-3` - Biotin (Apt1)  

5`-GAAGTGAAAATGACAGAACACAACATTTTTTTTTTTTTTT-3` - Biotin (Apt2) 

 

The aptamers were purchased from AlphaDNA (Canada) and Eurofins (Germany). 

1-naphthyl phosphate, diethanolamine, sodium chloride, potassium chloride, magnesium 

chloride, polyoxyethylene sorbitan monolaureate (Tween 20), biotin, bovine serum 

albumin, streptavidin-alkaline phosphatase, commercial non-pathological human serum 

were purchased from Sigma-Aldrich (Milan, Italy). 

Tris(hydroxymethyl)amino-methane (TRIS) and ethylene-diamine-tetra-acetic acid 

(EDTA) were purchased from Merck (Milan, Italy). 

The sample mixer was purchased from Dynal Biotech (Milan, Italy) 

All solutions were prepared using water from Milli-Q Water Purification System 

(Millipore, UK) .  

 

The following buffers were used in the experiments: 

Buffer A: PBS 0.1 M, pH=7.4 with 0.005% w/w Tween 20 

Buffer B: TRIS Buffer 50mM, NaCl 10 mM, pH=8.0 with or without 0.005% w/w Tween 

20 

Buffer C: TRIS 10mM, EDTA 1mM, NaCl 2 M, pH=7.5 with 0.005% w/w Tween 20 

Buffer D: TRIS 10mM, NaCl 100mM, KCl 100 mM, MgCl2 5mM, pH=7.2 with 0.005% 

w/w Tween 20 
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Buffer E: DEA Buffer DEA 0.1 M,  KCl 0.1 M, MgCl2 1 mM, pH=9.6 with 0.005% w/w 

Tween 20 

 

Eight screen-printed cells were used in the experiments. Each cell is based on graphite 

working electrode (2.0 mm in diameter) each with a graphite counter electrode and a 

silver pseudo-reference electrode, produced on a DEK 248 (DEK,Weymouth, UK) screen 

printing machine. The printing was performed on a polyester film (Autostat CT5) from 

Autotype (Milan, Italy) using the polymeric inks (Electrodag PF-410 (silver)) and 

(Electrodag 423 SS (graphite)), which were obtained from Acheson (Milan, Italy). 

Vinylfast 36-100 was used as the insulting ink and was obtained from Argon (Lodi, Italy).  

An 8-holes methacrylate box is fixed onto the strip by using a double layer adhesive. 

Each hole is 8 mm diameter and it is positioned exactly in correspondence of each cell. 

Electrochemical measurements were performed with µAutolab type II PGSTAT 

(Methrom, The Netherlands) with General Purpose Electrochemical System (GPES) 4.9 

software and PalmSens handheld potentiostat (PalmSens BV, The Netherlands).  

Differential pulse voltammetry (DPV) was employed as electrochemical technique using 

the following parameters: potential range: - 0.2 V to + 0.5 V; pulse amplitude 0.070 V; 

scan rate 0.033 V s
-1

. The measurements were carried out at room temperature. 

 

2.2. Electrochemical sandwich assays for MUC1 detection 

 

Three different sandwich assays were employed for the detection of MUC1 tumor 

marker, using various bioreceptors (Fig. 7.1. A). 

In the first assay, MUC1 monoclonal mouse antibody (Ab1) was immobilized on the 

surface of Protein G-coated magnetic beads followed by the addition of protein, 

secondary MUC1 polyclonal rabbit antibody (Ab2) and the third polyclonal anti-rabbit 

IgG labeled with alkaline phosphatase (Ab3-AP) (Fig. 7.1. A, a).  

In the second approach, the primary antibody was replaced with the aptamer (Apt1).  

The biotinylated aptamer immobilized on the surface of streptavidin-coated magnetic 

beads binds specifically the MUC1 protein, followed by the reaction with Ab2 and Ab3-

AP (Fig. 7.1. A, b). 

In the third assay, the antibodies were replaced with two different aptamers.  
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After the immobilization of primary biotinylated aptamer (Apt1) on streptavidin-magnetic 

beads and interaction with MUC1 protein, a secondary biotinylated aptamer (Apt2) binds 

the complex. Streptavidin-AP was used for labeling the formed Apt1-MUC1-Apt2 

complex (Fig. 7.1. A, c). 

 

 
Figure 7.1. A) Schematic representation of the steps involved in the development of different MUC1 

assays: a. Antibody – Antibody assay (Ab – Ab): 1) incubation of protein G-modified magnetic beads with 

primary anti-MUC1 antibody (mAb-MUC1); 2) blocking step with milk powder 5% prepared in 0.1 M PBS 

buffer pH 7.4; 3) affinity reaction with MUC1 protein; 4) incubation with secondary anti-MUC1 antibody 

(pAb-MUC1); 5) incubation with alkaline phosphatase (AP)-labelled anti-rabbit IgG tertiary antibody (Ab-

AP). b. Aptamer – Antibody assay (Apt – Ab): 1) incubation of streptavidin-modified magnetic beads with 

biotinylated primary anti-MUC1 aptamer (Apt1-MUC1); 2) blocking step with biotin; 3) incubation with 

MUC1 protein; 4) incubation with secondary anti-MUC1 antibody (pAb-MUC1); 5) incubation with 

alkaline-phosphatase (AP) labelled anti-rabbit IgG tertiary antibody (Ab-AP). c. Aptamer – Aptamer assay 

(Apt – Apt): 1) incubation of streptavidin-modified magnetic beads with biotinylated primary anti-MUC1 

aptamer (Apt1-MUC1); 2) blocking step with biotin; 3) incubation with MUC1 protein; 4) incubation with 

secondary biotinylated anti-MUC1 aptamer (Apt2-MUC1); 5) incubation with streptavidin-alkaline 

phosphatase.B) Electrochemical measurements: screen-printed array were placed on an magnetic support 

and modified-magnetic beads were deposited on the surface of each working electrode of the array. 

 

In case of all three assays, the amount of protein captured by the bioreceptor, was 

quantified by measuring the electrochemical signal obtained by differential pulse 

voltammetry (DPV) after the conversion of enzymatic substrate 1-naphtyl phosphate to 1-

naphthol electroactive product. For the measurements, 10 µL of the final beads 
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suspension were placed onto each working electrode of the array, using a magnetic 

support to concentrate the magnetic beads on the working electrode. Thus, each well of 

the array was filled with 60 L of a solution containing 1 mg mL
-1

 of 1-naphthyl 

phosphate prepared in buffer E. After 6 min of incubation time, DPV measurements were 

carried out for each electrochemical cell. 

Control experiments in all bioassays were also performed omitting the MUC1 protein 

from the assay. 

 

2.3. Protocol of antibody - antibody sandwich assay 

 

2.3.1. Immobilization of primary antibody 

 

For the functionalization of the magnetic beads, 100 µL of the beads suspension were 

taken from the stock solution of Protein G-coated magnetic beads (30 mg mL
-1

), added in 

a vial and washed with Buffer A for three times. For the washing step the beads were re-

suspended in 500 µL buffer and mixing by vortex.  

Then the tube was placed in a magnetic separation stand to capture the magnetic beads on 

the bottom of the tube, allowing the removal of the supernatant.  

After the washing steps 200 µL of Ab1 solution 50 µg mL
-1

 prepared in buffer A was 

added to the beads and incubated for 120 minutes in the rotating stand at room 

temperature. 

 

2.3.2. Blocking of free binding-sites 

 

In order to reduce the non-specific adsorption of the reagents used in the following steps 

of the immunoassay, the free binding-sites of the beads were blocked using casein in milk 

powder as a blocking agent.  

For the blocking step the functionalized beads were first washed for three times with 500 

µL buffer A. Afterwards 1 mL milk powder solution 5% prepared in buffer A was added 

and incubated for 120 minutes in the rotating stand at room temperature. The beads were 

washed and reconstituted in 1 mL buffer A.  

The functionalized beads suspension was stored at 4ºC temperature for up to one week for 

further experiments. 
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2.3.3. Capturing of MUC1 protein 

 

To obtain a calibration curve, 50 µL of the functionalized magnetic beads suspension 

were placed in a vial, in magnetic stand separator and, after removing the supernatant, 

500 µL of MUC1 protein solution in buffer B was added in the concentration range of 0 – 

10 ng mL
-1

.  

The samples were incubated for 60 minutes in the rotating stand at room temperature and 

then washed with buffer A. 

 

2.3.4. Binding of secondary antibody and third antibody labeled with alkaline 

phosphatase 

 

200 µL of Ab2 solution 5 µg mL
-1

 prepared in buffer A were added to the beads and 

incubated for 60 minutes in the rotating stand at room temperature.  

The beads were then washed three times with buffer E. Then, 200 µL of a solution 

containing Ab3-AP (0.5 µg mL
-1

) with 1% mg mL
-1

 BSA were added to the beads and 

incubated for 10 minutes. After a washing step, the beads were reconstituted in 50 µl 

buffer E, proceeding with the electrochemical measurements. 

 

2.4. Protocol of aptamer - antibody sandwich assay 

 

2.4.1. Immobilization of the primary aptamer 

 

In order to unfold the aptamer strand, a thermal treatment was applied to the aptamer 

solution before the immobilization on magnetic beads. The biotinylated aptamer solution 

was heated at 90 ºC and then gradually cooled at 25 ºC followed by fast cooling in freezer 

for to keep the folded structure of the aptamer.  

Afterwards 100 µL of suspension were taken from the stock solution of streptavidin – 

magnetic beads (10 mg mL
-1

), added in a vial and washed with buffer C for three times 

using the magnetic separation stand.  

The beads were re-suspended in 200 µL buffer C and 200 µL solution of biotinylated 

aptamer (Apt1) in water was added, to reach the final concentration of the aptamer of 5 

µM, followed by an incubation step of 30 minutes in the rotating stand at room 

temperature and then washed with buffer A. 
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2.4.2. Blocking of free binding-sites 

 

For the blocking of the remaining active sites, Apt1 modified magnetic beads were 

incubated for 30 minutes with 500 µL biotin 1 mM prepared in buffer A in the rotating 

stand at room temperature. The beads were washed three times with buffer C and 

reconstituted in 1 mL buffer C.  

 

2.4.3. Capturing the MUC1 protein 

 

To obtain a calibration curve, 50 µL of the functionalized magnetic beads suspension 

were incubated with 500 µL of MUC1 protein solution in buffer D in the concentration 

range of 0 – 10 ng mL
-1

 for 45 minutes in the rotating stand at room temperature and then 

washed three times with buffer D.  

 

2.4.4. Binding of secondary antibody and third antibody labeled with alkaline 

phosphatase 

 

Apt1-MUC1 modified beads were incubated with 200 µL of Ab2 solution 5 µg mL
-1

 

prepared in buffer D for 30 minutes in the rotating stand at room temperature. 

Subsequently, 200 µL of a solution containing Ab3-AP with 1% mg mL
-1

 BSA were 

added to the beads and incubated for 10 minutes. The beads were washed with buffer E 

and were reconstituted in 50 µL buffer E for the electrochemical measurements. 

 

2.5. Protocol of aptamer – aptamer sandwich assay 

 

For the immobilization of the primary biotinylated aptamer (Apt1) on streptavidin-

magnetic beads and the capturing of MUC1 protein the experiments were performed in 

the same way as described in the protocol of aptamer-antibody assay in section 2.5. In the 

following section, the labeling of the affinity reaction with the secondary biotinylated 

aptamer (Apt2) and streptavidin-alkaline phosphatase is reported. 

 

2.5.1. Binding of secondary aptamer and streptavidin-alkaline phosphatase 

 

200 µL secondary aptamer (Apt2) solution 1 µM prepared in buffer D was incubated for 

10 min with the beads modified with the affinity complex Apt1-MUC1, at room 
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temperature, under stirrer. Then, the beads were washed with buffer E and incubated with 

200 µL streptavidin conjugated with AP solution in buffer D for 15 minutes. At last, after 

washing, the beads were suspended in 50 µL buffer D. 

 

2.6. Analysis of human serum samples 

 

When testing human serum, firstly the serum was filtered (Filtropur S, diameter of filter 

pores 0.2 µM), then diluted 1:200 with the buffer D for the incubation step with MUC1 

solution. 50 µl beads suspension, functionalized with aptamer (Apt1), was incubated with 

500 µl of the solutions above carrying out the experiments as previously described in the 

protocol in section 2.3.3.  

Experiments were carried out on commercial normal human serum spiked with different 

MUC1 concentrations. 

Pathological serum samples from cancer patients were also analyzed. Standard addition 

method was performed to quantify the amount of antigen in the samples. 

 

2.7. Measurement with screen-printed 8-sensor arrays 

 

10 L of beads suspension were deposited onto the surface of each working electrode of 

the array, and kept in its position through the magnet holding block.  

Thus, each well of the array was filled with 60 L of a solution containing 1 mg mL
-1

 of 

1-naphthyl phosphate prepared in buffer E.  

After 6 min of incubation time, DPV measurement was left to start. DPV was carried out 

sequentially for each channel. 

 

3. Results and discussion 

 

In case of each configuration of the bioassays for the detection of MUC1 tumor marker, 

the experimental parameters were optimized in order to find the best conditions for the 

assay.  

Experimental parameters such as the concentration of antibodies and aptamers, incubation 

time with antibodies, aptamers and protein, as well as the type, concentration and 

incubation time with blocking agents, were tested for 0 ng mL
-1

 and 5 ng mL
-1

 MUC1.  
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For this purpose, the measurements were performed for one concentration of MUC1 (5 ng 

mL
-1

) and compared with the blank (0 ng mL
-1

).  

The best parameters were chosen taking in consideration the current ratio between 5 ng 

mL
-1

 MUC1 and the blank (IMUC1/Iblank) and on the CV% obtained. 

 

3.1. Optimization of antibody – antibody assay parameters 

 

The concentration and incubation time with the primary antibody had to be first 

optimized (Table 7.1.). The magnetic beads were functionalized with 50 and 100 µg mL
-1

 

Ab1 solution and the assay was carried out as previously described. No increase in the 

IMUC1/Iblank ratio (1.36 for 50 µg mL
-1

 respects to 1.19 for 100 µg mL
-1

) was observed with 

the increase of the concentration of primary antibody solution, thus 50 µg mL
-1

 Ab1 

solution was chosen for further experiments. 

 

Table 7.1. Experimental parameters optimization for antibody – antibody sandwich assay. IMUC1/Iblank 

represent the ration between the current obtained using respectively 5 ng mL
-1

 and 0 ng mL
-1

 MUC1 

buffered solution. Letters and numbers present in Assay step column are referred in accordance of Figure 

7.1 A. 

 

Assay. step Prameters  
Current ratio 

(IMUC1/Iblank) 

Average 

CV% 

a.1 Ab1 concentration 
50 µg mL

-1
 1.36 7 

100 µg mL
-1

 1.19 8 

a.2 

Milk powder 5% incubation time 
120 min 1.30 7 

overnight 0.90 6 

rIgG (10 µg mL
-1

) 
120 min 0.82 8 

overnight 0.92 7 

a.3 MUC1 incubation time 
60 min 1.40 7 

90 min 1.02 6 

a.4 

Ab 2 concentration (60 min) 

2 µg mL
-1

 1.00 8 

5 µg mL
-1

 1.40 7 

10 µg mL
-1

 0.83 5 

Ab2 incubation time (5 µg mL
-1

) 

30 min 0.90 7 

60 min 1.40 9 

90 min 1.00 6 
Average CV% was calculated by means of three bioassay repetition for each concentration. 

 

Various blocking agents were investigated in order to reduce nonspecific adsorption on 

the free sites of the beads in different steps of the assay and the results are also reported in 

Table 7.1. Milk powder 5% and bovine IgG 10 µg mL
-1

, were used as blocking agents 

after the functionalization of protein G beads with the primary antibody. To observe the 
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effectiveness of using bovine IgG as blocking agent the beads were incubated, after the 

functionalization with primary antibody, with 1 mL 10 µg mL
-1 

bovine IgG solution in 

buffer A, for 120 minutes and overnight at 4ºC and the experiments were carried out as 

previously described. The incubation time with milk powder 5% was also optimized, 

incubating the functionalized beads with milk powder solution 5% in buffer A, for 120 

minutes and overnight. In the case of rabbit IgG in different incubation times and milk 

powder 5% overnight the signals obtained for the blank and one concentration  MUC1 (5 

ng mL
-1

) were not improved, the best results being obtained in case of 120 minutes 

incubation time with milk powder 5%. 

The optimization of the incubation time with protein was also performed. For this, the 

modified beads were incubated for 60 and 90 minutes with 5 ng mL
-1

 MUC1 protein. The 

ratio between the signal and the blank was 1.4 and 1.02 respectively, indicating that for 

60 minutes a steady-state is achieved.  

In order to achieve the best conditions for the complete formation of the immunocomplex, 

the concentration (2, 5 and 10 µg mL
-1

) and incubation time (30, 60 and 90 minutes) with 

secondary antibody was further optimized. The concentration of 2 µg mL
-1

 and the 

incubation time of 30 minutes was insufficient for binding the whole amount of protein in 

the sample to form an immunocomplex. For a higher concentration (10 µg mL
-1

) and a 

longer incubation time (90 minutes) the secondary antibody binds probably directly on 

the beads that were not completely covered by the primary antibody and blocking agent, 

leading to a nonspecific adsorption of the following reagents added and a lower current 

ratio between 5 ng mL
-1

 MUC1 and blank. Therefore the intermediate concentration of 5 

µg mL
-1

 and incubation time of 60 min were considered optimum for further experiments. 

 

3.2. Optimization of aptamer-antibody assay parameters 

 

To further improve the performance of the biosensor and overcome the back draws of 

antibodies use, the primary antibody was replaced with an aptamer, in the second 

approach. The immobilization of the primary aptamer on the surface of the magnetic 

beads with an appropriate orientation and flexibility for binding the target protein is of 

paramount importance for the performance of the assay. In order to optimize the 

concentration and incubation time with the primary aptamer 1 µM and 5 µM of Apt1 

solution were incubated for 30 min and overnight with the streptavidin beads, followed by 
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a blocking step and the reaction with protein, Ab2 and Ab3-AP. The assay showed better 

response for a higher concentration of aptamer (5 µM) and lower incubation time (30 

min): these conditions assuring a proper conformation of the aptamer for capturing the 

protein. 

Taking in consideration that streptavidin modified magnetic beads were used to bind the 

biotinylated aptamer, biotin was chosen as blocking agent. Concentrations of 100 µM and 

1 mM of biotin solution at different incubation times were investigated. The results 

showed that 1 mM solution used with incubation time of 30 minutes ensured an optimum 

magnetic beads-surface blocking.  

 

Table 7.2. Experimental parameters optimization for aptamer – antibody sandwich assay. IMUC1/Iblank 

represent the ration between the current obtained using respectively 5 ng mL
-1

 and 0 ng mL
-1

 MUC1 

buffered solution. Letters and numbers present in Assay step column are referred in accordance of Figure 

7.1 A. 

 

Assay step Prameters  
Current ratio 

(IMUC1/Iblank) 
Average 

CV% 

b.1 

Apt1 concentration (30 min) 
1 µM 1.3 8 

5 µM 3.3 9 

Apt1 incubation time (5 µM) 
30 min 3.3 12 

overnight 1.2 10 

b.2 

Biotin concentration (30 min) 
100 µM 0.8 14 

1 mM 5.5 7 

Biotin incubation time (1mM) 
30 min 5.5 7 

overnight 5.2 7 

b.3 MUC1 incubation time 

30 min 2.0 6 

45 min 5.0 7 

60 min 5.2 7 

b.4 Ab2 incubation time (5 µg mL
-1

) 

10 min 2.7 8 

30 min 5.3 10 

60 min 5.0 8 

Average CV% was calculated by means of three bioassay repetition for each concentration. 

 

The best conditions for binding the protein to the immobilized aptamer were then 

investigated.  

The functionalized beads were left to incubate with the target for 30, 45 and 60 minutes. 

The incubation time of 30 min was not sufficient, whereas a similar higher signal to blank 

ratio being obtained after 45 and 65 minutes. Thus, an incubation time of 45 minutes was 
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selected (Table 7.2.). Incubation time of Ab2 was then optimized. It was possible notice 

that with this assay configuration a lower incubation time (30 minutes), respect of Ab2 

incubation time for antibody – antibody assay, was found to be sufficient to bind the 

MUC1 protein.  

This can be probably related to the fact that the smaller dimensions of the Apt1 (in 

comparison with the dimension of Ab1) increase the availability of the secondary epitope 

of MUC1 (Table 7.2.). 

 

3.3. Optimization of aptamer - aptamer assay parameters 

 

To accomplish the analysis of various possible formats of the magnetic beads based assay 

for MUC1 detection, a further assay was developed based on two different aptamers in a 

sandwich format. 

To appraise the influence of the concentration and incubation time with secondary 

aptamer, the Apt1-MUC1-modified beads were left to incubate with different 

concentrations of Apt2 solution for 10, 15 and 30 minutes.  

Increasing the concentration of the secondary aptamer from 0.5 to 1 µM resulted in an 

increase in the signal/blank ratio from 2.7 to 5.3, whereas a lower incubation time of 10 

min seemed to be sufficient for the complete formation of the Apt1-MUC1-Apt2 

complex.  

 

Table 7.3. Experimental parameters optimization for aptamer – aptamer sandwich assay. IMUC1/Iblank 

represent the ratio between the current obtained using respectively 5 ng mL
-1

 and 0 ng mL
-1

 MUC1 buffered 

solution. Letters and numbers present in Assay step column are referred in accordance of Figure 7.1 A. 

 

Assay step Prameters  
Current ratio 

(IMUC1/Iblank) 
Average 

CV% 

c.4 

Apt2 concentration (15 min) 
0.5 M 2.0 7 

1.0 M 5.3 8 

Ap2 incubation time (5 µg mL
-1

) 

10 min 5.3 8 

15 min 4.9 10 

30 min 4,7 8 

Average CV% was calculated by means of three bioassay repetition for each 

concentration 

 

The last step, of incubation with the enzymatic conjugate had to be optimized as well.  
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The modified beads were incubated with streptavidin-AP solution for 10 and 15 min. 10 

min incubation time was insufficient, a higher current being obtained in this case for the 

blank respect to 5 ng mL
-1

 (0.33±0.01 µA, 0.053±0.004 µA respectively), thus the 

incubation time of 15 min was chosen for further experiments.  

 

3.4. Calibration curve of MUC1 in buffered solutions 

 

A dose-response curve has been obtained under the optimized experimental conditions in 

MUC1 buffered solution for each assay and the analytical performance of the optimized 

sensors is reported in Table7.4.  

A linear response was obtained in the range of 0 - 10 ng mL
-1

, which is also the important 

range from the clinical point of view. In order to test the reproducibility three 

determinations on different screen-printed cells were assayed for each concentration and 

the average CV% was calculated. 

 

Table 7.4. Analytical performances of antibody – antibody (Ab – Ab), aptamer – antibody (Apt – Ab), 

aptamer – aptamer (Apt – Apt) assays performed in MUC1 buffered solutions. Letters a, b., c. are referred 

in accordance of Figure 7.1 A. 

 

Type of assay LOD
 
(ng mL

-1
)
* 

 R
2 

Average CV %
**

 

a. Ab – Ab 2.5 y = 0.06x+1.57 0.88 7 

b. Apt – Ab 2.4 y = 0.05x+0.10 0.93 11 

c. Apt – Apt  1.36 y = 0.10x+0.55 0.96 5 
*
 LOD (limit of detection) was calculated by the ratio between three times the blank (3Sblank) standard 

deviation and the slope of calibration curve: LOD = 3Sblank/Slope 
**

Average CV% was calculated by means of three bioassay repetition for each concentration 
 

Results show a better reproducibility and a lower detection limit using aptamer sandwich 

assay respect to dual antibody and antibody – aptamer assay. 

 

3.5. Selectivity of the assays 

 

Nonspecific proteins, members of the mucins family, which have been studied as tumor 

markers, such as MUC4 and MUC16 were analyzed in order to evaluate the selectivity of 

the three developed assays. For this purpose, the above described procedures were 

employed for 5 ng mL
-1

 MUC1, 5 ng mL
-1

 MUC4 and 35 U mL
-1

 MUC16.  
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The concentrations were chosen with respect to the threshold value of MUC1, MUC4 and 

MUC16 tumor marker.  

The results (Figure 7.2.) showed that the antibody - antibody immunoassay is not specific 

for MUC1 protein, while a higher signal being obtained for both MUC4 and MUC16 

proteins probably due to the similar structures of the three mucins, which the antibodies 

are not able to discriminate.  

When antibodies were replaced with aptamers, the signal obtained for the non-specific 

proteins was approximately the same as the signal of the blank showing that the aptamer-

based assays are highly specific for MUC1 tumor marker.  

 

 

Figure 7.2. Selectivity of the different developed assays performed in MUC1 (5 ng mL
-1

), MUC4 (5 ng mL
-

1
) and MUC16 (35 U mL

-1
) buffered solution (a. Ab – Ab assay; b. Apt – Ab assay; c. Apt – Apt assay). 

Blank signal was substracted from each measurement. 

 

Thus, in accordance with the results obtained from the development of the calibration 

curves in buffered solution for the three different assays, aptamer sandiwich assay was 

selected for the analysis of non-pathological and pathological patient serum samples. 

 

3.6. Serum samples analysis 

 

Once verified the suitability of the aptamer-aptamer assay to detect MUC1 in standard 

solutions, preliminary experiments using normal human serum samples were carried out. 
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With this aim, batches of a non pathologic serum AB group from women were spiked 

with MUC1 in order to have different final concentrations.  

The obtained results show an increase of the current between serum alone and serum 

added with different concentration of MUC1 protein (Figure 7.3.). These experiments 

further demonstrated the selectivity of the aptasensor, since, despite the high complexity 

of serum, the measurements allowed the discrimination between the MUC1 spiked serum 

samples. Moreover, good reproducibility in terms of CV% was also obtained (average 

CV% = 7). 

Phatological serum samples were also analyzed. The samples were from hospital women 

patients who have been subjected to breast and ovarian carcinoma: tissue samples were 

analyzed by histological diagnosis. Standard addition method was used in order to 

quantify the amount of the MUC1 in the serum samples using the aptamer sandwich assay 

(Table 7.5). Qualitative correlation between MUC1concentration and malignancy stage 

can be done. 

 

 

Figure 7.3. Exepriments with commercial serum sample 1:200 diluted spiked with MUC1 at different 

concentrations using sandwich aptamer assay. 

 

The serum samples of different ovarian pathological conditions were analyzed (Table 5: 

from 1 to 4 sample). A higher MUC1 concentration in the sample 3 respect to others was 

detected. This could be due to the fact that both ovaries are affected by the tumor. 
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Moreover, the MUC1 lower value obtained for sample 4 is related to the presence of a 

non-malignant pathology.  

Serum samples from patients affected by invasive ductal breast carinoma were also 

analyzed (Table 5: from 5 to 9 sample). The samples were characterized by the 

Nottingham Prognostic Index (NPI), which is used to determine the prognosis following 

surgery for breast cancer. Is calculated using three criteria: the size of the lesion, the 

number of involved lymph nodes and the grade of tumor. A 93%  5-year survival rate is 

associated with score 2, whereas for score 3 the 5-year survival rate is 85%. Comparable 

MUC1 concentrations were obtained in the samples 5 and 7 corresponding serum samples 

of patients with 2 NPI value. On the contrary, resulted a higher MUC1 concetration could 

be detected in the samples 6, 8 and 9 with 3 NPI value.  

The proposed aptassay demonstrated to be a potential test to screen clinical samples for 

the evaluation to distinguish the stage of the tumours. 

 

Table 7.5.MUC1 determination in 1:200 diluted serum sample form cancer patients performed with 

aptamers sandich assay using standard addition method. 

 

Serum samples 
Histological 

Diagnosis 

MUC1 concentration  

(ng mL
-1

) 

 

Average CV% 

 

1 
Left ovarian 

carcinoma 
169 12 

2 Right ovarian tumor 274 12 

3 
Bilateral ovarian 

carcinoma 
500 14 

4 Right ovarian cyst 25 13 

5 
Invasive ductal breast 

carcinoma 
121 17 

6 
Invasive ductal breast 

carcinoma 
639 13 

7 
Invasive ductal breast 

carcinoma 
105 14 

8 
Invasive ductal breast 

carcinoma 
234 11 
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9 
Invasive ductal breast 

carcinoma 
198 13 

Average CV% was calculated by means of three bioassay repetition for each concentration
. 

 

4. Conclusions 

 

In this work, three affinity sensors were developed for the detection of MUC1 tumor 

marker magnetic beads modified with various bioreceptors and SPC arrays. The first 

approach was an antibody - antibody ELISA-like assay. To obtain a higher specificity for 

MUC1 protein the antibodies were subsequently replaced with aptamers. The designed 

aptasensor showed a good sensitivity with limits of detection 1.36 ng mL
-1 

in the linear 

range of 0-10 ng mL
-1 

in buffered solutions.  

Moreover, the proposed aptasensor was tested in human pathological women serum 

samples for the detection of MUC1 protein, demonstrating the potential practical 

applications in biological samples and offering a promising tool in biomedical 

applications. 
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General conclusions 
 

In this work various nanostructured electrochemical biosensors for the detection of 

tumoral biomarkers (in particular for CA125, HER2, VEGF, and MUC1) related to 

ovarian and breast cancers were developed employing different types of bioreceptors 

(antibodies, aptamers and Affibodies®) and different electrochemical techniques. 

 

In particular gold nanoparticles (AuNPs) were used as sensing/signal amplification 

platform in two different approaches. 

In the first one, AuNPs were electrodeposed on the surface of graphite screen-printed 

electrodes (GSPEs) in order to be functionalized with more capture probe allowing the 

recognition of a higher number of targets of interest. 

Electrodeposition was performed by simple cyclic voltammetry procedure. In optimized 

condition GSPE surface was covered by randomly distributed AuNPs with dimensions 

ranging from 40 to 100 nm.  

Electrodeposed AuNPs were subsequently functionalized with the bioreceptor and then 

the affinity reaction with analyte was evaluated by means of electrochemical impedance 

spectroscopy (EIS), in a label-free strategy, or by differential pulse voltammetry (DPV), 

in a sandwich-based approach. 

AuNPs-based CA125 and HER2 label-free biosensors were developed using respectively 

anti-CA125 antibody anti-HER2 Affibody® as bioreceptors. Both label-free biosensors 

allowing the determination of these cancer biomarkers in a useful clinical range of 

concentration (from 0 to 100 U mL
-1

 for CA125 and from 0 to 40 µg L
-1

 for HER2) with a 

limit of detection below the clinical threshold values (6.7 U mL
-1

 and 6.7 µg L
-1 

respectively for CA125 and HER2 label-free biosensors).  

Moreover, an unambiguous identification of the related cancer biomarker (no significant 

non-specific signal was detected in the case of all negative controls) coupled with 

successfully detection of these cancer related protein in biological matrices were verified. 

Gold nanostructured-based aptamers sandwich biosensor was also developed for the 

determination of VEGF cancer biomarker. 

VEGF was successfully sandwiched by a thiolated capture aptamer and a biotinylated 

detection aptamer. Streptavidin-alkaline phosphatase was then incubated with the sensors 

and the electrochemical behaviour of alpha-naphthol was analysed by differential pulse 
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voltammetry (DPV). The sensitivity and the reproducibility achieved were adequate for 

the analysis of VEGF cancer biomarker (linear range 0 – 250 nM, limit of detection 30 

nM). Moreover, the developed sandwich aptasensor showed good selectivity. 

 

In a second approach, AuNPs colloidal solutions were synthetized by citrate reduction 

methods, conjugated with anti-CA125 detection antibodies and used to complete a 

sandwich assay for the detection of CA125 cancer biomarker. 

After the immobilization of the capture probe on polyanthranilic acid-modified GSPEs, 

AuNPs-conjugated anti-CA125 detection antibodies were introduce in the system.  

The AuNPs captured onto immunosensor surface induced the silver deposition from a 

silver enhancer solution which allows the detection of the deposited AgNPs by anodic 

stripping analysis. A high sensitivity with a detection limit of 2 U mL
-1

 of human CA125 

protein was achieved. This level of detection could be attributed to the sensitive 

electrochemical determination of silver ions and to the catalytic precipitation of a large 

number of silver ions on the gold nanoparticles- labelled antibody. 

 

Finally, different electrochemical bioassays for Mucin1 (MUC1) tumor marker using 

magnetic beads coupling screen-printed arrays were developed and used for analysis in 

biological samples.  

The bioassays are based on a sandwich format in which aptamers or antibodies were 

coupled respectively to Streptavidin or Protein G-modified magnetic beads.Under the 

optimal conditions, a linear response was obtained ranging from 0 to 10 ng mL
-1

 in 

MUC1 buffered solution for all three assays, with detection limits: 2.5, 2.4 and 1.36 ng 

mL
-1

, respectively for antibodies-based, aptamer-antibody-based and aptamers-based 

sandwich assays.  

The results showed that the aptamer-based approaches exhibit both an high sensibility and 

an high selectivity for the detection of MUC1 protein. Thus, the proposed aptasensor was 

tested in human pathological women serum samples for the recognizement of MUC1 

cancer biomarker.  

Comparison with histological analysis demostrated the potential practical applications of 

the deveolped aptasensor dfor the detection of MUC1 in biological samples and offering a 

promising tool for biomedical applications. 
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In summary, this work proposed the description of several strategies for the development 

of nanostructured biosensors for the detection of a pattern of breast and ovarian cancer 

biomarkers. 

Nanostructures (gold and magnetic nanoparticles) provide a useful suitable platform for 

biomolecules immobilization (which retain their biological activity) and facilitate the 

electron transfer between the immobilized proteins and electrode surfaces which result in 

an enhancement of analytical performance of the biosensor for the detection of the 

cancer-related proteins of interest.  

Finally, because the analysis of a single cancer biomarker lacks in sensitivity and the 

ability to optimally combine information on multiple markers becomes necessary for 

useful mass screening, the developed nanostructured biosensors offer promising tools in 

clinical applications. 

 


