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The paper deals with the existence and uniqueness of classical solutions of the homogeneous Neumann problem for a class

of parabolic-hyperbolic system of partial differential equations in n dimensions. The problem arises from a model of the

diffusion of N species of radioactive isotopes of the same element.
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1. Introduction

In this paper we consider the existence of classical solutions of the following problem:



































cit = div

(

ci

c
∇c

)

+

N
∑

j=1

Λi jcj , i = 1, ..., N, in QT = Ω× (0, T ),

c =
∑N

j=1 cj ,

ci

c
∇c · n = 0, in ΓT = ∂Ω× (0, T ),

ci(x, 0) = ci0(x), i = 1, ..., N, inΩ,

(1.1)

where Ω is a bounded region of Rn, with regular boundary ∂Ω, n being the outer normal to ∂Ω, and Λi j are the elements of the

constant matrix Λ in the decay law:

ċi =

N
∑

j=1

Λi jcj , i = 1, ..., N (1.2)

The problem comes from a model of diffusion of isotopes of the same element, possibly radioactive, in which the flux of the

i − th isotope, whose concentration is ci , depends mainly on the gradient of the total concentration, c, of the element, in a

relative percentage
ci

c
.

The physical motivation of the model is presented in [7], together with a precise study of the one-dimensional case, i.e. n = 1.

Still for n = 1 the qualitative and asymptotic behaviour of the solution is presented in various paper ([10]-[12]), however the

method used there is strictly one-dimensional. Here we consider the multidimensional case and we remark at once that in order

to have classical solutions we need c0 to be strictly positive. Therefore we will consider the following assumptions on the data,

which are reasonable from a physical point of view:
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H1) ci0 ∈ C
2+α(Ω), α > 0, i = 1, ..., N, 0 ≤ ci0 ≤ k, c0 =

∑N

i=1 ci0 ≥ k0 > 0, ∇c0 · n = 0 on ∂Ω,

H2) positivity property of the constant matrix Λ: if ci0 ≥ 0, then ci(t) ≥ 0, i = 1, ..., N,

where we have used the notations of [16].

The positivity assumption H2 is equivalent to assuming that the region V = {y ∈ RN : yi ≥ 0, i = 1, ..., N} is invariant for the

flux generated by the vector field Λy, that is to the condition Λy · n ≥ 0, ∀y ∈ ∂V , where n is the interior normal to ∂V in y.

Hence one has to require that all the non-diagonal elements of Λ are non negative (i.e. Λi j ≥ 0 ∀i 6= j, i , j = 1, ..., N). For a set

of isotopes of the same element this assumption is very reasonable from a physical point of view. However one could consider

also different linear fields, e.g. in some linear models of population dynamics, for which the positivity assumption holds only up

a finite positive time, at which one of the species estinguishes. In this case the results obtained hereafter will hold up to the

estinction time.

Prolems somewhat similar to the one in hand had been considered since the papers [6], [15] and [23], see also[2] [3], [4],[6] [19],

[20], [21].

Some interesting qualitative properties of the solution of this problem such as localization and asymptotic behaviour have been

investigated in [13].

The existence and uniqueness of the complete multidimensional model in which one takes into account also the dependence

of the flux of ci on its gradient, so that the final system is a parabolic one, was proved in [9]. More precisely, in the complete

physical model the flux of ci is given, after a suitable scaling, by −ǫ∇ci −
ci

c
∇c, with ǫ > 0, so that it is quite reasonable to

look at the present model (1.1) as the limit of the complete one as ǫ→ 0 and hence look for weak solutions via the vanishing

viscosity method, which in this case would have a precise physical meaning. For a set of stable isotopes, i.e. Λ = 0, this can be

proved by means of the results of [5] (see also [7], Thm.5.2), while in the general case it is an open problem. Let us mention

that the numerical simulations for n = 1 confirm the convergence in very general assumptions (see [8]).

Let us also mention that for stable isotopes one can prove existence of weak solutions also relaxing the assumption of strict

positivity on the total initial concentration c0. However in this case one has a sort of loss of regularity for the single concentrastion

ci(x, t), t > 0, in the sense that there are smooth initial non negative data ci0, with the total c0 not everywhere positive for

which ci(x, t) are discontinuous for t > 0 (see [7], Prop.5.1, for a one-dimensional example which can be easily generalized to

the multidimensional case, see also Remark 2.1 at the end of Sec.2).

In Section 2 we will state the problem and find a priori estimates, in Section 3 we will prove the existence theorem by means of

a fixed point argument, and in Section 4 the uniqueness of the solution will be proved.

2. Statement of the problem and a priori estimates

From assumption H2 on the matrix Λ, we have for the solution Y(t,Y0), Y = (y1, ..., yN), Y0 = (y1 0, ..., yN 0) of the ODE

problem

Ẏ = ΛY, Y(0) = Y0, Y ∈ RN , (2.1)

that if yi0 ≥ 0, i = 1, ..., N and y0 =
∑N

i=1 yi0 ≥ k0 > 0,

then, for any given T > 0:

yi(t,Y0) ≥ 0, i = 1, ..., N,

N
∑

i=1

yi(t,Y0) ≥ k̄0 > 0, 0 ≤ t ≤ T. (2.2)

k0, k̄0 positive costants.

Therefore we can define

y =

N
∑

i=1

yi , Ri =
yi

y
, i = 1, ..., N − 1, 0 ≤ t ≤ T, (2.3)

and the above functions are solutions of the ODE:



























Ṙi = Pi(R), R = (R1, ..., RN−1), i = 1, ..., N − 1,

ẏ = yb(R) = y
(

β0 +
∑N−1
i=1 βiRi

)

,

Ri(0) =
yi0

y0
= Ri0, y(0) = y0 =

N
∑

i=1

yi0.

(2.4)

The Pi(R) are polynomial at most of second degree with constant coefficients depending on the element of Λ, Λi j , and

β0, βj , j = 1, ..., N − 1 are also constant depending on Λi j :
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Pi =ΛiN +

N−1
∑

j=1

(Λi j − ΛiN)Rj − Ri

N−1
∑

j=1

ΛjN + Ri

[

N−1
∑

j=1

(

N
∑

k=1

(ΛkN − Λkj)

)

Rj

]

,

b =

N
∑

k=1

ΛkN +

N−1
∑

j=1

Rj

N
∑

k=1

(Λkj − ΛkN).

Let us remark here that there are physically relevant examples in which b ≡ β0 and hence the equation for y is independent of

the equations for R

• Ex. 1 A set of stable isotopes, i.e. Λ = 0 and b = β0 = 0 (e.g. (Cl
37, Cl35)).

• Ex. 2 A set of radioactive isotopes that decays out of the element with the same decay coefficient γ, e.g. the couple

(U235, U238).

In this case Λ = −γ I, and b = −γ, where I is the identity matrix.

• Ex. 3 A chain of N isotopes such that the i th one decays into the (i + 1)thone, for i = 1, ..., N − 1 and the Nth one is

stable. We have again β0 = 0, with the matrix Λ defined by:











ẏ1 = −γ1y1

ẏi = γi−1yi−1 − γiyi , i = 2, ..., N − 1,

ẏN = γN−1yN−1,

with γi > 0, i = 1, ..., N − 1.

On the other hand there are examples for which b is not constant, such as the following:

• Ex. 4 A chain of isotopes similar to the one of Ex.3, but the Nth isotope decays out of the element (e.g.the couple

(U234, U238)) i.e. the sytem is:

{

ẏ1 = −γ1y1

ẏi = γi−1yi−1 − γiyi , i = 2, ..., N,

with γi > 0, i = 1, ..., N.

Let us also remark that from (2.2) and the definition of Ri in (2.3) we have, in assumption H1), H2), the following estimate:

0 ≤ Ri ≤ 1, 0 ≤

N−1
∑

i=1

Ri ≤ 1, i = 1, ..., N − 1, 0 ≤ t ≤ T0. (2.5)

Returning to the PDE problem (1.1) and defining ri =
ci

c
, i = 1, ..., N − 1, r = (r1, ..., rN−1), we have that the total concentration

c satisfies the strictly parabolic linear problem:











ct = ∆c + cb(r), inQT ,

c(x, 0) = c0(x) =
∑N

j=1 ci0 inΩ,

∇c · n = 0, in ΓT .

(2.6)

Therefore for any bounded b and c0, say

|b| ≤ B, 0 < k0 ≤ c0 ≤ K0, (2.7)

we have that:

0 < γ ≤ k0e
−Bt ≤ c(x, t) ≤ K0e

Bt
, t ∈ (0, T ). (2.8)

Remark that for r satisfying (2.5) we have

B = |β0|+ max
j=1,...,N

|βj |, (2.9)

i.e. B is a constant depending only on Λi ,j .

Moreover from the classical theory of linear parabolic equation with regular coefficients we have that, if the coefficients, in

our case b(r), are Cα,
α
2 , and the initial datum is C2+α(Ω), α ∈ (0, 1), then c is C2+α,1+

α
2 and we have the estimate (see [22],

Thm.5.3, IV, Sec.5)

Math. Meth. Appl. Sci. 2009, 00 1–9 Copyright c© 2009 John Wiley & Sons, Ltd. 3
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{

||c ||2+α,1+ α2 ≤ ψ
(

||b||α, α2

)

||c0||2+α

||b||α, α2 ≤ |β0|+ (N − 1)maxj=1,...,N |βj | ||r||α,
α
2
,

(2.10)

where ψ(ξ) is a positive increasing function of ξ, ψ(0) being the constant valid for the heat equation.

As for r, for any smooth positive c, it is solution of the hyperbolic semilinear system:







rit +∇ri · f = Pi(r), i = 1, ..., N − 1,

ri(x, 0) =
ci0(x)

c0(x)
= ri0, i = 1, ..., N − 1,

(2.11)

with f = −
∇c

c
.

Since (2.11) is a very special form of ”symmetric hyperbolic” system (see [16], VII, Sec.7.32), one can construct its classical

solutions by the method of the characteristics in a standard way. Namely we define the characteristic through (z, τ), z ∈ Ω, τ ≥ 0,

X(t; z, τ) as the solution of the ODE:

dX

dt
= f(X, t), X(τ ; z, τ) = z. (2.12)

Since we have homogeneous Neumann boundary conditions, and c is strictly positive in QT , we have from the strong maximum

principle for c that all the characteristics starting for t = 0 from the interior of Ω remain inside Ω for any time.

Since the evolution in time of r on any characteristic depends only on Pi(r) and not on c, see (2.11), we can write the solution

of (2.11) as

r(x, t) = R (t; r0(X(0; x, t))) . (2.13)

From the theory of ODE systems (see e.g. [18], Thm.3.1,V) we have that, for any c ∈ C2,1(QT ), c positive, satisfying (2.8),

there exists a unique C1,1 solution of (2.12) for any time.

Moreover one has for the spatial and time derivative of X, that vi =
∂X

∂zi
is solution of the ODE system







dvi

dt
= Jfv

i
i = 1, ..., n,

vi(τ) = ei , (ei)j = δi j i , j = 1, ..., n,
(2.14)

where Jf is the Jacobian matrix of f which in the present case is the symmetric matrix whose elements are:

∂fi

∂xj
= −

1

c

∂2c

∂xi∂xj
+
1

c2
∂c

∂xi

∂c

∂xj
. (2.15)

Moreover

∂Xi

∂τ
+

N
∑

j=1

fj(z, τ)
∂Xi

∂zj
= 0. (2.16)

Therefore for c ∈ C2,1 and c ≥ γ > 0 we have















∣

∣

∣

∣

∂fi

∂xj

∣

∣

∣

∣

≤
1

γ
max
Q̄T

|D2xc |+
1

γ2
max
Q̄T

|Dxc |
2 = a

|fi | ≤
1

γ
max
Q̄T

|Dxc | = a1.
(2.17)

From the Gronwall Lemma applied to (2.14) and (2.16) we have the following:















∣

∣

∣

∣

∂Xi(t)

∂xj

∣

∣

∣

∣

≤ ek2 a|t−τ |, i , j = 1, ..., n
∣

∣

∣

∣

∂Xi(t)

∂τ

∣

∣

∣

∣

≤ na1e
k2a|t−τ |, i = 1, ..., n,

(2.18)

where k2 is a positive constant depending only on n.

Therefore by the explicit expression of r, see (2.13), and the regularity of R and r0 we have for the derivative of r the estimate:















∣

∣

∣

∣

∂ri

∂xj

∣

∣

∣

∣

≤ k3e
k2at , i = 1, ..., N − 1, j = 1, ..., n,

∣

∣

∣

∣

∂ri)

∂t

∣

∣

∣

∣

≤ k3
(

1 + a1e
at
)

i = 1, ..., N − 1, t > 0,
(2.19)
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where a and a1 are given in (2.17) and k3 is a positive constant depending on the data Λ, ||∇r0||, n, N.

From (2.19) we get in QT the estimate:

||ri ||α, α2 ≤ 1 + k4e
aT + T 1−

α
2 k3

(

1 + a1e
aT
)

, i = 1, ..., N − 1, (2.20)

where k4 is again a constant depending on the data.

Remark 2.1

Let us remark that, if b is constant as for stable isotopes or for examples 2 and 3, the problem (2.6) for the total concentration

c is decoupled from the problem (2.11) and has a good positive solution for any positive time for c0(x) ≥ 0. Then the hyperbolic

semilinear symmetric system (2.11) for r can be dealt with well known methods, see e.g. [16]). The linear dynamic defined by Λ

influences only the behaviour of r along each characteristic, e.g. for stable isotopes system (2.11) is a set of N − 1 indipendent

linear homogeneous equations so that r is constant on each characteristic. In a similar way, as in [7] Sect.5, it is then possible

to construct examples of the ”loss of regularity” we mentioned in Sect.1.

A very simple one is given by the following assumptions:

Λ = 0, Ω = {x ∈ Rn : −li < xi < li , i = 1, ..., n}, li positive constants, ci0(x) = hi(x1)c0(x1),

where c0(x1) is a C
∞ function, symmetric with respect to x1 = 0,

c0 ≡ 0 in [0, δ], 0 < δ < l1, c0 > 0 in (δ, l1),
∂c0

∂x1
= 0 for x1 = ±l1

h1(x1) = H(x1), hi(x1) = γiH(−x1), i = 2, ..., N,

with H(ξ) the Heaviside function and γi non negative constants with
∑N

i=2 γi = 1.

Then c(x, t) = c(x1, t) is symmetric with respect to x1 = 0 and strictly positive in Ω for t > 0 and by means of the results of

[7] Sec.3 one can show that the solutions are

ci(x, t) = hi(x1)c(x1, t), i = 1, ..., N.

These functions have a jump across x1 = 0, since c(0, t) > 0 for t > 0, although the initial data ci0(x) are smooth.

3. Existence of classical solutions

We will prove the following

Theorem 3.1 In assumptions H1), H2) there exists a classical solution of the coupled problem (2.6)-(2.11)

Proof. We will use a fixed point argument. Let us define the set U as

U =
{

u ∈ C2+α,1+
α
2 (Q̄T ), u ≥ γ > 0, ∇u · n|ΓT = 0

}

(3.1)

with the norm ||u||2+α,1+ α2 .

For any u ∈ U , r[u] is the solution of:

{

rit = ∇ri ·
∇u

u
+ Pi(r), i = 1, ..., N − 1, inQT ,

ri(x, 0) = ri0(x), i = 1, ..., N − 1, inΩ.
(3.2)

Then we set T u = v , with v solution of











vt = ∆v + vb(r[u]), inQT ,

v(x, 0) = c0(x), inΩ,

∇v · n = 0, in ΓT .

(3.3)

From the results of Section 2 we have that 0 ≤ ri ≤ 1, i = 1, ..., N − 1, and the norm ||r
i ||α, α2 is estimated as in (2.20) with u

instead of c in (2.17). Therefore for any u ∈ U , with ||u||2+α,1+ α2 ≤ ρ, ρ to be fixed later, we have that

||v ||2+α,1+ α2 ≤ ψ(k5 + g(ρ, T ))||c0||2+α, (3.4)

where k5 is a positive constant depending only on the data and g(ρ, T ) is an increasing function in ρ and T such that g(ρ, 0) = 0

(see (2.20)).

Now we fix ρ as

ρ = 2ψ(k5) ||c0||2+α, (3.5)

so that ρ depends only on the data. Then we fix T ∗ > 0 such that:

Math. Meth. Appl. Sci. 2009, 00 1–9 Copyright c© 2009 John Wiley & Sons, Ltd. 5
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ψ(k5 + g(ρ, T )) ≤ 2ψ(k5), 0 ≤ T ≤ T ∗. (3.6)

Also T ∗ depends only on the data.

From (3.4)(3.5) we have for any u as above that:

||v ||2+α,1+ α2 ≤ 2ψ(k5)||c0||2+α = ρ, 0 ≤ T ≤ T ∗.

This means that the operator T maps Bρ ⊂ U in itself for any T ≤ T
∗.

Since T ∗ is fixed we can repeat the argument for any time.

Now we have to prove that the operator T is continuous in the topology indicated in (3.1); to do this we consider two elements

of Bρ, say u and v , and define w = T u − T v .

Then w is solution of the linear parabolic problem











wt = ∆w + b(r[u])w + h, inQT ,

w(x, 0) = 0, inΩ,

∇w · n = 0, in ΓT ,

(3.7)

where

h = (T u)

N−1
∑

j=1

βj (rj([u])− rj([v ])) . (3.8)

From the explicit form of rj , see (2.13), we have in z ∈ Ω, τ > 0 that:

(rj([u])− rj([v ])) (z, τ) = Rj (τ ; r0(X(0; z, τ)))− Rj
(

τ ; r0(X̃(0; z, τ))
)

, (3.9)

where X and X̃ are the characteristics from z, τ determined respectively by the fields f = −
∇u

u
and f̃ = −

∇v

v
by means of

(2.12).

In view of the regularity of R and r0, to estimate the norm ||h||α, α2 we consider the following:

Z(t; z, τ) = X(t; z, τ)− X̃(t; z, τ), Wi(t; z, τ) =
∂Z

∂zi
, Ui(t; z, τ) =

∂Zi
∂τ

, i = 1, ..., n. (3.10)

We have that Z is solution of:







Ż = Jf(Z) +

[

∇u

uv
(u − v) +

1

v
(∇u −∇v)

]

,

Z(τ ; z, τ) = 0
(3.11)

From (2.17) and the Gronwall Lemma applied to the above system (3.11) we have for any u and v in Bρ:

||Z(0; z, τ)|| ≤ k6max
QT

(|u − v |+ ||∇(u − v)||), (3.12)

where k6 is a positive constant depending on γ, ρ, T .

Consider now Wi in (3.10): Wi is solution of the linear system:







Ẇi = JfW
i + (Jf − Jf̃)

∂X̃

∂zi
,

Wi(τ ; z, τ) = 0.
(3.13)

Proceeding as before we then get

||Wi(0; z, τ)|| ≤ k7max
QT

(|u − v |+ ||∇(u − v)||+ ||D2x (u − v)||), (3.14)

with k7 = k7(ρ, T, γ).

Last for Ui (3.10) we have from (2.16) that

∂Zi
∂τ
=

n
∑

j=1

(

f̃j(z, τ)
∂X̃i

∂zj
− fj(z, τ)

∂Xi

∂zj

)

.

Hence from the previous (3.14) and the definition of f, f̃ we have:

∣

∣

∣

∣

∂Zi
∂τ

∣

∣

∣

∣

≤ k8(ρ, T, γ)max
QT

(

|u − v |+ ||∇(u − v)||+ ||D2x (u − v)||
)

. (3.15)

6 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–9
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Hence we have for u, v ∈ Bρ ⊂ U that h defined in (3.8) has a norm

||h||α, α2 ≤ k9||u − v ||2+α,1+
α
2
, (3.16)

where k9 depends on ρ, T, γ and the data of the problem through (2.20).

From the already quoted results of [22] for the parabolic problem for w (3.7) we eventually have:

||T u − T v ||2+α,1+ α2 ≤ k10||u − v ||2+α,1+
α
2
, (3.17)

k10 depending on the data and on ρ.

Therefore the operator T is continuous and so we have proved the existence Theorem.

2

Let us remark that in the papers [19], [3] a similar problem is considered, but the equation corresponding to (2.6) is a porous

media equation instead of a strictly parabolic one, hence yielding to a weak solution for r.

In a similar way as above one can prove existence of classical solutions for the corresponding Cauchy problem.

4. Uniqueness of the solution

In the following Theorem we will prove that the classical solution of the coupled problem (2.6), (2.11) is unique.

Theorem 4.1 Assuming hypotheses H1, H2, if there exists a classical solution of (2.6), (2.11), then it is unique ∀T > 0.

Proof. Let us suppose that there exist two distinct solutions of (2.6), (2.11), that we will denote by (c I , rI), (c II , rII).

Define u = c I − c II , v = rI − rII , then we have that u and v satisfy the following equations:

ut = ∆u + b(r
I)u + c II

(

b(rI)− b(rII)
)

, (4.1)

with b(rI − b(rII) =
∑N−1
i=1 βi(r

I
i − r

II
i ), βi constant depending on Λ (see (2.6)), and

vit = ∇vi ·
∇c II

c II
+∇r Ii ·

(

∇c I

c I
−
∇c II

c II

)

+ Pi(r
I)− Pi(r

II), i = 1, ..., N − 1. (4.2)

Multiplying (4.1) by u and (4.2) by vi , and integrating on QT one obtains:

∫

Ω

u2(x, t)

2
dx =

∫ t

0

∫

∂Ω

u∇u · n ds dτ −

∫ t

0

∫

Ω

||∇u||2 dx dτ+

∫ t

0

∫

Ω

b(rI)u2 dx dτ +

∫ t

0

∫

Ω

c
II [b(rI)− b(rII)]u dx dτ,

(4.3)

and

∫

Ω

v 2i (x, t)

2
dx =

∫ t

0

∫

Ω

∇c II

c II
· ∇vi vi dx dτ+

∫ t

0

∫

Ω

vi∇r
I
i ·

(

∇c I

c I
−
∇c II

c II

)

dx dτ +

∫ t

0

∫

Ω

(

Pi(r
I)− Pi(r

II)
)

vi dx dτ.

(4.4)

where n denotes the outer normal to ∂Ω.

An estimate on the terms at the right hand side of (4.3) gives

1

2

∫

Ω

u
2(x, t) dx ≤ −

∫ t

0

∫

Ω

||∇u||2 dx dτ + k

(
∫ t

0

∫

Ω

u
2
dx dτ +

∫ t

0

∫

Ω

||v||2 dx dτ

)

. (4.5)

Here and in the following we denote by k any real positive constant depending on the data.

In fact the term
∫ t

0

∫

∂Ω
u∇u · n dx dτ is null because of the Neumann boundary conditions; moreover, recalling that 0 ≤ r ji ≤

1, i = 1, ..., N − 1, j = I, II, we have |b(rI)| < k and |b(rI)− b(rII)| ≤
∑N−1
i=1 |βi | |r

I
i − r

II
i | < k ||v||, and c II is a priori bounded.

Let us give an estimate of (4.4). Concerning the first integral at the right hand side of (4.4), denoting by a(x, t) =
∇c II

c II
, we

have
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∫ t

0

∫

Ω

a(x, t) · ∇vi vi dx dτ =

∫ t

0

∫

Ω

div

(

a
v 2i
2

)

dx dτ −

n
∑

j=1

∫ t

0

∫

Ω

∂aj

∂xj

v 2i
2
dx dτ =

∫ t

0

∫

∂Ω

v 2i
2
a · n dx dτ −

n
∑

j=1

∫ t

0

∫

Ω

∂aj

∂xj

v 2i
2
dx dτ ≤ k

∫ t

0

∫

Ω

v 2i
2
dx dτ,

where we used the Neumann condition on ∂Ω and we remark that k ≥
∑n

j=1

∣

∣

∣

∣

∂aj

∂xj

∣

∣

∣

∣

, since
∂aj

∂xj
=

∂

∂xj

(

1

c II
∂c II

∂xj

)

, c II ∈ C2 in QT

and it is positive.

For the third integral in (4.4), recalling that the Pi are polynomial of second degree with constant coefficients and 0 ≤ ri ≤ 1,

we have

∫ t

0

∫

Ω

|Pi(r
I)− Pi(r

II)|vi dx dτ ≤

∫ t

0

∫

Ω

∣

∣

∣

∣

N−1
∑

j=1

∂Pi

∂zi

∣

∣

∣

∣

z

|vjvi | dx dτ ≤ k ||v||
2
,

with suitable z.

Let us consider now the coupling term in (4.4), and rewrite it in the form:

∫ t

0

∫

Ω

vi∇r
I
i ·

(

∇c I

c I
−
∇c II

c II

)

dx dτ =

∫ t

0

∫

Ω

vi∇r
I
i ·

(

−
∇c I

c Ic II
u

)

dx dτ +

∫ t

0

∫

Ω

vi∇r
I
i ·
∇u

c II
dx dτ = I1 + I2.

Recalling that c and r are regular and c ≥ k0 > 0, we have that

I1 = −

n
∑

j=1

∫ t

0

∫

Ω

vi

c Ic II
∂r Ii
∂xj

∂c I

∂xj
u dx dτ ≤ k

[
∫ t

0

∫

Ω

v
2
i dx dτ +

∫ t

0

∫

Ω

u
2
dx dτ

]

,

I2 =

n
∑

j=1

∫ t

0

∫

Ω

vi
1

c II
∂r Ii
∂xj

∂u

∂xj
dx dτ ≤ k

n
∑

j=1

[
∫ t

0

∫

Ω

v
2
i dx dτ +

∫ t

0

∫

Ω

(

∂u

∂xj

)2

dx dτ

]

.

In conclusion we obtain from (4.4) summing on i = 1, ..., N − 1

1

2

∫

Ω

||v(x, t)||2 dx ≤ k

(
∫ t

0

∫

Ω

u
2
dx dτ +

∫ t

0

∫

Ω

||∇u||2 dx dτ +

∫ t

0

∫

Ω

||v||2dx dτ

)

, (4.6)

that can be seen as a Gronwall differential inequality, defining

η(t) =

∫ t

0

∫

Ω

||v||2 dx dτ, ψ(t) = k

(
∫ t

0

∫

Ω

u
2
dx dτ +

∫ t

0

∫

Ω

||∇u||2 dx dτ

)

, (4.7)

from which

0 ≤ η′(t) ≤ kη(t) + ψ(t), η(0) = 0,

and then

0 ≤ η(t) ≤ ekt
∫ t

0

ψ(τ) dτ.

Remarking that ψ(t) is monotone increasing w.r.t. t, we have

0 ≤ η(t) ≤ tektψ(t). (4.8)

Using the above estimate in (4.5) we obtain

1

2

∫

Ω

u
2(x, t) dx ≤

(

k + k2tekt
)

∫ t

0

∫

Ω

u
2
dx dτ +

(

−1 + k2tekt
)

∫ t

0

∫

Ω

||∇u||2 dx dτ, (4.9)

then it is possible to choose T ∗ > 0 such that

k
2
T
∗
e
kT ∗

< 1,

in order to have ∀t < T ∗
∫

Ω

u
2(x, t) dx ≤ k

∫ t

0

∫

Ω

u
2
dxdτ.
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Recalling that u(x, 0) = 0 we obtain finally from Gronwall lemma

∫

Ω

u
2(x, t) dx ≡ 0, ∀t < T

∗
,

from which, being u ∈ C2
(

QT
)

, we have

u ≡ 0, ∇u ≡ 0, ∀t < T
∗
.

Going back to (4.8) we obtain moreover that

v ≡ 0, ∀t < T
∗
.

Let us remark that this proof can be repeated for the same problem with initial data assigned for t = T ∗, being T ∗ a fixed value,

so that we obtain

u ≡ 0, v ≡ 0, ∀t < T,

with arbitrary T > 0.

2
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