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Abstract

The research project presented in the present PhD thesis is focused on

the development of innovative internal cooling systems for both nozzles

and blades of current and future industrial gas turbines. This project is

a collaboration between the Department of Industrial Engineering of the

University of Florence and the industrial partner GE Oil & Gas.

Gas turbines for Oil and Gas applications were historically derived from

power generation and aircraft engines with small design effort. More re-

cently, due to a large growth of the business segment, specific products

were designed with the objective of maintaining high efficiency while in-

creasing inspection intervals and reducing components maintenance as

much as possible.

As a consequence, some specific research paths were developed in order

to increase the lifetime of the airfoils while maintaining the high turbine

inlet temperatures (TIT) well above the melting point of the airfoils ma-

terials directly exposed to hot gases.

One of the most critical part of these components is represented by the

trailing edge region; in fact, because of its reduce metal thickness and

cross section, this part is easily subject to low cycle fatigue cracking, ox-

idation and creep and hence to premature failures. For these reasons

modern designs of trailing edge regions must guarantee a high structural

rigidity and a high and uniform heat transfer enhancement at the same

time.

Among the different internal cooling technologies, a very promising solu-

tion is represented by the latticework-matrix cooling systems, a widespread
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technology in the Eastern european countries not well known among the

designers of the Western world.

Starting from these considerations the present work regards an inten-

sive experimental survey on different scaled up models of matrix cooling

geometries. Several experimental campaigns have been carried out with

the aim of measuring pressure losses and heat transfer coefficient distribu-

tions of different geometries reproducing the typical operating conditions

of real gas turbines in terms of Reynolds and Biot number. Moreover,

further experimental tests have been performed in rotating conditions

reproducing the Rotation number similitude with real applications.

In a first stage tests have been carried out on geometries with constant

cross section in order to evaluate the effects of the main geometric param-

eters on both friction and heat transfer performance. In the next stage,

both static and rotating tests have been performed on two convergent

matrix geometries reproducing realistic trailing edge arrangements. All

these geometries have been designed in order to meet the requirements

of the industrial partner.

A steady-state technique with heated segments and embedded thermo-

couples has been employed to determine the regionally averaged heat

transfer coefficients for different streamwise and spanwise positions along

the test models. Moreover, a specific post-processing procedure has been

developed to evaluate the non uniform temperature field on the surface of

matrix ribs, fin effectiveness and the additional heat transfer surface area

provided by the ribs. This post-processing has allowed to determine the

average heat transfer coefficient distributions; average values have been

evaluated as effective coefficients between rib surfaces and fluid, but also

as equivalent coefficients applicable on the internal endwalls of the airfoil

in order to determine the overall heat removed from these surfaces.

In the last part of the present work the experimental data have been

used to find heat transfer and friction correlations. These correlations

have been applied to a real case in a trailing edge system and the per-

formance of the current cooling scheme have been compared with those

achievable by means of the investigated matrix geometries.
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Chapter 1

Introduction

1.1 Evolution of the Gas Turbine

The first patent for a basic gas turbine was given to John Barber

(United Kingdom - UK) in 1791 (figure 1.1). In this turbine gas was

produced from heated coal, mixed with air, compressed and then burnt;

this produced a high speed jet that impinged on radial blades on a turbine

wheel rim. Barber’s invention included practically all main components

of a modern gas turbine: a compressor, a combustion chamber and a

turbine [1].

In the next years other ideas abounded but all these attempts were not

able to produce a working hardware. For example in 1872 Franze Stolze

designed the first true gas turbine where a multi-stage axial compressor

was driven by a multi-stage axial turbine; this engine also included a

regenerator utilizing exhaust gases to heat the compressor discharge air

but unfortunately this engine never ran successfully [1].

At the beginning of the 20th century the previous ideas were finally trans-

formed into working engines. In 1899 Charles Gordon Curtis patented

the first gas turbine engine in the USA and some years later this became

an efficient machine commercially available. Slowly, year by year, the

development and the performance of gas turbines for stationary applica-

tions increased especially due to the installation of heat exchangers and

1



2 1. Introduction

Figure 1.1: Drawing of first patent for a gas turbine (John Barber, 1791)

water or steam injection systems. These systems also allowed to reduce

the temperature of hot gases to a limit allowable by materials of which

main critical components were made (combustors, blades, nozzles...). In

1905 Brown Boveri built the first gas turbine for a refinery of the Sun Oil

Company near Philadelphia (USA) and in 1939 realized the first gas tur-

bine in simple cycle for a power station in Neuchatel (Switzerland) (figure

1.2). This unit provided a power output of 4MW and an efficiency of

17.4% at 3000rpm. As it is shown in figure 1.3 this consisted of an axial

flow compressor, a single combustion chamber and a multi-stage reaction

turbine; the excess air was used to cool the exterior of combustor and to

heat the air at the inlet of turbine.

At the same time the development of gas turbine for aircraft propul-

sion was obstacled by some relevant factors: very high values of weight-

to-power ratio and fuel consumption. These difficulties were finally over-

come by Sir Frank Whittle, who designed and patented the first turbo
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Figure 1.2: The world’s first industrial gas turbine-generator realized by
Brown Boveri and installed in Neuchatel, Switzerland (1939) [1]

Figure 1.3: Layout of gas turbine-generator realized by Brown Boveri
and installed in Neuchatel, Switzerland (1939)

jet engine in 1930. After some technical improvements the Whittle’s en-

gine, also designated as Whittle Unit (WU), was successfully tested in

1937. This engine consisted of a double entry centrifugal compressor and

a single stage axial turbine (figure 1.4).
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As Frank Whittle was working in Great Britain, the German engineers

Hans von Ohain and Max Hann developed their own turbojet engine

(Heinkel HeS 3B), which flew for the first time in the August of 1939 for

the aircraft company Ernst Heinkel (figure 1.5).

Figure 1.4: The first turbojet engine designed by Frank Whittle Unit
(1930)

Figure 1.5: The turbojet Heinkel HeS 3B designed by Hans von Ohain
and Max Hann (1939)
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During the years of the Second World War the development in the

design of gas turbines led to several changes among the main components

(radial and axial turbines, combustion chambers and axial compressors);

for this reason turbojet became the most popular engine of powering air-

planes. In the next years various technical improvements obtained in the

aircraft propulsion were transferred to the stationary gas turbine applica-

tions. For example in 1959 the world’s first aeroderivative industrial gas

turbine was installed in a compressor drive application at Clementsville

(USA) [1].

Since the 1960s the gas turbine has made a progressive evolution in an

increasing variety of applications: aircraft propulsion, land-based power

generation and industrial applications. Throughout the following years

the development of gas turbines has been related to three main factors:

1. metallurgical advances led to an increase of temperatures in the

combustor and turbine components

2. cumulative knowledge of aerodynamic and thermodynamic

3. development of numerical tools and software for the design and

simulation of turbine airfoils, combustors and blade cooling config-

urations

The synergy of these factors has led to the following improvements:

1. compressor design: increase of pressure ratio

2. combustor design: installation of regenerators and reduction of

NOx emissions

3. turbine design: employment of syngle crystal superalloys and de-

velopment of cooling systems

In these last decades the progressive growth of gas turbines perfor-

mance, especially thermal efficiency and power output, has led to a grow-

ing trend of the overall pressure ratio of the thermodynamic cycle and,

conseguently, a progressive upward trend of the gas temperature value
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Figure 1.6: Improvement of power output with the increasing of turbine
inlet temperature (TIT) [2]

entering the turbine, well known as turbine rotor inlet temperature (TIT).

This is well illustrated in Figure 1.6, where the specific power output is

plotted as a function of TIT; it is clearly depicted that real engines tend

to approach the ideal performance line, which represents a cycle power

output with 100% gas turbine efficiency with no leakage or cooling flows.

For this reason gas turbine blades and vanes of advanced gas turbines

are required to withstand high temperatures in a hot, corrosive and un-

steady environment. Since these operating temperatures are far higher

than the melting point of materials, these components need to be cooled

in order to guarantee a safe and reliable operation of the engine. Blades

and vanes are cooled by specific amounts of air extracted from different

axial locations (i.e. different pressure levels) of the compressor; then a

complex feeding system, also known as Secondary Air System (SAS) pro-

vides to distribute this cooling air inside the most critical parts of turbine

such as blades and vanes. A schematic view of typical cooling and sealing

airflows circulating through the Secondary Air System is given in Figure

1.7.
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Figure 1.7: Schematic view of typical cooling and sealing airflows in a
gas turbine [3]

Once the cooling air has reached turbine vanes and blades, it flows

through internal passages within these components and realize an inter-

nal cooling; in some cases the internal coolant air is ejected out through

discrete holes or slots and provide a coolant film to protect the outside

surface from hot gases (Figure 1.8). In this latter case an external cooling

of the components is obtained; this is more properly known in literature

as film cooling.

Over the years several arrangements of internal and external cooling sys-

tems have been employed to ensure that the maximum surface temper-

atures and temperature gradients during operation are compatible with

the maximum thermal stress in order to obtain the maximum lifetime of

the engine [2]. Figure 1.9 depicts the increasing of TIT with the devel-

opment of cooling technologies over the recent years; moving from the

simple cooling configurations of the past (i.e smooth radial ducts) to

the modern sophisticated combinations of impingement with turbulated

serpentines and film cooling, TIT is raised from 1500 K to 2000 K.

In the cooling technology area the fundamental aim is to obtain the
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Figure 1.8: Example of a nozzle guide vane and turbine blade cooling
arrangement [3]

Figure 1.9: Trend of turbine inlet temperature (TIT) over recent years
[2]
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highest overall cooling effectiveness with the lowest possible penalty on

the thermodynamic cycle performance. Figure 1.10 gives an overview

about the gross cooling effectiveness with the increasing of heat load pa-

rameter for the different cooling technologies developed over the years.

These are two of the most important parameters to evaluate cooling per-

formance of turbine airfoils. The first is the cooling effectiveness ϕ and is

defined as a dimensionless temperature ratio of gas-to-metal temperature

difference over the gas-to-coolant temperature difference:

ϕ =
Tg − Tm

Tg − Tc
(1.1)

where Tg, Tm and Tc represent the temperature of inlet hot gases,

blade metal surface and inlet coolant respectively. To understand the

meaning of this parameter two extreme cases should be considered: the

first ϕ = 0 means that there is no cooling effect, the second ϕ = 1

indicates that the metal surface and coolant have the same temperature.

In general ϕ lies within these two limits.

The other parameter is the so-called heat load parameterand is defined

as the ratio of internal heat to the external heat fluxes as follows:

β =
Wc · Cp

U · Ag
(1.2)

Figure 1.10 shows the cooling effectiveness as a function of the heat

load parameter for typical cooling configurations. It should be noted that

the cooling effectiveness is a function of coolant configuration, coolant

ejection requirements and it is also a strong function of the amount of

coolant used that is usually measured as percentage of the mainstream

gas. For example, as regards the state-of-the-art engines, turbine cooling

air and leakage may be as high as 25 − 30% of engine mainstream flow;

in terms of efficiency a very approximate rule-of-thumb of 1% cooling

air may represent a loss of fraction of that percentage in specific fuel

consumption. This leads to the obvious conclusion that turbine cooling

needs to be minimized. Clearly, this is not the only loss mechanism in the

engine. Other losses may include mixing and aerodynamic losses, such
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Figure 1.10: Cooling effectiveness as a function of the heat load
parameter for different cooling technologies [5]

as profile drag, skin-friction, gas diffusion, secondary flows, tip clearance,

boundary-layer separation, shocks, losses due to off-design airfoil inci-

dence angles, trailing edge vortex shedding, and blockage losses [4].

Figure 1.10 also shows that for small amounts of coolant the cooling ef-

fectiveness increases rapidly, while for higher quantities (higher values of

heat load parameter) ϕ rises with a lower rate. This means that, when

large amounts of coolant are required in case of higher thermal loads,

an increase of coolant consumption does not allow to reach higher effec-

tiveness. For this reason, since cooling air is directly drawn from the

compressor, it is necessary to minimize this quantity with the aim of

avoiding excessive losses of efficiency. However, as well represented in

the same Figure 1.10, one way of raising the cooling effectiveness without

increasing coolant consumption is the employment of more complex and

hence more efficient cooling arrangements such as multipass serpentines

or impingement systems combined with film cooling.

In these last years further improvements of TIT have been obtained by

means of the development of new materials and modern manufacturing
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techniques such as directionally-solidification castings and single-crystal

castings. In addition to this, the development of thermal barrier coat-

ings (TBC) has brought other important advantages such as: a better

insulation of the airfoil surface from hot gases, a stronger protection of

the base airfoil material from corrosion and oxidation attack and the ca-

pability of damping thermal gradients during transient events. Moreover

the addition of these coatings onto single-crystal nickel based superalloys

has allowed to further increase TIT of about 100-150 K and hence the

gas turbine efficiency [2].

Further improvements in cooling performance could result from the op-

timization of existing cooling schemes, from the compounding effects of

more conventional systems and from the development of alternative or

innovative systems (i.e. dimple and matrix cooling).

Even the manufacturing process of gas turbine airfoils has determined

an important contribution to the development of gas turbines perfor-

mance. In fact as the turbine blades have assumed more complex internal

geometries it has become more important to improve the precision of the

casting process.

This process is also known as “lost wax process”; the different stages of

this process can be summarized as follows.

First of all, the ceramic cores for the cooling channels are positioned

within a master mould pattern. Then, the wax is injected into the mould

cavity to produce a preform of the turbine blade.

Some pinning wires are then pressed through the wax to butt against the

ceramic cores within the preform.

In a next step, the preform is coated with multiple layers of ceramic, ulti-

mately forming a thick casing around the preform with the pinning wires

embedded in it. Finally, the assembly is heated to melt out the wax and

then tired to strengthen the ceramic. The result is a ceramic shell mould

containing a complex ceramic core pattern which is held in position by

pinning wires anchored in the ceramic shell (Figure 1.11).

In addition to this, the manufacturing process requires the nucleation

and growth of precisely controlled microstructures. The grain structure
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Figure 1.11: Schematic of a cross-section through a prepared mould
showing the pinned ceramic cores within the wax preform and the

ceramic shell mould

within the turbine-blade superalloy material is frequently described by

terms such as: “equi-axed”, “directionally solidified” (DS) and “single

crystal” (SC). These characterize the grain boundary length and thus

affect the performance of the turbine blades.

“Equi-axed” blades contain many small grains of similar size without any

preferential orientation. These types of blades are widely used in the

cooler parts of an engine. However ”equi-axed” castings have many grain

boundaries surrounding the crystals of the superalloy forming failure ini-

tiation points in fatigue, creep and oxidation.

On the other hand the “directionally solidified” blades offer significant

advantages in terms of mechanical performance over “equi-axed” blades

because of their preferred crystallographic orientation of the grains and
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the absence of transverse grain boundaries. This solidification process

eliminates the weaker grain boundaries in the tensile direction providing

an improved resistance to thermal fatigue and creep. Such blades are

used in the hottest parts of the engine where service conditions are the

most arduous.

A further evolution is given by the “single crystal” casting process that

completely eliminates all weaker grain boundaries and provides further

improvements in resistance to creep, fatigue and oxidation. This tech-

nology also guarantees the possibility to cast a complete turbine airfoil,

dovetail and platform in a single superalloy crystal.

In addition to this the introduction of directional solidification (DS) and

single crystal (SC) castings has led to higher metal temperature capa-

bility; in fact these techniques produced a breakthrough providing a 200
◦F increase in metal temperature capability over conventional multigrain

equi-axed cast materials.

1.2 Objectives of Present Research

As already discussed in the previous section, the design of more effi-

cient cooling systems is necessary to improve the overall performance of

the turbine. Moreover an accurate design followed by a correct predic-

tion of local heat transfer coefficient and local airfoil metal temperature

distributions is extremely important in order to avoid local hot spots and

hence premature failures of the components. In fact it is widely accepted

that the life of a turbine blade can be reduced by half if the temperature

prediction of the metal blade is off by only 30�[2].

Therefore designers have to take into account all these aspects with the

aim of maintaining acceptable lifetime and reliability requirements dur-

ing the operation of the engine under such extreme heat load conditions.

In addition to this it must be considered that some parts of the airfoil

are more critical than others because of the higher thermal loads and the

mechanical strength requirements. The airfoil leading and trailing edge

regions represent two critical parts even if the trailing edge may be more



14 1. Introduction

sensitive to premature failures because of the very small cross section

and thickness. The blade cooling design of this part has to fulfill many

requirements at the same time: in fact the profile thickness must be thin

to reduce weight and improve airfoil aerodynamic efficiency, but it must

also ensure a high structural rigidity and a high heat transfer enhance-

ment.

In this context industrial companies or gas turbine manufacturers have

developed a great interest on the design and optimization of blade cooling

systems with the following aims:� improving cooling performance of current cooling systems� replacing current schemes with innovative solutions

Both aims are addressed to obtain the best tradeoff between the enhance-

ment of cooling performance and the extension of reliability and lifetime

ranges of the components.

The project reported in this thesis is part of a collaboration between the

Department of Industrial Engineering of the University of Florence and

GE Oil & Gas and has the fundamental aim of developing innovative

cooling solutions for both nozzles and blades of current and future gas

turbines. Several objectives are related to this work such as:� Increase gas turbine performance by means of: reduction of coolant

need and reduction of bleed air from the compressor� Increase life of components by means of: increased mechanical

strength due to a different architecture of the inner cooling geome-

try and reduction of thermal stresses due to a more uniform internal

cooling� Reduction of costs: for example an innovative convective scheme

with a higher cooling effectiveness could led to remove other expen-

sive solutions from the airfoil (i.e. film cooling or TBC). A further

reduction of costs also derives from an improved manufacturing

process aimed to the realization of the complex internal structures

within the airfoils.



1.2 Objectives of Present Research 15

Based on these considerations the present research has been addressed

to investigate the cooling performance of latticework-matrix cooling sys-

tems. In fact the available information reported in the technical literature

describe matrix structures as a very good alternative to current conven-

tional cooling solutions such as pin fins and multipass serpentines with

turbulators. Compared to these conventional technologies, lattice-matrix

systems would provide a higher heat transfer enhancement with simi-

lar pressure losses and a greater robustness of the ceramic core for the

investment casting. However, it must be said that, in addition to the

conventional manufacturing process (e.g. investment casting), the inno-

vative additive manufacturing technologies may be advantageous for the

realization of such complex matrix cooling geometries.

Moreover, in addition to the higher heat transfer performance, a lattice-

matrix structure give promising results when applied to the trailing edges

because of its higher mechanical strength and higher uniformity of cooling

[6]. According to practical tests a matrix structure would also increase

the blade life in high pressure turbines which is 3 to 4 times more than

the ability of pin fin configurations at the trailing edge [7].

For these motivations the present work aims at deepening the knowledge

of matrix cooling systems by means of three experimental campaigns

focused on the measurement of heat transfer and friction performance

under representative operating conditions as close as possible to that of

a real application.

The first experimental campaign has been addressed to understand the

effects of the main geometric parameters on the heat transfer and fric-

tion performance such as: rib height, rib thickness and number of sub-

channels. In this part of the work several static tests have been performed

on four different matrix geometries under conditions of Reynolds and Biot

number similitude with a real case. These geometries have a constant

cross section from the inlet to the outlet and are characterized by two rib

heights that are representative of extreme cases: two are suitable for an

application in the mid-chord region and two have the same dimensions

of the minimum cross section available at the trailing edge region. For
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each of these two rib heights two different configurations with extreme

different passage areas have been studied: one having four entry channels

and a lower rib thickness and one having six entry channels with a higher

rib thickness.

The second experimental campaign has been focused on two convergent

geometries that result from the combination of the previous test articles

with constant cross section and reproduce realistic trailing edges. The

objective of this campaign is to illustrate the effects of the flow area vari-

ation along the streamwise direction.

In the third and last campaign the same convergent geometries have been

tested under rotation conditions reproducing the Rotation number simil-

itude of a real blade. The objective of these experiments is to find the

possible effects of Coriolis and centrifugal forces even in case of a different

channel orientation with respect to the rotating plane. For this reason

the inclination of the matrix model was varied from 0deg to 30deg in

order to reproduce the exit angle of a real gas turbine blade.

Results obtained from the above mentioned experimental campaigns on

both constant and convergent geometries have been post-processed in a

proper way with the aim of developing heat transfer and friction corre-

lations. These correlations allow to establish a relationship between the

desired performance parameters (i.e. Nusselt number or friction factor)

with the main geometric parameters of a matrix system and the Reynolds

number for each streamwise position. The development of these correla-

tions has been performed in view of a future implementation within an

in-house developed procedure to predict cooling performance and metal

temperatures of gas turbine blades and nozzles.



1.3 Thesis outline 17

1.3 Thesis outline

The present thesis is structured as follows:

Chapter 1 has presented the evolution of gas turbines focusing on

the technological problems related to the increasing trend of gas tem-

peratures entering the turbine. In addition to this the objectives of the

present work are reported.

Chapter 2 reports a literary overview about the main internal cool-

ing systems for both vanes and blades of gas turbines with a particular

attention to the cooling of the trailing edge region. In the second part

this chapter presents a full description of matrix cooling systems together

with a complete review of the experimental works found in literature.

Chapter 3 focuses on the description of the main experimental ap-

proaches to measure the local heat transfer coefficient distributions on ge-

ometries for internal blade cooling applications. Moreover it provides the

motivations that have driven to the choice of the experimental approach

adopted for the evaluation of the heat transfer coefficient distributions in

the present experiments.

Chapter 4 provides the description of the test rig layouts, matrix

test models and measurement devices adopted for the experimental cam-

paigns in static and rotating conditions. A part of this chapter is also

dedicated to the description of the data reduction procedure developed

for the evaluation of the heat transfer coefficients.

Chapter 5 reports the experimental results of the investigated ma-

trix geometries in terms of friction factors, pressure losses and total to

static pressure ratios as a function of Reynolds number and non dimen-

sional mass flow rate for both static and rotating tests.
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Chapter 6 includes all the experimental results about the heat trans-

fer performance of all the investigated matrix geometries. The results are

reported as distributions of the average heat transfer coefficients and av-

erage Nusselt numbers as a function of both streamwise position and

Reynolds number. As regards rotating tests, the distributions also show

the effect of Rotation number with the varying of flow condition and

streamwise position for both pressure and suction side of the test mod-

els.

The last part of this chapter reports a summary and a comparison be-

tween the investigated geometries not only in terms of the heat transfer

performance but also considering the behaviour in terms of friction fac-

tor and pressure losses; for this reason the comparison is made evaluating

the Thermal Performance Factor over the investigated Reynolds range.

Comparisons have been also performed between the experimental data

and literary works.

Chapter 7 is dedicated to the presentation of the heat transfer and

friction correlations. These correlations express a relationship between

the average Nusselt number and friction factor with Reynolds number

and some specific dimensionless geometric parameters.

This chapter also reports the application of these correlations to a real

case and the comparison between the performance obtained applying a

matrix structure and those for the current cooling solution of the consid-

ered real blade.



Chapter 2

Overview of Gas Turbine Cooling

Systems

As mentioned in section 1.2 the theme of the present work is an

internal cooling system for gas turbine airfoils, that could represent a

promising alternative solution to current conventional schemes: the ma-

trix cooling. Before starting to describe the main features of this cooling

technology together with the main results found in the technical liter-

ature, it is necessary to give an overview about the state-of-the-art of

current internal cooling systems for both vanes and blades of gas tur-

bines.

To better understand how the adoption of a matrix cooling geometry

could be advantageous compared to traditional solutions, this chapter has

been divided in two main parts: section 2.1 reports an overview about

the main current cooling solutions, while all the details about latticework-

matrix cooling systems will be presented in section 2.2.

2.1 Internal Cooling Systems

Over the years the main gas turbine manufacturers have invested

many resources in the technological research with the aim of optimizing

the design of internal cooling systems within gas turbine airfoils. Their

19
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Figure 2.1: Complex flow phenomena in a turbine rotor hot-gas passage
(Gladden and Simoneau, 1988; collected in Sokolowski, 1988) [2]

programs of research and development have been focused to accurately

predict the heat transfer coefficient and metal temperature distributions

under turbomachinery flow conditions. In fact an accurate prediction of

these distributions around the airfoils allows to use the correct amounts

of cooling air avoiding to penalize the cycle performance in terms of power

and specific fuel consumption.

To reach this target, it is necessary to carry out several numerical simula-

tions and experimental investigations because of the high complexity of

the flow field over the airfoils; in fact, as depicted in Figure 2.1, several

flow phenomena can occur around an airfoil such as secondary flows, tip

flows, wakes and rotation flows.

Moreover, as depicted in Figure 2.2, the hot gases generate a not uni-

form heat flux distribution around vanes or nozzles and rotor blades.

Usually at the leading edge of the vane the heat transfer coefficients are

very high and, as the flow splits and travels along the vane, the heat flux

decreases. Along the suction side the flow experiences a transition from

laminar to turbulent and the heat transfer coefficients increase. On the
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Figure 2.2: Heat flux distribution around an inlet guide vane and a
rotor blade

pressure surface heat flux distribution may be more uniform; the flow

accelerates along the pressure surface and the heat transfer coefficients

also increase.

The trends are similar for the turbine rotor blade: the heat flux at the

leading edge is very high and decreases along the profile. Even in this

case on the suction surface there is the flow transition from laminar to

turbulent, and the heat flux sharply increases; on the pressure surface

the heat transfer increases as the flow accelerates around the blade.

Other factors affect the heat transfer distributions of the hot gas path

around the vanes such as: non uniform temperature inlet profile, combustor-

generated high turbulence, film cooling flows, platform secondary flows

and surface roughness. As regards rotating blades additional factors to

be considered are: rotational force, centrifugal force, blade tip clearance

and leakages.

Designers must take into account all these aspects in order to accurately

identify the position of the potential hot spots on the airfoil surface. For
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Figure 2.3: Effect of temperature inlet profile on dimensionless adiabatic
wall temperature distribution (Bonini [8])

these reasons gas turbine airfoils usually employ a combination of external

and internal cooling arrangements. The external cooling configurations

(i.e. film cooling) are based on the ejection of coolant through holes in

the airfoil body that results in a protective layer between the outside

surface and the hot gas path flow. On the other hand in the internal

cooling configurations the coolant flows through internal passages that

are usually turbulated in order to enhance the heat transfer by increas-

ing both heat transfer surface area and flow turbulence. Starting from

the previous considerations it is obvious that different external and in-

ternal cooling solutions must be used depending on specific region of the

airfoil and therefore of the corresponding thermal load and mechanical

strength requirements.

To have an idea about the effects of the complex flow field, especially

due to secondary flows, on the temperature distributions around an air-

foil, Figure 2.3 reports the countours of the normalized adiabatic wall

temperature distributions. These distributions are determined by the
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non uniform temperature inlet profile that is affected by the various sec-

ondary flows. It is clear that the temperature variation from the hub to

the tip of the blade is very high and the distribution on the pressure side

is different from that on the suction side. For example, on the pressure

side a hot streak is pushed towards the upper half of the passage, thus

producing a significant adiabatic wall temperature gradient in the radial

direction. The situation is very different at the suction side, where a sig-

nificant reduction of temperature occurs at the hub and tip of the profile,

thus delimiting the hot region at the midspan of the blade.

Since the cooling arrangements applied on a stator vane may be different

from those suitable for a rotor blade (e.g. Figure 2.2), in the following

sections the attention is focused first on the internal cooling solutions

for stator vanes (Section 2.1.1) and then on the typical arrangements for

rotor blades (Section 2.1.2).

2.1.1 Internal Cooling of Gas Turbine Vanes

As shown in Figure 2.4 different internal cooling solutions may be ap-

plied within a typical stator vane of gas turbine. At the leading edge and

mid-chord regions a system of jet impingement is applied; since this ar-

rangement weakens the structural strength of the airfoil it is most suitable

for the leading edge of both stator and rotor airfoils where the thermal

load is highest and where there is a thicker cross section. Since the struc-

tural strength required in a stator vane is less than that required in a

rotor blade, the impingement cooling may be also used in the mid-chord

region of stator airfoils. However this technique is not suitable for an

application in the narrow trailing edge.

The middle portion of the airfoil is usually cooled by means of multipass

serpentines with rib-roughened coolant passages, while the vane trailing

edges are usually cooled using arrays of short cylinders well known as

pin fins. After impinging on the walls of the airfoil, the coolant exits the

vane and provides a protective film on the outer surfaces. At the same

time the coolant travelling through the pin-fin arrays is ejected from the

trailing edge of the airfoil.
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Figure 2.4: Schematic of a turbine vane cross-section with different
cooling systems

In the following paragraphs a short description of the typical internal

cooling systems within stator vanes is given.

2.1.1.1 Impingement cooling

Jet impingement cooling consists in a high velocity coolant mass flow

ejected from a hole or slot and directed to the heat transfer target sur-

face.

As mentioned above impingement cooling is usually applied at the lead-

ing edge of the airfoils and can also be used near the mid-chord of stator

vanes (Figure 2.4).

In the design of an efficient impingement cooling scheme several aspects

must be considered because of their influence on heat transfer coefficient

distribution: effect of jet-hole size and distribution, cooling channel cross-

section, and target surface shape. As regards this latter aspect the jet

impingement near the mid-chord is very similar to impingement on a flat

plate; while the sharp curvature at the leading edge of the vane must be
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considered for the application of jet impingement at the leading edge.

Considering a single round jet impingement (Figures 2.5) the typical flow

field can be divided into three characteristic regions: free jet region, stag-

nation flow and the wall jet regions (Figure 2.5a). Before striking the

target plate, the impingement jet acts as a free jet. The flow of a free

jet is divided into the potential core zone, the developing zone and the

fully developed zone (Figure 2.5b). When the jet exits from the impinge-

ment hole, the outer part of the jet starts to mix with the surrounding

air; this process increases the jet diameter and the turbulence of the flow.

The inner part of the jet, that is not involved in the mixing, is called

potential core. As the distance between jet and hole increases the inter-

action between jet and surrounding air increases and finally the potential

core vanishes (typically at 6-7 jet diameters from the nozzle. Then, in

the developing zone, the axial velocity profile changes towards the fully

developed profile that can be approximated by a Gaussian distribution

(fully developed zone).

As regards the flow regions of an impinging jet (Figure 2.5a), in the free

jet region the jet begins to broaden due to an intensive shear interaction

with the surrounding air; this results in an entrainment of mass, momen-

tum and energy.

The free jet region is followed by the stagnation region, which is located

where the jet impinges on the target plate. It is surrounded by developing

boundary layers. After impingement, the spent jet causes a highly tur-

bulent flow which increases the heat transfer. In theory, no heat transfer

can occur in the stagnation point as the velocity is zero, but in reality

the stagnation point is very unstable and moves all the time, so the heat

transfer coefficient in the stagnation region is very high due to the thin

laminar boundary layer [7]. The heat transfer coefficient decreases with

increased distance from the stagnation point. However, when the wall jet

changes from laminar to turbulent flow, a second heat transfer peak can

occur for certain Reynolds number and for certain jet-to-impingement

target distances.

Finally in the wall jet region, the flow is parallel to the impingement
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plate and is directed radially outwards. Its velocity profile is described in

Figure 2.5a; the initially laminar boundary layer undergoes a turbulent

transition that is induced by the impingement of large eddies created in

the jet shear layer. This turbulent transition is believed to increase lo-

cally, and the heat transfer rate diminishes progressively.

For a single impingement jet the point of maximum heat transfer is typi-

cally the stagnation point, from which heat transfer rates decrease mono-

tonically in radial directions. In absence of a cross-flow, the stagnation

point coincides with the geometrical center of the jets. The heat transfer

coefficient in the stagnation point increases with the jet Reynolds num-

ber. On the contrary, for low jet-to-target surface distances (Z/d < 1) or

high jet Reynolds numbers, an offset between the maximum heat transfer

and the center of the jet can occur.

(a) Flow regions in an impinging
jet

(b) Flow regions in a free jet

Figure 2.5: Comparison of flow regions in an impinging jet with flow
regions of a free jet (Viskanta, 1993) [2]

In a gas turbine application multiple impingement jets are used in-

stead of an isolated single jet, either as a row of jets or as arrays of jets.

Many jets are useful to increase the heat transfer from the vane wall; how-

ever this complicates the flow structure and velocity profiles in multiple

jets are difficult to obtain.

Moreover, as shown in Figure 2.6, in an array of multiple jets the up-

stream jet creates a cross flow, which flows perpendicular to the adjacent

jet flow along the target plate. As the coolant travels along the test sur-
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face, the spent air from the upstream jets could affect the heat transfer

coefficient distributions of the downstream jets, and this effect increases

as more spent air accumulates on the target surface.

For multiple jets Metzger et al. [9] proved that the Nusselt number is

strongly dependent on the Reynolds number, while there is no significant

dependence on the jet-to-target plate spacing. However, the most signifi-

cant differences are due to the jet cross-flow from the spent jets. Studies

by Florschuetz et al. [10] and Koopman et al. [11] showed that the mass

from one jet moves in the cross-jet flow direction, and this flow can alter

the performance of adjacent jets. In particular the cross-flow jet may de-

flect a jet away from its impinging location on the target plate; in case of

a strong cross-flow and sufficiently large jet-to-target plate spacing Z/d,

the cross-flow can completely deflect the jet away from the impingement

surface and, as reported by Florschuetz et al. [12], this can lead to a

strong decay of the overall heat transfer from the impingement surface.

Starting from these experimental results correlations were developed by

Kercher et al. [13] and Florschuetz et al. [14] to estimate the heat trans-

fer enhancement from an array of impinging jets. All these correlations

demonstrate the dependence of the heat transfer enhancement on the

amount of cross-flow. Florschuetz et al. [14] also showed the cross-flow

effect is much stronger in staggered arrays of jets than an inline arrays.

Bailey et al. [15] extended the correlation developed by Florschuetz et al.

to include the effect of jet spacing and hence dense impingement arrays.

Later Ekkad et al. [16] studied the effect of the cross-flow traveling in

two opposite directions together with the effect of coolant extraction for

film cooling; results showed that the heat transfer enhancement on the

target plate decreases near the edges due to the decreased coolant flow.

Also the presence of initial cross-flow affects the heat transfer enhance-

ment from the target plate. In fact the cross-flow described in the previ-

ous cases is created by the spent flow from the jets; therefore, the first

row of jets is not affected by the cross-flow. However, in many situations

the cross-flow may develop upstream of the first row and this flow can

significantly alter the flow near the jets, and thus alter the heat transfer
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Figure 2.6: Typical test model for studies on multiple impingement jets

coefficients on the target surface. The results obtained by Florschuetz

et al. [17] about the effect of initial cross-flow show that the heat trans-

fer enhancement on the target plate decreases when initial cross-flow is

present.

The above studies investigated the heat transfer on flat target plates.

The results obtained for flat plates are representative of an impingement

application near the mid-chord of the vane. However, the effect of target

surface curvature must be considered when the designer has to apply jet

impingement near the leading edge of the airfoil; in fact the curvature of

the airfoil creates a different cross-flow behavior, and therefore, the heat

transfer coefficients on the curved surface are different than those on the

flat surface.

In the open literature the first studies were performed considering the

jet impingement cooling over concave surfaces that are comparable to a

leading edge cooling scheme. In 1969 Chupp et al. [18] studied the effects

of a single row of impinging jets on a curved surface (Figure 2.7) and con-

cluded that the average Nusselt number ratio increases as the curvature

of the target plate increases. Interesting experimental results about the
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effect of target surface shape were also given by Bunker et al. [19] and

Metzger et al. [20] using the test rig in Figure 2.8. They performed de-

tailed heat transfer measurements using temperature sensitive coatings,

varying impingement jet holes spacing, jet-to-target spacing, leading edge

radius of curvature and jet Reynolds number. Moreover they studied the

effects of film cooling mass flow extraction on the leading edge target sur-

face. They concluded that a sharper nose radius yields a more uniform

Nusselt number distribution compared to a smooth-nosed chamber. They

also found an increase of heat transfer coefficient with aligned jet holes

and extraction holes arrangement, while staggered configurations led to

a decrease of the HTCs. Finally, as regards the mass flow extraction for

film cooling, they found that this does not affect the HTC distribution.

Figure 2.7: Schematic of the impingement cooling at the airfoil’s leading
edge (Chupp et al., 1969) [2]

Since 2001 Taslim et al. [21] performed experimental and numerical

analyses on more complex leading edge cooling configurations including

the effect of the mass flow extraction from film cooling holes.

In recent years Maiuolo et al. [22] [23] investigated the effects of different

geometries of impingement holes and the influence of both shower-head
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Figure 2.8: Leading edge impingement with film cooling extraction
(Metzger et al., 1990) [2]

and film cooling extraction on the heat transfer performance of more

realistic leading edge cavities.

2.1.1.2 Pin-Fin Cooling

Pin fins are projections protruding from the heat transfer surface to

the coolant flowpath. Generally they have a circular cross-section and

are placed perpendicular to the flow direction to maximize the forced con-

vected fin cooling. Flow around a pin is comparable to the flow around

a single cylinder. As the coolant flows around the pin, the flow separates

and a vortex shedding occurs downstream the pin; this increases the free-

stream turbulence and alters the boundary layer development over the

pin-mounted surface. The wakes from upstream pins also affect both the

flow and heat transfer performance of downstream pins.

In addition to this wake formation, a horseshoe vortex forms just up-

stream of the pin; this creates an additional mixing and hence increases

the heat transfer.

The heat transfer enhancement is also due to the fin effect and the in-
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creased heat transfer surface area provided by the pins. In fact pins

conduct thermal energy away from the heat-transfer surface; in case of

long pins a high increase of the effective wet heat transfer area can occur.

Figure 2.9: Cross-sectional view of a pin-fin cooling system at the
trailing edge

Pin fins are typically applied in the narrow trailing edge of the air-

foils (Figure 2.9), where other cooling schemes (i.e. impingement jets or

ribbed channels) cannot be accomodated due to the very thin thickness

required to obtain the highest airfoil aerodynamic efficiency. In this type

of application the pins have a height-to-diameter ratio between 1/2 and

4 and are grouped in several arrays with the aim of cover a large area.

In a pin-fin array the heat is transferred from both the smooth channel

endwall and the numerous pins. Moreover the heat transfer in a pin-fin

array combines the cylinder heat transfer and endwall heat transfer; due

to the turbulence enhancement caused by pins, heat transfer from end-

walls is higher than the smooth-wall condition.



32 2. Overview of Gas Turbine Cooling Systems

In the technical literature many factors have been investigated about pin-

fin cooling such as: type of pin-fin array, spacing between pins, pin size,

pin shape and the effect of coolant extraction to reproduce the trailing

edge ejection.

Two array configurations are commonly used: one is the in-line array and

the other is the staggered array; this latter has usually higher heat trans-

fer coefficients compared to the in-line array for different shapes of pin

fins. Figure 2.10 show a typical experimental test model with a staggered

array of pin-fins.

Figure 2.10: Typical test model and schematic of secondary flows for
Pin-Fin cooling

Metzger et al. [24] used staggered arrays of circular pins with 1.5

to 5 pin diameter spacing in a rectangular channel; results proved that a

closer spaced array (smaller x/D) allows to reach higher heat transfer coef-

ficient. Moreover they observed that the addition of pin-fins significantly

enhances the heat transfer coefficient but also increases the pressure drop

in the flow channel. These experimental results have been correlated by

Metzger and Van Fossen [25] to predict the Nusselt number in channels

with pin-fin arrays. It was found that the average Nusselt number in a
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channel with short pin-fins is primarily dependent on the Reynolds num-

ber of the flow and a weaker dependence is present for the pin spacing.

Some years later Metzger et al. [26] studied the effects of pin shape

and array orientations; in particular they reported the effect of flow inci-

dent angle on oblong pins. It was found that all incident angles, except

the 90deg, yield higher Nusselt numbers than circular pins; the 90deg ar-

ray yields significantly lower Nusselt numbers especially for low Reynolds

numbers, while the ±30deg array has the highest Nusselt numbers, about

20% higher than the circular pin array on the average. As regards pres-

sure drop, all the array configurations of oblong pins, except the 90deg,

have higher pressure losses than circular pins; this is mainly due to the

increase in the friction factor associated with the flow turning.

Other important effects on cooling performance of pin fins were carried

out by Chyu et al.; in a first work [27] it was investigated the effects of

a fillet at the base of cylindrical pins, while in a second work [28] the

effects of cube and diamond pins were analyzed for both in-line and stag-

gered configurations. As regards the effects of the fillet it was found that

the straight cylinders (i.e. without fillet) in staggered array formation

have the highest heat transfer followed by thr filleted cylinders in the

staggered configuration. On the other hand for in-line configurations the

fillet cylinder in-line formation has a better heat transfer than the straight

cylinders. Moreover these results confirmed that the staggered arrays of

cylindrical pins have higher heat transfer coefficients than in-line arrays,

but the addition of the fillets implies a sharp decrease of performance.

As regards the comparison between cube and diamond pins, it was found

that the cube-shaped pins have the highest heat transfer coefficients

among the shapes considered and round pins have the lowest ones. On

the other hand the corresponding pressure loss coefficients are higher for

both cube and diamond shaped pins than the circular pins.

In recent years other important effects have been investigated on pin fins

configurations for the application at the trailing edge such as: the effects

of flow convergence and turning, and the effect of ejection holes. Shepard

et al. [29] demonstrated the effects of flow acceleration on heat transfer
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performance within a convergent channel; the results, presented as row

averaged, show an increase in the heat transfer coefficient with the reduc-

tion of cross-section and hence the increase of flow velocity.

Then the effect of a perpendicular flow turning or entry in a realistic

trailing edge cavity was studied by Chyu et al.[30] on both in-line and

staggered arrays; results show that the turning inlet configuration al-

ways produce a reduction of heat transfer coefficients with respect to the

straight entry: this reduction is about 40− 50% for the in-line array and

20− 30% for the staggered array.

Finally since a trailing edge channel has normally ejection holes through

which the spent coolant exhausts to the main stream flow, some inter-

esting effects must be considered. First of all Kumaran et al. [31] in-

vestigated the effects of the length of coolant ejection holes on the heat

transfer coefficient; these results indicate that the length of the ejection

hole can significantly alter the discharge rate of coolant. In addition to

this it has been found that a higher coolant ejection reduces the Nusselt

number with respect to the case with no ejection. This decrease in the

heat transfer coefficient can be explained by the fact that coolant mass

is extracted from the coolant channel before its cooling capacity is fully

utilized. Moreover the results indicate that the correlation based on the

local Reynolds number can predict the heat transfer coefficient distribu-

tion for lower coolant ejection but does not adequately predict the same

HTCs distributions at higher ejection rates.

Some year later Hwang et al. [32] investigating a converging channel with

ejection holes found that an increase of coolant ejection degrades the heat

transfer at the endwall near the tall wall opposite of the ejection, while

the heat transfer on the channel endwall surface near the ejection holes

is increased. Moreover in case of large ejection flows no significative dif-

ferences were found among square, diamond and circular pin-fin arrays.

2.1.1.3 Dimple Cooling

In contrast to the pin fins, the dimples are concavities and are con-

sidered an interesting alternative solution to ribbed ducts and pin fins
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because of their low pressure penalty (compared with pin fins) and mod-

erate heat transfer enhancement.

It should be said that this kind of application was largely unknown in the

Western world until the dissolution of the Soviet Union in the 1980′s.

The flow behaviour over concavities of spherical or cylindrical shape is

well described in the study of Afanas’yev et al. [33]; as the flow encoun-

ters a concavity it experiences a separated region on the entry side. Then

the spherical shape creates a pressure field within the concavity acting

to collapse or concentrate the flow in the downstream portion of the re-

cess and this generates a vortex structure. A schematic view of the flow

behaviour over a dimple is shown in Figure 2.11.

Numerical results found by Isaev et al. [34] show that a pair of symmet-

ric and counter-rotating vortices is formed but in most real cases only

one vortex appears; starting from this condition the vortex is expelled

from the concavity and it starts to interact with the mainstream flow.

This interaction allows to continuously bring fresh core fluid to the sur-

face and generates a flow reattachment on the flat surface immediately

downstream of the dimple; these phenomena lead to a heat transfer en-

hancement. In addition to this, since this vortex motion is organized,

rather than the more dissipative effect of shearing layers, the pressure

loss is less than that observed with projecting obstructions such as tur-

bulators; in some cases dimpled surfaces have friction nearly the same as

smooth surfaces.

Globally the heat transfer in the dimpled channels is from 2 to 2.5 times

greater than the heat transfer in a smooth channel with a pressure loss

penalty of 2 to 4 times that of a smooth channel. These values have a

little dependence on Reynolds number and channel aspect ratio. More-

over, recent studies [35] [36] have been focused in evaluating the effects

of dimple size, dimple depth-to-diameter ratio, dimple shape (cylindrical,

hemispheric, teardrop) on the heat transfer distribution in rectangular

channels. Dimples have been also investigated by Bunker [37] in a cir-

cular channel; measured levels of heat transfer enhancement and friction

loss are similar to the above mentioned cases.
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Finally Syred et al. [38] demonstrated the effects of surface curvature

comparing the heat transfer enhancement due to a single dimple on both

flat and curved surfaces. From this study it was found that the heat

transfer performance on an endwall surface that is concavely shaped is

higher with respect to the flat endwall; on the other hand a convexly

curved surface decreases the level of heat transfer enhancement.

Figure 2.11: Typical test model for Dimple cooling studies and
schematic view of dimple induced secondary flows [39]

2.1.2 Internal Cooling of Gas Turbine Blades

Also for modern gas turbine blades a combination of different internal

cooling techniques is usually applied within the same rotor blade (Figure

2.12): for example serpentine cooling passages with rib turbulators in the

middle portion, jet impingement at the leading edge and pin-fin cooling

with ejection near the trailing edge. Although some of these techniques

are similar to those used to cool the vanes (§ 2.1.1), the heat transfer
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Figure 2.12: Schematic of a turbine vane cross-section with different
cooling systems [40]

trends in the vanes and blades are very different; for example, because

the blades are rotating, the flow of the coolant in the passages is altered.

Therefore, the effect of rotation on the internal heat transfer enhancement

must be considered in these cases.

In the following paragraphs only a description of the typical internal

cooling techniques suitable for rotor blades will be given, while for the

similar cooling systems (i.e. jet impingement and pin-fin cooling) it will

be necessary to refer to the previous paragraphs.

2.1.2.1 Rib Turbulated Cooling

In turbine vanes but mostly on turbine blades, a very common so-

lution applied in the middle portion of the airfoil consists in internal

channels with turbulence promoters, better known as rib turbulators or

ribs.

Many works found in literature are focused on internal channels modeled

as short rectangular or square channels with different aspect ratios and
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only few works have been performed on circular ribbed ducts. As shown

in Figure 2.12 the aspect ratio W/H of the channels changes from the

leading to the trailing edge of the blade; near the leading edge the ribbed

channel may have an aspect ratio around 1/4, while near the trailing edge

much broader channels are present with aspect ratios around 4.

The ribs, that are repeated along these internal cooling channels, are tipi-

cally cast on walls as projections from the internal surface into the flow.

Usually they are located on two opposite walls of the channel (Figure

2.13), almost always towards the pressure side and suction side; some-

times only one side has ribs, because the internal cooling has to match

the external load, which can be different on pressure and suction side.

Figure 2.13: Example of ribbed channel with ribs on two opposite walls
[7]

It is well known that ribs cause separation from the flow at the rib

tops and reattachment to the flow between the ribs; the reattachment of

the boundary layer between two adjacent ribs results in increased heat

transfer coefficients. This flow behaviour of separation, recirculation and

reattachment continues throughout the channel along with the pattern
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of repeated ribs (Figure 2.14).

All these mechanisms increase fluid turbulence and mixing among the

fluid elements near the wall with the cooler ones in the middle of the

flowpath. Therefore ribbed ducts provide two favourable contributions

to enhance internal heat transfer: increase of turbulence level and in-

crease of heat exchange area. On the other hand the presence of ribs

induce a pressure drop along the channels. Consequently, designers have

to find out the best rib geometry in order to obtain the highest heat

transfer coefficients with the minimum friction penalty across the inter-

nal cooling passages [41].

Moreover, as shown in Figure 2.15, these ribs induce different patterns of

secondary flows depending on the different shape and distribution of ribs.

For example, if the rib turbulators are skewed to the mainstream flow di-

rection then counter-rotating vortices are created. In case of angled ribs

two counter-rotating vortices are formed in the cross-section of the cool-

ing passage, while if V-shaped rib turbulators are used then four vortices

are generated. The additional set of counter-rotating vortices associated

with the V-shaped ribs results in more heat transfer enhancement in a

channel with V-shaped ribs than angled ribs.

Over the years several studies have been performed on ribbed channels

to investigate the effects of both Reynolds number and many geometrical

parameters on the heat transfer enhancement and pressure losses such as:

channel hydraulic diameter Dh, channel aspect ratio W/H , rib height e,

rib pitch p, rib angle of attack α, different rib configurations (i.e. V-

shaped, Wedge and Delta-shaped ribs) and different cross-section of the

channel (i.e. rectangular, square, triangular).

In 1988 Han et al. [42] found that the heat transfer enhancement slightly

decreases with the increasing of Reynolds number. The reason is that flow

reattaches faster for higher Reynolds; for example the flow reattaches ap-

proximately 2 rib heights downstream for Re=60000 and 6 rib heights

downstream for Re=10000.

The effects of rib angle were investigated by Han et al. [43] [44] [45];

from these studies comes out that using ribs with an attack angle be-
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tween 30deg and 60deg results in increased heat transfer and reduces

the pressure penalty. Moreover, for each test case, periodic distributions

of Nusselt number were found because of the continuous separation and

reattachment of the flow with some differences depending on the chan-

nel aspect ratio and cross-section. For square ducts with transverse ribs

(α = 90deg) Nusselt number Nu decreases along the streamwise direction

until x/Dh > 3 where the periodic distribution reaches a constant value.

For square ducts with angled ribs, Nu also decreases after the inlet, but

it increases again for x/Dh > 3 because of the secondary flows induced

by the rib angle.

Figure 2.14: Schematic of flow separation and rib orientations in
heat-transfer coefficient enhancement (Han and Dutta, 1995) [2]

For ducts with larger aspect ratio (W/H > 1) this effect is gradually

decreased; while as regards ducts with W/H < 1 for α = 90deg or 30deg

the Nusselt number neither increase nor decrease between the ribs after

x/Dh > 3, while for α = 60deg or 45deg Nu increases along the channel

due to the secondary flow described above.

Moreover Han et al. [44] found that for a duct with square cross-section
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Figure 2.15: Typical test models for turbulated cooling studies with rib
induced secondary flows

(W/H = 1) the highest Nusselt number and friction factor f were ob-

tained for α = 60deg, while for a duct with W/H = 4, suitable for an

application near the trailing edge, the highest Nu and f values were ob-

tained for α = 90deg.

Final results of these studies indicate that the best performance in terms

of both Nusselt number and friction factor is obtained for α = 30deg or

45deg; in addition to this the ribs with 60deg and 45deg angle of inclina-

tion to the flow have from 25 to 30% higher heat transfer performance

than transverse ribs.

Also the effects of rib height and rib pitch were investigated. It was

found that a small increase of rib height produces only a small increase

in Nusselt number but a higher increase of pressure. On the other hand

for pitch-to-rib height ratio no less than 10 the Nusselt increases with a

reduction of p/e and the maximum heat transfer is obtained for p/e = 10;
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in fact for smaller rib spacings the reattachment of flow between ribs can-

not occur and hence the heat transfer enhancement due to this effect is

not present.

Several works were dedicated to the investigations about the effects of

different rib configurations in order to find out the geometry with the

highest performance; examples of some high performance rib turbulators

are reported in Figure 2.16. Among these works Han et al. [46] showed

that V-shaped ribs allow to achieve better results than the angled ribs; in

fact, for a given pressure drop, the V-shaped ribs give more heat transfer

enhancement. Some years later these results were confirmed by other

studies in a variety of channels and flow conditions.

To further improve heat transfer performance discrete rib configurations

were analyzed by Cho et al. [47]. Discrete ribs are similar to the tradi-

tional rib but they are broken in one or more locations. Results proved

that these configurations perform better than the previous continuous

angled or V-shaped ribs.

Figure 2.16: High performance rib turbulators for turbine blade internal
cooling
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Additional investigations were also performed on various profiled ribs

without the conventional square cross-section; this is the case of the

so-called wedge-shaped and delta-shaped ribs where the heat transfer

enhancement mechanisms combine the benefits of ribbed channels and

pin-fins. About these configurations Han et al. [48] demonstrated that

delta-shaped ribs guarantee higher heat transfer enhancement than the

traditional angled ribs. Higher heat transfer performance were also found

by Bunker et al. [37] concerning particular profiled ribs leaning into or

away from the flow.

Other studies were also focused on ribbed channels with more blockage

than all above mentioned configurations; for example about 10% blockage

of the channel by ribs [49]. These results showed that an increasing in

the effective blockage leads to an increase of the heat transfer coefficients,

but this improvement comes at the cost of a significant increase in the

pressure loss. As regards a potential application it can be concluded that

the use of these ribs is beneficial when the heat loads are extremely high

and the high frictional losses can be tolerated.

Moreover, since modern turbine airfoils have ribs in the internal ribbed

channel and film cooling for the outside surface, some of the cooling air

is bled through a periodic distribution of film cooling holes along the

channel. This periodic bleed of coolant along the channel determines

axial and spanwise variations in the heat transfer distributions. The ef-

fect of this coolant extraction on the heat transfer enhancement has been

investigated by Shen et al. [50] and Thurman et al.[51]. These studies

reported that the heat transfer coefficients increase only in the near-hole

regions; this effect could become higher when the ribs are placed near the

bleed holes. Since the variations in the other regions of the channel are

negligible it results that the regional-averaged Nusselt number ratios for

different rib orientations are almost identical with and without bleed hole

extraction. For this reason it could be concluded that the performance

of the ribbed channel is affected only when the mass flow extraction for

film cooling is about 20 to 25%

To conclude this section it should be noted that ribbed channels are ap-
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plied inside the turbine blades according to both radial and multipass

configurations (Figure 2.17). In the first case the ribbed channels are lo-

cated in different streamwise positions along the airfoil; the coolant flow

enters in each channel from the hub to the blade or from the tip to the

hub in case of stator vanes but in each case it develops along the only

radial direction. These configurations are usually known as single-pass

with radial inward and outward flow.

In the second case the coolant flows through serpentine passages realized

inside the blades; these are well known as multipass configurations with

both radial outward and radial inward flow. Unlike the radial ducts, in

case of multipass serpentines the additional effects of the sharp turns

should be included in the evaluation of the overall performance. A de-

tailed overview about the effects and correlations developed for multipass

serpentines is given by Sundberg [7].

Figure 2.17: Radial and multipass configurations of ribbed channels [3]
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2.1.3 Trailing Edge Cooling Systems

Since a wide part of the present work has been dedicated to inves-

tigate the performance of innovative or alternative cooling schemes for

airfoil trailing edges, this section gives an overview about the state-of-

the-art of trailing edge systems for gas turbine.

As already mentioned in section 1.2 the trailing edge region is a very crit-

ical part in the modern airfoils because it is more sensitive to premature

failures compared to other regions due to the very small cross section

and thickness. For this reason the blade cooling design of this part has

to fulfill many requirements at the same time: the profile thickness must

be thin to reduce weight and improve airfoil aerodynamic efficiency, but

it must also ensure a high structural rigidity and a high heat transfer

enhancement.

Because of the reduced metal thickness of this region its thermal inertia

is low with respect to the other parts of the airfoil; this means that the

metal of the trailing region takes shorter times to heat up or cool down

than the other adjacent regions. This situation leads to a continuous

and cyclic status of differential thermal expansions between the different

parts and hence to thermally induced stresses that affect the Low Cycle

Fatigue (LCF) cracking of the component.

In combination with the cyclic operation due to the Low Cycle Fatigue,

the oxidation can determine a considerable loss of wall thickness and a

certain cracking at the internal cooling holes. The oxidation may be also

facilitated by the combination of high external heat transfer coefficients

together with a low internal cooling.

Moreover, the small thickness of the profile at this region in combination

with the higher temperatures can lead to creep problems from long expo-

sure to the strain.

All these phenomena should be considered by the designers in order to

avoid premature failures of the components.

As regards the internal cooling design, the most typical solutions pro-

vide that the trailing edge is internally cooled by means of ribbed serpen-

tines or pin-fin arrays, while externally it is protected by a film cooling
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(a) (b)

Figure 2.18: Examples of cooled blades with different trailing edge
configurations

system. For example, in Figure 2.18a, two different cooling configura-

tions for vanes are represented: in the first case, the axial duct with a

constant diameter along the radii ensures the coolant flows through the

vane; in the second example pin fins are inserted in a wedge duct. A

similar solution is applied for the rotor blade in Figure 2.18b, in this case

a serpentine ribbed duct with turbulence promoters is present upstream

the pin fin array in the wedge duct.

Another kind of rotor blade is illustrated in Figure 2.19; in this case the

trailing edge includes a wedge duct with a system of enlarged pedestals

that allow to redirect in axial flow the coolant flow at the discharge exit.

From this point the coolant flow exiting from the axial slots provides

a protective film above the external final part of the pressure side; this

latter solution is better known as cutback film cooling.

Because of these above reported constraints it resuls clear that pin fins

and pedestals are the most typically used techniques to enhance the over-

all heat transfer coefficient in the trailing edge region. The pedestals have

a lengthened shape of the base section and guarantee a higher structural

strength with lower pressure losses but also with a lower heat transfer

increase compared to circular pin fins.

Over the years in the technical literature some works were dedicated

to study different configurations and different shapes of pin fins and
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pedestals, while other works were addressed to investigate the effects

of other important features in order to reproduce the flow conditions in

realistic trailing edge schemes such as: converging channel, blowing tip

condition, 90deg turning of the flow from radial inlet to axial discharge

exit. Some of the works have been already cited in the previous section

2.1.1 about pin-fin cooling.

Figure 2.19: Example of trailing edge cooling schemes in a rotor blade

First of all, Metzger et al. [24] and Shepard et al. [29] investigated

several staggered arrays of circular pin fins with 1.5 to 5 pin diameter

spacing. Results show that heat transfer coefficients are higher for closer

spacings, but a higher number of pins also increases the pressure drop

through the channel; it was also found that the heat transfer enhancement

Nu/Nu0 was between 1.8 and 2.3 for the investigated range of Reynolds

number.

Moreover Metzger et al. [26] studied the effects of pin shape and array

orientations reporting a comparison between oblong and circular pins for

several flow incidence angles. These results show that oblong pins have

higher heat transfer coefficients but also higher pressure losses than cir-
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cular pins for all incident angles with the exception of 90deg.

Some years later Chyu et al. [28] [52] performed comparisons between

staggered arrays and in-line arrays of pins for cube and diamond-shaped

pins. Results conclude that the staggered arrays have higher heat transfer

coefficients compared to in-line configurations and the cube-shaped pins

have the highest heat transfer enhancement; on the other hand pressure

loss coefficients are higher for both cube and diamond-shaped pins than

the circular pins.

In more recent years Hwang et al. [53] [54], Facchini et al. [55] and

Innocenti et al.[56] investigated the effects of the accelerating flow in

wedge-shaped trailing edges with different arrangements of circular pin

fins and enlarged pedestals both on heat transfer and pressure losses.

Hwang et al. [54] performed endwall heat transfer and pressure drop

measurements in a wedge-shaped ducts containing an array of circular

pin fins. Measurements were performed for two outlet flow orientations

(straight and turned) (Figure 2.20) and for two pin fins formations (in-

line and staggered). As shown by Figure 2.21, results indicate that the

straight wedge duct with a staggered pin array is the most recommended

configuration since it produces the highest endwall heat transfer enhance-

ment with a moderate pressure drop penalty. On the other hand the same

staggered pin array in a turned wedge duct represents the least recom-

mended solution because it has high pressure losses and presents a non

uniform heat transfer distribution with severe hot spots.

In addition to this, other experimental tests were performed for a smooth

or pin-less wedge duct and a smooth rectangular duct to evaluate the iso-

lated effect of the flow acceleration; further comparisons were performed

with heat transfer and friction correlations for fully developed turbulent

flow in circular ducts. As shown by the results reported in Figure 2.22,

the increase of heat transfer due to the flow acceleration effect is about

10÷ 20%.

Some years later Facchini et al. [55] and Innocenti et al.[56] evaluated

heat transfer and pressure drop in thin wedge-shaped trailing edge with

two different turbulators arrangement: long ribs or pedestals and stag-
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Figure 2.20: Two wedge-shaped with different outlet flow orientations
[54]

gered pin fins (Figure 2.23). In the present work a new approach was

proposed to evaluate the separate contribution to heat transfer of end-

walls and inserts surfaces; a TLC transient technique is used to measure

a very detailed and accurate heat transfer coefficient distribution on the

endwall surface, while a FEM analysis is used to evaluate an average heat

transfer coefficient over inserts surface. This technique requires that in-

serts are made of high conductive material but also a comparison with

inserts in low conductive material is necessary to understand the isolated

effect of pin fins and pedestals.

Results showed that the contribution of inserts to heat transfer of the

whole cooling system is significant; in fact heat transfer values around

pedestals are are about 2.7 times greater than for the endwall surface,

while for the pin fin are about 2.3 times [56].

In recent years Bianchini et al. [57] [58] analyzed the performances

of innovative distributions of pin fins and pedestals in a wedge-shaped

converging duct and investigated the effects of different blowing tip con-

ditions. Moreover, to reproduce the mixed axial-radial flow inside a real-

istic trailing edge the combined effect of a 90deg turning flow and channel
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(a) Area-averaged endwall
Nusselt number as a function of

duct Reynolds number

(b) Pressure drop coefficient as a
function of duct Reynolds number

Figure 2.21: Heat transfer and pressure loss results for different
configurations of wedge-shaped ducts: straight/lateral flow orientation

and staggered/in-line pin-fin arrays [54]

Figure 2.22: Comparison of heat transfer and pressure loss results
between pin-less wedge duct and rectangular pin-less duct [54]

shape was considered.

Later Bonanni et al. [59] extended the previous study of Bianchini et al.

[58] and experimentally investigated the effects of rotation on the same
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Figure 2.23: Schematic of long rib (pedestal) and pin fin geometry in
the convergent wedge-shaped channel [56]

configurations. Another important contribution was also given by Liu et

al. [60] who estimated rotation effects on wedge-shaped channels with

slot ejection under high Rotation numbers.

More details about rotational effects on trailing edge channels will be

given in the next section.

In the last years the gas turbine manufacturers continue to dedicate a

high degree of attention to the design of this section in order to improve

the performance and the durability targets. Some examples of the most

recent solutions of trailing edge schemes are shown in the following fig-

ures.

One trailing edge scheme that includes some of the above reported so-

lutions is shown in Figure 2.24; first, the coolant flow meets some rows

of pin fins, then it is discharged at the exit passing through a row of

enlarged pedestals. Moreover the internal flow path is axial-radial with

a 90deg turn.

Another example is illustrated in Figure 2.25 ([61]); this configuration
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is designed for a typical high-pressure turbine blade. In this case the

trailing-edge scheme is made up of two cooling arrangements: first, the

pressure-side cutback with slots located in the upper portion of the blade,

second, the centerline discharge with round openings located in the lower

portion of the blade. The combination of slots and round openings at

the trailing edge provides a performance improvement caused by the thin

trailing edge in the upper portion of the airfoil. The use of centerline dis-

charge with cooling holes in the lower portion of the blade is practical,

as the gas-path temperatures can be considerably reduced at the lower

radial portion of the airfoil [61].

Among the most recent solutions of trailing edges, a high attention is fo-

cused to improve the scheme for film cooling at the cut-back region. For

example the patent reported in Figure 2.26, represents a particular solu-

tion of shaped holes with a surfacial exit opening located at the pressure

side of the trailing edge. In addition to this, the cross-section of the holes

at the point of exit, that can be in a step or on the pressure side of the

blade/vane, can be circular, oval, elliptical or racetrack (Figure 2.27).
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Figure 2.24: Scheme of a trailing edge cooling section with pin fins and
enlarged pedestals [62]

Figure 2.25: Typical high-pressure turbine blade showing trailing-edge
cooling openings and pressure-side ejection slots [61]
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Figure 2.26: View of the shaped holes on the pressure side of the gas
turbine airfoil [63]

Figure 2.27: Different openings of the holes at the exit section [63]
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2.1.4 Rotational Effects on Internal Cooling

Unlike the stator vanes, the predictions on heat transfer and friction

performance of rotor blades must also consider the rotational forces such

as: Coriolis force and Centrifugal buoyancy force. These two forces com-

bined generate secondary flows inside the cooling channels and the core

flow gets redistributed asymmetrically; these phenomena could alter the

flow and temperature profiles in the rotor coolant passages and, as a con-

sequence, distributions of heat transfer coefficients could be very different

from those in stationary passages.

From the studies of Anderson [64] it is well known that the Coriolis force

affects the stability of turbulent boundary layer and alter the distribu-

tion of radial velocity and temperature in the channel, while the buoyancy

force promote the velocity profile distribution.

Moreover, in rotating conditions the induced secondary flow redistributes

velocity and also alters the random velocity fluctuations in turbulent

flows. This behaviour is proved by the experimental tests of Lezius and

Johnston in 1976 [2]. Using water as working fluid in a rotating high-

aspect-ratio rectangular channel they observed a stable and an unstable

region; the stable side shows a decay of turbulence, while in the unstable

side a turbulence enhancement occurs (Figure 2.28. It should be noted

that stable and unstable regions are also known in literature as leading

side and trailing side respectively.

Since the flow field affects the heat transfer coefficient distribution

inside a coolant channel, it is necessary to understand the flow field un-

der the effects of rotation starting from the example shown in Figure

2.29. In this case the secondary flows and the axial flow distribution in

a two-pass channel are depicted for both radial outflow and radial inflow

passes [65]; flow is radial outward in the first pass and radial inward in

the second pass. Since the Coriolis force is the cross product of the an-

gular velocity of rotation and the streamwise coolant fluid velocity, its

direction changes passing from radial inflow to radial outflow pass. For

this reason the Coriolis force is opposite in these two channels, and, as a

consequence, the resultant secondary flows are different.
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Figure 2.28: Stable and unstable regions in a rotating flow (Lezius and
Johnston,1976) [2]

In the first pass, where the direction of coolant velocity is radially out-

ward, the Coriolis force acts towards the trailing surface and shifts the

core flow towards this wall. On the other hand, in the second pass, where

the coolant flow is radial inward, the Coriolis force acts in the opposite

direction and hence shifts the core flow towards the leading surface.

If both the trailing and leading surfaces are symmetrically heated, then

the faster moving coolant near the trailing wall of the first pass would

be cooler and hence the heat transfer would be higher than the slower

moving coolant near the leading wall.

In addition to the Coriolis force the rotational buoyancy, induced by a

centrifugal force, pushes the cooler and heavier fluid away from the center

of rotation. In the first pass this force acts in the same direction of the

Coriolis force and causes a further increase in flow and heat transfer near

the trailing wall; in the second pass the rotational buoyancy combines

with the Coriolis force and make the velocity profile more uniform. The

effects of Coriolis and centrifugal buoyancy forces in rotating channels
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have been confirmed by many velocity measurements with PIV (Particle

Image Velocimetry) or LDA (Laser Doppler Anemometry) systems.

Figure 2.29: Conceptual view of the rotation effects on the coolant flow
through a two-pass rotating channel [65]

It should be noted that the rotational buoyancy induced by the cen-

trifugal force is due to the temperature difference between the coolant

and the channel walls under rotating conditions. Since this temperature

difference varies along the coolant passages, also the rotational buoyancy

varies; for this reason it is possible that the wall heating condition would

affect the heat transfer along the rotor passage. The channel heating

conditions imply that the channel walls may be at the same temperature

(or heat flux) in both streamwise and circumferential directions, or the

trailing wall temperature may be higher than the leading wall tempera-

ture in real turbine blade cooling applications. Han et al. [65] studied the

uneven wall temperature effect on the rotating two-pass square channels

with smooth walls reported in Figure 2.29; results concluded that in the

first pass the local uneven wall temperature interacts with the Coriolis

force-driven secondary flow and enhances the heat transfer coefficients
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in both leading and trailing surfaces, with a noticeable increase in the

leading side, as compared with the uniform wall temperature case. How-

ever, the uneven wall temperature significantly enhances heat transfer

coefficients on both leading and trailing surfaces. Parsons et al. [66] and

Zhang et al. [67] studied the influence of wall heating condition on the

local heat transfer coefficient in rotating two-pass square channels with

90deg ribs and 60deg ribs on the leading and trailing walls, respectively.

They concluded that the uneven wall temperature significantly enhances

heat transfer coefficients on the first-pass leading and second-pass trailing

surfaces as compared with the uniform wall temperature condition.

Some years later other studies were addressed to investigate the effects

of rotation in cooling channels with different shape of ribs with respect

to the usual square ribs of the above mentioned works. For example

Acharya et al. [68] investigated the heat/mass transfer in a square, two-

pass rotating channel with various profiled ribs placed on the leading and

trailing surfaces and showed that certain profiled ribs provide better heat

transfer enhancement than the conventional square ribs. Also the smooth

sidewalls of the channel have a higher heat transfer enhancement with

respect to the smooth walls with square ribs.

In further experimental studies on rotating channels Wagner et al. [69]

reported that the heat transfer coefficients on the trailing surface of the

first pass with radial outflow can be enhanced 2-3 times that of a non-

rotating channel, while the leading surface experiences a declination of up

to 50%; opposite trends were found in the second pass with radial inflow.

By a comparison with previous tests on smooth rotating channels it was

found that the maximum values of the heat transfer coefficients obtained

in ribbed channels under high rotation speed were only slightly above

the highest levels obtained with the smooth channels. Moreover, with

respect to the corresponding results on stationary experiments, it was

found that there is less of an effect of rotation in a ribbed channel than

a smooth channel. Since the heat transfer enhancement of the ribbed

channel is already 3.5 times greater than that of a smooth channel, the

rotation does not provide the same percentage of enhancement in the
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cooling channel with ribs. Other experiments confirmed that the overall

heat transfer in a rotating channel with ribbed surfaces is not affected

by the Coriolis force as much as that in a rotating channel with smooth

surfaces [70].

In addition to the several effects of rotation on ribbed surfaces, also the

effects of model orientation on heat-transfer distribution in rotating chan-

nels must be considered for an accurate design of rotor blades. In fact,

since the turbine blade is curved, the rotor blade cooling passage changes

its orientation with respect to the rotating plane as it moves away from

the middle of the blade; this aspect together with the distribution of sec-

ondary vortices for the different model orientations are well represented

in Figure 2.30.

As regards the effects of this different inclination, Johnson et al. [71] com-

pared heat transfer distributions in serpentine channels for smooth and

45deg angled ribs and for two different channel orientations of 0deg and

45deg with respect to the axis of rotation. By this comparison they found

that the differences between the heat transfer coefficient distributions on

the leading and trailing surfaces due to rotation become smaller as the

model inclination varies from 0deg to 45deg. In the next years other

studies confirmed that these differences are reduced with the increasing

of inclination angle.

Moreover, moving from the leading to the trailing edge of the airfoil, the

cooling passage may change not only its orientation with respect to the

rotating plane but also its cross section and aspect ratio. For example,

as already explained in previous section 2.1.2, the aspect ratio of the

channels may vary from 1:4 to 4 with different channel orientations to fit

the turbine blade profile from the leading to the trailing edge; this range

covers the majority of channels that could be applied in actual blades.

The effects of different aspect ratios in rotating ribbed channels have been

reported by an interesting work of Dutta et al. [72]; they numerically an-

alyzed 5 different aspect ratios (AR=1:4, 1:2, 1:1, 2:1, 4:1) for a radially

outward channel. In case of higher AR (i.e. close to the trailing edge) the

effect of Coriolis force is low because of the small height of the channel,
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while the centrifugal buoyancy is stronger.

Figure 2.30: Typical cooling passage size and orientation with
conceptual views of the rotation induced secondary flows

On the other hand, in case of lower AR, the results show wider dif-

ferences about Nusselt ratio distributions between trailing and leading

surface; among these distributions, for the channel with AR=1:4 lower

values of heat transfer coefficients were found on the leading wall prob-

ably due to the formation of a stagnation zone close to this wall. Then,

as the rotation increases, a back flow starts and this increases again the

Nusselt ratio. The same back flow given by the centrifugal buoyancy is

present for all the aspect ratios and the corresponding increase of Nusselt

ratio occurs around a Rotation number equal to 0.12, whereas, on the

trailing wall, the Nu ratio starts to decrease for Rotation numbers higher

than 0.12.

Other interesting results were found for the extreme aspect ratios; the

case for AR=1:4 (i.e. close to the leading edge) shows the highest differ-

ences of heat transfer distributions between trailing and leading surface

and also the highest pressure drop that increases with the increasing of
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Rotation number. On the other hand, the case for AR=4:1 (i.e. close to

the trailing edge) shows the least differences between trailing and leading

wall heat transfer and the pressure drop has intermediate values with

respect the other aspect ratios.

Also Fu et al. [73] carried out a complete investigation on heat transfer

and friction performance in rotating channels with different values of as-

pect ratios in the same range of the previous study. The effects of channel

aspect ratio were investigated in rotating two-pass channels with smooth

walls and 45deg angled ribbed walls. Moreover, tests were replicated for

three channel orientations with respect to the rotating plane: normal or

90deg, 45deg and 135deg.

The results obtained from this work can be listed as follows:� The 45deg angled ribs configuration gives a heat transfer enhance-

ment approximately 2.5 to 4 times greater than the smooth circu-

lar pipe in the fully developed region for the non-rotating channels,

while it decreases with the increasing of Reynolds number. This

heat transfer enhancement is due to the blockage effect and to the

development of vortices induced by ribs.� The rotation generates differences of heat transfer distributions be-

tween trailing and leading surface for both smooth and ribbed chan-

nels. These differences depend on the channel aspect ratio: the

AR=1:4 channel has larger variations than the AR=4:1 channel,

the AR=1:2 channel has larger variations than the AR=2:1 chan-

nel, and the square channel AR=1:1 has the smallest heat transfer

variations for both smooth and ribbed channels. It should be noted

that a low aspect ratio reduces the rotation induced vortices and

this reduces the heat transfer in rotating condition.� The heat transfer enhancement due to the rotation is generally

reduced in the second pass for both smooth and ribbed channels

because of the 180deg sharp turn effect.� The variation of channel orientation from 90deg to 45deg or from
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90deg to 135deg reduces the heat transfer differences between lead-

ing and trailing surfaces for both smooth and ribbed channels.� The Nusselt number ratio decreases with increasing Reynolds num-

ber in both non-rotating and rotating channels with smooth and

ribbed walls.� The overall heat transfer enhancement is comparable for all the

ribbed channels, but important differences arise with the pressure

losses through the channels. The lowest pressure penalty was found

for the AR=1:4 case; for this reason the thermal performance of

the AR=1:4 channel is superior to AR=1:2, AR=1:1, and AR=2:1

channels, respectively.

All the research works above mentioned concern the study of the ro-

tation effects on different configurations of ribbed and smooth channels

from the leading to the trailing edge; however, it should be noted that

few studies consider the effect of rotation also on impingement cooling.

Epstein et al. [74] studied the effects of rotation on impingement cooling

in the leading edge of a blade. They reported that the rotation decreases

the impingement heat transfer, but the effective heat transfer is higher

than a smooth rotating channel. Two configurations were analyzed: one

with zero stagger of cooling jets (i.e. jet direction is perpendicular to ro-

tation direction) and one with −30deg stagger. It was concluded that the

zero staggered cooling jets have lower heat transfer coefficients compared

to those with a staggered angle.

Some years later Mattern et al. [75] investigated the effect of rotation on

the leading edge impingement cooling by means of the naphthalene sub-

limation technique without including the rotating buoyancy effect. As

depicted by the test model in Figure 2.31, the jet direction has an offset

angle with respect to the rotation direction. In general it was found that

the rotation decreases the impingement heat transfer for all staggered

angles and the maximum reduction of about 40% is obtained when jet

direction is perpendicular to the rotation direction. This is mainly due

to the Coriolis force that creates a swirl action on the spent flow and
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deflects the jets.

Figure 2.31: Schematic of the leading-edge impingement configuration
used by Mattern and Hennecke (1996) [2]

Glezer et al. [76] studied the effect of rotation on swirling impinge-

ment cooling in the leading edge of a blade. They found that a screw-

shaped swirl cooling can significantly improve the heat-transfer coefficient

over a smooth channel and the improvement is not significantly depen-

dent on the temperature ratio and rotational forces. Several tests were

performed to find the optimal location and size of the tangential slots in

order to get the best performance in the leading edge cooling.

Other studies can be found in literature about the investigation of the

rotation effect on impingement cooling in the mid-chord region of the

blade [77] [78].

The rotational effects were also investigated on dimple cooling systems

for rotor blades. For example Zhou et al [79] analyzed the heat/mass

transfer in a rotating square channel with a typical dimple array; they

found that the heat transfer enhancement for the stationary dimple chan-

nel is around two times that of the smooth wall case, while in rotating
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conditions the heat transfer is increased on the trailing dimple surface

and is decreased on the leading dimple surface in a similar manner as the

rotational effect on the trailing and leading surfaces of the square channel

with ribs.

Later Griffith et al. [80] studied the heat transfer performance in rotat-

ing rectangular channels (AR = 4:1) with typical dimple array on both

leading and trailing walls, including the effect of channel orientation with

respect to the plane of rotation. The results show that rotation enhances

heat transfer on both trailing and leading surfaces of the narrow dim-

pled channel in a similar trend as the rotational effect on the trailing

and leading surfaces of the narrow rectangular channel with ribs or pins;

however, the heat transfer enhancement of the ribbed or pinned channel

exceeds that of the dimpled channel. Also, the dimpled channel oriented

at 135deg with respect to the plane of rotation provides greater overall

heat transfer enhancement than the orthogonal dimpled channel.

Finally, as regards rotational effects in pin-fin cooling systems, all the

details are given in the next paragraph.

2.1.4.1 Rotational Effects on Trailing Edge Cooling Systems

This paragraph is located at the end of this literary overview on inter-

nal cooling systems and concerns the rotational effects on trailing edge

cooling systems. In this paragraph the most importants results coming

from experimental works on rotating trailing edges are collected; since a

part of the present research is dedicated to two matrix cooling geometries

for trailing edges in rotating conditions, these results may be considered

as an important basis of comparison for the cooling performance of dif-

ferent solutions.

As already explained in section 2.1.3 the pin-fins represent one of the

most typically used techniques to enhance the overall heat transfer in the

trailing edge region; pin-fin cooling systems have been investigated for

many years, but only recently the effects of rotation have been consid-

ered.

For example Willett et al. [81] [82] studied the effects of rotation on
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heat transfer in narrow rectangular channels with aspect ratio AR=10:1

using both smooth surfaces and typical pin-fin arrays; they also investi-

gated the channel orientation effect with respect to the plane of rotation.

These results prove that the heat transfer enhancement in the pin-fin

channel due to rotation and buoyancy was less than the enhancement

in the smooth channel at the same rotating conditions. In fact it was

demonstrated that the heat transfer enhancement is mainly due to the

flow disturbances induced by pin fins, but in rotating conditions the same

pin fins reduce this enhancement but they do not completely eliminate

it.

In addition to this work, Wright et al. [83] studied the effects of rotation

on heat transfer in narrow rectangular channels (AR=4:1 and 8:1) with

typical pin-fin arrays used in turbine blade trailing edge design and ori-

ented at 150deg with respect to the plane of rotation. Results show that

turbulent heat transfer in a stationary pin-fin channel can be enhanced

up to 3.8 times that of a smooth channel; moreover, the rotation enhances

the heat transferred from the pin-fin channels up to 1.5 times that of the

stationary pin-fin channels. Overall the heat transfer enhancement due

to the rotation occurs on both the leading and trailing surfaces and in-

creases with the increasing of Rotation number.

In more recent years Chang et al. [84], Rallabandi et al.[85] and Liu et

al. [60] carried out experimental thermal analyses concerning rotating

cooling schemes with axial flow discharge, which are thus comparable to

modern trailing edge cavities. In fact these investigations were carried

out inside rotating channels of trapezoidal cross section with flow ejection

at the trailing side through holes or slots.

For example in the study of Liu et al. [60] the heat transfer has been ex-

perimentally investigated inside a wedge-shaped channel to simulate the

trailing edge of a gas turbine blade, where the coolant has been discharged

through six ejection slots (Figure 2.32). Smooth surface as well as the

45deg ribbed surface were tested to evaluate the heat transfer enhance-

ment. In stationary conditions it was found that the Nusselt number is

the highest near the narrow region due to slot ejection for both smooth
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and ribbed cases, while it decreases towards the wide region of the chan-

nel due to reduced slot ejection effect. On the other hand, in rotating

conditions, the effect of rotation is stronger near the wider region (inner

side) than the narrow region (outer side). In addition to this, the slot

ejection dominates over rotation and the heat transfer enhancement due

to the rotation is higher near the narrow region.

Figure 2.32: Schematic of the trailing edge wedge-shaped channel
investigated by Liu et al. [60]

Another interesting study on a realistic trailing edge cavity was per-

formed by Bonanni [59]; in this case they investigated the combined ef-

fects of different orientations of angled ribs and rotation inside a trailing

edge channel with axial flow discharge through a row of enlarged pedestals

(Figure 2.33). In the same study the additional effect of a different blow-

ing tip condition on the heat transfer performance was included. From

this study it was found that the increase of rotational speed promotes

the heat transfer near the hub and the tip in the region upstream the

pedestals. At the same time in the pedestals region the increase of Ro-

tation number for both blowing tip conditions induces a decrease of heat
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transfer coefficient peak on the pedestal leading edges due to the varia-

tion of the incidence angle on the pedestals. In each case the presence of

ribs in the region upstream the pedestals allows to increase the overall

heat transfer performance.

Figure 2.33: Schematic of the trailing edge model investigated by
Bonanni [59]
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2.2 Matrix Cooling Systems

This section is fully dedicated to the description of latticework or ma-

trix cooling systems, which are the main subject of the present work.

Section 2.2.1 gives a general characterization of these systems starting

from a description of the main geometric parameters and of the flow be-

haviour inside the cooling channels.

Section 2.2.2 provides a literary overview about the most significant con-

tributions in the open technical literature.

2.2.1 Basic Principles

Latticework or matrix cooling systems are relatively unknown among

gas turbine manufacturers of the Western world. This is because the

application of the matrix structures as cooling systems in gas turbine

airfoils originates from former Soviet design engineering system and were

largely unknown until the recent dissolution of the Soviet Union in the

1980’s, at which time Russian research works began to appear in the in-

ternational literature.

Despite this fact it is known that many research works concern investiga-

tions on matrix systems, but unfortunately only few of these are reported

in the open literature.

As depicted in Figure 2.34, a matrix system is mainly composed by two

layers of longitudinal ribs with an opposite angle of inclination β forming

a system of crossing sub-channels. These two layers are representative of

pressure and suction sides of a gas turbine airfoil.

When the cooling air enters the matrix, such as at a blade root section,

essentially half flows in the lower layer and half flows in the higher layer

of the structure; the air that reaches the dead-end of each sub-channel

at the side wall flows through the bend and into the sub-channel on the

opposite layer with little or no mixing with the air from the other layer.

Each time the flow hits the side wall it has to turn by the angle 2β

switching from a pressure side sub-channel to a suction side sub-channel

or vice versa. When the flow passes from one sub-channel to another, a
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Figure 2.34: Example of a matrix geometry and a schematic view of the
flow [86]

swirl motion is created and the turbulence of the flow is increased; this

is well shown in the detailed view of Figure 2.35. As a result of this

flow path, the overall motion of the flow in the matrix network forms

complicated spirals or vortices.

As indicated in Figure 2.35 the most significant geometric parameters are

those related to the single sub-channel; the sub-channel is described by

the rib height H and the channel width Wc that define the characteristic

hydraulic diameter of a matrix geometry. Moreover, the rib thickness

t together with the number of sub-channels allow to define the open

area available for the flow passage; in fact, keeping constant the overall

width of the matrix channel, an increase of rib thickness or an increase

of number of sub-channels implies a reduction of the open area.

In addition to this, an increasing of the overall width allows a longer flow

development length Lc between the turn regions; this could contribute

to increase the overall pressure loss through the matrix channel.

Also an increase of overall length L or an increase of the rib inclination
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Figure 2.35: Main geometric parameters of a matrix channel and
detailed view of the flow turn at the sidewall [86]

angle β contribute to increase the overall pressure loss. Moreover, it

should be noted that, even if the overall length does not change, an

increase of β is associated with a higher number of flow turns at the side

walls along the whole channel; also this results in an increase of pressure

losses.

The matrix structure in Figures 2.34 2.35 is a so-called closed matrix,

where the several sub-channels reach the side wall and the flow at the

side wall is forced to flow on the opposite sub-channel without mixing

with the flow coming from the other sub-channels.

An alternative design is called open matrix, where a clearance is located

between the end of the sub-channels and the side wall; these clearances

are indicated in Figure 2.36 as ∆1 and ∆2. In an open matrix the flow

that reaches the end of a sub-channel mixes with the flow in the clearances

∆1 and ∆2; the air that flows into new sub-channels starting at the

clearances, is taken from the flow in the clearance channel.

It is known that internal cooling systems based on open matrix structures



2.2 Matrix Cooling Systems 71

are adopted in some gas turbines produced by Siemens probably at the

trailing edge of vanes and blades [7]. Unfortunately no more information

is available about open matrix systems; all the other works reported in

literature are about closed matrix systems.

From the description of the flow path through a matrix geometry it is

clear that a high and uniform level of turbulence is present for the whole

length of the matrix channels.

Several factors contribute to raise this turbulence level:

1. At the turning regions the air flows from one sub-channel to another

one creating a strong swirl motion

2. Interactions are present between the flow in crossing sub-channels

3. Interactions are generated between the flow in a sub-channel and

the crossing ribs on the opposite side

Figure 2.36: Scheme of an open matrix geometry [7]

This high and uniform level of turbulence results in an increase of the

heat transfer coefficient through the matrix sub-channels.
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Moreover, the heat transfer enhancement is given not only by the high

flow turbulence but also by the high heat transfer surface area provided

by the longitudinal ribs of the whole lattice-matrix structure. In addition

to this, the ribs act as fins and determine a high heat removal from the

endwall surfaces depending on their fin effectiveness. The heat transfer

contributions given by the additional heat transfer surface and the fin

effectiveness represent the so-called fin effect of the longitudinal ribs.

Recalling the theory of finned surfaces it must be considered that a fin

represents a finite conduction resistance to heat transfer from the end-

wall surface and a temperature gradient must exist along the fin; in fact,

depending on its thermal conductivity, the fin is not of uniform temper-

ature but is cooler at the tip than the hot base surface. So the effective

temperature difference is lower compared to an ideal fin where the whole

fin is at wall temperature. This effect is well described by the rib effi-

ciency η defined as the ratio between the actual heat transfer rate and

the maximum heat transfer rate at which a fin could dissipate heat if the

entire fin surface were at the base temperature. A common definition of

η is:

η =
qf

qmax
=

tanh (m · L)
(m · L) (2.1)

where m is the so-called fin parameter [87] and L is the fin height.

The equation for the rib efficiency may change depending on the heat

transfer condition on the fin top: isolated or convective. More details

about this definition are given in [87].

In addition to this, it should be considered that the fins are used to

increase the heat transfer by increasing the effective surface area. For this

reason, to evaluate the heat transfer enhancement due to the adoption

of fins it is possible to use the so-called fin effectiveness εf defined as the

ratio of the fin heat transfer with fin to the heat transfer that would exist

without fin:

εf =
Arib

Ab
· η (2.2)
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The longitudinal ribs forming a matrix structure offer several benefits

not only in terms of heat transfer; in fact the presence of distributed

internal ribs of full or partial extent allows also to improve the structural

strength of the ceramic core for the investment casting resulting in an

increase of the component lifetime.

It should be noted that the development of the casting technology for the

manufacturing of robust ceramic cores for matrix structures in current

former Soviet states (i.e. Russia and Ukraine) has been parallel to that

for the realization of ribbed serpentines in the Western countries.

2.2.2 Literary Overview

2.2.2.1 Goreloff et al. (1990)

The first investigations on matrix cooling systems reported in the

open literature are referred to Goreloff et al. [88], even if only few infor-

mation are available about this work.

They measured heat transfer coefficients on leading and trailing matrix

passages with different inclinations of ribs from 30deg to 120deg. Com-

pared to a smooth passage, these results proved that the greatest heat

transfer enhancement occurs at 35 deg over a range of Reynolds number

from 5000 to 20000. Heat transfer coefficients were measured on the

blades using the zinc solidification process; according to this technique,

the overall heat transfer is evaluated from the mass of zinc crust result-

ing from the solidification process of molten zinc by means of the coolant

blowing. More details about this technique are given by Sundberg [7].

An example of the experimental blade used by Goreloff et al. is shown

in Figure 2.37.

2.2.2.2 Nagoga (1996)

A more complete and detailed work about latticework or matrix ge-

ometries was carried out by Nagoga [90]; this is the only work that con-

tains heat transfer and friction correlations for these structures. These

correlations together with their ranges are reported in the work of Sund-
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Figure 2.37: Experimental lattice cooled blade (Goreloff et al. 1990) [89]

berg [7].

First of all, Nagoga compared the investigated matrix geometries to a

matrix with straight channels (i.e. β = 0deg) and found a heat transfer

enhancement; this approach was considered more reliable with respect to

compare the matrix with the flow in a long smooth duct.

Nagoga performed measurements on test models of closed matrix ge-

ometries similar to that shown in Figure 2.38.

In his experiments he distinguished between the heat transfer results ob-

tained on the base shells from those obtained on the side bounds; the

base shells correspond to the suction and pressure sides of a turbine air-

foil and in other works they are called endwalls or primary surfaces, while

the side bounds are the side walls and correspond to the turning regions

of the flow.

Moreover, according to the nomenclature used by Nagoga, the matrix can

be divided into two parts: the initial and the basic section. The initial

section consists of the channels that begin at the inlet of the matrix and

end at the side bound, while the basic section consists of the channels
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Figure 2.38: Example of experimental matrix model used by Nagoga [7]

beginning at a side bound and ending either at a side bound or at the

outlet of the matrix.

For the channels in the initial section Nagoga found the same heat trans-

fer and flow behaviour of a smooth duct.

On the other hand, for the basic section, he found that the heat transfer

was higher than that in a straight duct; in particular the local enhance-

ment factor varied from 1.28 to 2.

Moreover he found that this heat transfer enhancement decreases with

the increasing of Reynolds number and with the increasing of the axial co-

ordinate x/d along the streamwise direction; for example, local values of

Nusselt number Nux are close to those in a smooth duct when x/d > 30.

It was also found that the local Nusselt number reaches a maximum right

after each turn and then reduces its value along the channel.

As regards the influence of the rib inclination angle β, Nagoga found that

both the local Nusselt number Nux and the Nusselt number averaged on

the length of the sub-channel Nul increase with the increasing of β and

reach the maximum heat transfer enhancement for β = 45deg.
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Nagoga also concluded that the rib pitch, the relative sub-channel depth,

the cross section of the sub-channel and the type of side bound (i.e. con-

cave or flat) have negligible effects on the local and average heat transfer.

As regards the heat transfer results on the side bounds he performed ex-

periments in order to understand the heat transfer on the internal surface

on the semi-cylindrical side bounds, which corresponds to the leading

edge on a turbine blade. From these investigations he concluded that the

heat transfer on the side bounds were higher than for a duct with straight

sub-channels and that the heat transfer in this region depends on the rib

inclination angle β. By measuring the local and average Nusselt numbers

along lines on the internal concave surface of the side bounds Nagoga also

developed correlations for this region. These correlations are reported in

the work of Sundberg [7].

On the same matrix geometries Nagoga measured the pressure losses and

developed friction factor correlations.

He found that the friction in the initial section is similar to that in a

smooth, straight duct with β = 0deg, while in the basic section the fric-

tion exceeded that in a duct with straight sub-channels. Moreover, he

found that the enhancement of friction factor is always higher than the

heat transfer enhancement.

Comparing the heat transfer and friction results, Nagoga concluded that

the intensification of heat transfer and friction in matrix channels is

caused by the flow rotation induced by the turn of the flow at the side

bound of the matrix. At the side bound, the cooling air overflows from

one channel to the opposite in a spatial turn. The intensity of friction,

heat transfer and rotation is maximal right after the spatial turn, and

then decreases with the increasing of distance from the side bound. All

these three factors depend on the rib inclination angle β and reach a

maximum for β = 45deg. Moreover, friction, heat transfer and rotation

in a sub-channel are not affected by the coplanar crossing flow of the

opposite sub-channel [7].

As regards the overall performance of matrix geometries compared to

smooth passages, Nagoga concluded that the heat transfer enhancement
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is in the range 2.0÷ 3.1 for several inclination angles between ribs, while

the friction factor enhancement is about 1.8÷ 2.1. However the best per-

formance is obtained at 45deg to the flow direction; this is better than

other known cooling methods such as serpentine ribbed serpentines and

pin fin arrays, but it is less than an impingement cooling on a concave

surface.

Other comparisons were made in terms of cooling effectiveness (calcu-

lated according to the equation 1.1) as a function of relative mass flow

of coolant; even in this case the matrices have better performance than

any other cooling methods.

Nagoga also investigated the effects on life of turbine blades and vanes;

for this reason he compared matrix geometries to: pin fin turbulators,

rectangular ducts with two opposite ribbed walls and dimpled channels.

Numerical and practical tests showed that the matrix increased the blade

life in high pressure turbines in 40 times, which was 3 to 4 times more

than pin fins and ribbed ducts [7].

Heat Transfer and Friction Correlations - Nagoga(1996)

This paragraph reports the heat transfer and friction correlations to-

gether with their ranges extracted from the work of Nagoga [90]; these

correlations are also reported by Sundberg [7].

First of all, it should be noted that correlations are given for both the

initial and basic section of the matrix geometry according to the above

mentioned nomenclature given by Nagoga.

The heat transfer correlations for the initial section are as follows:

Nux = 0.0289 · Re0.8x · Pr0.4 ·
(
Tw

Tf

)−0.55

(2.3)

Nul = 0.0361 ·Re0.8l · Pr0.4 ·
(
Tw

Tf

)−0.55

(2.4)

Nud = 0.023 ·Re0.8d · Pr0.4 ·
(
Tw

Tf

)−0.55

·K (2.5)
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where Nux is the local Nusselt number, Nul is the Nusselt number

averaged on the development length of the channel between the turning

regions l (or Lc in Figure 2.34) and Nud is the Nusselt number based on

the sub-channel hydraulic diameter.

The parameter Tw/Tf in Equations 2.3, 2.4 and 2.5 is the ratio of the

wall temperature Tw to the coolant temperature Tf , while K is defined

as:

K = 1 + 0.63 ·
(

l

d

)−0.45

·
(
Red · 10−4)−0.36

(2.6)

Depending on the different Nusselt correlation to use the following

definitions of Reynolds number must be applied:

Rex = Red ·
(x
d

)
(2.7)

Rel = Red ·
(

l

d

)
(2.8)

where Red is the Reynolds number based on the sub-channel hydraulic

diameter d.

As regards the friction, the correlation that gives the local friction factor

in the initial section is:

fx = 0.43 ·Re−0.2
x (2.9)

On the other hand the heat transfer correlations for the basic section

are:

Nux = 0.0361 ·n ·
[
1 + 12.77 · sin2(2β)

]
·Renx ·Pr0.4 ·

(
Tw

Tf

)−0.55

(2.10)

Nul = 0.0361 ·
[
1 + 12.77 · sin2(2β)

]
· Renl · Pr0.4 ·

(
Tw

Tf

)−0.55

(2.11)

where n depends only on the rib inclination angle as follows:
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n = 0.8 ·
{
1 + 0.2 ·

[(
4β

π
− 1

)2

− 1

]}
(2.12)

As regards the friction in the basic section, the correlation gives the

value of friction factor based on the development length of the channel l

as follows:

f = 0.43 ·
[
1 + 28 · sin3(2β)

]
Ren−1

l (2.13)

The ranges, for which the above reported correlations of Nagoga are

valid, are shown in the following table.

Table 2.1: Ranges for Nagosa’s correlations [7]

Parameter Range

Red 3000÷ 60000

Tw/Tf 1.4÷ 2.2

β 0÷ 70deg

d 1.5÷ 3.0mm

L/W 0.96÷ 5.2

W/d 6÷ 34.0

l/d 12÷ 67.0

2.2.2.3 Gillespie et al. (2000)

Some years later the work of Nagoga, Gillespie et al. [89] performed

flow and heat transfer measurements on a scaled up model reproducing

a cooling cavity in the trailing edge region; the model has also a flow

ejection through a set of film cooling holes situated along one side of the

passage.

This test model was manufactured using perspex in order to perform heat
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transfer measurements using a transient liquid crystal technique. It has a

trapezoidal cavity cross-section with two layers of 45deg angled ribs; these

ribs have height such that the top of each rib lies on the centreline of the

cavity. Then the ribs from the two opposite layers, which touch along the

centreline, are almost perpendicular to one another. In the engine these

ribs would be formed in a single integral casting. Figure 2.39 reports two

photographs of the test model used in these experiments.

Figure 2.39: Photographs of the test model used by Gillespie et al. [89]

Local heat transfer coefficient distributions on the model surfaces

were measured using a transient liquid crystal technique based on a dou-

ble thermochromic liquid crystal coating displaying colour at 25.2�and

30.6�. This coating was applied to all surfaces of the lattice and to the

web (i.e. the leading side of the geometry opposite to the surface with

film cooling holes).

Since transient tests were performed in according to a method developed

by Gillespie in a previous work [91], the local HTC values were found from

the surface temperature rise through the solution of the one-dimensional

Fourier equation:
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Tw−Tinit

Taw−Tinit
= 1− eβ

2 · erfc(β)

β = h
√

t√
ρcpk

where t is the time istant at which the heat transfer coefficient h is

evaluated, while ρ, cp and k are density, heat capacity and thermal con-

ductivity of perspex. The term erfc is a complementary error function;

more details about this function are given by Gillespie [91].

In the present work the authors derived the distributions of heat transfer

coefficients h according to two approaches: one based on the local mixed

bulk temperature, one based on the inlet temperature.

Figure 2.40: Reduction of coolant temperature potential (Tgas − Tw)[89]

Then an energy balance approach was used to obtain the local heat

transfer driving gas temperature and the local heat transfer coefficient

distribution based on this temperature distribution. This approach takes

into account two important and independent features of the flow field:

1. The local flow velocity through the system must reduce from root

to tip as coolant is bled off to the film-cooling holes.
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Figure 2.41: Heat transfer coefficients based on the inlet and local mixed
bulk temperature [89]

2. Heat pick up through the system reduces the cooling potential of

the flow.

Considering that the local heat flux at any point can be described in

terms of a temperature difference and a suitably defined heat transfer

coefficient, hence it is possible to establish the following relationship:

Tmb − Tw

Tinlet − Tw
=

hinlet

hmb
(2.14)

where hinlet and hmb are the heat transfer coefficients based on the

inlet temperature and on the mixed bulk temperature respectively.

Then an energy balance, based on the following equation, was applied to

calculate the spanwise average of hmb across the surface:

hmb

hinlet
=

1

1−
∫
A

hlocal,inletdA

ṁ·cp

(2.15)

Applying the energy balance approach (Equation 2.15) the reduction

of coolant temperature potential has been derived as reported in Figure

2.40 and the heat transfer coefficients distributions along the streamwise
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direction have been calculated; an example of hmb and hinlet distributions

for two different Reynolds numbers are shown in Figure 2.41. The heat

transfer coefficient hmb maps inferred from the previous distributions for

the two different Reynolds number are reported in Figures 2.42a and

2.42b. The same figures also report the HTC maps for the leading side

or web of the geometry. Similar distributions were obtained for the other

flow conditions.

From this detailed study Gillespie et al. concluded that all the measure-

ments have high level of heat transfer enhancement, even though a good

uniformity is not reached for this configuration with film cooling holes.

For the same reason a reduction of the cooling potential through the lat-

tice system was found; both flow field and heat transfer measurements

demonstrated that this reduction is due to a combination of the flow

velocity reduction (due to the film cooling bleed) and of the heat pick

up.

(a) hmb map at Re = 17900 (b) hmb map at Re = 25800

Figure 2.42: Maps of heat transfer coefficients hmb based on the local
mixed bulk temperature for two different Reynolds number [89]

2.2.2.4 Bunker (2004)

A detailed investigation on heat transfer coefficients and pressure

losses in lattice-matrix channels was performed by Bunker in 2004. In

the same year he presented the results of experiments in both stationary

conditions (Bunker [86]) and rotating conditions (Acharya et al. [92]).



84 2. Overview of Gas Turbine Cooling Systems

The results of the investigations on stationary experiments are reported

in this section, while all the details of the rotating experiments will be

given in the next section.

Unlike the study of Gillespie et al. [89] reported in the previous section

about the convergent model for a trailing edge, Bunker performed exper-

iments on test models with a constant channel and rib height.

In this investigation he used two methods to determine the local and over-

all heat transfer coefficients for two matrix models. Both thermochromic

liquid crystals (TLCs) and infrared thermographic (IR) methods were

applied on acrylic and metallic models respectively; in this way it was

possible to discern the heat transfer coefficients without and with the

effects of internal rib/fin effectiveness.

In the first case heat transfer tests with TLCs were performed in steady

state conditions on acrylic test models with insulating ribs in order to de-

termine heat transfer on the primary or endwall surfaces representing the

pressure and suction side walls of an airfoil. In the second case heat trans-

fer tests with an infrared camera were performed in transient conditions

on metallic models with metal ribs in order to evaluate the additional

impact of fin effectiveness provided by ribs.

Tests were executed varying the Reynolds number based on the sub-

channel hydraulic diameter from 20000 to 100000 on two geometries with

a rib angle of 45deg. The two geometries have the same geometric param-

eters with the exception of the overall width W resulting in a different

number of sub-channels: 4 for the geometry with the lower width W and

6 for that with the higher W . Moreover, it should be noted that the

geometry with a higher overall width allows a longer flow development

length Lc. Moreover, in all test cases the sub-channel aspect ratio is close

to 1, while the average number of turns experienced by the flow in any

sub-channel is 3.

All the geometric parameters for the two test models are indicated in

Table 2.2. These parameters are related to the Figure 2.35 shown in the

previous section 2.2.1.

The acrylic test models were installed in a test facility (Figure 2.43) com-
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posed by a plenum vessel, a smooth developing flow section and a Liquid

Crystal Thermography system with a RGB camera. Thermochromic liq-

uid crystals (40C5W) with a wide band response in the range between

40�and 45�were applied on two layers representing the two primary

surfaces to be investigated, while a thin foil heater made of Inconel was

attached to these surfaces in order to set a uniform heat flux during each

test.

Table 2.2: Acrylic model dimensions for the two geometries tested by
Bunker [86]

Parameter Model #1 Model #2

β 45 45 deg

H 1.035 1.035 cm

W 6.096 9.144 cm

Wi 1.143 1.143 cm

Wc 0.808 0.808 cm

ti 0.381 0.381 cm

t 0.269 0.269 cm

H/Wc 1.28 1.28 -

Dh 0.90748 0.90748 cm

L 18.288 27.432 cm

Lc 8.621 12.932 cm

Lc/Dh 9.500 14.250 -

# Average turns 3 3 -

# Sub-channels 4 6 -

The surface temperature measurements were made using the steady

state liquid crystal hue detection method of Farina et al. [93].

Then the local heat transfer coefficient h was derived from the following

definition:

h =
(Qtotal −Qloss)

[Asurface · (Twall − Tsurface)]
(2.16)
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Figure 2.43: Test apparatus for heat transfer tests on acrylic test models
[86]

where (Qtotal − Qloss) is the input heater power per unit area after

the evaluation of heat losses Qloss, Twall is the local interior wall tem-

perature derived from the local liquid crystal and Tair is the bulk air

temperature. In all tests the minimum temperature potential between

the heated surface and the bulk air was maintained at 20�.

An example of the heat transfer coefficient maps for the geometry

with 4 sub-channels and hence lower overall width (i.e. Model #1) is

shown in Figure 2.44a, while the corresponding HTC distributions lat-

erally averaged for the same Reynolds numbers are reported in Figure

2.44b.

Maps in Figure 2.44a show that the heat transfer coefficient only increase

after the flow has encountered the first side wall turn region. Then higher

HTCs are obtained in the regions where the flow comes out of the turn;

in fact the heat transfer coefficient immediately after a turn region is

essentially doubled from that on the opposite side of the channel where

the flow is entering a turn.
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(a) HTC map for primary surface
(b) Laterally averaged HTC

distributions for primary surface

Figure 2.44: HTC map and laterally averaged distributions of heat
transfer coefficients for primary surfaces of geometry with narrow

sub-channels [86]

Moreover, both the HTC maps and HTC distributions show that a high

and uniform level of heat transfer is maintained both axially and laterally

for each Reynolds number.

From these results obtained only on the primary or endwall surfaces of

the matrix models, Bunker concluded that the global average heat trans-

fer enhancement lies in the range of 1.5 to 1.75; the model with 4 sub-

channels and narrow passages provides the highest levels especially at the

lower Reynolds number (Figure 2.45).

A second experimental campaign was carried out to evaluate the ad-

ditional heat transfer contribution of fin effectiveness provided by ribs

and hence the overall heat transfer enhancement with fin effects.

In this case Bunker applied a method developed by Nirmalan et al. [94];

this method consists in a transient infrared thermography technique and

it was adopted to provide a direct quantitative measurement of the inter-

nal heat transfer distribution within a cooled turbine airfoil.

Moreover this method uses measured flow rates and part geometry in

conjunction with transient infrared data and inverse conduction analysis

to determine the internal full-surface HTC distribution. For this study

Bunker simplified this method through the elimination of the detailed

finite element model of the channel structure. Instead, the channel outer
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Figure 2.45: Heat transfer enhancement evaluated on the primary
surfaces of the two acrylic models [86]

wall is considered to be a uniform sheet of metal with constant thickness.

The thermal transient response of the external surface temperature in-

cludes the effects of the internally conductive ribs of the several sub-

channels.

As regards the heat transfer coefficient on the rib surfaces, this contri-

bution is lumped into the wall response as a fin effectiveness. Since this

term may be approximated by a simple one dimensional wall of finite

thickness, neglecting conduction laterally within the wall, then a lumped

thermal capacity model is used to determine the internal heat transfer

coefficient. This thermal capacity model is expressed as:






Ts(t)−Tinitial

Tcoolant−Tinitial
= e−at

a = h
̺lcp

where l is the constant thickness of the channel outer wall.

To determine more accurately the heat transfer coefficient on the rib sur-

faces, this lumped parameter also takes into account: a one-dimensional
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Figure 2.46: Test apparatus for transient heat transfer tests on metallic
models using an IR camera [86]

temperature difference across the finite wall thickness and a simple heat

balance between the adjacent elements to include the lateral heat con-

duction.

Figure 2.46 depicts the test section for the transient heat transfer tests

on these metallic models. It mainly consists of a plenum chamber with a

lattice-matrix test model affixed on the top; the plenum is supplied by a

compressor air.

During a heat transfer test a removable heater jacket covers and pre-

heats the test model to about 150�. At a certain time the heater jacket

is quickly lifted and the infrared camera starts to acquire images of the

external surface temperature as a function of time.

For these experiments two metallic test models were employed, both

with a rib inclination angle of 40deg instead of the 45deg angled ribs

adopted for the acrylic models; one has 4 sub-channels, as one of the

previous acrylic models, and one has 8 sub-channels. Data for these

geometries are reported in Table 2.3. It should be noted that in the
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Table 2.3: Metallic model dimensions for the two geometries tested
during transient heat transfer tests [86]

Parameter Model #3 Model #4

β 40 40 deg

H 0.635 0.635 cm

W 5.080 10.160 cm

Wi 1.016 1.016 cm

Wc 0.778 0.778 cm

ti 0.254 0.254 cm

t 0.195 0.195 cm

H/Wc 0.816 0.816 -

Dh 0.699 0.699 cm

L 25.4 25.4 cm

Lc 7.903 15.806 cm

Lc/Dh 11.302 22.604 -

# Average turns 4 2 -

# Sub-channels 2 8 -

geometry with a higher overall width W (Model #4) the flow experiences

a lower average number of turns (2 instead of 4) because of the longer

flow development length Lc between the sidewalls.

The results derived from the infrared images provide the overall heat

transfer distributions; unlike the previous results on primary surfaces,

these maps also include HTC values on rib surfaces as the effective total

heat transfer coefficient experienced by an airfoil pressure or suction sur-

face.

As in the previous HTC maps on the primary surfaces (Figure 2.44a) the

distributions of heat transfer coefficient is quite periodic with the repeat-

ing ribs and HTC values are higher in the turning regions over the most

length of the model.

An example of these maps is shown in Figure 2.47, while the overall heat

transfer enhancement derived from these results is given in Figure 2.48.
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In this case both narrow and wide geometries have enhancement factors

of 2.5 to 3.

Comparing the total or overall HTC enhancement of Figure 2.48 to those

of Figure 2.45, it is clear that the difference is due to rib/fin effectiveness.

Moreover, these total enhancements correspond very well with those esti-

mated using a simple fin effectiveness method based on the fin effective-

ness theory and reported by Bunker in this same work.

Therefore, it can be concluded that the heat transfer coefficients mea-

sured on the primary surfaces are also applicable on the rib surfaces in

terms of average results; as a consequence, the HTCs distributions on the

primary surfaces can be also extended to the rib surfaces. This means

that the treatment of the matrix ribs as simple fins is appropriate and

each rib surface has about the same HTC value on average as that of the

primary surface.

In addition to this, it can be concluded that the range of overall heat

transfer enhancements 2.5÷ 3 rivals with the commonly used turbulated

channels; these values are little higher for geometry with narrow sub-

channels. According to these results, matrix cooling geometries have a

significant potential compared to other more conventional cooling meth-

ods.

2.2.2.5 Acharya et al. (2004)

This section describes the work performed by Bunker together with

Acharya et al. [92] about the effects of rotation on heat transfer co-

efficients and friction factor distributions on matrix geometries. They

analyzed the performance of a matrix geometry in a rotating test rig

varying Reynolds number from 5000 to 50000, Rotation number from 0

to about 0.086 and the inlet density ratio from 0.075 to 0.18.

A matrix geometry was installed on the arm assembly of the rotating test

rig shown in Figure 2.49. An electrical motor drives the entire rotating

assembly varying the rotational speed from 0 to a maximum of 1500 rpm.

The air is provided by a compressor-dryer-reservoir system, is circulated
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Figure 2.47: HTC maps from transient infrared method for two
Reynolds numbers (Model #3) [86]

Figure 2.48: Overall heat transfer enhancement of the two investigated
geometries as a function of Reynolds number [86]

through a refrigerant cooling loop to achieve the desired density ratio

and flows radially into the test model.

Tests were executed on one test model with ribs inclined at 45deg to
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Figure 2.49: Rotating test rig used by Acharya et al. [92]

the radial direction and with 6 sub-channels. The model is formed by

two layers: leading and trailing side. A top section view of the leading

side is represented in Figure 2.50.

Each layer is composed by a frame and a matrix geometry. The frame

is made of a laminated glass fabric (G-10 Garolite) with a thermal con-

ductivity of 0.1 W/mK, while the internal matrix geometry is formed

by 17-copper elements, with the adjacent elements separated from each

other by insulation spacers of G-10 Garolite.

The passage cross-section has an aspect ratio of 4:1 with dimensions of

2.54 cm by 0.635 cm. The trailing half of the model is a mirror image of

the leading side except that the latticework ribs on the copper elements

are orthogonal to the ones in the leading side.

Each copper plate is equipped with a Minco Kapton etched foil heater,

and a K-type thermocouple; in this way it is possible to individually regu-

late the heat flux of each copper plate to get an isothermal wall condition

as measured by the thermocouple.

The isothermal wall condition was achieved by varying the power
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Figure 2.50: Test model (leading side) installed on the rotating test rig
[92]

input to each heater attached to the individual copper plates. In addition

to this, the temperatures of each copper plate was maintained within

±0.5�of the average wall temperature Tw. Different density ratios were

obtained by varying Tw and inlet flow temperature Tin.

The local heat transfer coefficient hi is calculated for the i − th copper

plate from the net heat flux qnet,i, the wall temperature of the plate Tw

and the local bulk mean air temperature Tb,i as follows:

hi =
qnet

(Twall − Tb,i)
(2.17)

where qnet = (Qi −Qloss,i)/Ai, while Qi = I2i ·Ri is the power input

for each copper element.

The term Qloss,i represents the heat loss from the i − th element con-

sidering Ai as the total area (including the area of rib surfaces) and is

determined by a series of stationary tests without flow; when the station-

ary condition is reached it means that the power input is balanced by the
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heat loss.

As regards the local bulk mean air temperature Tb,i, this is calculated

at the mid point of each copper plate and is given by an energy balance

equation as follows:

Tb,i = Tin +

[
Σi−1

j=1(Qj −Qloss,j)leading + 1
2
(Qi −Qloss,i)leading

]

ṁ · cp
+

+

[
Σi−1

j=1(Qj −Qloss,j)trailing + 1
2
(Qi −Qloss,i)trailing

]

ṁ · cp
(2.18)

where ṁ is the mass flow rate and cp is the specific heat capacity for

the air.

Once calculated the heat transfer coefficients hi, Nusselt numbers Nui,

based on the sub-channel hydraulic diameter Dh are calculated as:

Nui =
hi ·Dh

k
(2.19)

Nusselt numbers Nui may be normalized by the Dittus-Boelter cor-

relation (Nu0 = 0.023 · Re0.8 · Pr0.4) valid for fully turbulent developed

flow in smooth ducts in order to obtain the heat transfer enhancement.

The performance of this test model were also evaluated in terms of fric-

tion factor. Starting from the measurement of the overall pressure drop

∆p through the model, the average friction factor f is calculated as:

f =
∆p ·Dh

4 · L · 1/2 · ρ · V 2
(2.20)

where L is the distance between the two pressure taps, while V is the

mean velocity of the flow.

To obtain the friction enhancement with respect to the flow condition in

a smooth duct, the friction factor f is normalized by f0 derived from the

Karman-Nikuradse correlation (f0 = 0.046 ·Re−0.2).

As regards the heat transfer results Acharya et al. evaluated the Nusselt

number averaged along both leading and trailing surfaces as a function of
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the Reynolds number based on the sub-channel hydraulic diameter Res.

By the comparison of the present data with the stationary data of Bunker

[92] with 45deg angled ribs made of insulating material and 6 sub-channels

a good agreement was found; in fact, as shown in Figure 2.51, present

data with metal ribs is only about 20% higher than the data of Bunker

with insulating ribs due to fin-effects.

Higher differences were found from the comparison with the data of

Bunker for metallic models. This could be the result of several different

factors such as: different boundary conditions (i.e constant wall temper-

ature in the present experiments versus constant heat flux in Bunker’s

work [92]), differences in the transient technique [92] versus the present

steady state technique, variations in rib angle (45deg in the present case

to 40deg in [92]), and differences in the number of sub-channels (6 in the

present study to either 4 or 8 in [92]).

Moreover, the same Figure 2.51 indicates that the overall averaged and

normalized Nusselt numbers are relatively independent of the Reynolds

number and show only a small decrease at higher Res.

The same results reported as a function of Rotation number Ros allow

to better highlight the rotational effects (Figure 2.52); it is clear that the

rotation does not produce a significant effect on the channel-averaged

Nusselt number for the whole range of Reynolds number, with the excep-

tion of the lowest Res = 5000, where a reduction of nearly 25% is present

at Ros = 0.086.

The section view of the test model in Figure 2.50 shows two rows of cop-

per elements (inner and outer) for the leading side, but other two rows

are present for the trailing side. For this reason, since at each streamwise

location, two spanwise copper elements are used, Nusselt number infor-

mation is obtained at two spanwise locations (inner and outer).

Figure 2.53 shows the averaged normalized Nusselt numbers asNus/Nus0

distributions along the inner and outer locations at Res = 20000 for

stationary conditions. These distributions are quite uniform along the

streamwise direction from the inlet to the outlet with heat transfer en-

hancement levels in the range of 2÷ 2.5.
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Figure 2.51: Sub-channel averaged Nusselt numbers as a function of
Reynolds number Res [92]

From these distributions an interesting result should be noted: in fact

the heat transfer along the outer row of the leading side (suction-side of

the airfoil) is about 20% higher than that along the inner row, while

on the trailing side (pressure-side of the airfoil) the heat transfer along

the inner row is comparably higher than that along the outer row. The

average Nus/Nus0 along the leading inner row and the trailing outer

row is 2.0, while the average Nus/Nus0 along the leading outer row

and the trailing inner row is about 2.4 for the samer Reynolds number

(Res = 20000). This interesting result is related to the coolant flow path

through the matrix sub-channels; in fact the higher heat transfer values

along the leading-outer and trailing inner are associated with the flow

turning into the sub-channels from the opposite walls at these locations.

In these regions the flow turns and impinges on the opposite walls; this

impingement effect contributes to raise the heat transfer coefficient. Sim-

ilar results were found by Bunker [86] and also by Wagner et al. [69] and
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Figure 2.52: Sub-channel averaged Nusselt numbers as a function of
Rotation number Ros [92]

Zhou et al. [95] in their studies of flow past bends in serpentine cooling

passages.

In view of the differences reported in Figure 2.53 for the stationary

experiments along the inner and outer sides of the leading and trailing

surfaces, the rotation effects were examined along the four individual

rows in terms of Nus/Nust distributions for different Rotation numbers,

where Nust is the corresponding Nusselt number for the stationary con-

dition (0 rpm).

As regards the rotating results, the Nus/Nust streamwise distributions

along each of the four rows for different values of the Rotation number

indicate that the heat transfer is insensitive to the rotational effects till

X/Dhs = 40 (i.e the initial 2/3rds of the coolant passage). An example

of these distributions for the leading outer row is reported in Figure 2.54;

the results for the other rows can be seen in Acharya et al. [92].

The differences found for X/Dhs > 40 do not conform to the rotation

effects observed in smooth or normal/angled-ribbed coolant passages; in
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Figure 2.53: Nusselt number distributions on individual rows for
stationary experiments [92]

fact it is well known that in the smooth and ribbed passages with radial

outflow, rotation-induced secondary flow enhances the heat transfer on

the pressure side or trailing wall, but reduces the heat transfer on the

suction-side or leading wall. In the present case the rotation effects are

reduced by two factors: first, the increased area due to the presence of

ribs leads to significant viscous or frictional effects, second, the repeated

turning of the flow through the bends makes it much more difficult to

maintain sustained secondary patterns, compared to the flow in straight

smooth and ribbed passages. Since the matrix model shows this insensi-

tivity to rotational effects for intermediate and high values of Reynolds

number, it can be concluded that there is not evident a heat transfer

degradation with rotation.

On the other hand, at the lowest Reynolds number Res = 5000, a signif-

icant rotation effect is observed in the second half of the coolant passage

(X/Dhs > 30), with a decrease in average Nusselt number with the in-

creasing of Rotation number Ros (Figure 2.55). Other results show that
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Figure 2.54: Rotation effects on the leading outer row at Res = 20000
[92]

the heat transfer performance appears to degrade with the rotation espe-

cially in the trailing side of the matrix model.

As regards the friction results, Acharya et al. found that the normal-

ized friction factor distributions fs/fs0 are insensitive to the increase of

Rotation number, while there is a linear decrease with the increasing of

Reynolds number (Figure 2.56).

Finally, by combining heat transfer and friction results, the trend of Ther-

mal Performance Factor TPF with the Reynolds number was determined;

TPF values are in the range of 1.2÷1.3 and are comparable to values for

90deg ribbed square channel over the same Reynolds and Rotation ranges.

However, at higher Reynolds number the fs/fs0 ratio decreases with Res,

while the Nus/Nus0 ratio remains relatively constant; this implies that

the TPFs for the matrix geometries becomes higher for Res > 50000.
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Figure 2.55: Rotation effects at Res = 5000 [92]

Figure 2.56: Friction factors at different Reynolds and Rotation
numbers [92]
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2.2.2.6 Oh et al. (2008-2012)

Rotational effects on heat transfer and friction distributions in matrix

cooling channels were also investigated by Oh et al. [96] [97].

Tests were carried out on the aluminum test model reported in Figure

2.57a; it has four entry sub-channels and 45deg angled ribs, while the

other geometric dimensions are summarized in Table 2.4. These geomet-

ric parameters are related to Figure 2.57b.

(a) Geometry of the test channel
[97]

(b) Nomenclature of geometric
parameters [97]

Figure 2.57: Geometry and nomenclature of geometric parameters for
the test model used by Oh et al. [97]

Table 2.4: Dimensions of aluminum test model for rotating tests [97]

Parameter Model

β 45 deg

H 24 mm

Wt 120 mm

Wi 24 mm

Wc 16.97 mm

ti 8.0 mm

t 5.57 mm

# Sub-channels 4 -
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Figure 2.58: Schematic view of the rotating test rig adopted by Oh et al.
[97]

This test model was mounted on the rotating test rig in Figure 2.58;

more details about this experimental facility are given in Hong et al. [98].

As in the previous work of Acharya et al. [92], the air radially flows into

the test model and heat transfer measurements were performed on both

the leading surface (i.e. suction side) and trailing surface (i.e. pressure

side).

In this case the investigated ranges for Reynolds Res and Rotation Ros

numbers, both based on the sub-channel hydraulic diameter, are: Res =

2600 ÷ 11000 and Ros = 0÷ 0.8.

Unlike all the previous experimental works on matrix cooling systems,

the naphthalene sublimation method was employed to obtain the detailed

heat/mass transfer coefficients, using the analogy between heat and mass

transfer. Details about this experimental procedure and this data reduc-

tion process were previously reported by Park et al. [99].

From the local mass transfer coefficient, the Sherwood number was ob-

tained as follows:
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Sh =
hm ·Dh

Dnaph
(2.21)

where hm is the mass transfer coefficient, while Dnaph is the mass

diffusion coefficient of naphthalene vapor in air.

Then the mass transfer results were expressed in terms of Sherwood num-

ber ratios Sh/Sh0, in order to effectively estimate heat/mass transfer aug-

mentation, where Sh0 is the Sherwood number for a fully developed tur-

bulent flow in a stationary smooth circular tube derived from McAdams

correlation (Sh0 = 0.023 ·Re0.8 · Sc0.4).
From local values of Sherwood number the linear and average values

ShL and ShR were calculated by integrating the local Sherwood num-

bers weighted by area over each sub-channel.

On the other hand, the friction factors were calculated from the overall

pressure difference ∆p between the inlet and the outlet of the test channel

as follows:

f =
∆p[

4 ·
(

L
Dh

)
·
(
1
2
· ρ · U2

)] (2.22)

These friction factors are normalized by f0 which represents the fric-

tion factor for a fully developed turbulent flow in a stationary smooth

circular tube; in this case f0 is derived from the Petukhov equation

(f0 = 2·(2.236·ln(Re)−4.639)−2) that closely fits the Karman-Nikuradse

correlation (f0 = 0.046 ·Re−0.2).

As regards the heat or mass transfer results for the stationary cases, the

Sh/Sh0 distributions were similar for the different sub-channels on both

the leading and trailing surfaces. As an example, Figures 2.59a and 2.59b

reports the contour plots of Sh/Sh0 and the line-averaged ShL/Sh0 dis-

tributions for the trailing surface respectively, while Figures 2.60a and

2.60b reports the same type of results for the leading surface. Both maps

and distributions allow to discern the results between turning and im-

pingement regions; the Sh/Sh0 ratio is higher (up to 4.8) in the impinge-

ment region and decreases along the sub-channel as the thermal/mass
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boundary layer develops and returns to slightly increase in the turning

region.

(a) Contour plots of Sh/Sh0 [97]
(b) Line averaged ShL/Sh0

distributions [97]

Figure 2.59: Contour plots of Sh/Sh0 in the stationary case (Ro = 0)
for the trailing surface and line averaged ShL/Sh0 distributions for the

trailing surface [97]

(a) Contour plots of Sh/Sh0 [97]
(b) Line averaged ShL/Sh0

distributions [97]

Figure 2.60: Contour plots of Sh/Sh0 in the stationary case (Ro = 0)
for the leading surface and line averaged ShL/Sh0 distributions for the

leading surface [97]

In the rotating cases the Sh/Sh0 ratio increases on the leading sur-

face with maximum peaks in the impingement region, while only small

changes occur on the trailing surface with the increasing of Rotation

number. This was the reverse of what happens in rotating channels with
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radial outflow, where the Coriolis effect causes the values to increase on

the trailing surface and decrease on the leading surface, as the Rotation

number increases. Starting from these results Oh et al. concluded that

a matrix cooling system is advantageous when a greater heat load is

applied to the leading surfaces of the rotor blades than to the trailing

surfaces; in fact in this situation the heat transfer performance for a con-

ventional internal passage decreases significantly on the leading surfaces

under rotating conditions.

Figure 2.61: Friction factor ratios for various Rotation and Reynolds
numbers [97]

As regards the friction factor distributions (Figure 2.61), Oh et al.

found similar results to those of Acharya et al. [92]; in fact the f/f0

ratio decreased with the increasing of Reynolds number but it is quite

insensitive to the variation of Rotation number.

Finally, Oh et al. carried out a performance comparison between the

investigated matrix geometry and other cooling methods: a smooth chan-

nel, a 90deg ribbed channel and a 45deg ribbed channel. Figures 2.62a

and 2.62b show the thermal performance factors with the increasing of
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(a) TPF comparison on trailing
surface (suction side) [97]

(b) TPF comparison on leading
surface (pressure side) [97]

Figure 2.62: Comparison of Thermal Performance Factors TPF for
various cooling methods [97]

Rotation number for the different cooling methods on trailing and lead-

ing surface respectively.

In the smooth and ribbed channels TPF decreases steadily on the leading

surface and increases slightly on the trailing surface with the increasing

of Rotation number; on the other hand, the matrix geometry shows a

different behaviour and the performance increases on both surfaces for

Ro > 0.2. In particular, the thermal performance increases rapidly on

the leading surface at the highest Rotation numbers.

From these comparisons it should be noted that the overall thermal per-

formance of the matrix geometry is lower than of the ribbed channel but

it must be considered that in the present study only the convective heat

transfer on the endwall surfaces was included. Considering that the con-

duction heat transfer of matrix ribs (i.e. fin effect) is much higher than

that of a ribbed channel because of the higher heat transfer surface area,

the thermal performance of a matrix geometry would be surely improved

by including these effects.
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2.2.2.7 Saha et al. (2008-2013)

In recent years Saha et al. [100] [6] realized two interesting experimen-

tal works on a converging lattice-matrix structure representing a realistic

gas turbine blade trailing-edge cooling passage.

In both works heat transfer distributions and pressure drop were eval-

uated on scaled up models in stationary conditions. In the first work

[100] tests were performed varying the Reynolds number from 24000 to

60000, while in the second work [6] the investigated range was from 4000

to 20000; in both cases the Reynolds number is based on the sub-channel

hydraulic diameter.

In the first work only one geometry was analyzed, while in the second

work two matrix structures with four-entry and two entry sub-channels

were studied; in both cases the entry flow is characterized by a 90deg flow

turn and matrix ribs are placed at an angle of 45deg to the flow direction.

Unlike the previous works reported in literature, where only matrix ge-

ometries with rectangular aspect ratio with radial entry and exit were

investigated, the present works are the first to deal with trapezoidal cross

section with a 90 deg flow turn at the entry. The combination of 90deg

turn into the matrix geometry and a converging cross section allows to

represent a more realistic case.

Since the heat transfer measurements were executed using a transient

liquid crystal technique, the test sections (Figure 2.63a) were made using

acrylic sheets in order to allow an optical access for the image acquisition,

while the different convergent matrix cores (Figure 2.63b) were made of

ABS. As shown in this figure one side of the lattice is straight and another

side is inclined at an angle 15deg to reproduce the channel convergence.

Then the matrix geometry with four-inlet sub-channels changes cross sec-

tion from AR=2.46:1 to AR=11:1 while the configuration with two-inlet

sub-channels changes cross section from AR=1.12:1 to AR=5:1.

The target surfaces are the front and back walls of the convergent test sec-

tion that supports the matrix core structure; these surfaces represent the

pressure and suction side of the airfoil. A narrow-band thermochromic

liquid crystal (TLC 35C1W ) is sprayed on the walls and a black paint



2.2 Matrix Cooling Systems 109

is then sprayed over the liquid crystal to enhance the contrast of the ac-

quired images.

For the data analysis the color change of TLCs from red to green is ana-

lyzed and the time required for the green color to appear is used; images

are post-processed by means of the green band tracking technique used

by Vedula et al. [101]. Then the heat transfer coefficient is obtained

by assuming 1D transient heat conduction with semi-infinite boundary

condition. Under this assumption, when a step change of the mainstream

air flow occurs, the solution of the wall temperature can be found by:

Tw − T0

T∞ − T0
= 1− exp

(
h2αt

k2

)
erfc

(
h
√
αt

k

)
(2.23)

However, since a perfect step change of the mainstream air tempera-

ture is not possible to obtain and this temperature is a function of time,

the solution of Equation 2.23 has to include the time-variance of this

temperature; for this reason Equation 2.23 is modified by applying the

Duhamel’s superposition theorem and the new solution of wall tempera-

ture becomes:

Tw−T0 =
N∑

j=1

[
1− exp

(
h2α(t− τj)

k2

)
erfc

(
h
√

α(t− τj)

k

)
(∆T∞(i, j − 1))

]

(2.24)

Saha et al. reported their heat transfer results in terms of both de-

tailed maps and distributions of the heat transfer enhancement ratio

Nu/Nu0, where Nu0 is derived from the Dittus-Boelter correlation as in

the previous works. Results are reported for both the straight and the

inclined side of the test model for different Reynolds numbers. It should

be noted that, since the test model is convergent the sub-channel height

H changes for different sub-channels as the flow progresses towards the

exit; this implies that each sub-channel that originates downstream of

the inlet has a different hydraulic diameter. To take into account this

fact both Nusselt and Reynolds numbers are calculated with respect to

the specific hydraulic diameter of the sub-channel at its entry.



110 2. Overview of Gas Turbine Cooling Systems

(a) Acrylic test section with
converging matrix core [6]

(b) Converging matrix core [6]

Figure 2.63: Acrylic test section with converging matrix core and
convergent structure with dimensions used for calculation of the

sub-channel hydraulic diameter at inlet [6]

(a) Example of Nu/Nu0 map for 4
inlet channel configuration [6]

(b) Example of Nu/Nu0 map for 2
inlet channel configuration [6]

Figure 2.64: Examples of Nu/Nu0 maps for 4 and 2 inlet channel
configurations [6]

Results show that the maximum heat transfer enhancement Nu/Nu0

with peaks close to 8 is observed in the impingement regions, where the

flow turns from one sub-channel to the other. Other localized regions

with high Nu/Nu0 values are present along the different sub-channels

and are due to the turbulence created by the cross flow from the other

side of the matrix structure. These results are clearly shown by the de-

tailed maps in Figures 2.64a and 2.64b for the 4 inlet channel and 2 inlet

channel configuration respectively.
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Figure 2.65: Comparison of the average heat transfer enhancement
Nu/Nu0 as a function of Reynolds number between the investigated

matrix geometries and a pin fin configuration [6]

Moreover the heat transfer enhancement is reduced with the increase of

Reynolds number which is common for internal cooling applications.

In terms of average results, Figure 2.65 shows the comparison of average

Nu/Nu0 ratio of the two matrix structures with the pin-fin configura-

tion used by Metzger et al. [26]. It is shown that the pin-fin geome-

try produces the lowest value of heat transfer enhancement (Nu/Nu0 =

1.7÷2.2); this is followed by the matrix geometry with four-inlet channels

(Nu/Nu0 = 1.9÷2.8), while the matrix geometry with two-inlet channels

has the best performance (Nu/Nu0 = 2.1 ÷ 3.4) for the whole Reynolds

range. These results are in agreement with the findings of Bunker [86],

who also found that the matrix configuration with fewer sub-channels

performs better in terms of heat transfer enhancement.

As regards friction results, Saha et al. found that the pressure drop

increases in the streamwise direction except in the impingement region

close to the wall, where a pressure recovery occurs. The turning of flow
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from one side of the lattice to the other side, and the interaction with

the cross flow produces high pressure drops in the sub-channels.

The overall pressure drop is employed to calculate the friction factor

defined as follows:

f =
∆p/(0.5 · ρ · V 2

m)

4 · (∆x/Dm)
(2.25)

These values are normalized by f0 values from the Karman-Nikuradse

correlation (f0 = 0.046 · Re−0.2); then the f/f0 values together the

Nu/Nu0 values are used to calculate the Thermal Performance Factor

TPF as follows:

TPF =
Nu/Nu0

(f/f0)1/3
(2.26)

TPF values are calculated for both the matrix geometries and are

compared with the values for the above mentioned pin fin configuration

[26]; from this comparison results that the two-inlet channel matrix ge-

ometry has the best performance, but for the highest Reynolds number

the pin fin performs better than the matrix structures (Figure 2.66).



2.2 Matrix Cooling Systems 113

Figure 2.66: TPF comparison between the investigaed matrix geometries
and a pin fin configuration [6]





Chapter 3

Heat Transfer Measurement

Techniques

As already discussed in section 1.2 one of the main objectives of the

present experimental work is the measurement of the heat transfer coeffi-

cient within scaled up models reproducing matrix cooling geometries for

a possible application as internal cooling systems in gas turbine airfoils.

For this reason the present chapter reports an overview about the funda-

mental principles and assumptions of some experimental approaches to

measure the local heat transfer coefficient distributions on geometries for

internal blade cooling applications.

3.1 Introduction to HTC Measurement

Usually the experimental investigation on the heat transfer coefficient

is carried out on both simple and complex internal schemes reproducing

heat transfer and flow conditions similar to that in actual gas turbines.

Experiments are executed at low temperatures on scaled up test models;

data obtained from these experiments are expressed in nondimensional

parameters such as: Nusselt and Reynolds numbers, heat transfer coeffi-

cient ratios and temperature ratios. Then, these nondimensional param-

eters may be scaled to engine flow conditions in order to get the heat

115
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transfer performance in real operative conditions.

Before starting to explain the different experimental techniques, it should

be noted that the different measurement techniques play a dominant role

in the investigation of heat transfer phenomena in internal cooling appli-

cations such as: gas turbine cooling, heat exchangers and thermal control

of electronic devices. Unlike the heat transfer processes in evaporators

and condensers, the cooling fluid for turbine blade cooling is not usually

subject to phase changes and hence this process belongs to the category

of single-phase forced convection. Other assumptions are considered in

order to simplify the heat transfer investigation: cooling fluid may be

treated as an ideal gas, the flow velocity in the internal channels corre-

sponds to low Mach number (M < 0.3) to avoid large pressure losses due

to compressibility effects and hence the fluid may be treated as incom-

pressible. With regard to this latter assumption, some exceptions are

possible in trailing edge passages or local impinging jets or local extrac-

tions via film cooling holes, where high velocities and pressure losses may

occur.

On the other hand geometrical situations to be investigated are complex,

the flow is usually turbulent with high three-dimensional velocity and

temperature fields and this leads to strong variations in the local heat

transfer distributions. In addition to this, in case of rotor blades, Coriolis

and centrifugal forces due to temperature difference must be taken into

account.

The convective heat transfer coefficient which will be investigated in the

present work is defined by means of the so-called ”Newton’s Law of Cool-

ing”, that establishes a linear relationship between the specific heat flux

at a surface and an appropriate temperature difference between the sur-

face or wall temperature and a reference fluid temperature. The heat

transfer coefficient defines the proportionality in this relationship and is

defined as:

htc :=
q̇w

Tw − Tf
(3.1)

where qw is the area specific wall heat flux from the wall into the fluid
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for a cooling situation, for which Tw > Tf . Newton also observed that

for a given flow and thermal situation the heat transfer coefficient can be

considered time-invariant.

The formulation given in Equation 3.1 was used by Fourier in his transient

analysis for solid bodies. From this equation it is possible to derive the

relationship between heat flux and wall normal solid temperature gradient

at the surface, that is also known as ”Fourier’s Law” and it is expressed

as follows:

q̇w = −ks

(
∂Ts

∂n

)

w

(3.2)

where ks is the thermal conductivity and Ts or Tw is the temperature

of the solid.

The conduction boundary-value problem for the solid with constant ther-

mal properties is given by:

∂Ts

∂t
=

ks
ρscs

∇2Ts = αs∆sTs = αs

(
∂2Ts

∂x2
+

∂2Ts

∂y2
+

∂2Ts

∂z2

)
(3.3)

Ts(x, y, z, t = 0) = T0, −ks

(
∂Ts

∂n

)

w

= htc (Tw − Tf ) (3.4)

Then, the conduction problem within the solid can be formally decou-

pled from the fluid convection problem and the local solid-fluid tempera-

ture field near the wall is incorporated in the heat transfer coefficient.

The value of the heat transfer coefficient needs then to consider the com-

plexity of the surrounding flow field, the effects of thermal boundary

conditions and has to be based on an appropriate fluid reference temper-

ature.

In case of turbulent forced convection the heat transfer coefficient is

nearly independent of the temperature boundary condition and is mainly

determined by the flow field situation [102].

Moreover, if the temperature differences are not large and thermal proper-
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ties of cooling fluid can be considered as constant, then the heat transfer

coefficient is independent of the actual wall and fluid temperatures [103].

Under this assumption it is possible to perform laboratory experiments

and relate the experimental data to actual engine conditions.

The temperature of solid Ts and fluid Tf have to be equal at the wall and

the local heat flux from the solid must be equal at any time to the local

heat flux into the fluid:

(Ts)w = (Tf )w = Tw and − ks

(
∂Ts

∂n

)

w

= −kf

(
∂Tf

∂n

)

w

(3.5)

From Equation 3.5 the following definition of heat transfer coefficient

can be derived:

htc =
−kf

(
∂Tf

∂n

)

w

(Tw − Tf )
(3.6)

where kf is the thermal conductivity of the fluid.

Then to transfer experimentally determined heat transfer coefficient with

respect to the similarity considerations, it needs to be dimensionless rep-

resented by the Nusselt number Nu. From Equation 3.6, using a geomet-

rical scaling with a reference length l:

ñ =
n

l
(3.7)

and using a dimensionless form for the fluid temperature field:

Θ =
Tf − Tw

Tref − Tw
(3.8)

the dimensionless temperature gradient normal to the wall is given

by the Nusselt number:

Nu =
Θ

∂ñ
|w =

h · l
kf

(3.9)

It should be noted that for the typical gas turbine cooling applications

an appropriate reference length for the internal cooling ducts is the so-
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called hydraulic diameter defined as follows:

l = Dh =
4A

P
(3.10)

where A is the through-flow area in each cross-section and P is the wet

perimeter at this location. Of course, for complex internal cooling sys-

tems, the hydraulic diameter Dh(x) can be different at each streamwise

coordinate x. As long as full geometrical similarity is achieved between

experiment and application, this local value will scale with any other

geometrical length scale selected.

Figure 3.1: Energy balance for a heated element to calculate the bulk
fluid temperature along the streamwise direction

Another important issue to allow an accurate transfer of the labora-

tory measurements to engine situations with respect to similarity consid-

erations it is the reference temperature Tref , that has the same meaning

in the experiment and in the design.

Usually for internal cooling applications the fluid bulk temperature Tb(X)
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for a given streamwise position X can be determined from an overall en-

ergy balance (for example using the first law of thermodynamics in a

1-D network analysis) once the heat transfer characteristics are known

on all surrounding walls. For example, considering the heated element in

Figure 3.1, the energy balance may be written as follows:

ṁf cpfTb(X + dx) = ṁf cpfTb(X) +

∫

A

qwdAw (3.11)

Using this method the local heat transfer coefficient is based on the

the local fluid reference temperature Tb(X).

Other methods could be applied to determine the fluid bulk temperature;

more details about these methods are given by Wolfersdorf et al. [103].

Over the years many measurement techniques have been developed to

obtain the local heat or mass transfer information for internal cooling

applications. A possible classification of these techniques can be given

as:

1. Flow temperature measurements

2. Wall mass transfer measurements

3. Wall heat transfer measurements

3.1.1 Flow Temperature Measurements Techniques

As regards flow temperature measurement techniques, considering the

heat transfer coefficient definition given by Equation 3.6, to evaluate the

HTC value is necessary to determine the fluid temperature field in the

near wall region using fine local thermocouples or optical techniques such

as the method of interferometry or the use of Thermochromic Liquid

Crystals (TLC). However, for complex geometries as usually found in

internal blade cooling applications with highly three-dimensional velocity

and fluid temperature fields, these techniques may be difficult to apply.
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3.1.2 Mass Transfer Measurements Techniques

Mass transfer techniques use the similarity in the transfer processes

between mass and heat to determine heat transfer information. Unlike

the previous flow temperature measurements, these techniques can pro-

vide local data also for complex internal cooling geometries.

These techniques have also other two important advantages such as: first,

they realize idealized boundary conditions (e.g. constant wall concentra-

tion relating to isothermal surfaces), second, they are not influenced by

heat losses, radiation or undesired conduction processes.

Based on this assumption different methods have been developed for sev-

eral applications such as: electrochemical methods, absorption methods,

swollen polymer technique, ammona and diazo technique, pressure sensi-

tive paint and napthalene sublimation method.

The napthalene sublimation method is a common way to determine lo-

cal and average mass-transfer coefficients, where these coefficients are

determined by measuring the mass of naphthalene sublimed by forced or

natural convection. In this kind of experiments a naphthalene surface is

cast in the tested geometry and the initial thickness of the napthalene

layer is measured by optical or scanning methods. Then, the surface is

subjected to an isothermal flow and after some test time, the change in

layer thickness is measured locally with high precision and is related to

sublimation due to convective mass transfer.

The associated local mass transfer coefficient hm is evaluated by the spe-

cific napthalene convective mass flux with respect to the difference in

napthalene vapor densities at the wall and the bulk value in the main

stream; this coefficient is defined as:

hm =
ṁ

′′

ρw − ρ∞
(3.12)

where ρw is the local density of napthalene at the surface and ρ∞ is

the density of napthalene in the mainstream.

Knowing the local mass transfer coefficient hm, it is possible to calculate

the local mass transfer dimensionless Sherwood number as follows:
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Sh = hm · L

Dnaph
(3.13)

where L is the reference length for the experiment (i.e. the hydraulic

diameter of a duct), while Dnaph is the diffusion coefficient for the naptha-

lene.

It should be noted that the napthalene mass is lost by sublimation due

to diffusion or convection in analogy with the heat lost in heat transfer

experiments.

The heat-mass transfer analogy states that the Sherwood number Sh is

analogous to the Nusselt number Nu; ratios of Sherwood number for sim-

ilar conditions can be directly estimated as a ratio of Nusselt numbers

for similar flow conditions [2].

The napthalene sublimation technique allows accurate measurements for

complex geometries including rotating conditions and for film cooling

tests.

3.1.3 Heat Transfer Measurements Techniques

As regards the different heat transfer techniques a correct classifica-

tion can be made with respect to the experimental procedure: steady

state or transient techniques. A schematic view of this classification is

given by Figure 3.2.

All these techniques require wall surface temperature measurements that

can be obtained by means of different sensors such as: thermocouples,

Thermochromic Liquid Crystals (TLC), Infrared Thermography (IR),

and Temperature Sensitive Paints (TSP). A good review about these

sensors is given by Wolfersdorf et al. [103].

In the following section will be analyzed the main steady state and tran-

sient techniques for the measurement of the heat transfer coefficient.
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Figure 3.2: Classification of the heat transfer measurement techniques

3.2 Steady State Measurement Techniques

Steady state techniques are based on the setup of a specific heat flux

from an electrical power supply. The net heat flux is calculated by esti-

mating the heat losses due to conduction, radiation and outside wall con-

vection. Thereby different thermal boundary conditions can be achieved,

for example isothermal walls when using high conducting heated segments

or nearly constant heat flux conditions when using a thin heating foil on

a low conducting substrate.

3.2.1 Heated High Conducting Elements Technique

This technique consists in using discrete heated high conducting ele-

ments, generally segments, that cover the whole investigated area. Then,

the thermal power for each element can be independently adjusted to
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achieve a constant wall temperature over the element surface area for

all elements within the investigated configuration. Temperatures can be

measured by embedded thermocouples, for example one for each element;

these temperatures can be considered as regionally averaged values of tem-

perature for the entire element because of the high thermal conductivity.

According to this approach the local convective heat flux is:

q̇conv = htc(x) (Tw(x)− Tref (x)) (3.14)

This heat flux can be averaged over a segment with the element length

equal to L:

q̇conv =
1

L

∫ L

0

qconv(x)dx =
1

L

∫ L

0

htc(x) (Tw(x)− Tref (x)) dx (3.15)

Since for high conducting elements (e.g. copper plates) the measured

segment temperature will be equal to the average wall temperature and

with the segments being relatively small so that the fluid reference tem-

perature can be approximated as constant (averaged) over the segment,

the heat flux can be also written as:

q̇conv =
1

L

∫ L

0

htc(x)
(
Tw − Tref

)
dx =

1

L

∫ L

0

htc
(
Tw − Tref

)
(3.16)

This situation is well represented by the scheme in Figure 3.3.

On the other hand the heater power can be written as:

Pel = Q̇conv − Q̇loss = qelA = (qconv − qloss)A (3.17)

Therefore, the heat transfer coefficient results as:

htc =
qconv

Tw − Tref

(3.18)

Then, since an isothermal wall condition is reached for the segment,

the true surface averaged heat transfer coefficient is obtained from the
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Figure 3.3: Scheme of the heated high conducting elements technique

measurement of the average convective heat flux and the average surface

and fluid temperatures. Moreover, because the values of the supplied heat

for each segment are known, the variations of the fluid reference temper-

ature in streamwise direction can be obtained from a one-dimensional

energy balance by using the following equation:

ṁf cp
dTb

dx
=

∫

P (x)

q̇w(s)ds with Tb(0) = Tinlet (3.19)

This technique includes several advantages such as:� segments can be shaped to complex geometries including turbula-

tors;� thermal boundary condition can be well controlled by adjusting the

individual segment heater power to obtain isothermal conditions
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the fluid temperature� the investigation of temperature ratio effects (wall-to-fluid) can be

integrated� good applicability to rotating test models� provides temperature differences as in real blade cooling situation

(hot wall, cold fluid), in order to simulate the correct buoyancy

effects for rotation

3.2.2 Heated Thin Foil Technique

In this technique a uniform heat flux is generated by means of a thin

heating foil applied over a low conductive substrate, as depicted in the

scheme of Figure 3.4.

According to this scheme the heat transfer coefficient can be obtained

as:

htc =
q̇conv

Tw(x)− Tref (x)
(3.20)

Using these heaters an isoflux boundary condition can be reached if

the heating layer has a constant cross section and the electrical resistance

has no significant temperature dependency.

The local heat transfer distribution is evaluated knowing the local con-

vective heat flux, so taking into account the heat losses with the energy

balance.

As regards the measurement of the local surface temperature, it is possi-

ble to use local thermocouples or optical methods such as Infrared Ther-

mography or Thermochromic Liquid Crystals (TLC). Depending on the

optical properties of the low conducting substrate, the surface tempera-

ture might be measured through the substrate or above assuming that

the temperature of the thin heating foil is nearly constant over its thick-

ness.

It should be noted that some difficulties arise for complex surfaces (e.g.
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Figure 3.4: Scheme of the heating foil technique

multiple curvatures, or diverging/converging ducts), so that this tech-

nique is usually applied to flat or single curvature walls to cope with the

consideration of constant local heat release. For more complex configura-

tions it is necessary to apply specific heaters and the local electrical field

needs to be analyzed by Finite Element Method numerical simulations.

In recent years many studies have been performed by the University of

Florence using these techniques (Maiuolo et al. [104], Caciolli et al. [105]);

some experiments were also carried out in rotating conditions (Bonanni

[62]).

3.3 Transient Measurement Techniques

Since the steady state techniques have some disadvantages in terms

of local resolution, instrumentation effort and applicability on complex



128 3. Heat Transfer Measurement Techniques

surfaces, over the years the transient techniques have been developed

especially in combination with temperature sensitive coatings as shown

by Ireland et al. [106] [107].

In a transient experiment the heat transfer usually starts keeping the

model at a uniform initial temperature and at the start of the test a

sudden rise of temperature is imposed to the flow. This can be done

using valves that open a closed loop by-pass channel where the air is

pre-heated prior to the experiment. However, in recent years Ireland et

al. [108] adopted a better method to increase the temperature using an

electrical heated fine wire mesh; the time constant for heating the flow

using a single fine mesh is relatively low (< 0.1 s) allowing to reach a

very defined flow temperature step, while using more connected meshes

it is possible to heat relatively large mass flow rates in a short time.

3.3.1 Thin Wall Lumped Capacitance Method

All transient methods use a conduction model to determine the heat

transfer from the wall and fluid temperature measurements. One of these

is the so-called thin wall lumped capacitance method based on the as-

sumption that, if a solid body is immersed in a fluid with a temperature

difference between the solid and the flow, the temperature of the solid

is assumed to be spatially uniform at any instant during the transient

process.

This assumption implies that the temperature gradients within the solid

are negligible, which indicates an infinite thermal conductivity (ks → ∞).

Even though such a condition is clearly impossible, it can be closely ap-

proximated if the resistance to conduction within the solid is much less

compared to the resistance to heat transfer between the solid and the

surrounding flow (Biot number Bi < 0.1 [87]). On this assumption, the

overall energy balance relates the rate of heat loss at the surface to the

rate of change of the internal energy:

ρscpV
dTs

dt
= −htcAs(Ts − Tref ) (3.21)
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If the solid body is initially at uniform temperature:

Ts(t = 0) = T0 (3.22)

this ordinary differential equation can be solved to give the following

solution:

Ts − Ti

Tref − Ti
= 1− exp

(
− htcAs

ρscpV
t

)
(3.23)

This solution assumes a constant heat transfer coefficient meaning

that htc has to be independent of time as well as independent of the

actual temperature difference (Ts − Tref ) at any time.

If in an experiment the highly conductive solid experiences a temperature

step in its surroundings (from T0 to Tref ) under the given assumptions,

it is possible to determine the heat transfer coefficient from the measure-

ment of the solid temperature Ts(t) if all the other parameters are known.

Therefore, this is representative of the average convective heat transfer

on the surface of the body to the surrounding flow.

Typical applications of the lumped capacitance method are the measure-

ments of the averaged heat transfer coefficient on protrusion elements

such as ribs, pedestals and pin fins inside cooling channels. These ele-

ments are usually made of a high conductive material and are mounted

on a well insulated substrate.

This transient heat transfer process is well represented by Figure 3.5. The

temperature of the solid body is generally measured by thermocouples

located inside the solid, or by means of optical methods such as TLC

or IR-Thermography. This method is generally combined with other dif-

ferent approaches to determine the local heat transfer distribution in

complex configurations.

An example of this combination is given by Bunker [86], who applied

the steady state technique with the thin heating foil to measure the heat

transfer between ribs and a transient IR-Thermography for a metallic

model representing a latticework or matrix cooling geometry with a high

blockage rib arrangements. In this way Bunker was able to evaluate the
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additional heat transfer contribution of fin effectiveness provided by ribs

and distinguish it from the heat transfer on the endwall surfaces. More

details about this experiment will be given in Section2.2.2

Another combination of different experimental techniques was applied by

Innocenti et al. [56] in a trailing edge cooling model with pedestals and

pin fins. In this case a transient technique with Thermochromic Liquid

Crystals (TLC) was used to measure detailed heat transfer coefficients

on the endwall surfaces, while the average heat transfer coefficients over

pedestals and pin fins were evaluated using a full transient FEM analysis.

Figure 3.5: Diagram for the lumped capacitance method to determine
the averaged heat transfer coefficient on a rib
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3.3.2 Semi-infinite Wall Method

If the test model is made of a low conductive material in order to

minimize the lateral conduction effects during a transient experiment

and if the wall thickness is large enough, so that the thermal variation

at the surface of interest does not influence the remote surface of the

model, then the test model under investigation can be assumed to be a

one-dimensional “semi-infinite” wall.

Under the assumptions of constant thermal properties, an uniform initial

wall temperature Ti and a step variation in the fluid properties at time

t = 0 to Tref , the differential equation for this problem becomes:

∂Ts

∂t
=

ks
ρscp

∂2Ts

∂y2
= αs

∂2Ts

∂y2
0 ≤ y < ∞ (3.24)

with the following initial and boundary conditions:

Ts = Ti at t = 0 (3.25)

−ks

(
∂Ts

∂y

)

w

= htc(Tw − Tref ) at y = 0 (3.26)

Ts = T0 for y −→ ∞ (3.27)

Considering that the heat transfer coefficient is constant with time,

this problem can be solved using the following equation:

Ts(y, t)− Ti

Tref − Ti
= erfc

(
y

2
√
αst

)
−exp

(
αsy

ks
+

htc2αst

k2
s

)
erfc

(
y

2
√
αst

+
htc

√
αst

ks

)

(3.28)

Then, considering the wall temperature (y = 0), the Equation 3.28

becomes:
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Tw(t)− Ti

Tref − Ti
= 1−exp

(
htc2t

ρscpks

)
erfc

(
htc

√
t√

ρscpks

)
= 1−exp(Bi2τ )erfc(Bi

√
τ)

(3.29)

where τ is the dimensionless time or Fourier number and it is defined

as:

τ =
αst

s2
(3.30)

while the erfc is the “complementary error function” and it is defined

as follows:

erfc(x) =
2√
π

∫ ∞

x

e−r3dr

= 1− 2√
π

(
x− x3

3 · 1! +
x5

5 · 2! −
x7

7 · 3! + ...

)

≃ e−x2

√
πx

(
1− 1

2x2
+

1 · 3
(2x2)2

− 1 · 3 · 5
(2x2)3

+ ...

)
(3.31)

Measuring the wall temperature variation, the initial condition Ti and

the fluid temperature Tref during the test, it is possible to evaluate the

heat transfer coefficient htc. This approach is well applicable using TLC

as a surface temperature measurement technique.

An important advantage of this method is the easy application on all

channel walls of a cooling configuration, even though several assump-

tions have been made which need to be analyzed and verified otherwise

additional effects need to be included in the data reduction process. One

of these include the flow temperature change that might not be a perfect

step. For example, if Tref (t) is measured, the actual temperature history

might be approximated by a series of small steps and the superposition

approach of Duhamel might be used obtaining the following expression:
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Tw(t)−Ti =
n∑

j=1



1− exp

(
htc2(t− t̂j)

ρscpks

)
erfc




htc
√

t− t̂j
√

ρscpks







∆Tref(j,j−1)

(3.32)

whereN is the number of steps, t̂j are the discrete times and ∆Tref(j,j−1)

is the temperature step between the time steps (j − 1) and j.

However some effects should be considered in order to satisfy the one-

dimensional hypothesis of this approach such as: the effect of finite wall

thickness, surface curvature and lateral conduction.

The effect of wall thickness was analyzed by Schultz et al. [109] with

respect to the application of heat transfer gauges. They used the solu-

tion for a semi-infinite wall applying a step change in surface flux, and

they showed that the ratios of local heat flux and temperature at depth

s to their values at the surface are both less than 1% if the dimensionless

measurement time τd is:

τd =
tαs

s2
<

1

16
(3.33)

This means that for a wall made of plexiglas or PMMA (αs ≃ 1.08 ·
10−7m2/s) and a wall thickness of about 10 mm, the measurement should

not exceed 60 seconds for Equation 3.29 to be applicable.

This might not always be possible for complex geometries with long cool-

ing channels due to thinner geometrical features (e.g. webs, divider walls,

etc.) and due to the fluid temperature change in streamwise direction and

hence with reduced local temperature differences between fluid and wall,

so that this effect on the determined heat transfer coefficient needs to be

analyzed.

Moreover, the effect of surface curvature on the heat transfer coefficient

using Equation 3.29 should be considered; these effects might be impor-

tant in case of leading edge or serpentine bend regions or when cylindri-

cal or spherical turbulator arrangements (e.g. pins, dimples, etc.) are

applied. With regard to this effect Buttsworth et al. [110] derived an ap-

proximative solution for curved walls in similarity to Equation 3.29 valid
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for τr = (tαs)/R
2 << 1 where R is the radius of the surface curvature.

More details about this approach are reported by Wolfersdorf et al. [103].

In addition to the previous effects, the lateral conduction should be also

considered. Usually the effect of lateral conduction within the wall is ne-

glected assuming that the temperature gradients in lateral direction are

much smaller than in vertical direction as provided by the low thermal

conductivity of the materials used in the transient tests. Moreover, the

short measurement times are often considered to reduce the influence of

lateral conduction.

The effects of lateral conduction on heat transfer results obtained in tran-

sient tests with temperature surface coatings were analyzed by Vedula

et al. [111] using two-dimensional numerical Finite Element computa-

tions; they showed that for a change in heat transfer coefficient from 400

W/m2K to 600 W/m2K over a distance of 3.5 mm the maximum error

introduced by lateral conduction is about 3.5%.

In case of specific applications (e.g. impingement cooling) the local varia-

tions in heat transfer distributions (gradients of heat transfer coefficients)

might be larger and their effects should be analyzed using numerical meth-

ods.

In recent years other approaches couple directly the data evaluation to

three-dimensional numerical models in order to determine the full sur-

face heat transfer distribution by applying 3D inverse procedures. For

example, using a three-dimensional unsteady heat conduction solver an

iterative scheme for the determination of the heat transfer coefficients

has been proposed by Ling et al. [112].

3.4 Critical Aspects on Matrix Cooling Measurements

In the previous sections an accurate evaluation has been carried out

about the main advantages and disadvantages of the different experi-

mental measurement techniques used for the determination of the heat

transfer coefficient in internal cooling geometries. After this evaluation it

has been necessary to choose the most suitable measurement approach to
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determine the heat transfer performance of the matrix cooling geometries

investigated in the present study.

As reported in Section 2.2 a latticework or matrix cooling geometry is

characterized by two opposite layers of high blockage ribs that are in

contact with each other resulting in very narrow passages (sub-channels)

between the longitudinal ribs. This system of crossing sub-channels to-

gether with the continuous switching of the flow from a layer to another

determines a high level of turbulence. Moreover, the turbulence is not

the only mechanism that contributes to enhance the heat transfer, in fact

an important contribution is also given by the high heat transfer surface

area and fin effect provided by the same ribs.

For these reasons the experimental technique chosen to investigate the

heat transfer in such geometries must be able to evaluate the overall heat

transfer performance.

The application of optical measurement techniques, such as Infrared Ther-

mography or Thermochromic Liquid Crystals (TLC), allows to evaluate

heat transfer only on the endwall surfaces without taking into account

the heat transfer due to rib surfaces; however this latter contribution

cannot be neglected for this kind of cooling systems. Examples of these

optical techniques applied to matrix cooling geometries are reported by

Gillespie et al. [89], Bunker [86] and Saha et al.[6].

Also the application of the naphthalene sublimation method, as applied

by Oh et al. [96], would allow to investigate the heat transfer only on

the endwall surfaces representing pressure and suction side walls of the

airfoil.

In addition to this, it should be considered that the high blockage and

the presence of very narrow spacings between ribs does not facilitate the

application of these optical techniques to evaluate the heat transfer coef-

ficients on the rib surfaces. The only exception among the literary works

about matrix cooling is due to Bunker [86], who applied a combination of

different techniques to evaluate both local and overall heat transfer coeffi-

cients. In fact in this study, first a steady state technique with TLCs was

applied to determine heat transfer on the primary or endwall surfaces,
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then an infrared thermography technique in conjunction with an inverse

conduction analysis was applied to metallic models in order to determine

the additional impact of the fin effectiveness provided by the ribs.

In the work reported in this thesis an experimental technique similar to

that described in Section 3.2.1 has been chosen. The test models have

been divided into different heated segments with embedded thermocou-

ples and regional average heat transfer coefficients have been determined

for different streamwise and spanwise positions.

Since one of the objectives of these experiments was to reproduce the

Biot number similitude of real applications, the metal chosen for these

segments has not a very high thermal conductivity, hence the tempera-

ture measurement cannot be considered as the regionally averaged value

for the entire element. For this reason it has been necessary to develop a

post-processing procedure to evaluate the non uniform temperature field

on the surface of matrix ribs; at the same time this procedure has allowed

to take into account the fin effectiveness and the additional heat transfer

surface area provided by the ribs. In fact, as will be described in Section

4.4.2, this approach provides two possibilities: first, the evaluation of the

effective heat transfer coefficient between the fluid and the rib surfaces,

second, the evaluation of an equivalent heat transfer coefficient applied

to the internal endwalls to determine the overall heat removed from these

surfaces.

Even though this approach allows to reach a less detailed measurement of

the heat transfer coefficient distributions with respect to the application

of an optical technique, it has been possible to quantify the average heat

transfer coefficient for different regions of the matrix test cases. How-

ever the performance of matrix geometries evaluated in terms of average

distributions match the requirements of the industrial partners with the

final aim of developing design correlations for the blade cooling.
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Experimental Apparatus and

Data Reduction

This chapter reports all the experimental details of the present activ-

ity. First of all test rig layouts, test models and measurement devices

with corresponding measurement uncertainties will be described. In a

second part the description will be focused on the details about the ex-

perimental measurement technique and on the development of the data

reduction procedure for the evaluation of heat transfer coefficients.

4.1 Test Rig Layout for Static Tests

This section is dedicated to the description of the experimental facil-

ity employed to perform tests on several matrix geometries, with the aim

to reproduce Reynolds number and Biot number similitude with a real

application in static conditions.

The whole experimental survey has been performed at the Department

of Industrial Engineering (DIEF) of the University of Florence.

As depicted in Figure 4.1 this test facility consists of an open-loop suction

type wind tunnel and it is mainly composed by: a test model, a plenum

chamber, a vacuum system, a data acquisition system, a pressure scanner

and a DC power supply system.

137
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The air at atmospheric pressure and ambient temperature enters axially

into the test rig passing through a shaped inlet section. Air flow rate

is supplied to the test section by using four rotary vane vacuum pumps:

two with a capacity of 900 m3/h each (PVR pumps) and two with 300

m3/h each (Becker pumps). The mass flow rate is controlled by varying

the speed of the pumps and using a throttle valve located between the

vacuum pumps and the test section.

The mass flow rate is measured according to the standard EN ISO 5167-1

by means of an orifice located downstream the plenum chamber with a

measurement accuracy below 3%.

The flow rate was varied for each test in order to reach the target values

of Reynolds number at the inlet of the matrix module and hence at the

inlet of the single sub-channel.

The inlet and exit flow temperatures are measured with four T-type ther-

mocouples; two are located at the inlet and two at the outlet section of

the test model. The metal temperatures of matrix modules is measured

with 20 T-type thermocouples; one thermocouple is embedded into the

base of each steel block. Thermocouples are connected with a reference

junction to a data acquisition/switch unit (Agilent 34970A) with a mea-

surement accuracy of 0.5 K.

20 Minco Kapton etched foil heaters are applied to the back surface of

steel matrix elements to provide a constant heat flux during each test.

A pressure scanner Scanivalve DSA 3217 with temperature compensated

piezoresistive relative pressure sensors measure the static pressure in 14

different locations inside the test section with a maximum accuracy of 17

Pa.

Figure 4.2 shows a picture of the test rig ready for a heat transfer test,

where it is possible to see the test model instrumented with thermocou-

ples, foil heaters and pressure taps as described above.

The details about the relative uncertainties on the measured quantities

are described in section 4.6.
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Figure 4.1: Test facility for static tests

Figure 4.2: Picture of the test facility for static tests instrumented with
thermocouples, heaters and pressure taps

4.1.1 Test models

A preliminary work was performed with the aim to select the de-

sired matrix geometries for the following experimental measurements

campaigns. During this phase it was necessary to conduct an evaluation

of heat transfer and friction performance of many geometries applying

the correlations of Nagoga reported in the previous Section 2.2.2.

Performance were analyzed as a function of the main geometric parame-
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ters such as: number of sub-channels ncan, rib thickness trib, rib height

hrib and rib inclination angle β. In this way it was established that the

rib inclination angle of 45deg with respect to the flow direction is the

best solution in terms of heat transfer and friction performance.

The above mentioned values are referred to a single matrix module, but,

since a matrix model is composed by two modules (as will be described

in next Section 4.1.2), it is necessary to double ncan and hrib in order to

refer them to the whole cross section.

Once fixed the rib inclination angle β = 45deg, the next step was to

choose the desired values for rib thickness, rib height and number of

sub-channels per each matrix module. To limit the number of geome-

tries to be manufactured it was established to change the rib thickness

trib together the number of sub-channels ncan; this results in a significant

variation of the flow passage area that is well represented by the following

open area ratio Rvp:

Rvp =
Wc

Wc + trib
(4.1)

Two open ratios representative of extreme geometric cases were se-

lected: Rvp = 84.5% and Rvp = 53.5%. The first Rvp = 84.5% is

obtained using 4 sub-channels and trib = 1.5 mm; it derives from the

combination of a minimum number of sub-channels with the minimum

rib thickness achievable by means of an investment casting process. On

the other hand the second value Rvp = 53.5%, obtained using 6 sub-

channels and trib = 3.0 mm, represents the minimum flow passage area.

The comparison between these two configurations has allowed to investi-

gate the combined effects of an increase of rib thickness and number of

sub-channels resulting in an extreme reduction of flow passage area.

Since another issue of the present work was the study about the effects

of rib height, the two open area configurations were applied for two very

different values of rib height: hrib = 15 mm and hrib = 1.5 mm. The

first is representative of cooling cavity dimensions in the mid-chord re-

gion, while the second represents the typical dimensions of a trailing edge

region.
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From this study four matrix geometries with a constant cross section

were selected for the first experimental campaign in static conditions.

In the next phase, starting from the combination of the characteris-

tic dimensions of these four geometries, two convergent geometries suit-

able for the trailing edge cooling were derived. Each of these two test

models maintains the same open area value of the previous geometries

(Rvp = 84.5% and 53.5%) from the inlet to the outlet with a converging

angle of α = 5.7 deg for the single matrix module. This leads to a contin-

uous variation of the rib height hrib from the inlet (hrib,in = 15 mm) to

the outlet (hrib,out = 1.5 mm). These two models have been employed

for the second experimental campaign in static conditions and will be

described in the next section (§ 4.1.3).

Finally the same convergent matrix geometries with a different scale fac-

tor were designed to be installed on a rotating test rig in order to investi-

gate rotation effects on matrix performance. All the details about these

test models and the rotating test will be presented in Section 4.2.

It should be noted that all models for static tests were designed to repro-

duce Reynolds and Biot number similitude with real conditions. To get

as close as possible the Biot number similitude the specific stainless steel

AISI 304 with a thermal conductivity equal to 15.1 W/mK was selected.

Since test models with variable height but constant width were installed

into the test rig, during the phase of design it was necessary to create

different inlet/outlet sections corresponding to the specific test model.

However the structure of each test model is mainly composed by two

halves: an upper module and a lower one, that represents the internal

surfaces of pressure (PS) and suction (SS) sides of a gas turbine airfoil.

Figure 4.3 illustrates a top section view of the lower module. Each module

consists of an aluminum outer frame and a matrix geometry; the latter

is formed by 10 stainless steel (AISI 304) elements, 5 in the main flow

direction (streamwise) and 2 in the tangential one (spanwise). The adja-

cent steel elements are separated from each other by insulation spacers

of bakelite with a thermal conductivity close to 0.6 W/mK. Moreover an

insulation spacer of bakelite is interposed between the aluminum frame
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and the steel matrix structure (not shown in Figure 4.3).

The crossing ribs/channels are integrally machined on the steel blocks

and the sandwiched insulation spacers.

The two halves are coupled together so as to oppose each other and cross

in a lattice structure; on each half the ribs are oriented at an angle of 45

deg to the streamwise direction.

Some screws through the top and bottom frames run through the holes

and are tightened to hold the test section together. O-rings are seated in

two grooves realized along the frame borders and are compressed during

the assembly of the two parts creating a seal at the interface. A row of

through holes is present on each of the two lateral walls of the frames;

these holes are aligned to those drilled on the different steel blocks so

as to allow the insertion of the thermocouples. Another row of through

holes is realized on the same lateral walls to allow the location for the

pressure taps.

Figure 4.4 shows the details of a group of four steel matrix blocks. Be-

tween two adjacent blocks an insulation spacer of bakelite is interposed

for both streamwise and spanwise directions. Moreover, to avoid that

the insulator affects the flow field, the channels have been carefully re-

machined to reach a flat surface. A T-type thermocouple is inserted in a

blind hole drilled into the base of each steel block. Moreover, each steel

matrix block is equipped with a Minco Kapton etched foil heater so as

to apply a specific heat flux for each position of the matrix module. Five

DC power supplies (MATRIX MPS-3005L-3) with voltage range 0-30V

and current range 0-5A are used to individually regulate the heat flux

of the heaters; the output of the supplies operate in constant voltage

or constant current mode with automatic crossover. Each power supply

has two outputs and each output provide the same voltage to a couple

of heaters that are connected in parallel. According to this arrangement

each streamwise position is identified by two couples of heaters: one for

the lower module and one for the upper module.
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Figure 4.3: Top section view of the lower half of a test model

Figure 4.4: Detailed view of four matrix blocks instrumented with
thermocouples and foil heaters
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4.1.2 Matrix geometries with constant cross section

This paragraph describes the four matrix geometries with constant

cross section investigated during the first campaign of static tests. These

four geometries are identified by an ID number ranging from 01 to 04

and may be distinguished by the main geometrical parameters reported

in Table 4.1; values in this table are referred to the single matrix module,

therefore, considering both the halves of the matrix structure, hrib and

ncan values should be considered as doubled.

To better understand differences among the four geometries the complete

set of all geometrical parameters is given in Table 4.2; these parameters

are also directly depicted in Figure 4.5. The overall cross section of the

test models is the same for Geom 01, 02 and for Geom 03, 04 matrix

geometries. In the first two cases the dimensions of the cross-section are

W = 52 mm and H = 30 mm, while in the other two cases the dimen-

sions are W = 52 mm and H = 3mm. These dimensions give a hydraulic

diameter of Dh = 38.05 mm and Dh = 5.67 mm respectively. In each

case the length of the overall channel of matrix module is L = 135 mm.

It must be pointed out that, as shown in Figure 4.5, hrib is the rib height

for a single matrix module, while H = 2hrib represents the overall height

of the matrix model and of the overall flow passage area.

As mentioned in section 4.1.1 the four geometries are characterized by

two different values of rib height hrib: 15 and 1.5 mm. For each rib

height two different configurations have been studied: one having four

entry channels and lower rib thickness trib = 1.5 mm, one having six

entry channels and higher rib thickness trib = 3.0 mm. This results in

two different open area values: Rvp = 84.5% for 01-03 geometries and

Rvp = 53.5% for 02-04 geometries.

Moving from Geom 01 to Geom 04 the values of sub-channel hydraulic

diameter dh,s decrease with the increasing of rib thickness trib and num-

ber of sub-channels ncan and with the reduction of rib height hrib (Table

4.2).

It must be pointed out that these geometries are representative of ex-

treme cases; in fact Geom 01, 02 are suitable for an application in the
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mid-chord region, while Geom 03, 04 are suitable for the trailing edge

region of a gas turbine airfoil.

For each of these four geometries heat transfer and pressure drop mea-

surements have been perfomed varying the Reynolds number Res,in from

2000 to 12000, where the Reynolds number is calculated considering the

hydraulic diameter of the single sub-channel dh,s,in at the inlet section

as the reference length according to the following definition:

Res,in =
ṁair · dh,s,in

Acan,in · ncan · µair,in
(4.2)

Table 4.1: Dimensions of matrix geometries with constant cross section

Geometry SF ncan hrib trib β
ID [mm] [mm] [deg]

01 5:1 4 15 1.5 45

02 5:1 6 15 3.0 45

03 5:1 4 1.5 1.5 45

04 5:1 6 1.5 3.0 45
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Table 4.2: Complete set of geometric dimensions of matrix geometries
with constant cross section

Geometry ID 01 02 03 04

W [mm] 52 52 52 52

H [mm] 30 30 3 3

L [mm] 135 135 135 135

ncan [ ] 4 6 4 6

trib [mm] 1.5 3.0 1.5 3.0

hrib [mm] 15 15 1.5 1.5

β [deg] 45 45 45 45

dh,s [mm] 10.59 5.62 2.54 2.09

Wc [mm] 8.19 3.46 8.19 3.46

A.R. [ ] 1.83 4.34 5.46 2.31

Rvp [%] 84.5 53.5 84.5 53.5

l [mm] 73.5 73.5 73.5 73.5

Figure 4.5: Geometric parameters of tested matrix geometries
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4.1.3 Matrix geometries with convergent cross section

As mentioned in section 4.1.1 a second campaign of static tests was

carried out on two convergent matrix models with the same scale factor

of the four geometries with constant cross section.

These are identified by ID numbers 05 and 06; their geometric dimensions

are shown in Tables 4.3 and 4.4, while a 3D drawing of a convergent test

model is also depicted in Figure 4.6.

Geom 05 has the same geometric dimensions of Geom 02 in correspon-

dence to the inlet section, and the same dimensions of Geom 04 at the

outlet section. At the same time Geom 06 has the same geometric di-

mensions of Geom 01 and Geom 03 in correspondence to the inlet and

outlet section respectively.

Each module of these convergent geometries, is inclined of α = 5.7deg to

replicate the converging channel of a trailing edge cooling system result-

ing in an overall converging angle of 11.4deg. This implies a progressive

reduction of the rib height from 15 mm at the entry to 1.5 mm at the

exit. A similar reduction is obtained for the sub-channel hydraulic diam-

eter dh,s; the geometry with four-entry channels (Geom 06 ) changes the

sub-channel hydraulic diameter dh,s from 21.19 mm to 5.07 mm, while

the geometry with six-entry channels (Geom 05 ) changes dh,s from 11.24

mm to 4.18 mm. This results in a strong reduction of subchannel cross

section area Acan and aspect ratio A.R. from the inlet to the outlet of

the models (1/10 ratio).

In a similar way to the previous static tests, for these two geometries heat

transfer and pressure drop measurements have been carried out varying

the Reynolds number Res,in from 2000 to 12000. It should be noted that,

since these channels are convergent and cross section, hydraulic diameter

and flow velocity changes continuously from the inlet to the outlet, in

these cases the Reynolds number was recalculated using the sub-channel

hydraulic diameter and flow properties at the middle or average section

of the matrix models. Moreover, as will be explained in the following

chapters about the results, the choice of the average section represent

the best way to correlate together both friction and heat transfer data
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coming from both constant and convergent matrix geometries.

In this case Reynolds number Res,ave is defined as:

Res,ave =
ṁair · dh,s,ave

Acan,ave · ncan · µair,ave
(4.3)

Table 4.3: Dimensions of matrix geometries with convergent cross
section

Geometry SF ncan hrib trib β
ID [mm] [mm] [deg]

05 5:1 6 15÷ 1.5 3.0 45

06 5:1 4 15÷ 1.5 1.5 45

Figure 4.6: Geometric parameters of tested matrix geometries with
convergent cross section
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Table 4.4: Complete set of geometric dimensions of matrix geometries
with convergent cross section

Geometry ID 05 06

W [mm] 52 52

Hin [mm] 30 30

Hout [mm] 3 3

L [mm] 135 135

ncan 6 4

trib [mm] 3.0 1.5

Rvp [%] 53.5 84.5

hrib,in [mm] 15 15

hrib,out [mm] 1.5 1.5

Wc [mm] 3.46 8.19

dh,s,in [mm] 5.62 10.59

dh,s,out [mm] 2.09 2.54

Acan,in 51.87 122.8

Acan,out 5.19 12.28

A.R.in 4.34 1.83

A.R.out 0.43 0.18

β [deg] 45 45

l [mm] 73.5 73.5
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4.2 Test Rig Layout for Rotating Tests

The rotating test rig shown in the Figure 4.7, originally designed and

used by Bonanni [62], has been employed to investigate rotation effects

on friction and heat transfer performance of two test cases representing

the scaled up models of the previous convergent geometries Geom 05 and

Geom 06 presented in section 4.1.3. Geometric details of these models

are reported in the following paragraph 4.2.1.

The rotating test rig consists of an open-loop suction type wind tunnel

installed on a rotating chassis. The chassis is connected to a rotary

joint and an inverter controlled electric motor (Marelli, IP55 7.5 kW

three-phase-asynchronous - inverter Lenze 7.5 kW 400 V IP21) drives

the rotary joint and the chassis by means of a transmission belt. On the

other end the joint is connected to a system of four rotary vane vacuum

pumps: two with a capacity of 900 m3/h each and two with 300 m3/h

each. The mass flow rate is set up by varying the speed of the pumps

and using a throttle valve located between the vacuum pumps and the

joint.

Figure 4.7: Test facility for rotating tests

The rotary joint has three purposes: first, it ensures the mechanichal

support of the rotating structure, second, it allows the air passage from
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Figure 4.8: Details of rotary joint and electric motor [62]

the static to the rotating environment with a rotating seal, third, elecric

power and signals are transmitted by means of 20 slip rings: 2 designed

for high current loads, 2 for low voltage power supply, 8 for TC-IP proto-

col communication and the remaining are silver made and compensated

to connect thermocouples directly to the data switch-acquisition unit.

The test section installed on the rotating chassis is mainly composed by:

an inlet section, an inlet duct, the test model and an outlet duct with

a connection to the rotary joint. Test models can be mounted on the

chassis according to different orientations with respect to the rotation

direction; in this way it is possible to investigate the effects of model

orientation as well as Coriolis forces on performance. In this activity two

different orientations of the matrix channel have been reproduced: 0deg

and 30deg with respect to the rotating plane (Figure 4.9). The 30deg con-

figuration reproduces the exit angle of a real gas turbine blade. Figure

4.9 also indicates that the lower matrix module (mod INF) corresponds

to the suction side (SS), while the upper module (mod SUP) corresponds

to the pressure side (PS).

To ensure the static and dynamic balancing of the rotating test rig a

system of more counterweights is installed on the part of the rotating

chassis opposite to the position of the test section. Position, mass and
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number of counterweights can be varied in order to reach the best bal-

ancing according to the different installed test model.

As shown in Figure 4.10, before entering into the test section the air at

atmospheric pressure and ambient temperature flows through a polyester

fibres filter, that is employed to generate the pressure drop necessary to

ensure uniform flow conditions at the test section entry. Then the air

passes along a radial inlet duct, flows through a 90deg bend and reaches

the inlet section of the test model. After the model, the air flow is dis-

charged towards the vacuum pumps passing through an outlet duct and

the rotary joint.

The mass flow rate is measured according to the standard EN ISO 5167-1

by means of an orifice located downstream the rotary joint with a mea-

surement accuracy below 3%.

The flow rate and the rotational speed of the test rig are varied for each

test in order to reproduce both Reynolds and Rotation number similitude

with the real conditions.

The temperatures of the whole test section mounted on the rotating chas-

sis are measured with 15 T-type thermocouples with a measurement accu-

racy of 0.5K. In particular 10 thermocouples are used to measure metal

temperatures of the matrix modules, while the others measure air temper-

atures in different points of the test section: one upstream the polyester

fibres filter, two in the inlet duct, one at the inlet and one at the outlet of

the test model. All these thermocouples are connected to an isothermal

thermocouple module (National Instruments NI 9214) mounted within

a wireless chassis (National Instruments NI cDAQ-9191). The wireless

chassis allows to transfer thermocouples signals to a network router and

hence to the acquisition computer.

A pressure scanner Scanivalve DSA 3217 with temperature compensated

piezoresistive relative pressure sensors measures the static pressure in 16

different locations from the inlet to the outlet of the whole test section

with a maximum accuracy of 17 Pa. This scanner is located on board

the rotating chassis at the lowest radius to avoid reading errors due to

the centrifugal force. These acquired pressure data are transmitted via
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Ethernet using the 8 TCP/IP protocol channels of the rotary joint slip

rings.

A low voltage generator Agilent N5763A DC Programmable Power Sup-

ply is used to regulate the heat flux of 20 Telemeter etched foil heaters.

They are applied to the back surface of the matrix elements to provide a

constant heat flux during each test.

Figure 4.9: Schematic of the two investigated test model orientations:
0deg and 30deg

4.2.1 Matrix geometries for rotating tests

The two same convergent matrix geometries presented in section 4.1.3

were also selected for the experimental tests in rotating conditions. In

this case the aim was the reproduction of Reynolds and Rotation number

similitude with real applications and the investigation of rotation effects
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Figure 4.10: Details of the test section installed on the rotating chassis

on heat transfer and friction performance.

To reproduce the desired Rotation numbers at low rotational speeds, the

scale factor SF of these test models was increased by two times with

respect to the dimensions of the previous static convergent models. On

the other hand the increase of geometric dimensions has led to change

the material of test models in order to minimize the centrifugal loads; to

reach this goal the 5083 aluminum alloy was used instead of the stainless

steel AISI 304 of the static models. This different choice of material did

not allow to approach the Biot number similitude as done during the

static tests.

As above mentioned another aim of this experimental campaign was to

evaluate the effects of different model orientations on matrix performance;

for this reason rotating tests were replicated for two different model ori-

entations with respect to the rotating plane: 0deg and 30deg (Figure 4.9).

The 30deg configuration reproduces the typical exit angle of a real gas

turbine blade.

Since these test cases, identified by ID numbers 07 and 08, are the scaled

up models of Geom 05 and Geom 06 (§ 4.1.3) many common features

can be found among them. However an important difference has to be
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highlighted and it consists in the different partition of the two metallic

modules into blocks. In fact each module of Geom 05 and Geom 06 is

formed by 10 elements, 5 in the main flow direction (streamwise) and 2 in

the tangential one (spanwise), while each module of Geom 07 and Geom

08 is formed by only 5 elements in the streamwise direction. This detail

is derived from the need to limit the number of thermocouples on board

the rotating chassis. Therefore, compared to the static tests, there is no

more the distinction between right and left side of each module, but it

still remains possible to find differences of performance between pressure

and suction side of the matrix channel.

Figure 4.11 illustrates that each matrix block is equipped with a thermo-

couple and two foil heaters; each aluminum block has a blind hole where

a thermocouple is inserted to a depth equal to half the width. Even in

this case the adjacent metallic elements are separated from each other

by insulation spacers of bakelite with a thermal conductivity close to 0.6

W/mK.

Moreover, as in the previous test models for static experiments, the loca-

tion of pressure taps has been chosen in order to follow the flow behaviour

according to four different sub-channel tracks from the entry to the exit

of the model.

As in the previous static tests on convergent geometries, heat transfer

and pressure drop measurements were performed for different Reynolds

numbers from 2000 to 12000. Reynolds number is calculated as in the

previous equation 4.3.

At the same time the Rotation number Ros,in, based on the subchannel

hydraulic diameter at the inlet section, was varied from 0 to 0.250 de-

pending on different mass flow and rotational speed conditions. Rotation

number Ros,in is defined as:

Ros,in =
ω · dh,s,in
vrel,in

(4.4)

where ω is the angular velocity of the test rig expressed in rad/s and

vrel,in is the bulk velocity of the flow in the sub-channel in correspon-
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dence to the inlet section. It should be noted that the Rotation number

represents the ratio between the Coriolis force and the bulk flow inertial

term.

Figure 4.11: Top section view of a test model employed during rotating
experiments

Table 4.5: Dimensions of matrix geometries for rotating tests

Geometry SF ncan hrib trib β
ID [mm] [mm] [deg]

07 10:1 6 30÷ 3.0 6.0 45

08 10:1 4 30÷ 3.0 3.0 45
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Table 4.6: Complete set of geometric dimensions of matrix geometries
for rotating tests

Geometry ID 07 08

W [mm] 104 104

Hin [mm] 60 60

Hout [mm] 6 6

L [mm] 270 270

ncan 6 4

trib [mm] 6.0 3.0

Rvp [%] 53.5 84.5

hrib,in [mm] 30 30

hrib,out [mm] 3.0 3.0

Wc [mm] 6.92 16.38

dh,s,in [mm] 11.24 21.19

dh,s,out [mm] 4.18 5.07

Acan,in 207.6 491.4

Acan,out 20.76 49.14

A.R.in 4.33 1.83

A.R.out 0.43 0.18

β [deg] 45 45

l [mm] 147 147
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4.3 Measuring devices

The static and the rotating test rigs of the present activity are equipped

with specific devices for the measurement of pressure, temperature and

mass flow rate. Moreover other devices have been adopted to provide a

constant heat flux to the metal surface of matrix models during the heat

transfer experiments.

This section will give an overview of all these types of instrumentation.

4.3.1 Mass flow rate measurements

The measurement of mass flow rate passing through the model is

required in order to set the Reynolds number of each test. In both test

rigs the mass flow rate has been measured by means of an orifice plate

located at the end of the suction type wind tunnel upstream the vacuum

pumps. In each case the mass flow rate has been measured according to

the standard UNI-EN ISO 5167-1.

This is one of the most common method to obtain flow rates using the

measurement of pressure drop across a restriction; for this reason these

devices are also known as differential pressure flow meters. In fact the

basic principle of this flow meter is that the flow is accelerated through

the restriction resulting in a decrease of static pressure.

As shown in Figure 4.12 in the present case the restriction is represented

by an orifice that consists of a thin plate with a centered hole mounted

within a duct. Two static pressure taps are located at D and D/2 from

each side of the orifice, where D is the hydraulic diameter of the duct.

In addition to this a temperature measurement is performed to calculate

the flow density.

Although this kind of flow meter is characterized by higher pressure losses

and lower accuracy than other devices, it guarantees a wide operating

range. However there are specific limitations on this range such as the

maximum pressure ratio over the orifice that could generate a chocked

condition. On the other hand the minimum pressure ratio and hence

the minimum mass flow rate should be high enough to allow an accurate
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measurement. One of the main advantages of this method is that the

orifice diameter may be chosen in order to get the maximum accuracy

depending on the expected range of the mass flow. As regards the present

experiments different diameters, from 12.5 to 18 mm, have been selected

for the 2” ducts so as to obtain a measurement accuracy below 3%.

Figure 4.12: Orifice plate for mass flow measurement

4.3.2 Static pressure measurements

As already mentioned in the previous paragraph 4.3.1, the measure-

ment of static pressure is required both downstream and upstream the

orifice to calculate the mass flow rate passing through the model. More-

over other pressure measurements are performed at different positions

along the test section in order to evaluate both fluid properties and pres-

sure losses through the test models.

In the present test rig static pressure measurements have been carried

out by two pressure scanners Scanivalve DSA 3217 (Digital Sensor Ar-
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ray). Each pressure scanner incorporates 16 temperature compensated

piezoresistive pressure sensors with a pneumatic calibration valve, a 16

bit A/D converter, and a microprocessor with a RAM memory. This lat-

ter compensates for temperature changes, performs unit conversion and

performs the actuation of an internal calibration valve to set on-line zero.

The 16 pressure transducers are manifolded in two groups of 8 sensors;

each of them measures the differential pressure between the inlet of its

own port and a common reference port. To have multiple pressure ranges

for a single scanner, several pneumatic configurations are possible; for ex-

ample all the 16 sensors can be manifolded to a single reference port, or

2 groups of 8 sensors can be referred to two different reference ports in

the dual range configuration. This configuration has been adopted for

the DSA scanners used for the present work; in fact 8 channels have a

pressure range of 5 psi (≃ 35000Pa) and 8 channels have a range of 15

psi (≃ 100000Pa) both with a 0.05% full scale of accuracy. This means

that the first 8 channels have an accuracy of 17 Pa, while the other 8

channels of about 51 Pa.

Since these sensors measure a differential pressure, an absolute pressure

measurement is required as a reference value. In this case the reference

pressure is the atmospheric pressure given by a mercury barometer within

the room.

The two DSA scanners are connected to the acquisition PC by means of

a TCP/IP protocol.

4.3.3 Temperature measurements

The temperature measurements performed both in the static and ro-

tating test rigs have mainly involved the flow and the metal elements of

each matrix model. In fact, according to the steady state technique de-

scribed in Section 4.4.1, these temperatures represent the main boundary

conditions to calculate the heat transfer coefficients.

Flow temperature is measured in correspondence of the orifices in order

to accurately estimate the flow density and hence the mass flow rate.

Other flow temperatures are performed at the inlet and outlet sections
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of the test model in order to calculate the coolant bulk temperature Tb,i

or Tair,i at any location within the matrix channel using the formulation

described by the Equation 4.6. In fact, starting from the air tempera-

ture measured at the inlet Tair,in, the local bulk temperature Tair,i can

be calculated at the midpoint of each streamwise location of the test

model according the above mentioned formulation based on energy bal-

ance equation.

As regards metal temperatures, the local regional wall temperature Tw,i

is directly measured using a thermocouple installed in the blind hole on

each metal block of the test models. The temperature of each block is

assumed uniform because each thermocouple is located at a depth where

the temperature distortion for fin is negligible. This latter hypothesis has

been verified by means of the thermal finite element method (FEM); an

example of the results obtained from these FEM simulations is reported

in Figure 4.13.

Figure 4.13: Example of a FEM simulation to evaluate the correct depth
to locate thermocouples
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Both flow and metal temperatures have been measured using sheated

T-type thermocouples (copper-constantan) with a wire diameter of 0.5mm

and an accuracy of 0.5 K certified by the manufacturer (Tersid S.p.A.).

All thermocouples are connected with a reference junction to a data ac-

quisition/switch unit (Agilent 34970A); this latter transmits data signals

to the acquisition PC by means of a GPIB-USB interface.

Since the voltage generated by thermocouple circuits is a function of the

temperature difference between the measuring junction and a reference

cold junction, it is important that the reference junction be maintained

at a constant and known temperature. For this reason in the present

activity the reference cold junction has been accomplished by an electri-

cal circuit located within a thermally insulated hollow cylinder. Cables

coming from the several thermocouples are fixed to an electrical terminal

located inside the hollow cylinder; other cables fixed to the other end

of the terminal are connected to the data acquisition unit. This device

allows to reach a constant temperature within the cylinder; the temper-

ature of this reference junction is measured by means of a RTD Pt100

sensor with an accuracy of 0.1 K. Therefore considering the measurement

accuracy of T-type thermocouples and RTD sensor, the temperatures of

the test rig are measured with a global accuracy of 0.6 K.

The data acquisition/switch unit Agilent 34970A measures and converts

11 different input signals: temperature with thermocouples, RTDs and

thermistors, dc and ac voltage, dc and ac current, 2-wire and 4-wire resis-

tance, frequency and period. The unit is equipped with three multiplexer

modules of 20 channels each (Agilent 34901A) with a maximum scan rate

of 60 channels/second. Each channel is independently configurable.

It should be noted that the Agilent 34970A has not been the only data

acquisition unit for temperature signals used in the present work. In fact,

since the number of slip rings of the rotary joint dedicated to the temper-

ature signals was not enough to ensure the connections of all the T-type

thermocouples installed on the rotating test rig, it has been necessary to

adopt a wireless unit in addition to the above mentioned Agilent unit.

For this reason these thermocouples have been connected to an isother-
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mal module (National Instrument NI 9214) mounted within a wireless

chassis (National Instrument NI cDAQ-9191). The wireless chassis al-

lows to transfer the thermocouple signals to a network router and hence

to the acquisition PC.

The NI 9214 is a 16-channel thermocouple input module; each channel

is multiplexed and sampled by a 24-bit A/D converter. It supports both

high-resolution and high-speed timing modes; in the present case the

high-resolution mode has been chosen in order to optimize accuracy and

rejects noise and power line frequencies.

All the data coming from the above data acquisition units for tempera-

tures and from the pressure scanners have been monitored and recorded

by means of a custom-tailored application in-house developed using the

LabView software.

4.4 Heat Transfer Coefficient measurement

4.4.1 Heated segments with thermocouples

In the present experimental activity a steady-state technique with

heated segments and embedded thermocouples has been employed to

determine the regionally averaged heat transfer coefficients for different

positions along the test models. It should be noted that a different metal

has been used for the heated segments that reproduce the internal sur-

faces of the cooling cavity (e.g. internal suction and pressure sides of the

vane/blade) depending on the different test facility: static or rotating. As

regards the static tests, stainless steel elements (AISI 304 with a thermal

conductivity equal to 15.1 W/mK) have been used in order to get a Biot

number similitude and a thermal gradient on the fins as close as possible

to a real application. As regards rotating tests, aluminum elements (5083

aluminum alloy with a thermal conductivity of 117.0 W/mK) have been

employed; although this case did not allow to replicate the same Biot

number condition of previous static tests, it has been possible to reduce

centrifugal loads with the aim of easily reproduce the Rotation number

similitude of a real blade.
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For both static and rotating tests a constant heat flux condition has been

imposed for each position of the test models by the setting of the power

input to the etched foil heaters attached to the back surface of the several

metal blocks. Power input has been regulated in order to have a temper-

ature difference of at least 30 � between air flow and metallic wall for

each streamwise position.

Then, a wall temperature Tw,i has been measured for each position by

means of the T-type thermocouple embedded into the base of each matrix

block for both steel and aluminum elements (§ 4.1.1). Since the thermal

conductivity of the metal block has a strong effect on the temperature

distribution along the fin/rib and therefore influences the heat transfer

rate, a specific data reduction procedure has been developed to take into

account the fin effectiveness and the temperature variation from the base

to the tip of matrix fins. It is clear that this variation becomes important

in the case of steel blocks because of the lower thermal conductivity, while

for the high conducting aluminum elements the measured temperature at

the base is quite already a regionally averaged temperature of the whole

block.

For both cases the above mentioned data reduction procedure has been

applied to obtain heat transfer coefficients starting from the temperature

measurements. This procedure is described in the next section (§ 4.4.2).

4.4.2 Data reduction and post-processing procedure

In this study a specific data reduction procedure has been developed

in order to determine three heat transfer coefficients HTCs with a differ-

ent physical meaning: htceqT , htceqB and htcr. The first two coefficients

htceqT and htceqB are equivalent values that include both heat transfer

term due to rib/fin surface and effective term applicable on the rib sur-

faces. A significant difference has to be highlighted between htceqT and

htceqB ; the first htceqT is the equivalent HTC value referred to a flat

surface without ribs considering the effective thermal conductivity of the

metal matrix blocks (e.g. 15.1 W/mK for static test models and 117.0
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W/mK for rotating test models), the second htceqB is the equivalent HTC

value recalculated with the ideal value of thermal conductivity that al-

lows to obtain the Biot number similitude with a real application. This

ideal value of thermal conductivity is equal to 10 W/mK and differs little

from that of the metal actually used for static tests (e.g. 15.1 W/mK).

It should be noted that it wasn’t possible to manufacture test models

selecting a metal with kmet = 10 W/mK because this is characteristic of

very expensive superalloys.

On the other hand the coefficient htcr represents the effective average

HTC value that derives from the heat transfer between fluid and rib and

it is applicable to the rib surfaces. Differences between these HTCs val-

ues are depicted in Figure 4.14.

The physical meanings of these coefficients are closely related to differ-

ent purposes within the context of the blade cooling design. In fact the

htceqT and htceqB values allow to evaluate the overall heat transfer rate

from the internal walls of suction and pressure sides of the gas turbine

airfoil; this overall heat transfer rate also includes the term due to the

additional heat transfer surface area provided by the ribs.

The htcr values could be used to find out correlations about the influ-

ence of the regime flow (Reynolds number) on heat transfer performance

(Nusselt number) and could be applied on the rib surfaces of a matrix

geometry as boundary conditions in a FEM analysis.

(a) htcr (b) htceqT and htceqB

Figure 4.14: Difference between effective and equivalent Heat Transfer
Coefficients HTCs
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Figure 4.15: Nomenclature of the indices used in the data reduction
procedure to identify the position of the blocks

Before reporting the details about the data reduction procedure it

is necessary to explain the geometric nomenclature and the geometric

quantities used as reference to calculate the main investigated parameters

such as: Reynolds number, Nusselt number and friction factor.

In fact, as already described in the previous sections 4.1 and 4.2, each

test model is composed by 10 elements per both sides (lower and upper

half), 5 in the streamwise or main flow direction and 2 in the spanwise or

tangential one. It must be pointed out that test models for rotating tests

are similar to the static ones but have only one element in the spanwise

direction.

Three indices have been used to identify the position of the specific matrix

block within this procedure: il distinguishes the upper or lower module

(il=1=sup for the upper, il=2=inf for the lower module), ip points the

spanwise position (ip=1=sx for left side, ip=2=dx for right side) while

is localizes the streamwise position from 1 to 5 (from inlet to outlet).

To identify the variable related to the i − th matrix block, in the next
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sections it will be used the generic index i.

Starting from the Newton’s law of cooling, htceqT values are calculated

at the base of the rib according to the following relation:

htceqT,i =
Qinput,i −Qloss,i −Qcond,lat,i

Ab · (Tw,sup,i − Tair,i)
; (4.5)

where Ab = Wb
2 is the base area of the element, Tair,i is the aver-

age air temperature while Tw,sup,i represents the wall temperature at the

base of the rib.

The average bulk air temperature Tair,i has been estimated for each

streamwise location along the test model; that is, starting from the air

temperature Tair,in measured at the inlet, the Tair,i value is calculated at

the mid-point of each axial position (is from 1 to 5) using the following

energy balance equation:

Tair,i = Tair,in +

(
Σi−1

j=1(Qnet,j)up + 1
2
(Qnet,i)up

)

ṁair · cp,air
+

+

(
Σi−1

j=1(Qnet,j)low + 1
2
(Qnet,i)low

)

ṁair · cp,air

(4.6)

where Qnet,i = Qinput,i − Qloss,i − Qcond,lat,i is the net heat from

the i− th streamwise plate to the cooling air. The bulk air temperature

Tair,6, calculated at the outlet of the test model, is then compared with

the measured one Tair,out to ensure that a steady state condition has

been reached during the experiment and that Qloss have been correctly

evaluated.

As regards the heat terms, Qinput,i represents the power supplied by each

heater, Qloss,i is the heat lost from each matrix block while Qcond,lat,i is

the heat transferred from the i− th block to those adjacents; the latter

is expressed as:

Qcond,lat,i = Alat ·
kis
sis

· (2Tw,i − Tw,i−1 − Tw,i+1) (4.7)

where Alat = Wb · hb is the lateral contact area between two adjacent
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blocks, while kis and sis are the thermal conductivity and thickness of the

insulation spacers made of bakelite (kis ∼= 0.6 W/mK) between adjacent

metal blocks. Details on heat losses Qloss,i determination are given in

the next section 4.4.3.

Figure 4.16: Heat fluxes and wall temperature distribution through a
single matrix block

The Tw,sup,i is evaluated starting from the temperature value Tw,i,

which is the local wall temperature measured by the thermocouple at a

given distance hTC from the base of the block, and considering an energy

balance of heat fluxes for each matrix block (Figure 4.16). In particular

the solution of the second-order differential heat equation provides the

Tw,i(x) distribution along the thickness of the matrix module:

k · d
2T

dx2
=

Qcond,lat,i

Alat
(4.8)

To solve this equation the two following boundary conditions are con-

sidered:

Tw,i(x = hTC) = Tw,i (4.9)

k · dT
dx

|x=0 =
Qinput,i −Qloss,i

Ab
(4.10)

where the first is specified in terms of the temperature Tw,i measured
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by the thermocouple at x = hTC , while the second corresponds to the

net input power supplied at the base of the matrix module x = 0. In this

way Tw,i(x = hb) = Tw,sup,i, which is the desired temperature value at

the base of the rib, is evaluated.

On the other hand htcr, which is the applicable value on the rib surfaces,

is calculated by applying the fin effectiveness theory [87]. In fact an

analogy exists between a matrix rib and a rectangular fin of uniform

cross section as that shown in Figure 4.17.

(a)

(b)

Figure 4.17: Conduction and convection in a rectangular fin of uniform
cross section [87]

Thermal conductivity kmet and heat transfer coefficient htcr due to

the convection with the fluid generally determine a non uniform temper-

ature distribution along the fin. Each fin is attached to a base surface

of temperature T (x = 0) = Tb and extends into a fluid of temperature

T∞. Considering the rectangular fin in Figure 4.17a, where Ac is the

cross-sectional area and P is the perimeter, it is necessary to solve the

Fourier’s equation in the following form:

d2T

dx2
− htcrP

kAc
· (T − T∞) = 0 (4.11)

This equation may be simplified as:
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d2(T (x)− T∞)

dx2
−m2 · (T (x)− T∞) = 0 (4.12)

where m is the so-called fin parameter (htcr,i · Ac/kmet · P )0.5 [87].

Equation 4.12 is a linear, homogeneous, second-order differential equation

with constant coefficients and its general solution may be written as:

T (x)− T∞ = C1e
mx + C2e

−mx (4.13)

To evaluate the constants C1 and C2 of equation 4.13 it is necessary

to specify appropriate boundary conditions; one condition is the temper-

ature at the base of the fin (x=0):

T (x)− T∞|x=0 = Tb − T∞ = Tw,sup,i − T∞ (4.14)

where Tb is the temperature at the base of the fin and corresponds to

the above mentioned Tw,sup,i for the present procedure.

The second boundary condition specifies the convection heat transfer

from the fin tip (x = L); applying an energy balance to a control surface

about the tip (Figure 4.17b) it is obtained:

−kAc
dT

dx
|x=L = htcrAc[T (L)− T∞] (4.15)

In fact, considering the conservation of energy, the rate at which heat

is transferred by convection from the tip must equal the rate at which

heat is conducted through the base of the fin (qf = qb).

Then substituting Equation 4.13 into Equations 4.14 and 4.15 the follow-

ing solutions are obtained respectively:

Tb − T∞ = C1 +C2 (4.16)

htcr · (C1e
mL +C2e

−mL) = kmetm · (C2e
−mL − C1e

mL) (4.17)

Solving for C1 and C2 it is possible to obtaint the following tempera-
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ture distribution through the fin:

T (x)− T∞

Tb − T∞
=

cosh(m(L− x)) + (htcr/mkmet)sinh(m(L− x))

cosh(mL) + (htcr/mkmet)sinh(mL)
(4.18)

Hence, once known the temperature distribution through the fin, the

fin heat transfer rate qf for the single matrix block may be evaluated as:

qf,i =
√

htcr,iPkmetAc · θb ·
sinh(mL) + (htcr,i/mkmet)cosh(mL)

cosh(mL) + (htcr,i/mkmet)sinh(mL)
(4.19)

where θb = Tb − T∞.

It should be noted that this temperature distribution (Eq. 4.18) and

this fin heat transfer rate (Eq. 4.19) have been found considering the

boundary condition of convection heat transfer at the fin tip expressed by

Equation 4.15. This latter assumption has been adopted within the data

reduction procedure for the determination of the effective heat transfer

coefficient htcr,i between matrix fin and cooling fluid. In fact in this case,

especially for matrix geometries with smaller rib height, the surface at

the tip is not treated as adiabatic because the heat transfer at the rib

tip is not negligible compared to the other heat transfer surfaces. Then,

since the overall heat exchanged by convection is given by the sum of

heat transfer term due to ribbed areas (qf,i) and heat transfer term due

to non ribbed areas, the following balance equation can be written:

qf + htcr,iWcLrib(Tw,sup,i − Tair,i) = htceq,iAb(Tw,sup,i − Tair,i) (4.20)

where Lrib represents the overall length of rib for each matrix block

and Wc is the sub-channel width or the distance between two adjacent

ribs (Figure 4.18).

Therefore, knowing htceqT,i values and using equations 4.19 and 4.20,

htcr,i coefficients are determined through an iterative cycle.

As above mentioned, for both htceqT,i and htcr,i values related to static
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Figure 4.18: Overall length rib and sub-channel width for a single
matrix block

tests, the heat transfer coefficients have been calculated in a condition as

close as possible to the Biot number similitude with the real application.

Finally, for both static and rotating tests, the other equivalent heat

transfer coefficients htceqB,i have been determined applying the same

iterative procedure described by the previous equations. In this case

kmet = 10 W/mK was used, that is the thermal conductivity value nec-

essary to reach the ideal Biot number similitude with real case and hence

to reproduce the realistic thermal gradient along the fin.

Although this procedure allows to estimate average HTCs for each single

block, for each streamwise position and for the whole model, it is neces-

sary to express these values in terms of relevant dimensionless quantities

with the final aim to compare heat transfer and friction performance of

the different investigated matrix geometries. In fact these are charac-

terized by both different scale factors and different values of the main

geometric parameters and a correct comparison between them may be

done only using dimensionless quantities. For this reason mass flow rate

and heat transfer coefficient have been represented by Reynolds number

and Nusselt number respectively as follows:

Res =
ṁair · dh,s

Acan · ncan · µair
(4.21)
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Nus =
htc · dh,s

kair
(4.22)

where dh,s and Acan are the hydraulic diameter and cross-sectional

area of the sub-channel, respectively. On the other hand µair and kair

are dynamic viscosity and thermal conductivity of the air and are calcu-

lated from pressure and temperature values measured or evaluated at a

specific section of the model. In this way starting from htceqT,i, htceqB,i

and htcr,i values the corresponding average Nusselt numbers NueqT,s,

NueqB,s and Nur,s have been calculated.

Reynolds and Nusselt numbers are defined by taking the sub-channel

hydraulic diameter as the characteristic length. As regards matrix ge-

ometries with constant cross section, Nus and Res are based on the

sub-channel hydraulic diameter dh,s,in at the inlet section, which is con-

stant from the inlet to the outlet (see also Equation 4.2), while the sub-

channel hydraulic diameter dh,s,ave at the average or middle section has

been adopted for convergent geometries (see also Equation 4.3).

As already defined by Equation 4.4, another relevant dimensionless pa-

rameter investigated in the present activity is the Rotation number. This

parameter allows to understand in which condition the experimental test

rig reproduces the rotational condition of a real blade. In this analysis

the Rotation number is based on the sub-channel hydraulic diameter at

the inlet section and is indicated as Ros,in.

As regards matrix geometries with convergent cross section the data

reduction procedure gives the possibility to calculate the main dimen-

sionless parameters Nus and Res with respect to hydraulic diameters of

inlet, average and outlet sections of each streamwise block and of the

whole model (Figure 4.19). In the present work it has been necessary to

reduce experimental data of convergent geometries using the sub-channel

hydraulic diameter based on both average section of the whole model

and average section of each single matrix block. For this reason a spe-

cific definition of hydraulic diameter has been implemented in the data

reduction procedure to take into account the linear decrease of rib height

from the entry to the exit section; in fact the rib height is expressed as a
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polynomial function (a − bx), where x is the axial coordinate along the

streamwise direction. According to these considerations the hydraulic

diameter dh,s,ave,ave referred to the average section of the whole model

is defined as:

dh,s,ave,ave =
4Acan

Pcan
=

4
∫ L

0
Wc(a− bx) dx

2
∫ L

0
Wc + (a− bx) dx

=
4(

Acan,IN+Acan,OUT

2
)

(
Pcan,IN+Pcan,OUT

2
)

(4.23)

where Acan and Pcan are the sub-channel cross section area and sub-

channel perimeter at the inlet and outlet sections of the model.

The same definition has been applied to calculate the hydraulic diameter

dh,s,ave,i referred to the average section of the single i-th streamwise block

as follows:

dh,s,ave,i =
4Acan,i

Pcan,i
=

4
∫ Li

0
Wc(a− bx) dx

2
∫ Li

0
Wc + (a− bx) dx

=
4(

Acan,in,i+Acan,out,i

2
)

(
Pcan,in,i+Pcan,out,i

2
)

(4.24)

Unlike the previous case, Acan,i and Pcan,i are referred to the inlet

and outlet sections of the considered streamwise block.

All the details of this data reduction procedure have also been re-

ported in Carcasci et al. [113].

4.4.3 Heat losses determination

As it is possible to deduce from Equation 4.5 the heat losses Qloss,i

play a dominant role in the correct estimation of heat transfer coefficients.

That is, an accurate characterization of heat losses implies an accurate

determination of HTCs.

For this reason a wide part of this activity has been addressed to the

experimental measurement of heat losses for each of the investigated ge-

ometries and additional corrections have been applied to evaluate the

increase of heat losses during rotating conditions.

Heat losses have been experimentally determined from several static cal-
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Figure 4.19: Definition of sub-channel hydraulic diameter of the whole
matrix model and single i-th matrix block

ibration tests, where the test articles were closed to avoid any air cir-

culation. This configuration is necessary because when the steady state

condition is reached it means that the heat supplied by the foil heaters

Qinput,i is balanced by the heat lost through the thermal insulating shell

Qloss,i. This heat loss should be equal to the heat lost during the ac-

tual measurement of HTCs depending on different test conditions. Since

heat loss could change moving from a position to another of the matrix

model because of the different metal temperature, it is necessary to ob-

tain several calibration functions that give the heat loss as a function

of the different position and different block temperatures Tw,i respect to

ambient temperature Tamb.

Starting from the previous considerations, calibration tests have been re-

peated for several power inputs Qinput,i with the aim to reproduce the

whole range of temperature difference (Tw,i−Tamb) expected during heat

transfer tests.
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Tests have been planned as follows: a first test (reference test) has been

performed applying the same power input to each block; then, starting

from this condition, an increase of heat flux has been imposed for each

position. Tests have also been repeated for different levels of heat flux

increase in order to enlarge the investigated (Tw,i − Tamb) range.

Since the duration of each test is higher than 3 hours, it has been neces-

sary to limit the total number of tests; for this reason some assumptions

about heat losses have been made: a symmetric behaviour is assumed

between the lower and the upper part of each geometry and between the

extreme streamwise blocks in positions #1 and #5. This latter hypoth-

esis has been adopted in case of geometries with constant cross section

but not in case of convergent geometries. In fact, as regards convergent

geometries, each streamwise block has its own thermal behaviour due to

the different geometry; in this case different heat fluxes have been im-

posed for each of the five streamwise locations.

For each calibration test, an energy balance can be written for each block:

Qinput,i = Qloss,i +
kis
sis

· (Wb · hb) · (Tw,i − Tw,i−1)+

+
kis
sis

· (Wb · hb) · (Tw,i − Tw,i+1); i = 1, 5

(4.25)

As above mentioned the heat loss can be modeled as a function of

block temperature Tw,i respect to ambient temperature Tamb and so it

can be expressed as a polynomial function:

Qinput,i =
[
aloss,i + bloss,i · (Tw,i − Tamb) + closs,i · (Tw,i − Tamb)

2
]
+

+
kis
sis

· (Wb · hb) · (2Tw,i − Tw,i−1 − Tw,i+1)

(4.26)

If m calibration tests are run and 5 are the streamwise positions then

(m · 5) equations can be written where the unknowns are aloss,i, bloss,i,

closs,i and kis. These coefficients can be determined using linear least
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Figure 4.20: Example of Qloss polynomial trends as a function of block
temperature Tw,i respect to ambient temperature Tamb

squares approach. Generally aloss,i = 0 because if (Tw,i−Tamb) = 0 then

also Qloss,i = 0. An example of the polynomial functions experimentally

found for each streamwise block (from #1 to #5) is reported in Figure

4.20; in each case Qloss has a rising trend with the increase of temperature

difference (Tw,i − Tamb) and, as expected, heat losses are higher for the

extreme streamwise blocks located at the inlet and outlet of the model

(blocks #1 and #5) because of the higher heat conduction from these

blocks to the adjacent metal parts of inlet and outlet sections. Similar

trends have been found between the different test articles.

As regards rotating tests with convergent geometries formed by alu-

minum blocks an additional analysis has been performed to estimate the

variation of heat losses in rotating conditions with respect to the static

cases. A simplified model, represented by the thermal circuit in Figure

4.21, has been considered; since the thermal conductivity of the aluminum

is high the metal temperature Tw,i, measured by the thermocouple in

TC position, is extended to the entire block, and the conduction through

thermal insulating shell and external convection with ambient air is also

included in the overall heat transfer coefficient Ueq . First of all, start-
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Figure 4.21: Schematic of the thermal circuit used to evaluate heat
losses in rotating conditions

ing from the Qloss values measured in static conditions, the outer heat

transfer coefficient htcext between the insulating shell and the ambient

has been calculated considering the following heat transfer equation:






Qloss = Ueq(Alat + Asup)(Tw,i − Tamb)

Ueq =
1(

sis
kis

+
1

htcext

)

Then, considering the rotating case, the test model has been reduced

to a flat plate, moving in the air with a velocity v = ωr, where ω is

the rotational speed of the test rig and r is the average radial distance

between test model and rotation axis. According to this configuration

htcext has been recalculated using the heat transfer correlations concern-

ing the forced convection on flat plates with laminar and turbulent flow,

even if Reynolds number ReL for present application is below 5 ·105 (lam-

inar flow). The heat transfer correlations used for this analysis are the

following:






NuL =
htcextL

kair
= 0.664Re0.5L Pr1/3 ReL < 5 · 105 laminar

NuL =
htcextL

kair
= 0.036Re0.8L Pr1/3 ReL > 5 · 105 turbulent
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Finally, the above recalculated htcext values have been employed to

calculate the heat loss in the rotating cases. Table 4.7 shows that the

average increase of Qloss with respect to the static case is about 10%.

Table 4.7: Comparison of heat losses Qloss between static and rotating
experiments

Case htcext ω v Qloss,rot/Qloss,stat

W/m2K [rpm] [m/s]

Static 10.3 0 0 1

Rotating (laminar) 20.1 100 9.17 1.06

Rotating (turbulent) 43.3 100 9.17 1.09

Rotating (laminar) 26.5 173 15.87 1.07

Rotating (turbulent) 43.3 173 15.87 1.10

4.5 Friction factor measurement

In the present work static pressures were acquired for different po-

sitions along each test model to evaluate the overall pressure drop for

different Reynolds numbers. These results have been processed in order

to obtain: friction factor distributions as a function of Reynolds number,

total to static pressure ratios as a function of a non dimensional mass

flow rate (i.e. flow functions). At the end of this process some design

correlations have been derived with the aim of obtaining the pressure loss

and evaluating the coolant consumption in the operating conditions of a

real case.

First of all, starting from the overall static pressure drop measured during

the tests, the overall friction factor has been calculated for each Reynolds

number. However, since the friction factor should be based on total to

total pressure values it has been necessary to convert the measured static

pressure information to total pressure values.
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For this reason an iterative procedure has been adopted to calculate the

total pressure on the inlet, average and outlet sections of each matrix

model. In each of these sections the following isentropic equation has

been applied to calculate the product (ρc) using total temperature Ttot

and static pressure p values measured in that specific section.

ρc =
p√

R · Ttot

· √γ ·M ·
√

1 +
γ − 1

2
·M2 (4.27)

The product (ρc), derived from the previous equation by iterating

on Mach number M , is then compared with the (ρc) obtained from the

measurement of the mass flow rate. At the minimum difference between

these (ρc) products corresponds the value of Mach number that allows to

derive the desired total pressure value ptot using the following isentropic

relationship:

ptot
p

=

(
1 +

γ − 1

2
·M2

) γ

γ − 1 (4.28)

Repeating the previous procedure for the inlet and outlet section the

overall total pressure drop ∆ptot has been calculated; this latter has

been employed to determine the overall friction factor according to the

following equations:

fs,in =
∆ptot · dh,s,in

4 · Ltot · 1/2 · ρ · v2in
(4.29)

fs,ave =
∆ptot · dh,s,ave

4 · Ltot · 1/2 · ρ · v2ave
(4.30)

where vin and vave are the flow velocity in the sub-channel at the

inlet and average section of the model, while Ltot is the overall distance

of the flow along a track as depicted in Figure 4.22.

It should be noted that for matrix geometries with constant cross section

the friction factor has been calculated according to Equation 4.29, while

for matrix geometries with convergent cross section the Equation 4.30 has

been adopted; in fact for convergent geometries the velocity and hydraulic
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diameter at the average or middle section are considered to be the most

significant for the calculation of friction factor.

Figure 4.22: Difference between the length of a matrix model L and the
effective overall distance of the flow along a track Ltot

Moreover, the friction factor values fs,in or fs,ave have been normal-

ized by f0 values calculated at the same Reynolds number by means of

the Karman-Nikuradse correlation:

f0 = 0.046 ·Re−0.2
s (4.31)

where f0 is the friction factor of a fully developed turbulent flow in a

smooth duct.

From this normalization the fs/f0 trends have been obtained in order to

get a better comparison between the investigated geometries and other

matrix geometries reported in the technical literature.

In addition to this, a total to static pressure ratio βTS has been calcu-

lated for each mass flow rate and a trend of this ratio as a function of

a non dimensional mass flow rate ṁrid has been derived for each matrix

geometry.

The total to static pressure ratio βTS is calculated as follows:
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βTS =
ptot,in
pout

(4.32)

where ptot,in is the total pressure evaluated at the inlet section, while

pout is the static pressure measured at the outlet section of the model.

On the other hand, the non dimensional mass flow rate is calculated as:

ṁrid =
ṁcan ·

√
R · Ttot,in

ptot,in · Acan,out
(4.33)

where ṁcan is the mass flow rate for the single sub-channel and Ttot,in

is the total temperature evaluated at the inlet section.

From Equation 4.33 it should be noted that the non dimensional mass

flow rate is based on the sub-channel passage area at the outlet section

Acan,out, because this is the most representative section for the pressure

losses in a matrix geometry. In fact, as will be reported in Chapter 5,

in case of both constant and convergent matrix geometries, the outlet

section is the section that contributes most of all to generate the overall

pressure drop.

Moreover, for each matrix geometry, it has been demonstrated that the

best fitting for the trend βTS −mrid is ensured by the following function:

ṁrid = (a · β + b) ·
√

2 · γ
γ − 1

·
(
β
−2/γ
TS − β

−(γ+1)/γ
TS

)
(4.34)

Equation 4.34 derives from the definition of the isentropic mass flow

rate in a nozzle.

All the results obtained in terms of pressure loss, friction factor distribu-

tions and total to static pressure ratio will be reported in the following

Chapter 5.

4.6 Measurement uncertainty

The adoption of a certain measurement technique to investigate a

physical phenomenon implies two important principles: first, the mea-

sured quantity have a clear relationship to the phenomenon of interest,
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second the measurement is performed in a way which will produce the

minimum disturbance. The understanding of these two principles allows

to exactly define the physical quantity of interest and to correctly place

the measurement devices in the environment.

The measurement of a physical quantity is generally performed by means

of a measurement chain, that typically consists of the following elements:

probe, transducer, manipulation element, recording device, display ele-

ment and acquisition system (Figure 4.23).

Figure 4.23: Schematic of a generic measurement chain

The probe detects the physical effect of the quantity to be measured

and converts it into a signal detectable by a transducer. To obtain a reli-

able signal is necessary that the disturbances due to the presence of the

probe in the flowfield are as small as possible (e.g. a hot wire anemometer

to measure the flow speed).

The transducer is a device that converts the physical effect given by the

probe into an electric signal because this is the form of signal that is most

easily measured. This signal may be in analog or digital form; this latter

is more convenient because it offers the advantage of an easy storage in

memory devices and a manipulation with computers. This electrical con-

version has other advantages such as: an amplification of the signal, a

transmission of the signal at a long distance and a conversion with large

frequency band.

The manipulation element is a general device dedicated to the acquisition

and transmission of the signal with the minimum alteration; it may be

an amplifier, a filter or an emitter.

The recording device, display element and acquisition system act to in-

dicate, record and transform the output provided by the manipulation
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element into an interpretable form using a computer (e.g. memory of a

computer).

Since many different interactions may exist between the elements of the

measurement chain and the environment, the measured value is different

from the real value; in other words there is difference between what one

would like to measure and what one is able to measure. To minimize the

effects of these disturbances it is important to compensate them during

the measurement process and to accurately design and select the probe

and the other elements of the measurement chain.

Moreover, each device, probe or sensor of the measurement chain has its

own accuracy that could affect the observed quantity; for this reason it

is fundamental to know the accuracy of each measuring device.

All the above mentioned elements have a direct consequence on the so-

called experimental uncertainty. In fact the measurement of the same

quantity using the same equipment but in different facilities will probably

give different results. This is mainly due to the differences in instrument

calibration, interactions between environment and measurement chain el-

ements and human factors. Even the repetition of an experiment in the

same facility will most probably not produce identical results but they are

always expected to fall within an interval around a certain measurement

point. This interval is the experimental uncertainty and is a measure of

the possible error made on a particular experiment [114]. It should be

noted that an important difference exists between the concepts of “error”

and “uncertainty”. Although it is very common for people to speak of

experimental errors, the correct terminology should be “uncertainty” and

the two terms should not be confused. In fact the error is associated to

a single measurement and is the difference between the “measured” or

“corrected” value and the “true” or “real” value. On the other hand the

uncertainty is referred to a number of experiments and represents the

possible value that the measurement error may have. [115].

According to the technical literature the real experiments are subject to

two types of errors:

1. random errors or precision errors are obtained when repeated trials
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of an experiment are done using the same equipment and test facil-

ity. This error generally scatters around a mean value according to

a Gaussian distribution. The mean value is accurately determined

from a sufficient number of data points, while the standard devia-

tion σ measures the amount of variation from this mean value and

is an evaluation index of the random error. This type of error can

be reduced by improving instrumentation accuracy (Figure 4.24).

2. systematic errors or bias errors represent the difference between

the mean value of the measurements and the actual “true” or “real”

value of the measured quantity. Unlike the random error the bias

is constant for a repeated trial of an experiment but it can not be

estimated from a statistical analysis. It can be difficult to estimate

the bias error because the “true” value is generally unknown but

an accurate instrument calibration and a comparison with other

measurement methods allows to evaluate it (Figure 4.24).

Figure 4.24: Systematic errors vs random errors

On the other hand the uncertainty is determined for a number of

experiments and represents the possible value that the error may have

within a given confidence level. For example, considering a generic mea-

surement of the heat transfer coefficient HTC, the correct form to express

its uncertainty is as follows:
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HTC = 500 W/m2K ± 25 W/m2K (20 : 1) (4.35)

where the measured value is 500 W/m2K, the uncertainty value is

±25 W/m2K and the confidence level is (20 : 1); this latter means that

95% (or 19 out of 20) of the measurements will fall within the uncertainty

interval (20 : 1). This corresponds to a confidence level of 95% and

is commonly used in engineering. It should be noted that the value

of uncertainty always depend on the confidence level and an increase

of measurement accuracy leads to a smaller uncertainty and a higher

confidence level.

The analysis of the experimental uncertainty may be distinguished in two

parts:

1. uncertainty in primary or direct measurements

2. uncertainty in a result derived from direct measurements

In the first case the uncertainty is the symmetrical band around a mea-

surement within which the true value should fall (e.g. 300K ±0.5K is the

temperature given by a thermocouple with its related uncertainty). The

second is the most common case in an experimental activity where the

primary measurements must be combined to calculate the desired result;

therefore, the uncertainty in the final result is due to the uncertainties in

the primary measurements. Thus, it is important to understand how the

uncertainties associated to direct measurements can affect the observed

quantity.

To calculate the average experimental uncertainty on the observed quan-

tities the following method reported by Holman [115] and proposed by

Kline and McClintock [116] is usually adopted.

Let’s call R the observed quantity of an experiment that is a given func-

tion of n independent variables x1, x2, x3...xn, which in turn are char-

acterized by their uncertainties with the same confidence level of 95%.

Thus, the overall uncertainty in the indirect quantity R can be expressed

as:
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R = R(x1, x2, x3...xn) (4.36)

Let’s call ∆R the uncertainty in the result and ∆x1,∆x2,∆x3...∆xn

the uncertainties in the independent variables, then the uncertainty in

the result is given by:

∆R =

√(
∂R

∂x1
∆x1

)2

+

(
∂R

∂x2
∆x2

)2

+ ...+

(
∂R

∂xn
∆xn

)2

(4.37)

Therefore, the application of this method allows to establish that the

final observed quantity R is measured with an uncertainty of ±∆R and

a confidence level of 95%.

Finally, since the uncertainty propagation in the result ∆R predicted by

Eq. 4.37 depends on the squares of the several uncertainties ∆x1...∆xn

it is possible that the uncertainty of one variable is significantly larger

than the uncertainties in the other variables; this means that it is the

largest uncertainty that predominates and the others could be neglected

[115].

In the present work the above reported method was applied to evaluate

the experimental uncertainty on the following final quantities: mass flow

rate, Reynolds number, friction factor and heat transfer coefficient.

As regards the mass flow rate, this was measured using an orifice plate

equipped with two static pressure taps and a thermocouple according to

the standard UNI-EN ISO 5167-1 (§ 4.3.1). The overall uncertainty in

mass flow rate is mainly given by the combination of the uncertainties in

the primary measurements such as pressures and temperatures. These

uncertainties were derived by the data sheets of the measuring devices.

For example the static pressures at the orifice were measured with an

accuracy of 51 Pa, 17 Pa and 6.9 Pa for sensor pressure range of 15, 5

and 1 psi respectively. Pressure range has been changed depending on

the expected mass flow rate in order to guarantee the best measurement

accuracy for each test. Temperature at the orifice was measured using a

T-type thermocouple with an accuracy of ±0.5K, while the accuracy of
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the duct diameter is given by the accuracy of the caliper. Starting from

these considerations, it was found that the maximum uncertainty falls

into the range 1.2÷ 4% (Table 4.8).

Once known the mass flow rate uncertainty, fuid properties and some

geometric dimensions, it was possible to estimate that the maximum un-

certainty in Reynolds number is 5% (Table 4.9).

As regards the average friction factor f its uncertainty is mainly affected

by the uncertainty on the estimation of the flow velocity through a sub-

channel of the matrix model. It was evaluated that the maximum uncer-

tainty on friction factor is ±10% (Table 4.10).

Finally the uncertainty on heat transfer coefficient HTC was evaluated

taking into account the combination of the accuracies coming from all

the devices used for both static and rotating steady tests. Even the un-

certainty on heat losses determination was included in this procedure

through the evaluation of the uncertainty on the heat loss coefficients ai

that characterize the polinomial functions derived from heat losses cali-

bration tests. This uncertainty is estimated around 10% (§ 4.4.3).

Even the uncertainty on heat input Qinput gives an important contri-

bution to the final uncertainty on HTCs. It should be noted that this

uncertainty is higher (±7%) for rotating tests with respect to static ones

(±3%); this is mainly due to the lower accuracy of current measurement

for the DC power supply adopted during these tests.

For this reason the maximum uncertainties on HTCs for static and ro-

tating tests are about ±6% (Table 4.11) and ±10% respectively (Table

4.12).
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Table 4.8: Uncertainty analysis on mass flow rate

Variable Exp. Technique Uncertainty Units

d Orifice diameter Caliper ±0.5% [-]

D Duct diameter Caliper ±0.5% [-]

T Temperature T-type thermocouple ±0.5 [K]

p Pressure Pressure taps DSA 3217 15 psi ±51 [Pa]

p Pressure Pressure taps DSA 3217 5 psi ±17 [Pa]

p Pressure Pressure taps DSA 3217 1 psi ±6.9 [Pa]

ṁ Mass flow rate Orifice ±4% [-]

Table 4.9: Uncertainty analysis on Reynolds number

Variable Exp. Technique Uncertainty Units

ṁ Mass flow rate Orifice ±4% [-]

dh Hydraulic diameter - ±2% [-]

A Area - ±3% [-]

µ Dynamic air viscosity - ±0.1% [-]

Re Reynolds number - ±5% [-]

Table 4.10: Uncertainty analysis on Friction Factor

Variable Exp. Technique Uncertainty Units

dh Hydraulic diameter - ±2% [-]

p Pressure Pressure taps DSA 3217 15 psi ±51 [Pa]

p Pressure Pressure taps DSA 3217 5 psi ±17 [Pa]

Ltot Overall flow distance - ±0.05% [-]

ρ Air density - ±0.15% [-]

v Flow velocity - ±5% [-]

f Friction factor - ±10% [-]
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Table 4.11: Uncertainty analysis on Heat Transfer Coefficient HTC for
Static Tests

Variable Exp. Technique Uncertainty Units

Qinput Heat input 0-30V,0-5A DC power supplies ±3% [-]

ai Heat loss coefficients Steady state calibration tests ±10% [-]

T Temperature T-type thermocouple ±0.5 [K]

A Area - ±0.3% [-]

HTC Heat Transfer Coefficient - ±6% [-]

Table 4.12: Uncertainty analysis on Heat Transfer Coefficient HTC for
Rotating Tests

Variable Exp. Technique Uncertainty Units

Qinput Heat input 12.5V, 120A DC power supply ±7% [-]

ai Heat loss coefficients Steady state calibration tests ±10% [-]

T Temperature T-type thermocouple ±0.5 [K]

A Area - ±0.3% [-]

HTC Heat Transfer Coefficient - ±10% [-]



Chapter 5

Experimental Results: Friction

and Pressure Losses

In this chapter will be reported all the experimental data about fric-

tion factors and pressure losses of the eight investigated matrix geome-

tries.

It is well known that the study of pressure losses within internal cooling

passages represents an important step of blade cooling design as well as

the heat transfer. In fact both pressure losses and heat transfer have

to be considered in a synergistic combination in order to reach the best

cooling efficiency without affecting the cooling performance.

As it is well known from heat transfer correlations available in literature,

the heat transfer enhances with the increase of coolant mass flow rate.

Since this latter is a function of the coolant supply pressure and internal

cooling geometry, an optimized design of these internal passages is neces-

sary to minimize the coolant flow blockage and hence the overall pressure

drop. A low pressure drop is advantageous because it guarantees a lower

penalty on the global performance and provides a wider coolant operat-

ing range to match the design and off-design operating conditions of the

gas turbine.

In the present chapter the results for each investigated geometry will be

191
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reported in the following way. First of all, the results are given as pressure

ratio distributions along the streamwise direction for different Reynolds

numbers; these trends allow to quantify the increase of pressure loss with

the increasing of the streamwise distance from the inlet and with the

increasing of the Reynolds number.

Then, from the evaluation of the overall total pressure drop from the

inlet to the outlet of each model, the friction factor trends as a function

of Reynolds number will be presented.

In addition to this, other results will be given as the overall total to static

pressure ratio trends as a function of a non dimensional mass flow rate;

these flow functions will also allow to evaluate performance of the tested

geometries in the context of the operating conditions of a real application.

5.1 Friction results of static tests for matrix geome-

tries with constant cross section

Static pressures were acquired along four different sub-channels tracks

from the inlet to the outlet of each test model; Figure 5.1 shows the pres-

sure taps locations for Geom 01, while Figures 5.2 depicts the pressure

tracks for the other three matrix geometries with constant cross section.

In each case all the pressure taps are realized on both side walls, where

the flow has to turn and switch from one layer/module to another one.

Since in this case (Geom 01 ) these taps are located in the lower matrix

module a difference should be highlighted between the left taps and the

right taps. In fact pressure taps on the right side (p1,dx....p5,dx) are di-

rectly invested by the flow that hits the side walls before turning, while

pressure taps on the left side (p1,sx....p5,sx) measure the pressure after

that the flow has turned.

This different behaviour is clearly visible in the graph of Figure 5.3; in

fact, from the comparison between the pressure trend of track #1 (i.e.

blu line) and track #2 (i.e. red line) results that higher pressure values

are recorded by pressure taps on the right side for each streamwise posi-

tion.
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The same behaviour has been also found for higher Reynolds numbers.

However these differences between pressures on right side and left side

are not so high; the maximum difference is about 200 Pa at the highest

Reynolds number Res,in = 8726.

Similar trends for pressure values on the right side and pressure values

on the left side have been also found for the other geometries.

Then, since the pressure measurements are very similar along the four

tracks, only pressure values of track #1 are shown in the following com-

parison, that shows the pressure drop in terms of pressure ratios from the

ambient pressure pamb with the increasing of Reynolds number Res,in

(Figure 5.4).

As expected, the pressure drop rises with the increasing of streamwise dis-

tance from the inlet, especially in the second half of the geometry from

the position x/L = 0.5 corresponding to the third pressure tap indicated

as p3,sx.

Moreover pressure drop increases with the increasing of Reynolds num-

ber; for example, considering the pressure value at the outlet pout with

respect to ambient pressure pamb = 100000 Pa, the overall pressure drop

through the model is about 100 Pa at the minimum Reynolds number

Res,in = 2480, while is about 1300 Pa at the maximum Reynolds number

Res,in = 8726.

As mentioned in section 4.1.2, two of these geometries (Geom 01, 02 )

are characterized by a high rib height (hrib = 15 mm) suitable for an

application in the mid-chord region of the airfoil, while the other two

(Geom 03, 04 ) have a low rib height (hrib = 1.5 mm) comparable with

the thickness of the airfoil in the trailing edge region.

For this reason a first good comparison about pressure losses can be made

between Geom 01 and Geom 02 (Figures 5.5), and between Geom 03 and

Geom 04 (Figures 5.6).

In the first comparison (Figures 5.5) it is clear how a reduction of hy-

draulic diameter from 10.59 to 5.62 mm due to an increase of rib thick-

ness from 1.5 to 3.0 mm for Geom 02 determines a significant increase

of pressure drop. In fact at the same Reynolds number nearly 6300 (i.e
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Res,in = 6350 for Geom 01 and Res,in = 6386 for Geom 02 ) the overall

pressure drop is about 650 Pa for Geom 01 and 4000 Pa for Geom 02

starting from an ambient pressure pamb = 100000.

In the second comparison (Figures 5.6) a similar situation occurs mov-

ing from Geom 03 to Geom 04, but these trends are characterized by

much higher pressure losses because of the very narrow flow passage ar-

eas. In this case the reduction of hydraulic diameter from 2.54 to 2.09

mm due to an increase of rib thickness from 1.5 to 3.0 mm for Geom

04 determines an increase of the overall pressure drop from 50000 Pa to

80000 Pa (considering pamb = 100000) at the highest Reynolds number

(i.e Res,in = 10280 for Geom 03 and Res,in = 10176 for Geom 04 ).

By the comparison of Figures 5.5 with Figures 5.6 results clear that the

behaviour of geometries Geom 03 and Geom 04 is extremely far from

the previous Geom 01 and Geom 02 ; these different results are due not

only to the extremely different passage areas but also to the different flow

velocities along the sub-channels.

Starting from the overall total pressure drop ∆ptot evaluated for each

test model and following the definition given by Equation 4.29, the over-

all friction factor fs,in distributions have been determined as a function of

the Reynolds number Res,in for the four investigated geometries (Geom

01,02,03,04 ).

These distributions are reported in Figure 5.7 together with a compari-

son with the Karman-Nikuradse correlation (Equation 4.31) for smooth

ducts. There are significant differences between the trends of geometries

with the higher rib height (Geom 01, Geom 02 ) and geometries with the

lower rib height (Geom 03, Geom 04 ). First of all, values of friction fac-

tors are quite lower for Geom 03 and Geom 04 because of the higher flow

velocities into the sub-channels. This latter consideration is justified by

the definition of friction factor fs,in according to Equation 4.29.

Moreover, the trends for Geom 01 and Geom 02 become asymptotic at

higher Reynolds numbers, while the trends for Geom 03 and Geom 04

slightly increase; this is mainly due to the very high velocities and hence

the very high Mach number, which is close to one at the outlet section.
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On the other hand Figure 5.8 shows the comparison between the same

friction factor distributions and the Nagoga correlation valid for the basic

section of matrix geometries (Equation 2.13). In this latter case, since

the Nagoga correlation is based on the Reynolds number Rel referred

to the length of the channel l (Equation 2.8) instead of the sub-channel

hydraulic diameter, it has been necessary to convert the Reynolds range

for present geometries multiplying Res values by l/dh,s to guarantee a

correct comparison with the correlation.

From this comparison there are significant differences between the ex-

perimental trends and Nagoga correlation and only at higher Rel these

differences seem to become smaller. It is not easy to understand the

reasons of these discrepancies; in fact most of parameters for the four

geometries (i.e. β, l/dh,s, Re and L/W ) fall into the same ranges valid

for the correlation (Table 2.1). However the different form of sub-channel

cross-section and the type of side wall (concave or flat) for the matrix ge-

ometries investigated by Nagoga could be the causes of these deviations.

In addition to this, the flow functions for the four investigated geome-

tries have been determined as trends of the total to static pressure ratio

βTS as a function of a non dimensional mass flow rate ṁrid. These two

parameters have been calculated according to Equations 4.32 and 4.33 re-

spectively. Figures 5.9, 5.10, 5.11 and 5.12 report these trends βTS−ṁrid

together with the function which guarantees the best fitting for each ex-

perimental distribution.

Then, Figure 5.13 reports all the flow functions of the four geometries

with constant cross section. It is clear that all these trends are quite well

fitted by a single curve, even if this curve does not correctly represent the

phenomenon at the highest total to static pressure ratios βTS ; in fact an

asymptotic trend should be expected for these values, while this curve

maintain a growing trend. Further considerations on this fact will be

given in the next sections.
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Figure 5.1: Geom 01 - pressure taps location along different sub-channel
tracks

(a) Geom 02 - pressure tracks (b) Geom 03 - pressure tracks

(c) Geom 04 - pressure tracks

Figure 5.2: Geom 02, Geom 03, Geom 04 - pressure taps location along
different sub-channel tracks



5.1 Friction results of static tests for matrix geometries with constant
cross section 197

Figure 5.3: Geom 01 - pressure ratio distributions along different
sub-channel tracks
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Figure 5.5: Geom 01 vs Geom 02 - Comparison of pressure ratio
distributions along track #1
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Figure 5.6: Geom 03 vs Geom 04 - Comparison of pressure ratio
distributions along track #1
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Figure 5.7: Comparison between friction factor distributions for Geom
01,02,03,04 and Karman-Nikuradse correlation for smooth ducts

(Equation 4.31)

0 50000 100000 150000 200000 250000 300000 350000 400000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

 Geom 01 EXP
 Geom 02 EXP
 Geom 03 EXP
 Geom 04 EXP
 Nagoga Correlation ( Geom 01 )
 Nagoga Correlation ( Geom 02 )
 Nagoga Correlation ( Geom 03 )
 Nagoga Correlation ( Geom 04 )

f s,
in

Rel,in
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(Equation 2.13)
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Figure 5.9: Geom 01 - Non dimensional mass flow as a function of total
to static pressure ratio

Figure 5.10: Geom 02 - Non dimensional mass flow as a function of
total to static pressure ratio
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Figure 5.11: Geom 03 - Non dimensional mass flow as a function of
total to static pressure ratio

Figure 5.12: Geom 04 - Non dimensional mass flow as a function of
total to static pressure ratio
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Figure 5.13: Comparison of non dimensional mass flow as a function of
total to static pressure ratio for Geom 01,02,03,04
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5.2 Friction results of static tests for matrix geome-

tries with convergent cross section

As already done for the test models with constant cross section, also

for the convergent models (Geom 05 and Geom 06 ) static pressures have

been acquired along four different sub-channels tracks. Figures 5.14a and

5.14b show the pressure tracks for these two geometries.

Pressure ratio distributions with respect to ambient pressure have been

derived for different Reynolds numbers. An example of these distribu-

tions for the convergent geometry with four-entry channels Geom 06 is

reported in Figure 5.15, but similar results have been obtained for the

convergent geometry with six-entry channels Geom 05.

As in the previous results for geometries with constant cross section (Fig-

ure 5.3) the pressure taps on the right side have recorded higher pressure

values than those located on the opposite side wall, even though these

differences are less noticeable for the present convergent cases because

the graph scale has been chosen in order to represent the whole pressure

variation from the inlet to the outlet of these test models.

Then, Figures 5.16a and 5.16b report a comparison between the pres-

sure ratio distributions along track #1 with the increasing of Reynolds

number Res,in or Res,ave; unlike the previous cases, for the convergent

geometries the value of Reynolds number based on the sub-channel hy-

draulic diameter at the middle section Res,ave becomes significant in view

of a possible correlation valid for both constant and convergent matrix

geometries. For this reason the graph legends for these geometries in-

clude both Res,in and Res,ave numbers.

By the comparison of Figure 5.16a and Figure 5.16b results that in both

cases pressure loss gradually increases along the convergent channel with

the streamwise distance x/L, but the highest pressure drop occurs in

the final part of the models, where the sub-channel height is extremely

reduced and the flow velocity is higher. Moreover, the six-entry chan-

nel geometry (Geom 05 ) produces much higher pressure losses than the

four-entry channel geometry (Geom 06 ); for example, considering an am-
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bient pressure value pamb = 100000 Pa, the overall pressure drop is about

16700 Pa for Geom 05 at Res,in = 3878 and about 4150 Pa for Geom 06

at Res,in = 4309 and hence at nearly the same Reynolds number.

However, Figure 5.16a for Geom 05 with six sub-channels also highlights

that the overall pressure drop have a rapid increase for higher Reynolds

numbers, while the same does not occurs for geometry with four sub-

channels (Geom 06 ).

From this comparison it can be concluded that the pressure penalty for

the convergent geometry with six sub-channels becomes extremely sig-

nificant even when little higher mass flow rates of coolant are required

during the operating condition.

As explained in Section 4.1.3, the convergent geometries have common

geometric features with the corresponding constant geometries and all

these geometries can be distinguished in two groups: matrix modules of

Geom 06, Geom 01 and Geom 03 have 4 sub-channels at the entry with

a lower rib thickness trib = 1.5 mm, while matrix modules of Geom 05,

Geom 02 and Geom 04 have 6 sub-channels at the entry with a higher

rib thickness trib = 3.0 mm.

Starting from these considerations an interesting comparison can be made

between these two groups of matrix geometries in order to put in ev-

idence the behaviour of the convergent geometries with respect to the

corresponding geometries with constant cross section. Figures 5.17 re-

ports this comparison for the group of geometries with 4 sub-channels,

while Figures 5.18 show this comparison for the group of geometries with

6 sub-channels. In each case it should be noted how the pressure losses

for the convergent geometries fall into an intermediate range between

the corresponding geometries with minimum and maximum cross section

or rib height. Moreover, it can be noticed that the pressure drop for

a convergent channel increases more gradually than the corresponding

geometry with minimum cross section (Geom 05 vs Geom 04 or Geom

06 vs Geom 03 ). From this information it can be concluded that the

gradual increase of pressure losses for these convergent geometries could

represent a good advantage in view of an application in a trailing edge
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region of a real gas turbine airfoil.

Then the overall pressure drop ∆ptot has been used to determine the fric-

tion factor distributions fs,ave (Equation 4.30) as a function of Res,ave;

unlike the previous constant geometries, in these cases friction factor and

Reynolds number definitions are based on the hydraulic diameter and flow

properties at the middle or average section of the matrix model. These

friction factor distributions for these two convergent geometries (Geom

05 and Geom 06 ) are reported in Figure 5.19 together with values from

Karman-Nikuradse correlation and in Figure 5.20 together with values

recalculated from Nagoga correlation. It can be noticed that in both

these graphs the friction factor trend for Geom 05 is very steep with the

increase of Reynolds number and values become negative at the highest

Res,ave; this may be due to some errors in the manufacturing of the test

model and pressure taps. For this reason values for Geom 05 have been

considered with particular attention; in some cases it has been necessary

to consider values of the similar scaled up test model Geom 07 employed

for the rotating experimental tests (Section 5.3).

Even for these cases the overall total to static pressure ratio βTS as a func-

tion of a non dimensional mass flow ṁrid has been derived; the trends

are reported in Figures 5.21 and 5.22 for Geom 05 and Geom 06 respec-

tively together with the function which guarantees the best fitting for

both cases.

In addition to this, both trends have been collected in an unique graph

and have been fitted by a single curve (Figure 5.23); however, unlike the

fitting for the four constant geometries (Figure 5.13), in this case a unique

fitting curve is not enough accurate for both cases and some deviations

are evident at the higher βTS . Further considerations about this fitting

will be reported in Chapter 7.
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(a) Geom 05 - pressure tracks (b) Geom 06 - pressure tracks

Figure 5.14: Geom 05, Geom 06 - pressure taps location along different
sub-channel tracks

Figure 5.15: Geom 06 - pressure ratio distributions along different
sub-channel tracks
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(b) Geom 06 - track #1

Figure 5.16: Geom 05 vs Geom 06 - Comparison of pressure ratio
distributions along track #1
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(b) Geom 03 - track #1
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(c) Geom 06 - track #1

Figure 5.17: Geom 01 vs Geom 03 vs Geom 06 - Comparison of
pressure ratio distributions along track #1
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(a) Geom 02 - track #1
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(b) Geom 04 - track #1
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(c) Geom 05 - track #1

Figure 5.18: Geom 02 vs Geom 04 vs Geom 05 - Comparison of
pressure ratio distributions along track #1
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Figure 5.19: Comparison between friction factor distributions for Geom
05,06 and Karman-Nikuradse correlation for smooth ducts

(Equation 4.31)
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Figure 5.20: Comparison between friction factor distributions for Geom
05,06 and Nagoga correlation for matrix geometries (Equation 2.13)
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Figure 5.21: Geom 05 - Non dimensional mass flow as a function of
total to static pressure ratio

Figure 5.22: Geom 06 - Non dimensional mass flow as a function of
total to static pressure ratio
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Figure 5.23: Comparison of non dimensional mass flow as a function of
total to static pressure ratio for Geom 05,06
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5.3 Friction results of rotating tests

As mentioned in Section 4.2.1, the two test articles employed for rotat-

ing tests, identified as Geom 07 and Geom 08, are the scaled up models

of Geom 05 and Geom 06 with 6 and 4 entry sub-channnels respectively.

Therefore, in a similar manner to the previous test models, the static pres-

sures have been acquired along the four sub-channel tracks as depicted

by the schemes in Figures 5.24a and 5.24b.

Before starting to present pressure results for these rotating tests, it

should be noted that it has been necessary to correct the acquired pres-

sure values in order to take into account the centrifugal effect on pressure

taps located at the different radial positions. In fact, as mentioned in Sec-

tion 4.2, the pressure scanner is located at the lowest radius while the

several pressure taps are located at different radii (Figure 4.10).

For this reason a pressure gradient due to the centrifugal effect is gener-

ated within the several connection pipes that connect pressure taps with

the scanner. Considering the schematic of pressure connection pipe in

Figure 5.25, the centrifugal pressure gradient within this pipe between

two radial positions ri and ri−1 may be expressed as:

∆p = −1

2
ρω2 (ri − ri−1)

2 (5.1)

According to Equation 5.1, the measured pressure value pmeas for

each pressure tap has been corrected each time taking into account the

specific radial position ri and rotational speed ω as follows:

pcorr = pmeas +
1

2
ρω2r2i (5.2)

Static pressures along the test models have been acquired both in

static and in rotating conditions.

As regards static tests, Figures 5.26a and 5.26b show the pressure ra-

tio distributions along track #1 for Geom 07 and Geom 08 with 6 and

4 entry sub-channels respectively. These distributions are reported as a

function of the streamwise distance along the model for different Reynolds

numbers. These results are similar to the above reported pressure ratio
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(a) Geom 07 - pressure tracks

(b) Geom 08 - pressure tracks

Figure 5.24: Geom 07, Geom 08 - pressure taps location along different
sub-channel tracks

distributions for the similar geometries Geom 05 and Geom 06 ; even in

this case the pressure loss increases gradually along the streamwise di-

rection and the highest pressure drop is located in the final part of the

convergent channel.

As regards rotating tests, Figure 5.27 reports the pressure ratio distri-

butions for Geom 08 at the same Reynolds number but for different
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Figure 5.25: Schematic of the pressure connection pipe between the
pressure scanner and the pressure taps

Rotation numbers (Ros,in = 0 ÷ 0.093); it is clear that the pressure dis-

tribution along the model is insensitive to the increase of rotational speed.

Similar results about rotation effects have been found for Geom 07.

Then, it should be noted that for the rotating pressure distributions (i.e.

Figure 5.27) the pressure values are normalized by the pressure measured

at the inlet of the model p4,in instead of the ambient pressure value pamb.

From the evaluation of pressure drop the friction factor distributions

fs,ave (Equation 4.30) as a function of Res,ave have been derived in a

similar way to the previous convergent geometries Geom 05 and Geom

06. Figure 5.28 shows the comparison between these friction factor distri-

butions and the Karman-Nikuradse correlation for smooth ducts, while

Figure 5.29 reports the comparison with the Nagoga correlation. From

these graphs it is clear that friction factors are higher for the geometry

with 4 sub-channels and higher flow passage area Geom 08, even if it
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would be expected higher friction factors for geometries with more sub-

channels and hence narrow flow passages (Geom 07 ). This aspect, that

is also confirmed by the results on constant geometries (Figure 5.7) is

mainly due to the much higher flow velocity into the sub-channels for ge-

ometries with narrow passages and is well described by the friction factor

definition (Equation 4.30).

In addition to this, the friction factor trend for the 6 entry channels ma-

trix geometry (Geom 07 ) follows a trend similar to that of the 4 entry

channels geometry (Geom 08 ); in fact both of these have a slight decrease

with the increasing of Reynolds number and seem to assume an asymp-

totic behaviour at the highest Res,ave. The trend for Geom 07 confirms

the errors found for Geom 05 ; in fact, as depicted in Figures 5.19 and

5.20, a very different trend has been found for Geom 05 but this is not

in agreement with all the other trends and this is surely due to manufac-

turing errors.

Finally, Figures 5.30 and 5.31 report the overall total to static pressure

ratio βTS as a function of the non dimensional mass flow rate ṁrid based

on the sub-channel passage area at the outlet section (Equation 4.33). In

the graph of Figure 5.30 values of Geom 05 are reported together with

values of Geom 07, while in Figure 5.31 values of Geom 06 are reported

together with values of Geom 08 ; in both graphs a very good agreement

is found between the geometry with scale factor 5 : 1 and the correspond-

ing scaled up geometry with scale factor 10 : 1. This is well confirmed by

the two fitting curves: in fact only one curve is enough to fit the trends

of each group of geometries.
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Figure 5.26: Geom 07 vs Geom 08 - Comparison of pressure ratio
distributions along track #1
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Figure 5.27: Geom 08 - pressure ratio distributions along track #1 for
different Rotation numbers
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Figure 5.28: Comparison between friction factor distributions for Geom
07,08 and Karman-Nikuradse correlation for smooth ducts

(Equation 4.31)
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Figure 5.29: Comparison between friction factor distributions for Geom
07,08 and Nagoga correlation for matrix geometries (Equation 2.13)

Figure 5.30: Geom 07 + Geom 05 - Non dimensional mass flow as a
function of total to static pressure ratio
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Figure 5.31: Geom 08 + Geom 06 - Non dimensional mass flow as a
function of total to static pressure ratio
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5.4 Comparison of friction results and critical evalu-

ation

This section at the end of this chapter on pressure losses and friction

factor results is necessary to give a summary about the above reported

results of all the investigated matrix geometries.

First of all, the pressure trends along the four different sub-channel tracks

for each test model have allowed to put in evidence differences between

pressure values on the right side and those on the left side (example in

Figure 5.3). It has been found that these differences are due to the flow

that directly hits the pressure taps on the right side. However, in each

flow condition, these differences are not so significant and it is correct to

consider the pressure trend only on a single track from the entry to the

exit of the matrix model.

Then, a comparison between the different matrix geometries has been

made in terms of pressure ratio distributions p/pamb or p/pin as a function

of the streamwise distance x/L. From these comparisons several results

have been found:� Increase of pressure losses due to an increase of rib thickness and

number of sub-channels for geometries with the same rib height

(Figures 5.5 and 5.6)� Increase of pressure losses moving from geometries with higher rib

height to geometries with lower rib height (Geom 01,02 vs Geom

03,04 )� Effect of the converging angle on pressure losses and comparison

with the corresponding constant geometries with the same rib thick-

ness and number of sub-channels (Figures 5.17 and 5.18).� The gradual increase of pressure losses for the convergent geome-

tries (Geom 05,06 vs Geom 07,08 ), even for the convergent ge-

ometries with narrower passages (Geom 05,07 ), represents a good

starting point for a potential application in the trailing edge region

of a gas turbine airfoil.
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After this, a comparison in terms of friction factor distributions as

a function of the Reynolds number has been performed for each inves-

tigated case; results show that friction factor is low for geometries with

narrower sub-channels (i.e. geometries with 6 entry sub-channels and

higher rib thickness) but, as already reported, this is mainly due to the

higher flow velocities through the sub-channels. In addition to this, ge-

ometries with the minimum rib height (Geom 03,04 ) are characterized

by high Mach numbers (i.e. close to one) at the outlet section.

As a summary, Figure 5.32 collects the friction factor distributions for

all the investigated geometries (from Geom 01 to Geom 08 ); in this case,

for both constant and convergent geometries, friction factor and Reynolds

values are based on flow properties and geometric parameters at the mid-

dle or average section of the test models. This graph shows that all the

trends become insensitive to the increase of Reynolds number and show

the characteristic horizontal asymptote with the exception of geometries

with the smallest flow passage areas (Geom 03,04 ). In fact, in these cases

the trends slightly increase with the increasing of Reynolds number be-

cause of the high Mach numbers and hence of the relevant compressibility

effects near the outlet section.

To allow a better comparison between the investigated geometries and

experimental results reported in literature, the friction factor distribu-

tions have been normalized by f0 values calculated at the same Reynolds

numbers by means of the correlation of Karman-Nikuradse for turbulent

flows in smooth ducts (Equation 4.31). The normalized friction factor

distributions fs,ave/f0 are summarized in Figure 5.33.

At the end, Figure 5.34 collects the flow functions βTS − ṁrid of the

all investigated geometries; it is clear that these distributions seem to

assume two trends: one for constant geometries and one for convergent

geometries. In this latter case larger deviations exist at the higher total

to static pressure ratios βTS .
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Chapter 6

Experimental Results: Heat

Transfer

The present chapter reports all the experimental data about the heat

transfer performance of the eight investigated matrix geometries.

For each geometry the results are presented in the following way.

First of all, the effective heat transfer coefficient distributions with the

increasing of streamwise position are given for each single row of matrix

blocks that form the test models; these distributions are given for the

minimum and maximum Reynolds number and comparisons are made

between the different geometries.

Then, the same distributions are reported as the effective Nusselt num-

bers averaged on two couple of rows with the increasing of Reynolds

number in order to highlight significant effects due to the coolant flow

path.

In the next step, the effective and equivalent heat transfer coefficients

and Nusselt numbers distributions as a function of the mass flow rate

and Reynolds number will be presented; the effective heat transfer trends

allow to evaluate the performance in terms of heat transfer between the

coolant flow and the rib surfaces, while the equivalent trends quantify

the overall heat removed from the endwall surfaces.

227
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In the second part of the chapter the above mentioned trends are also

reported for the rotating results. The rotation effects are evaluated by

means of the overall rotation-to-stationary ratio between the Nusselt num-

ber in rotating condition and that found by the corresponding static case

at the same Reynolds number. These values are reported as a function

of the Rotation number for the different Reynolds numbers.

In addition to this, more detailed distributions of the same ratio are given

as a function of the streamwise position for the rows of the matrix blocks

corresponding to the pressure and suction side of the model. Further

trends are then reported to compare the rotating results for the two dif-

ferent model orientations: 0deg and 30deg with respect to the rotating

plane.

Finally, the last part of this chapter is focused on the comparison be-

tween the investigated geometries in terms of heat transfer enhancement

and Thermal Performance Factor; comparisons have been also performed

between the experimental and literary cases.

6.1 Heat transfer results of static tests for matrix

geometries with constant cross section

As described in Section 4.4.2 the average heat transfer coefficients

(HTCs) have been determined for each matrix block both along stream-

wise and spanwise direction. In fact each test model is considered to be

divided into four different rows of matrix blocks: two rows for the upper

module (SUP) and two rows for the lower module (INF); then, for each

matrix module, there is a left row (SX) and a right row (DX). Each row

is composed by 5 streamwise positions or blocks.

Heat transfer coefficient distributions have been determined for each of

these four rows. Figures 6.1a and 6.1b report typical distributions of

the effective heat transfer coefficients htcr between fluid and rib surfaces

for Geom 01 ; a comparison is made between the distributions for the

minimum and maximum Reynolds numbers. From this comparison it is

possible to quantify the increase of the htcr value with the increasing of
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Reynolds number for each position of the matrix model.

These distributions have been normalized by htcref that represents the

htcr value averaged on the first four blocks (streamwise position #1) for

Geom 01 at the minimum Reynolds number.

Figures 6.2, 6.3 and 6.4 report the same comparisons for geometries Geom

02, Geom 03 and Geom 04 respectively.

All these trends have some common features; first of all the HTC value is

lower at the first streamwise position (block #1), then is quite constant

in the middle part between block #2 and #4 and it is higher in the last

position close the outlet section (block #5).

Another important common feature among the distributions for the sev-

eral matrix geometries is that, for each case, the HTCs on the right row

of the upper module (mod SUP - row DX) and on the left row of the

lower module (mod INF - row SX) are higher with respect to the other

two rows. The higher HTC values on these rows are related to the coolant

flow path within the matrix structure; in fact the two above mentioned

rows represent the regions where the flow impinges immediately after a

turning region. In the turning region a strong vortical flow is formed

together with the destruction of the thermal and fluid boundary layers;

once the fluid has reached the opposite sub-channel it locally impinges

creating a new thin boundary layer, accelerating again with a local in-

crease of heat transfer coefficients. This result is in good agreement with

the experimental work of Bunker [86] described in the previous Section

2.2.2 (Figure 2.44a).

To better highlight the higher heat transfer in these impingement regions,

the htcr values have been averaged on the two couple of rows: an average

htcr value has been obtained from the average values on the right row

of upper module and left row of the lower module (mod SUP - row DX

and mod INF - row SX), while an average htcr value has been obtained

for the other two rows (mod SUP - row SX and mod INF - row DX).

In this way two average Nusselt numbers Nur,s,in have been obtained

for each investigated Reynolds number, and hence two trends of Nur,s,in

with the increasing of Res,in. It should be noted that Nusselt number
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Nur,s,in is calculated according to Equation 4.22 and for matrix geome-

tries with constant cross section it is related to the inlet section as well

as the Reynolds number Res,in.

These results are reported in Figures 6.5 and 6.6; the first present a com-

parison between Geom 01 and Geom 02, the second report the same com-

parison between Geom 03 and Geom 04. These distributions of Nur,s,in

have been normalized by Nuref , that is the value of Nur,s,in averaged on

all matrix blocks at the minimum Reynolds number for Geom 01. From

these distributions it can be noticed that the increase of heat transfer on

the impingement regions is not so high for matrix geometries with the

lower rib height (Geom 03 and Geom 04 ), but it becomes significant for

geometries with higher rib height (Geom 01 and Geom 02 ). In these lat-

ter cases the heat transfer increase on these impingement regions ranges

from 8÷ 10% for Geom 01 to 18÷ 25% for Geom 02.

From Figure 6.6 it should be noted that only two mass flow conditions or

Reynolds numbers have been investigated for Geom 04 ; this limitation

was due on one side to the minimum measurable mass flow rate, while

on the other side to the very high pressure losses achieved for this kind

of matrix structure with very narrow sub-channels.

As mentioned in Section 4.4.2, in addition to htcr, other two types of

heat transfer coefficients htceqT , htceqB have been determined; these are

equivalent coefficients that include both heat transfer term due to rib

surface and effective term applicable on the rib surfaces and are referred

to the flat surface without ribs. The first htceqT is evaluated considering

the thermal conductivity of the test models, while the second htceqB is

recalculated considering the thermal conductivity that allows to obtain

the Biot number similitude with the real application.

Figures 6.7a and 6.7b report the comparison between the four matrix

geometries with constant section about the average values of equivalent

heat transfer coefficients htceqT , htceqB as a function of total mass flow

rate ṁair and Reynolds number Res,in respectively; Figures 6.8a and

6.8b depict the same comparisons in terms of average values of effective

heat transfer coefficients htcr.
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In all these cases the heat transfer coefficients are averaged on all matrix

blocks.

From Figures 6.7a and 6.8a it can be observed how the slope of the HTC

trend rises moving from Geom 01 to Geom 04 ; this means that geome-

tries with lower rib height and narrower passages guarantee higher HTCs

at low mass flow rates because of the higher flow velocities along the

sub-channels and of the higher turbulence level.

However to get a correct comparison about the overall heat transfer per-

formance of these extremely different matrix geometries, it has been nec-

essary to determine the average Nusselt number trends as a function of

Reynolds number. Figures 6.9a and 6.9b show the average distributions

of the equivalent and effective Nusselt numbers for the four investigated

geometries. From Figure 6.9a it is clear that Nusselt values are higher for

models with the higher heat transfer surface area given by longitudinal

ribs. For example, at the same rib height, the six entry channels geome-

try Geom 02 has a higher heat transfer performance with respect to the

four entry channels Geom 01. The same effect is not present between

the other two geometries with the minimum rib height, but the data for

Geom 04 are not enough to offer a good comparison.

Then, always referring to Figure 6.9a, it can be concluded that a strong

reduction of rib height hrib (from 15 to 1.5 mm) have a strong effect on

the heat transfer performance; in fact, moving from Geom 01 to Geom

03 or from Geom 02 to Geom 04, the ratio Nur,s,in/Nuref is reduced to

the half.

Even in this case the value Nuref used to normalize the Nusselt number

distributions is the average effective Nusselt value Nur,s,in at the mini-

mum Reynolds number for Geom 01.

In these distributions each Nusselt value derive from the average on all

matrix blocks and is referred to the inlet section of the matrix models.

Finally, Figures 6.10a, 6.10b, 6.11a and 6.11b present the distributions

of the Nur,s,in/Nuref ratio as a function of the streamwise position for

different Reynolds numbers; it can be observed that the heat transfer is

very uniform from the inlet to the outlet of each matrix model.
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Figure 6.1: Geom 01 - Distributions of the normalized effective heat
transfer coefficient htcr/htcref for the different rows of matrix blocks
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Figure 6.5: Geom 01 vs Geom 02 - Distributions of the normalized
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6.2 Heat transfer results of static tests for matrix

geometries with convergent cross section

Figures 6.12 and 6.13 report the effective normalized heat transfer co-

efficient distributions htcr/htcref along the four different rows of matrix

blocks for the two investigated convergent matrix geometries (Geom 05

and Geom 06 ).

Like the previous results for constant geometries, as shown in Figures 6.1,

6.2, 6.3 and 6.4, these distributions have been normalized by htcref that

represents the htcr value averaged on the first four blocks (streamwise

position #1) for Geom 01 at the minimum Reynolds number.

However, unlike the distributions for matrix geometries with constant

cross section, the htcr/htcref trends for convergent geometries have a

steep increase moving from the inlet to the outlet of the models (from #1

to #5). In fact, as shown by Figures 6.12a and 6.13a, the heat transfer

coefficient on the last #5 position is about 2÷ 4 times than that on the

first #1 at the minimum Reynolds numbers. However, the increase of

htcr is much higher at the maximum Reynolds number; in this case the

htcr/htcref on the last position may increase 4÷ 6 times over the values

on the first streamwise position (Figures 6.12b and 6.13b).

By a comparison of these results with the previous for constant matrix

geometries it is clear how the heat transfer performance trends of a conver-

gent geometry is intermediate between the two corresponding constant

models with the same number of entry sub-channels and rib thickness.

This is well demonstrated by Figures 6.14 by means of the comparison

between the 4 entry sub-channels convergent geometry (Geom 06 ) and

the constant geometries Geom 01 and Geom 03 with maximum and min-

imum rib height respectively.

Also for these convergent models an increased heat transfer performance

has been found in the impingement regions (mod SUP - row DX and

mod INF - row SX); however this effect is much higher with respect the

previous cases of constant geometries. In fact, as shown in Figures 6.15a

and 6.15b the average Nusselt number ratio Nur,s,ave/Nuref on the im-
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pingement rows is about 35÷45% and 45÷48% higher than values on the

other regions for Geom 05 and Geom 06 respectively. Moreover, it should

be noted that both Nusselt Nur,s,ave and Reynolds Res,ave numbers are

based on the sub-channel hydraulic diameter at the middle section of the

matrix model.

Figures 6.16a and 6.16b report the average values of equivalent heat trans-

fer coefficients htceqT , htceqB as a function of total mass flow rate ṁair

and Reynolds number Res,ave respectively. In these cases each HTC

value derives from the average on all matrix blocks.

On the other hand Figures 6.17a and 6.17b report the same comparison

in terms of the effective heat transfer coefficient htcr.

From these results it is clear that, keeping constant the converging angle,

the matrix model with narrower sub-channels (Geom 05 ) allow to reach

higher heat transfer coefficients; in fact, as already found for constant

geometries, the six entry channels geometry guarantee a higher level of

turbulence even at low mass flow rates.

The heat transfer performance of these two convergent geometries has

been also compared in terms of normalized distributions of Nusselt num-

bers as a function of Reynolds number. The distributions of the equiv-

alent Nusselt number Nueq,s,ave (Figure 6.18a) put in evidence higher

values for the convergent geometry with six entry channels (Geom 05 )

because of the higher rib surface (higher fin effect). On the other hand,

in terms of effective Nusselt number Nur,s,ave, values for Geom 05 are

little lower than Geom 06 for the same Reynolds numbers but follow a

trend with a higher slope; this result confirms a higher turbulence level

for the geometry with more sub-channels and a higher rib thickness.

Finally, as regards the streamwise distribution of Nur,s,in/Nuref ratio,

it is possible to observe a quite uniform heat transfer till block #4 for

Geom 06 (6.19b) that is similar to that obtained for constant geometries;

on the other hand the trend for Geom 05 increases continuously from

the inlet to the outlet (6.19a). However, in both cases an increase of

slope is present between block #4 and #5, where the flow reaches the

smallest passage area and experiences a strong acceleration. As expected
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this acceleration has a higher effect on the heat transfer performance for

the matrix model with the narrower sub-channels Geom 05.
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Figure 6.12: Geom 05 - Distributions of the normalized effective heat
transfer coefficient htcr/htcref for the different rows of matrix blocks



246 6. Experimental Results: Heat Transfer

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

 

 

ht
c r / 

ht
c re

f

# streamwise block

GEOM 06 EXP - Re
s,ave

min=3794
 mod SUP - row SX 
 mod SUP - row DX 
 mod INF - row SX
 mod INF - row DX

(a) Geom06 - Res,avemin=3794

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

 
 

ht
c r / 

ht
c re

f

# streamwise block

GEOM 06 EXP - Re
s,ave

max=14844
 mod SUP - row SX 
 mod SUP - row DX 
 mod INF - row SX
 mod INF - row DX

(b) Geom06 - Res,avemax=14844

Figure 6.13: Geom 06 - Distributions of the normalized effective heat
transfer coefficient htcr/htcref for the different rows of matrix blocks



6.2 Heat transfer results of static tests for matrix geometries with
convergent cross section 247

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 

 

ht
c r / 

ht
c re

f

# streamwise block

GEOM 01 EXP - m
air

=7.6 g/s
 mod SUP - row SX
 mod SUP - row DX
 mod INF - row SX
 mod INF - row DX

(a) Geom 01

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 

 

ht
c r / 

ht
c re

f

# streamwise block

GEOM 06 EXP - m
air

=7.8 g/s
 mod SUP - row SX
 mod SUP - row DX
 mod INF - row SX
 mod INF - row DX

(b) Geom 06

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 

 

ht
c r / 

ht
c re

f

# streamwise block

GEOM 03 EXP - m
air

=7.7 g/s
 mod SUP - row SX
 mod SUP - row DX
 mod INF - row SX
 mod INF - row DX

(c) Geom 03

Figure 6.14: Geom 01 vs Geom 03 vs Geom 06 - Comparison between
distributions of the normalized effective heat transfer coefficient

htcr/htcref for the different rows of matrix blocks at the same mass
flow rate



248 6. Experimental Results: Heat Transfer

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

 

GEOM 05 EXP
 Nur,s,ave - (mod SUP - row DX + mod INF - row SX)
 Nur,s,ave - (mod SUP - row SX + mod INF - row DX)

N
u r,s

,a
ve

 / 
N

u re
f

Res,ave

(a) Geom05

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 
 

GEOM 06 EXP
 Nur,s,ave - (mod SUP - row DX + mod INF - row SX)
 Nur,s,ave - (mod SUP - row SX + mod INF - row DX)

N
u r,s

,a
ve

 / 
N

u re
f

Res,ave

(b) Geom06

Figure 6.15: Geom 05 vs Geom 06 - Distributions of the normalized
effective Nusselt number Nur,s,ave/Nuref for the two couple of rows



6.2 Heat transfer results of static tests for matrix geometries with
convergent cross section 249

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

 

 

 htc
eqT

 - Geom 05
 htc

eqB
 - Geom 05

 htc
eqT

 - Geom 06
 htc

eqB
 - Geom 06

ht
c 

/ h
tc

re
f

mair  [g/s]

(a) htceqT /htcref , htceqB/htcref vs. ṁair
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6.3 Heat transfer results of rotating tests

As described in Section 4.2.1 the rotating tests have been performed

on the two scaled up models (scale factor SF=10) of the same convergent

geometries investigated by means of static tests (SF=5) in Reynolds and

Biot number similitude with real cases (§ 6.2). The matrix models em-

ployed for this activity are Geom 07 and Geom 08, that are the scaled

up models of Geom 05 and Geom 06 with six and four entry channels

respectively.

Since these models were made of an aluminum alloy to limit the cen-

trifugal loads, it has not been possible to reproduce the Biot number

similitude as done in previous static tests.

The main aim of this experimental campaign has been focused to repro-

duce the Reynolds and Rotation number similitude with real applications.

The results presented in the first part of this section have been derived

from the 0deg configuration (Figure 4.9), where the test model is aligned

with the rotating plane.

Figures 6.20a and 6.20b report the test ranges about Reynolds and Ro-

tation number investigated for Geom 07 and Geom 08 respectively. In

both cases the sub-channel Reynolds number ranges from 2000 to 10000,

while the sub-channel Rotation number varies from 0 to 0.1 for Geom 07

and from 0 to 0.25 for Geom 08. These ranges are in line with actual op-

erating conditions for industrial gas turbines and the similitude with real

cases has been obtained operating the rotating test rig at the maximum

rotational speed (173 rpm).

It should be noted that the models employed for these tests are formed

by 5 streamwise blocks for each module; then, each of these streamwise

blocks is not divided into two spanwise elements (DX and SX) as instead

done for previous static test articles with scale factor SF=5. For this

reason only one thermocouple and hence only one temperature is mea-

sured for each streamwise position along both pressure (PS) and suction

side (SS). Therefore, even if the presence of only one thermocouple per

block does not allow to reach a detailed measurement, it has been possi-
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ble to obtain the average heat transfer performance on the two sides of

the models.

Figures 6.21 and 6.22 report the htcr/htcref distributions for Geom 07

and Geom 08 at the minimum and maximum Reynolds numbers. Each

graph includes the trends as a function of the streamwise block for the

three operating conditions of test rig: 0, 100 and 173 rpm.

In these cases the reference value htcref used to normalize the distri-

butions is the htcr value averaged on the first two streamwise blocks

(streamwise position #1) for Geom 08 at the minimum Reynolds num-

ber.

Like the previous results for convergent geometries Geom 05 and Geom

06 reported in Figures 6.12 and 6.13, also the distributions for Geom

07 and Geom 08 increase with the increasing of the streamwise distance

from the inlet reaching the highest values on the last streamwise position

(block #5). As expected, this increase is higher for geometry with six

entry sub-channels for each Reynolds number.

In addition to this, these graphs also give important information about

the effects of Coriolis force on heat transfer coefficient distributions for

each streamwise position and each flow condition. By a comparison of

Figure 6.21a with Figure 6.21b and of Figure 6.22a with Figure 6.22b, it

is clear that the Coriolis force due to the rotation have a stronger effect

on the heat transfer coefficient distribution at the low Reynolds number,

while this effect is practically negligible at the maximum Reynolds num-

ber; in this latter case the distributions for the three operating conditions

follow exactly the same trend (Figures 6.21b and6.22b). From these com-

parisons it can be concluded that the Coriolis force is able to affect the

flow field and the heat transfer performance when the bulk flow inertial

force is weak; this situation occurs at low mass flow rates and hence at

low flow velocities.

The effects of rotation on heat transfer performance have been also eval-

uated on the average equivalent and effective heat transfer coefficient

distributions. Figures 6.23 present the normalized average distributions

of the three heat transfer coefficients as a function of Reynolds num-
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ber for both geometries; for each kind of heat transfer coefficient the

trends are reported for the three operating conditions (0, 100 and 173

rpm). These trends confirms the higher effects of rotation at the lower

Reynolds numbers; for example, at the minimum Res,ave the HTCs at

173 rpm are about 20÷ 30% higher than corresponding values at 0 rpm.

These differences are about the same for the three ratios htceqT /htcref ,

htceqB/htcref and htcr/htcref . On the other hand, with the increasing

of Reynolds number, these differences become about 2÷ 5% and can be

considered negligible.

The same levels of heat transfer enhancement due to the rotation are

confirmed by the normalized average distributions of the different Nusselt

numbers as reported in Figures 6.24. Even in this case the distributions

are reported for the three rotational speed of the test rig.

As regards Nusselt number distributions the reference value Nuref is the

effective Nur,s value averaged on the first two streamwise blocks (stream-

wise position #1) for Geom 08 at the minimum Reynolds number.

A more detailed view about the effects of rotation on Nusselt number

is given by the streamwise distributions reported for both pressure (PS)

and suction side (SS); Figures 6.25 and 6.26 show the effective Nusselt

number trends for Geom 07 and Geom 08. In both cases a compari-

son is reported between the minimum and maximum Reynolds number.

It should be noted that these distributions are expressed in terms of

rotation-to-stationary ratios Nur,s/Nustat, where Nustat are the corre-

sponding average Nusselt values for the static cases at the considered

Reynolds number.

At the minimum Reynolds number (Res,ave close to 3000 for both ge-

ometries) the heat transfer enhancement due to rotation is about 20%

till block #4 and increases substantially towards the end of the conver-

gent channel; in fact, as regards block #5, Nur,s/Nustat is about 40%

for six entry channels Geom 07 (Figure 6.25a) and about 33% for the

four entry channels Geom 08 (Figure 6.26a). On the other hand, as al-

ready shown by previous heat transfer distributions, the heat transfer

enhancement is very small at the maximum Reynolds number: only 2.5%
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for Geom 07 and 5% for Geom 08. From all these results it is possible

to observe that no differences exist between pressure and suction side of

the model; this means that the Coriolis force acts in the same way on the

two halves of the matrix model.

To summarize the overall heat transfer enhancement due to rotation,

Figure 6.27 reports the distributions of the rotation-to-stationary ratio

Nur,s/Nustat as a function of the Rotation number Ros,in for different

Reynolds numbers Res,ave, where Nur,s is the value obtained from the

average on all matrix blocks and Ros,in is defined according to Equation

4.4. The corresponding values of the overall heat transfer enhancement

are also reported by Table 6.1. It has been found that for each mass flow

condition the rotation enhances the heat transfer rate with respect to the

static cases up to a maximum of about 23% for the four entry channels

Geom 08 and about 30% for the six entry channels Geom 07 at the min-

imum Reynolds number and maximum Rotation numbers Ros,in = 0.25

and 0.077 respectively. Although the ranges of Rotation numbers are dif-

ferent for the two geometries, the rotation enhancement is progressively

increased with the decreasing of Reynolds numbers because of the greater

influence of Coriolis force due to rotation.

Since the above reported results for the 0deg configuration can not be

representative of a realistic trailing edge orientation, rotating tests have

been also replicated with the test model inclined of 30deg with respect

to the rotating plane in order to simulate a typical exit angle of a real

gas turbine blade (Figure 4.9).

The comparison in terms of streamwise Nusselt number between 0deg

and 30deg configurations at the same Reynolds and Rotation numbers

are shown by the distributions in Figures 6.28 and 6.29 for the two ma-

trix models. In each case the comparison is made for the minimum and

maximum Reynolds number. Each of these graphs include the trends

for the static case and for both rotating cases (0deg and 30deg) at the

same rotational speeds. These results confirm that the major effects are

present at the minimum Res,ave for both the matrix channel orientations.

In addition to this, it is clear that the different channel orientation does
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not affect the heat transfer performance; in fact the Nur,s/Nustat distri-

butions for 30deg follow the same trends of those at 0deg. Therefore it

can be concluded that Coriolis force has the same effects for the investi-

gated range of channel orientation with respect to the rotating plane.
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Figure 6.20: Test matrices for rotating tests on Geom 07 and Geom 08
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Figure 6.24: Geom 07 vs Geom 08 - Distributions of the normalized
equivalent and effective Nusselt numbers NueqT /Nuref , NueqB/Nuref ,
Nur/Nuref as a function of Reynolds numbers at different rotating

conditions



262 6. Experimental Results: Heat Transfer

1 2 3 4 5
0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

 

GEOM 07 - Conv 6 can - Res,ave=3008
 suction side    - Ros,in=0
 pressure side  - Ros,in=0
 suction side    - Ros,in=0.077
 pressure side  - Ros,in=0.077

N
u r,s

 / 
N

u st
at

# streamwise block

(a) Geom 07 - Res,avemin=3008

1 2 3 4 5
0.4

0.6

0.8

1.0

1.2

1.4

1.6

 
 

GEOM 07 - Conv 6 can - Res,ave=8423
 suction side    - Ros,in=0
 pressure side  - Ros,in=0
 suction side    - Ros,in=0.029
 pressure side  - Ros,in=0.029

N
u r,s

 / 
N

u st
at

# streamwise block

(b) Geom 07 - Res,avemax=8423

Figure 6.25: Geom 07 - Streamwise distributions of the normalized
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the matrix model at different rotating conditions
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Figure 6.26: Geom 08 - Streamwise distributions of the normalized
effective Nusselt number Nur/Nustat for pressure and suction sides of

the matrix model at different rotating conditions



264 6. Experimental Results: Heat Transfer

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

GEOM 08 - Conv 4 can 
  Res,ave=3039
  Res,ave=4845
  Res,ave=7818
  Res,ave=9124

 

 

N
u r,s

 / 
N

u st
at

Ros,in

GEOM 07 - Conv 6 can 
  Res,ave=3008
  Res,ave=4498
  Res,ave=6051
  Res,ave=7219
  Res,ave=8423

Figure 6.27: Geom 07 vs Geom 08 - overall rotation effects at different
Reynolds numbers: distributions of the rotation-to-stationary ratio

Nusselt number Nur,s/Nustat

Table 6.1: Geom 07 vs Geom 08 - Overall heat transfer enhancement
due to rotation

Geom 07 (6 can) Geom 08 (4 can)

Res,ave Ros,in +∆Nu Res,ave Ros,in +∆Nu

Res,ave = 3008 Ros,in = 0.077 29.4% Res,ave = 3039 Ros,in = 0.250 22.9%

Res,ave = 4498 Ros,in = 0.052 12.2% Res,ave = 4845 Ros,in = 0.158 13.2%

Res,ave = 7219 Ros,in = 0.033 3.7% Res,ave = 7818 Ros,in = 0.098 8.9%

Res,ave = 8423 Ros,in = 0.021 1.8% Res,ave = 9124 Ros,in = 0.085 5.4%
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Figure 6.28: Geom 07 - Distributions of the normalized effective heat
transfer coefficient Nur,s/Nustat for the different rows of matrix blocks

at different rotating conditions
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Figure 6.29: Geom 07 - Distributions of the normalized effective heat
transfer coefficient Nur,s/Nustat for the different rows of matrix blocks

at different rotating conditions
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6.4 Comparison of Heat Transfer Results and Criti-

cal Evaluation

At the end of this chapter, the present section reports a summary

and a comparison between the six different matrix geometries investi-

gated during the three experimental campaigns of measurements: the

four constant geometries with maximum and minimum rib height and

the two convergent geometries.

It should be noted that in the following graphs Reynolds and Nusselt num-

bers have been referred to the geometric parameters and flow properties

at the middle section of the models in order to get a correct comparison

between constant and convergent matrix geometries.

First of all, Figure 6.30 provides a comparison in terms of the average

distributions of the normalized equivalent Nusselt number NueqB . These

trends are significantly higher for the constant geometries with the maxi-

mum rib height (Geom 01 and Geom 02 ) with respect to the correspond-

ing convergent geometries (Geom 06 and Geom 05 ).

Moreover, keeping constant the cross section, values are higher for the

six entry channels geometries: Geom 02 has higher values than Geom 01

and Geom 05 has higher values than Geom 06.

In fact, as already proved during this chapter, the equivalent Nusselt

number is higher for the models with larger heat transfer surface area

because it takes into account the fin effect due to the presence of ribs.

On the other hand, Figure 6.31 provides the comparison in terms of the

average distributions of the effective Nusselt number Nur. Since these

Nusselt values derive from the heat transfer coefficients between fluid

and rib surface, this graph puts in evidence the high turbulent behaviour

for the convergent geometries. In fact, the heat transfer performance for

Geom 05 and Geom 06 grows with a higher rate with the increasing of

Reynolds number Res,ave.

To get a comparison of the heat transfer performance between the inves-

tigated geometries and other previous works on matrix geometries the

graphs of Figures 6.32 have been realized. Both of them present the heat
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transfer enhancement evaluated by means of the Nur,s,in/Nu0 ratio as

a function of Reynolds number, where Nur,s,in derives from the average

of Nusselt values on all matrix blocks at the desired Reynolds number

and Nu0 represents the corresponding Nusselt number in a smooth duct

at the same flow condition. Nu0 values are calculated by means of the

Dittus-Boelter correlation (Nu0 = 0.023 ·Re0.8 · Pr0.4).

Figure 6.32a shows the comparison between the six geometries investi-

gated in the current activities and other three cases taken from the work

of Saha et al. [6] (§ 2.2.2); about this work the results of 2 and 4 inlet

channels derive from two convergent matrix structures, while those for

the pin fin configuration derives from Metzger et al. [26]. From this it

is clear that all the Nur,s,in/Nu0 experimental trends are in good agree-

ment with the other literary matrix cases with the exception of Geom 04.

Then, a common feature found in both literary and present experimental

cases is that the matrix geometries with a lower number of sub-channels

has higher heat transfer enhancement values; for example, Nur,s,in/Nu0

values for the four entry channels geometries Geom 01 and Geom 06 are

higher than the values for the six entry channels geometries Geom 02

and Geom 05.

These results also highlight that the heat transfer enhancement decreases

slightly with an increasing of Reynolds number. Moreover, the perfor-

mance of each matrix case is higher than the pin fin configuration.

Always concerning the heat transfer enhancement Figure 6.32b reports

the comparison between the same experimental trends and other liter-

ature data taken from the publication of Acharya et al. [92] (§ 2.2.2),

which investigated a constant matrix geometry with 45deg angled ribs

and 6 sub-channels. Also in this case a good agreement is found espe-

cially at higher Reynolds values, while there are some discrepancies at

the lower values.

Finally, since the evaluation of the overall performance of a cooling sys-

tem must take into account not only the heat transfer performance but

also the behaviour in terms of friction factor and pressure losses, at the

end of this section a comparison has been also carried out in terms of
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Thermal Performance Factor TPF defined according to equation 2.26.

For this reason TPF values have been calculated combining the previous

Nu/Nu0 results together with the f/f0 trends shown in Figure 5.33. In

fact the Thermal Performance Factor is generally used to choose the op-

timum cooling geometry among several solutions in terms of both heat

transfer enhancement and pressure loss.

Figure 6.33a reports the TPF trends for the six investigated geometries,

while Figure 6.33b show the TPF comparison between the investigated

convergent geometries, the same convergent geometries from the work

of Saha et al. [6] and the same pin fin configuration from the work of

Metzger et al. [26]. This latter comparison is very important in view

of an application of a matrix geometry in a trailing edge system. TPF

values for the two investigated geometries are in the range of 0.9÷1.2 for

the whole Reynolds range and the trends are in a very good agreement

with the other literary results. Like the previous results on heat trans-

fer enhancement, the performance is higher for geometries with a lower

number of sub-channels (2 inlet channels geometry and Geom 06 with 4

entry channels); in these cases the TPF values are higher than the pin

fin system especially at the lower Reynolds numbers.
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Figure 6.30: Normalized equivalent Nusselt number distributions for
different Reynolds numbers - Comparison between all investigated

geometries
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Chapter 7

Experimental Correlations for

Blade Cooling Design

The last part of the present work has been devoted to the research

of heat transfer and friction correlations with the aim of a future imple-

mentation in an in-house code commonly used for the design of internal

cooling systems for gas turbine airfoils.

For this reason Section 7.1 summarizes the research of heat transfer corre-

lations in terms of equivalent and effective Nusselt number, while Section

7.2 reports the correlations of pressure losses in two forms: friction factor

as a function of Reynolds number and total to static pressure ratio as a

function of a non dimensional mass flow rate.

In the last Section 7.3 of this chapter the experimental correlations for

matrix geometries have been applied to evaluate heat transfer and pres-

sure loss performance in the design point of the coolant conditions for a

real blade. Then, a final comparison has been determined between the

performance obtained applying a matrix structure and the performance

for the current cooling solution of the considered real blade.
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7.1 Heat Transfer Correlations

Starting from the heat transfer data acquired for the six investigated

geometries (constant and convergent), it has been established to deter-

mine correlations between Nusselt number, Reynolds number and some

specific dimensionless geometric parameters.

First of all, as regards the heat transfer correlations in terms of effective

Nusselt number Nur , it has been decided to consider the average Nusselt

values for each streamwise position (from block #1 to block #5) in order

to include an information about the axial position along the matrix chan-

nel in the correlation. For this reason the input data have been taken

as average Nusselt number distributions for each streamwise block as a

function of the corresponding Reynolds number. For example each aver-

age Nusselt number Nur,s,ave,i for the specific i − th streamwise block

derives from the average of Nusselt numbers on the matrix blocks for the

considered streamwise position; at the same time the Reynolds number

Res,ave,i is calculated starting from the geometric dimensions and flow

properties at the considered streamwise block. Therefore, Nur,s,ave,i and

Res,ave,i are calculated as:

Nur,s,ave,i =
htcr,i · dh,s,ave,i

kair,ave,i
(7.1)

Res,ave,i =
ṁair · dh,s,ave,i

Acan,ave,i · ncan · µair,ave,i
(7.2)

where the hydraulic diameter dh,s,ave,i referred to the average section

of the single i− th streamwise block is calculated following the Equation

4.24.

According to these definitions Figure 7.1b shows an example of average

Nur,s,ave − Res,ave,i distributions for Geom 01 ; in Figure 7.1a different

colors have been used to indicate the values depending on the different

streamwise position. As already reported by previous results, Nusselt

values are: quite constant in the intermediate blocks of the model, slightly

lower in the first block (#1) and slightly higher in the last block (#5).
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In addition to this, it is possible to observe that the variation of Reynolds

number for each group of Nusselt values is not significant because the

geometric dimensions are constant along the streamwise direction and

the variations of the flow properties (i.e. air density and viscosity) along

this direction are very small. On the other hand the variation of Reynolds

number along a convergent matrix model is very significant. To give an

idea about this, Table 7.3 reports the increase of Reynolds number from

block #1 to block #5 at the minimum and maximum mass flow rate for

Geom 05 ; the corresponding Nur,s,ave−Res,ave,i distributions are shown

by Figure 7.2.

Then, to get a correlation valid for both constant and convergent matrix

geometries, it has been necessary to select a set of dimensionless geometric

parameters that were representative of the main features of a matrix

structure. To reach this purpose the following set of parameters has been

chosen:� ( trib
dh,s

)

ave
- rib thickness to sub-channel hydraulic diameter ratio� (hrib

dh,s

)

ave
- rib height to sub-channel hydraulic diameter ratio� α - converging angle of a matrix module

The trib/dh,s takes into account the effect of both rib thickness and

number of sub-channels and is representative of the open area available

for the flow passage. Then, the hrib/dh,s is representative of the channel

cross section along the streamwise direction and gives an information

about the axial position along the matrix model, while α represents the

converging angle of the cross section. These ratios are referred to the

average or middle section of the whole model (Figure 7.3).

Among a large number of tested correlations using the above described

parameters, Equation 7.3 is the one that best fits the experimental data

of the six investigated geometries:

Nur,s,ave,i = a ·Rebs,ave,i ·
(

trib
dh,s

)(c+e·α)

ave

·
(
hrib

dh,s

)(d+f ·α)

ave

(7.3)
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Table 7.1: Exponents and coefficients of the heat transfer correlation

a b c d e f

0.110 0.683 −0.166 0.126 −0.002 0.041

Values of exponents and coefficients of the correlation are shown in

Table 7.1 and have been found by minimizing the standard deviation

between Nusselt values coming from both experimental and correlation

data. As shown by the expression of the standard deviation (Equation

7.4) discrepancies between experimental and calculated Nusselt values

are less than 6.

dev.st. =

√
Σn

i=1 ((Nur,s,ave,i)exp − ((Nur,s,ave,i)corr))

n
= 5.920 (7.4)

To show how the correlation fits well the experimental data, the graph

in Figure 7.4 reports the experimental average Nusselt numbers against

the Nusselt numbers calculated by the above shown correlation (Equa-

tion 7.3). It is clear that a good fitting is obtained for each streamwise

block with the exception of some values for the last position (block #5).

To better identify the geometries with the higher relative deviations from

the correlation, Figure 7.5 shows the comparison between the experimen-

tal trends for all the geometries and the identified correlation with the

relative uncertainty bands about ±10%. It should be noted that on both

axes values are shown in logarithmic scale; on the vertical axis the Nusselt

values Nur,s,ave,i are divided by the quantity K expressed as follows:

K =

(
trib
dh,s

)(c+e·α)

ave

·
(
hrib

dh,s

)(d+f ·α)

ave

(7.5)

From this comparison it is clear that most of the data falls within the

correlation bands; as already shown by Figure 7.4 deviations higher than

±10% are due to block #5 for the six entry channels geometries Geom

02 and Geom 04.
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At the end of this part about the correlation on the effective Nusselt

number, it is important to report the ranges of parameters for which the

correlation is valid; these ranges are shown in Table 7.2.

Table 7.2: Ranges for heat transfer correlation

Parameter Range

Res,ave 2500÷ 22000

trib/dh,s 0.14 ÷ 1.43

hrib/dh,s 0.59 ÷ 2.67

α 0÷ 5.7deg

In addition to the above reported heat transfer correlations about

the effective Nusselt number Nur, other correlations have been found

for each of the investigated geometries in terms of equivalent average

Nusselt number NueqB evaluated in Biot number similitude with a real

case typical of industrial gas turbines.

In this case the correlations are simply reported as NueqB = a · Rebs,ave,

where NueqB results from the average of Nusselt values on all matrix

blocks. These correlations are reported in the graph of Figure 7.6 and in

Table 7.4.

These relationships have been applied in Section 7.3 to determine the

overall heat transfer from the internal endwall surface of a real blade

assuming to use one of the studied matrix configurations in place of the

current solution.
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(a) Schematic of the 5 streamwise blocks
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Figure 7.1: Examples of schematic division for a matrix model in 5
streamwise positions and corresponding averaged effective Nusselt

number distribution for each streamwise block
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Figure 7.2: Example of the averaged effective Nusselt number
distribution for each streamwise block for a convergent model (Geom 05)

Table 7.3: Geom 05 - Example of Reynolds number variation for
different streamwise blocks

Geom 05 (6 can) mair = 4.3 g/s mair = 11.0 g/s

block #1 Res,ave = 2343 Res,ave = 6194

block #2 Res,ave = 2763 Res,ave = 7316

block #3 Res,ave = 3382 Res,ave = 8964

block #4 Res,ave = 4380 Res,ave = 11620

block #5 Res,ave = 6256 Res,ave = 16609
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Figure 7.3: Schematic of the reference middle section for the geometric
parameters used in the correlations
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Figure 7.4: Comparison between experimental and calculated effective
Nusselt number by correlation
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Figure 7.6: Equivalent Nusselt number correlations for the investigated
geometries
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Table 7.4: Exponents and coefficients of equivalent Nusselt number
correlations

Geometry Correlation

Geom 01 - cost 4 can - hrib max NueqB = 5.989 ·Re0.360s,ave

Geom 02 - cost 6 can - hrib max NueqB = 5.397 ·Re0.388s,ave

Geom 03 - cost 4 can - hrib min NueqB = 0.070 ·Re0.771s,ave

Geom 04 - cost 6 can - hrib min —————–

Geom 05 - conv 6 can NueqB = 0.711 ·Re0.609s,ave

Geom 06 - conv 4 can NueqB = 1.641 ·Re0.509s,ave
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7.2 Friction Correlations

In a similar manner to the previous case for the heat transfer, two

types of correlation have been determined to evaluate friction or pressure

losses: one has been derived from the friction factor trends as a function

of Reynolds number, one from a non dimensional mass flow rate as a

function of the total to static pressure ratio.

As regards the friction factor correlation, all data have been considered

with the exception of those for Geom 05. In fact, as already explained in

Section 5.2, the friction factor trend for this case totally disagrees with

the physical phenomenon of the friction in a channel; this is probably

due to some errors in manufacturing of test model or pressure taps along

the channel.

The input data for this correlation have been taken as:� overall friction factor fs,ave based on the sub-channel hydraulic di-

ameter at the average section of the model and calculated by means

of Equation 4.30;� Reynolds number Res,ave referred to the average section of the

model;

These data have been correlated with the same dimensionless geomet-

ric parameters adopted for the above reported heat transfer correlation;

even in this case the best fitting is ensured by the same mathematical form

already used to correlate heat transfer data (Equation 7.3). Therefore,

it has been determined the friction factor correlation given by Equation

7.6 with the coefficients and exponents reported in Table 7.5:

fs,ave = a · Rebs,ave ·
(
trib
dh,s

)(c+e·α)

ave

·
(
hrib

dh,s

)(d+f ·α)

ave

(7.6)

Values reported in the previous Table 7.5 have been found by mini-

mizing the following expression of standard deviation:

dev.st. =

√
Σn

i=1 ((fs,ave)exp − ((fs,ave)corr))

n
= 0.0112 (7.7)
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Table 7.5: Exponents and coefficients of the friction factor correlation

a b c d e f

0.263 −0.166 −0.403 0.688 −0.067 0.126

The good fitting of this correlation is shown by Figures 7.7 and 7.8.

It is clear that all experimental data are in a very good agreement with

the correlation and only few points fall outside the uncertainty bands of

correlations; the higher deviations from these bands occur at the highest

Reynolds number for the four entry channel geometry with the minimum

rib height Geom 03.

Always referring to Figure 7.8 values on the vertical axis are normalized

by the same quantity K (Equation 7.5), while Reynolds values on the

horizontal axis are shown in logarithmic scale.
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Figure 7.7: Comparison between experimental and calculated friction
factor values by correlation
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According to the same procedure it has been also found the other form

of pressure loss correlation in terms of a non dimensional mass flow rate

ṁrid as a function of the total to static pressure ratio βTS , where ṁrid

is based on the sub-channel passage area at the outlet section (Equation

4.33) while βTS is the ratio between the total pressure at the inlet and

the static pressure at the outlet of the model (Equation 4.32) .

The following correlation has been determined with the exponent and

coefficient values reported in Table 7.6:

ṁrid = (a · β + b)·
(

trib
dh,s

)(c+e·α)

ave

·
(
hrib

dh,s

)(d+f ·α)

ave

·
√

2 · γ
γ − 1

·
(
β
−2/γ
TS − β

−(γ+1)/γ
TS

)

(7.8)

Using the values shown in Table 7.6 the standard deviation evaluated

on the non dimensional mass flow rate ṁrid is only 0.005. The higher

accuracy of this correlation is proved by the comparison between experi-

mental and correlation data in Figure 7.9.
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Table 7.6: Exponents and coefficients of the ṁrid vs. βTS correlation

a b c d e f

0.049 0.217 0.123 −0.102 0.042 −0.406
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Figure 7.9: Comparison between experimental and calculated non
dimensional mass flow values by correlation
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7.3 Application of Correlations to a Real Case

In this last section of the thesis a real case of a gas turbine blade

has been considered and the performance of the current internal cool-

ing solution have been compared with those achievable by means of the

investigated matrix geometries using the above reported experimental

correlations.

The case chosen for this comparison refers to the trailing edge system of

an industrial gas turbine blade for oil and gas applications. The current

cooling technology adopted in the considered trailing edge is a ribbed

serpentine; no more information are given about this system since these

data are sensitive for industrial applications.

Since this comparison is made with a current system for a trailing edge,

only the two investigated convergent matrix geometries have been con-

sidered because are more suitable for this kind of application.

The conditions of the coolant supply in this trailing edge system, given by

the industrial partner of this collaboration GE Oil & Gas, are reported

in Table 7.7; these conditions are related to the design point of the con-

sidered gas turbine.

It should be noted that the coolant supply conditions are referred to the

inlet section at the root of the blade; mcool,tot represents the total coolant

mass flow rate that enters the trailing edge cavity. It is assumed that the

height of the considered blade is such that 7 matrix modules can be in-

stalled along the spanwise direction. These 7 modules are considered to

be in parallel with each other; for this reason it may be assumed that

the total coolant mass flow mcool,tot is equally splitted into the several

matrix modules. Under this assumption the present comparison has been

made considering one of these modules supplied by a coolant mass flow

rate equal to mcool,mod = 2.735 g/s instead of 19.144 g/s.

As regards the heat transfer performance, the equivalent Nusselt number

correlations reported in Table 7.4 have been applied to determine the

equivalent heat transfer coefficient HTCaveeq. As shown by Figure 7.10

this HTC value is applied to the internal endwall surface of the blade and
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allows to globally determine the overall heat removed from this surface.

To evaluate this heat transfer coefficient, the geometric dimensions of the

considered matrix modules have been divided by the scale factor SF=5,

while the flow properties (i.e. air thermal conductivity, density and viscos-

ity) have been recalculated at the inlet temperature Tcool,in and pressure

conditions pcool,in of the coolant.

Table 7.7: Coolant supply conditions of the real case at the design point

mcool,tot 19.144 g/s

mcool,mod 2.735 g/s

Tcool,in 700 K

pcool,in 11.825 bar

∆pcool,tot 4 bar

Figure 7.10: Schematic representation of the HTCaveeq applied to the
internal endwall surface of the airfoil

As regards the pressure loss, correlations reported in Figures 5.30 and
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5.31 for the six and four entry channels convergent geometries have been

applied to determine the total to static pressure ratio βTS by calculating

the non dimensional mass flow rate at the design operating conditions.

Then, knowing the βTS and the coolant pressure at the inlet pcool,in, it

has been possible to obtain the overall pressure ∆pcool,tot through the

considered matrix modules.

Once calculated the heat transfer and pressure loss performance in the

design point of the coolant conditions, some assumptions have been made

to extrapolate these performance in off-design conditions. For each ge-

ometry two extreme cases have been considered; these cases correspond

to a minimum and a maximum of coolant consumption during operating

conditions. These off-design points have been obtained calculating the

non dimensional mass flow ṁrid from the minimum and the maximum

mass flow rate measured during the experimental tests for these two ma-

trix geometries.

Tables 7.8 and 7.9 summarize the overall pressure drops ∆pcool,tot and the

equivalent heat transfer coefficients HTCaveeq calculated at the design

and off-design conditions for the 4 entry channels and 6 entry channels

matrix geometry. These values are reported in the graph of Figure 7.11

and are compared with the current performance of ribbed serpentines

coming from the GE Oil & Gas experience.

From this comparison it is clear that both the matrix geometries guaran-

tee higher heat transfer performance than the current values. As regards

the 4 entry channels geometry the heat transfer enhancement in the de-

sign point is about 1.2 ÷ 2.4 with an overall pressure drop of only 0.76

bar, while the 6 entry channels geometry has a very high heat transfer

enhancement, from 2 to 4 times over the current solution, with an overall

pressure drop of about 3 bar against ∆pcool,tot=4 bar.

In addition to this, it is also clear that the matrix cases can provide the

same performance of current solutions at lower mass flow rates and hence

with a lower coolant consumption.

In conclusion, the promising results obtained from this experimental re-

search clearly show that both the investigated matrix geometries for the
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trailing edge application are able to replace current cooling schemes and

lead to important advantages such as: an increase of the heat transfer

performance together with a reduction of coolant consumption and bleed

air pressure from the compressor. This surely contributes to improve

the overall performance of the gas turbine maintaining the lifetime and

reliability operation requirements.

Table 7.8: Heat transfer and pressure loss performance of the convergent
matrix geometry with 4 entry channels evaluated in design and

off-design points of a real case

Geom Conv 4 can

Parameter Off Des - Min Design Off Des - Max

mcool,mod [g/s] 1.242 2.735 6.930

βTS [ ] 1.016 1.068 1.405

∆pcool,tot [bar] 0.172 0.757 4.467

HTCaveeq [W/m2K] 3164 4700 7458

Table 7.9: Heat transfer and pressure loss performance of the convergent
matrix geometry with 6 entry channels evaluated in design and

off-design points of a real case

Geom Conv 6 can

Parameter Off Des - Min Design Off Des - Max

mcool,mod [g/s] 0.943 2.735 4.904

βTS [ ] 1.044 1.333 1.947

∆pcool,tot [bar] 0.392 2.952 8.405

HTCaveeq [W/m2K] 4236 8131 11403
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Figure 7.11: Performance comparison between the experimental matrix
geometries and current serpentine solutions from GE Oil & Gas

experience





Conclusions

An intensive experimental survey has been performed to investigate

heat transfer and friction performance of different matrix cooling geome-

tries in view of a possible application as internal cooling systems of both

nozzles and vanes of industrial gas turbines. This activity has been car-

ried out within a collaboration between the Department of Industrial

Engineering of the University of Florence and GE Oil & Gas.

Three main experimental activities have been carried out on scaled up test

models characterized by internal geometries manufacturable by means of

the existing investment casting processes.

The first experimental activity has been performed on four matrix ge-

ometries characterized by a constant cross section from the inlet to the

outlet and by two different rib heights representing two extreme cases: in

fact two are suitable for an application in the mid chord region and the

other two for the trailing edge region. For each rib height two configu-

rations characterized by a different open area through the sub-channels

have been investigated: one having four sub-channels with a lower rib

thickness and one having six sub-channels with a higher rib thickness.

The experimental tests on these geometries have provided the effects of

a variation of the main geometric parameters on the heat transfer and

friction performance.

The second experimental activity has been performed on two convergent

matrix geometries resulting from the combination of the previous test ar-

ticles with constant cross section; these tests have allowed to understand

the effects of a progressive variation of the passage area (i.e. convergence

293
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angle) on the performance of two realistic trailing edges.

In the first and in the second experimental activities tests have been

carried out under static conditions reproducing the Reynolds and Biot

number similitude with a real case provided by the industrial partner.

In the third and last experimental activity the two convergent geome-

tries have been investigated under rotating conditions reproducing both

Reynolds and Rotation number similitude with the real application. The

effects of rotation have been found for two different orientations of the

test model with respect to the rotating plane: 0deg and 30deg. This

latter configuration replicates the exit angle of a real gas turbine blade.

To evaluate friction performance the pressure drops have been derived

by measuring pressures in different points along the test model and the

overall total pressure loss from the inlet to the outlet has been considered

to determine the average friction factor for each flow condition.

As regards heat transfer tests, the regionally averaged heat transfer coef-

ficients have been measured by means of a steady state technique based

on heated segments and embedded thermocouples, where a constant heat

flux has been provided for each streamwise and spanwise position of the

test models. Then a specific post-processing procedure has been adopted

to evaluate the non uniform temperature distribution along the matrix

ribs/fins starting from the measurement of the wall temperature at a

given distance from the base of the matrix blocks. This procedure, based

on the solution of the differential heat equation and on the fin effective-

ness theory, has allowed to determine two types of average heat transfer

coefficients with a different physical meaning: the effective coefficients

htcr between the rib surfaces and the fluid, and the equivalent coefficients

htceqT applicable on the internal endwalls of the airfoil to determine the

overall heat removed from these surfaces. The equivalent heat transfer

coefficients have been also recalculated with the ideal value of thermal

conductivity that allows to obtain the Biot number similitude with a real

application (htceqB).

As regards friction results the pressure drop distributions as a function
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of the streamwise distance have been found for each Reynolds number

condition and comparisons have been made between the investigated ge-

ometries.

The increase of pressure losses has been found and quantified for: an in-

crease of rib thickness together with the increase of sub-channels number

and a reduction of rib height for geometries with constant cross section.

For convergent matrix geometries a progressive increase of pressure losses

with the streamwise distance has been found and compared with the dis-

tributions of the corresponding constant matrix geometries.

Then from the evaluation of the overall pressure drop from the inlet to

the outlet of each test model, the average friction factor fs,ave distribu-

tions have been found as a function of the Reynolds number Res,ave. All

the trends are insensitive to the increase of Reynolds number and show

the characteristic horizontal asymptote with the exception of constant ge-

ometries with the smallest passage area; in fact in these latter cases the

trends slightly increase with the increasing of Reynolds number because

of the high Mach numbers at the outlet sections.

Further comparisons between the different investigated geometries have

been performed in terms of normalized friction factors distributions fs,ave/f0,

where f0 values have been derived by the correlation of Karman-Nikuradse

for turbulent flows in smooth ducts.

Friction data have been also evaluated in terms of total to static pres-

sure ratio as a function of a non dimensional mass flow rate; these trends

represent the flow functions of the different geometries and allow to esti-

mate the coolant consumption with the varying of the above mentioned

pressure ratio. It should be noted that these non dimensional results are

also be approximately valid for matrix geometries similar to those investi-

gated and may be also applied to find the performance of such geometries

under realistic engine conditions.

As regards the heat transfer results the distributions of the average heat

transfer coefficients and Nusselt numbers have been found as a function

of both Reynolds number and streamwise position. First of all, an im-

portant common feature has been found among the distributions for the
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different matrix geometries: higher HTCs have been found on the right

row of the upper module and on the left row of the lower module because

of the flow impingement after the turn regions. In fact, as also proved by

previous works, the turning regions are characterized by a strong vortical

flow with the destruction of the thermal and fluid boundary layers; after

the turn a new thin boundary layer is formed and the flow accelerates

again resulting in a local increase of heat transfer coefficients.

This effect is more significant for the convergent geometries especially in

the last streamwise blocks where the passage areas are smaller and the

flow velocities higher.

The heat transfer results expressed in terms of equivalent Nusselt num-

ber NueqT,s distributions have allowed to quantify the fin effect due to

the presence of ribs for each geometry; as expected, higher values have

been obtained for geometries with the maximum rib height and number

of sub-channels and hence with the maximum heat transfer surface area.

Because of this higher fin effect these geometries would allow to remove

more heat from the endwall surfaces of the airfoils.

On the other hand, the effective Nusselt number Nur,s distributions have

allowed to put in evidence the high turbulent behaviour for the conver-

gent geometries and for the constant geometries with the minimum rib

height; in fact, with respect to the other cases, these geometries show a

higher dependence on Reynolds number.

From the effective Nusselt number distributions the heat transfer enhance-

ment values Nur,s/Nu0 have been derived over the investigated Reynolds

number range, where the corresponding Nu0 values have been calculated

by the Dittus-Boelter correlation for turbulent flows in smooth ducts.

These trends show a higher heat transfer enhancement at lower Reynolds

numbers; moreover, even though the Nur,s/Nu0 ratio slightly decreases

with the increasing of Reynolds number, the performance of each matrix

case is higher than a pin fin configuration reported in literature. These

results also show that the heat transfer enhancement is higher for matrix

geometries with a lower number of sub-channels. In addition to this, all

the trends for the investigated geometries are in good agreement with
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the experimental data coming from literary works on similar matrix ge-

ometies.

To compare the overall performance of the investigated geometries in

terms of both friction and heat transfer, the Thermal Performance Fac-

tor TPF has been calculated for each Reynolds number starting from the

Nur,s,ave/Nu0 and fs,ave/f0 ratios. Results for the two investigated ma-

trix geometries are in good agreement with literature data and are slightly

higher than those for a pin fin configuration at the lower Reynolds num-

bers.

With regard to the rotating results on the two convergent matrix ge-

ometries, a significant heat transfer enhancement due to the rotation

has been found at the lowest Reynolds numbers. In fact the overall

rotation-to-stationary ratio Nur,s/Nustat is about 20÷ 30% at the mini-

mum Reynolds number Res,ave ≃ 3000 and only 2÷5% at the maximum

Res,ave ≃ 8000 ÷ 9000. This is mainly due to the stronger effect of the

Coriolis force on the flow field with a weaker flow inertial force at the low

mass flow rates. The same values of heat transfer enhancement have been

found for 0deg and 30deg configurations; this means that the Coriolis ef-

fect does not change over the investigated range of channel orientation

with respect to the rotating plane.

In the final part of the present work some heat transfer and friction

correlations have been obtained starting from the experimental data of

matrix geometries with constant and convergent cross section.

The heat transfer correlation gives the average Nusselt number for the spe-

cific i− th streamwise block as a function of Reynolds number and some

dimensionless geometric parameters representative of a matrix structure

such as: rib thickness to sub-channel hydraulic diameter ratio trib/dh,s,

rib height to sub-channel hydraulic diameter ratio hrib/dh,s, α converg-

ing angle of a matrix module.

As regards the friction correlations, the best fitting to experimental data

has been ensured by the same mathematical expression used for the heat

transfer correlation; in this case the overall friction factor fs,ave has been
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put in relation with Reynolds number and the same dimensionless geo-

metric parameters.

Finally, a relation of the same mathematical form has been found between

the total to static pressure ratio βTS and the non dimensional mass flow

rate ṁrid.

These correlations have been applied to a real case in order to compare

the current performance of a serpentine ribbed duct in a trailing edge

with those achievable by means of the two investigated convergent matrix

geometries. The comparison has been performed considering the coolant

supply conditions at the design point in terms of coolant mass flow rate,

inlet pressure and inlet temperature, but some assumptions have been

made to extrapolate these performance also in off-design conditions.

The results obtained from this comparison are very promising, in fact

both the considered matrix geometries guarantee higher heat transfer co-

efficients for the whole range; moreover, both solutions provide the same

performance of current technology at lower mass flow rates and hence

with a lower coolant consumption.

These results represent a good starting point in view of a future applica-

tion of matrix cooling systems within blades and nozzles of industrial gas

turbines. However, before the implementation of these geometries in the

current blade designs, it will be necessary to evaluate the opportunity

to realize them by means of the recent additive manufacturing technolo-

gies with cost savings in respect to the conventional investment casting

processes.
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