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INTRODUCTION 

 

1. NUTRACEUTICALS 

 

In recent years, we are seeing the evolution of a new diet paradigm which places 

more emphasis on the health benefits of diet itself. “Let food be thy medicine and 

medicine be thy food”, quoted by Hippocrates about 2,500 years ago is certainly the 

tenet of today.  

Nutraceuticals are the emerging class of natural products that makes the line 

between food and drugs to fade. Although the use of nutraceuticals by people has a 

long history, only recent scientifically supported nutritional and medical evidence 

has allowed nutraceuticals to emerge as being potentially effective (Dillard & 

German, 2000). 

Nutraceutical is a term coined from “nutrition” and “pharmaceutical” to describe 

substances which are not traditionally recognized nutrients (e.g. vitamins and 

minerals) but which have positive physiological effects on the human body. The 

term was originally used by Defelice in 1989 with the definition “A food or parts of 

food that provide medical or health benefits, including the prevention and/or 

treatment of a disease”. On the other hand, Health Canada defines nutraceutical as 

“a product prepared from foods, but sold in the form of pills, or powder (potions) or 

in other medicinal forms, not usually associated with foods” (Wildman, 2001; Bull, 

2000). 

Physiological effects of nutraceuticals do not easily fall into the legal categories of 

food or drug but inhabit a grey area between the two (Figure 1). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550857/#CR104
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550857/#CR13
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Figure 1. Nutraceutical occupies position between food and drug (Gulati & Ottaway, 2006) 

 

Within European Union (EU) law the legal categorization of a nutraceutical is, in 

general, made on the basis of its accepted effects on the body. 

These products, in general sense, cover health promotion, “optimal nutrition” and 

concept of enhanced performance – both physically and mentally – and reduction of 

disease risk factors. 

They represent nutraceuticals, functional and fortified foods (Richardson, 1996). 

Broadly, functional and fortified foods are those with a similar appearance to their 

traditional counterparts, while nutraceuticals are components that are often 

consumed in unit dose forms such as tablets, capsules or liquids and commonly 

known as food/dietary supplements. The nutraceutical, functional and fortified food 

sectors have grown significantly in Europe during the last decade. In the global 

marketplace nutraceuticals and functional foods have become a multi-billion dollar 

industry and estimates within Canada suggest that the Canadian nutraceutical and 

functional food industry has potential to grow to $50 billion US.  

Nutraceuticals covers most of the therapeutics areas such as anti-arthritic, cold and 

cough, sleeping disorders, digestion and prevention of certain cancers, osteoporosis, 

blood pressure, cholesterol control, pain killers, depression and diabetes (Figure 2) 

(Pandey et al., 2010). 
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Figure 2. Therapeutic areas covered by nutraceuticals products. CHD, Coronary Heart 

Disease (Das et al., 2012) 

 

One of the broader models of organization for nutraceuticals is based upon their 

potential as a food source to humans. Here nutraceuticals may be classified into 

plant, animal, and microbial (i.e., bacteria and yeast) groups. 
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Figure 3. Examples of nutraceutical substances grouped by food source (Keservani et al., 

2010) 

 

Another means of classifying nutraceuticals is by their mechanism of action. This 

system groups nutraceutical factors together, regardless of food source, based upon 

their proven or purported physiological properties. Among the classes would be 

antioxidant, antibacterial, antihypertensive, anti-hypercholesterolemic, 

antiaggregate, anti-inflammatory, anticarcinogenic, osteoprotective, and so on. 
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Figure 4. Examples of nutraceuticals grouped by mechanisms of action (Keservani et al., 

2010) 

 

Botanical materials represent a large segment of nutraceuticals; in this context 

represent whole, fragmented or cut plants, algae, fungi, lichens and botanical 

preparations from these materials involving extraction, distillation, fractionation, 

purification, concentration and fermentation. 

Much of the early development of the nutraceutical concept and products was 

driven from the United States of America where, since its introduction in 1994, the 

Dietary Supplement and Health Education Act (DSHEA, 1994) has allowed 

considerable flexibility and blurred the boundaries between foods and medicines 

found in other parts of the world.  

Under DSHEA a dietary supplement may contain „an herb or other botanical‟ or „a 

concentrate, metabolite, constituent, extract or combination of any ingredient from 

the other categories‟. This is subject to very little qualification and as a consequence 

a wide variety of botanicals and other substances have been sold as dietary 
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supplement ingredients, including many that are considered to be medicinal 

substances under most regulatory regimes in EU countries. 

 

1.1 Botanical nutraceuticals in the European Union (EU) 

Within Europe, the regulatory status of nutraceuticals is diversified due to 

differences in tradition, historical and cultural backgrounds and different legislation 

and enforcement practices at national level within the 28 member states. 

There is currently no consistency in the legal status of some botanicals across the 

EU. In some EU countries, botanical products are sold as foods, or incorporated in 

functional/fortified foods or as food supplements, meaning that no medicinal claims 

are made, whereas in other EU countries these preparations are seen as herbal 

medicinal products registered by full or simplified registration procedures. 

 

Concepts of “Food Supplements” and “Functional Food” 

Food supplements are defined in Article 2 of Directive 2002/46/EC, as “Food stuffs 

the purpose of which is to supplement the normal diet and which are concentrated 

sources of nutrients or other substances with a nutritional or physiological effect, 

alone or in combination, marketed in dose form namely forms such as capsules, 

pastilles, tablets, pills and other similar forms, sachets of powder, ampoules of 

liquids, drops dispensing bottles and other similar forms of liquids and powders 

designated to be taken in measures small unit quantities”.  

Even after the introduction of this Directive, there is still very little harmonization 

across the EU, particularly with regard to substances which are neither vitamins nor 

minerals. Botanical-sourced supplement ingredients are the subject of diverse 

national legislation; for example, in Italy there is a list of notified herbal food 

supplement products and another list of herbals prohibited to be incorporated in 

food supplements. The concept of “positive” and “negative” list is generally 

accepted within the European countries. 

Regarding functional foods, the concept of foods for specified health use (FOSHU) 

was established in Japan in 1991 (The FOSHU system, 1991): “Foods that are 
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expected to have certain health benefits, and have been licensed to bear a label 

claiming that a person using them for a specified health use may expect to obtain 

the health use through the consumption thereof”.  

According to Japanese Ministry of Health and Welfare FOSHU are: 

 

• foods that are expected to have a specific health effect due to relevant constituents, 

or foods from which allergens have been removed; 

• foods where the effect of such addition or removal has been scientifically 

evaluated and permission is granted to make claims regarding their specific 

beneficial effects on health. 

 

It is in that context that in 1995 the European Commission‟s concerted action on 

Functional Food Science in Europe (FUFOSE), actively involving large number of 

the most prominent European experts in nutrition and related sciences, was engaged 

by the International Life Science Institute (ILSI) in Europe to propose “a working 

definition” of functional food (Diplock et al., 1999):  

“A food can be regarded as „functional‟ if it is satisfactorily demonstrated to affect 

beneficially one or more target functions in the body, beyond normal and adequate 

nutrition, in a way that improves health and well being or reduces the risk of 

disease. It is not a pill or a capsule, but part of the normal food pattern”.  

 

1.2 Polyphenols as potential nutraceuticals 

Polyphenols form a large group of phytochemicals, which are produced by plants as 

secondary metabolites to protect them from photosynthetic stress and reactive 

oxygen species. In many cases these substances serve as plant defense mechanism 

against predation by microorganisms, insects and herbivores. 

Polyphenols are widely distributed plant-derived dietary constituents and have been 

implicated as the active components in a number of herbal and traditional medicines 

(Wollenweber, 1988). More than 5000 plant polyphenols have been identified and 
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several of them are known to possess a potential wide spectrum of pharmacological 

properties (Beretz et al., 1977). 

These metabolites have low potency as bioactive compounds when compared to 

pharmaceutical drugs, but since they are ingested regularly and in significant 

amounts as part of the diet, they may have a noticeable long-term physiological 

effect.  

Polyphenols are well known for their antioxidant properties and their abilities to act 

as scavengers of reactive oxygen species (ROS). ROS are involved in many cellular 

events, including as second messengers in the activation of several signaling 

pathways leading to the activation of transcription factors, mitogenesis, gene 

expression, and the induction of apoptosis, or programmed cell death (Nair et al., 

2007; Simon et al., 2000). Overproduction of ROS, as indicated by a change in the 

redox state of the cell, may lead to oxidative damage of proteins, lipids and DNA, 

and it is often an associated risk factor to several common diseases. 

Dietary polyphenols have been demonstrated to affect numerous cellular processes 

like gene expression, apoptosis, platelet aggregation, intercellular signaling, that can 

have anticarcinogenic and anti-atherogenic implications (Duthie et al., 2003). 

Polyphenols also possess anti-inflammatory, antimicrobial, cardioprotective 

activities and play a role in the prevention of neurodegenerative diseases and 

diabetes mellitus (Scalbert et al., 2005). 

Some of the most common polyphenols found in the nutraceutical market belong to 

the class of anthocyanins, proanthocyanidins, flavonols, stilbenes, 

hydroxycinnamates, ellagic acid and ellagitannins, isoflavones and lignans, as 

summarized in Figure 5. 
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Figure 5. Potential cardiovascular benefits of different nutraceuticals (Massaro et al., 2010) 

 

A large number of phytochemicals-containing nutraceuticals with various 

compositions and health claims are now widely distributed and available in the 

market. However, the scientific evidence supporting their health benefits is mostly 

based on in vitro or animal model assays. Clinical trials that evaluate the actual 
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physiological effects in humans are scarce and results are controversial. There are 

many factors that may have an impact in the final outcome of the trials, i.e. the 

stability of the bioactive compounds in the different pharmacological forms 

available and (or) in the gastrointestinal tract. Any chemical alteration of the 

original bioactive compound that may take place during storage or digestion may 

modify severely the bioavailability and bioactivity of the compounds. Another 

important factor is the inter-individual variability for bioavailability and metabolism 

as well as for the biological response (Espín et al., 2007). 

In this regard, it is interesting to remark that several of the health benefits assigned 

to many dietary constituents are still under controversy as can be deduced from the 

large number of applications rejected by the European Food Safety Authority 

(EFSA) about health claims of new foods and ingredients (Gilsenan, 2011). More 

sounded scientific evidences are needed to demonstrate or not the claimed 

beneficial effects of these new foods and constituents. In this sense, the advent of 

new post-genomic strategies as foodomics seems to be essential to understand how 

the bioactive compounds from diet interact at molecular and cellular level, as well 

as to provide better scientific evidences on their health benefits. 

Many works have been published so far studying the effect of dietary polyphenols 

on different types of diseases; however, it has been repeatedly indicated that, effects 

from dietary polyphenols involve multiple molecular and biochemical mechanisms 

of action, which are still not completely characterized, concluding that many 

features remain to be elucidated about their claimed activity. Important efforts need 

to be developed in the next future to implement the knowledge in this intriguing 

field. 

 

1.3 Foodomics: a new approach to food and nutrition 

Currently, there is a general trend in food science to link food and health. Thus, 

food is considered today not only a source of energy but also an affordable way to 

prevent future diseases. 
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Food scientists and nutritionists try to improve our limited understanding of the 

roles of food compounds at molecular level (i.e., their interaction with genes and 

their subsequent effect on the expression of proteins and metabolites) for the 

rational design of strategies to manipulate cell functions through diet, which is 

expected to have an extraordinary impact on our health.  

This trend has given rise to the development of new methodologies in which 

advanced analytical methodologies, mainly “omics”, and bioinformatics – 

frequently associated to in vitro, in vivo and/or clinical assays – are applied to 

investigate topics considered unapproachable few years ago. 

Foodomics has been recently defined as a new discipline that studies the food and 

nutrition domains through the application of advanced omics technologies to 

improve consumer‟s well-being, health, and confidence (Cifuentes et al., 2009; 

Herrero et al., 2010; Herrero et al., 2012).  

Thus, foodomics is presented as a global discipline in which food (including 

nutrition), advanced analytical techniques (mainly omics tools), and bioinformatics 

are closely combined. The development of genomics, transcriptomics, proteomics, 

and metabolomics has given rise to extraordinary opportunities for increasing our 

understanding about different issues that can now be addressed by foodomics. 

It is now well-known that health is heavily influenced by genetics. However, diet, 

lifestyle, and environment can have a crucial influence on the epigenome, gut 

microbiome and, by association, the transcriptome, proteome and, ultimately, the 

metabolome. When the combination of genetics and nutrition/lifestyle/environment 

is not properly balanced, poor health is a result. Foodomics is a major tool for 

detecting small changes induced by food ingredient(s) at different expression levels. 

A representation of an ideal foodomics strategy to investigate the effect of food 

ingredient(s) on a given system (cell, tissue, organ, or organism) is shown in Figure 

6. 
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Figure 6. Ideal foodomics platform to investigate the health benefits from dietary 

constituents on a given biological system (cell, tissue, organ, or organism), including 

analytical methodologies used and expected outcomes (García-Cañas et al., 2012) 

 

Following this foodomics strategy, results on the effect of food or food ingredient(s) 

at the genomic/transcriptomic/proteomic and/or metabolomic level are obtained, 

making possible new investigations at the molecular level on food bioactivity and 

its effect on human health. 

Thus, the huge analytical potential of foodomics can allow solving questions related 

to food safety, traceability, whole quality, transgenic foods, functional foods, 

nutraceuticals, etc.  Foodomics can therefore be an adequate strategy to investigate 

the complex issues related to prevention of future diseases through food intake. The 

future effect of suitable diets on human health has been considered a strategic aspect 

of the European policies as emerge from the new research programs of Horizon 

2020. 
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Figure 7 shows the results from a global foodomics study on the chemopreventive 

effect of dietary polyphenols against HT29 colon cancer cells (Ibáñez et al., 2012), 

presenting the genes, proteins and metabolites identified (after transcriptomic, 

proteomic, and metabolomic analysis) that are involved in the principal biological 

processes altered in HT29 colon cancer cells, after the treatment with rosemary 

polyphenols. These SFE (supercritical fluid extraction) extracts, rich in dietary 

polyphenols, were characterized by the presence of cirsimaritin and genkwanine 

together with terpenoidic compounds. 

 

 
 

Figure 7. Foodomics identification of the genes, proteins, and metabolites involved in the 

principal biological processes altered in HT29 colon cancer cells after their treatment with 

rosemary polyphenols. In red, up-regulated; in green, down-regulated (Ibáñez et al., 2012) 

 

Polyphenols induce various cellular mechanisms that modify the antioxidant 

activity inside the cell. They bring about an induction of cell-cycle arrest, an 

increase of apoptosis and an improvement of cellular antioxidant activity (Ibáñez et 
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al., 2012). These antioxidant properties, together with induction of apoptosis and 

cell cycle arrest can explain the chemopreventive properties of the rosemary 

polyphenols against colon cancer cells. 

The genes, proteins and metabolites identified and implicated in these three 

processes are shown in Figure 7. 

The direct integration following a Systems Biology approach of all the information 

obtained at the three expression levels is far from being obvious at this moment. 

The bioinformatic tools capable to handle and integrate all the omics-data generated 

by different analytical platforms are still distant from what is needed. In summary, 

this new Foodomics strategy provides an impressive analytical power and it is 

expected to help to overcome many of the new challenges emerging in Food 

Science and Nutrition. However, it is observed that together with its remarkable 

analytical power, new limitations will also come out mainly related to our limited 

knowledge on the entire cellular mechanisms and the way to handle all the amount 

of complex multidimensional data and information that can be generated by 

Foodomics. A rational and holistic combination of all this information will be 

crucial in order to extract all the biological meaning from the results provided by 

this new strategy. 
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2. POTATO: Solanum Tuberosum L. 

 

Potato is the fourth most important food 

crop in the world after rice, wheat and 

maize, and is the only major food crop that 

is a tuber. 

Potatoes were introduced outside the Andes 

region four centuries ago, appearing in 

Europe during the last quarter of the 

sixteenth century. Traditionally potatoes 

are a main component of warm meals in 

many European countries.  

Freshly harvested potatoes contain about 

80% water and 20% dry matter. About 60–

80% of the dry matter is starch. In addition, 

the potato is low in fat and rich in several micronutrients, especially vitamin C. It is 

also a good source of vitamins B1, B3, B6, folate, pantothenic acid, riboflavin and 

minerals, such as potassium, phosphorus and magnesium (FAO, 2008). Apart from 

being a rich source of starch, potatoes contain good quantity of small molecules and 

secondary metabolites which play an important role in a number of processes 

(Friedman, 1997). Many of the compounds present in potato are important because 

of their beneficial effects on health, therefore are highly desirable in the human diet 

(Katan & De Roos, 2004). 
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2.1 Phytochemicals in potato 

In addition to supplying energy, potatoes contain a number of health promoting 

phytonutrients such as phenolics, flavonoids, folates, kukoamines, anthocyanins, 

and carotenoids.  

Polyphenols comprise over 8000 identified substances, which can be divided into 

groups according to their chemical structure, such as phenolic acids, stilbenes, 

coumarins, lignins and flavonoids (Ross & Kasum, 2002). Polyphenols are 

recognized as the most abundant antioxidants in our diet (Manach et al., 2004) and 

potatoes are a good source of these compounds. 

Phenolic compounds represent a large group of minor chemical constituents in 

potatoes, which play an important role in determining their organoleptic properties 

(Ezekiel et al., 2013).  

Further, phenolics have a wide-array of health providing characteristics (Bravo, 

1998), therefore have potential for use as functional food for improving human 

health.  

Simple phenols, mainly the analogues of chlorogenic acid, are well known in 

potatoes and are involved in browning of the tuber after cutting or processing (Dao 

& Friedman, 1992). For the most part, these compounds are localised in skin (nearly 

50% of the total content) and the percentage decreases gradually going inwards in 

the tuber (Friedman, 1997). The fresh pulp contains from 30 to 900 mg/kg of 

chlorogenic acid and minor amounts of other phenolic acids (0–30 mg/kg), but in 

the skin up to 1000–4000 mg/kg of chlorogenic acid can be present (Lewis et al., 

1999). 

Purple- and red-skinned tubers contained twice the concentration of phenolic acids 

as white-skinned tubers. It was also reported that purple- or red-fleshed cultivars 

had three to four times the concentration of phenolic acids of white fleshed 

cultivars. The phenols can be recovered from the skin portion, which is discarded as 

waste during potato processing and can be used for ‘value addition’ in different 

food products (Navarre et al., 2009). 
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Flavonoids content in potatoes ranged from 200 to 300 μg/g FW (Lewis et al., 

1998). The flavonoids, in order of abundance, were reported to be catechin, 

epicatechin, erodictyol, kaempeferol and naringenin (Brown, 2005). Anthocyanins 

are natural pigments belonging to the flavonoid family, present in substantial 

amounts in pigmented flesh potatoes. Until now fresh fruits and red wine have been 

commonly indicated as rich sources of anthocyanins in the human diet, but also red-

blue potatoes can contribute to increasing the intake of these interesting pigments. 

Anthocyanin levels between 5.5 and 35 mg/100 g FW in potatoes have been 

reported (Brown, 2008). Lewis et al. (1998) found that purple or red-fleshed 

cultivars had twice the flavonoid concentration of white-fleshed cultivars and their 

concentrations are considerably higher in skin, approaching 900 mg in purple-

fleshed and 500 mg in red-fleshed types per 100 g FW. Anthocyanin pigments in 

the periderm of potatoes impart different colours to their skin, purple being the most 

common colour. 

The pigmented potatoes may serve as a potential source of natural anthocyanin 

pigments, being low-cost crops (Jansen & Flamme, 2006), and also a powerful 

source of antioxidant micronutrients (Andre et al., 2007). The purple- and red-

fleshed potatoes could be used as novel sources of natural colourants and 

antioxidants by the food industry for better human health (Reyes et al., 2007). 

Anthocyanidins (the aglycon form of anthocyanins) are present in fruits and 

vegetables linked to one or more glycosidic units. Sugars may be linked as mono, di 

or triglycosides and may, in addition, be acylated with different organic acids. 

To date, 23 basic anthocyanidins have been identified; red- and purple fleshed 

potatoes had acylated glucosides of pelargonidin, while purple potatoes had, in 

addition, acylated glucosides of malvidin, petunidin, peonidin, and delphinidin 

(Brown, 2005; Lachman & Hamouz, 2005). 
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Figure 8. General chemical structure of the anthocyanins found up date in Solanum 

tuberosum L. (Ieri et al. 2011) 

 

Potatoes also contain folates, though in limited concentration; they are a major 

source of these compounds due to their higher consumption. Potatoes supply about 

10% of the total folate intake of the people in European countries such as 

Netherlands, Norway and Finland (Navarre et al., 2009). Folate concentrations in 

potato vary between 12 and 37 μg/100 g FW (Konings et al., 2001). Folate content 

in more than 70 potato cultivars, advanced hybrids and wild species has been 

reported to range from 11 to 35 μg/100 g FW (Goyer & Navarre, 2007). Higher 

folate content was generally reported to be present in yellow fleshed potatoes 

(Ezekiel et al, 2013). 

Kukoamines are polyamine conjugates and considered to have health promoting 

effects, which are yet to be well established. Kukoamines in potatoes was first 

reported by Parr et al. (2005). Tuber polyamines have been suggested to play a role 

in the regulation of starch biosynthesis (Tanemura & Yoshino, 2006) and making 

the tubers resistant to diseases (Matsuda et al., 2005). 
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Potatoes are a good source of carotenoids, lipophilic compounds synthesized in 

plastids from isoprenoids (Dellapenna & Pogson, 2006). Lutein, zeaxanthin, 

violaxanthin and neoxanthin are the major carotenoids present in potatoes and β-

carotene is present in trace amounts. The orange and yellow colour of the tuber 

flesh is due to zeaxanthin and lutein, respectively. Potato cultivars with white flesh 

contained less carotenoids as compared to cultivars with yellow or orange flesh. 

Total carotenoids content was reported in the range of 50–350 μg/100 g FW and 

800–2000 μg/100 g FW, respectively, in white- and yellow-fleshed potato cultivars 

(Brown, 2008). 

As part of the potato plant’s natural defences against fungi and insects, its leaves, 

stems and sprouts contain high levels of glycoalkaloids (usually solanine and 

chaconine), toxic compounds that are normally found at low levels in the tuber, and 

occur in the greatest concentrations in the periderm. The concentration of 

glycoalkaloids is related to the genotype and cultivar, as well as environmental 

factors during growth, harvest and storage. It has been proven that cooking 

procedures have only small effects on these compounds (Mulinacci et al., 2008). 

Therefore to guarantee food safety, determination of their content in tubers is 

required: a maximum level of 200 mg/kg per whole fresh tuber has been established 

for their commercialisation (Clayton & Percival, 2000). 

 

2.2 Factors affecting phytochemicals content and stability 

2.2.1 Genotype 

The number of potato varieties known to mankind is vast, estimated to be 

approximately 5000. About 11 Solanum species are cultivated but most of the 

potato varieties cultivated throughout the world belong to the species Solanum 

tuberosum. Apart from these, about 200 wild species are known to exist. The 

nutrient content of potatoes was reported to be influenced by a number of factors, 

variety being the most important (Toledo & Burlingame, 2006). A large variation 

exists in the phytonutrients content of the several cultivars of potato. 
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Using hundreds of potato genotypes, Navarre et al. (2009) found up to fifteen-fold 

difference in their phenolic content. White-fleshed potato varieties were reported to 

contain lower amount of phenolics (less than 4 mg/g DW) as compared to purple-

fleshed wild species (more than 5–6 mg/g DW). An anthocyanin content of up to 7 

mg/g FW in the skin and 2 mg/g FW in the flesh was reported by Lewis et al. 

(1998) amongst 26 potato cultivars with coloured flesh. Pelargonidin and peonidin 

were reported to be present in nearly equal amounts in the red flesh, while petunidin 

and malvidin were predominant in the purple flesh. 

Jansen & Flamme (2006) analysed 31 potato genotypes with coloured flesh and 

found a lower range of 0.5 to 3 mg/g FW in the skin and up to 1 mg/g FW in the 

flesh, while Brown et al. (2005) determined the anthocyanin content in several 

genotypes and reported a value of up to 4 mg/g FW in whole tubers. 

Eichhorn & Winterhalter (2005) identified major anthocyanins present in four 

pigmented potato cultivars. Petunidin derivatives were detected in three varieties, 

pelargonidin was found to be the only anthocyanidin in cv. “Highland Burgundy 

red”, malvidin was the predominant aglycon of the cv. “Vitolette”’ and minor 

amounts of peonidin derivatives were found in cv. “Shetland Black”. Jansen and 

Flamme (2006) analyzed 27 potato cultivars and observed that the average 

anthocyanins content was the highest in the skin (0.65 g/kg FW). The corresponding 

values for whole tubers and flesh were 0.31 g/kg FW and 0.22 g/kg FW, 

respectively; the average anthocyanin content was higher in violet coloured potatoes 

and lower in red coloured potatoes. 

 

2.2.2 Agronomic Factors 

Phytonutrients content of potatoes may be influenced by developmental stage. 

Potatoes harvested at a young developmental stage had higher concentrations of 

some phytonutrients such as folate and chlorogenic acid than mature tubers (Goyer 

& Navarre, 2007; Navarre et al., 2010). Total carotenoids content was found to be 

higher in immature tubers and it decreased with tuber maturity (Kotikova et al., 

2007; Morris et al., 2004). Reyes et al. (2004) observed that the anthocyanins and 

total phenolic content in tubers decreased with tuber growth and maturity but total 
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yield per ha of these compounds increased through time. Harvesting at later 

maturity stages maximized total yield of potatoes, anthocyanin and total phenolic 

content, and minimized glycoalkaloid content, thus increasing the commercial and 

nutritional value of purple and red-flesh potatoes. 

Effect of location of crop growth (coastal area and plains) on phytochemicals 

content has been studied by several researchers and does not seem to have a 

significant effect on the anthocyanin content of tubers (Jansen & Flamme, 2006). 

According to Kotikova et al. (2007), the level of anthocyanins was not affected by 

the environmental conditions and it was primarily dependent on the genotype. 

Potatoes grown at two locations differing in altitude showed no significant 

difference in the total carotenoids content.  

However, other studies showed different results: a significant effect of location on 

anthocyanin and total phenolics was observed by Reyes et al. (2004). The 

anthocyanins and total phenolic content of potato tubers was enhanced when tubers 

were grown in a location with cooler temperatures and longer days (higher solar 

radiation) with up to 2.5 and 1.4 times, respectively, higher anthocyanins and total 

phenolic content found under such conditions. Hence it appears that temperature 

during crop growth can affect the phytochemicals content. In the study carried out 

by Brown et al. (2008), potatoes were grown at 3 locations varying in altitude (203, 

960 and 1250 masl); higher anthocyanins content were observed at higher 

elevations, however total carotenoids were not affected.  

Conflicting results have also been reported with respect to year of crop growth. 

Jansen and Flamme (2006) compared the anthocyanin contents in tubers of 23 

cultivars grown during two years and found that there was no significant difference 

between years in the anthocyanin content of tubers, although the weather conditions 

during plant growth were different during the two years. Contrarily Stushnoff et al. 

(2008) and also Rosenthal & Jansky (2008) observed environmental conditions 

produced year to year variation in total phenolics levels. 
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2.2.3 Postharvest Storage 

Storage generally increases total phenols content in potatoes but little change or a 

decrease in phenols content after storage have also been reported in some studies. 

Ezekiel & Singh (2007) determined total phenols content in four potato cultivars 

stored for 180 days at 4, 8, 12, 16 and 20 °C; total phenols increased after storage 

and the increase was higher at 4 and 16 °C. In another study Ezekiel et al. (2000) 

found that the total phenols in potato tubers continued to increase up to 271 days of 

storage at 6 °C but at 20 °C, it decreased after 220 days of storage. 

Effect of storage of potatoes at 4 or 20 °C for 110 days on phenolic content was 

studied by Blessington et al. (2010). No significant differences in total phenolic 

content, chlorogenic acid, caffeic acid and vanillic acid were observed after storage 

at 4 or 20 °C. There was an increase in rutin, p-coumaric acid and quercetin 

dehydrate contents after storage at 4 or 20 °C. When 4 °C stored potatoes were 

reconditioned for 10 days at 20 °C, there was a significant increase in total phenolic 

content, chlorogenic acid, caffeic acid, rutin, vanillic acid, p-coumaric acid, and 

quercetin dehydrate levels. All the three storage treatments resulted in increased 

carotenoid content but caused no significant differences in phenolic content and 

antioxidant activity in most of the eight genotypes studied. Stushnoff et al. (2008) 

analysed total phenolics from 8 potato genotypes after 112 and 263 days of storage 

at 5 °C. Two genotypes showed sharp rise in total phenolics after storage, four 

genotypes showed increase to a lesser extent and two genotypes showed little 

change. 

Rosenthal & Jansky (2008) observed that stored tubers had higher levels of 

antioxidant activity than fresh tubers. Jansen & Flamme (2006) determined the 

anthocyanin content of tubers in 14 cultivars immediately after harvest and after 

135 days of storage at 4 °C and 86% relative humidity, and did not find any 

significant change in anthocyanin content of tubers. The fact that cold storage had 

no significant effect on the anthocyanin content of potatoes indicates that there is no 

risk of degradation of these compounds during storage of potatoes over a longer 

period. 
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2.2.4 Cooking and Processing 

Attempts to increase phytonutrients content in potatoes will become futile if the 

targeted phytonutrients do not survive cooking in reasonable quantities (Navarre et 

al., 2010).  

Potato peels have been shown to contain a high quantity of phenolics; boiling and 

baking potatoes with skin was considered to be a good method of cooking as it 

helped in retaining most of the nutrients. 

Mondy & Gosselin (1989) found that the potatoes cooked with peel had a greater 

amount of total phenols in the cortex and internal tissues. This has been attributed to 

the migration of phenolics from the peel into both the cortex and internal tissues of 

the tuber. Barba et al. (2008) observed significant losses in phenolic contents 

between peeled and unpeeled potatoes, and between boiling and baking. The losses 

were observed to be lower in unpeeled potatoes. For example, the losses in 

caffeoylquinic acids were 20.6 and 26.8%, respectively in unpeeled and peeled 

potatoes after microwave baking against losses of 24.1 and 25.7%, respectively, 

after conventional boiling. The change in phenolic content during processing was 

attributed to the combination of losses caused by leaching into water, degradation 

from the effects of heat, oxidation by polyphenol oxidase, and isomerisation 

(Takenaka et al. 2006). Also Faller & Fialho (2009) reported that boiling, 

microwave baking and steaming decreased the polyphenols content. However, the 

recovery of polyphenols was higher after boiling as compared to microwave 

cooking and it was least in steamed potatoes. They observed that unlike in other 

vegetables such as carrot, onion and cabbage, cooking caused an increase in 

antioxidant capacity in potatoes, nevertheless various cooking methods did not 

show significant differences. The formation of novel substances, such as products of 

Maillard reaction, could also increase the antioxidant capacity in potatoes 

(Manzocco et al., 2000). Dao & Friedman (1992) observed complete destruction of 

chlorogenic acid during baking and 60% reduction by microwaving, while Im et al. 

(2008) observed less than 5% losses in chlorogenic acid during baking of potatoes. 

Navarre et al. (2010) determined losses in phenolics after cooking by microwaving, 

steaming, boiling or baking and found that none of these cooking methods 
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decreased the amount of chlorogenic, cryptochlorogenic and neochlorogenic acids. 

According to Mulinacci et al. (2008), boiling and microwaving did not cause any 

changes in the phenolic acids content but caused 16–29% decrease in anthocyanins 

content.  

Basing on the study of Blessington et al. (2010), carotenoid content was observed to 

be lower in boiled as compared to raw potatoes, however, no significant difference 

in other methods of cooking was observed. The total phenolic content and 

antioxidant activity did not show any difference between raw and boiled potatoes 

but were higher in baked, fried or microwaved potatoes. Greater amounts of 

phenolics may be extracted out of the potato matrix into water during boiling or into 

the oil during frying. It appears that anthocyanins and carotenoids withstand the 

usual modes of cooking and retain their antioxidant capacity after cooking (Brown, 

2005).  

Loss of nutrients during processing is a major concern and it is desiderable to 

minimize nutrient losses during conversion of raw potatoes into various products. 

Minimal processing such as handling, washing and cutting can cause changes in 

phytochemicals and can lead to activation of some enzymes which modify the level 

of phenolic compounds (Tudela et al., 2002).  

Wounding of fresh potatoes has been shown to cause changes in phenolic 

compounds and antioxidant capacity (Reyes et al., 2007). Wounding response was 

cultivar dependent and was reported to increase the phenolic content and 

antioxidant capacity of purple-flesh potatoes (Reyes & Cisneros-Zevallos, 2003), 

but decreased total soluble phenolics and antioxidant capacity to the extent of 15% 

and 51%, respectively, in white-flesh potatoes (Reyes et al., 2007).  

Anthocyanins stability during processing was influenced by several factors such as 

temperature, pH, presence of enzymes, proteins and metallic ions. Thermal 

processing was reported to cause anthocyanin degradation. Anthocyanins were 

enzymatically degraded in the presence of polyphenol oxidase, which can be 

inactivated by mild heating or blanching. Anthocyanins and other phenolic 

compounds was easily oxidized and, thus, susceptible to oxidative degradation 

during various steps of processing (Patras et al., 2010). 
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2.3 Antioxidant activity and health benefits 

Potatoes have several secondary constituents with antioxidant activity, which 

contributes to the physiological defence against oxidative and free-radical-mediated 

reactions. Potatoes contain water-soluble antioxidants that act as free radical 

acceptors, e.g. glutathione, ascorbic acid, quercetin and chlorogenic acid. The levels 

of antioxidants were reported to vary with the flesh colour of potatoes and greater 

antioxidant activity was observed in skin tissue as compared to flesh. Water soluble 

anthocyanins are potent antioxidants, but antioxidant activity is not associated only 

with coloured flesh of potatoes; the colourless compounds, probably either 

flavonoids or phenolic acids, are potentially potent antioxidants (Brown, 2005).  

Potato peel is a good source of natural antioxidants, which has been studied in 

various food systems (Rodriguez de Sotillo et al., 1994). Potato peel extract 

provides protection against acute liver injury (Singh et al., 2008) and oxidative 

damage to erythrocytes (Singh & Rajini, 2008). Thompson et al. (2009) have 

reported that the phytochemicals of freeze-dried potato powder caused a 23% 

reduction in induced breast cancer in rats. Several other health promoting effects 

(longevity, heart and eye health) and therapeutic properties (antibacterial, anti-

inflammatory, antiallergic, antimutagenic, antiviral, antineoplastic, antithrombotic, 

and vasodilatory activity) of phenolics has been reported (Alan & Miller, 1996; 

Manach et al., 2004). Many of these effects result from powerful antioxidant and 

free radical scavenging properties of phenolic compounds (Amakura et al., 2000).  

Chlorogenic acid has a strong antioxidant activity and potatoes are an excellent 

source. This compound is well known for health promoting effects such as 

protection against degenerative diseases, cancer, heart disease (Nogueira & do 

Lago, 2007), hypertension (Yamaguchi et al., 2007) and viral and bacterial diseases. 

Chlorogenic acid has been found to be a strong and selective inhibitor of matrix 

metalloproteinase (MMP)-9, an angiogenic enzyme responsible for tumor invasion 

and metastasis (Jin et al., 2005). Chlorogenic acid also slows down the release of 

glucose into the blood-stream (Bassoli et al., 2008), hence could be helpful in 

lowering the glycaemic index of potatoes. Therefore, potatoes with lower glycaemic 
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index are good for diabetic patients and may even decrease the risk of type II 

diabetes (Legrand & Scheen, 2007). It has been reported that chlorogenic acid 

blocks nitrosamine formation through competitive reaction with nitrite and to bind 

the carcinogen benzo(a) pyrene in a cellulose model system (Friedman, 1997). 

Chlorogenic acid has been demonstrated to exhibit several desirable 

anticarcinogenic properties including inhibition of A549 human lung cancer cells 

(Feng et al., 2005).  

In the past decade, great interest has developed also regarding evaluation of the 

anthocyanin content in the human diet and it has been demonstrated that these 

pigments are rapidly adsorbed at the stomach level (Passamonti et al., 2003) and 

were detectable in urine and plasma (Harada et al., 2004), where they protect LDL 

against oxidation (Kano et al., 2005). It is well established that anthocyanins inhibit 

digestive enzyme activity, such as R-glucosidase, and they can reduce blood 

glucose levels after starch-rich meals (McDougall & Stewart, 2005; McDougall et 

al., 2005). 

Zhang et al. (2005) reported that anthocyanidins delphinidin, pelargonidin, 

petunidin and malvidin inhibited MCF-7 breast cancer cell cultures.  

Anthocyanins are known to prevent cardiovascular diseases, cancer and diabetes 

(Konczak & Zhang, 2004; Reddivari et al., 2007). Cyanidin has been found to be 

three times more effective than pelargonidin as an antioxidant (Pietta, 2000), while 

another study found malvidin as the most potent antioxidant of the anthocyanidins 

(Kahkonen & Heionan, 2003).  

Coloured potato extracts have been reported to suppress lymph-node carcinoma of 

the prostate and prostate cancer cell proliferation (Reddivari et al., 2010). 

Polyphenol and anthocyanin rich purple potato flakes were found to play an 

important role in the protection against adverse effects related to oxidative damage 

in rats fed a high-cholesterol diet and red potato flakes improved the antioxidant 

system by enhancing hepatic superoxide dismutase mRNA in rats (Han et al., 

2007). In a recent study (Kaspar et al. 2010) have been assessed the effects of 

consumption of pigmented potatoes on oxidative stress and inflammation 

biomarkers in healthy adult males and was hypothesized that carotenoids and 
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anthocyanins from pigmented potatoes would decrease oxidative stress and 

inflammation in humans. In the study of Vinson et al. (2012) was also reported that 

purple potatoes are an effective hypotensive agent and lower the risk of heart 

disease and stroke in hypertensive subjects without weight gain.  

It has been reported that also flavonoids have shown antioxidant activity and differ 

significantly in their antioxidant capacity (Pietta, 2000). Quercetin was found to be 

three times more effective as an antioxidant than kaempferol and eridictyol, and was 

thrice as effective as catechin. Reyes et al. (2005) observed a high positive 

correlation between antioxidant capacity and anthocyanin and phenolic content, 

concluding that these compounds are mainly responsible for the antioxidant 

capacity.  

 

Potatoes contain enough phytochemicals to justify the claim of being health 

promoters, therefore their use as a substantial part of our daily diet may be 

recommended. The processing of pigmented potato based foods needs to be 

considered especially with respect to the antioxidant capacity and other health 

benefits. 
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3. ROSEMARY: Rosmarinus Officinalis L. 

 

Mediterranean basin is endowed with a rich 

wealth of aromatic plants as rosemary, 

Rosmarinus officinalis L. (Labiatae), a small 

evergreen shrub whose health benefits of its 

essential oil as well as for preservation of 

food are recognized since ancient times.  

Nowadays rosemary is widely cultivated all 

over the world as ornamental and aromatic 

plant and the interest towards its cultivation 

is due to the many biological activities of the 

essential oil and the extracts obtained from 

the flowering aerial tops: leaves, twigs and 

flowers.  

Rosemary is known for its numerous applications in the food field and also for the 

increasing interest in its pharmaceutical properties. Two groups of compounds are 

mainly responsible for the biological activities of the plant: the volatile fraction and 

the phenolic constituents. Phenolics are mainly represented by rosmarinic acid, by a 

flavonoidic fraction and by some diterpenoid compounds structurally derived from 

the carnosic acid.  

The volatile compounds, which constitute the essential oil, can be commonly 

obtained by steam distillation method which gives high yields of a product of 

appreciable quality on the basis of sensory evaluation, with remarkable functional 

properties. 

 

3.1 Bioactive phenolic compounds from rosemary 

Nowadays rosemary is one of the most appreciated sources for natural bioactive 

compounds which are of special interest in the functional food industry. In fact this 

plant exerts a great number of pharmacological activities and most of these 
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observed effects are linked to the phenolic content of this herb. Rosemary shows 

potent antioxidant activity (Pérez-Fons et al., 2010; Botsoglou et al., 2009; 

Hernández- Hernández  et al., 2009), mainly due to phenolic diterpenes, such as 

carnosol, carnosic acid and rosmanol, among others. Nevertheless, the presence of 

other antioxidant phenolic compounds in rosemary has also been reported, such as 

flavonoids (genkwanin, cirsimaritin), and phenolic acids (rosmarinic acid) (Cuvelier 

et al., 1996; Almela et al., 2006). 

In the last few years, there has been a growing interest in the use of natural 

antioxidants, not only for their usefulness as a preservation method but also because 

of their benefits in human health. These natural antioxidants can protect the human 

body from free radicals and could retard the progress of many chronic diseases as 

well as lipid oxidative rancidity in foods, without changing the sensory qualities of 

the food products (Arts et al.,2005; Williamson et al., 2005; Ibanez et al., 2000). 

Among natural antioxidants of herbal origin, rosemary is one of the most used and 

commercialized, because of its high content in phenolic compounds. 

More than 50 different compounds were identified in rosemary extract (Mulinacci et 

al., 2011; Borrás Linares et al., 2011), among them the rosmarinic acid, numerous 

minor flavonoids, either as aglycones and glycosides, and the diterpenoidic 

constituents. Some of them are reported in Table 1. The rosmarinic acid is generally 

the main component of the phenolic fraction. 
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Table 1. Main phenolics compounds detected in rosemary extracts (Mulinacci et al., 2011). 

Glu, glucose; gluc, glucuronic acid; rha, rhamnose 

 

It is well known that carnosol and carnosic acid are the strongest antioxidant 

compounds; it has been reported that approximately 5% of the dry weight of 

rosemary leaves contains carnosol and carnosic acid and this fraction is estimated to 

account for >90% of the antioxidant activity (Aruoma et al., 1992). 

The instability of this phenolic diterpene in the presence of oxygen has been 

demonstrated. This instability gives rise to new compounds resulting from the 

breakdown of carnosic acid, such as carnosol, rosmanol, epirosmanol, 

epiisorosmanol, rosmadial and methylcarnosate (Doolaege et al., 2007). 

In the investigation of Zhang et al. (2012), degradation of carnosic acid, carnosol 

and rosmarinic acid in ethanol solution were studied and a new oxidative pathway 

of carnosic acid was proposed (Figure 9). Carnosic acid quinone was likely to be the 

 Compounds Rts (min) mw 

(aglicone) 

MS (-) MS(+) 

1 Caffeic acid 7.7 180 135, 179, 181 

2 Flavonoid monoglicoside 13.4 478 (316) 315, 477, 317, 479 

3 Apigenin rha-glu  15.5 578 (270)   

4 Esperidin rha-glu  15.8 610 (302) 301, 609  

5 Diosmin rha-glu 17.4 608 (300) 299, 607   

6 Luteolin 7-O gluc 17.9 462 (286) 285, 461  

7 Ispidulin 7-O glu  18.5 462 (300) 461  

8 Rosmarinic acid 18.8 360 161, 197, 

359, 719 

 

9 Flavonoid diglicoside 20.8 640 (316) 639  

10 Cirsimaritin O-glu 22.0 476 (316) 315, 475  

11 Flavonoid diglicoside 23.0 654 (316) 653  

12 Isoscutellarein 7-O-glu  23.1 462 (286) 285,  461  

13-18 Flavonoids 24 - 31    

19-20 Rosmanol/epirosmanol  34.4 -35.1 346 283, 345  

21 Cirsimaritin  35.2 314 313  

22 Flavonoid 35.7   315 

23 Genkwanine  38.4 284 283 285 

24 Flavonoid 41.2 - - 329, 351 

25 Carnosol 41.6 330 285, 329 331, 353 

26 4’Metoxytectochrysin  42.2 298  299 

27 Carnosic acid derivative  42.4 374  375, 397 

28 Carnosic acid  42.8 332 287, 331  

29 Methyl carnosate 43.3 346 287, 331  
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intermediate in the pathway. It was confirmed that rosmanol, epirosmanol, and 

epirosmanol ethyl ether were generated from carnosol which is a degradation 

product of carnosic acid. Also, 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone and 

the light induced degradation product, compound 11, were reported as degradation 

products of carnosic acid for the first time. 

 
 

Figure 9. Proposed degradation pathway of carnosic acid (1) in ethanol solution. 2, 

carnosol; 4, rosmanol; 5, epirosmanol; 6b, epirosmanol ethyl ether; 7, 11-ethoxyrosmanol 

semiquinone; 8, rosmadial; 10, 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone; 11, light 

induced degradation product of carnosic acid (structure unknown) (Zhang et al., 2012). 

 

Besides acting as antioxidants, rosemary extract and its constituents have also 

displayed useful physiological and medicinal properties.  

A synergistic antioxidant effect between an extract from rosemary leaves and 

butylated hydroxytoluene (BHT) and a synergistic interaction with butylated 

hydroxyanisole (BHA) to inhibit Escherichia coli and Staphylococcus aureus 

growth were demonstrated. Therefore, rosemary not only enhances the antioxidant 

efficiency of BHA and BHT, but also the antibacterial effect of BHA, allowing a 

decrease from 4.4- to 17-fold in the amounts of the synthetic compounds used 

(Romano et al., 2009). Moreover the in vitro antimicrobial effect of rosemary 

extract against several bacteria was already showed by Del Campo et al. (2000) and 
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Mahady et al. (2005). Rosemary extract was also reported to show inhibitory effects 

for human immunodeficiency virus (HIV) infection at very low concentrations 

(Aruoma et al., 1996). 

According to the ESCOP (European Society Cooperative on Phytotherapy), ethanol 

and aqueous extracts from rosemary leaves are used as coleretic, colagogue and 

hepatoprotective agents, but also as light diuretic, antiulcer, antitumor and antiviral 

products. Sotelo-Felix et al. (2002) reported that rosemary may alleviate carbon 

tetrachloride-induced acute hepatotoxicity in rats, possibly blocking the formation 

of free radicals generated during CCl(4) metabolism and hypothesized that this 

protective effect is due to carnosol.  

Recently, by in vitro test on hepatic stellate cells, rosmarinic acid showed 

antifibrogenic effects (Li et al.,2009). 

Anti-angiogenic potential of rosmarinic acid relating to its antioxidant properties 

(Shuang-Sheng et al., 2006) and its ability to suppress retinal neovascularization in 

a mouse model of retinopathy were recently pointed out (Kim et al., 2009). These 

latter findings suggest this molecule could be used in the treatment of 

vasoproliferative retinopathies.  

Some of the health promoting properties of rosemary have been attributed to the 

antioxidant activity of polyphenols present in these extracts. Reactive oxygen 

species (ROS) and depletion of anti-oxidant enzymes have been suggested to 

promote a variety of biological responses including neurodegenerative, 

inflammatory conditions, cardiovascular disease, and carcinogenesis of various 

tissues. 

One study (Fortes et al., 2003) observed an inverse relationship between 

consumption of Mediterranean herbs such as rosemary with lung cancer, suggesting 

that the phytochemicals isolated from this plant should be investigated for their 

medicinal properties. 

Considerable evidence demonstrates that rosemary extracts, or its isolated 

components, can inhibit both the initiation and tumor promotion stages of 

carcinogenesis in mice and rat models. 
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A methanol extract of the leaves of Rosmarinus officinalis L. was evaluated for its 

effects on tumor initiation and promotion in mouse skin (Huang et al., 1994); the 

application of rosemary inhibited the covalent binding of benzo(a)pyrene [B(a)P] to 

epidermal DNA inhibiting tumor initiation by B(a)P and 7,12-

dimethylbenz[a]anthracene (DMBA). Application of rosemary to mouse skin also 

inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ornithine 

decarboxylase activity, TPA-induced inflammation, arachidonic acid-induced 

inflammation, TPA-induced hyperplasia and TPA-induced tumor promotion. 

According to this study, topical application of carnosol or ursolic acid isolated from 

rosemary inhibited TPA-induced ear inflammation, ornithine decarboxylase activity 

and tumor promotion. 

Carnosol has been reported to have broad anticancer properties in several cell line 

models including prostate, breast, leukemia as well as others (Johnson, 2011). The 

anti-cancer properties of carnosol were associated with a potential to modulate 

multiple signaling pathways such as the cell cycle related proteins, PI3K/AKT, and 

apoptotic related proteins (Khan et al., 2007). 

Offord and co-workers (1995) demonstrated that rosemary extract inhibited the 

genotoxic effects of the lung procarcinogen B(a)P in human bronchial epithelial 

cells, BEAS-2B, and that strong antioxidant components, carnosol and carnosic 

acid, were responsible for this effect. The study carried out by Singletary et al. 

(1996) showed that carnosol can prevent DMBA-induced DNA damage and tumor 

formation in the rat mammary gland and thus, has potential to be used as a breast 

cancer chemopreventive agent. This role of carnosol in preventing DMBA-induced 

mammary tumorigenesis may be partially explained by carnosol inducing 

detoxification enzymes including glutathione-S-transferase (GST) and quinone 

reductase which carnosol has been shown to modulate in other studies. 

Offord et al. (1997) studied also the chemoprotective effects of rosemary extract in 

human liver and bronchial cells and pointed out two mechanisms; one of which was 

inhibition of the metabolic activation pathway catalyzed by the phase I cytochrome 

P450 enzymes and the other was induction of the detoxification pathway catalyzed 

by the phase II enzymes, such as glutathione S-transferase. In another in-depth 
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study by Huang and co-workers (2005), carnosol is shown to inhibit the invasion of 

highly metastatic mouse melanoma B16/F10 cells in vitro. 

The anticarcinogenic activity of soxhlet and supercritical CO2 rosemary extracts, as 

well as their active compounds carnosic acid and rosmarinic acid, have been studied 

versus various human cancer cell lines including NCI-H82 (human, small cell lung, 

carcinoma), DU-145 (human, prostate, carcinoma), Hep-3B (human, black, liver, 

carcinoma, hepatocellular), K-562 (human chronic myeloid leukemia), MCF-7 

(human, breast, adenocarcinoma), PC-3 (human, prostate, adenocarcinoma), and 

MDA-MB-231 (human, breast, adenocarcinoma) (Yesil-Celiktas et al., 2010). 

Carnosic acid, alone or in combination with the anticancer drugs, may offer a good 

strategy for the treatment of a variety of human cancers that are resistant to 

chemotherapy. 

Rosemary leaf extracts and carnosic acid have been shown to reduce body weight, 

fat mass gain and serum lipids levels in male mice fed a high-fat diet (Harach et al., 

2010; Ibarra et al., 2011) and in a leptin-deficient (ob/ob) male mouse model (Wang 

et al., 2011). Administration of a dose of rosemary leaf extract (200 mg/kg body 

weight) was effective to limit weight gain induced by a high-fat diet and protected 

against obesity-related liver steatosis in mice (Harach et al., 2010). Supplementing 

the diet with supercritical fluid rosemary extract, containing 20% carnosic acid, 

reduced oxidative stress in aged rats (Posadas et al., 2009). Long-term dietary 

administration of ground rosemary at a 1% (w/w) level in the diet improved the 

antioxidant status of rat tissues following carbon tetrachloride intoxication 

(Botsoglou et al., 2010). The study of Romo Vaquero et al. 2012 showed a 

significant inhibition of gastric lipase in the stomach of Zucker rats consuming 

rosemary extract enriched in carnosic acid which may cause a moderate reduction 

of fat absorption consistent with the observed reduction in weight gain and 

triglycerides and cholesterol levels. These data suggest that long-term consumption 

of rosemary extracts rich in carnosic acid may be beneficial for maintaining a 

normal lipid profile and a lower weight. 

The study carried out by Bakirel et al. (2008) revealed a defined role of the 

ethanolic extract of rosemary in suppressing blood glucose level in 

http://www.ncbi.nlm.nih.gov/books/NBK92774/#ch17_r125
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normoglycaemic, glucose-hyperglycaemic and alloxan-induced diabetic rabbits, 

possibly due to its multiple effects involving both pancreatic and extra-pancreatic 

mechanism. It has also determined that the extract possessed a capability to inhibit 

the lipid peroxidation and activate the antioxidant enzymes (SOD and CAT) in 

diabetes. 

An use of Rosmarinus officinalis in the treatment of depression was reported 

(Heinrich et al., 2006). Machado et al. (2009) have sought to investigate the effect 

of the hydroalcoholic extract of rosemary in forced swimming test (FST) and tail 

suspension test (TST), predictive models of antidepressant activity, finally reporting 

that Rosmarinus officinalis produces a specific antidepressant-like effect in both 

FST and TST. Moreover, the effect of the acute or repeated administration of this 

extract was similar to the action produced by the classical antidepressant fluoxetine. 

In addition, it was also shown that its antidepressant-like effect is dependent on its 

interaction with the serotonergic (5-HT1A, 5-HT2A and 5-HT3 receptors), 

noradrenergic (α1-receptor) and dopaminergic (D1 and D2 receptors) systems. 

Moreover, in a more recent study, the same authors (Machado et al., 2012) showed 

that OB mice exhibited hyperactivity and anhedonic-like behavior associated with 

an increased hippocampal AChE activity, parameters that were abolished by chronic 

treatment with rosemary hydroalcoholic extract, similar to the effects produced by 

fluoxetine. These results suggest that Rosmarinus officinalis may be further 

investigated as an effective therapeutic alternative for the treatment of agitated 

depression associated with anhedonia. 

Rosemary and its biologically active compounds have also showed important anti-

inflammatory properties (Altinier et al., 2007; Fu et al., 2005; Lai et al., 2009; Lo et 

al., 2002; Poeckel et al., 2008; Scheckel et al., 2008). Benincá et al. (2011) 

investigated the effect of the crude extract and derived fractions of Rosmarinus 

officinalis L. on the inflammatory response in the carrageenan-induced pleurisy 

model in mice, confirming the anti-inflammatory properties of this plant which may 

be attributed, at least in part, to the presence of carnosol, betulinic acid and ursolic 

acid. 
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3.2 Volatile fraction (essential oil) 

In recent years, demand for essential oils from medicinal plants has increased, 

particular for the oil from rosemary, on account of its widespread use as a natural 

food additive for food preservation thanks to its antimicrobial, antiviral, 

antimycotic, and antioxidant properties and, above all, its low cost and ease of 

availability. Rosemary oil can be obtained by expression, fermentation, enfleurage 

or extraction but the method of steam distillation is most commonly used for 

commercial production. 

Rosemary essential oil contains mainly monoterpenes and monoterpene derivatives 

(95–98%), the remainder (2–5%) being sesquiterpenes.  

The main compounds identified in the essential oil of R. officinalis by GC and GC–

MS analyses were reported in Figure 10.  

 
Figure 10. Chemical composition of rosemary essential oil (Gachkar et al., 2007) 

 

Based on main compounds of essential oils, different chemotypes such as α-pinene 

and verbenone (Pintore et al., 2002) or 1,8-cineole, verbenone and camphor 
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(Celiktas et al., 2007) were identified according to geographical and climatic 

regions. 

The main active components are 1,8-cineole, camphor and pinene as described by 

Hethelyi et al., 1989, Panizzi et al., 1993, Caccioni & Guizzardi, 1994, Biavati et 

al., 1997. 

The rosemary essential oil is mainly used for local applications for its balsamic, 

antispasmodic and anti-inflammatory activities (ESCOP monography), but the 

antimicrobial (Okoh et al., 2010; Bozin et al., 2007; Angioni et al., 2004; Kabouche 

et al., 2005), the insecticidal and larvicidal (Waliwitiya et al., 2009; Pavela, 2008), 

and the antioxidant (Bozin et al., 2007; Wang et al., 2008) properties of this 

essential oil are widely documented. 

According to Ruberto & Baratta (2000) phenols from essential oils, in particular 

thymol and carvacrol, were confirmed to possess the highest antioxidant activity, 

compared to other compounds which have been identified. In particular some 

monoterpene hydrocarbons, namely terpinolene, α- and γ-terpinene showed a 

significant protective action, whereas among the oxygenated components, beside 

the aforesaid phenols, allylic alcohols manifested an appreciable activity. 

Sesquiterpene hydrocarbons and non isoprenoid components subjected to this study 

showed a low, if any, antioxidant effect. 

Many researchers studied the antifungal and antimicrobial activity of the essential 

oil of rosemary. Baratta et al. (1998) tested the antibacterial and antifungal activities 

of a commercial sample (α-pinene, 1,8-cineole, camphor, α-terpineol chemotype) 

finding low activity except against Staphylococcus aureus. The essential oils 

obtained from the plant of Sardinian rosemary and their main compounds (α-pinene, 

(-)camphene, verbenone, bornyl acetate, camphor and borneol) showed low 

inhibitory activity, both against Gram (+) (Staphylococcus aureus, and S. 

epidermidis) and Gram (-) (Escherichia coli, Pseudomonas aeruginosa), with MIC 

(Minimal Inhibitory Concentration) always over 900 μL/mL (Angioni et al., 2004). 

On the other hand, the Argentinean chemotypes (myrcene/1,8-cineole/camphor) 

expressed insecticide properties and in vitro antifungal activity against Ascosphaera 

apis (Larràn et al., 2001).  
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In other study (Bozin et al., 2007), the essential oil of rosemary, comparing to the 

bifonazole, showed lower MIC especially against Candida albicans and two 

dermatomyceta, Trichophyton tonsurans and Trichophyton rubrum, indicating its 

significant antifungal effect. 

Masatoshi et al. (1997) pointed out the effectiveness of rosemary against plant 

parasites; both the essential oil and its major components (α-pinene/1,8-

cineole/camphor) had high repellency effect against Neotoxoptera formosana, the 

onion aphid. Daferera et al. (2003) also evaluated the effectiveness of the essential 

oil (α-pinene/1,8 cineole/borneol, chemotype) from Greece on the growth of plant 

pathogens such as Botritis cinerea, Fusarium sp., and Clavibacter michiganensis. 

The essential oil composition and terpene content may be influenced by several 

factors.  

Variations in volatile terpene composition were mostly correlated to the provenance 

(different geographical areas) (Chalchat et al., 1993), to the environmental and 

agronomic conditions (Moghtader et al., 2009), but also to the time of harvest 

(Yesil Celiktas et al. 2007), to the stage of development of the plants and to the 

extraction methods (Okoh et al. 2010). 

In the study of Zaouali et al. (2010) the essential oil and polyphenol compound 

contents of Tunisian rosemary leaves, stems, flowers and achenes collected on 

branches of clonal plants were assessed, and their distribution during vegetative, 

flowering and fructification of branches was compared. The highest oil yield 

(1.43%) was obtained for leaves collected at the flowering stage and these results 

were in agreement with those of Chalchat & Ozcan (2008) and Aidi Wannes et al. 

(2010), reporting that these organs have the highest essential oil yield. The 

antioxidant activity of leaf essential oils estimated by the DPPH test system was low 

when compared to that of acetonic extracts. The best activity was observed for oils 

extracted from leaves at the flowering stage (17.75 mM Fe
2+

), instead oils obtained 

from vegetative and fruiting stages exhibited a similar low activity (IC50 = 11.55 

and 12.8 mg/ml, respectively). Furthermore essential oils of leaves, with the same 

length, taken at the same zone of the branches and differing by their age, were 

characterized by high content of 1.8-cineole (35.8%), camphor (14.5%) and α-



 39 

pinene (10.6%). Oils from stems and flowers contain high contents of caryophyllene 

oxide (11.4%) and β-caryophyllene (16.68%), respectively.  

Beretta et al. (2011) also carried out an extensive study to characterize the 

constituents of the essential oils of the α-pinene chemotype, obtained by steam 

distillation of the aerial parts of the plant in the flowering, post-flowering and 

vegetative period, and to examine their antioxidant response. The results illustrate 

the difference in the antiradical and anti-lipoperoxidant activities from the aerial 

part of the plants in the various phases of development and show that the oil 

collected from rosemary during the flowering phase attained the best activity to 

prevent lipid oxidation and to act as biocide to combact bacterial pathogens.   

 

3.3 Innovative extraction techniques - Green processes 

Several traditional methods have been used to extract antioxidants from aromatic 

plants, such as conventional solvent extraction (Almela et al., 2006; Doolaege et al., 

2007), solid–liquid extraction, aqueous alkaline extraction, extraction with 

vegetable oils (Señorans et al., 2000), among others.  

The design of more efficient extraction processes, that may address the 

requirements of process intensification and energy consumption reduction, has been 

an important research topic in recent years. Safety, sustainability, environmental 

and economic factors are all forcing industries to turn to non-conventional 

technologies and greener protocols (Chemat et al., 2012).  

In the last few years more environmentally friendly and selective extraction 

techniques have been preferred, such as supercritical fluid extraction (SFE), 

pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE) and 

microwave-assisted extraction (MAE).  

SFE operates at low temperatures, in oxygen absence and typically using CO2 as 

extraction agent; these characteristics make SFE an ideal technique for the 

extraction of natural antioxidants.  

On the other hand, PLE is a solid-liquid extraction technique which uses organic 

solvents at elevated pressure and temperature in order to increase the efficiency of 
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the extraction process. Increased temperature accelerates the extraction kinetics and 

elevated pressure keeps the solvent in the liquid state, thus enabling safe and rapid 

extractions.  

Both techniques have been applied to antioxidants extraction from rosemary (Chang 

et al., 2008; Señorans et al., 2000; Herrero et al., 2010; Linares et al., 2011).  

The results presented by Herrero et al. (2010) show the possibility to attain 

bioactive extracts from rosemary using these environmentally clean extraction 

techniques (SFE and PLE). PLE using ethanol or water as solvents at high (200 °C) 

or mild temperatures (100 °C) respectively, provided the best results, considering 

not only the higher extraction yield produced but also the amount of antioxidants 

extracted. In this study the performance of supercritical fluid extraction using CO2 

modified with ethanol was also assessed; this procedure has proved to be equally 

capable of extracting phenolic antioxidants. However, in this case, the applicability 

of SFE is somewhat limited given the relatively low extraction yields that this 

technique is able to provide. Therefore, according to this study, PLE has supplied 

the highest extraction yields, although SFE might be more selective and 

environmentally friendly. 

According to Borrás-Linares et al. (2011), the best procedure for extracting each 

compound depends on its polarity. In this sense, the most polar compounds were 

only present in the extracts obtained by PLE using 

water as extracting solvent; other less polar compounds 

were detected in the extracts obtained by PLE using 

water or ethanol and on the other hand, the less polar 

compounds were mainly extracted by using SFE. 

Whereas supercritical CO2 is a very low polarity 

solvent, ethanol and water (employed in PLE) allowed 

the extraction of more polar compounds.  

With regard to UAE, this technique can be considered a 

green process as it helps to greatly accelerate the extraction procedure and reduce 

total energy consumed. The method is clean, and thanks to the low bulk temperature 

and the rapid execution, usually it does not degrade the extract. 
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It leaves no residue in the extract and uses no moving mechanical parts, preventing 

the occurrence of any pollution. It also offers advantages in terms of productivity, 

yield and selectivity, improves processing time, enhances quality, reduces chemical 

and physical hazards and is environmentally friendly (Chemat et al., 2011). In fact, 

to date ultrasound has been recognized for potential industrial application in the 

phyto-pharmaceutical extraction industry for a wide range of herbal extracts. 

Extraction enhancement by this technique has been attributed to the propagation of 

ultrasound pressure waves, and resulting cavitation phenomena. High shear forces 

cause increased mass transfer of extractants (Jian-Bing et al., 2006). 

In recent years, Albu et al. (2004) investigated the effect of different solvents and 

ultrasound on the extraction of carnosic acid from rosemary. Using conventional 

stirred extraction, ethanol was significantly less effective then ethyl acetate and 

butanone. The application of ultrasounds improved the relative performance of 

ethanol such that it was comparable to butanone and ethyl acetate alone. Thereby 

ultra-sonication may reduce the dependence on a solvent and enable use of 

alternative solvents which may provide more attractive economics, environmental 

and health and safety benefits. 

In recent years also microwave-assisted extraction has drawn significant research 

attention in various fields, in particular medicinal plant research, due to its special 

heating mechanism, moderate capital cost and its good performance under 

atmospheric conditions. 

Microwaves are electromagnetic radiations with a frequency from 0.3 to 300 GHz. 

In order to avoid interferences with radio communications, domestic and industrial 

microwaves generally operate at 2.45 GHz (Figure 11). 
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Figure 11. The electromagnetic spectrum (Kaufmann & Christen, 2002) 

 

Owing to their electromagnetic nature, microwaves possess electric and magnetic 

fields which are perpendicular to each other. The electric field causes heating via 

two simultaneous mechanisms, namely, dipolar rotation and ionic conduction. 

Consequently, unlike classical conductive heating methods, microwaves heat the 

whole sample simultaneously (Figure 12). 

 
 

Figure 12. Scheme of the heating principle by conduction in the classical method of 

extraction and by microwave irradiation in MAE (Kaufmann & Christen, 2002) 
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The main advantage of MAE resides in the performance of the heating source. The 

high temperatures reached by microwave heating reduces dramatically both the 

extraction time and the volume of solvent required. 

This technique has been continuously improved throughout the last decade where 

many modifications have been introduced to enhance its performance. Besides the 

fundamental closed system and open system of MAE, various modified MAE have 

been developed such as vacuum microwave-assisted extraction (VMAE), nitrogen-

protected microwave-assisted extraction (NPMAE), ultrasonic microwave-assisted 

extraction (UMAE) and dynamic microwave-assisted extraction (DMAE). “Closed 

system” and “open system” are used to refer to the system that operates above 

atmospheric pressure and under atmospheric pressure, respectively (Dean et al., 

2000; Luque-García et al., 2003), as illustrated in Figure 13. 

 

 
Figure 13. (a) Closed type microwave system and (b) open type microwave system (Mandal 

et al., 2007) 

 

In a closed MAE system, the extractions are carried out in a sealed-vessel with 

different mode of microwave radiations. Extraction is normally carried out under 

uniform microwave heating. High working pressure and temperature of the system 

allow fast and efficient extraction. The pressure inside the extraction vessel is 

controlled in such a way that it would not exceed the working pressure of the vessel 

while the temperature can be regulated above the normal boiling point of the 

extraction solvent. Despite the fact that the closed system offers fast and efficient 
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extraction with less solvent consumption, it is susceptible to losses of volatile 

compounds with limited sample throughput. Open system is developed to counter 

the shortcomings of closed system such as the safety issues and it is considered 

more suitable for extracting thermolabile compounds. This system has higher 

sample throughput and more solvent can be added to the system at anytime during 

the process. This system operates at atmospheric conditions and only part of the 

vessel is directly exposed to the propagation of microwave radiation (mono-mode). 

The upper part of the vessel is connected to a reflux unit to condense any vaporized 

solvent.  

 

With all these techniques, recoveries of analytes and reproducibility are improved 

and, therefore, these methods should be considered as interesting alternatives and 

promising processes for the scale-up of plant extraction. 

 



45 

REFERENCES 

 

Aidi Wannes, W., Mhamdi, B., Marzouk, B. (2010). Variations in essential oil and 

fatty acid composition during Myrtus communis var. italica fruit maturation. Food 

Chem. Toxicol., 48, 1362–1370. 

 

Alan, L., Miller, N.D. (1996). Antioxidant flavonoids, structure, function and 

clinical usage. Alternative Medicine Review, 1, 103–111. 

 

Albu, S.; Joyce, E.; Paniwnyk, L.; Lorimer, J.P., Mason, T.J. (2004). Potential for 

the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis 

for the food and pharmaceutical industry” Ultrasonics Sonochemistry, 11, 261–265. 

 

Almela, L., Sánchez-Munoz, B., Fernández-López, J.A., Roca, M.J., Rabe, V. 

(2006). Liquid chromatograpic-mass spectrometric analysis of phenolics and free 

radical scavenging activity of rosemary extract from different raw material.  J. 

Chromatogr. A, 1120, 221-229. 

 

Altinier, G., Sosa, S., Aquino, R.P., Mencherini, T., Loggia, R.D., Tubaro, A. 

(2007). Characterization of topical antiinflammatory compounds in Rosmarinus 

officinalis L. Journal of Agricultural and Food Chemistry, 55(5), 1718–1723. 

 

Amakura, Y., Umino, Y., Tsuji, S., Tonogai, Y. (2000). Influence of jam processing 

on the radical scavenging activity and phenolic content in berries. Journal of 

Agricultural and Food Chemistry, 48, 6292–6297. 

 

Andre, C.M., Ghislain, M., Bertin, P., Oufir, M., Herrera Mdel, R., Hoffmann, L., 

Hauseman, J. F., Larondelle, Y.E., Evers, D. (2007). Andean potato cultivars 

(Solanum tuberosum L.) as source of antioxidant and mineral micronutrients. 

Journal of Agricultural and Food Chemistry, 55, 366–378 

 



46 

Angioni, A., Barra, A., Cereti, E., Barile, D., Coïsson, J.D., Arlorio, M., Dessi, S., 

Coroneo, V., Cabras, P. (2004). Chemical composition, plant genetic differences, 

antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus 

officinalis L. J. Agric. Food Chem., 52, 3530–3535. 

 

Arts, I.C., Hollman, P.C. (2005). Polyphenols and disease risk in epidemiologic 

studies. Am. J. Clin. Nutr., 81, 317S-325S. 

 

Aruoma, O.I., Halliwell, B., Aeschbach, R., Löligers, J. (1992). Antioxidant and 

pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. 

Xenobiotica, 22(2), 257-268. 

 

Aruoma, O.I., Spencer, J.P.E., Rossi, R., Aeschbach, R., Khan, A., Mahmood, N., 

Munoz, A., Murcia, A., Butler, J., Halliwell, B. (1996). An evaluation of the 

antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food 

Chem. Toxicol., 34, 449-456. 

 

Bakirel, T., Bakirel, U., Üstüner Keleş, O., Ülgen, S.G., Yardibi, H. (2008). In vivo 

assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus 

officinalis) in alloxan-diabetic rabbits. Journal of Ethnopharmacology ,116, 64-73. 

 

Barba, A.A., Calabretti, A., d'Amore, M., Piccinelli, A.L., Rastrelli, L. (2008). 

Phenolic constituents levels in cv. Agria potato under microwave processing. Food 

Science and Technology, 41, 1919–1926. 

 

Bassoli, B.K., Cassolla, P., Borba-Murad, G. R., Constantin, J., Salgueiro-

Pagadigorria, C.L., Bazotte, R.B., de Silva, R.S., & de Souza, H.M. (2008). 

Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: 

Effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function, 

26, 320–328. 

 



47 

Baratta, M.T., Dorman, H.J.D., Deans, S.G., Biondi, D.M., Ruberto, G. (1998). 

Chemical composition, antimicrobial and anti-oxidative activity of laurel, sage, 

rosemary, oregano and coriander essential oils. Journal of Essential Oil Research, 

10, 618-627. 

 

Benincá J.P., Dalmarco, J.B., Pizzolatti, M.G., Fröde, T.S. (2011). Analysis of the 

anti-inflammatory properties of Rosmarinus officinalis L. in mice. Food Chemistry, 

124 , 468–475. 

 

Beretta, G., Artali, R., Maffei Facino, R., Gelmini, F. (2011). An analytical and 

theoretical approach for the profiling of the antioxidant activity of essential oils: the 

case of Rosmarinus officinalis L. Journal of Pharmaceutical and Biomedical 

Analysis, 55, 1255–1264. 

 

Beretz, A., Anton, R., Stoclet, J.C. (1977). Flavonoid compounds are potent 

inhibitors of cyclic AMP phosphodiesterase. Experimentia, 34, 1045-55. 

 

Biavati B., Franzoni S., Ghazvinizadeh H., Piccaglia R. (1997). Antimicrobial and 

antioxidant properties of plant essential oils. In: Franz Ch., Màthè A., Buchbauer 

G., eds, Essential Oils: Basic and Applied Research. Proceedings of 27th 

International Symposium on Essential Oils. Allured Publishing Corporation, Carol 

Stream, IL, USA, pp. 326-331. 

 

Blessington, T., Nzaramba, M.N., Scheuring, D.C., Hale, A.L., Reddivari, L., 

Miller, J.C., Jr. (2010). Cooking methods and storage treatments of potato: effects 

on carotenoids, antioxidant activity, and phenolics. American Journal of Potato 

Research, 87, 479–491. 

 

Borrás-Linares, I., Arráez-Román, D., Herrero, M., Ibáñez, E., Segura-Carretero, 

A., Fernández-Gutiérrez, A. (2011). Comparison of different extraction procedures 

for the comprehensive characterization of bioactive phenolic compounds in 



48 

Rosmarinus officinalis by reversed-phase high-performance liquid chromatography 

with diode array detection coupled to electrospray time-of-flight mass spectrometry. 

J. Chromatography A, 1218, 7682-7690. 

 

Botsoglou, N.A., Taitzoglou, I.A., Botsoglou, E., Zervos, I., Kokoli, A., Christakia, 

E., Nikolaidisc, E. (2009). Effect of long-term dietary administration of oregano and 

rosemary on the antioxidant status of rat serum, liver, kidney and heart after carbon 

tetrachloride-induced oxidative stress. J. Sci. Food Agric., 89, 1397-1406. 

 

Botsoglou, N., Taitzoglou, I., Zervos, I., Botsoglou, E., Tsantarliotou, M., 

Chatzopoulou, P.S. (2010). Potential of long-term dietary administration of 

rosemary in improving the antioxidant status of rat tissues following carbon 

tetrachloride intoxication. Food Chem. Toxicol., 48, 944–950. 

 

Bozin, B., Mimica-Dukic, N., Samojlik, I., Jovin, E. (2007). Antimicrobial and 

antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia 

officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem., 55, 7879–7885. 

 

Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism and 

nutritional significance. Nutrition Reviews, 56, 317–333. 

 

Brown, C.R. (2005). Antioxidants in potato. American Journal of Potato Research, 

62, 163–172. 

 

Brown, C.R. (2008). Breeding for phytonutrient enhancement of potato. American 

Journal of Potato Research, 85, 298–307. 

 

Brown, C.R., Culley, D., Yang, C., Durst, R., Wrolstad, R. (2005). Variation of 

anthocyanin and carotenoid contents and associated antioxidant values in potato 



49 

breeding lines. Journal of the American Society for Horticultural Science, 130, 

174–180. 

 

Brown, C.R., Durst, R.W., Wrolstad, R., De Jong, W. (2008). Variability of 

phytonutrient content of potato in relation to growing location and cooking method. 

Potato Research, 51, 259–270. 

 

Bull E. (2000). What is nutraceutical? Pharm J., 265, 57-58. 

 

Caccioni, D.R.L., Guizzardi, M. (1994). Inhibition of germination and growth of 

fruit and vegetable post-harvest pathogenic fungi by essential oil components. J. 

Ess. Oil Res., 6, 173-179. 

 

Cifuentes, A. (2009). Special Issue: Advanced separation methods in food analysis. 

J. Chromatogr. A, 1216 (43), 7109-7358.  

 

Chalchat, J.C., Garry, R.F., Michet, A., Benjilali, B., Chabart, J.L. (1993). Essential 

oils of rosemary (Rosmarinus officinalis L.). The chemical composition of oils of 

various origins (Morocco, Spain, France). Journal of Essential Oil Research, 5, 

613-618. 

 

Chalchat, J.C., Ozcan, M.M. (2008). Comparative essential oil composition of 

flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food 

Chem., 110, 501–503. 

 

Chang, C.H., Chyau, C.C., Hsieh, C.L., Wu, Y.Y., Ker, Y.B., Tsen, H.Y., Peng, 

R.Y. (2008). Relevance of phenolic diterpene constituents to antioxidant activity 

of supercritical CO2 extract from the leaves of rosemary. Nat. Prod. Res., 22, 76-90. 

 



50 

Chemat, F.; Zill-e-Huma; Muhammed, K. K. (2011). Applications of ultrasound in 

food technology: Processing, preservation and extraction. Ultrasonics 

Sonochemistry, 18, 813–835. 

 

Chemat, F.; Abert-Vian, M.; Cravotto, G. (2012). Review: Green extraction of 

natural products: Concept and principles. International Journal of Molecular 

Sciences, 13, 8615–8627. 

 

Clayton, R.; Percival, G. Glycoalkaloids in potato tubers - a cause for concern. Proc. 

Fourth World Potato Congress, Amsterdam, The Netherlands, 4-6 September 2000, 

170–173. 

 

Cuvelier, M., Richard, H., Berset, C. (1996). Antioxidative activity and phenolic 

composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil 

Chem. Soc., 73, 645-652. 

 

Daferera, D.J., Ziogas, B.N., Polissiou, M.G. (2003). The effectivenesss of plant 

essential oils on the growth of Botrytis cinerea, Fusarium sp., and Clavibacter 

michiganensis subsp. michiganensis. J. Crop Prot., 22, 39-44. 

 

Dao, L., Friedman, M. (1992). Chlorogenic acid content of fresh and processed 

potatoes determined by ultraviolet spectroscopy. Journal of Agricultural and Food 

Chemistry, 40, 2152–2156. 

 

Das, L., Bhaumik, E., Raychaudhuri, U., Chakraborty, R. (2012). Role of 

nutraceuticals in human health. J Food Sci Technol, 49(2), 173-183. 

 

Dean, J.R., Xiong, G. (2000). Extraction of organic pollutants from environmental 

matrices: selection of extraction technique. TrAC: Trends Anal. Chem., 19, 553-

564. 

 



51 

Del Campo, J., Amiot, M., The-Nguyen, C. (2000). Antimicrobial effect of 

rosemary extracts. J. Food Prot., 63, 1359-1368.  

 

DellaPenna, D., Pogson, B.J. (2006). Vitamin synthesis in plants: Tocopherols and 

carotenoids. Annuual Review of Plant Biology, 57, 711–738. 

 

Dietary Supplement Health Education Act (DSHEA) of 1994. Public Law 103-417, 

available at FDA Website: http://www.fda.gov. 

 

Dillard, C.J., German, J.B. (2000). Phytochemicals: nutraceuticals and human 

health. J Sci Food Agric, 80, 1744-1756. 

 

Diplock, A.T., Aggett, P.J., Ashwell, M., Bornet, F., Fern, E.B., Roberfroid, M.B. 

(1999). Scientific concepts of functional foods in Europe - consensus document. Br. 

J. Nutr., 81(1), S1-S27. 

 

Directive 2002/46/EC of the European Parliament and of the Council of 10 June 

2002 on the approximation of the laws of member states relating to food 

supplements. Official Journal L 183, 12/07/2002, pp. 0051-0057. 

 

Doolaege, E.H.A., Raes, K., Smet, K., Andjelkovic, M., Van Poucke, C., De Smet, 

S., Verhé, R. (2007). Characterization of two unknown compounds in methanol 

extracts of rosemary oil. J. Agric. Food Chem., 55, 7283-7287. 

 

Duthie, G.G., Gardner, P.T., Kyle, J.A.M. (2003). Plant polyphenols: are they the 

new magic bullet? Proc Nutr Soc, 62, 599–603. 

 

Eichhorn, S., Winterhalter, P. (2005). Anthocyanins from pigmented potato 

(solanum tuberosum L.) varieties. Food Research International, 38, 943–948. 

 



52 

ESCOP Monographs, The Scientific Foundation for Herbal Medicinal Products. 

(2009). Rosmarini Folium, Thieme, 2nd ed., 429-436. 

 

Espín, J.C., García-Conesa, M.T., Tomas-Barberan, F.A. (2007). Nutraceuticals: 

facts and fiction. Phytochemistry, 68, 2986-3008. 

 

Ezekiel, R., Paul, V., Singh, B., Peshin, A., Shekhawat, G.S. (2000). Effect of low 

temperature, desprouting and gibberellic acid treatment on little tuber formation on 

potatoes during storage. Journal of Indian Potato Association, 27, 13–23. 

 

Ezekiel, R., Singh, B. (2007). Changes in contents of sugars, free amino acids and 

phenols in four varieties of potato tubers stored at five temperatures for 180 days. 

Journal of Food Science and Technology, 44, 471–477. 

 

Ezekiel, R., Singh, N., Sharma, S., Kaur, A. (2013). Beneficial phytochemicals in 

potato - a review. Food Research International, 50, 487–496. 

 

Faller, A.L.K., Fialho, E. (2009). The antioxidant capacity and polyphenol content 

of organic and conventional retail vegetables after domestic cooking. Food 

Research International, 42, 210–215. 

 

Feng, R.T., Lu, Y., Bowman, L.L., Qian, Y., Castranova, V., Ding, M. (2005). 

Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 

detoxifying enzyme activity by chlorogenic acid. The Journal of Biological 

Chemistry, 280, 27888–27895. 

 

Food and Agriculture Organization of the United Nations. 2008. 

http://www.potato2008.org/en/world/index.html. 

 



53 

Fortes, C., Forastiere, F., Farchi, S., Mallone, S., Trequattrinni, T., Anatra, F., 

Schmid, G., Perucci C.A. (2003). The protective effect of the Mediterranean diet on 

lung cancer. Nutrition and Cancer, 46(1), 30-37. 

 

Friedman, M. (1997). Chemistry, biochemistry, and dietary role of potato 

polyphenols. A review. Journal of Agricultural and Food Chemistry, 45, 1523–

1540. 

 

Fu, L., Zhang, S., Li, N., Wang, J., Zhao, M., Sakai, J. (2005). Three new 

triterpenes from Nerium oleander and biological activity of the isolated compounds. 

Journal of Natural Products, 68(2), 198–206. 

 

Gachkar, L., Yadegari, D., Bagher Rezaei, M., Taghizadeh, M., Alipoor Astaneh, 

S., Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum 

and Rosmarinus officinalis essential oils. Food Chemistry, 102, 898–904. 

 

García-Cañas, V., Simó, C., Herrero, M., Ibáñez, E., Cifuentes, A. (2012). Present 

and Future Challenges in Food Analysis: Foodomics. Anal. Chem., 84, 10150-

10159. 

 

Gilsenan, M.B. (2011). Nutrition & health claims in the european union: a 

regulatory overview. Trends Food Sci. Technol., 22, 536-542. 

 

Goyer, A., Navarre, D.A. (2007). Determination of folate concentrations in diverse 

potato germplasm using a trienzyme extraction and a microbiological assay. Journal 

of Agricultural and Food Chemistry, 55, 3523–3528. 

 

Gulati, O.P., Ottaway, B.P. (2006). Legislation relating to nutraceuticals in the 

European Union with a particular focus on botanical-sourced products. Toxicology, 

221, 75-87. 

 



54 

Han, K.H., Matsumoto, A., Shimada, K.I., Sekikawa, M., Fukushima, M. (2007). 

Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats 

fed a cholesterol-rich diet. The British Journal of Nutrition, 98, 914–921. 

 

Harach, T., Aprikian, O., Monnard, I., Moulin, J., Membrez, M. (2010). Rosemary 

(Rosmarinus officinalis L.) leaf extract limits weight gain and liver steatosis in mice 

fed a high-fat diet. Planta Med, 76, 566–571. 

 

Harada, K.; Kano, M.; Takayanagi, T.; Yamacawa, O.; Ishikawa, F. (2004). 

Absorption of acylated antocyanins in rats and humans after ingesting an extract of 

Ipomoea batatas purple sweet potato tuber. Biosci. Biotechnol. Biochem., 68, 1500–

1507. 

 

Heinrich, M., Kufer, J., Leonti, M., Pardo-de-Santayana, M. (2006). Ethnobotany 

and ethnopharmacology – interdisciplinary links with the historical sciences. J 

Ethnopharmacol, 107, 157–60. 

 

Hernández-Hernández, E., Ponce-Alquicira, E., Jaramillo-Flores, M.E., Guerrero 

Legarreta, I. (2009). Antioxidant effect rosemary (Rosmarinus officinalis L.) and 

oregano (Origanum vulgare L.) extracts on TBARS and colour of model raw pork 

batters. Meat Sci. 2009, 81, 410-417. 

 

Herrero, M., García-Cañas, V., Simó, C., Cifuentes, A. (2010). Recent advances in 

the application of capillary electromigration methods for food analysis and 

Foodomics. Electrophoresis, 31, 205-228. 

 

Herrero, M., Plaza, M., Cifuentes, A., Ibáñez, E. (2010). Green processes for the 

extraction of bioactives from rosemary: chemical and functional characterization via 

ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro 

assays. Journal of Chromatography A, 1217, 2512-2520. 

 



55 

Herrero, M., Simó, C., García-Cañas, V., Ibáñez, E., Cifuentes, A. (2012). 

Foodomics: MS-based strategies in modern food science and nutrition. Mass 

Spectom. Rev., 31, 49-69. 

 

Hethelyi, E., Koczka, I., Tetenyi, P. (1989). Phytochemical and antimicrobial 

analysis of essential oils. Herba Hung., 28, 1-2. 

 

Huang, M.T., Ho, C.T., Wang, Z.Y. (1994). Inhibition of skin tumorigenesis by 

rosemary and its constituents carnosol and ursolic acid. Cancer Res., 54, 701–8. 

 

Ibáñez, C., Valdés, A., García-Cañas, V., Simó, C., Celebier, M., Rocamora, L., 

Gómez, A., Herrero, M., Castro, M., Segura-Carretero, A., Ibáñez, E., Ferragut, 

J.A., Cifuentes, A. (2012). Global Foodomics strategy to investigate the health 

benefits of dietary constituents. J. Chromatogr. A, 1248, 139-153. 

 

Ibánez, E., Cifuentes, A., Crego, A.L., Senorans, F.J., Cavero, S., Reglero, G. 

(2000). Combined use of supercritical fluid extraction, micellar electrokinetic 

chromatography, and reverse phase high performance liquid chromatography for the 

analysis of antioxidants from rosemary (Rosmarinus officinalis L.) J. Agric. Food 

Chem., 48, 4060-4065. 

 

Ibarra, A., Cases, J., Roller, M., Chiralt-Boix, A., Coussaert, A. (2011). Carnosic 

acid-rich rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and 

improves cholesterol levels and glycaemia in mice on a high-fat diet. Br J Nutr, 

106, 1182–1189. 

 

Ieri, F., Innocenti, M., Andrenelli, L., Vecchio, V., Mulinacci, N. (2011). Rapid 

HPLC/DAD/MS method to determine phenolic acids, glycoalkaloids and 

anthocyanins in pigmented potatoes (Solanum tuberosum L.) and correlations with 

variety and geographical origin. Food Chemistry 125, 750–759. 

 



56 

Im, H.W., Suh, B.S., Lee, S.U., Kozukue, N., Ohnisi-Kameyama, M., Levin, C.E., 

Friedman, M. (2008). Analysis of phenolic compound by high-performance liquid 

chromatography and liquid chromatography/mass spectrometry in potato plant 

flowers, leaves, stems and tubers and in home-processed potatoes. Journal of 

Agricultural and Food Chemistry, 56, 3341–3349. 

 

Jansen, G., Flamme, W. (2006). Coloured potatoes (Solanum Tuberosum L.) - 

Anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53, 

1321–1331. 

 

Jian-Bing, J.; Xiang-hong, L.; Mei-qiang, C.; Zhi-chao, X. (2006). Improvement of 

leaching process of Geniposide with ultrasound. Ultrasonics Sonochemistry, 13, 

455−462. 

 

Jin, U.H., Lee, J.Y., Kang, S.K., Kim, J.K., Park, W.H., Kim, J.G., Moon, S.K., 

Kim, C.H. (2005). A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), 

is a new type and strong matrix metalloprotenisae-9 inhibitor: Isolation and 

identification from methanol extract of Euonymus alatus. Life Sciences, 77, 2760–

2769. 

 

Johnson, J.J. (2011). Carnosol: a promising anti-cancer and anti-inflammatory 

agent. Cancer Lett. (New York), 305, 1−7. 

 

Kabouche, Z., Boutaghane, N., Laggoune, S., Kabouche, A., Ait-Kaki, Z., Benlabe, 

D. (2005). Comparative antibacterial activity of five Lamiaceae essential oils from 

Algeria. The Int. J. Aromather., 15, 129–133. 

 

Kahkonen, M.P., Heionan, M. (2003). Antioxidant activity of anthocyanins and 

their aglycons. Journal of Agricultural and Food Chemistry, 51, 628–633. 

 



57 

Kano, M.; Takayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F. (2005). 

Antioxidative activity of anthocyanins from purple sweet potato Ipomoea batatas 

cultivar Ayamurasaki. Biosci. Biotechnol. Biochem., 69, 979–988. 

 

Kaspar, K.L., Park, J.S., Brown, C.R., Mathison, B.D., Navarre, D.A., Chew, B.P. 

(2010). Pigmented Potato Consumption Alters Oxidative Stress and Inflammatory 

Damage in Men. The Journal of Nutrition, 141(1), 108-111.  

 

Katan, M.B., De Roos, N.M. (2004). Promises and problems of functional foods. 

Critical Reviews in Food Science and Nutrition, 44, 369–377. 

 

Kaufmann, B., Christen, P. (2002). Recent extraction techniques for natural 

products: microwave-assisted extraction and pressurised solvent extraction. 

Phytochem. Anal., 13, 105–113 (2002). 

 

Keservani, R.K., Kesharwani, R.K., Vyas, N., Jain, S., Raghuvanshi, R., Sharma, 

A.K. (2010). Nutraceutical and functional food as future food: a review. Der 

Pharmacia Lettre, 2(1), 106-116. 

 

Khan, N., Afaq, F., Mukhtar, H. (2007). Apoptosis by dietary factors: the suicide 

solution for delaying cancer growth. Carcinogenesis, 28, 233–239. 

 

Kim, J.H., Lee, B.J., Kim, J.H., Yu, J.S., Kim, M.J., Kim, K.W. (2009). Rosmarinic 

acid suppresses retinal neovascularization via cell cycle arrest with increase of 

p21WAF1 expression. Eur. J. Pharmacol., 615, 150-154. 

 

Konczak, I., Zhang, W. (2004). Anthocyanins-more than nature's colours. Journal 

of Biomedicine and Biotechnology, 5, 239–240. 

 

Konings, E.J., Roomans, H.H., Dorant, E., Goldbohm, R.A., Saris, W.H., van den 

Brandt, P.A. (2001). Folate intake of the Dutch population according to newly 



58 

established liquid chromatography data for foods. The American Journal of Clinical 

Nutrition, 73, 765–776. 

 

Kotikova, Z., Hejtmankova, A., Lachman, J., Hamouz, K., Trnkova, E., Dvorak, P. 

(2007). Effect of selected factors on total carotenoid content in potato tubers 

(Solanum tuberosum L.). Plant Soil Environment, 53, 355–360. 

 

Lachman, J., Hamouz, K. (2005). Red and purple coloured potatoes as a significant 

antioxidant source in human nutrition — a review. Plant Soil and Environment, 51, 

477–482. 

 

Lai, C.S., Lee, J.H., Ho, C.T., Liu, C.B., Wang, J.M., Wang, Y.J. (2009). Rosmanol 

potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through 

downregulating MAPK, NF-KB, STAT3 and C/EBP signaling pathways. Journal of 

Agricultural and Food Chemistry, 57(22), 10990–10998. 

 

Larran, S., Ringuelet, J.A.. Carranza, M.R., Henning, C.P., Re, M.S.; Cerimele, 

E.L.; Urrutia, M. I. (2001). In vitro fungistatic effect of essential oils against 

Ascosphaera apis. J. Ess. Oil Res., 13, 122-124. 

 

Legrand, D., Scheen, A. J. (2007). Does coffee protect against type 2 diabetes? 

Revue Médicale de Liège, 62, 554–559. 

 
 
Lewis, C.E., Walker, J.R.L., Lancaster, J.E., Sutton, K.H. (1998). Determination of 

anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of 

Solanum tuberosum L. Journal of the Science of Food and Agriculture, 77, 45–57. 

 

Lewis, C.E., Walker, J.R.L., Lancaster, J.E. (1999). Changes in anthocyanin, 

flavonoid and phenolic acid concentrations during development and storage of 



59 

coloured potato (Solanum tuberosum L.) tubers. Journal of the Science of Food and 

Agriculture, 79, 311–316. 

 

Li, G.S., Jiang, W.L., Tian, J.W., Qu, G.W., Zhu, H.B., Fu, F.H. (2009). In vitro and 

in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. 

Phytomedicine, 17, 282-288. 

 

Lo, A.H., Liang, Y.C., Lin-Shiau, S.Y., Ho, C.T., Lin, J.K. (2002). Carnosol, an 

antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-

regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis, 23(6), 

983–991. 

 

Luque-Garcı ́a, J.L., Luque de Castro, M.D. (2003). Where is microwave-based 

analytical equipment for solid sample pre-treatment going? TrAC Trends in 

Analytical Chemistry, 22, 90-98. 

 

Machado, D.G., Bettio, L.E.B., Cunha, M.P., Capra, J.C., Dalmarco, J.B., Pizzolatti, 

M.G., Rodrigues, A.L.S. (2009). Antidepressant-like effect of the extract of 

Rosmarinus officinalis in mice: involvement of the monoaminergic system. 

Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 642–650. 

 

Machado, D.G., Cunha, M.P., Neis, V.B., Balen, G.O., Colla, A.R., Grando, J., 

Brocardo, P.S.,  Bettio, L.E.B., Dalmarco, J.B., Rial, D., Prediger, R.D., Pizzolatti, 

M.G., Rodrigues, A.L.S. (2012). Rosmarinus officinalis L. hydroalcoholic extract, 

similar to fluoxetine, reverses depressive-like behavior without altering learning 

deficit in olfactory bulbectomized mice. Journal of Ethnopharmacology, 143, 158–

169. 

 

Mahady, G.B., Pendland, S.L., Stoia, A., Hamill, F.A., Fabricant, D., Dietz, B.M., 

Chadwick, L.R. (2005). In vitro susceptibility of Helicobacter pylori to botanical 



60 

extracts used traditionally for the treatment of gastrointestinal disorders. Phytother 

Res., 19(11), 988-991. 

 

Manach, C., Scalbert, A., Morand, C., Remesy, C., Jimenez, L. (2004). 

Polyphenols: Food sources and bioavailability. The American Journal of Clinical 

Nutrition, 79, 727–747. 

 

Mandal, V., Mohan, Y., Hemalatha, S. (2007). Microwave assisted extraction - an 

innovative and promising extraction tool for medicinal plant research. Pharmacogn. 

Rev., 1, 7-18. 

 

Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., Lerici, C.R. (2000). 

Review on non-enzymatic browning and antioxidant capacity in processed foods. 

Trends in Food Science and Technology, 11, 340–346. 

 

Masatoshi, H., Hiroaki, K. (1997). Repellency of rosemary oil and its components 

againts the Onion aphid, Neotoxoptera formosana. Appl. Entomol. Zoot., 32 (2), 

3303-310. 

 

Massaro, M., Scoditti, E., Carluccio, M.A., De Caterina, R. (2010). Nutraceuticals 

and prevention of atherosclerosis: focus on ω-3 polyunsaturated fatty acids and 

mediterranean diet polyphenols. Cardiovascular Therapeutics, 28, 13-19.  

 

Matsuda, F., Morino, K., Ano, R., Kuzawa, M., Wakasa, K., Miyagawa, H. (2005). 

Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato 

tuber tissue. Plant & Cell Physiology, 46, 454–466. 

 

McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on 

digestive enzymes. (2005). Biofactors, 23, 189–195. 

 



61 

McDougall, G. J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. (2005). 

Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-

glucosidase. J. Agric. Food Chem., 53, 2760–2766. 

 

Moghtader, M., Afzali, D. (2009). Study of the antimicrobial proprieties of the oil 

of rosemary. American-Eurasian Journal of Agriculture and Environment Science, 

5 (3), 393–397. 

 

Mondy, N.L., Gosselin, B. (1989). Effect of irradiation on discolouration, fenouls 

and lipids of potatoes. Journal of Food Science, 54, 982–984. 

 

Morris, W.L., Ducreux, L., Griffiths, D.W., Stewart, D., Davies, H.V., Taylor, M.A. 

(2004). Carotenogenesis during tuber development and storage in potato. Journal of 

Experimental Botany, 55, 975–982. 

 

Mulinacci, N., Ieri, F., Giaccherini, C., Innocenti, M., Andrenelli, L., Canova, G., 

Saracchi, M., Casiraghi, M.C. (2008). Effect of cooking on the anthocyanins, 

phenolic acids, glycoalkaloids and resistant starch content in two pigmented 

cultivars of Solanum tuberosum L. Journal of Agricultural and Food Chemistry, 56, 

11830–11837. 

 

Mulinacci, N., Innocenti, M., Bellumori, M., Giaccherini, C., Martini, V., 

Michelozzi, M. (2011). Storage method, drying processes and extraction procedures 

strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. 

Talanta, 85, 167-176. 

 

Nair, S., Li, W., Kong, A.N.T. (2007). Natural dietary anticancer chemopreventive 

compounds: redox-mediated differential signaling mechanisms in cytoprotection of 

normal cells versus cytotoxicity in tumor cells. Acta Pharmacologica Sinica, 28(4), 

459-472. 

 



62 

Navarre, D.A., Goyer, A., Shakya, R. (2009). Nutritional value of potatoes. 

Vitamin, phytonutrient and mineral content. In J. Singh, & L. Kaur (Eds.), Advances 

in potato chemistry and technology (pp. 395–424). Austerdam: Elsevier. 

 

Navarre, D.A., Shakya, R., Holden, M., Kumar, S. (2010). The effect of different 

cooking methods on phenolics and vitamin C in developmentally young potato 

tubers. American Journal of Potato Research, 87, 350–359. 

 

Nogueira, T., do Lago, C.L. (2007). Determination of caffeine in coffee products by 

dynamic complexation with 3,4-dimethoxycinnamate and separation by CZE. 

Electrophoresis, 28, 3570–3574. 

 

Offord, E.A., Mace, K., Ruffieux, C., Malnoe, A., Pfeifer, A.M.A. (1995). 

Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human 

bronchial cells. Carcinogenesis, 16, 2057–2062. 

 

Offord, E.A., Mace, K., Avanti, O., Pfeifer, A.M.A. (1997). Mechanism involved in 

the chemoprotective effects of rosemary extract studied in human liver and 

bronchial cells. Cancer Lett, 114, 275–281. 

 

Okoh, O.O., Sadimenko, A.P., Afolayan, A.J. (2010). Comparative evaluation of 

the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained 

by hydrodistillation and solvent free microwave extraction methods. Food Chem., 

120, 308–312. 

 

Pandey, M., Verma, R.K., Saraf, S.A. (2010). Nutraceuticals: new era of medicine 

and health. Asian J Pharm Clin Res, 3, 11-15. 

 

Panizzi, L., Flamini, G., Cioni, P.L. Morelli, I. (1993). Composition and 

antimicrobial activity of essential oils of four Mediterranean Lamiaceae. Journal of 

Ethnopharmacology, 39, 167–170. 



63 

Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. (2003). The stomach as a site 

for anthocyanins absorption from food. FEBS Lett., 544, 210–213. 

 

Parr, A.J., Mellon, F.A., Colquhoun, I.J., Davies, H.V. (2005). Dihydrocaffeoyl 

polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected 

during metabolite profiling. Journal of Agricultural and Food Chemistry, 53, 5461–

5466. 

 

Patras, A., Brunton, N.P., O'Donnell, C., Tiwari, B.K. (2010). Effect of thermal 

processing on anthocyanin stability in foods, mechanisms and kinetics of 

degradation. Trends in Food Science and Technology, 21, 3–11. 

 

Pavela, R. (2008). Insecticidal properties of several essential oils on the house fly 

(Musca domestica L.). Phytother. Res., 22, 274–278. 

 

Pérez-Fons, L., Garzón M.T., Micol V. (2010). Relationship between the 

antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols 

on membrane phospholipid order. J. Agric. Food Chem., 58(1), 161-171. 

 

Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 

1035–1042. 

 

Pintore, G., Usai, M., Bradesi, P., Juliano, C., Boatto, G., Tomi, F., Chessa, M., 

Cerri, R., Casanova, J. (2002). Chemical composition and antimicrobial activity of 

Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J., 17, 15–

19. 

 

Poeckel, D., Greiner, C., Verhoff, M., Rau, O., Tausch, L., Hörnig, C. (2008). 

Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress 

pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. 

Biochemical Pharmacology, 76(1), 91–97. 



64 

Posadas, S.J., Caz, V., Largo, C., De la Gándara, B., Matallanas, B., Reglero, G., De 

Miguel, E. (2009). Protective effect of supercritical fluid rosemary extract, 

Rosmarinus officinalis, on antioxidants of major organs of aged rats. Exp. 

Gerontol., 44, 383–389. 

 

Reddivari, L., Vanamala, J., Chintharlapalli, S., Safe, S. H., Miller, J.C., Jr. (2007). 

Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells 

through activation of caspase-dependent and caspase-independent pathways. 

Carcinogenesis, 28, 2227–2735. 

 

Reddivari, L.H., Vanamala, J., Safe, S., Miller, J.C. (2010). The bioactive 

compounds α-chaconine and gallic acid in potato extracts decrease survival and 

induce apoptosis in LNCaP and PC3 prostate cancer. Nutrition and Cancer, 62, 

601–610. 

 

Reyes, L. F., Cisneros-Zevallos, L. (2003). Wounding stress increases the phenolic 

content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). 

Journal of Agricultural and Food Chemistry, 51, 5296–5300. 

 

Reyes, L.F., Miller, J.C., Jr., Cisneros-Zevallos, L. (2004). Environmental 

conditions influence the content and yield of anthocyanins and total phenolics in 

purple- and red-flesh potatoes during tuber development. American Journal of 

Potato Research, 81, 187–193. 

 

Reyes, L.F., Miller, J.C., Jr., Cisneros-Zevallos, L. (2005). Antioxidant capacity, 

anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum 

tuberosum L.) genotypes. American Journal of Potato Research, 82, 271–277. 

 



65 

Reyes, L.F., Villarreal, J.E., Cisneros-Zevallos, L. (2007). The increase in 

antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. 

Food Chemistry, 101, 1254–1262. 

Richardson, D.P. (1996). Functional foods-shades of grey: an industry perspective. 

Nutr. Rev., 54, S174-S180. 

 

Romano, C.S., Abadi, K., Repetto, V., Vojnov, A.A., Moreno, S. (2009). 

Synergistic antioxidant and antibacterial activity of rosemary plus butylated 

derivatives. Food Chem., 115, 456–461. 

 

Romo Vaquero, M., Yañez-Gascon, M.J., García Villalba, R., Larrosa, M., 

Fromentin, E., Ibarra, A., Roller, M., Tomas-Barberan, F., Espín de Gea, J.C., 

García-Conesa, M.T. (2012). Inhibition of gastric lipase as a mechanism for body 

weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in 

carnosic acid. PLoS ONE 7(6), e39773. 

 

Rosenthal, S., Jansky, S. (2008). Effect of production site and storage on 

antioxidant levels in speciality potato (Solanum tuberosum L.) tubers. Journal of the 

Science of Food and Agriculture, 88, 2087–2092. 

 

Ross, J.A., Kasum, C.M. (2002). Dietary flavonoids: Bioavailability, metabolic 

effects, and safety. Annual Review of Nutrition, 22, 19–34. 

 

Rodriguez de Sotillo, D., Hadley, M., Holm, E.T. (1994). Phenolics in aqueous 

potato peel extract: Extraction, identification and degradation. Journal of Food 

Science, 59, 649–651. 

 

Ruberto, G., Baratta, M.T. (2000). Antioxidant activity of selected essential oil 

components in two lipid model systems. Food Chemistry, 69, 167-174. 

 



66 

Scalbert, A., Johnson, I.T., Saltmarsh, M. (2005). Polyphenols: antioxidants and 

beyond. Am J Clin Nutr, 81, 215S-217S. 

 

Scheckel, K.A., Degner, S.C., Romagnolo, D.F. (2008). Rosmarinic acid 

antagonizes activator protein-1-dependent activation of cyclooxygenase-2 

expression in human cancer and nonmalignant cell lines. The Journal of Nutrition 

and Disease, 138(11), 2098–2105. 

 

Señorans, F.; Ibáñez, E.; Cavero, S.; Tabera, J.; Reglero, G. (2000). Liquid 

chromatographic-mass spectrometric analysis of supercritical-fluid extracts of 

rosemary plants.  J. Chromatogr. A, 870, 491. 

 

Shuang-Sheng, H., Rong-liang, Z. (2006). Rosmarinic acid inhibits angiogenesis 

and its mechanism of action in vitro. Cancer Lett., 239, 271-280. 

 

Simon, H.U., Haj-Yehia, A., Levi-Schaffer, F. (2000). Role of reactive oxygen 

species (ROS) in apoptosis induction. Apoptosis, 5(5), 415-418. 

 

Singh, N., Kamath, V., Narasimhamurthy, K., Rajini, P.S. (2008). Protective effect 

of potato peel extracts against carbon tetrachloride-induced liver injury in rats. 

Environmental and Toxicological Pharmacology, 26, 241–246. 

 

Singh, N., Rajini, P.S. (2008). Antioxidant-mediated protective effect of potato peel 

extract in erythrocytes against oxidative damage. Chemico-Biological Interaction, 

173, 97–104. 

 

Singletary, K.W., MacDonald, C., Wallig, M. (1996). Inhibition by rosemary and 

carnosol of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary 

tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett, 104, 43–48. 

 



67 

Sotelo-Felix, J.I., Martinez-Fong, D., De la Torre, P.M. (2002). Protective effect of 

carnosol on CCl(4)-induced acute liver damage in rats Eur J Gastroenterol Hepatol, 

14(9), 1001-1006. 

Sotelo-Felix, J.I., Martinez-Fong, D., Muriel, P., Santillan, R.L., Castillo, D., 

Yahuaca, P. (2002). Evaluation of the effectiveness of Rosmarinus officinalis 

(Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity 

in the rat. J Ethnopharmacol, 81(2), 145-154. 

 

Stushnoff, C., Holm, D., Thomson, M.D., Jiang, W., Thompson, H.J., Joyce, N.I. 

(2008). Antioxidant properties of cultivars and selections from the Colorado potato 

breeding programme. American Journal of Potato Research, 85, 267–276. 

 

Tanemura, Y., Yoshino, M. (2006). Regulatory role of polyamine in the acid 

phosphatase from potato tubers. Plant Physiology and Biochemistry, 44, 43–48. 

 

Takenaka, M., Nanayama, K., Isobe, S., Murata, M. (2006). Changes in caffeic acid 

derivatives in sweet potato (Ipomoea botatas L.) during cooking and processing. 

Bioscience, Biotechnology, and Biochemistry, 70, 172–177. 

 

The FOSHU system (1991). Nutrition Improvement Law Enforcement Regulations 

(Ministerial Ordinance No. 41), July. 

 

Toledo, A., Burlingame, B. (2006). Biodiversity and nutrition: A common path 

toward global food security and sustainable development. Journal of Food 

Composition and Analysis, 19, 477–483. 

 

Thompson, M.D., Thompson, H.J., McGinley, J.N., Neil, E.S., Rush, D.K., Holm, 

D.G. (2009). Functional food characteristics of potato cultivars (Solanum tuberosum 

L.): Photochemical composition and inhibition of 1-methyl-1-nitrosourea induced 

breast cancer in rats. Journal of Food Composition and Analysis, 22, 571–576. 

 



68 

Tudela, J.A., Cantos, E., Espin, J.C., Tomas-Barberan, F.A., Gil, M.I. (2002). 

Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of 

domestic cooking. Journal of Agricultural and Food Chemistry, 50, 5925–5931. 

Yamaguchi, T., Chikama, A., Mori, K., Watanabe, T., Shioya, Y., Katsuragi, Y., 

Tokimitsu, I. (2007). Hydroxyhydroquinone-free coffee: A double-blind, 

randomized controlled dose-response study of blood pressure. Nutrition, 

Metabolism, and Cardiovascular Diseases, 18, 408–414. 

 

Yesil Celiktas, O., Hames Kocabas, E.E., Bedir, E., Vardar Sukan, F., Ozek, T., 

Baser, K.H.C. (2007). Antimicrobial activities of methanol extracts and essential 

oils of Rosmarinus officinalis, depending on location and seasonal variations. Food 

Chemistry, 100, 553–559. 

 

Yesil-Celiktas, O., Sevimli, C., Bedir, E., Vardar-Sukan, F. (2010). Inhibitory 

effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of 

various human cancer cell lines. Plant Foods Hum Nutr., 65, 158–63. 

 

Vinson, J.A., Demkosky, C.A., Navarre, D.A., Smyda, M.A. (2012). High-

antioxidant potatoes: acute in vivo antioxidant source and hypotensive agent in 

humans after supplementation to hypertensive subjects. Journal of Agricultural and 

Food Chemistry, 60, 6749-6754. 

 

Waliwitiya, R., Kennedy, C.J., Lowenberger, C.A. (2009). Larvicidal and 

oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to 

the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manage. Sci., 

65, 241–248 

 

Wang, T., Takikawa, Y., Satoh, T., Yoshioka, Y., Kosaka, K. (2011). Carnosic acid 

prevents obesity and hepatic steatosis in ob/ob mice. Hepatol Res, 41, 87– 92. 

 



69 

Wang, W., Wu, N., Zu, Y.G., Fu, Y.J. (2008). Antioxidative activity of Rosmarinus 

officinalis L. essential oil compared to its main components. Food Chem.,108, 

1019–1022. 

 

Wildman R.E.C., editor. (2001). Handbook of nutraceuticals and functional foods. 

Boca Raton: CRC Press, 13-30. 

 

Williamson, G., Manach, C. (2005). Bioavailability and bioefficacy of polyphenols 

in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr., 81, 243S-255S. 

 

Wollenweber, E. (1988). Occurrence of flavonoid aglycones in medicinal plants. 

Prog Clin Biol Res, 280, 45-55. 

 

Zaouali, Y., Bouzaine, T., Boussaid, M. (2010). Essential oils composition in two 

Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant 

activities. Food Chem. Toxicol., 48, 3144–3152. 

 

Zhang, Y., Vareed, S.K., Nair, M.G. (2005). Human tumor cell growth inhibition by 

nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sciences, 76, 

1465-1472. 

 

Zhang, Y., Smuts, J.P., Dodbiba, E., Rangarajan, R., Lang, J.C., Armstrong, D.W. 

(2012). Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary 

extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem., 60, 

9305−9314. 

   



70 

 



71 

OUTLINE OF THE THESIS 

 

Plants are one of the most important sources of human foods and medicines. 

Rapidly increasing knowledge on nutrition, medicine, and plant biotechnology has 

dramatically changed the concepts about food, health and agriculture, and brought 

in a revolution on them. Nutritional therapy and phytotherapy have emerged as new 

concepts and healing systems have quickly and widely spread in recent years. 

Strong recommendations for consumption of nutraceuticals, natural plant foods, and 

the use of nutritional therapy and phytotherapy have become progressively popular 

to improve health, and to prevent and treat diseases. With these trends, improving 

the dietary nutritional values of fruits, vegetables and other crops or even bioactive 

components in folk herbals has become targets of the blooming plant biotechnology 

industry.  

This PhD project attempts to remark on these aspects through the study on 

composition and stability of bioactive metabolites present in food and herbal 

products focusing, in particular, on rosemary and pigmented potatoes. 

Phenolic compounds in these plant materials are closely associated with their 

antioxidant activity. They are also known to play important role in stabilizing lipid 

peroxidation and to inhibit various types of oxidizing enzymes or to act as anti-

inflammatory agents. 

Epidemiological studies have indicated that dietary intake of antioxidant substances 

from plants is inversely associated with mortality from coronary heart disease. 

This antioxidant action makes the diverse groups of phenolic compounds an 

interesting target in the search for health-beneficial phytochemicals and also offers a 

possibility to use these compounds or extracts rich in them to reduce the risks of 

several human diseases. 
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The main goals of this PhD project are briefly described as following: 

 

 Study the effect of an industrial steam cooking method by monitoring the 

content of anthocyanins and phenolic acids in several cultivars of potato 

(Solanum tuberosum L.) with yellow, red and violet flesh colour; 

 Evaluate the efficacy of the antioxidants present in different flesh coloured 

potatoes after cooking, using in vitro antioxidant activity assay (ABTS 

assay), and assess their potential contribution to dietary antioxidant intake; 

 Optimize an extractive and analytical procedure for the determination of all 

the phenolic constituents of Rosmarinus officinalis L. using 

HPLC/DAD/MS, and evaluate the chemical stability of the main phenols, 

depending on the storage condition, the different drying procedures and the 

extraction solvent;  

 Optimize an innovative extraction method to recover both the volatile and 

the phenolic components of rosemary using a unique multistep procedure to 

extract the volatile terpenes and the phenolic compounds from the same 

sample; 

 Investigate efficiency and selectivity of innovative extraction processes 

(ultrasound-assisted extraction (UAE) and microwave-assisted extraction 

(MAE)), to recover the phenolic fraction from rosemary leaves by means of 

last-generation devices, and to verify the ability of these techniques to 

obtain higher yields in a very short time, comparing to traditional methods; 

 Perform in vitro and in vivo tests to evaluate the potential biological effects 

of rosemary extracts and its main compounds, in particular: 

 the anticholinesterase property of rosmarinic acid in hyperglycaemia 

and its protective role against lipid peroxidation in streptozotocin-

induced diabetic rats; 

 the antimicrobial activity of some chemically characterized rosemary 

extract against two Gram-negative bacteria, Escherichia coli and 
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Pseudomonas aeruginosa, and two Gram-positive bacteria, 

Staphylococcus aureus and Staphylococcus epidermidis; 

 the anti-hyperalgesic effect of two phenolic rosemary extracts to inhibit 

neuropathic pain in the Chronic Constriction Injury (CCI) model of 

neuropathy.   
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Abstract 

The Rosmarinus officinalis L. is widely known for its numerous applications in the 

food field but also for the increasing interest in its pharmaceutical properties. Two 

groups of compounds are mainly responsible for the biological activities of the 

plant: the volatile fraction and the phenolic constituents. The latter group is mainly 

constituted by rosmarinic acid, by a flavonoidic fraction and by some diterpenoid 

compounds structurally derived from the carnosic acid. The aim of our work was to 

optimize the extractive and analytical procedure for the determination of all the 

phenolic constituents. Moreover the chemical stability of the main phenols, 

depending on the storage condition, the different drying procedures and the 

extraction solvent, have been evaluated. 

This method allowed to detect up to 29 different constituents at the same time in a 

relatively short time. The described procedure has the advantage to being able to 

detect and quantify several classes of compounds, among them numerous minor 

flavonoids, thus contributing to improving knowledge of the plant. 

The findings from this study have demonstrated that storing the raw fresh material 

in the freezer is not appropriate for rosemary, mainly due to the rapid disappearing 

of the rosmarinic acid during the freezing/thawing process. Regarding the 

flavonoidic fraction, consistent decrements, were highlighted in the dried samples at 

room temperature if compared with the fresh leaf. Rosmarinic acid, appare very 

sensitive also to mild drying processes. The total diterpenoidic content undergoes to 

little changes when the leaves are freeze dried or frozen and limited losses are 

observed working on dried leaves at room temperature. Nevertheless it can be taken 

in account that this fraction is very sensitive to the water presence during the 

extraction that favors the conversion of carnosic acid toward it oxidized form 

carnosol. From our findings, it appear evident that when evaluating the phenolic 

content in rosemary leaves, several factors, mainly the type of storage, the drying 

process and the extraction methods, should be carefully taken into account because 

they can induce partial losses of the antioxidant components. 
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1. Introduction 

Rosmarinus officinalis L. (Lamiaceae) is a plant widely distributed in Europe, Asia 

and Africa and one of its elective growing areas is the Mediterranean basin where 

spontaneous plants are diffusely distributed. The plant is widely known for its 

numerous applications in the food field but also for the increasing interest in its 

pharmaceutical properties. Two groups of compounds are mainly responsible for the 

biological activities of the plant: the volatile fraction and the phenolic constituents. 

The latter group is mainly constituted by rosmarinic acid, by a flavonoidic fraction 

and by some diterpenoid compounds structurally derived from the carnosic acid. 

In the food industry rosemary is a very frequently used herb and its oleoresins are 

added to several products to improve their oxidative stability and to ameliorate the 

organoleptic profiles [1]. 

The quality and value of commercial rosemary extracts are closely related to their 

phenolic content, particularly of carnosic and rosmarinic acids, the most abundant 

constituents, which are also well known for their various biological properties. 

According to the ESCOP (European Society Cooperative on Phytoterapy),ethanol 

and aqueous extracts from rosemary leaves are used as coleretic, colagogue, 

epatoprotective, and antioxidants, but also as light diuretic, antiulcer, antitumor and 

antiviral [2] products. The derived essential oil is mainly used for local applications 

for its balsamic, antispasmodic and anti-inflammatory activities [2].  

Moreover, rosemary and its oleoresins and extracts are widely used to preserve and 

improve the organoleptic and functional properties of foods. A protective effect 

against the discoloration of paprika samples over time was highlighted for rosemary 

extracts containing rosmarinic and carnosic acids [3].  

The introduction of rosemary ethanol extracts to the products of wiener-type and 

liver sausages limited lipid oxidation better than direct addition of the antioxidant to 

both meat products [4]. A synergistic antioxidant effect between an extract from 

rosemary leaves and BHT and a synergistic interaction with BHA to inhibit 

Escherichia coli and Staphylococcus aureus growth were demonstrated. Therefore, 

rosemary not only enhances the antioxidant efficiency of BHA and BHT, but also 
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the antibacterial effect of BHA, allowing a decrease from 4.4- to 17-fold in the 

amounts of the synthetic compounds used [5].  

Currently, considerable and renewed scientific interest is directed toward the 

rosemary plant and its various health properties. Protection exerted by carnosol 

against induced oxidative stress was highlighted on the liver in rats [6,7]. Anti-

angiogenic potential of rosmarinic acid relating to its antioxidant properties [8] and 

its ability to suppress retinal neovascularization in a mouse model of retinopathy 

were recently pointed out [9]. These latter findings suggest this molecule could be 

used in the treatment of vasoproliferative retinopathies. Recently, by in vitro test on 

hepatic stellate cells, rosmarinic acid showed antifibrogenic effects [10]. 

Administration of a dose of rosemary leaf extract (200 mg/kg BW) was effective to 

limit weight gain induced by a high-fat diet and protected against obesity-related 

liver steatosis in mice [11]. Supplementing the diet with supercritical fluid rosemary 

extract, containing 20% carnosic acid, reduced oxidative stress in aged rats [12]. 

Long-term dietary administration of ground rosemary at a 1% (w/w) level in the diet 

improved the antioxidant status of rat tissues following carbon tetrachloride 

intoxication [13].  

In light of all this scientific evidence, it could be of considerable interest to have a 

method suitable to well characterize and quantify all the phenolic constituents of the 

leaf and to evaluate the factors that can affect the chemical stability of these 

components.  

The aim of our work was to improve knowledge in this field by optimizing the 

extractive and analytical procedure, working on natural rosemary populations from 

Tuscany. The efforts have been focused to develop an extractive procedure to 

exhaustively recover and quantify the antioxidant phenolic components, mainly 

rosmarinic acid, carnosic acid and its analogous, together with all the flavonoids, 

both from fresh and dried rosemary leaves. Within this research the chemical 

stability of the main phenols, depending on the storage condition, the different 

drying procedures and the extraction solvent, have been evaluated. 
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2. Materials and methods 

2.1. Samples 

Mature foliar tissue samples were collected from plants growing at Montebenichi 

(Firenze). Aliquot samples of fresh leaves were dried in an oven at 105 ◦C, by a 

freeze drier and at room temperature in the dark for several days. Fresh leaves were 

also stored at −22 ◦C for some weeks before extraction. 

 

2.2. Extraction procedure 

The leaves (5 g as fresh material and 2.5 g as dried sample were derived from 10 

young twigs each of 8–10cm length) were ground in liquid nitrogen and extracted as 

summarized in Fig. 1. Liquid/liquid extraction (two steps) with hexane (1:1, v/v) 

was applied mainly to remove part of the chlorophylls. The residual ethanol 

solutions were directly analyzed by HPLC/DAD/ESI. 
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Fig. 1. Extractive scheme applied to recover the phenolic constituents of rosemary leaves. § 

for the extraction from dried leaves about 3% of water was added before the defatting with 

hexane. 

 

2.3. HPLC/DAD/ESI analyses 

The analyses were carried out using a HP 1100L liquid chromatograph equipped 

with a DAD detector coupled to a HP 1100 MSD mass spectrometer with an 

API/electrospray interface (all from Agilent Technologies, Palo Alto, CA, USA). A 
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150mm×3.9mm i.d., 4μm Fusion, RP18 column (Phenomenex, USA) equipped with 

a precolumn of the same phase was used. The mobile phases were (A) 0.1% formic 

acid/water and (B) CH3CN. The multi-step linear solvent gradient used was: 0–15 

min 15–25% B; 15–25 min, 25–35% B; 25–35 min 35–50% B; 35–40 min 50–

100% B with a final plateau of 8 min at 100%B; equilibration time 10 min; flow 

rate 0.4 mL min
−1

 and oven temperature 26 ◦C; injection volume 5 μL. The UV-Vis 

spectra were recorded in the range 200–500 nm and the chromatograms were 

acquired at 240, 284, 330 and 350 nm. After every four injections a wash method 

with 100% isopropanol was applied for several minutes to remove traces of 

liphophilic compounds from the column. The mass spectra were recorded in 

negative and positive ion mode, setting the fragmentation energy between 80 and 

180 V and applying the same chromatographic conditions as described previously. 

The mass spectrometer operating conditions were: gas temperature, 350 ◦C; 

nitrogen flow rate, 9 L min
−1

; nebulizer pressure, 30 psi; quadrupole temperature, 40 

◦C; and capillary voltage, 3500 V. All solvents used were of HPLC grade; CH3CN 

was from E. Merck (Darmstadt, Germany). 

 

2.4. Quantitative evaluation 

The quantitative evaluation of the main constituents was performer through the use 

of two external standards, rosmarinic acid at 330nm and carnosic acid at 284 nm. 

The first compound was used at 330 nm, to quantify also all the flavonoids, while 

the second one at 284 nm to determine all the other diterpenoids. The calibration 

curve of rosmarinic acid (Sigma–Aldrich) was in a linearity range between 0.1 μg 

and 9.4 μg with a r
2
 0.9999; the calibration curve of carnosic acid (Sigma–Aldrich) 

was in the linearity range of 0.05–3.4 μg with r
2
 0.9998. 

 

2.5. Statistical analyses 

Data were not normally distributed (Kolmogorov–Smirnov one sample test) and 

were analyzed by the non-parametric Kruskal–Wallis ANOVA followed by the 

Mann–Whitney U-test for multiple comparisons using SYSTAT 12.0 software 
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(Systat Software Inc., Richmond, California, USA). Differences were accepted 

when significant at the 5% level. 

 

3. Results and discussion 

3.1. Extraction process 

As summarized in Table 1, to recover the phenolic fraction from rosemary leaves, 

several procedures have been described proposing different times of extractions, 

solvents and weigh/volume ratios. Hydro alcoholic mixtures in various proportions 

[14–16], or methanol [17–20] and ethanol alone [21] have been proposed as suitable 

media to recover the main phenolic constituents from leaves. A small number of 

reports indicate the use of other solvents, such as CH2Cl2/EtOH, mainly for the 

diterpenoidic fraction [22], or DMSO [23,24], a solvent not easily to remove in case 

of concentration of the sample. Moreover, as highlighted in Table 1, the total 

amount of leaves, and the applied ratios between solvent and raw matrix varies 

widely, ranging between 20 mg and 10 g and between 1.1 and 100 mg/mL, 

respectively.  

 

Table 1. Extractive methods proposed to recover the phenolic constituents from rosemary 

leaves. 
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In addition, several of these studies focus only on recovering a part of the complex 

phenolic fraction of the leaf. In Fig. 2 are shown some chemical structures of the 

main phenolic constituents of this plant. To date, a unique extractive method, 

suitable to simultaneously and efficiently recover all these components with high 

yields, has not yet been proposed. 

 

Fig. 2. Chemical structures of the main phenolic constituents of rosemary leaves. 

 

With the objective of obtaining a representative sample and after some preliminary 

tests (data not shown), 5 g of fresh leaves and 2.5 g of dried sample were chosen to 
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carry out the extraction process. To select the extractive mixture, several factors 

were taken into account: (i) the need to use a solvent that would guarantee an 

adequate chemical stability of the target molecules with good extraction yields of all 

the components; and (ii) the willingness to use a non-toxic mixture suitable also for 

future applications in the food field. In light of these requirements, only ethanol and 

ethanol–water mixtures were chosen to carry out the extraction tests within this 

work. Moreover, it is worth noting that, mainly to improve the extraction yields of 

rosmarinic and carnosic acids, several previous works have already opted for 

alcoholic mixtures (Table 1). 

Considering the co-presence in the leaf both of polar and non polar phenols, it was 

decided to first operate with ethanol mixtures containing water but in a percentage 

of not over 50%. Preliminary tests on fresh leaves carried out with ethanol/water 

(1:1) or ethanol for the first extraction and ethanol/water (1:1) for the next step, did 

not give encouraging results. In fact, if compared with the yields reached using only 

ethanol for all the extractive steps, lower amounts of rosmarinic acid and a rapid 

degradation of carnosic acid toward its oxidized forms, were obtained with the use 

of hydroalcoholic mixtures.  

In literature it is reported that in water media the carnosic acid rapidly degraded 

toward the oxidized form of carnosol quinone [25] and in methanol it is converted 

toward carnosol [26] with a consistent decrease after only 24 h at room temperature 

[27]. Due to the lack of data in ethanol, some tests were done in this solvent to 

verify the stability over time not only of carnosic acid but also of the other phenols. 

To this purpose firstly the two standard, carnosic and rosmarinic acids, were 

dissolved in ethanol at different concentrations (0.29mg/mL and 0.94 mg/mL), and 

the solutions treated with ultrasound for more than 2 h, stored at room temperature 

or at −23 ◦C for different times and then analyzed by HPLC/DAD/MS. The carnosic 

acid remained unaltered up to 48 h at room temperature in dark so guarantying the 

possibility to make automated quantitative analysis by an autosampler. After 3 

months at −23 ◦C the carnosic acid in ethanol solution was reduced of 17% 

obtaining carnosol as main oxidated derivative. Almost the same behavior was 

observed in ethanol extracts from rosemary leaves. The analyses of several samples 
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after 3 months at a −23 ◦C, highlighted increments of the oxidized derivatives in the 

ranges 14–18% for carnosol; with traces for rosmanol, and only a reduction up to 

20% of the initial amount of carnosic acid. The other phenolic constituents of the 

leaves, the rosmarinic acid and the flavonoidic fraction, remained almost unaltered 

in ethanol solution up to 3 months at -23 ◦C.  

It is known that sonication, which contributes to destroying cellular structures, 

guarantees a better penetration of the extractive solvent within the raw matrix. Since 

the rosemary leaves are fibrous and with a leathery texture, to increase the yields 

and to optimize the extraction time, the use of an ultrasound bath was inserted in the 

procedure, also according to that suggested by other authors [14,21]. Using a 

ultrasound bath at 35 KHz and not 40 KHz as previously applied, extraction times 

longer than 45 min were tested maintaining the water temperature below 50 ◦C. The 

coupled use of stirring and ultrasounds during the extraction has been inserted. 

Due to the non-availability of an instrument able to apply, at the same time, these 

two conditions, it was elaborated the extraction procedure summarized in Fig. 1. 

This optimized procedure includes alternatively using magnetic stirring and 

ultrasounds with a total time of 115 min for each extraction.  

Preliminary shorter times of extraction (by about half) were also applied 

highlighting a consistent decrease of the extractive yields. The amounts of 

rosmarinic acid were about four times lower and of the total flavonoids about two 

times lower with respect to those obtained applying longer extraction times.  

The choice to use only two consecutive extractions for each fresh or dried sample 

was determined by the evidence that about 20–30% of the main phenolic 

constituents (rosmarinic acid and carnosic acid with its analogues) remained in the 

leaves after the first extractive step, while less than 5% of the total phenolic amount 

was recovered applying a third consecutive extraction. 

 

3.2. Identification of the phenolic constituents 

The analytical HPLC method was optimized with the aim to obtain a good 

chromatographic separation for all the numerous components of the ethanol extract. 
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After preliminary tests on different reverse phase columns, the choice fell on the 

Fusion® column. The multistep elution method was suitable to separate more than 

28 different components (Fig. 3), among them the rosmarinic acid, numerous minor 

flavonoids, either as aglycones and glycosides, and the diterpenoidic constituents 

(Table 2), within a total time of 45 min. 

 

Fig. 3. HPLC profiles at 284nm and 330nm of an ethanol extracts from fresh leaves. 

 

 

Table 2. List of phenolic compounds tentatively identified by their Rts, UV–Vis and mass 

spectra and by the use of standards. Glu, glucose; gluc, glucuronic acid; rha, rhamnose. 
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The rosmarinic acid, easily identified by comparison with the standard, is always 

the main component of the phenolic fraction. Among the diterpenoids, the presence 

of carnosic acid was confirmed by comparison with the pure standard and a very 

good response of the mass detector both in negative and positive mode was 

highlighted. As discussed in the next paragraph, several oxidation products were 

obtained maintaining this standard in ethanol solution for several days; this sample 

was then used as reference to detect and identify the same diterpenoids in the 

rosemary extracts. The mass spectra of carnosic acid and carnosol resulted 

diagnostic both in positive and negative ionization mode as clearly shown in Fig. 4a 

and b.  

 

 

Fig. 4. Mass spectra in positive and negative ionization mode of (a) carnosic acid 

and (b) carnosol. 

 

The positive ionization allowed to obtain the [M+H]
+
 and the [M+Na]

+
 ion species 

for both the compounds and the fragments related to the loss of the carboxyl group. 

In negative ionization mode the most intense and diagnostic ions were the [M−H]
−
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and the [M−H−CO2]
− 

ion at m/z 287, and m/z 285 for carnosic acid and carnosol 

respectively.  

In agreement with previous data that highlighted close retentions times for the two 

isomers, rosmanol and epirosmanol [18], and in absence of suitable pure standards, 

they were indentified mainly by their UV–Vis and mass spectra. Appling a negative 

ionization, the mass spectrum of rosmanol/epirosmanol at higher fragmentation 

energy, showed the [M−H]
−
 ion at m/z 345, the [M−H−CO2]

−
 ion at m/z 301 and 

[M–H–CO2–H2O]
−
 specie at m/z 283. Moreover the loss of a water molecule 

observed only for these compounds within the diterpenoidic fraction, can be 

attributed to a dehydratation process involving the free OH group linked on carbon 

C7. Even if in traces amount the presence of methyl carnosate was confirmed by its 

mass spectrum with the [M−H]
− 

ion atm/z 345, the specie related to the loss of the 

methyl group atm/z 331, and the ion at m/z 287 attributable to the loss of the CH3–

COO group, typical also of the mass spectrum of carnosic acid. This metabolite was 

also detected, as impurity, in the commercial standard of carnosic acid. 

According to literature [18,23,24,28] several flavonoidic derivatives, were detected 

in our extracts, even if in lower amount if compared to the main constituents, the 

diterpenoidic fraction and the rosmarinic acid. The applied methods allow to 

separate and detect an higher number of flavonoidic structures with respect to those 

previously reported [18,23,24,28]. 

These molecules were recognize to belong to the class of flavones or flavonols 

mainly by their characteristic UV–Vis spectra with two main bands between 260–

270 nm and 335–345 nm. 

Among these constituents the aglycones cirsimaritin and genkwanine showed mass 

spectra characterized only by the presence of the [M−H]
−
 ions with 100% of 

intensity. Other glycosilated forms were also detected, among them ispidulin, 

cirsimaritin and isoscutellarein monoglucosides and some minor diglicosides, all 

showing diagnostic fragmentation in negative ionization mode (Table 2). 
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3.3. Effects of freezing and drying processes on the phenolic fraction 

In this paragraph we discuss the main factors that strongly modify the phenolic 

amount in the ethanol extracts, particularly when obtained from fresh or frozen 

leaves. The following data were obtained working on two batches of rosemary 

leaves harvested from the same plants. The sample from February was selected to 

evaluate the consequences of freezing/thawing processes, while the other one from 

September was used to study the effects of drying processes. 

Moreover, with the aim to propose a mode of quantization easy to be applied only 

the two main constituents, available as commercial standards, carnosic and 

rosmarinic acids, were selected as external standards; for all the flavonoids again 

was chosen the rosmarinic acid. 

In the ethanol extract from frozen leaves the concentration of rosmarinic acid was 

dramatically lower with respect to the fresh leaves, and all the minor flavonoids 

were better highlighted. Frequently when a large number of fresh samples are 

handled, the sample plant material is frozen to guarantee its stability over time. For 

rosemary leaves it is easy to observe a rapid and marked browning of the surface of 

the leaf during thawing. In fact, even if the frozen sample had been handled within a 

few minutes (e.g. not more than 5min), before the addition of the extractive solution 

a partial browning could not be avoided and a significant decrease of rosmarinic 

acid (χ
2
= 3.857, P < 0.05) between 65% and 80% was measured (Table 3). This 

phenomenon must be taken into account when a quantitative determination of this 

phenol in rosemary leaf is done. The enzymatic browning can be related to the 

endogenous enzymes that, during and after the thawing, presumably oxidize the two 

catecolic groups of rosmarinic acid. This aspect has not yet been sufficiently 

emphasized in the scientific literature to date. In fact, despite these problems, 

freezing has been recently reported as a method to store, over time prior to chemical 

analysis, aromatic plants including rosemary [16]. In agreement with our results, 

these authors observed that the antioxidant activity of all the extracts from frozen 

leaves was considerably lower when compared with those from dried leaves. This 

evidence can be mainly related to the oxidation of rosmarinic acid.  
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Table 3. Amount of phenols (μg/g dried weight) for fresh and frozen leaves harvested in 

February. The values are a mean of three different extractions of the same batch of an adult 

plant. 

 

At the same time, in the extract from frozen leaves also the total flavonoidic content 

decreased significantly but not more than 11.5% (Table 3). The extracts from fresh 

and frozen leaves did show only little differences in the terpenoidic fraction, and the 

relative distribution within the different constituents was almost unchanged as well 

(Fig. 5). 

 

Fig. 5. Distribution of the different diterpenoids in ethanol extract from fresh, dried and 

frozen leaves. The data, expressed as μg/g dried leaves, are a mean of three determinations. 

S = leaves harvested in September; F = leaves harvested in February. 
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Due to the loss of phenols induced by freezing of the leaves, drying processes under 

mild conditions were hypothesized as alternative methods to maintain the raw 

sample over time. Toward this aim two procedures were tested: freeze drying and 

drying at room temperature for several days in the dark. The optimized extraction 

procedure was then applied to evaluate the phenolic content in dried and freeze-

dried leaves with respect to the fresh sample, all obtained from the same batch of 

adult Tuscan plants (Table 4).  

 

Table 4. Amount of phenolic constituents (μg/g dried weight) in fresh, freeze dried and 

dried leaves harvested in September. The values are a mean of three different extractions of 

the same batch of an adult plant. Different letters mean significant differences between the 

samples based on Mann–Whitney test. 

 

Observing the quantitative results, particularly those summarized in Table 3, an 

high variability of the phenolic content is pointed out. Nevertheless, also some 

recent works, focused to evaluate these compounds in fresh rosemary leaves, often 

highlight an high variation of the quantitative data. Almela et al. [18] have shown 

RSD values up to 14% for rosmarinic acid, 25.6% for carnosol and 18.6% for 

carnosic acid. Other authors, even applying a completely different extraction 

procedure such as a supercritical fluid extraction, have had similar findings, with 

RSDs between 3.01% and 13.5% for rosmarinic acid [29]. Differently from the 

fresh leaves, the data related to the dried samples, particularly for the freeze dried 

leaves (Table 4) have shown lower variability.  
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The rosmarinic acid content did not vary significantly after lyophilization, while 

Mann–Whitney U-test showed a significant variation between fresh and dried 

leaves (χ
2
 = 4.257, P < 0.05) and between freeze-dried and dried leaves (χ

2
 = 3.857, 

P < 0.05). The total flavonoids showed a significant decrease, close to 34% and 

53% in the freeze-dried and dried leaves respectively, with the highest losses 

observed for some glycosilated forms. The total diterpenoidic content did not show 

significant variations between the different treatments but the contents of carnosol 

and carnosic acid strongly varied. The highest amount of carnosol was detected in 

fresh leaves and Mann–Whitney U-test showed significant variations between fresh 

and dried leaves, freeze-dried and dried leaves and fresh and freeze-dried leaves 

(Table 4). Fresh leaves showed the lowest content of carnosic acid and significant 

variations were detected between fresh and dried leaves (χ
2
 = 3.857, P < 0.05), 

freeze-dried and dried leaves (χ
2 
= 3.857, P < 0.05) and fresh and freeze-dried leaves 

(χ
2 
= 3.857, P < 0.05) as also showed in Fig. 5. 

Our previous results obtained on leaves collected in different periods confirmed this 

trend: the carnosic acid/carnosol ratio ranged between 0.6 and 1.8 for the fresh 

sample, while it increased up to 4.9–8.4 for dried samples. This phenomenon can be 

related to the higher water content in the fresh leaves, close to 60% (w/w) in our 

samples. Previous data pointed out that the water content of fresh rosemary leaves 

ranges usually between 40–60% by weight, while the dried matrix contains only a 

residual humidity near 5% (w/w) [21]. The moisture of the fresh sample can 

modify, particularly during the first extractive step of our method, the composition 

of the extractive mixture reaching a concentration near 6% (v/v). In light of our 

results, it appeared that also these low amounts of water seems to be critical to 

induce the oxidation of carnosic acid toward carnosol during the extraction process.  

The water content of the sample strongly influence the variabilità of the data: 

working on other rosemary dried leaves, also with very low content of phenolic 

constituents, the RSD values obtained from freeze dried samples were always below 

5.14% (data not shown). 

Furthermore, these preliminary findings pointed out that the phenolic profiles in 

fresh foliar tissue remain almost stable between samples collected on September 
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and February (Table 4), with the only exceptions being the total flavonoids that 

showed an higher amount in the sample of September (Fig. 6). Within this class, 

almost all the flavonoids showed significant variation between these two sampling 

dates, particularly all the glycosilated forms and particularly the genkwanine is 

reduced up to eight times in the sample from February.  

 

 

Fig. 6. Percentage values of the phenolic constituents in dried leaves after different 

treatments. Data are a mean of three determinations. S = leaves harvested in September; F = 

leaves harvested in February. 

 

The leaves harvested in September, richer in flavonoidic compounds with respect to 

those collected in February (see Tables 3 and 4), can be used for further researches 

to isolate and characterize the minor unknown flavonoids of rosemary. 

 

4. Conclusions 

When it is impossible to extract the fresh material and to limit losses of the phenolic 

content, the freeze dried process is often applied as the best method for storing the 

sample before analysis. The findings from this study have demonstrated that storing 

the raw fresh material in the freezer is not appropriate for rosemary, mainly due to 
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the rapid disappearing of the rosmarinic acid presumably involving the 

phenoloxidase activity. Further research is needed to evaluate the roles of these 

endogenous enzymes in determining the oxidation of this compound during the 

freezing/thawing process. Regarding the flavonoidic fraction, consistent 

decrements, were highlighted in the dried samples at room temperature if compared 

with the fresh leaf. Differently from rosmarinic acid, limited losses were pointed out 

in the extracts from frozen leaves. Rosmarinic acid, appeared very sensitive also to 

mild drying processes. Regarding the total diterpenoidic content this undergoes to 

little changes when the leaves are freeze dried or frozen and limited losses are 

observed working on dried leaves at room temperature. Nevertheless it can be taken 

in account that this fraction is very sensitive to the water presence during the 

extraction that favors the conversion of carnosic acid toward it oxidized form 

carnosol. From our findings, it appear evident that when evaluating the phenolic 

content in rosemary leaves, several factors, mainly the phenoloxidases activity in 

the fresh and frozen leaf, the drying process and the extraction methods, should be 

carefully taken into account because they can induce partial losses or modification 

of the antioxidant components. 

It has been pointed out, that the highest variation of the quantitative data is related 

to the treatment of fresh leaves and to the role of endogenous oxidative enzymes in 

presence of water, while this problem does not exist working on dried leaves. 

Despite the variability observed in the fresh samples, the statistic evaluation has 

pointed out, in any case, some macroscopic differences as statistically significant.  

Moreover the proposed HPLC method has the advantage to detect up to 30 phenolic 

constituents belonging to different chemical classes. At the same time, it allows the 

quantitative evaluation of numerous compounds, among them several minor 

flavonoids. The method guarantees an analytical procedure suitable for detecting all 

the constituents that contribute to the antioxidant potency of the rosemary extracts 

in a relatively short time. 
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Abstract 

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid 

peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of 

streptozotocin-induced diabetic rats. The animals were divided into six groups 

(n=8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 

mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex 

and hippocampus) were removed for experimental assays. The results demonstrated 

that the treatment with RA (10 mg/kg) significantly reduced the level of lipid 

peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic 

rats when compared with the control. In addition, it was found that hyperglycaemia 

caused significant increased in the activity of AChE in hippocampus (58%), cortex 

(46%) and striatum (30%) in comparison with the control. On the other hand, the 

treatment with RA reversed this effect to the level of control after 3 weeks. In 

conclusion, the present findings showed that treatment with RA prevents the lipid 

peroxidation and consequently the increase in AChE activity in diabetic rats, 

demonstrating that this compound can modulate cholinergic neurotransmission and 

prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that 

RA could be a promising compound in the complementary therapy in diabetes.  

 

 

 

 

 

 

 

 

Keywords: streptozotocin, diabetes, lipid peroxidation, acetylcholinesterase, 

rosmarinic acid 
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1. Introduction 

Diabetes mellitus, a major crippling disease refers to the group of diseases that lead 

to high blood glucose levels resulting from either low levels of the hormone 

(insulin) or from abnormal resistance to insulin’s effects.
1
 The prevalence of 

diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% 

in 2030.
2 

During diabetes, persistent hyperglycaemia causes the increased 

production of free radicals, as a result of glucose auto-oxidation and protein 

glycosylation.
3,4 

High level of lipid peroxidation has been found in diabetic 

patients.
3,4 

Peroxidation of membrane lipids seriously impairs membrane functions 

and disturbs ionic gradient receptor and transport functions, results in cellular 

dysfunctions.
5,6 

In addition, increased thiobarbituric acid reactive substances 

(TBARS) in rats with streptozotocin (STZ)-induced diabetes is a well-established 

method for monitoring lipid peroxidation.
7
  

It has been observed that reactive oxygen species contribute to the development of 

chronic complications in the brain.
8,9 

Along with cerebrovascular disease, diabetes is 

implicated in the development of other neurological co-morbidities including 

alterations in neurotransmission, electrophysiological abnormalities, structural 

changes and cognitive dysfunction.
10

 Furthermore, diabetes has been implicated as a 

risk factor for dementia not only of vascular type but also to Alzheimer’s disease.
11

 

The exact pathophysiology of cognitive dysfunction and cerebral lesions in diabetes 

is not completely understood, but it is likely that hyperglycaemia, vascular disease, 

hypoglycaemia, insulin resistance and oxidative stress play significant roles.
12

 

Furthermore, some research using investigational diabetes established an increase in 

acetylcholinesterase (AChE) (3.1.1.7) activity, which may lead to alterations in 

cholinergic neurotransmission and thus be associated to cognitive impairments 

observed in diabetes mellitus.
13

 Researches have long-established that one of the 

most vital mechanisms responsible for correct cholinergic function is performed by 

the enzyme AChE.
14,15 

 

Acetylcholinesterase is a membrane bound enzyme that hydrolyzes the 

neurotransmitter acetylcholine (ACh) into choline and acetate after their function in 
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cholinergic synapses at the brain region.
16,17 

The AChE is present in higher amount 

in healthy human brain compare with other tissues of the body.
16

 Interestingly, 

AChE responds to various insults including oxidative stress, an important event that 

has been related to the pathogenesis and progression of a variety of CNS disorders, 

such as stroke, Alzheimer’s disease,
11

 and diabetes mellitus.
13,14,18  

Literature reveals the role of antioxidants and suggests that there is a strong 

association between high intake of antioxidants and low incidence of diseases 

linked with free radicals such as diabetes.
19,20 

It has been proved that plants are the 

source of compounds with antioxidant properties.
21

 This activity is mostly related to 

phenolic compounds such as rosmarinic acid (RA) (Figure 1).
22

 It is a well-known 

natural product found in rosemary (Rosmarinus officinalis), lemon balm (Melissa 

officinalis) and other medicinal plants such as thyme, oregano, savoury, peppermint 

and sage.
24–26 

Studies showed that RA is a strong antioxidant than Trolox and 

Vitamin E and has attributed the this propriety the most of its beneficial effects.
26

 

Moreover, it has many biological effects such as antitumor, anti-hepatitis and 

protecting the liver, inhibiting the blood clots and anti-inflammation.
24–26

 

Interestingly, previous studies of our research group also demonstrated that 

polyphenols, such as resveratrol, prevent the increase in AChE as well the increase 

in lipid peroxidation.
15,27

 However, the effects of RA in these parameters still were 

not determined. Thus, the principal aim of the present study was to evaluate 

anticholinesterase property of RAs in hyperglycaemia and its protective role against 

lipid peroxidation in STZ-induced diabetic rats. 

 

Figure 1. Chemical structure of rosmarinic acid 
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2. Materials and methods 

2.1. Chemicals 

Coomassie brilliant blue G-250, 5,5′dithiobis-2-nitrobenzoic acid, acetylthiocholine 

iodide (AcSch) and RA were kindly gifted by Nadia Mulinacci from Italy. STZ was 

obtained from Sigma Chemical Co (St. Louis, MO, USA). All other reagents used 

in experiments were of analytical grade. 

 

2.2. Animals 

Adult male Wistar rats (70–90 days; 200–250 g) were used in experiment obtained 

from Central Animal House of the Federal University of Santa Maria, Brazil. The 

animals were maintained at a constant temperature (23 ± 1 °C) on a 12-h light/dark 

cycle with free access to food and water. Before starting the experiment, the animals 

were gone through an adjustment period of 20 days. All animal procedures were 

approved by the Animal Ethics Committee from the Federal University of Santa 

Maria (protocol under number: 023/2012). 

 

Experimental induction of diabetes 

Diabetes was induced by a single intra-peritoneal injection of 55 mg/kg STZ, 

diluted in 0.1M sodium-citrate buffer (pH 4.5). The age-matched control rats 

received an equivalent amount of the sodium-citrate buffer. STZ-treated rats 

received 5% of glucose instead of water for 24 h after diabetes induction in order to 

reduce death due to hyperglycaemic shock. Blood samples collected from the tail 

vein 8 days after STZ induction. Glucose levels were measured with a portable 

glucometer (ADVANTAGE, BoehringerMannheim, MO, USA). Only animals with 

fasting glycaemia over 300mg/dL were considered diabetic and used for the present 

study. 

 

Treatment 

The animals were randomly divided into six groups (eight rats per group): 
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1. control; 

2. ethanol; 

3. RA 10 mg/kg; 

4. diabetic; 

5. diabetic/ethanol 

6. diabetic/RA 10 mg/kg. 

 

Two weeks after diabetes induction, the animals belong to the group control/RA and 

diabetic/RA received 10 mg/Kg body weight of RA, whereas the animals from 

control and diabetic groups received saline solution. RA prepared freshly in 25% 

ethanol and administered via gavage, between 10 and 11 AM once a day during 21 

days, at a volume not exceeding 0.1 mL/100 g rat weight. The choice of this dose of 

10 mg/Kg of RA was made on the basis of previous works that used the same 

concentrations of RA and obtained beneficial results.
28,29

 

Rosmarinic acid was dissolved in 25% ethanol. To correct the interference of 

ethanol, a group of control rats and another group of diabetic rats received a 

solution of ethanol 25%. However, no significant differences in the control/ethanol 

and diabetic/ethanol groups were observed to any parameters analysed when 

compared with control/saline and diabetic/saline groups, respectively (data not 

shown). 

Twenty-four hours after the last treatment, the animals were previously 

anaesthetized for blood collection by cardiac puncture, and the liver, kidney and 

brain were removed carefully for subsequent biochemical analysis. 

 

Brain tissue preparation 

The animals were anaesthetized under halothane atmosphere before being killed by 

decapitation and brains were removed and separated into cerebral cortex, 

hippocampus, striatum, cerebellum and placed in a solution of 10mM Tris–HCl, pH 

7.4, on ice. The brain structures were homogenized in a glass potter in Tris–HCl 

solution. Aliquots of resulting brain structure homogenates were stored at -8 °C 
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until utilization. Protein was determined in each structure: cerebral cortex 

(0.7mg/mL), striatum (0.4 mg/mL) and hippocampus (0.8 mg/mL). 

 

Protein determination 

Protein in different structure of rat’s brain was determined by the method of 

Bradford et al. (1976)
30

 using bovine serum albumin as a standard solution. 

 

Determination of lipid peroxidation 

Lipid peroxidation in brain hippocampus and cortex was determined according to 

Ohkawa et al. (1979).
31

 The amount of TBARS was expressed as nanomoles 

malondialdehyde per milligrams tissue. 

 

Determination of AChE activity 

The AChE enzymatic assay was determined by a modification of the 

spectrophotometric method of Ellmann et al. (1961)
32

 as previously described by 

Rocha et al. (1993).
33 

The reaction mixture (2 mL final volume) contained 100 mM K
+
-phosphate buffer, 

pH 7.5 and 1 mM 5,5′-dithiobisnitrobenzoic acid (DTNB). The method is based on 

the formation of the yellow anion, 5,5′-dithio-bis-acidnitrobenzoic, measured by 

absorbance at 412 nm during 2 min incubation at 25 °C. The enzyme (40–50 μg of 

protein) was pre-incubated for 2 min. The reaction was initiated by adding 0.8 mM 

AcSCh. All samples were run in duplicate or triplicate, and the enzyme activity was 

expressed in micromole AcSCh/h/mg of protein. 

 

Statistical analysis 

Statistical analysis was performed by the commercial SPSS package for 

Windows©. All data were expressed as mean ± SD. Data were analyzed statistically 
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by a two-way analysis of variance followed by the Duncan’s multiple tests. 

Differences were considered significant when the probability was P<0.05. 

 

Results 

The body weight and blood glucose levels determined at the onset and at the end of 

the experiment are presented in Table 1. As can be observed, the blood glucose 

levels in the diabetic group treated with RA (10mg/Kg body weight/day) for 21 

days showed no significant differences from diabetic group (Table 1), whereas the 

body weight was significantly decreased in diabetic group compared with control. 

Furthermore, diabetic group treated with RA increased the body weight compared 

with diabetic (Table 1). 

Despite that behaviour analysis is not performed, it was possible to observe that 

diabetic animals presented apathetic and lethargic characteristics when compared 

with control group. However, the diabetic rats treated with RA presented an 

apparent improvement in these characteristics when compared with those not 

treated. 

Diabetic rats showed an increase in the levels of lipid peroxidation in hippocampus 

(Figure 2), cortex (Figure 3) and striatum (Figure 4) when compared with control. 

The treatment with RA prevented the increased in the lipid peroxidation in 

hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when 

compared with the control (Figures 2–4). 

In the present study, diabetic rats presented an increase in the AChE activity in the 

hippocampus (58%) (Figure 5), cortex (46%) (Figure 6) and striatum (30%) (Figure 

7) when compared with the control group. On the other hand, the treatment with RA 

(10 mg/kg body weight/day) by a period of 3 weeks prevented the increase in AChE 

activity in hippocampus, cortex and striatum, (Figures 5–7) compared with 

diabetic/saline group. 
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Discussion 

Hyperglycaemia is the main reason of causing a series of biochemical events, 

which result in the formation of high levels of reactive oxygen species and 

ultimately an oxidative stress.
34

  

 

Table 1. The effect of different doses of rosmarinic acid on body weight and fasting blood 

glucose levels in control and diabetic rats at the onset and the end of the experiment 

 

STZ-induced diabetes is a well-characterized experimental model for type 1 

diabetes due to its ability to selectively destroy pancreatic islet of β-cells leading 

insulin deficiency and hyperglycaemia.
35

 In STZ-induced diabetic rats, a decreased 

body weight was observed (Table 1). There are different views about this loss of 

weight; for example, it may be related to excessive break-down of tissue proteins
36

 

or dehydration and catabolism of fats and proteins.
37

 RA administration to diabetic 

rats decreased food consumption and improved body weight. 

Free radicals react with important biological molecole (nucleic acids, proteins and 

lipids etc.). However, the most vulnerable ones are polyunsaturated fatty acids. 

Reaction of free radicals with cell membrane constituents leads to lipid 

peroxidation.
35

 In our study, an increased of lipid peroxidation in hippocampus 

(Figure 2), cortex (Figure 3) and striatum (Figure 4) was observed in diabetic rats as 

evidenced by increase in TBARS levels. This increased in lipid peroxidation levels 

during the diabetes can be due to inefficient anti-oxidant system.
39

 In fact, several 

studies have demonstrated a decrease in antioxidant enzymes, such as superoxide 
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dismutase and catalase and consequently in increase TBARS levels, in brain of 

diabetic rats, which can contribute to oxidative damages in central nervous 

system
40,41 

and consequently results in development and progression of several 

neurodegenerative disease. Furthermore, it is reported that high level of lipid 

peroxidation is responsible for the formation of lipid hydroperoxides in membrane, 

which result in the damage of membrane structure and alteration of membrane-

bound enzymes such as AChE.
42 

 

Figure 2. Protective role of rosmarinic acid in streptozotocin-induced diabetic rats via 

inhibition of lipid peroxidation in hippocampus. Rosmarinic acid was given by gavage for 3 

weeks at the rate of 10 mg/Kg body weight. The result represents the mean of eight different 

experiments of each group down in duplicate. *P<0.05, diabetic group shows significant 

difference from all groups 

 
Figure 3. Lipid peroxidation in streptozotocin-induced diabetic rats in cortex and those 

treated with rosmarinic acid (10 mg/Kg) after 3 weeks. The results represent the means of 

eight different experiments down in duplicate. *P<0.009, shows significant difference from 

all groups 
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Figure 4. Lipid peroxidation in rat hippocampus after 21 days treatment with rosmarinic 

acid at 10 mg/Kg. The diabetic groups indicate significant (*P<0.0009) difference from all 

groups. The results represent the mean of eight different experiments of each group down in 

duplicate 

 

In the present study, we found a significant high activity of AChE in hippocampus 

(Figure 5), cortex (Figure 6) and striatum (Figure 7) of STZ-induced diabetic rats 

compared with control group. Similarly, Schmatz et al. (2009)
15

 and Sanchez-

Chavez Salceda (2000)
43

 also observed a significant elevation in AChE activity in 

cerebral cortex, striatum and hippocampus of STZ-induced diabetic rats. 

Interestingly, AChE activation leads to a fast ACh degradation and a subsequent 

downstimulation of ACh receptors causing undesirable effects on cognitive 

functions.
44

 In this context, we can suggest that the increase in AChE activity 

caused by experimental diabetes leads to a reduction in the efficiency of cholinergic 

neurotransmission due to a decrease in Ach levels in the synaptic cleft, thus 

contributing to the progressive cognitive impairment and other neurological 

dysfunctions seen in diabetic patients.
45

 On the other hand, ACh is considered as an 

anti-inflammatory molecule, and a possible reduction in their levels due to the 

increase on the AChE activity can contribute to increase the levels of interleukin-1 

and tumour necrosis factor-α due to anti-inflammatory role exerted by this 

neurotransmitter.
16

 All these events can lead to enhance local and systemic 

inflammations.
16,46

 In fact, diabetes mellitus and Alzheimer’s disease share a 
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common feature of low-grade systemic inflammatory conditions in which plasma 

AChE activity is increased.
45,46

 

 

Figure 5. In hippocampus, acetylcholinesterase activity levels in streptozotocin-induced 

diabetic rat model and treated with rosmarinic acid (mean ± SD, n = 8). Significant 

differences from other groups (*P≤0.05) 

 

 

Figure 6. Acetylcholinesterase activity in cortex of STZ-induced diabetic rats and those 

treated with rosmarinic acid (10 mg/kg body weight) after 3 weeks treatment. Bars represent 

means ±SEM *P<0.001, significant increase compare with other groups 
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Figure 7. Acetylcholinesterase activity in striatum of streptozotocin-induced diabetic rats 

and those treated with rosmarinic acid (10 mg/kg body weight) after 3 weeks treatment. Bars 

represent means ±SEM *P<0.05, significant increase compare with other groups 

 

Treatment of diabetes mellitus and its complications in the recent context has 

focused on the usage of naturally occurring antioxidants in food or medicinal flora 

to replace synthetic antioxidants, which are being restricted, due to their adverse 

side effects, such as carcinogenicity.
47 

Several studies had shown that plants are 

source of compounds with antioxidant property and prevent lipid peroxidation in 

various tissues during induced oxidative stress. The activities are mostly related to 

phenolic compounds.
48,49

 

In the present study, RA decreased lipid peroxidation in hippocampus (Figure 2), 

cortex (Figure 3) and striatum (Figure 4) of diabetic rats. These results are in 

accordante with other studies that have showed the antioxidant effects of RA, 

reducing the levels of malondialdehyde in central nervous system.
50

 

An important aspect to be discussed in our study is that the prevention of increase of 

TBARS levels by RA can be associated with the anticholinesterase property exhibit 

by this polyphenol. In fact, the treatment with RA prevented the increase in AChE 

activity of hippocampus (Figure 5), cortex (Figure 6) and striatum (Figure 7) of 

diabetic rats after 21 days of treatment. These results are similar to those found in 

studies with other antioxidants polyphenols that also prevented the rise in AChE 

activity. This effect in AChE enzyme can contribute to increase the ACh levels in 
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the synaptic cleft enabling an improvement in cognitive functions, such as learning 

and memory,
51

 which suggests an interaction between RA and the cholinergic 

system. On the other hand, it is important to point out that the protective effects 

against oxidative stress by decreasing lipid peroxidation in brain of diabetic rats as 

observed in the treatment with RA could be a decisive factor to the prevention of 

alteration in AChE activity. In fact, alterations in the lipid membrane observed 

during the diabetic state can be directly associated with modification of the 

conformational state of the AChE molecule and would explain the change activity 

of this enzyme in diabetic state.
52

 

In conclusion, the results obtained in the present study demonstrate an increase in 

lipid peroxidation in brain from diabetic rats that were associated with alterations in 

AChE activity indicating that cholinergic neurotransmission is altered in the 

diabetic state. In addition, the treatment with RA prevented the increase in AChE 

activity and of lipid peroxidation, demonstrating that this compound may modulate 

cholinergic neurotransmission and may consequently improve cognitive 

dysfunctions associated to oxidative stress. 

Thus, we can suggest that RA is a promising natural compound with important 

neuroprotective actions, which should be investigated in future studies in order to 

find a better therapy for patients with cholinergic disorders caused by the 

hyperglycemic state. 
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Abstract 

Potatoes are rich in secondary metabolites which can play an important role as 

bioactive molecules in the human diet, but these compounds can be destroyed or 

altered during the cooking process. This study aims at evaluating the effect of an 

industrial steam cooking method by observing the content of anthocyanins and 

phenolic acids in several cultivars of potato with yellow, red and violet flesh colour. 

From the quantitative point of view, significant variations were pointed out in the 

concentration of the phenolic compounds in the steam boiled tubers. The content of 

total phenolic acids was determined for eight colored varieties and ranged from 

38.14 to 1153.02 μg/g of fresh material (FM) in fresh potatoes and from 114.32 to 

1352.1 μg/g FM in cooked potatoes. An increment was observed for six cultivars 

after boiling (Mz064, Vitelotte Noir, Mz012, Mz032, Mz080, Mz046). The 

anthocyanin content decreased in relation to the cultivar and only in one sample 

(Mz012) an increment was evidenced. The antioxidant activity, using ABTS assay, 

was also estimated on the cooked tubers. Yellow-fleshed cultivars have shown 

lower antioxidant activity (3,25 times lower than the violet-fleshed tubers) and a 

positive correlation was found between their activity and content of phenolic acids. 

For red and purple-fleshed potatoes a strong correlation between antioxidant 

activity and total anthocyanin content was observed, suggesting that these 

compounds are responsible mostly for the antioxidant properties. 

 

 

 

 

 

 

 

Keywords: Solanum Tuberosum, pigmented potatoes, anthocyanins, chlorogenic 

acid, cooking process, ABTS test 
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1. Introduction 

Potatoes, belonging to the species Solanum tuberosum L., constitute a food highly 

popular worldwide prepared and served in a variety of ways. Because of high 

contents of carbohydrates, proteins and vitamin C potatoes belong to the staple food 

in many regions of the world. 

Freshly harvested potatoes contain about 80% water and 20% dry matter and about 

60–80% of the dry matter is starch. On a dry weight basis, the protein content of 

potato is similar to that of cereals and is very high in comparison with other roots 

and tubers. In addition, the potato is low in fat and it is also a good source of 

vitamins B1, B3, B6, folate, pantothenic acid, riboflavin and minerals, such as 

potassium, phosphorus and magnesium (FAO, 2008). 

Apart from being a rich source of starch, potatoes contain good quantity of small 

molecules and secondary metabolites which can play an important role as bioactive 

molecules in the human diet (Friedman, 1997). 

Changes in potato chemical composition mainly occur during storage and cooking 

(Burton, van Es and Hartmans, 1992; Liu, Tarn, Lynch and Skjodt, 2007) and vary 

depending on the cultivar and growing area (Abdel-Kader, 1990; Augustin et al., 

1978; Dwelle and Stallknecht, 1978). Each preparation method affects potato 

composition in a different way, due to leaching into cooking water and oil, 

destruction by heat treatment or chemical changes such as oxidation. Starch 

digestibility and the percentage of resistant starch of potatoes are affected by 

cultivars and cooking/cooling treatments (Mulinacci et al., 2008). 

Among the different secondary metabolites, potatoes contain chlorogenic acid and 

its isomers that are involved in browning of the tuber after cutting or processing 

(Dao and Friedman, 1992) while flesh pigmented potatoes are a rich source of 

anthocyanins, in particular acylated derivates (Eichhorn and Winterhalter, 2005).  

In fresh tubers the chlorogenic acid content varies from 100 to 190 mg/kg of fresh 

weight and contributes to its sensory properties (Work and Camire, 1996). For the 

most part, this compound and its analogues are localized in skin (nearly 50% of the 
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total content) and the percentage decreases gradually going inwards in the tuber 

(Friedman, 1997). 

Chlorogenic acid is bioavailable in humans (Monteiro, Farah, Perrone, Trugo, 

Donangelo, 2007), may decrease the risk of type two diabetes (Legrand and Scheen, 

2007) and slow the release of glucose into the bloodstream (Bassoli et al., 2008), 

which could be relevant for lowering the glycemic index value of potatoes. 

Chlorogenic acid may reduce the risk of some cancers and heart disease (Granado-

Serrano, Martin, Izquierdo-Pulido, Goya, Bravo and Ramos, 2007) and also shows 

anti-hypertensive effect (Yamaguchi et al., 2008). 

Anthocyanins are distributed in the skin and flesh of the tubers and their presence in 

plants plays a role of self-protection against biotic and abiotic stress and contributes 

to chemotaxonomic characterization (Ortega-Regules, Romero-Cascales, Lopez-

Roca, Ros-Garcia, Gmez-Plaza, 2006); their content is strongly influenced by the 

growing area (Ieri, Innocenti, Andrenelli, Vecchio, Mulinacci, 2011). Red-fleshed 

potatoes have acylated glucosides of pelargonidin while purple potatoes have, in 

addition, acylated glucosides of malvidin, petunidin, peonidin and delphinidin 

(Brown, 2005a; Lachman and Hamouz, 2005). Their antioxidant and radical 

scavenging activities are well known in vitro and in vivo (Wang et al., 1999; Tsuda, 

Katob, Osawa, 2000) and several studies in human subjects support the conclusion 

that consumption of anthocyanin-rich plants leads to an increase in serum 

antioxidant potential (Cao and Prior, 1998; Mazza, Kay, Cottrell, Holub, 2002). 

Anthocyanins are widely ingested by humans and their daily intake has been 

estimated at around 180 mg (Galvano et al., 2004). The ORAC and FRAP assays 

revealed that the antioxidant levels in red or purple-fleshed potatoes were two or 

three times higher than in white or yellow-fleshed potatoes (Teow, Truong, 

McFeeters, Thompson, Pecota, Yencho, 2007), thus these varieties provide a natural 

source of anthocyanins which helps to reduce the risk of chronic diseases and age-

related neuronal degeneration. However it has been reported that red and purple-

flesh potatoes show higher content of cinnamic acids if compared to white or yellow 

tubers (Ieri et al., 2011). 
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Recent studies pointed out that purple potatoes are hypotensive agents and lower the 

risk of heart disease and stroke in hypertensive subjects without weight gain 

(Vinson, Demkosky, Navarre, Smyda, 2012) and was hypothesized that polyphenols 

from pigmented potatoes would decrease oxidative stress and inflammation in 

humans (Kaspar et al., 2011). 

The present study aims at evaluating the anthocyanin and phenolic acid content in 

several cultivars of potato with yellow, red and purple flesh colour and at 

correlating these properties with the agronomic parameters. The effect of an 

industrial steam boiling process on the polyphenol content was evaluated studying 

changes in the concentration of chlorogenic acid, its isomers and total anthocyanins 

in fresh and cooked samples. Finally the antioxidant activity, using ABTS assay, 

was also estimated on the processed tubers. 

 

2. Material and Methods 

2.1 Materials 

Six yellow- (Mz032, Mz046, Mz080, Primura, Melody, Universa) three violet- 

(Mz064, Vitelotte Noir, Mz128) and two pink/red-fleshed (Mz012, Mz011) 

varieties of potatoes were studied. The tubers were kindly provided by Pizzoli 

S.p.A. (Bologna-Italy), both fresh and after boiled steam cooking. For the three 

cultivar Primura, Melody and Universa the fresh tubers were not available. A 

summary of the morphological characteristics and of the common uses of all the 

cultivars is reported in Table 1.  
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Table 1 Morphological characteristics of the analyzed cultivars. (–) unavailable data or not 
homogenous. 
 

2.2 Industrial steam-boiling process in lab 

The whole tuber with skin was submitted to a steam process as follow: cooking of 

potatoes was realized by boiling in a covered stainless steel pot on a moderate 

flame. NaCl (1%) and ascorbic acid was added during water boiling, and, when the 

salt was completely dissolved, potatoes (about 1 kg) were added to boiling tap 

water. The ratio potatoes/water was 1:4 p/v. At the end of cooking, samples were 

drained off for 30 s and cooled at room temperature. 

Variety 
or code 

Country 
of Origin 

Maturity Resistance 
to Disease 

Skin 
Colour 

Flesh 
Colour 

Tuber 
Form 

Yeld 
after 

Drying 
(% on 
FW) 

Cooking 
Use 

Mz011 Italy Late Not known Pink Pink Long 
oval 

16-19 Boiled, 
mashed 

Mz064 Netherland Medium 
late 

Not known Bown/ 
Violet 

Blue/ 
Violet 

Small 
long 

20-23 Boiled, 
mashed 

and chips 
Vitelotte 

Noir 
France Very late - Dark 

Violet 
Dark 

Violet 
Long 

Irregular 
23 Boiled, 

mashed 
and chips 

Mz128 Netherland Late Not known Bown/ 
Violet 

Light 
Violet 

Round 
Oval 

16-18 Boiled, 
mashed 

Mz012 Netherland Medium 
Late 

Not known DarkPink
/ Red 

DarkPink/ 
Red 

Long 
oval 

17 Boiled, 
mashed 

Mz032 United 
Kingdom 

Medium 
early 

Not known Dark 
yellow 

and 
Purple 

Dark 
Yellow 

Small 
long 

>23 Boiled, 
mashed 

Mz046 United 
Kingdom 

Medium 
early 

Not known Dark 
Yellow 

Dark 
Yellow 

Small 
long 

>23 Boiled, 
mashed 

Mz080 Netherland Medium 
Late 

Not known Yellow 
with red 

eyes 

Yellow Oval 18-22 Multiuse 

Primura Netherland Medium 
early 

Many to 
fungi, 

viruses and 
insects 

Yellow Light 
Yellow 

Oval 18-21 Multiuse 

Melody Netherland Late Many to 
fungi, 

viruses and 
insects 

Yellow Yellow Round 
Oval 

18-21 Multiuse 

Universa France Medium 
early 

Many to 
fungi, 

viruses and 
insects 

Light 
Yellow 

Light 
Yellow 

Oval long 16-19 Boiled, 
salad 

 



125 

The cooked tubers were then peeled and frozen as puree; these samples were used 

for the extraction of phenolic compounds.  

 

2.3 Samples preparation 

For each variety, the potatoes (1 g) were extracted at room temperature under 

stirring, twice with 30 mL of 70% EtOH adjusted to pH 2.0 by HCOOH, as already 

described in a previous study (Mulinacci et al., 2008). The hydroalcoholic solutions 

were directly analyzed by HPLC/DAD/MS, according to our previous work (Ieri et 

al., 2011) and used for the ABTS test. 

 

2.4 HPLC/DAD/MS analysis  

Analysis was carried out using a HP-1100 liquid chromatograph equipped with a 

DAD detector and a HP1100 MSD API-electrospray (Agilent-Technologies, Palo 

Alto, CA) operating in positive ionization mode under the following conditions: gas 

temperature 350 °C, nitrogen flow rate 10.0 L min-1, nebulizer pressure 35 psi, 

quadrupole temperature 30 °C, capillary voltage 4000V, and applied fragmentors in 

the range 50-250 V. 

The column was a Synergi Max RP 80 A (4 μm; 150 mm × 3 mm i.d.) from 

Phenomenex. The mobile phase was (A) water pH 2.0 acidified by orthophosphoric 

acid (only for HPLC/DAD) or formic acid (for the HPLC/DAD/MS analysis) and 

(B) acetonitrile. The following multistep linear gradient was applied: from 95% to 

78% of A in 8 min, 4 min to reach 74% A, then 13 min to arrive at 65% A, and 

finally 3 min to reach 100% B with a final plateau of 4 min. Total time of 

analysis was 32 min, flow rate was 0.4 mL/min, and oven temperature was 26 ± 0.5 

°C as already described in our previous study (Ieri et al., 2011). 

  



126 

2.5 Quantitative determination of phenolic acids and anthocyanins 

The phenolic acids were evaluated by HPLC/DAD using a six-point calibration 

curve of chlorogenic acid (Extrasynthese-Genay Cedex-France) at 330 nm (r2 

0.999), while the anthocyanin content was determined by HPLC/DAD using a five-

point calibration curve of malvin chloride (mw 691 from Extrasynthese-Genay 

Cedex-France) at 520 nm (r2 0.999). 

 

2.6 Antioxidant activity by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonate) 

(ABTS) method 

The ABTS method described by Lachman et al. (2012) was used for the antioxidant 

activity determination.  

The hydroalcoholic extracts were diluted with distilled water (100 times) and 

immediately subjected to reaction with the radicals; absorbance was measured after 

the addition of a 200 μL sample to 2 mL of radical solution after 2 min. For the 

blank experiment 200 μL water were added. The antioxidant activity was calculated 

as follow by the equation:   

% inibition ABTS = [(A0 – At) A0] x 100 

In agreement with Lachman et al. (2012), 54.8 mg ABTS (Sigma-Aldrich) were 

dissolved in 20 mL phosphate buffer (pH 7.0; 5mM) and activated to ABTS·+ radical 

adding 1g of MnO2 (activation time 20 min). Then the solution was centrifuged, 

filtered and diluted with the buffer solution to obtain A734(t0) = 0.800 ± 0.02 nm. 

Absorbance of the solution was measured at a wavelength of 734 nm. Values are the 

means of three replicates. 

 

3. Results and Discussion  

3.1 Phenolic acid and anthocyanin contents 

Phenolic acids and anthocyanins have been analyzed using HPLC methods and the 

structures were confirmed by their UV-Vis and mass spectra. Firstly a chemical 

characterization in terms of phenolic content applying the extraction method 
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previously described (Ieri et al., 2011) was carried out on the fresh tubers. The same 

extraction was applied on the potatoes after steam cooking showing that the 

HPLC/DAD profiles after processing were the same as those obtained for the 

respective fresh tubers (Figure 1 and Figure 2). The same phenolic acid pattern was 

highlighted and the main phenolic acids detected were 3-caffeoylquinic, 5-

caffeoylquinic, 4-caffeoylquinic and ferulic acids for all of the considered samples, 

with the chlorogenic acid as main component (Figure 1).  

 

 
Figure 1. HPLC chromatogram at 330 nm showing the effect of boiling treatment on 
phenolic acids in Mz011 cultivar. 1) 3-caffeoylquinic acid 2) 5-caffeoylquinic acid or 
chlorogenic acid 3) 4-caffeoylquinic acid 4) ferulic acid. 
 

The anthocyanin patterns of red- and purple-fleshed cultivars resulted more 

complex as shown in Figure 2, that reports the HPLC profiles at 520 nm showing 

the anthocyanins in Mz011 cultivar, chosen as an example, before and after the 

cooking treatment. The anthocyanins identified were acylated glycosides of 

pelargonidin, malvidin, petunidin, peonidin and delphinidin and specifically, the 
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rutinosides in C3, acylated with a cynnamoil residue in C4 of the rhamnose unit, 

were the dominant forms. 

 
Figure 2. HPLC chromatogram at 520 nm showing the effect of boiling treatment on 
anthocyanins in Mz011 cultivar. 1) pel 3-O-rut-5-O-glu 2) pel 3-O-rut 3) pel derivative 4) 
pel 3-O-caf-rut-5-O-glu 5) pel 3-O-cis-p-coum-rut-5-O-glu 6) pel derivative 7) pel 3-O-p-
coum-rut-5-O-glu 8) pel 3-O-ferul rut-5-O-glu 9) pel 3-O-p-coum-rut.  
 

The anthocyanin profile was determined for all five red and purple pigmented 

potatoes and the identification of the molecules was carried out by their UV-Vis and 

mass spectra in positive ionization mode at 120 fragmentation energy and by 

comparison with literature data (Mulinacci et al., 2008). 

From the quantitative point of view, significant variations were pointed out in the 

concentration of the phenolic compounds in the steam boiled tubers. 

As summarized in Figure 3a, the content of total phenolic acids on average was 

determined for the eight coloured varieties and ranged from 38.14 to 1153.02 μg/g 

of fresh material (FM) in fresh potatoes and from 114.32 to 1352.1 μg/g FM in 

cooked potatoes. The highest total phenolic acid content was found in Vitelotte 
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Noir cv (1153.02 μg/g FM) for the fresh samples and Mz012 cv (1352.1 μg/g FM) 

for the cooked samples. 

With regard to the yellow-fleshed cultivars, average total phenolic acid content 

values ranged from 38.14 to 99.4 μg/g of fresh material (FM), with changes in 

their content less evident after cooking (from 114.32 to 132.41 μg/g FM). 

However the total amount of these metabolites in the yellow-flesh variety is 

notably lower in comparison to the content observed in the pigmented cultivars 

according to our previous works (Mulinacci et al. 2008; Ieri et al., 2011). A recent 

study reported a concentration of phenolic acids in purple- and red-fleshed 

cultivars from three to four times higher with respect to white fleshed cultivars 

(Ezekiel, Singh, Sharma, Kaur, 2013).  

According to these data, three other yellow-flesh potatoes (Primura, Melody and 

Universa) provided by Pizzoli S.p.A. and analyzed after steam cooking, showed a 

total phenolic acid content ranged from 52.66 to 111.36 μg/g, values in agreement 

with those of the other processed yellow-fleshed cultivars. 

On the opposite of what commonly expected, after cooking in all the yellow-flesh 

varieties the content of phenolic acids increased in relation to the cultivar, the 

highest difference between fresh and cooked tubers was for the cultivar Mz080. 

As shown in Figure 3a, a significant increase of total amount of phenolic acids 

was also found in three cooked red and purple pigmented potatoes in comparison 

with uncooked tubers (Mz064, Vitelotte Noir and Mz012). The highest increase 

(2.5 times) was for the cultivar Mz012, curiously characterized by the lower total 

phenolic acid content in the fresh sample. These results agree with literature data 

that showed greater levels of phenolic acids in cooked potatoes than in uncooked 

ones (Mulinacci et al. 2008; Blessington, Nzaramba, Scheuring, Hale, Reddivari 

and Miller, 2010, Burgos et al. 2013). This phenomenon can be explained because 

cooking could produce hydrolysis of different components releasing phenolic 

compounds and making them more available for extraction (Burgos et al., 2013). 

Similarly Lachman et al. (2012) found that total phenolics, chlorogenic acids, 

flavonols and vitamin C did no significantly decrease after cooking by 

microwaving, baking, boiling, steaming or stir-frying methods and this increase 
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could be attributed to disruption of plant cell walls providing better extractability, 

breaking of chemical bonds of higher molecular weight polyphenols and forming 

soluble low molecular weight polyphenols and their interconversion.  

Again, to confirm that the thermal changes are dependent on cultivar, it can be 

pointed out that the total phenolic acid concentrations of the Mz011 and Mz128 

cultivars determined in boiled tubers were lower than in raw sample, in agreement 

to other studies (Takenaca, Nanayama, Isobe, Murata, 2006; Perla, Holm, Jayanty, 

2012). This specific behaviour may be related to concomitant factors: browning 

phenomenon during the cut, reduced pulp surface exposed to hot water, percentage 

of water absorbed by the starch during cooking and mainly, the presence of peel 

(Mulinacci et al., 2008). It is well known that potato peel contains high quantities of 

phenolics. Since 1989 Mondy and Gosselin found that the potatoes cooked with 

peel had a greater amount of total phenols in the cortex and internal tissues and this 

has been attributed to the migration of phenolics from the peel into both the cortex 

and internal tissues of the tuber (Ezekiel et al., 2013).  

Overall, after this industrial cooking the anthocyanin content decreased in a 

cultivar-dependent mode, as reported in Figure 3b, and in particular Mz128 and 

Mz064 showed the most significant loss (67% and 36.7% respectively) of these 

compounds. The findings of our study highlighted the highest anthocyanin amount 

for the cultivar Mz064, ranging from 0.7 mg/g for the uncooked, to 0.4 mg/g for 

the cooked tubers (Figure 3b). Only in one sample (Mz012) was evidenced a 

significant increment for the anthocyanin content. These data are not new, in fact 

recent paper (Lachman et al., 2012, Brown, Durst, Worlstad, De Jong, 2008) 

pointed out similar results for the anthocyanins in red- and violet- fleshed cooked 

potatoes. Cooking methods and cultivars are, with respect to total anthocyanins, 

significant sources of variation. Lachman et al. (2012) observed that baking, 

microwaving or steaming were the most efficient processing methods in 

preserving of anthocyanins when compared to boiling. Brown et al. (2008) found 

that microwaving and boiling preserved total anthocyanins more than frying or 

baking. Anyway, in all these cooking treatments the increase in total anthocyanin 

content was always cultivar dependent (Lachman et al., 2013). 
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natural antioxidant in diet and have several secondary constituents which 

contributes to the physiological defence against oxidative and free-radical-mediated 

reactions.  

Considering that potatoes are usually served after cooking, the antioxidant activity 

has been evaluated only for cooked tubers. As described in Figure 4, considerable 

difference in antioxidant activity between these cultivars were observed, mainly in 

agreement with differences of phenolic content between yellow-, red- and violet-

fleshed potatoes. 

As expected, the lowest antioxidant activity was achieved by the group of yellow 

flesh variety (Figure 4), averaging 0.36 μg/mL ascorbic acid, instead in the group of 

red- and violet-fleshed cultivars (Figure 5) this value was more than 3 times higher 

considering the variety with the highest total anthocyanin content (Mz064).  

 
Figure 4. Comparison of total phenolic acid content and antioxidant activity of yellow-
fleshed potatoes. 
 

Among the yellow-fleshed cultivars, the sample Mz032 presented the highest 

activity (0.50 μg/mL ascorbic acid) according to its highest content in total phenolic 

acids (132.4 μg/g of cooked puree), as reported in Figure 4. For the yellow-fleshed 
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As expected the red and violet- fleshed potatoes show the highest efficacy as radical 

scavenger in the ABTS test. This test is suitable to clearly distinguish between 

pigmented and yellow tubers and within each group the antioxidant activity is well 

related to the total phenolic content. 

Whereas in potatoes with white or yellow flesh colour prevalent contributor to 

antioxidant activity is chlorogenic acid and in violet and red-fleshed potatoes the 

major contributors to antioxidant activity are indubitably the anthocyanins. 

Our results indicate that red and violet-fleshed potatoes show a significantly higher 

antioxidant activity than the yellow-fleshed cultivars and that antioxidant activity 

and total anthocyanin content are high-correlated. Using violet-fleshed potatoes in 

the cuisine would help to support the daily intake of these acylated anthocyanins 

and consequently, these cultivars could be a promising source of strong antioxidants 

in human nutrition.  

In conclusion, highest-anthocyanin coloured-flesh potatoes cultivars can be suitable 

for specific processing and could represent an high-phytonutrient source for certain 

antioxidants not so frequently present in other foods, in addition to offer an 

alternative to classic yellow-flesh potatoes in human nutrition. 
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Abstract 

In this work the possibility to optimize a unique procedure to extract, in successive 

steps, the volatile terpenes and the phenolic compounds from the same sample, 

working on fresh rosemary leaves, has been explored.  

A significant increment of the extraction yields has been observed applying this 

innovative method with respect to traditional processes. 

The results highlighted the suitability of this innovative extractive procedure to treat 

aromatic plants, providing a useful tool to obtain better yields in volatile terpenes 

and new extracts for the botanical market.  
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Introduction 

Mediterranean basin is endowed with a rich wealth of aromatic plants such as 

rosemary, Rosmarinus officinalis L. (Labiatae), a small evergreen shrub whose 

health benefits of its essential oil and properties for preservation of food are 

recognized since ancient times. To date it is known that the rosemary leaves contain 

both volatile components that characterize the essential oil, and antioxidant phenolic 

compounds belonging to different chemical classes and showing a different polarity 

and solubility. 

Rosemary essential oil contains mainly monoterpenes and monoterpene derivatives 

(95–98%), the remainder (2–5%) being sesquiterpenes (Angioni et al., 2004). 

Volatile mono- and sesquiterpenes are main constituents of the essential oil used as 

flavors and fragrances down through history in the ancient civilization of Egypt, 

India, Greece and Rome. Nowaday, rosemary extracts are used not only to obtain 

essential oils but also to prepare phenolic extracts that are increasingly employed to 

provide natural alternatives to synthetic antioxidant and artificial preservative 

additives in foodstuffs (The EFSA Journal, 2008; Moreno et al., 2006) or as 

component of cosmetic (Lee et al., 2011). The antioxidative property and part of the 

antimicrobial activity of the fresh and dried leaves of rosemary are related to the 

non-volatile phenolic compounds such as carnosic acid, carnosol, rosmarinic acid 

and a group of minor flavonoids. As reported  in the ESCOP monograph and more 

recently highlighted in a dictionary of phytotheraphy (Campanini, 2004), the 

rosemary leaf extracts are commonly used also in the traditional medicine against 

several diseses as dyspepsia, dysmenorrhea and rheumatic diseases.  

Among the numerous activities of the phenolic extracts from rosemary it can be 

highlighted the hepatoprotective (Sotelo-Felix et al., 2002; Gutiérrez et al., 2009), 

antihyperglycemic (Al-Hader et al., 1994; Bakirel et al. 2008), antiulcerogenic 

(Dias et al., 2000) and antibacterial properties (Celiktas et al., 2007). 

Basing on our knowledge, a chemical characterization in terms of volatile and 

phenolic compounds using the same sample of rosemary leaves  has not yet been 

evaluated. 
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Being useful for integrated studies on numerous samples to use a suitable method to 

extract both the volatile and phenolic components from the same foliar tissue, this 

possibility was explored. The aims were to optimize a unique procedure to extract, 

in successive steps, the volatile terpenes and the phenolic compounds from the same 

sample working on fresh rosemary leaves. Specific GC/MS and HPLC/DAD/MS 

methods for the volatile terpenes and to determine the antioxidant phenolic fraction 

were applied. The results highlighted the suitability of this extractive procedure to 

treat aromatic plants, providing a useful tool to obtain better yields in volatile 

terpenes and new extracts for the botanical market.  

 

Materials and methods 

Plant material 

Mature leaves were collected on May 2011, from adult plants of a single clone of 

Rosmarinus officinalis L. growing in the plant nursery situated at the National 

Research Council in Firenze. The dried samples (EtC 20m) were obtained after a 

freeze-drying procedure.  

 

Traditional (conventional) extractive method (TEM) 

As shown in Figure 1, rosemary samples were frozen in liquid nitrogen and ground 

into a porous ceramic mortar (grinding time about 1 min). The grinding is made to 

allow the breakdown of cellular structures containing terpenic constituents, 

avoiding the loss of these substances, which are extremely volatile.  

For each sample, 0.5 g of ground material were extracted with 3 mL of n-pentane or 

3 mL of n-hexane, using tridecane as internal standard. The extraction process was 

performed for 24 hours in shaker at 1000 rpm at 24 °C. The n-pentane or n-hexane 

extracts were filtered through 0.45 μm filters, stored in vials at -20 °C before 

GC/FID analysis (Figure 1, Pen or Hex samples). The solid residue was recovered 

and subjected to further extraction, according to the procedure previously described 

(Mulinacci et al., 2011), for the recovery of the phenolic compounds. In particular, 
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leaves were extracted with ethanol (two steps) by the alternation of magnetic 

stirring and sonication in ultrasounds. The ethanolic extract obtained after filtration 

was submitted to a liquid/liquid extraction with pentane or hexane (1:1, v/v) to 

remove part of the chlorophylls. The residual ethanol solution was directly analyzed 

by HPLC (Figure 1, EtC sample). 

To prevent the phenolic oxidation, different amounts of vitamin C (5-20% w/w) 

were added to some samples before the grinding (Figure 1, EtC+VitC samples). 
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Figure 1. Traditional extractive method (TEM). *different amounts of vitamine C (5-20% 
p/p) were added to some of the samples 
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Innovative extractive method (IEM) 

The volatile terpenes were extracted as second step after the ethanol extraction of 

phenolic compounds (Figure 2). Appliyng this method, 0.5 g of ground material 

were extracted with 10 mL of ethanol according to Mulinacci et al. (2011). The 

ethanolic extract obtained after filtration was submitted to a liquid/liquid extraction 

with pentane or hexane (1:1, v/v); the ethanol extract was analyzed by HPLC 

(Figure 2, Et-REF) and the n-pentane/n-hexane solutions were analyzed by GC/MS 

(Figure 2; Def-Pen, Def-Hex). At the same time, the solid residue was recovered 

and subjected to the extraction of volatile terpenes. The resulting pentane/hexane 

solutions were analyzed by GC/MS (Figure 2; Et-Pen, Et-Hex samples). 
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Figure 2. Innovative extractive method (IEM)  
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GC/FID and GC/MS analyses  

The analyses were performed on a GC/MS system from Perkin-Elmer Technologies 

composed of a Gas Chromatograph Perkin-Elmer AutoSystem XL equipped with an 

automatic sampler for liquid sample injections coupled to a TurboMass mass 

spectrometer. 

To obtain the separation of the enantiomeric monoterpenes a Elite-Betacydex 

Betacyclodextrin capillary column 30-m-long and 0.25-mm-diameter supplied by 

Perkin-Elmer was used. GC analysis was carried out using hydrogen as carrier gas 

at 2.0 mL min-1 by a flame ionization detector at 250 °C and at injector temperature 

230 °C. The oven temperature programming started at 40 °C for 3 min and 

increased to 200 °C, at 1 °C min-1; the final temperature of  200 °C was maintained 

for 10 min.  

The mass spectrometer was operating with a electron ionisation of 70 eV, scanning 

the mass range from 35 to 350 m/z. Ion source temperature was 200 °C. The 

GC/MS control and data elaboration were performed by a Perkin-Elmer 

Technologies TurboMass 5.4.2.1617 ver. Chemstation software. The mass 

spectrometer was calibrated using perfluorotributhylamine, as the calibration 

standard, with the Chemstation software.  High-purity components were obtained 

from Fluka, Aldrich and Acros.  

The analysis of pure standards in the same analytical condition allowed the 

attribution of some GC/MS signals while, when a pure standard was not available, 

the identification was attempted comparing the recorded mass spectra with a MS 

spectral database (Wiley library) and taking in account the chromatographic order 

of elution. 

  

HPLC/DAD/ESI/MS analyses 

The analyses were carried out using a HP 1100L liquid chromatograph equipped 

with a DAD detector coupled to a HP 1100 MSD mass spectrometer with an 

API/electrospray interface (all from Agilent Technologies, Palo Alto, CA, USA). 
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A 150 mm × 2 mm i.d., 4 μm Fusion, RP18 column (Phenomenex, USA) equipped 

with a precolumn of the same phase was used. The mobile phases were (A) 0.1% 

formic acid/water and (B) CH3CN; the multi-step linear solvent gradient used was: 

0–15 min 15–25% B; 15–25 min, 25–35% B; 25–35 min 35–50% B; 35–40 min 50–

100% B with a final plateau of 8 min at 100% B; equilibration time 10 min; flow 

rate 0.2 mL min−1 and oven temperature 26°C; injection volume 5 μL. The analysis 

conditions were the same described in a previous study (Mulinacci et al., 2011). 

 

Quantitative evaluation  

Relative amount (proportion of profile) of each monoterpene was expressed as a 

percentage of total monoterpenes, while each sesquiterpene was calculated as a 

percentage of total monoterpenes plus sesquiterpenes. 

Absolute amounts of volatile terpenes were determined by comparison with the 

tridecane internal standard, and expressed as mg/g fresh weight (FW). 

The quantitative evaluation of the main phenolic constituents was performed 

through the use of two external standards, rosmarinic acid at 330 nm and carnosic 

acid at 284 nm. According to a previous work (Mulinacci et al., 2011), rosmarinic 

acid was used to quantify also all the flavonoids while carnosic acid to determine 

the non volatile diterpenoids (carnosic acid and derivatives). The calibration curve 

of rosmarinic acid (Sigma-Aldrich) was in a linearity range between 0.1 μg and 9.4 

μg with a r2 0.9999; the calibration curve of carnosic acid (Sigma-Aldrich) was in 

the linearity range of 0.05-3.4 μg with r2 0.9998. 

 

Statistical analyses 

Data were not normally distributed (Kolmogorov–Smirnov one sample test) and 

were analyzed by the non-parametric Kruskal–Wallis ANOVA followed by the 

Mann–Whitney U-test for multiple comparisons using SYSTAT 12.0 software 

(Systat Software Inc., Richmond, California, USA). Differences were accepted 

when significant at the 5% level. 
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Results and discussion 

Our goal is to use a unique procedure to sequentially extract the volatile terpenes 

and the phenolic compounds from a single sample, in order to get a more complete 

biological picture of the same foliar tissue in response to different biotic and abiotic 

stress conditions. Moreover, this extractive method can be an useful tool analyzing 

numerous samples, particularly when available in small amount. Within this work 

this analytical approach has been evaluated working on fresh leaves of rosemary.  

A traditional approach (TEM) was firstly applied to recover the volatile fraction 

and, subsequently, the antioxidant phenolic compounds. A method suitable to well 

characterize and quantify all the phenolic constituents of the leaves (Mulinacci et 

al., 2011) was used to evaluate the percentage of recovery of these compounds 

applying the TEM and to obtain the reference samples (Figure 2, Et-REF).  

Through the TEM, it was pointed out that a pretreatment of rosemary leaves with 

lipophilic solvents such as pentane or hexane from 1 to 24 hours of contact, induced 

a strongly decrease of the major phenols, mainly rosmarinic acid (Figure 3a, EtC 

sample). Furthermore, by the HPLC/DAD analyse of this extract it was observed a 

considerable decrement of carnosic acid with a corresponding increment of its 

typical oxidized products, carnosol and rosmanol. 

These results were highlighted already after only 20 minutes of contact of the fresh 

leaves with these solvents (Figure 3a, EtC 20m sample). In addition, the fast 

degradation of the phenolic components after the preliminary extraction of the 

volatile compounds, was clearly confirmed by foliar browning indicating the 

formation of oxidized compounds frequently produced in the damaged vegetables. 

Consequently, an enzymatic reaction involving endogenous phenol oxidases was 

hypothesized. Moreover by adding antioxidant (e.g. BHT) and by removing the 

oxygen during the extraction procedure (data not shown), the chemical oxidation 

was excluded. Nevertheless it was unclear how the enzymatic activity was possible 

in presence of lipophilic organic solvents and, to explain this phenomenon, it was 

considered the possible role of the native water in the fresh leaves. The presence of 

water during the extraction of the volatile compounds allowed to obtain a two phase 
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system, in which the aqueous phase, even if in small amount, was enough to allow 

the activity of the oxidative enzymes and to promote the carnosic acid conversion 

into carnosol, as previously demonstrated (Masuda et al., 2002). 

To confirm this hypothesis an extraction on dried rosemary leaves was carried out 

(Figure 3b). The results evaluated by the chromatographic analyses confirmed the 

crucial role of the water since no reduction of the rosmarinic acid content was 

observed; nevertheless, a loss in the total terpenoid and flavonoid contents was 

showed one more time. These data confirmed that enzymatic oxidation of 

rosmarinic acid in the fresh leaves, not observed in the correspondent dried samples, 

was rapidly obtained in presence of the native water (about 50-60% of the fresh 

weight) that provided a microenvironment where the enzyme can act, despite the 

presence of pentane or hexane. The next tests were aimed to inhibit the phenol 

oxidases by using strong inorganic acids (HCl and H2SO4 0.1 N as final 

concentration) added immediately after grinding during TEM. Even though these 

acidic conditions, the enzymatic oxidation of rosmarinic acid was almost complete 

within a short time, suggesting a rapid kinetics of degradation of these enzymes. 

These results pointed out the complexity to operate on the same fresh foliar tissue of 

rosemary for extracting sequentially the volatile and the phenolic components, 

without a significant loss in rosmarinic acid and terpenoid content. At the same time 

it has been pointed out, for the first time, that the endogenous phenol oxidases in 

rosemary maintain their activity also at low pH values, demonstrating a strong 

resistance at these adverse conditions.  
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Figure 3. Comparison in terms of phenolic content among different extracts (Et-REF, EtC, 
EtC20m) obtained applying the TEM. The extraction was applied on fresh (a) and on freeze-
dried (b) leaves 
 

The final test that we carried out to prevent the phenolic oxidation applying TEM 

has been to add different amounts of vitamin C (5-20% w/w) to rosemary leaves 

before the grinding. Vitamin C has been chosen because of its solubility in water, in 

which commonly acts as strong antioxidant. 

The results obtained by GC/MS analysis concerning the volatile fraction showed 

that the addition of vitamin C did not cause significant differences in the 

concentration of volatile terpenes, compared to the data obtained by the 

conventional extraction with pentane or hexane (Figure 1, Pen and Hex samples). 

Regarding the phenolic compounds, the vitamin C showed only a partial protective 
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action against rosmarinic acid oxidation (Figure 4) even at very high doses (20% 

w/w). 
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Figure 4. Effect of vitamin C on phenolic content in the extracts obtained according to 
Figure 1 
 

In light of these results, the conventional extractive approach (TEM) has been 

reversed and the fresh leaves samples were firstly extracted with ethanol to recover 

the phenolic compounds and then using pentane or hexane (IEM) (Figure 2). 

A significant increment of the extraction yields has been observed applying this 

innovative method (Figure 5, Et-Pen, Et-Hex extracts) with respect to the traditional 

approach (TEM) (Figure 5, Pen and Hex samples). This result was particularly 

interesting considering that the higher extractive yields were obtained despite a 

small amount of volatile terpenes were removed by the ethanolic extraction (Figure 

2 and Figure 5; Def-Pen, Def-Hex samples). An explanation could be that the 

pretreatment with ethanol, associated to a physical treatment with ultrasound for 

about 2 hours, helped to break the cellular structures promoting the following 

penetration of the lipophilic solvent in the leaf tissue (Toma et al., 2001; Chemat et 

al., 2011). 
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Figure 5. Comparison of the total terpene content in the extracts obtained by TEM and IEM 

 

Moreover the qualitative composition of the terpenic extracts obtained with this two 

different extractive approaches (TEM and IEM) was evaluated to verify if the 

increased yields were associated to a similar or different GC profile. In Figure 6 was 

reported the amount of the main volatile terpenes in the extracts obtained using the 

two different methods (TEM and IEM).  
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Figure 6. Content of the main terpenes in the extracts obtained by TEM and IEM  

 

The concentration of the individual compounds reflected the trend observed for the 

total terpenoid content (Figure 5). All the samples treated with pentane (Figure 6; 

Pen, Et-Pen and Def-Pen) have provided higher yields than the samples extracted 

with hexane; pentane, because of its greater extractive capacity, proved to be the 

most suitable solvent for the extraction of the volatile fraction. The compounds (+)-

α-pinene, 1,8-cineole and verbenone have proved to be the most aboundant in the 

analyzed extracts. 

 

Conclusions 

The conventional method (TEM) has not been able to guarantee a complete 

extraction of the phenolic compounds despite the use of potent antioxidants such as 

vitamin C. 

On the other hand, the innovative approach proposed (IEM) ensured the recovery of 

all the phenolic components and also a consistent increase in extraction yields of the 

volatile fraction.  
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The findings of this study can be taken into account in planning the processing on 

rosemary leaves, or on similar aromatic plants, to avoid anomalous and unexpected 

results during the sample treatment. 
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Abstract  

The aim of this research was to evaluate and compare the antimicrobial action of 

three phenolic extracts from rosemary leaves against two Gram-negative bacteria, 

Escherichia coli (ATCC 10536) and Pseudomonas aeruginosa (ATCC 15442), and 

two Gram-positive bacteria, Staphylococcus aureus (ATCC 6538) and 

Staphylococcus epidermidis (ATCC 82221). These  species are usually required to 

evaluate the bactericidal activity of common chemical disinfectants. By the 

preliminary results obtained by disk diffusion method, Gram-positive bacteria were 

more sensitive to the extracts than Gram-negative ones and S. epidermidis showed 

higher inhibition zones (13.1 mm to 18.6 mm). The results by broth microdilution 

assay indicated that E. coli was the more susceptible strain against all the extracts 

(MBC ≤ 70 µg/mL), in contrast to the data obtained by disk diffusion method. The 

sample containing the highest concentration of flavonoids but the lower content of 

terpenoids and total phenols, showed less efficacy against all the tested bacteria, as 

pointed out by the higher MBC values.  

 

 

 

 

 

 

 

 

Keywords: antibacterial activity, rosemary, non-volatile phenolic compounds, disk 

diffusion method, minimal bactericidal concentration 
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Introduction 

Many infections diseases are known to have been treated with herbal remedies 

throughout the history of mankind and even today, plant materials continue to play 

a major role in primary health care as therapeutic remedies in many developing 

countries [1, 2]. Rosmarinus officinalis L. (Labiatae), a perennial aromatic herb 

native to the Mediterranean area and widely distributed in all western 

Mediterranean countries, is known for its many uses in food and for its 

pharmacological properties. The volatile fraction and the phenolic constituents are 

primarily responsible for the biological activity of this plant [3]. To date rosemary is 

widely used to obtain essential oils and to prepare phenolic leaf extracts that are 

increasingly employed to provide a natural remedies against some common 

diseases. According to the ESCOP (European Society Cooperative on Phytoterapy), 

ethanol and aqueous extracts from rosemary leaves are used as coleretic, colagogue, 

epatoprotective, and antioxidants, but also as light diuretic, antitumor and antiviral 

products (4). Recently it has been confirmed the in vivo antiulcer activity of an 

ethanol extract of Rosmarinus officinalis L. [5]. The derived essential oil from 

leaves is mainly used for local applications for its balsamic, antispasmodic and anti-

inflammatory activities [6, 4]. The large number of properties attributed to the 

aqueous and hydroalcoholic extracts from the leaves of R. officinalis L. are closely 

related to their phenolic fraction [7]. Two compounds, rosmarinic acid and carnosic 

acid, are recognized as the main constituent but several minor flavonoids and some 

oxidized products from carnosic acid are co-present in these extracts and contribute 

to define their composition [8]. 

However, there are still few data about the antimicrobial activity of rosemary 

phenolic extracts and a more deeper investigation about this property is desirable. 

Antibacterial activity against foodborne microorganisms was related to the 

terpenoidic fraction recovered by hexane from a commercial rosemary extract [9]. 

An high antimicrobial activity against both Gram-positive and Gram-negative 

bacteria, was related to the carnosic acid content in methanol and acetone extracts 

from rosemary leaves [7]. A synergistic interaction with BHA to inhibit Escherichia 
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coli and Staphylococcus aureus growth was demonstrated by a methanol rosemary 

extract that not only enhanced the antioxidant efficiency but also the antibacterial 

effect of BHA, allowing a decrease from 4.4 to 17 fold in the amounts of the 

synthetic compounds used [10].   

Although today few data are available on application in this field, rosemary extract 

for skin-care cosmetics have been used especially thanks to their UV-protective 

properties, anti-inflammatory and anti-S. aureus activities [11]. An antimicrobial 

effect combined with the antioxidant property would be very useful to employ this 

plant in cosmetic preparations. 

In this study we investigated on the phenolic composition of three different extracts 

from rosemary leaves to evaluate and compare their antimicrobial action against 

two Gram-negative bacteria, Escherichia coli (ATCC 10536) and Pseudomonas 

aeruginosa (ATCC 15442), and two Gram-positive bacteria, Staphylococcus aureus 

(ATCC 6538) and Staphylococcus epidermidis (ATCC 82221). These  species are 

usually required to evaluate the bactericidal activity of common chemical 

disinfectants [12]. The ability to inhibit the grow of S. epidermidis (ATCC 82221) 

was also tested to explore a possible application of these extracts in cosmetics 

industry. The aim of our work was to verify the possible correlations between the 

phenolic composition of three chemically characterized extracts and the 

antimicrobial activity, evaluated by MBC assay, in inhibiting common saprophytes 

and commensal microbes. All the phenolic extracts obtained from fresh leaves of 

rosemary, were characterized in terms of  rosmarinic acid, terpenoids and 

flavonoids by means of HPLC/DAD/MS.  

 

Results and Discussion 

Phenolic composition of the rosemary extracts 

Aim of this work was to evaluate the antibacterial activity of three different 

phenolic extracts (E-YL, E-ML and E-F) obtained from fresh rosemary leaves 

applying an ethanol extraction as previously described [8]. To better understand and 
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recognize the compounds mainly responsible of the antimicrobial effects, the pure 

standards, rosmarinic acid and carnosic acid, were also evaluated. These two 

molecules have been selected because recognized as more abundant constituents of 

the phenolic fraction of rosemary. 

The chromatographic profiles in Figure 1 show the phenolic distribution within E-

YL, E-ML and E-F extracts and the histogram in Figure 2 is focused to compare the 

composition in terms of phenolic classes. The compound identification was carried 

out by the comparison with the retention time of commercial standards, by their 

UV-Vis spectra and by interpretation of their mass spectra obtained as reported in 

our previous study [8]. 

 

 

Figure 1. HPLC profiles at 330 nm of the three rosemary extracts (E-YL, E-ML, E-F) and 

some UV-Vis spectra of the main compounds. 1, rosmarinic acid; 2, cirsimaritin; 3, 

genkwanine; 4-5, unknown flavonoids. 
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Figure 2. Histogram showing the phenolic composition in the mother solutions of the leaves 

extract. Each value is a mean of three determinations expressed as mg/mL mother solution, 

with CV% < 4.9 %. 

The E-YL sample from young newly developing leaves of the current-year’s growth 

shows a phenolic profile comparable to that of E-ML extract obtained from mature 

foliar tissue, characterized by the presence of rosmarinic acid, carnosol and several 

flavonoids (Figure 1). The E-F extract showed an higher content of flavonoids, 

because this sample was specifically prepared to better evaluate the role played by 

this fraction as antimicrobial agents. Large part of these flavonoids are in the 

aglycone forms; among them the methoxylated flavonoid cirsimaritin has reached 

concentrations of up to 0.5 mg/mL, being the more abundant together with 

genkwanin (Figure 3). 

The carnosic acid, a typical non-volatile terpenoid of rosemary leaves, was poorly 

present or absent in our samples mainly due to the extraction from fresh leaves. This 

finding agrees with literature that reports as in water media the carnosic acid rapidly 

degrades toward the principal oxidized form carnosol [13], with a consistent 

decrease after only 24 h at room temperature [14]. Among the tested extracts, the 
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highest amount of carnosic acid was found in the E-YL  extract and the lowest 

quantity in the E-ML, while an opposite distribution was observed for carnosol. The 

E-F extract showed the absence of carnosic acid and carnosol and the lowest content 

in total terpenoids. It can be underlined that cirsimaritin was the major flavonoid in 

all these extracts, with the maximum amount in the E-F (Figure 3).  
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 Figure 3. Comparison of the flavonoidic distribution within the three extracts; each value is 

a mean of three determinations expressed as mg/mL mother solution, with CV% < 4.9%. 

 

Antibacterial activity 

The antibacterial activity of rosemary extracts were qualitatively and quantitatively 

assessed determining the inhibition zones and Minimal Bactericidal Concentration 

(MBC) as reported in Tables 1 and 2. 

Antimicrobial disk susceptibility test was selected as a preliminary procedure for 

screening the antibacterial efficacy; a limited activity against S. aureus ATCC 6538 

and S. epidermidis ATCC 82221 (Table 1) and no effects at the same concentration 
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on the E. coli ATCC 10536 and Ps. aeruginosa ATCC 15442 were observed. The 

usefulness of this method can be limited by a certain  hydrophobicity of the sample 

that can induce a non homogeneous distribution of the bioactive molecules 

preventing their uniform diffusion through the agar medium [7]. As previously 

discussed and according to the chromatographic profiles obtained working with a 

reverse phase column, the chemical characterization of these extracts confirmed the 

presence of a group of lipophilic compounds, mainly the terpenoidic fraction and 

the non glycosilated flavonoids. 

Varying degrees of growth inhibition, with differences in the interspecies 

susceptibility, were observed with these bacterial strains (Table 1).  
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Table 1. Disk diffusion method results for the rosemary extracts and for rosmarinic and 

carnosic acids (Values are a mean ± SD. 75% and 50% correspond to dilution 3:1 v/v and 

1:1 v/v respectively of the mother solution (100%). 

Gram-positive bacteria were more sensitive to the extracts than Gram-negative ones 

and S. epidermidis showed higher inhibition zones than S. aureus. The activity of 

both these bacteria was found to depend on the dosage used when applied at 50%, 

75%, or 100% of extract per disk, with inhibition zones ranging from 0.0 to 18.6 

mm. The rosmarinic acid did not show inhibition against the selected bacteria in 

agreement with previous data reported by Moreno et al. [7]. On the opposite the 

Samples Concentration 

(% of mother 

solution) 

S. aureus 

ATCC 6538 

(mm) 

S. epidermidis 

ATCC 82221 

(mm) 

 

E-YL 

50 10.3 ± 0.6 13.6 ± 0.9 

75 11.2 ± 0.5 16.0 ± 1.6 

100 12.2 ± 0.9 18.6 ± 0.7 

 

E-ML 

50 9.9 ± 1.3 13.2 ± 0.8 

75 10.4 ± 0.8 14.3 ± 0.8 

100 12.6 ± 0.9 17.3 ± 1.2 

 

E-F 

50 0.0 13.1 ± 0.6 

75 11.1 ± 0.6 16.3 ± 1.0 

100 12.0 ± 1.2 18.6 ± 1.0 

 

Rosmarinic acid 

50 0.0 0.0 

75 0.0 0.0 

100 0.0 0.0 

 

Carnosic acid 

50 9.9 ± 1.1 10.0 ± 0.3 

75 10.0 ± 0.6 11.1 ± 0.5 

100 10.0 ± 0.5 12.6 ± 0.7 
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carnosic acid presented a good activity against S. aureus and S. epidermidis, with 

inhibition areas close to 10 mm at the lowest concentration  (50% of mother 

solution). Ps. aeruginosa, (inhibition of  24.4±0.6 mm with  100 µg of piperacilline)  

and E. coli were not sensitive at all to the three tested extracts. Our phenolic extracts 

E-YL and E-ML showed the same activity, while for the E-F sample a lower 

efficacy against the tested bacteria, especially for the S. aureus, was observed. 

Anyway the inhibition zones of well known antibiotics, amoxicillin and piperacillin, 

were always larger than those of the tested compounds (Table 1).  

Table 2 summarizes the results of antibacterial activity tested by the broth 

microdilution assay expressed as MBC. It was examined the minimum bactericide 

concentration to evaluate the lowest extract or substance concentration that kills all 

bacteria, as evidenced by the absence of microbial growth in the corresponding sub-

culture after incubation for 48 h. The antimicrobial activity of two pure compounds, 

rosmarinic acid and carnosic acid, was also tested obtaining the MBC values in  

Table 2. 

Table 2. Antibacterial activity (MBC) of the three extracts of Rosmarinus officinalis L. and 

two pure standards (std). The data are expressed as µg /mL of mother solution;  the 

corresponding mg of dried extract are in brackets. The µg/mL of two pure standards are also 

reported as  reference compounds. 

 
Gram-positive Gram-negative 

 
S. aureus 

ATCC 6538 

S. epidermidis 

ATCC 82221 

E. coli 

ATCC 10536 

Ps. aeruginosa 

ATCC 15442 

E-YL 130 (8.62) 130 (8.62) ≤ 70 (4.64) 200 (13.3) 

E-ML 130 (16.0) 130 (16.0) ≤ 70 (8.6) 200 (24.6) 

E-F 270 (28.8) 130 (13.9) ≤ 70 (7.48) 200 (21.4) 

Rosmarinic  acid 600 600 400 400 

Carnosic acid 270 200 ≤ 70 270 
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On the opposite of the disk diffusion method,  E. coli was the more susceptible 

strain against all the extracts (MBC ≤ 70 µg/mL) and also against the two pure 

standards, carnosic acid (MBC ≤ 70 µg/mL) and rosmarinic acid (MBC = 400 

µg/mL). Moreno et al. [7] reported the sensitivity of E. coli to carnosic acid but the 

resistance against rosmarinic acid; this latter compound did not show inhibition 

against this bacterium. In our experiments the standard carnosic acid is more 

effective especially against E. coli, while higher concentrations have been requested 

for the MBC of the other bacteria (MBC= 200-270 µg/mL). As well as we obtained 

with disk diffusion method, Ps. aeruginosa showed more resistance to these extracts 

having the higher concentrations (MBC = 200 µg/mL) for  E-YL and  E-ML than 

the other bacteria.  

As expected, S. aureus and S. epidermidis have similar sensitivity against the first 

two extracts in Table 2, having similar phenolic composition and terpenoid content 

(Figure 2). From our data it emerges that the flavonoids and particularly the high 

content in cirsimaritin (Figure 3)  have not improved the antimicrobial efficacy 

against these microorganisms. According to the values in Table 2,  the E-F, 

containing the highest concentration of flavonoids but the lower content of 

terpenoids and total phenols, showed less efficacy against S. aureus.  

Our results (Table 2) are not completely in agreement with some authors which 

have pointed out that Gram-positive bacteria are more sensitive than Gram-negative 

ones, especially in the case of extracts containing carnosic acid as major phenolic 

compound [15]. In agreement with Moreno et al. [7], also in our study no 

correlations between MBC values and the inhibition zones, obtained by disk 

diffusion method, have been found. Overall, all the samples tested by broth dilution 

method have shown an higher activity compared to what obtained by the agar disc 

diffusion method that seems not to be a suitable approach to study these complex 

herbal extracts.  

Our preliminary data suggest to better investigate on possible synergistic effects 

between these phenolic components and some common preservatives used in 

cosmetic and food preparations. Any positive results could promote their use as 

natural additives for inhibiting microbial growth, especially pathogens.  
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Experimental 

Preparation of the rosemary extracts 

Different foliar tissue samples were collected at the same elevational and horizontal 

position in the plant following the sampling procedure indicated by Squillace [16]. 

Young newly developing leaves of the current-year’s growth, and mature of 

previous-year old foliar samples were separated in the laboratory. The leaves (1 g) 

were ground in liquid nitrogen and extracted with ethanol (two steps) by the 

alternation of magnetic stirring and sonication in ultrasounds, as already described 

in a previous study
 
[8]. A final liquid/liquid extraction with hexane (1:1, v/v) was 

applied mainly to remove part of the chlorophylls. To be able to separate the two 

phases the hexane was used after an addition of a small amount of water (3% of the 

total volume). The residual ethanol solutions were directly analyzed by 

HPLC/DAD/ESI/MS. The final samples were E-YL from young newly developing 

leaves of the current-year’s growth and E-ML from mature of previous-year old 

foliar samples. To obtain the E-F sample, particularly rich in flavonoids, the final 

ethanol extract after hexane was dried and treated with CH2Cl2 to dissolve the more 

lipophilic components. This latter solution was recovered after centrifugation, dried 

and re-dissolved in ethanol for the HPLC analyses.  

 

HPLC/DAD/ESI/MS analyses 

The analyses were carried out using a HP 1100L liquid chromatograph equipped 

with a DAD detector coupled to a HP 1100 MSD mass spectrometer with an 

API/electrospray interface (all from Agilent Technologies, Palo Alto, CA, USA). 

A 150 mm × 2 mm i.d., 4 μm Fusion, RP18 column (Phenomenex, USA) equipped 

with a precolumn of the same phase was used. The mobile phases were (A) 0.1% 

formic acid/water and (B) CH3CN; the multi-step linear solvent gradient used was: 

0–15 min 15–25% B; 15–25 min, 25–35% B; 25–35 min 35–50% B; 35–40 min 50–

100% B with a final plateau of 8 min at 100% B; equilibration time 10 min; flow 
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rate 0.2 mL min
−1

 and oven temperature 26°C; injection volume 5 μL. The analysis 

conditions were the same described in a previous study [8]. 

 

Determination of phenols content 

The quantitative evaluation of the main constituents was performed through the use 

of two external standards, rosmarinic acid at 330 nm and carnosic acid at 284 nm. 

The first compound was used at 330 nm, to quantify also all the flavonoids, while 

the second one at 284 nm to determine all the other diterpenoids. The calibration 

curve of rosmarinic acid (Sigma-Aldrich) was in a linearity range between 0.1 µg 

and 9.4 µg with a r
2
 0,9999; the calibration curve of carnosic acid (Sigma-Aldrich) 

was in the linearity range of 0.05-3.4 µg with r
2
 0.9998. 

 

Microorganisms 

All the bacterial strains tested were acquired from the American Type Culture 

Collection: Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis 

(ATCC 82221),  Escherichia coli (ATCC 10536) and Pseudomonas aeruginosa 

(ATCC 15442).  

The stock cultures were preserved in Muller Hinton Agar (MHA-Oxoid Limited) 

slant at 4°C and sub-cultured every two months. The cultures were prepared by 

inoculating a loopful of each microorganism in 5 ml of Muller Hinton Broth (MHB-

Oxoid Limited) from MHA slant. Broths were incubated at 37°C for 24 hours. The 

suspension for each microorganism was diluted with physiological solution to 

obtain about 10
8 

ufc mL
-1

 valued by biophotometer (Eppendorf BioPhotometer) 

(OD 0.200 nm).  

 

Antibacterial Assay  

The four bacterial cultures of both Gram-positive and Gram-negative bacterial 

strains were used for antibacterial activity on Rosmarinus officinalis L. using disk 

diffusion method and broth microdilution assay.  
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The concentration of the dried extract in the mother solutions, prepared using 

DMSO, are reported in Table 3. 

Antimicrobial disk susceptibility tests. The extracts were tested for antibacterial 

activity by the disk diffusion method according to the standard procedure of the 

Clinical and Laboratory Standards Institute [17]. To standardize the inoculum 

density for a susceptibility test, it was used a BaSO4 turbidity standard equivalent to 

a 0.5 McFarland standard, so homogeneous cultures containing 10
8
 ufc were spread 

on MHA. Standard 6 mm paper disks (International PBI srl) were placed on the 

inoculated surface of the agar. The stock solution of the extract was prepared by 

dissolution in dimethyl sulfoxide (DMSO) of an emulsifier (1mg/1mL). Then, paper 

discs were individually impregnated with 20 µL of the solution: the tested 

concentrations were 100%, 75% and 50% evaluated with respect to the mother 

solutions (each 1 mg/mL of rosmarinic acid). This test was performed as screening 

and for this reason we used only three concentrations. Standard antibiotic disks 

were used as positive controls, ampicillin (10 µg/mL) for E. coli, S. aureus, S. 

epidermidis and piperacillin (100 µg/mL) for Ps. aeruginosa. For the negative 

control DMSO was used. The Petri dishes were kept at 37°C and incubated 24 h. 

After incubation, all plates were observed for zones of growth inhibition and the 

diameters in millimeters of these zones were measured. Each assay was performed 

in triplicate, and the results were expressed as mean ± SD.  

Broth microdilution assay (MBC-Minimal Bactericidal Concentration). The MBC 

(the lowest extract concentration at which no microbial growth was detected) were 

determined by broth microdilution assay. 20 μL of MHB (Muller Hinton Broth-

Oxoid Limited) with 0,5% Tween 80 were added to threefold serial dilutions, and 

were performed serial dilutions (serial dilution = 600-70 μg/mL) of our extracts and 

of the two standards (carnosic and rosmarinic acids). In each well were added 20 μL 

of bacterial suspension (ca.1×10
5
 ufc mL

-1
). After incubation (37°C for 24h) an 

aliquot (60 μL) of each well was inoculated into plates containing MHA (Muller 

Hinton agar-Oxoid Limited). Plates were incubated for 24 h at 37°C, and then the 

MBC values were calculated. 
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Abstract 

Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) are 

today a conceivable reality beyond lab-scale procedures. These techniques can be 

considered a green process as it helps to greatly accelerate the extraction process 

and reduce energy consumption. Aim of this work was to investigate efficiency and 

selectivity of UAE and MAE to recover the phenolic fraction from rosemary leaves 

by means of last-generation devices. Different sequential procedures were applied 

to investigate on the possibility to improve the total extraction yields, to selectively 

recover the terpenoidic compounds and to preserve the carnosic acid from the 

oxidative degradation.  

The phenolic content in ethanol under MAE and UAE was more than three times 

higher than a classic solid-liquid extraction, that requires a duration of extraction ten 

times higher. Ethanol and acetone seem to be the most suitable solvents for the 

recovery of phenolic compounds. The water extracts showed the lowest content of 

total phenols confirming the relatively poor extractive capacity of this solvent. The 

highest content in rosmarinic acid was obtained in ethanol by UAE (67.7 mg/g dried 

extract). By comparison of phenolic fractions and final yields it was pointed out that 

high-intensity US is the most effective and versatile method looking for scaling up. 

Moreover the findings of our work pointed out that the use of ultrasounds helps to 

avoid the oxidation processes that produce carnosol and rosmanol, from their 

precursor carnosic acid. 

 

 

 

 

 

 

Keywords: Ultrasound assisted extraction, microwave assisted extraction, solvent, 

natural products 
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Introduction 

Several traditional methods have been used to extract antioxidants from aromatic 

and officinal plants, such as conventional solvent extraction (Almela et al., 2006; 

Doolaege et al., 2007), solid-liquid extraction, aqueous alkaline extraction, 

extraction with vegetable oils (Señorans et al., 2000), among others.  

The design of more efficient extraction processes, that may address the 

requirements of process intensification and energy saving, has been an important 

research topic in recent years. Safety, sustainability, environmental and economic 

factors are all forcing industries to turn to non-conventional technologies and 

greener protocols (Chemat et al., 2012). Ultrasound-assisted extraction (UAE) and 

microwave-assisted extraction (MAE) are today a conceivable reality beyond lab-

scale procedures (Cravotto et al., 2011). UAE can be considered a green process as 

it helps to greatly accelerate the extraction process and reduce energy consumption. 

The method is clean, and thanks to the low bulk temperature and the rapid 

execution, preserve the extract from thermal degradation. It leaves no residue in the 

extract and uses no moving mechanical parts, preventing the occurrence of any 

pollution. It also offers advantages in terms of productivity, yield and selectivity, 

improves processing time, enhances quality, reduces chemical and physical hazards 

(Chemat et al., 2011). Although scarcely reported in the scientific literature 

(Vinatoru, 2001), since the „90s industrial applications were available with batch 

reactors from 100 up to 500 L mainly in the preparation of extracts for the phyto-

pharmaceutical, cosmetic and liqueurs industry. Extraction enhancement by this 

technique has been attributed to the propagation of US pressure waves, and 

resulting cavitation phenomena. High shear forces cause increased mass transfer of 

extractants (Jian-Bing et al., 2006). 

In recent years, Albu et al. (2004) investigated the effect of different solvents and 

US on the extraction of carnosic acid from rosemary. Using conventional stirred 

extraction, ethanol was significantly less effective then ethyl acetate and butanone. 

The application of US improved the relative performance of ethanol such that it was 

comparable to butanone and ethyl acetate alone. Thereby high-intensity US may 
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reduce the dependence on a solvent (Cravotto et al., 2004) and enable use of 

alternative solvents which may provide more attractive economics, environmental 

and health and safety benefits. The US devices can be designed in a batch mode as 

bath, immersion horn or cavitating tube (Figure 1), however for larger-scale work is 

conceivable in a continuous mode where multiple units can be combined in a 

sequential manner (loop reactors), which also increases residence time (Figure 2). 

 

Figure 1. Ultrasonic probe systems (University of Turin and Danacamerini s.a.s. – Turin, 

Italy) 

 

 

Figure 2. Multi-horn flow reactor (University of Turin and Danacamerini s.a.s. – Turin, 

Italy) 
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Flow UAE is a novel achievement in the field which exploits mainly multi-

transducer probe systems either fixed on emitting surfaces or equipped with horns. 

Normally the flow-reactors geometry used in UAE can be easily cleaned online in a 

very efficient and rapid way and enable easier scaling up (Alexandru et al., 2013). 

In recent years also MAE has drawn significant research attention in various fields, 

in particular medicinal plant research, due to its unique heating mechanism, 

moderate capital cost and its good performance under atmospheric conditions 

(Chemat & Cravotto, 2013). 

The main advantage of MAE resides in the performance of the heating source. The 

fast volumetric microwave (MW) heating reduces dramatically both the extraction 

time and the volume of solvent required. This technique has been continuously 

improved and compared with classic and non-conventional extraction procedures 

(Orio, 2012). Besides the fundamental closed (sealed-vessel above atmospheric 

pressure) and open system for MAE (Dean et al., 2000; Luque-García et al., 2003 

respectively), throughout the last decade many modifications have been introduced 

to enhance its performance. New dedicated MW reactors have been developed to 

carry on vacuum microwave-assisted extraction (VMAE), nitrogen-protected 

microwave-assisted extraction (NPMAE), ultrasonic- microwave-assisted extraction 

(UMAE) and dynamic microwave-assisted extraction (DMAE). High working 

pressure and temperature accelerate extraction process, improving yields with lower 

solvent volumes. The pressure inside the extraction vessel is controlled in such a 

way that it would not exceed the working pressure of the vessel while the 

temperature can be regulated above the normal boiling point of the extraction 

solvent. In open systems the upper part of the vessel is connected to a reflux unit to 

condense any vaporized solvent. Thanks to recent technological advances analytes 

recovery and reproducibility of MAE are dramatically improved offering an 

irreplaceable tool for plant extraction. The scheme depicted in Fig. 3 showed a 

simple device designed for fast and eventually sequential extraction with different 

solvent under MW irradiation under gas pressure followed by rapid filtration. 
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Figure 3. MAE and fast extract solution recovery under inert gas pressure at high 

temperature (kind permission of MLS GmbH - Leutkirch, Germany) 

 

Aim of this work was to investigate efficiency and selectivity of UAE and MAE to 

recover the phenolic fraction from rosemary leaves by means of last-generation 

devices. The extraction time of 10 minutes was applied for all the tests to verify the 

ability of these innovative techniques to obtain higher yields in a very short time 

comparing to the traditional methods. Different sequential procedures were applied 

to investigate on the possibility to improve the total extraction yields, to selectively 

recover the terpenoidic compounds and to preserve the carnosic acid from the 

oxidative degradation. By comparison of phenolic fractions and final yields it was 

pointed out that high-intensity US is the most effective and versatile method 

looking for scaling up. 

 

Experimental section 

Materials and methods 

The same batch of leaves of Rosmarinus officinalis L., dried at room temperature in 

dark for some days, were used for the different extractions. 
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All the extractive procedures applied in this work are summarized in Table 1. Most 

of the tests have been performed by UAE because, to date, this technique is more 

easy and less expensive to be applied in a scale-up process with respect to MAE.  

For all the extractions, the same extractive ratio, 1 g of dried leaves/10 mL of 

solvent, and the same extraction time of 10 minutes were applied. 

UAE was carried out by means of a probe system equipped with a titanium horn 

(Danacamerini - Turin) working at 19.5 kHz (power 150 W). MAE was performed 

in a close multimode reactor (Synthwave, Milestone Bergamo) under N2 (20 bar) at 

100° C.  

  Samples Yields (%) 

MW 

MW-H2O 18.04 

MW-EtOH 20 

MW-EtOH70% 18.97 

  US-EtOH 18.73 

  

  

  

 US 

  

  

  

  

  

  

  

  

  

  

1-US-Ace 15.12 

1-US-EtOH 8.3 

1-US-H2O 22.02 

2-US-Ace 13 

2-US-H2O 21.4 

3-US-H2O+βCD 30 

4-US-Hex 6.06 

4-US-Ace 11.43 

4-US-EtOH 6.43 

4-US-H2O 25.69 

5-US-H2O 21.43 

5-US-EtOH 17.33 

6-US-Hex 6.59 

6-US-H2O 21.41 

6-US-EtOH 13.11 

 

Table 1. Extraction procedures carried out on rosemary leaves. The same extractive 

sequence is indicated by the same number (1-6) and are reported in the applied sequential 

order: H2O (water); EtOH (ethanol); EtOH 70% (ethanol/water 7:3 v/v); Ace (acetone); Hex 

(n-hexane); βCD (β-cyclodextrin 1.5% in water) 
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Different sequential extractions were applied. In the sequence indicated as 1, 

acetone has been used in the first extraction step followed by ethanol (second step) 

and water for the last extraction cycle. The same was done for the other extraction 

sequences, as described in Table 1.  

In the sample 3, a single extraction step was performed, namely UAE in a 1.5% β-

cyclodextrin solution in water.  

For the preparation of the reference phenolic extract “standard extract”, leaves (1 g) 

were dipped in liquid nitrogen and immediately finely grounded in a lab mill. The 

powder was extracted twice with ethanol alternating magnetic stirring and 

sonication, as already described in a previous study (Mulinacci et al., 2011).
 
In 

addition, a commercial oleoresin powder from rosemary leaves (provided by Giotti 

S.p.A.) has been considered and analyzed.
 

All the extracts and the oleoresin were dissolved in a defined volumes of solvent 

and the solutions were directly analyzed by HPLC. 

 

HPLC/DAD analyses 

The analyses were carried out using a HP 1100L liquid chromatograph equipped 

with a DAD detector coupled to a HP 1100 MSD mass spectrometer with an 

API/electrospray interface (all from Agilent Technologies, Palo Alto, CA, USA). 

A 150 mm × 2 mm i.d., 4 μm Fusion, RP18 column (Phenomenex, USA) equipped 

with a precolumn of the same phase was used. The mobile phases were (A) 0.1% 

formic acid/water and (B) CH3CN; the multi-step linear solvent gradient used was: 

0–15 min 15–25% B; 15–25 min, 25–35% B; 25–35 min 35–50% B; 35–40 min 50–

100% B with a final plateau of 8 min at 100% B; equilibration time 10 min; flow 

rate 0.2 mL min
−1

 and oven temperature 26°C; injection volume 5 μL. The analysis 

conditions were the same described in a previous study (Mulinacci et al., 2011). 

 

Quantitative determination 

The quantitative evaluation of the main constituents was performed through the use 

of two external standards, rosmarinic acid at 330 nm and carnosic acid at 284 nm. 
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The first compound was used at 330 nm, to quantify also all the flavonoids, while 

the second one at 284 nm to determine all the other diterpenoids. The calibration 

curve of rosmarinic acid (Sigma-Aldrich) was in a linearity range between 0,1 μg 

and 9,4 μg with a r
2
 0,9999; the calibration curve of carnosic acid (Sigma-Aldrich) 

was in the linearity range of 0,05-3,4 μg with r
2
 0,9998. 

 

Results and Discussion 

Extraction efficiency 

Table 2 reports the phenolic compounds content of 20 different extracts obtained 

applying different extraction techniques. 

Method Rosmarinic acid Flavonoids Terpenoids Total phenols 

MW-H2O 6.20 2.42 - 8.62 

MW-EtOH 5.11 3.05 28.47 36.63 

MW-EtOH70% 6.24 3.38 25.28 34.90 

US-EtOH 3.71 2.96 28.34 35.02 

1-US-Ace 1.30 2.46 31.01 34.77 

1-US-EtOH 3.86 1.47 7.92 13.25 

1-US-H2O 4.78 10.28 - 15.06 

2-US-Ace 1.13 2.42 28.90 32.45 

2-US-H2O - 2.77 - 2.77 

3-US-H2O+βCD - 5.39 - 5.39 

4-US-Hex - 0.46 11.86 12.32 

4-US-Ace 2.00 2.07 18.33 22.40 

4-US-EtOH 4.35 1.61 1.98 7.94 

4-US-H2O - 11.93 - 11.93 

5-US-H2O - 2.72 - 2.72 

5-US-EtOH - 7.47 32.11 39.58 

6-US-Hex - 0.55 12.62 13.17 

6-US-H2O - 3.96 - 3.96 

6-US-EtOH - 3.01 19.91 22.92 

Standard extract 0.56 1.6 8.12 10.28 

 

Table 2. Amount of the main phenolic constituents in the extracts obtained using different 

extraction procedures. Data are expressed as mg/g DW. Standard extract: a reference 

phenolic extract obtained by conventional extraction procedure (Mulinacci et al., 2011); -, 

not detected 
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Figure 1 reports the extraction efficiency of different techniques and conditions 

expressed as content of total phenol (mg/g dried leaves); US1, US2, US4, US5 and 

US6 columns are the sum of the various sequential extraction steps on the  same 

foliar sample and show the efficiency in terms of total phenolic recovery. 
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Figure 1. Total phenolic content (mg/g dried weight) of all the extracts under MAE  and 

UAE  

 

As showed in Figure 1 and Table 1, the phenolic content under MAE and UAE was 

more than three times higher than a classic maceration “Standard extract”, a solid-

liquid ethanol extraction that requires at least two hours of extraction time. This 

traditional method has proved a reduced efficacy compared with the ethanol extracts 

obtained applying these innovative techniques. Nevertheless, the solvent clearly 

plays a major role on extraction performance. In rosemary leaves extraction ethanol 

and acetone seems to be the most suitable solvents for the recovery of  phenolic 

compounds. In sequential extraction procedures in MAE and UAE, water confirms 

its relatively poor extractive capacity when used after organic solvents (US1, US2, 

US4 and US6). Anyway even when water was used in the first run, low yields were 
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observed (US5). Regarding the use of ethanol, the results were very similar 

applying US and MW (US-EtOH, MW-EtOH); the two extraction methods showed 

comparable phenolic content with 35.02 and 36.63 mg/g DW, respectively, as  

shown in Table 2.  

Moreover, when the extraction by ethanol was performed as second (US1, US6) or 

third (US4) step, it was less effective and the recovery of phenols the lowest. On the 

opposite, this trend is not observed in the sample 5-US-EtOH where ethanol 

extraction followed a first extraction step with water. The sequences US1 and US4 

presented the highest concentration of total phenols showing that after acetone, the 

ethanol and also water has been proven to be efficient for recovering the residual 

phenolic compounds from leaves. Overall the application of these two extractive 

sequences can increase the total efficiency of the process, while the other two 

sequences US5 and US6 are less suitable for recovering all the phenolic 

components.  

 

Focusing on the terpenoidic fraction, Figure 2 compares the carnosic acid and total 

terpenoid contents, expressed as mg/g dried leaves, reported for the extracts 

containing these compounds; the histogram shows the efficiency of thirteen 

extraction methods and highlights the samples richer in carnosic acid. 

Overall the most efficient extraction, considering both the total terpenoid and 

carnosic acid contents, was obtained for the sample 1-US-Ace (3.1% on dried 

leaves) with comparable amounts, even if a little bit lower, for the samples US-

EtOH, MW-EtOH and 2-US-Ace ranging from 2.83% to 2.85%.  
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Figure 2. Amount of terpenoids (mg/g dried leaves) of the richer extracts obtained under 

MAE and UAE 

 

In the light of these findings it can be assessed that the acetone (1-US-Ace and 2-

US-Ace) has proved the best efficacy, and its use has allowed to obtain the highest 

yields in terms of terpenoids from dried leaves; this solvent was also able to recover 

high amount of total phenols (3.48% and 3.25%, respectively), as also reported in 

Table 2.  

Regarding the use of ethanol, also considering the total content of terpenoids, the 

results were similar for the two extraction techniques (US-EtOH, MW-EtOH); 

MAE and UAE methods showed comparable amounts in the content of terpenoids 

(28.34 and 28.47 mg/g DW, respectively). 

Very low concentrations of terpenoids have been found in the extracts 1-US-EtOH 

and 4-US-EtOH, pointing out that the use of ethanol after a pretreatment with 

acetone, or with hexane and acetone, has not been useful to recover these 
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molecules; in fact the terpenoidic compounds were exhaustively recovered with the 

previous extraction (1-US-Ace and 4-US-Ace, Figure 1). 

Interesting findings were obtained with n-hexane under UAE presenting a good 

reproducibility (4-US-Hex and 6-US-Hex can be considered as replicates with 

1.23% and 1.32% total phenols yields respectively). Although the total phenols 

concentration was about three times lower than acetone and ethanol extracts, n-

hexane showed a higher selectivity. As shown in Figure 3, these extracts contained 

only terpenoids and traces of lipophylic flavonoids. This consistently differ from 

traditional n-hexane liquid/solid extraction where the non-volatile terpenoids cannot 

be recovered.  

Recently other authors proposed the use of SFE, using CO2 and ethanol as co-

solvent, to obtain a fraction with a similar composition of our n-hexane US extracts 

(carnosic acid, carnosol, genkwanine and cirsimaritin) (Herrero et al., 2010). 

Moreover, in a scale up process, the application of the US extraction is an easier and 

more convenient process if compared with the instrumentation required for SFE 

technique. 

 

 

Figure 3. HPLC profile at 284 nm of the 6-US-Hex sample from rosemary leaves. 1, 

flavonoid; 2, carnosol; 3, flavonoid; 4, carnosic acid 

 



194 

As reported in Figure 2, the carnosic acid content in 4-US-EtOH and in “Standard 

extract” samples was very low and even absent in 6-US-EtOH extract.    

Moreover the sample 5-US-EtOH, although characterized by the highest amount of 

total terpenoids, showed a low concentration of carnosic acid, not over 20.6% of the 

total terpenoid content. This is not unexpected because the ethanolic extraction was 

applied after a previous treatment with water (5-US-H2O sample) that can promote 

the oxidation of carnosic acid towards carnosol, as already described in previous 

studies (Masuda et al., 2002; Zhang et al., 2012). It has been demonstrated that low 

amounts of water during the extraction may be able to strongly reduce the content 

of carnosic acid promoting its conversion into oxidation products. 

Moreover, the HPLC profile of the sample 5-US-H2O highlighted that the use of 

water in US extraction could not recover neither the more polar phenolic fraction 

nor the rosmarinic acid and the final yields in term of total phenolic content were 

only 0.27% with respect to the dried leaves. 

 

Quality of the extracts  

The content of specific marker compounds or the total phenolic amount expressed 

as w/w on the dried extracts can be considered useful parameters to evaluate the 

extract quality. 

In Table 3 are compared the phenolic compositions of the eight samples that 

showed a total phenolic content over 120 mg/g dried extract and of a commercial 

dried oleoresin from rosemary leaves. The highest concentration of total phenols 

and total terpenoids have been obtained by acetone extraction (1-US-Ace and 2-US-

Ace) with values close to those obtained considering the commercial oleoresin. 

Nevertheless the acetone extracts obtained applying the US technique were 

considerably richer in carnosic acid (more than 172 mg/g DE) if compared with the 

oleoresin (31.6 mg/g DE). These findings suggest that US extraction can be applied 

to avoid the oxidation processes that produce carnosol and rosmanol from their 

precursor carnosic acid. 
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 1-US 

Ace 

1-US 

EtOH 

2-US 

Ace 

4-US 

Ace 

4-US 

EtOH 

MW 

EtOH 

MW 

EtOH 

70% 

US 

EtOH 

Oleoresin 

Flavonoid 0.4 2.6 0.4 0 1.8 0 0 0 0,1 

Flavonoid 0.2 0.4 0.2 0.6 4.4 1.2 1.6 1.1 0.2 

Rosmarinic acid 8.6 46.5 8.7 17.5 67.7 25.6 32.9 19.8 0.2 

Flavonoid 0.3 2.1 0.6 0.7 3.5 1.7 1.2 0.9 0.1 

Flavonoid 0.6 2.9 0.5 0.1 1.5 0.7 3.7 0.8 0.1 

Flavonoid 1.0 3.3 1.1 1.4 4.1 2.1 1.9 1.6 0.2 

Flavonoid 0 0 0 0.2 4.9 0.8 0.9 0.4 0.4 

Flavonoid 0 0 0 1.2 1.3 0 0 0.8 0.6 

Cirsimaritin 4.2 2.1 4.9 5.1 1.3 3.0 2.7 3.3 1.8 

Flavonoid 0.8 0.4 1.3 1.1 0.5 0.5 0.6 0.6 0.5 

Genkwanine 2.5 1.1 2.7 3.1 0.7 1.4 1.5 1.7 1.2 

Flavonoid 3.8 1.7 4.2 2.9 0.7 2.5 2.5 2.8 0.7 

Flavonoid 2.4 1.1 2.7 1.7 0.4 1.5 1.4 1.7 0.7 

Total flavonoids 16.3 17.7 18.6 18.1 25.1 15.3 17.8 15.8 6.8 

Rosmanol 10.1 4.8 11.2 11.3 0 6.6 0 7.5 70.5 

Carnosol 35.6 22.9 38.5 41.6 24.2 29.4 48.4 31.8 122.3 

Carnosic acid 159.4 67.7 172.4 107.5 6.5 106.3 84.9 112.0 31.6 

Total terpenoids 205.1 95.5 222.1 160.4 30.8 142.3 133.3 151.3 224.3 

Total phenols 230.0 159.6 249.4 195.9 123.5 183.2 184.0 187.0 231.2 

 

Table 3. Phenolic compositions (mg/g dried extract) of the eight samples having an high 

total phenolic content (over 120 mg/g dried extract) and containing all the main phenols of 

rosemary leaves. A commercial dried oleoresin from rosemary leaves was also used to 

compare the obtained data 

 

The highest content in rosmarinic acid was obtained in ethanol under UAE (4-US-

EtOH and 1-US-EtOH, 67.7 mg/g and 46.5 mg/g, respectively). Lower amounts 

have been observed with the same solvent under MAE (MW-EtOH 25.6 mg/g and 

MW-EtOH 70% 32.9 mg/g). 
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Our results pointed out a greater ability to recover the rosmarinic acid when the 

ethanol is used as extraction solvent; this trend is particularly evident when ethanol 

follows the pre-extraction with acetone. Under MAE conditions the use of a mixture 

ethanol/water 7:3 v/v, resulted more efficient for rosmarinic acid (yield 28.5%) than 

the use of pure ethanol (Table 3). 

Figure 4 shows the phenolic composition of the four extracts containing mainly 

terpenoids, together with a group of minor flavonoids. The high amount of 

terpenoids found in the n-hexane extracts (4-US-Hex and 6-US-Hex) was close to 

200 mg/g DE. Moreover, as already observed, this solvent afforded a high content 

of carnosic acid, while ethanol (5-US-EtOH) showed carnosol as main compound 

(79.5% of total terpenoids). The n-hexane samples contained only two lipophilic  

flavonoids with a total amount ranging from 3.9% to 4.2% of the total terpenoids, as 

also reported in Figure 3. 
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Figure 4. UAE extracts characterized by a good selectivity for the recovery of the 

terpenoidic fraction 

 



197 

The water extracts obtained by MW and US showed the lowest content of total 

phenols (<50 mg/g DE) (Table 4). The addition of β-CD was evaluated to verify the 

possibility to selectively concentrate specific flavonoids from the phenolic fraction. 

Nevertheless, by the HPLC evaluation, no selective extraction was pointed out and 

a  low recovery of the phenolic molecules, almost exclusively constituted by minor 

flavonoids, was obtained. Overall, the use of this polar solvent is not recommended 

for future MW and US extractions on rosemary leaves. 

 

Samples Rosmarinic acid Total flavonoids Total phenols 

MW-H2O 34.36 13.42 47.78 

2-US-H2O 0 12.97 12.97 

3-US-H2O+βCD  0 17.05 17.95 

4-US-H2O 0 46.42 46.42 

5-US-H2O 0 12.71 12.71 

6-US-H2O 0 18.52 18.52 

 

Table 4. Phenolic composition of extract in H2O and H2O+βCD extracts under UAE and 

MAE (mg/g DE) 

 

References 

Albu, S.; Joyce, E.; Paniwnyk, L.; Lorimer, J.P., Mason, T.J. “Potential for the use 

of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the 

food and pharmaceutical industry” Ultrasonics Sonochemistry 2004, 11, 261–265. 

 

Alexandru, L.; Cravotto, G.; Giordana, L.; Binello, A.; Chemat, F. “Ultrasound-

Assisted Extraction of Clove Buds with Batch- and Flow-Reactors: a comparative 

Study on a pilot scale” Innov. Food Sci. Emerging Technol. 2013, 20, 167-172. 

 



198 

Almela, L.; Sánchez-Munoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. 

“Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical 

scavenging activity of rosemary extract from different raw material”  J. 

Chromatogr. A 2006, 1120, 221-229. 

 

Casazza, A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. “Extraction of 

phenolics from Vitis vinifera wastes under non-conventional techniques” J. Food 

Eng. 2010, 100, 50-55. 

 

Chemat, F.; Zill-e-Huma; Muhammed, K. K. “Applications of ultrasound in food 

technology: Processing, preservation and extraction” Ultrasonics Sonochemistry 

2011, 18, 813–835. 

 

Chemat, F.; Abert-Vian, M.; Cravotto, G. “Review: Green extraction of natural 

products: Concept and principles” International Journal of Molecular Sciences 

2012, 13, 8615–8627. 

 

Chemat F.; Cravotto G. (2013) “Microwave-assisted extraction for bioactive 

compounds: Theory and practice” XII, 238 pp. Series: Food Engineering Series, 

Vol. 4 Springer Science, 233 Spring Street, New York, NY 10013, U.S.A. 

 

Cravotto, G.; Binello, A.; Merizzi, G.; Avogadro, M. “Improving solvent-free 

extraction of policosanol from rice bran by high-intensity ultrasound treatment” 

Eur. J. Lipid Sci. & Techn. 2004, 106, 147-151. 

 

Cravotto, G.; Binello, A.; Orio, L. “Green extraction techniques for high-quality 

natural products” AgroFOOD industry high-tech 2011, 22(6), 24-36. 

 

Dean, J.R.; Xiong, G. “Extraction of organic pollutants from environmental 

matrices: selection of extraction technique”  TrAC Trends in Analytical Chemistry 

2000, 19(9), 553–564. 

http://www.sciencedirect.com/science/journal/01659936
http://www.sciencedirect.com/science/journal/01659936/19/9


199 

 

Doolaege, E.H.A.; Raes, K.; Smet, K.; Andjelkovic, M.; Van Poucke, C.; De Smet, 

S.; Verhé, R. “Characterization of two unknown compounds in methanol extracts of 

rosemary oil” J. Agric. Food Chem. 2007, 55, 7283-7287. 

Herrero, M., Plaza, M., Cifuentes, A., Ibáñez, E. (2010). Green processes for the 

extraction of bioactives from rosemary: chemical and functional characterization via 

ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro 

assays. Journal of Chromatography A, 1217, 2512-2520. 

 

Jian-Bing, J.; Xiang-hong, L.; Mei-qiang, C.; Zhi-chao, X. “Improvement of 

leaching process of Geniposide with ultrasound. Ultrasonics Sonochemistry 2006, 

13, 455−462. 

 

Luque-García, J.L; Luque de Castro, M.D. “Where is microwave-based analytical 

equipment for solid sample pre-treatment going?” TrAC Trends in Analytical 

Chemistry 2003, 22(2), 90-98. 

 

Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; 

Michelozzi, M. “Storage method, drying processes and extraction procedures 

strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study” 

Talanta 2011, 85, 167-176. 

 

Orio, L.; Alexandru, L.; Cravotto, G.; Mantegna, S.; Barge, A. ”UAE, MAE, SFE-

CO2 and classical methods for the extraction of Mitragyna speciosa leaves” 

Ultrason. Sonochem. 2012, 19(3), 591-595.  

 

Señorans, F.; Ibáñez, E.; Cavero, S.; Tabera, J.; Reglero, G. “Liquid 

chromatographic-mass spectrometric analysis of supercritical-fluid extracts of 

rosemary plants” J. Chromatogr. A, 2000, 870, 491. 

 

http://www.sciencedirect.com/science/article/pii/S0165993603002024
http://www.sciencedirect.com/science/article/pii/S0165993603002024
http://www.sciencedirect.com/science/journal/01659936
http://www.sciencedirect.com/science/journal/01659936


200 

Vinatoru, M. “An overview of the ultrasonically assisted extraction of bioactive 

principles from herbs” Ultrasonics Sonochemistry, 2001, 8, 303-313. 

 

 

 

 

 

 



201 

The neuropathy-protective action of rosemary in a rat model of neuropathic 

pain 

 

In cooperation with:  

Dott. Lorenzo Di Cesare Mannelli, Prof. Carla Ghelardini 

 

Department of Neurosciences, Psychology, Drug Research and Child Health, 

Neurofarba, Pharmacology and Toxicology Section, University of Florence 

 

The effect of different rosemary extracts in the treatment of neuropathic pain was 

evaluated in the Chronic Constriction Injury (CCI) model of neuropathy (Bennett 

and Xie, 1988). 

Chronic Constriction Injury (CCI) was induced by ligation of the right sciatic nerve 

(ipsilateral). Fourteen days after injury, the anti-hyperalgesic effect of repeated 

administration of rosemary extracts has been evaluated by Paw Pressure test, Von 

Frey test and Incapacitance test.  

The tested extracts were:  

•  an ethanol extract (EE), obtained as described in a previous study (Mulinacci 

et al., 2011)  

• an acetone extract (AE), characterized by high concentration of terpenoids 

(carnosic acid and its derivatives) and by the absence of rosmarinic acid. 

 

The chromatographic profiles of the extracts are shown in Figure 1 and 2. 
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Figure 1. HPLC profile of the ethanol extract (EE) at 330 e 284 nm. Rosmarinic acid (1) is 

the main compound. 

 

 

Figure 2. HPLC profile of the acetone extract (AE) at 330 e 284 nm. 2, cirsimaritin; 3, 

genkwanine; 4-5, unknown flavonoids; 6, carnosol; 7, carnosic acid. 
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Drug treatments 

Rosemary extracts were suspended in 1% carboxymethylcellulose sodium salt 

(CMC) and administered by the per os (p.o.) route. 100 mg kg
-1

 and 300 mg kg
-1

 

extracts were daily administered starting from the day 1, immediately after ligation 

of the sciatic nerve, to the 13th day. Behavioural and biochemical tests were 

performed 24 hours after the end of treatments on day 14. Control rats received p.o. 

CMC every day.  

 

Paw pressure test 

The nociceptive threshold in rats was determined with an analgesimeter (Ugo 

Basile, Varese, Italy), according to the method described by Leighton et al. (1988). 

Briefly, a constantly increasing pressure was applied to a small area of the dorsal 

surface of the paw using a blunt conical probe by a mechanical device. Mechanical 

pressure was increased until vocalization or a withdrawal reflex occurred while rats 

were lightly restrained. Vocalization or withdrawal reflex thresholds were expressed 

in grams. Rats scoring below 40 g or over 75 g during the test before drug 

administration (25%) were rejected. An arbitrary cut-off value of 250 g was 

adopted. Fourteen days after the operation rats were tested twice in 30 min and 

mean was shown. The data were collected by an observer who was blinded to the 

protocol. 

 

Von Frey Test 

The animals were placed in 20- × 20-cm plexiglas boxes equipped with a metallic 

meshy floor, 20 cm above the bench. A habituation of 15 minutes was allowed 

before the test. An electronic Von Frey hair unit (Ugo Basile, Varese, Italy) was 

used: the withdrawal threshold was evaluated by applying force ranging from 0 to 

50 grams with a 0.2 gram accuracy. Punctuate stimulus was delivered to the mid-

plantar area of each anterior paw from below the meshy floor through a plastic tip 

and the withdrawal threshold was automatically displayed on the screen. Paw 

sensitivity threshold was defined as the minimum pressure required to elicit a robust 
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and immediate withdrawal reflex of the paw. Voluntary movements associated with 

locomotion were not taken as a withdrawal response. Stimuli were applied on each 

anterior paw with an interval of 5 seconds. The measure was repeated 5 times and 

the final value was obtained by averaging the 5 measures.  

 

Incapacitance test 

Weight bearing changes were measured using an incapacitance apparatus (Linton 

Instrumentation, UK) detecting changes in postural equilibrium after a hind limb 

injury [26]. Rats were trained to stand on their hind paws in a box with an inclined 

plane (65° from horizontal). This box was placed above the incapacitance apparatus. 

This allowed us to independently measure the weight that the animal applied on 

each hind limb. The value considered for each animal was the mean of 5 

consecutive measurements. In the absence of hind limb injury, rats applied an equal 

weight on both hind limbs, indicating a postural equilibrium, whereas an unequal 

distribution of the weight on hind limbs indicated a monolateral decreased pain 

threshold. Data are expressed as the difference between the weight applied on the 

limb contralateral to the injury and the weight applied on the ipsilateral one (Δ 

Weight). 

 

Preliminary Results 

14 days after injury (CCI) the mechanical withdrawal threshold to a noxious 

stimulus was measured by Paw pressure test (Table 3). The weight tolerated on the 

ipsilateral paw of vehicle-treated animals was significantly reduced (41.2 ± 1.5 g) 

compared to the contralateral (70.0 ± 2.1 g).  

100 mg Kg
-1

 EE and AE administered daily p.o. for 13 days (starting from the day 

of injury) increased the withdrawal threshold of the ipsilateral paw up to 54.1 ± 1.7 

and 58.3 ± 1.2 g, respectively. The higher dose of 300 mg Kg
-1

 did not induce 

significant increase in pain threshold in comparison with the lower. The acetone 

extract AE showed higher efficacy than EE also at 300 mg Kg
-1

. 
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P a w  p r e s s u r e  

TREATMENT  Paw Weight (g) 

 

Dose 

mg Kg
-1

p.o. 

 

 14
th

 day 

Vehicle   
ipsilateral 76.2 ± 1.6 

contralateral 73.5 ± 2.9 

    

CCI + Vehicle  
ipsilateral 41.2 ± 1.5* 

contralateral 70.0 ± 2.1 

    

CCI + EE 100 
ipsilateral 54.1 ± 1.7^ 

contralateral 68.5 ± 2.1 

    

CCI + EE 300 
ipsilateral 51.2 ± 3.1^ 

contralateral 67.5 ± 3.2 

    

CCI + AE 100 
ipsilateral 58.3 ± 1.2^ 

contralateral 68.0 ± 3.7 

    

CCI + AE 300 
ipsilateral 60.0 ± 3.5^ 

contralateral 67.5 ± 3.2 

 

Table 3. Effect of rosemary extracts on Chronic Constriction Injury induced hyperalgesia in 

the rat; PAW-PRESSURE TEST. Paw pressure test was performed on day 14. *P<0.01 with 

respect to the contralateral paw; ^P<0.01 with respect to the CCI + vehicle treated rats. 

Each value represents the mean of 10 rats. 

 

Table 4 shows the response to a non-noxious mechanical stimulus evaluated by the 

Von Frey test. On day 14 pain threshold of the ipsilateral paw (CCI + vehicle 

group) was decreased to 9.2 ± 0.9 g as compared to the contralateral (25.7 ± 1.0 g). 

Animals treated with 100 mg Kg
-1

 EE and AE showed an ipsilateral threshold of 8.4 

± 1.1 and 12.9 ± 0.6 g, respectively; the groups treated with higher dosage tolerated 

a stimulus by about 15 and 16 g, respectively.  
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In both Paw pressure and Von Frey tests the pain sensitivity of the contralateral paw 

of CCI + vehicle or CCI + EE and AE groups was not different with respect to the 

control (vehicle + vehicle).   

 

V o n  f r e y  

TREATMENT  Paw Weight (g) 

 Dose 

mgKg
-1

p.o. 

 

 14
th

 day 

Vehicle    
ipsilateral 24.6 ± 2.1 

contralateral 29.1 ± 4.3 

    

CCI + Vehicle  
ipsilateral 9.2 ± 0.9* 

contralateral 25.7 ± 1.0 

    

CCI + Rostot   100 
ipsilateral 8.4 ± 1.1 

contralateral 29.4 ± 3.2 

    

CCI + Rostot   300 
ipsilateral 15.2 ± 1.3^ 

contralateral 27.4 ± 1.4 

    

CCI + Roscarn 100 
ipsilateral 12.9 ± 0.6 

contralateral 29.6 ± 1.5 

    

CCI + Roscarn 300 
ipsilateral 16.1 ± 2.0^ 

contralateral 28.1 ± 2.3 

 

Table 4. Effect of rosemary extracts on Chronic Constriction Injury induced allodynia in the 

rat; VON FREY TEST. Von frey test was performed on day 14. *P<0.01 with respect to the 

contralateral paw, ^P<0.05 with respect to the CCI + vehicle treated animals.  Each value 

represents the mean of 10 rats. 

 

Unilateral pain was also able to induce hind limb weight bearing alterations 

(Incapacitance test): the difference between the weight burdened on the 

contralateral and the ipsilateral limb was significantly increased in CCI + vehicle 

(79.5 ± 4.6 g) with respect to vehicle + vehicle (-3.9 ± 1.1). The protective effect of 

rosemary was shown in Table 5. 
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I n c a p a c i t a n c e  t e s t  

TREATMENT  

Difference score (g) 

contralateral minus ipsilateral 

paw 

 Dose 

mgKg
-1

p.o. 

 

14
th

 day 

Vehicle   -3.9 ± 1.1 

   

CCI + Vehicle  79.5 ± 4.6* 

   

CCI + Rostot   100 81.1 ± 5.2 

   

CCI + Rostot   300 32.9 ± 3.7^ 

   

CCI + Roscarn 100 87.5 ± 3.1 

   

CCI + Roscarn 300 23.4 ± 2.8^ 

 

Figure 5. Effect of rosemary extracts on Chronic Constriction Injury-induced hind limb 

weight bearing alterations in the rat; INCAPACITANCE TEST. Incapacitance test was 

performed on day 14. *P<0.01 with respect to the control animals; ^P<0.01 with respect to 

the CCI + Vehicle treated animals. Each value represents the mean of 10 rats. 
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