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Bayesian networks are possibly the most successful graphical models to build decision support systems. Building the structure
of large networks is still a challenging task, but Bayesian methods are particularly suited to exploit experts’ degree of belief in a
quantitative way while learning the network structure from data. In this paper details are provided about how to build a prior
distribution on the space of network structures by eliciting a chain graph model on structural reference features. Several structural
features expected to be often useful during the elicitation are described. The statistical background needed to effectively use this
approach is summarized, and some potential pitfalls are illustrated. Finally, a few seminal contributions from the literature are
reformulated in terms of structural features.

1. Introduction

Bayesian networks (BNs) are possibly the most success-
ful graphical models to represent probabilistic and causal
relationships [1, 2]. BNs are used in very different fields
including medical domains [3], engineering [4], ecology [5],
bioinformatics [6], and many others.

The core of this class of models is made by a directed
acyclic graph (DAG)G, where nodes in the graph are labels of
modeled variables (elements of vectorX), and oriented edges
(arrows) capture probabilistic and/or causal relationships.
The joint distribution of X is represented by the product of
conditional distribution functions following from the struc-
ture of G. If substantial prior information is available on a
given problemdomain, it is possible that an expert defines the
structure ofG and even the parameters inside the conditional
distribution functions at a reasonable extent. Otherwise,
structure and parameters have to be estimated from data
(structural and parameter learning), for example, from a
collection of exchangeable observationsD = (x

1
, . . . , x

𝑛
).

It is often the case that an expert knows some features
of DAG G, but knowledge is not enough to define a DAG
because several of its aspects are affected by relevant uncer-
tainty. Following the Bayesian paradigm [7, 8], the expert is

invited to state his/her degree of belief about G by eliciting a
prior distribution on the set ofDAGswhich can be considered
given a fixed set of variables (nodes). All other unknown
quantities, likemissing values and parameters, are considered
in the prior distribution [9].

Learning the structure of a BN remains nowadays still
challenging for the combinatorial explosion of candidate
structures with the increase in the number of considered
nodes. Following Robinson [10], the number of possible
DAGs on 6 nodes is 3781503; thus the enumeration of
all structures while eliciting expert beliefs is unfeasible.
Computational difficulties in the full enumeration of DAGs
follow from about a dozen of nodes on. For these reasons,
several restrictions and simplifications in stating prior beliefs
were considered in the past, with the aimofmaking structural
learning tasks affordable in large networks. Widely adopted
elicitation techniques are based on restrictions like a total
ordering of nodes, the presence of sharp order constraints
on nodes, the marginal independence of unknowns, or the
existence of a prior network which is a good summary of
expert beliefs.

In a recent work [11], graphical models were proposed
to elicit beliefs about the structure of a BN. The approach
is characterized by the possibility of expressing beliefs about
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limited (but relevant) aspects of the problem domain, called
structural features [12], that by their ownnature are often only
indirectly related to oriented edges in the unknown DAG.

Here the most general approach based on chain graph
(CG) models is reconsidered with the aim of establishing
connections with seminal contributions from the literature
on structural learning, of detailing a general parameteriza-
tion, and of describing one way to perform the refinement
of elicited beliefs. Common useful structural features are
defined and some issues related to their implementation and
revision are examined.

2. Methods

Notation and some background information on graphs and
Markov properties are provided below. A comprehensive
account may be found in [13–15]. An approach to the
elicitation of structural features by CG models is described,
together with methods for the revision.

2.1. Graphs. A graph G is a pair (𝑉, 𝐸) where 𝑉 =

{V
1
, V

2
, . . . , V

𝐾
} is a finite set of nodes and𝐸 ⊂ 𝑉×𝑉 is the set of

edges.The set 𝐸 represents the structure of the graph because
it defines which nodes are linked by an edge and if such edge
is directed (arrow) or not. If (V

𝑖
, V

𝑗
) ∈ 𝐸 and (V

𝑗
, V

𝑖
) ∈ 𝐸 then

an undirected edge joins V
𝑖
and V

𝑗
, indicated as V

𝑖
—V

𝑗
, and V

𝑗

is neighbor of V
𝑖
. If (V

𝑖
, V

𝑗
) ∈ 𝐸 but (V

𝑗
, V

𝑖
) ∉ 𝐸 the ordered

pair corresponds to the directed edge V
𝑖
→ V

𝑗
; V

𝑗
is said

to be the child of V
𝑖
and V

𝑖
is a parent of V

𝑗
. The set pa(V

𝑗
)

includes all parents of node V
𝑖
, that is, all nodes originating

arrows with end in V
𝑖
, while the set ch(V

𝑖
) collects all children

of V
𝑖
, namely, all nodes in which arrows originated from V

𝑖

end.
A path is a sequence of vertices such that there is an edge

for each pair of subsequent nodes in the sequence, that is,
V
𝑖
—V

𝑖+1
or V

𝑖
← V

𝑖+1
or V

𝑖
→ V

𝑖+1
. A directed path is a path

in which all edges maintain the head-to-tail orientation, for
example, (V

𝑖
, V

𝑗
, V

𝑘
) with V

𝑖
→ V

𝑗
→ V

𝑘
.

In a directed graph all edges are directed. The ancestors
an(V

𝑖
) of node V

𝑖
are nodes on a directed path reaching V

𝑖
,

while descent nodes de(V
𝑖
) are nodes on a directed path

starting from node V
𝑖
. Note that V

𝑖
∈ de(V

𝑖
) and that V

𝑖
∈

an(V
𝑖
). The extension of the above definition to an(𝐴) with

𝐴 ⊂ 𝑉 is obtained by union of sets an(V
𝑖
) for each V

𝑖
∈ 𝐴. A

similar extension holds for de(𝐴).
In a directed graph without cycles it is not possible to visit

the same node more than one time by following a directed
path, and in this case the graph is called directed acyclic
graph. A moralized DAG is an undirected graph obtained by
joining pairs of nodes sharing children (if not yet connected)
with an undirected edge and by removing the direction of all
edges. A subgraph G

𝐴
on 𝐴 ⊂ 𝑉 is obtained by removing all

nodes in 𝑉 \ 𝐴 and all edges in which at least one node is in
𝑉 \ 𝐴 from the graphG.

A graphwithout directed edges is called undirected graph
(UG). An UG with 𝐸 = 𝑉 × 𝑉 is said to be complete. A
subgraph on a subset 𝑆 ⊂ 𝑉 of nodes is obtained by removing
nodes not in 𝑆 and all edges reaching-leaving nodes not in 𝑆.

Note that a subset of nodes is indicated by capital letters. A
clique 𝐶 is a maximal complete subgraph of an UG.

A chain graph, also called partially directed acyclic
graph (PDAG), is made by an ordered collection of chain
components 𝜏 = (𝜏

1
, 𝜏

2
, . . .) which are undirected graphs

and by directed edges between nodes located in different
chain components, so that the arrow V

𝑖
→ V

𝑗
is allowed

only if V
𝑖
belongs to a chain component preceding the chain

component in which V
𝑗
is located. Therefore directed edges

are forbidden within a chain component and in the direction
from 𝜏

𝑗
to 𝜏

𝑗−𝑘
, with 𝑘 > 0.

The moralization of a chain graph mimics the moraliza-
tion of a DAG. A moralized CG, indicated asG𝑚, is obtained
by the following steps:

(1) let 𝑘 = 2;
(2) join with undirected edges all pairs of nodes in pa(𝜏

𝑘
),

with pa(𝜏
𝑘
) being the union of parents sets for each

node in chain component 𝜏
𝑘
;

(3) iterate step (2) for 𝑘 = 3, 4, . . .;
(4) remove directions to all edges.

2.2. SomeMarkov Properties. Conditional independence [16]
is fundamental to reason out highly structured stochastic sys-
tems and to simplify the representation of high dimensional
distributions.

In this paper the random vector X refers to random
variables included in the BN. The notation used hereafter
is based on nodes in 𝑉; thus X is also indicated as 𝑋

𝑉
=

𝑋V
1
,...,V
𝐾

= (𝑋V
1

, . . . , 𝑋V
𝐾

) and the sample space Ω
𝑋
𝑉

=

⊗V
𝑖
∈𝑉
Ω

𝑋V𝑖
is the Cartesian product of sample spaces of

considered variables.
The joint probability distribution of a random vector 𝑋

𝑉

is Markov with respect to an UGG if

𝑝 (𝑥V
1

, 𝑥V
2

, . . . , 𝑥V
𝐾

) = 𝜎

−1
∏

𝐶∈C

𝜙
𝐶
(𝑥

𝐶
) (1)

with C being a collection of graph cliques in G and with
𝜙
𝐶
nonnegative functions called clique potentials; note that

𝑥
𝐶
is the coordinate projection of vector 𝑥

𝑉
on the subset

of coordinates defined by 𝐶; 𝜎 = ∑
Ω
𝑋𝑉

∏
𝐶∈C𝜙𝐶(𝑥𝐶) is the

partition function that normalizes the product of potentials
in (1).

Markov properties for positive distributions with respect
to an undirected graph may be read using the separation
theorem [14]. Let 𝐴 ⊂ 𝑉, 𝐵 ⊂ 𝑉, 𝑆 ⊂ 𝑉 be disjoint subsets of
nodes. The separation theorem states that subvectors𝑋

𝐴
and

𝑋
𝐵
are conditionally independent given the subvector 𝑋

𝑆
if

and only if all paths from a node in 𝐴 to a node in 𝐵 include
nodes located in 𝑆; thus nodes in 𝑆 separate nodes in 𝐴 from
nodes in 𝐵.

The joint probability distribution of random variables
indexed in 𝑉 is Markov with respect to a DAG G if the
following factorization holds:

𝑝 (𝑥V
1

, 𝑥V
2

, . . . , 𝑥V
𝐾

) = ∏

V
𝑖
∈𝑉

𝑝 (𝑥V
𝑖

| 𝑥pa(V
𝑖
)
) , (2)
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where 𝑥pa(V
𝑖
)
is the random vector made by variables whose

labels belong to the parents set of V
𝑖
.

Markov properties on a DAG may be read using the
separation theorem for directed graphs [14]. Given three
disjoint sets of nodes𝐴, 𝐵, 𝑆, consider the subgraphG defined
on an(𝐴 ∪ 𝐵 ∪ 𝑆) after moralization, say G𝑚

an(𝐴,𝐵,𝑆). Random
subvectors 𝑋

𝐴
and 𝑋

𝐵
are conditionally independent given

the subvector𝑋
𝑆
if and only if nodes in 𝑆 separate nodes in𝐴

from nodes in 𝐵 inG𝑚

an(𝐴,𝐵,𝑆).
A joint probability distribution is Markov with respect to

a CGG if

𝑝 (𝑥V
1

, 𝑥V
2

, . . . , 𝑥V
𝐾

) = ∏

𝜏
𝑖
∈𝜏

𝑝 (𝑥
𝜏
𝑖

| 𝑥pa(𝜏
𝑖
)
) (3)

with 𝜏
𝑖
∈ 𝜏, the chain components ofG. Furthermore factors

on r.h.s. of (3) may be factorized by considering the subgraph
on nodes defined by 𝜏

𝑖
∪ pa(𝜏

𝑖
):

𝑝 (𝑥
𝜏
𝑖

| 𝑥pa(𝜏
𝑖
)
) = 𝜎

−1

𝑡
∏

𝐶∈C

𝜙
𝐶
(𝑥

𝐶
) , (4)

where 𝜎−1
𝑡
, 𝑡 ∈ Ωpa(𝜏

𝑖
)
are normalization constants, one for

each conditioning value of the random subvector𝑋pa(𝜏
𝑖
)
. The

working UG in (4) is obtained by removing the orientation of
edges from parents of nodes in 𝜏

𝑖
and by joining them into a

complete undirected subgraph.
Conditional independence relationships in CGs are also

obtained from an extension of the separation theorem inUGs
and DAGs for positive distributions [17]. Let G be a chain
graph and 𝐴 ⊂ 𝑉, 𝐵 ⊂ 𝑉, 𝑆 ⊂ 𝑉 be three disjoint subsets of
𝑉. The separation theorem states that subvectors 𝑋

𝐴
and 𝑋

𝐵

are conditionally independent given the subvector 𝑋
𝑆
if and

only if all paths from a node in𝐴 to a node in 𝐵 inG𝑚

an(𝐴∪𝐵∪𝑆)
include nodes of 𝑆; thus nodes in 𝑆 separate nodes in 𝐴 from
nodes in 𝐵. Note that G𝑚

an(𝐴∪𝐵∪𝑆) is the moral graph of the
smallest ancestral set for 𝐴 ∪ 𝐵 ∪ 𝑆, that is, a subgraph ofG𝑚

described in Section 2.1.

2.3. Causal DAGs. A DAG may represent causal relations
among variables. According to the causal semantic, an arrow
V
𝑖
→ V

𝑗
indicates that V

𝑖
is a direct cause of V

𝑗
with respect

to nodes included in 𝑉, that is, at the considered model
granularity. In principle the intervention on variable 𝑥V

𝑖

may
bear an effect on 𝑥V

𝑗

.The intervention on a subset of variables
𝐷 ⊂ 𝑉 indicates the external setting of variables in 𝑋

𝐷
to

prescribed values; thus the systemor process is perturbed, not
merely observed.

Pearl [2, pp. 27–32] starts with the definition of functional
causal models, which are deterministic in nature, and he
demonstrates [2, theorem 1.4.1] that such formulation induces
the Markov factorization in (2), the so-called Markov causal
assumption. An equivalent representation embeds exogenous
variables into the node of interest and transforms the deter-
ministic relationships into probabilistic conditioning, thus
leading to Bayesian networks.

A key property of a casual DAG G is the stability under
external intervention: if a variable 𝑥V

𝑖

is manipulated all the
other variables maintain their relationships as represented by

G. In other terms the intervention is local on manipulated
variables and it does not break all the other relationships
represented in a causal DAG. The intervention regime is in
contrast with the plain observation of values taken by the
random vector𝑋

𝑉
.

The granularity of a causal DAG depends on the variables
included in the model. A variable𝑋

𝐿
not included in a causal

DAG may eventually affect just one variable 𝑋V, with V ∈ 𝑉;
otherwise if several variables are affected then a more general
class of models is needed, called semi-Markovian networks
(not considered further in this work).

For an updated presentation of the approach see [18]
while [19] warns against the blind definition of DAGs within
the causal semantic in observational studies. He also recon-
siders the foundations of causal inference by anchoring them
to the extended conditional independence (C.I.), both at
algebraic level and with a graphical counterpart based on
influence diagrams.

2.4. Inference about the Structure of Bayesian Networks.
In all cases in which strong prior information is absent,
structural learning is performed by means of a databaseD =

(𝑥
1
, . . . , 𝑥

𝑛
) of 𝑛 exchangeable observations of the random

vector𝑋
𝑉
.

Several algorithms have been proposed to infer causal
and probabilistic relations, but in Bayesian inference key
quantities enter into the joint probability distribution of D
and network’s unknowns given the context 𝜉:

𝑝 (D, 𝜃, 𝑧 | 𝜉) = 𝑝 (D | 𝜃, 𝑧, 𝜉) ⋅ 𝑝 (𝜃 | 𝑧, 𝜉) ⋅ 𝑝 (𝑧 | 𝜉) , (5)

where 𝜃 = (𝜃V
1
,pa(V
1
)
, . . . , 𝜃V

𝐾
,pa(V
𝐾
)
) are vectors of parameters

characterizing the conditional probability distributions of𝑋V
𝑖

given𝑋pa(V
𝑖
)
; variable𝑍 indicates the unknownDAG, and it is

built as a bijection from the set of DAGs (fixed 𝑉) to a subset
Ω

𝑍
of natural numbers.
The likelihood function 𝑝(D | 𝜃, 𝑧, 𝜉) is typically

expressed as a product of multinomials by using sufficient
statistics.Whenever expert beliefs are reasonably captured by
Dirichlet prior distributions for elements of 𝜃, and they are
elicited as marginally independent, closed-form integration
marginalizes out thetas. The resulting marginal distribution
𝑝(D | 𝑧, 𝜉) has a reduced dimensionality and may be opti-
mized with respect to 𝑧 while looking for optimal structures
characterized by the highest posterior probability values [9]:

𝑝 (D, 𝑧 | 𝜉) = ∫𝑝 (D | 𝜃, 𝑧, 𝜉) ⋅ 𝑝 (𝜃 | 𝑧, 𝜉) ⋅ 𝑝 (𝑧 | 𝜉) ⋅ 𝑑𝜃

= 𝑝 (𝑧 | 𝜉) ⋅

𝐾

∏

𝑖=1

𝑞
𝑖

∏

𝑗=1

Γ (𝛼
𝑖,𝑗
)

Γ (𝛼
𝑖,𝑗
+ 𝑁

𝑖,𝑗
)

⋅

𝑟
𝑖

∏

𝑠=1

Γ (𝛼
𝑖,𝑗,𝑠

+ 𝑁
𝑖,𝑗,𝑠

)

Γ (𝛼
𝑖,𝑗,𝑠

)

(6)

with 𝑟
𝑖
being the number of states taken by 𝑋

𝑖
and 𝑞

𝑖
of

𝑋pa(V
𝑖
)
; sufficient statistics are𝑁

𝑖,𝑗,𝑠
for the 𝑖th variable taking
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the 𝑠th state while its parent configuration is in the 𝑗th state;
𝛼
𝑖,𝑗

= ∑

𝑟
𝑖

𝑠=1
𝛼
𝑖,𝑗,𝑠

and 𝑁
𝑖,𝑗

= ∑

𝑟
𝑖

𝑠=1
𝑁

𝑖,𝑗,𝑠
. A clever choice of

hyperparameters guarantees the likelihood equivalence; that
is, all BNs equivalent as regards the set of encoded conditional
independence relationships are equally scored by (6).

Equation (6) shows that the elicitation of the prior
distribution 𝑝(𝑧 | 𝜉) is a key step to perform Bayesian
structural learning usingD.

2.5. Plausible Network Features. A candidate structure 𝑧 ∈

Ω
𝑍
on a fixed set of nodes𝑉 is plausible if it has got structural

features (SFs) believed to be relevant by the expert. Following
Stefanini [11, Definition 1], we recall the formal definition.

Definition 1 (SF). A structural feature (SF) R
𝑗
(𝑧, 𝑤) in a

reference set R for the set of DAGs on 𝑉 is a predicate
describing a plausible probabilistic or causal characteristic
of the unknown directed acyclic graph 𝑧 ∈ Ω

𝑍
. Argument

𝑤 is in the partition W of a given numeric domain Ω
𝑊

of
variable 𝑊. An atomic structural feature (ASF) R

𝑗
(𝑧) does

not depend on any auxiliary variable𝑊.

A reference setR is a collectionR = {R
𝑗
: 𝑗 ∈ 𝐽} of SFs

indexed in a set 𝐽, with 𝑛
𝑓
being the number of considered

SFs. A proposition might be defined to carry disbelief to a
candidate structure, but the feature-rises-belief direction is
conveniently adopted here.

An example makes the previous definition operational.
Let us define R

1
(𝑧, 𝑤) = “The number of immediate

causes of 𝑋V
3

is in 𝑤” to capture the expert belief about
the number of parents of node V

3
in the unknown DAG.

An expert may consider Ω
𝑊

= {0, 1, . . . , 12} and W =

({0}, {1, 2, 3}, {4, 5}, {6, . . . , 12}). Given a candidate structure
𝑧, its plausibility will be determined by the element 𝑤 ∈

W that makes the predicate true. A simple representation
of configurations taken by reference features is obtained by
descriptors [11, Definition 2].

Definition 2 (descriptors). A descriptor 𝑅
𝑖
for the SF R

𝑖
is a

map:

𝑅
𝑖
: W

𝑖
× {false, true} → {0, 1, 2, . . . ,






W
𝑖






} (7)

so that (𝑤, false) → 0 for all 𝑤 ∈ W
𝑖
and (𝑤, true) → ℎ

𝑤

for all 𝑤 ∈ W
𝑖
; that is, a different integer is associated with

each 𝑤 if true. The vector 𝑅 = (𝑅
1
, 𝑅

2
, . . . , 𝑅

𝑛
𝑓

) defined on
the Cartesian product Ω

𝑅
= ⊗

𝑛
𝑓

𝑖=1
Ω

𝑅
𝑖

= ⊗

𝑛
𝑓

𝑖=1
{0, 1, . . . , |W

𝑖
|}

is called vector of descriptors. The descriptor of an ASF is
defined by false → 0 and true → 1.

The 𝑗th configuration of descriptors in 𝑅 is indicated as
𝑟
𝑗
= (𝑟

1,𝑗
, 𝑟

2,𝑗
, . . . , 𝑟

𝑛
𝑓
,𝑗
) ∈ Ω

𝑅
while a generic configuration is

indicated as 𝑟 ∈ Ω
𝑅
.The 𝑗th configuration of a subvector of 𝑅

defined by indexes in𝐴 is 𝑟
𝐴,𝑗

; for example, 𝑟
{1,3},𝑗

= (𝑟
1,𝑗
, 𝑟

3,𝑗
).

Vector 𝑅 induces equivalence classes on Ω
𝑍
; that is,Z =

{Z
𝑟
: 𝑟 ∈ Ω

𝑅
} contains sets of structures, with Z

𝑟
made by

all those DAGs sharing the same configuration 𝑟.
Note that members of the same equivalence class must be

associated with the same degree of belief by the principle of

insufficient reason: they differ in irrelevant and unconsidered
ways by construction.

Despite the generality of Definition 1 some features are
expected to occur more often than others. Below, some of
them are described without pretending to be exhaustive.

2.5.1. Indegree and Outdegree. In applications characterized
by a small sample size, it is useful to impose a sharp
constraint during the greedy search of top-scored candidate
structures. The maximum number of arrows entering into
a node, the indegree, is set to a small integer, say 2 to 5,
to exclude structures with a large number of parents from
the consideration. A large number of parents implies a CPT
with a huge number of parameters which are affected by
large uncertainty after conditioning to observed data because
of sampling zeros. A similar constraint may be set on the
number of arrows leaving a node.

Two reference features naturally embed this kind of
information.

(i) “The maximum number of arrows reaching a node is
in 𝑛

𝑖𝑑
for all nodes in 𝑉,” where 𝑛

𝑖𝑑
is a small set of

integers close to 1 elicited from the expert.
(ii) “The maximum number of arrows leaving a node is

in 𝑛
𝑜𝑑

for all nodes in 𝑉,” where 𝑛
𝑜𝑑

is a small set of
integers close to 1 elicited from the expert.

The above two features may be exploited to increase
the plausibility of candidate structures which are sparsely
connected. Higher control on connectivity is obtained by
considering the fraction of nodes showing a given degree of
connectivity, as described below.

2.5.2. Partitioned Connectivity. A different way of character-
izing the connectivity is obtained by eliciting the minimum
fraction of nodes in DAG showing a given number of parents
(children) and by iterating the elicitation from 0 parents
(children) up to a small integer 𝑠.

Let 𝑠 be a small integer representing the maximum
number of parents (children) to be considered. Let 𝑊 =

(𝑊
0
, . . . ,𝑊

𝑠
) be a vector of nondecreasing numbers in [0, 1],

with

Ω
𝑊

= {(𝜔
0
, 𝜔

1
, 𝜔

2
, . . . , 𝜔

𝑏
, . . . , 𝜔

𝑠
) : 0

≤ 𝜔
𝑏
≤ 𝜔

𝑏+1
< 𝜔

𝑠
= 1}

(8)

being the sample space.The elicitation of this feature is based
on a vector 𝑎 = (𝑎

0
, 𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑏
, . . . , 𝑎

𝑠
), with 0 ≤ 𝑎

𝑏
≤ 𝑎

𝑏+1
<

𝑎
𝑠
= 1, and on the induced partitionW = {𝑤

0
, 𝑤

1
} where

𝑤
1
= {(𝜔

0
, 𝜔

1
, . . . , 𝜔

𝑠
) : 𝜔

𝑏
≥ 𝑎

𝑏
, 𝑏 = 0, 1, . . . , 𝑠} (9)

and 𝑤
0
= Ω

𝑊
\ 𝑤

1
.

Two reference features naturally embed the extended
evaluation of connectivity:

(i) “The 𝑎-partitioned inconnectivity of degree 𝑠 is in𝑤
1
,”

with 𝑎, 𝑠, and 𝑤
1
defined above; a candidate struc-

ture 𝑧 shows this feature if the cumulative relative
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Table 1: Elicited vector 𝑎, with 𝑠 = 5. In the top row, the number
𝑏 of parents is reported, while in the second row the correspondent
minimum fraction of nodes 𝑎

𝑏
is shown.

Number of parents 0 1 2 3 4 5

Cumulative fraction of nodes 0.01 0.2 0.4 0.6 0.8 1.0

frequency 𝐹
𝑏
of nodes in 𝑧 with number of parents

equal or less than 𝑏 is greater than 𝑎
𝑏
; that is, 𝐹

𝑏
≥ 𝑎

𝑏
,

𝑏 = 1, 2, . . . , 𝑠.
(ii) “The 𝑎-partitioned outconnectivity of degree 𝑠 is in

𝑤
1
,” with 𝑎, 𝑠, and𝑤

1
defined above; a candidate struc-

ture 𝑧 shows this feature if the cumulative relative
frequency 𝐹

𝑏
of nodes in 𝑧 with number of children

equal or less than 𝑏 is greater than 𝑎
𝑏
; that is, 𝐹

𝑏
≥ 𝑎

𝑏
,

𝑏 = 1, 2, . . . , 𝑠.

Trained experts could prefer a conventional total number
of nodes equal to 100 to elicit cumulative percentages instead
of cumulative fractions of nodes.

In Table 1, an example is shown where 𝑠 = 5 and the
elicited vector 𝑎 is defined on fractions. A candidate structure
has the partitioned inconnectivity feature if the fraction of
root nodes is equal or above 0.01, while the proportion of
nodes with at least 1 parent is equal or above 0.2 and so on.

2.5.3. Direct Cause and Direct Effect. The reference feature
“The variable 𝑥V

𝑖

is an immediate cause of variable 𝑥V
𝑗

” refers
to 𝑥V

𝑖

as a parent of 𝑥V
𝑗

so that by setting (intervening on)
the value of the variable 𝑥V

𝑖

to a given value, the distribution
of 𝑋V

𝑗

is modified. This relation holds at the level of selected
granularity; thus it may change if the collection of variables
(nodes in 𝑉) is modified.

2.5.4. Causal Ancestors. The “direct cause” feature may be
extended by considering a variable 𝑥V

𝑖

which is on a causal
(directed) path reaching node 𝑥V

𝑗

. In this case the reference
feature is “The variable 𝑥V

𝑖

is an indirect cause of variable 𝑥V
𝑗

”;
thus the expert believes that one or more variables mediate
the effect of 𝑥V

𝑖

on 𝑥V
𝑗

.

2.5.5. Causal Hubs. A hub node in a network is characterized
by a high number of arrows leaving it. A reference feature
which captures the local connectivity of node V

𝑖
is “Node V

𝑖

is a hub node of at least outdegree 𝑤,” with the outdegree
indicating the number of arrows originated in V

𝑖
and 𝑤 a set

of integers. Note that the defined feature is a localized version
of the outdegree feature.

The expert might believe that a hub node should be
present, but without indicating a specific node. In this case
the 𝑎-partitioned outconnectivity feature (with a large 𝑠) can
be exploited for this purpose.

2.5.6. Conditional Independence Relationships. A statement
about C.I. among three disjoint subsets of random variables
may take the following form: “The random vector 𝑋

𝐴
is

conditionally independent from the random vector𝑋
𝐵
given

vector𝑋
𝑆
,” with 𝐴, 𝐵, 𝑆 being disjoint subsets of nodes in 𝑉.

2.6. The Degree of Belief. The prior distribution on the space
of structures on 𝑉 is obtained by “extending the argument;”
that is,

𝑃 [𝑍 = 𝑧 | 𝜉] = ∑

𝑟∈Ω
𝑅

𝑃 [𝑍 = 𝑧 | 𝑅 = 𝑟, 𝜉] ⋅ 𝑃 [𝑅 = 𝑟 | 𝜉] .

(10)

By recognizing that 𝑅 induces the partitionZ, it follows that

𝑝 (𝑧 | 𝜉) =

1

𝑛
𝑟
[𝑧]

⋅ 𝑃 [𝑅 = 𝑟

[𝑧]
| 𝜉] =

𝑝 (𝑟

[𝑧]

1
, 𝑟

[𝑧]

2
, . . . , 𝑟

[𝑧]

𝑛
𝑓

| 𝜉)

𝑛
𝑟
[𝑧]

,

(11)

where 𝑛
𝑟
[𝑧] is the cardinality of the equivalence class in

which 𝑧 is located and where the structural configuration
of DAG 𝑧 is 𝑟[𝑧]. In [12] the size of each equivalence class
Z

𝑟
was estimated by Monte Carlo simulation to face the

combinatorial explosion in the number of DAGs to be
enumerated with the increase of the number of nodes:







̂Z
𝑟







=

𝑁
𝑉
(𝑁

𝑟
+ 1)

𝑁
𝑇
+ 1

, (12)

where 𝑁
𝑇
is the total number of DAGs uniformly sampled

from the space of all DAGs on𝑉,𝑁
𝑉
is the size of such space

(see [10]), and𝑁
𝑟
≤ 𝑁

𝑇
is number of sampled DAGs showing

configuration 𝑟.
The numerator on the right of (11) represents the joint

belief on each configuration of descriptors. While the elici-
tation in full generality becomes cognitively and numerically
overwhelming around 7 descriptors on, some parsimony is
achieved if a small number of descriptors may be considered
at one time, so that conditional independence relationships
among descriptorsmay be exploited.This is a choice available
to the expert through the definition of an order relation on
descriptors.

Definition 3 (ordered partition). The ordered partition

O = (O
1
,O

2
, . . .) (13)

of descriptors is defined by the expert to indicate disjoints
subsets of SFs to be jointly considered during the elicitation,
from the first subset O

1
to the last.

Otherwise stated, the expert decomposes the whole elici-
tation problem following an order taken from the substantive
content of the specific problem domain: features are grouped
according to the priority in the elicitation.

The elicitation of the ordered partition is performed by
formulating questions in the language typical of a given prob-
lem domain. It is indeed difficult to define those questions
in general terms, because they result to be quite abstract and
they are likely to be obscure for the domain expert (see [11]).
We assume here that questions are properly phrased and that
an ordered partition is defined.
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If a strict order relation is elicited, each element of O
contains one descriptor: this is a special case addressed in
[20]. Another special case is represented by a trivial partition
of just one subset that contains all descriptors [21]. In the
two special cases above it is possible to define, respectively, a
Bayesian network and a Markov network on descriptors. The
general case made by several subsets, each one of cardinality
two or more, was addressed by using CG models in [11] for
ASFs. Below details are provided about a reference set of
nonatomic features.

The joint probability distribution of descriptors
𝑝(𝑟

1
, 𝑟

2
, . . . , 𝑟

𝑛
𝑓

| O, 𝜉) is assumed to be Markov with
respect to the elicited partition where descriptors within
group O

𝑗
define the chain component 𝜏

𝑗
of the CG model

(see (3)). The elicitation keeps on by asking in the language
of the domain expert which descriptors in subset O

𝑗
should

be jointly considered while defining the degree of belief.
Nodes corresponding to related descriptors are joined by
undirected edges and the collection of cliques defining the
chain component are found. The elicitation is iterated for all
elements in the ordered partition O.

The resulting CG may support the elicitation if model
parameters are cognitively suited for the quantitative step,
that is, if they are interpretable and easy to assess for the
expert, at least after some training.

The first chain component is elicited as a marginal
distribution which is not conditioned on other descriptors.
An undirected graphical model on descriptors in O

1
is

defined through themultiplicativemodel in (4), under empty
conditioning. Nevertheless some care is needed because
potential functions on cliques are not uniquely defined.
Here a log-linear parameterization is suggested, following
[13]. For example, if the first chain component has just one
clique made by three descriptors, say 𝑅

1
, 𝑅

2
, 𝑅

3
, we define

the multiplicative model as below, after exponentiation and
rearrangement of log-linear terms:

𝑝 (𝑟
1
, 𝑟

2
, 𝑟

3
| 𝜉)

𝑝 (0, 0, 0 | 𝜉)

= 𝜙
1
(𝑟

1
) 𝜙

2
(𝑟

2
) 𝜙

3
(𝑟

3
) 𝜙

1,2
(𝑟

1
𝑟
2
)

× 𝜙
1,3

(𝑟
1
𝑟
3
) 𝜙

2,3
(𝑟

2
𝑟
3
) 𝜙

1,2,3
(𝑟

1
𝑟
2
𝑟
3
) .

(14)

Thus the odds value with respect to the no-feature configu-
ration 𝑟

1,2,3
= (0, 0, 0) is explained by a multiplicative model

where each factor, for example, 𝜙
2,3
(𝑟

2
𝑟
3
), is equal to one if

one or more descriptors are null, otherwise they are positive
(the so-called treatment parameterization).

The elicitation in (14) is performed on the odds scale by
asking the domain expert how many times the configuration
(𝑟

1
, 𝑟

2
, 𝑟

3
) is more plausible than (0, 0, 0) for descriptors

𝑅
1
, 𝑅

2
, 𝑅

3
. This question is iterated for all configurations in

the Cartesian product Ω
𝑅
1

× Ω
𝑅
2

× Ω
𝑅
3

after exclusion of
(0, 0, 0). Questions are posed from singlemain effects towards
higher order interactions terms, so that one factor at a time is
considered (see algorithm below).

The procedure is iterated for all cliques in the first
CG component 𝜏

1
, and indeed factors already elicited in

previously considered cliques are not reconsidered anymore.

For example, the chain component 𝑅
1
—𝑅

2
—𝑅

3
is made by

two cliques, 𝑅
1
, 𝑅

2
and 𝑅

2
, 𝑅

3
; thus the shared factor 𝜙

2
(𝑟

2
) is

elicited just one time.
The general algorithm for the first chain component is

summarized below.

(1) Consider the undirected graph on descriptors elicited
as the first chain component. Control questions
include the following: “Are all the relevant features
included in the elicitation?”, “Are all pairs of features
jointly affecting the probability of a structure linked
by an undirected edge?”. If needed, revise the order
relation and (or) links within chain component.

(2) Check out that each descriptor 𝑅V
𝑖

given its neighbors
𝑅ne(V

𝑖
)
is independent of all other descriptors in the

first CG component.
(3) Find the cliques of such UG (model generator) [13].
(4) For each clique, elicit parameter values by using odds.

(i) Elicit main effects {𝜙
𝑖
(𝑟

𝑖,𝑗
)}, one at a time for all

configurations, by assigning an odds value with
respect to the baseline with no features; that is,

𝜙
𝑖
(𝑟

𝑖,𝑗
) =

𝑝 (0, . . . , 0, 𝑟
𝑖,𝑗
, 0, . . . , 0 | 𝜉)

𝑝 (0, . . . , 0 | 𝜉)

.
(15)

A control question for this step is: “How much
above one is the odds value for the sole presence
of feature 𝑅

𝑖
= 𝑟

𝑖,𝑗
> 0?”

(ii) Elicit first order interactions {𝜙
𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
)},

one at a time, by assigning a multiplicative
term for each configuration under the question:
“Which is the value of the multiplicative term
{𝜙

𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
)} needed to account for the inter-

action of feature 𝑅
𝑖
= 𝑟

𝑖,𝑗
 > 0 with feature

𝑅
𝑙
= 𝑟

𝑙,𝑗
 > 0?” The expression helping in this

step is

𝑝 (0, . . . , 𝑟
𝑖,𝑗
 , 0, . . . , 𝑟

𝑙,𝑗
 , 0, . . . , 0 | 𝜉)

𝑝 (0, . . . , 0 | 𝜉)

= 𝜙
𝑖
(𝑟

𝑖,𝑗
) 𝜙

𝑙
(𝑟

𝑙,𝑗
) 𝜙

𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
) ,

(16)

where 𝜙
𝑖
(𝑟

𝑖,𝑗
), 𝜙

𝑙
(𝑟

𝑙,𝑗
) are already elicited; this

is the cross product ratio of features 𝑅
𝑖
, 𝑅

𝑙
, after

dividing by 𝜙
𝑖
(𝑟

𝑖,𝑗
), 𝜙

𝑙
(𝑟

𝑙,𝑗
). It is clear that if the

interaction is absent 𝜙
𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
) = 1, while

𝜙
𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
) ∈ (0, 1)means that the interaction

reduces the plausibility and 𝜙
𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
) > 1

raises the plausibility of the considered config-
uration.

(iii) Iterate the step above with higher order inter-
action terms (for all configurations) with two
constraints: beforemoving to higher interaction
terms all the terms of the same degreemust have
been already elicited; moreover the maximum
degree of interaction among a subset of features
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is defined by the size of the clique they belong
to (model generator). For example, with the
interaction of order two {𝜙

𝑖,𝑙,𝑘
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
 , 𝑟

𝑘,𝑗
)},

the control question might be: “Having already
elicited values of 𝜙

𝑖
(𝑟

𝑖,𝑗
), 𝜙

𝑙
(𝑟

𝑙,𝑗
), 𝜙

𝑘
(𝑟

𝑘,𝑗
),

𝜙
𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
),𝜙

𝑖,𝑘
(𝑟

𝑖,𝑗
 ,𝑟

𝑘,𝑗
), and𝜙

𝑙,𝑘
(𝑟

𝑙,𝑗
 , 𝑟

𝑘,𝑗
),

which is the value of the multiplicative term
{𝜙

𝑖,𝑙,𝑘
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
 , 𝑟

𝑘,𝑗
)} needed to adjust the odds

value after considering the interaction among
features whose configurations are 𝑟

𝑖,𝑗
 > 0,

𝑟
𝑙,𝑗
 > 0, 𝑟

𝑘,𝑗
 > 0?”; the helper expression is

𝑝 (0, . . . , 𝑟
𝑖,𝑗
 , . . . , 𝑟

𝑙,𝑗
 , . . . , 𝑟

𝑘,𝑗
 , . . . , 0 | 𝜉)

𝑝 (0, . . . , 0 | 𝜉)

= 𝑄𝜙
𝑖,𝑙,𝑘

(𝑟
𝑖,𝑗
 , 𝑟

𝑙,𝑗
 , 𝑟

𝑘,𝑗
) ,

(17)

where factor

𝑄 = 𝜙
𝑖
(𝑟

𝑖,𝑗
) 𝜙

𝑙
(𝑟

𝑙,𝑗
) 𝜙

𝑘
(𝑟

𝑘,𝑗
) 𝜙

𝑖,𝑙
(𝑟

𝑖,𝑗
 , 𝑟

𝑙,𝑗
)

× 𝜙
𝑖,𝑘
(𝑟

𝑖,𝑗
 , 𝑟

𝑘,𝑗
) 𝜙

𝑙,𝑘
(𝑟

𝑙,𝑗
 , 𝑟

𝑘,𝑗
)

(18)

is already elicited. Similar expressions follow
straightforwardly for higher order interactions.

(5) Calculate the baseline probability 𝑝(0, . . . , 0 | 𝜉) of a
structure without features by exploiting ∑

𝑟∈Ω
𝑅

𝑝(𝑟 |

𝜉) = 1.
(6) Revise the elicited values following the guidelines of

Section 2.7.
(7) Move to the next chain component.

The algorithm presented above may be also applied to
chain components 𝜏

2
, 𝜏

3
, . . ., that is, with a nonempty set of

parents.The elicitation of parameters in a conditionalMarkov
network is performed by iterating the algorithm for the first
chain component over each configuration of conditioning
parents. It follows that the elicitation burden depends on
the number of parents, more precisely, on the cardinality of
the Cartesian product where factors are samples spaces of
parents.

The algorithms defined above lead to a prior distribution
on configurations, but the elicitation does not end before the
revision of elicited values takes place.

2.7. Implementation and Revision Issues. The flexibility
achieved by defining predicates entails potential pitfalls that
should be considered during an elicitation runwith structural
features.

The revision of elicited beliefs is always needed because
the expert is not expected to provide unbiased elicited
values, especiallywith limited training or in complex problem
domains. Revision and elaboration of the prior distribution
[22, and references therein] are applied to control elicitation
bias and other causes of poor elicitation.

Overelicitation is an important practice to check for the
presence of elicited quantities that do not reflect the expert

degree of belief. Nevertheless, in large networks elabora-
tion of elicited probability values is the main resource for
checking the quality of elicitation. In the proposed frame-
work, the elicitation through reference features produces
proper probability distributions; therefore one elaboration
consists of inspecting one or more margins of the probability
distribution 𝑝(𝑟

1
, . . . , 𝑟

𝑛
𝑓

| 𝜉), for example, the bivariate
margin 𝑝(𝑟

𝑖
, 𝑟

𝑗
| 𝜉), to look for configurations whose

plausibility causes surprise or disbelief in the expert. This
operation is particularly meaningful if inspected margins do
not straightforwardly relate to elicited odds, for example,
taking descriptors belonging to different cliques. Surprise
and disbelief ask for the revision of elicited values. If an
association between selected margins and bias is suspected,
random selection of margins is an option.

The stability of elicited values against different order
relations on descriptors (reference features) should not be
assumed. Nevertheless, in complex problem domains overe-
licitation made by the repetition of the interview with other
ordered partitions not only seems unacceptable as regards
the work load, but it could even be cognitively unfeasible,
for example, if the original ordered partition selected by the
expert is induced by a scientific hypothesis.

The core of the proposed approach is based on predicates
representing structural features.The expertmight believe that
some configurations of features are plausible although they
are incompatible withDAGs, for example, because they imply
the presence of cycles. A positive probability value would be
assigned to such a configuration 𝑟∗, but this is not an instance
of elicitation bias if the elicited distribution properly matches
expert beliefs. If this is the case, 𝑝(𝑧 | 𝜉) = 0 because 𝑃[𝑍 =

𝑧 | 𝑅 = 𝑟

∗
] = 0.

The way a predicate is specified determines the granular-
ity of the elicitation and the cardinality of equivalence classes
in Z. For example, let us consider two nodes V

𝑖
∈ 𝑉 and

V
𝑗
∈ 𝑉 and the reference feature R

1
= “Nodes V

𝑖
, V

𝑗
are not

descendent of other nodes in 𝑉
𝑅
”.

Reworking the original proposition we have two simpler
predicates:

(i) R
1
 = “Node V

𝑖
is not a descendent of other nodes in

𝑉
𝑅
”;

(ii) R
1
 = “Node V

𝑗
is not a descendent of other nodes in

𝑉
𝑅
.”

and they can be considered by conjunction. In Table 2,
the relation between the original reference feature (right)
and the conjoint components (left) is shown: ¬R

1
collects

three configurations generated by the conjunction of simpler
predicates. It follows that simpler predicates are needed if the
expert degree of belief changes over collapsed configurations
inR

1
, that is, ¬R

1
 ∩R

1
 ,R

1
 ∩¬R

1
 , ¬R

1
 ∩¬R

1
 . While

nothing prevents the expert from defining rich predicates,
care should be taken to select a granularity suited to properly
represent expert beliefs.

There are indeed several different ways of formulating a
predicate. If two reference sets of features induce the same set
of equivalence classes Z then they are operationally equiv-
alent. Nevertheless, from a cognitive standpoint, substantial
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Table 2: Relation between the original feature (right) and the
conjunction of two simpler structural features (left).

Simpler feature 1 Simpler feature 2 Original feature
R

1
 R

1
 R

1

¬R
1
 R

1
 ¬R

1

R
1
 ¬R

1
 ¬R

1

¬R
1
 ¬R

1
 ¬R

1

differences in the ease of elicitation might depend on the
way propositions are formulated [22]. Let us consider the
reference featureR

1
= “Nodes V

𝑖
, V

𝑗
precede all other nodes.”

Does the expert use “precede” as “come before” all other
nodes in the order relationship of nodes in 𝑉? Given a DAG
with V

𝑗
disconnected from other nodes how to answer? Does

the expert use “precede” meaning “are ancestors of all other
nodes in 𝑉” or to indicate that those nodes do not receive
arrows coming from other nodes? This example makes clear
that some training is mandatory in order to make an expert
effective in the elicitation: a trained expert is expected to
choose the right granularity in the elicitation and to define
meaningful predicates, that is, statements straightforwardly
true/false when applied to any DAG defined on 𝑉.

Several reference features are jointly considered in actual
applications, a number typically far beyond what the expert
may simultaneously consider with success. Thus there is the
possibility that exclusion and implication relations are not
recognized. For example, let us consider two features: R

3
=

“The indegree is three or less” andR
25

= “V
𝑖
is a sink node.”

After reworking the last feature, the expert reformulates the
statement as “Node V

𝑖
has indegree ten or more.” Clearly the

plausibility ofR
3
∧R

25
should be null; otherwise the actual

interpretation of R
3
is “The indegree of all but V

𝑖
is three or

less.”
Implication must be recognized to maintain the proba-

bilistic coherence; for example, let R
3
= “Variable 𝑋V

𝑖

is a
direct cause of 𝑋V

𝑗

” and R
5
= “Variable 𝑋V

𝑖

is an ancestral
cause of 𝑋V

𝑗

” be two reference features. Clearly R
3
implies

R
5
and the joint plausibility of both features is bound to

the plausibility of R
3
. In a normalized reference set logical

relationships among features are properly handled.

3. Results and Discussion

A few seminal approaches to the elicitation of beliefs on struc-
tures are reconsidered as special cases in the proposed frame-
work based on structural features. A published case study on
breast cancer (BC case-study) [23]will be (partially) exploited
at illustrative purposes.Thewhole set of nodes𝑉 includes: age
(AGE), the proliferative index-markerKi67/MIB-1 (PROLN),
oestrogen receptors (ER), progesterone receptors (PR), the
receptor tyrosine kinase HER2/neu (NEU), and the P53
protein.

3.1. Buntine 1991. In the seminal paper of Buntine [24], a
prior distribution on the set of DAGs for a fixed set 𝑉 is
defined by assuming a total ordering of nodes in the context

𝜉.The probability of the parent set for node V is defined by the
product of probability for events like “There is an edge 𝑦 →

V,” shortly 𝑃["𝑦 → V"], extended to each 𝑦 preceding V in the
order relation. The subjective probability value elicited for a
network structure 𝑧 is calculated by marginal independence
of parent sets. The original formalization defines a total
ordering ≺, so that if 𝑦 ≺ 𝑥

𝑖
it may belong to the parent’s

set Π
𝑖
of 𝑥

𝑖
; then a full specification of beliefs for each edge

in the directed graph is needed and measured in units of
subjective probability; finally the independence of parent
sets (Π

1
, . . . , Π

𝑛
) is assumed. The distribution on the set of

structures is ([24], modified)

𝑝 (𝑧 |≺, 𝜉) = 𝑝 (Π
1
, . . . , Π

𝑛
|≺, 𝜉) =

𝑛

∏

𝑖=1

𝑝 (Π
𝑖
|≺, 𝜉)

𝑝 (Π
𝑖
|≺, 𝜉) = ∏

𝑦∈Π
𝑖
∧𝑦≺𝑥

𝑃 ("𝑦 → 𝑥
𝑖
" |≺, 𝜉) ⋅

(19)

∏

¬{𝑦∈Π
𝑖
}∧𝑦≺𝑥

[1 − 𝑃 ("𝑦 → 𝑥
𝑖
" |≺, 𝜉)] . (20)

Given the order relation (V
3
, V

4
, V

1
, V

2
) on four nodes, 𝑛 = 4,

parent sets are Π
3
= 0, Π

4
⊆ {𝑦V

3

}, Π
1
⊆ {𝑦V

3

, 𝑦V
4

}, Π
2
⊆

{𝑦V
3

, 𝑦V
4

, 𝑦V
1

}.
Despite the huge importance of Buntine’s seminal work

[24], some limitations should be underlined.Under the causal
semantic of BNs, the expert might fail in stating such node
order which defines the “causal flow” along nodes. In large
regulatory networks of system biology a lot of assignments
are expected to be 0.5 because expert beliefs may involve a
small subset of arrows. We also expect that some plausibility
assignments depend onwhat is already assigned, for example,
due to biological substantive laws, but the need of such
conditioning is not accounted for. Finally, we remark that
several node orders are compatible with the same sparseDAG
on 𝑉; therefore the specification of a strict order should not
be enforced.

The above examplemay be straightforwardly cast in terms
of reference features. The order relation is part of the context
𝜉, and we define the set of reference features 𝑅

𝑖,𝑗
= “An arrow

is from V
𝑖
to V

𝑗
,” with all possible pairs (V

𝑖
, V

𝑗
) in which V

𝑖

precedes V
𝑗
in the total ordering ≺ equal to (V

3
, V

4
, V

1
, V

2
). The

reference set is R = {R
3,4
,R

3,1
,R

3,2
,R

4,1
,R

4,2
,R

1,2
}. In

this case a trivial Bayesian network without arrows is equiva-
lent to the prior distribution in (19) and (20) if conditional
probability tables are defined by the same values specified
in (20) for each feature; that is, features are marginally
independent. To see this, note that the context puts a sharp
constraint on the space of structures and that the cardinality
of the equivalence classes for each configuration 𝑟 of reference
features is equal to one; that is,

𝑝 (𝑧 | 𝜉) =

𝑛
𝑓

∏

𝑖=1

𝑃 [𝑅
𝑖
= 𝑟

[𝑧]

𝑖
| 𝜉] . (21)

The formal approach proposed in this paper allows much
more flexibility, for example, by restricting the set of nodes to
be ordered and by introducing dependence among arrows.
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For example, let 𝑉
𝐵

= (V
3
, V

4
, V

1
, V

2
) ⊂ 𝑉 be an ordered

subset of nodes taken from BC case study. The reference
featureR

𝑜
= “𝑉

𝐵
is the order on the relevant subset of nodes”

induces two equivalence classes, the first made byDAGs on𝑉
which do not satisfyR

𝑜
, the second one ismade by structures

without arrows violating the left-to-right order defined in𝑉
𝐵
.

Besides the sharp constraint obtained by setting 𝑃[𝑅
𝑜
= 1 |

𝜉] = 1, the expert might consider such feature uncertain, thus
preferring a degree of belief in the set (0, 1). Further features
could be defined to build the reference set:

R = R
𝑜
∪ {R

3,4
,R

3,1
,R

3,2
,R

4,1
,R

4,2
,R

1,2
} (22)

and the ordered partition

O = ({𝑅
𝑜
} , {𝑅

3,4
, . . . , 𝑅

1,2
}) (23)

captures weaker causal relationships by features like R
𝑖,𝑗

=

“Variable 𝑋V
𝑖

is a causal ancestor of 𝑋V
𝑗

.” A CG model
made by two components makes possible to elicit conditional
beliefs about V

4
→ V

2
given the presence of an arrow V

3
→

V
4
and given the lack of V

3
→ V

1
, without assuming a strict

order relation on nodes in 𝑉.

3.2. Heckerman et al. (1995). In Heckerman et al. [9], a
prior network 𝑧P was elicited and compared to a candidate
network 𝑧 by counting the number of different edges, 𝛿,
with a high degree of belief assigned to structures closely
resembling the prior network. The authors suggested to elicit
the hyperparameter 0 < 𝑘 < 1 and to define the prior
distribution to be proportional to 𝑘𝛿.

Among the limitations penalizing the use of this prior we
found the following:

(i) The impossibility of specifying the degree of belief
if it depends not only on the number of different
edges 𝛿 but also on their position and type; the
presence/absence/direction of an arrow may have an
impact on the belief about other edges.

(ii) The elicitation about a subset of 𝑉 is not addressed.
(iii) The causal semantic is natural for this approach

because each arrow represents an immediate cause; it
seems difficult to mix probabilistic and causal beliefs
by counting differences in arrows because a DAG
in the probabilistic semantic is just a member of
an equivalence class of DAGs representing the same
collection of conditional independence relationships.

A simple reformulation is oriented to computation and
it involves three operators: arrow deletion, insertion, and
change of direction. The reference set of atomic features is
R = {R

𝑗
(𝑧) : 𝑗 = 0, 1, 2, . . . , 𝐽} ∪ {𝑅

𝑎
(𝑧) : 𝑎 = 𝐽 + 1}

withR
𝑗
(𝑧) = “The application of 𝑗 operations produces 𝑧P,”

and where 𝑅
𝑎
(𝑧) = “The application of 𝑎 or more operations

produces 𝑧P.” An undirected graphmade by just one clique is
associatedwith potentials represented inTable 3, where 𝐽 = 3.
On the right of Table 3, values of the potential function are
shown.The normalization constant is 𝜎 = (𝜃

0
+ 𝜃

1
+ 𝜃

2
+ 𝜃

3
+

𝜃
𝑎
)

−1. It is obviously possible to make the two approaches as
close as desired by setting 𝜃

𝑖
∝ 𝑘

𝑖 with 𝑖 ≤ 3.

Table 3: Potential function for the Heckerman et al. [9] prior.

𝑅
0

𝑅
1

𝑅
2

𝑅
3

𝑅
𝑎

Potential
0 0 0 1 0 𝜃

3

0 0 1 0 0 𝜃
2

0 1 0 0 0 𝜃
1

1 0 0 0 0 𝜃
0

0 0 0 0 1 𝜃
𝑎

Otherwise 0

An even simpler reformulation exploits the incompat-
ibility of the above features and it is based on just one
reference feature:R

1
(𝑧, 𝑎) = “The application of 𝑎 operations

produces 𝑧P,” with 𝑎 ∈ A
1
= ({0}, {1}, . . . , {4, 5, . . .}), with

arrowmanipulations (insert-delete-change) defined as above.
FeatureR

1
essentially defines a plausible neighborhood with

respect to a prior network. Further reference features may
be introduced to refine such plausibility, for example, by also
considering one causal, R

2
, and one C.I., R

3
, relationships.

In other words, a candidate network “close” to the prior
network could be associated with a high prior probability
which is then tuned according to the presence/absence of
two other relevant features. A natural ordered partition on
descriptors could be O = ({𝑅

1
}, {𝑅

2
, 𝑅

3
}); thus a two-

component chain graph model may support the elicitation.
A different kind of reformulation is based on the full-

probabilistic semantic in which a prior DAG 𝑧P is just a
way to define a collection of C.I. relationships. In this case, it
is natural to define a structural feature for each conditional
independence relationship if it is relevant according to the
expert among those represented by 𝑧P. The reference set
R = {R

1
, . . . ,R

𝑛
𝑓

} in this case is a collection of plausible C.I.
statements taken from the prior DAG. Note that, although
it is not essential to draw such prior DAG, it may be useful
because a general collection of C.I. statements does not
necessarily imply the existence of a compatible DAG.

If none among theC.I. relations is preeminent the ordered
partition of descriptors contains just one element, say O =

({𝑅
1
, . . . , 𝑅

𝑛
𝑓

}), and a CG model made by one component
(undirected graphical model) is suited for the elicitation.

3.3. Imoto et al. (2003). In the seminal paper of Imoto et
al. [25], the authors developed a framework for combining
microarray data and biological knowledge while learning the
structure of a BN representing relationships among genes.
The proposed criterion has two components, and the second
one is particularly interesting because it captures the a priori
biological knowledge.

Following their original notation with minor modifica-
tions, 𝜋(𝐺) is the prior distribution of network 𝐺. Then, the
interaction energy 𝑈

𝑖,𝑗
of the edge from (gene) V

𝑖
to (gene)

V
𝑗
is defined on a sample space which is categorized into 𝐼

values, say 𝐻
1
, 𝐻

2
, . . . , 𝐻

𝐼
. For example if gene V

𝑖
regulates

gene V
𝑗
then 𝑈

𝑖,𝑗
= 𝐻

1
> 0, but if not much is known about

such potential regulation then 𝑈
𝑖,𝑗

= 𝐻
2
> 𝐻

1
. The total

energy of a network 𝐺 is 𝐸(𝐺) = ∑
(V
𝑖
,V
𝑗
)∈𝐺

𝑈
𝑖,𝑗
; thus the sum

is taken over existing edges in 𝐺. The total energy may be
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rewritten by collecting the parents of each node; thus 𝐸(𝐺) =
∑V
𝑗
∈𝑉

∑V
𝑖
∈𝑝𝑎(V

𝑗
)
𝑈
𝑖,𝑗

= ∑V
𝑗
∈𝑉

𝐸
𝑗
. The (prior) probability of

network 𝐺 is modeled by the Gibbs distribution:

𝜋 (𝐺) = 𝜎

−1 exp (−𝜁𝐸 (𝐺)) , (24)

where 𝜁 > 0 is a hyperparameter and 𝜎 is the nor-
malizing constant, also called the partition function 𝜎 =

∑
𝐺∈G
𝑉

exp(−𝜁𝐸(𝐺)), withG
𝑉
being the collection of allDAGs

on a fixed set of nodes 𝑉.
Operationally, the prior information is coded into a

square matrix 𝑈 of size defined by the number of genes,
with each 𝑢

𝑖,𝑗
corresponding to 𝜁𝐻

1
or 𝜁𝐻

2
according to

the prior belief. Beliefs in protein-protein interactions are
coded by 𝑢

𝑖,𝑗
= 𝑢

𝑗,𝑖
= 𝜁𝐻

1
. Protein-DNA interactions

between the transcription regulator V
𝑖
and the controlled

gene V
𝑗
are accounted by setting 𝑢

𝑖,𝑗
= 𝜁𝐻

1
and 𝑢

𝑗,𝑖
=

𝜁𝐻
2
. Some genes are controlled by a transcription regulator

through a consensus motif in their DNA promoter region. If
genes V

𝑗
1

, V
𝑗
2

, . . . , V
𝑗
𝑛

have the consensus motif and they are
regulated by gene V

𝑖
then 𝑢

𝑗
1
,𝑖

= ⋅ ⋅ ⋅ = 𝑢
𝑗
𝑛
,𝑖

= 𝜁𝐻
2
and

𝑢
𝑖,𝑗
1

= ⋅ ⋅ ⋅ = 𝑢
𝑖,𝑗
𝑛

= 𝜁𝐻
1
.

The seminal approach of Imoto et al. [25] suffers of two
main limitations. They stated that the biological knowledge
should suggest the partitioning of the underlining continuous
energy function but it is not clear how, even after invoking
the metaphor of energy from physics. In Example 3.2, they
tried 𝜁𝐻

1
= 0.5 (but also 𝜁𝐻

1
= 1) and optimized the

selection of 𝜁𝐻
2
= 2.5, a procedure not much in line with

pure preexperimental Bayesian elicitation.Moreover, the sum
in the partition function is taken on the set ofDAGs on𝑉, and
it becomes quite intractable from 5 nodes on. It follows that
their approach is substantially a way to build a score function
in a spirit similar to [26], but without providing a flexible
support for the calibration of the score function.

The prior information considered by these authors can
be also expressed in terms of reference features, for example,
by considering features like R

𝑖,𝑗
= “Gene V

𝑖
regulates gene

V
𝑗
,” for all relevant pairs of genes. If preeminent features are

absent, anUGmodel formally resembles the expression based
on energy functions but with some major differences:

(1) the parameterization is related to subjective probabil-
ity through odds values;

(2) the normalization constant is easier to calculate, at
least if the number of features is less than the total pair
of genes (some genes omitted);

(3) the general calibration constant 𝜁 disappears,
although a similar tuning has been considered
elsewhere [21] to smooth raw elicited odds values
while trying to compensate for the well known
human tendency towards overstating odds values.

3.4. Werhli and Husmeier (2007). The authors [27], building
on the work of Imoto et al. [25], defined a prior information
matrix 𝐵 whose elements 𝐵

𝑖,𝑗
∈ [0, 1], with 𝑖, 𝑗 being a pair of

integers for nodes V
𝑖
and V

𝑗
and the relation V

𝑖
→ V

𝑗
. If no

prior preference about the presence of such arrow is elicited,

then 𝐵
𝑖,𝑗

= 0.5; if 0 ≤ 𝐵
𝑖,𝑗

< 0.5 elicited beliefs put more
plausibility on the lack of arrow V

𝑖
→ V

𝑗
; if 0.5 < 𝐵

𝑖,𝑗
≤ 1

higher plausibility favors the presence of the arrow V
𝑖
→ V

𝑗
.

Note that elements 𝐵
𝑖,𝑗
in 𝐵 are not probabilities.

The calculation of the prior probability for a candidate
DAG 𝐺 is straightforward if it is represented through an
adjacency matrix in which the element 𝐺

𝑖,𝑗
in row 𝑖 and

column 𝑗 is 1 if the DAG has an arrow form V
𝑖
to V

𝑗
, and it

is zero otherwise. At first the energy of the DAG is calculated
as

E (𝐺) = ∑

𝑖,𝑗







𝐵
𝑖,𝑗
− 𝐺

𝑖,𝑗





 (25)

with𝐺
𝑖,𝑗
and 𝐵

𝑖,𝑗
being, respectively, the elements of𝐺 and 𝐵.

The probability elicited for 𝐺 is

𝜋 (𝐺 | 𝛽, 𝐵) = 𝜎

−1
(𝛽, 𝐵) exp (−𝛽E (𝐺)) , (26)

where 𝛽 is a hyperparameter regulating the overall strength
of the elicited degree of belief and with 𝜎 being the partition
function which depends on a sum of energy values over the
collection of all DAGs on a fixed set of nodes 𝑉. It follows
that an increase of energy is related to a larger mismatch with
the prior 𝐵. In the limit of 𝛽 → 0 a noninformative prior is
obtained, while for 𝛽 diverging to infinity peaked priors are
defined.

The relationship with the seminal approach of Imoto et al.
[25] is clear but despite the easier parameterization chosen
to define the energy function, several limitations are still
present. First of all, the overall strength 𝛽 is not straightfor-
wardly related to (subjective) probability; therefore at some
point the expert has to play numerically with fake examples to
get the feeling on reasonable values for such hyperparameter.
The calibration of the whole approach is difficult because
it depends on the calculation of the normalization constant
which is hard to obtain due to the calculation of energy values
for all DAGs on a fixed set of nodes 𝑉. Despite the shortcut
proposed by the authors, the calculation of the normalization
constant remains as a bottleneck of the approach.

The authors increased the flexibility of their approach in
representing prior beliefs by using twomatrices 𝐵(1) and 𝐵(2):

𝜋 (𝐺 | 𝛽
1
, 𝐵

(1)
, 𝛽

2
, 𝐵

(2)
) = {𝜎 (𝛽

1
, 𝐵

(1)
, 𝛽

2
, 𝐵

(2)
)}

−1

× exp (− {𝛽
1
E

1
(𝐺) + 𝛽

2
E

2
(𝐺)})

(27)

with E
1
(𝐺), E

2
(𝐺) being the energy functions, respectively,

depending on 𝐵

(1) and 𝐵

(2). In the elicitation based on a
widely adopted database of metabolic pathways, values of 𝐵
are defined as the ratio𝑚

𝑖,𝑗
/𝑀

𝑖,𝑗
, with𝑀

𝑖,𝑗
being the number

of times two genes appear in a pathway and 𝑚
𝑖,𝑗
the number

of times that they are linked inside such pathway. Results of a
study on 25 genes measured at 73 time points suggested that
the procedures using prior information outperformed those
without it. Nevertheless, the above mentioned limitations
get even worse under such generalization; for example, the
explosion in the number of terms entering the partition
function must be taken under control by introducing a



The Scientific World Journal 11

limitation on the number of arrows entering a node, a
technical constraint which may lead to biased elicited beliefs.

The expressivity obtained by these authors through the
use of two 𝐵 matrices may be similarly obtained using
reference features with some advantages. Back to the BC case
study, a major hypothesis under which the elicitation may be
performed could be R

1
= “ER is a hub gene,” so that given

the configuration 𝑅
1
= 1 the expert has to express further

conditional beliefs about the other markers; for example,
R

2
= “PR regulates P53,”R

3
= “P53 acts on KI67,”R

4
= “P53

acts onNEU.” In this context it is natural to consider the order
relation on features O = ({𝑅

1
}, {𝑅

2
, 𝑅

3
, 𝑅

4
}); thus a chain

graph model is suited for the elicitation with just node 𝑅
1
in

the first chain component and as many arrows leaving from
𝑅
1
as needed to capture changes of conditional beliefs due to

a switch in the major hypothesis, from 𝑅
1
= 1 to 𝑅

1
= 0.

Note that, using a chain graph on features, it is possible to
tune the flexibility exactly of the amount needed, without the
unnecessary and blind consideration of all pairs of genes.

3.5. Discussion. The expressivity achieved through reference
features is wide whether probabilistic or causal information is
elicited. Many limitations found in other approaches depend
on the consideration of arrows as the key building block of the
elicitation. Further restrictions are due to the use of marginal
relationships among arrows, so that severe constraints on
the expressivity of the approach follow. The elicitation based
on reference features has maximum resolution because, for
a suitable set of reference features, it is possible to define
a prior distribution characterized by a probability value for
each DAG defined on 𝑉.

There are useful side effects in the approach based on
structural features. First, the elicitation effort does not depend
on the size of the space of DAGs on 𝑉, but on the size of
the collection of features. Another side effect is related to the
cardinality of equivalence classes inZ. Two candidate DAGs
𝑧

 and 𝑧

 characterized by two different configurations of
structural featuresmay receive a very different prior probabil-
ity value just because the cardinality of the equivalence classes
they belong to is very different, say 𝑛

𝑟
[𝑧

] ⋘⋙ 𝑛

𝑟
[𝑧

] (see (11)).

Note that the cardinality of equivalence classes must be taken
into account to preserve probabilistic coherence.

The above description of the elicitation process did not
deal with computational issues that are very important for
applications. The proposed approach is suited to large net-
works if the number of DAGs within each equivalence class
is available, for example, as a Monte Carlo point estimate.
Monte Carlo simulation makes it possible to explore the
space of DAGs and it provides evidences about the presence
of features which are logically incompatible; thus it may
also suggest predicates on which the expert should focus
to improve the definition of reference features. Moreover,
the elicitation defines a proper prior distribution, so that
differentMCMC algorithms could be developed to obtain the
posterior distribution of 𝑍. New greedy search algorithms to
findplausible structures inΩ

𝑍
could be investigated to exploit

the elicited reference features, for example, by developing
an algorithm that generates candidate DAGs belonging to

different equivalence classes in Z at each iteration of the
optimization.

The approach to elicitation based on graphical models
does not necessitate very esoteric software, although software
libraries for platforms commonly adopted in scientific com-
puting would offer the opportunity of performing extensive
testing and of investigating human heuristics specifically
relevant in this elicitation framework. It is well known that
graphical user interfaces facilitate the elicitation, especially if
experts are not much trained in Bayesian statistics, and this
is a resource which is anyway almost mandatory to face the
elicitation in problem domains involving a large number of
structural features.

4. Conclusions

Graphical models may be exploited to elicit beliefs about
the structure of an unknown BN from experts. The joint
plausibility on configurations of structural features is decom-
posed according to conditional independence relationships
that are considered plausible by an expert. The expert may
use CG models to elicit structural prior information in quite
complex domains without leaving a full Bayesian framework.
From the elicited CG model, and eventually by using an
auxiliary Monte Carlo simulation to estimate the cardinality
of equivalence classes, a (proper) subjective prior distribution
on the space of DAGs is built and ready to be used with the
likelihood function in order to find BN structures supported
both by expert beliefs and by collected observations.

No surprise that in complex domains the definition of
a prior distribution may be costly. A trade-off should be
found by considering the goal of the analysis, how much
prior information is available, and the cost and importance
of collected data. Here system biology and medicine are
expected to be fields in which the proposed approach might
be useful, because subjective prior information, besides
providing the above mentioned benefits, also tempers the
curse of dimensionality caused by structures defined on a
high number of variables.
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