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No man is an island entire of itself; every man is a piece of the continent, a part of the

main; if a clod be washed away by the sea, Europe is the less, as well as if a promontory

were, as well as any manner of thy friends or of thine own were; any man’s death

diminishes me, because I am involved in mankind. And therefore never send to know for

whom the bell tolls; it tolls for thee.

John Donne



Abstract

The intent of our work was to study the dynamics of the individuals interacting in

virtual way within a small group, with the aim to define first an experimental framework

of research, and then to refine some psychological perspectives about the virtual small

group dynamics.

A small group of humans engaged in a common conversation can be considered as a

good example of a complex system. The group dynamics is rather complex and not

predictable from the individual characteristics. Within small groups, the transitions

between states of disorder and states of order, such as the spontaneous emergence of a

common jargon or the emergence of a broad consensus for a particular topic, are very

frequent.

The virtual experimental environment developed was inspired by a classical chat-room

interface, with some expedients to keep track (in a stylized way) of the dimensions of

interest in our study, such as the self-perception and the emotional non-verbal contents

(mood). We performed a quantitative investigation, measuring the frequencies of mes-

sages exchanged, the mood accompanying such messages and a self-assessment of the

social space.

The core of the experimental sessions was to study the relations between the affinity

among individuals and their communication dynamics. As first step, we designed three

different experimental tasks (social problems), with a crescent degree of social complex-

ity, in order to test the impact of different social constraints on the evolution of the

affinity network, as well as on the dynamics of communication. In such way we de-

fined the “cognitive recipes” used by the subjects to solve the required social problems,

showing that the complexity of the task affects the relations between the affinity and

communication networks, influencing at the same time both the affinity and the opinion.

As second step, we deeply explored the opinion dynamics within a small virtual group

engaged in a discussion on a specific topic. Within such aim, two ingredients (the

personality factors and the subjective opinion about the topic of discussion) were added.

We explored the relations among the subjective variables (i.e. personality, gender, age),

the individual opinions, the affinity network and the communication patterns emerging

from the small group interaction. The purpose of this last experimental step was to

investigate the different “layers” existing in a small group context (individual level,



group level and intermediate level) and their mutual influences, with the aim to provide

some psychological insight for the modelling of the opinion dynamics inside a small

group. Our results suggest that such levels are deeply linked each others.

Finally we refined an existing model of opinion evolution and affinity dynamics, fitting

real experimental data. In such a way we demonstrated experimentally the validity

of the the model. Successively, we investigated the sensibility to the initial conditions

of a simulated group interaction, obtaining for different values of the parameters in-

volved into the model a completely different global dynamics. The differences shown by

such scenarios have been explored, providing some sociophysics explanations and some

psychological interpretations.
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Chapter 1

Introduction

The main purpose of this work is the study of the dynamics of small groups of humans

that communicate through a “virtual” tool (i.e. chat room). We face this task from

an experimental and theoretical point of view. We extend the investigation to several

scenarios, studying the impact of different experimental constraints on the interactions

between the individuals, on the emerging social relations, on the communication patterns

and on the opinion dynamics. We propose a study carried out with numerical simulations

based on the experimental observations. In such way we shall try to put into evidence

the collective effects that characterize the dynamics of small groups.

The psychological literature provides several studies about the dynamics of small groups

and the emergences of group phenomena (for a comprehensive overview see [1]). The

small group is classically defined as composed by around 8− 12 individuals which share

the same environment, where frequent and regular interactions happen. The interaction

among the members of the group are characterized by some cognitive and affective

factors, deriving from the merging of individual and group processes, as resulting from

the interdependence among the individuals.

In order to approach the small group as complex system we consider the smaller system,

the individual, and the bigger system, the group, as two interacting entities, where the

local individual dynamics shape the global group dynamics, and vice-versa. Furthermore,

the interaction among the members surely happens within a specific context, represented

by the constraints imposed to the group, and the resources and tools available to the

members [2]. The interactions that originate such dynamics can affect several group

phenomena, such as the emergences of communication topology [3–6], the social identity,

the in-group out-group effect [7–9], and the social influence process [10–12].

1



Introduction 2

The group dynamics can be defined as the phenomena resulting from the contents,

structures and individual processes occurring within the group.

Figure 1.1: Different layers of analysis of the interactions in small group. The content
is the most superficial level, the structure defines the topology where the processes can
arise. The dynamics are considered as the result of the complex relations among the

three “external” levels.

Using the schematic representation in Fig. 1.1, we shall describe the different layers of

analysis of the interactions (i.e. virtual communications) in the small groups explored

in our work.

The content level is the most superficial one, and it is the easier level to access. It

includes everything the members do and say explicitly. The analysis of the contents

requires a certain expertise, but it is a habitual performance in daily life. The contents

include the stated objectives, or the agenda, or the topic under discussion; so that the

contents is the most visible aspect by all the members of the group, and by the external

observers. Within the real environment, the verbal and non-verbal exchanges represent

the content of the communications. In our experiments, we refer to the content as the

mood of the messages exchanged within the chat environment.

The structure is the second level of the analysis of the interactions. The structure is

defined as the “network” of messages, affecting the way in which the group organizes

the expression of contents. The use of a particular language, the sequence of commu-

nications, the modalities of decision making and the roles of the individuals determine

the structure.

In certain contexts the structure can be explicit, and in such case the members are aware

of it (i.e. working or training groups). The structure, coupled to the contents, allows a

first assessment of the organization of the group.

The analysis of the structure gives a good snapshot of the group. The structure is what

remains relatively stable over the time and thus provides the more reliable elements of
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evaluation, since the structure describes the regular behaviours of the group. The norms,

the presence of a leader, the hierarchy of communications are further factors determining

the structure. Therefore, the analysis of the structure can reveal the operational role of

the individuals.

In addiction, analysing the communication structures, it is possible to study the dynam-

ics of social groups using tools from the complex and social networks theories [13–17].

Through the study of the communication network, we can observe both the processes

and the structures of communication.

Successively, we have the individual processes level. Traditionally, the psychological

literature refers to the individual processes as the cognitive (i.e. perceptions, atten-

tion, memory, thought and language) and dynamical (i.e. needs, emotions, motivations)

mechanisms. Contrary to the contents and to the structure, the mental processes are not

directly observable: what can be observed are only the results of such process (i.e. ex-

pression, behaviour). In such way, within a context of small group in virtual interaction,

the individual processes can be understood or deduced considering the communication

patterns, the evolution of the structure of relationships and the contents exchanged.

While the contents and the structures are in some way the structural elements, the pro-

cesses represent the individual mechanisms, influencing and influenced by such structural

elements.

The group dynamics is the less obvious and less explicit level that we take into con-

sideration. The dynamics can be interpreted through the observation and the analysis

of the three previous levels. The group dynamics is the emergent behaviour showed

by the group. The group dynamics is affected by the processes, by the the structure

Figure 1.2: The group dynamics is determined by the individual processes and the
structure and contents exchanged. Through a numerical approach we can study, given
the individual processes, how the observables are determined, and the resulting dynam-

ics
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and the contents, but the group dynamics also influences the contents, the structure

and processes. There is therefore a circular relationship between all levels taken into

account.

Such considerations summarize part of our approach to the small group dynamics. We

explored the communication among the individuals within a small group in a virtual

environment, linking all the different layers mentioned above, considering the mood of

the communication (content), studying the interaction networks (structure), the evolu-

tion of such networks (process), pointing out the phenomena emerging (dynamics) and

eventually how such phenomena reverberate on the precedent layers.

Once the experimental data are collected, we try to hypothesize the individual processes

that originates part of the dynamics observed. In other words we try to translate the

empirical observation into a numerical approach, based on the experimental data related

to the contents and to the structure, describing the individual processes and interpreting

the group dynamics (i.e. in our model the opinion dynamics) (Fig. 1.2).

Through the sociophysical approach we assume the individual processes and the inter-

action rules (i.e. the conventional content (opinion) and the communication structure)

explaining the group dynamics. In such way our research faces the issue of interest,

the small group dynamics, with an empirical approach and simulation models, seeking

experimental confirmation of the existing models and widening the experimental results

through simple numerical models and computer simulations.

This work is organized as follows: we first describe the theoretical framework in Chap-

ter 2, consisting in an overview on the literature regarding the study on the group dy-

namics, both from a social, psychological and sociophysical point of views, highlighting

the advantages of a multidisciplinary and “complex” approach.

Successively the experimental framework is presented in Chapter 3, with the explanation

of the general methods and the statistical procedure used to analyse the experimental

data.

In Chapters 4, 5, 6, the steps of our research are presented, starting from the baseline

of our study and providing a first comparison between two different experimental tasks

(i.e. Blank vs Topic condition, Chapter 4), and an exhaustive report about the results

of the three different experimental conditions, with increasing social complexity (i.e.

Blank vs Topic vs Game condition, Chapter 5). The results of the last experimental

session are discussed in Chapter 6 (i.e, Opinion condition). In Chapter 7, we refer to

the sociophysical approach to the small group dynamics, and an opinion dynamic model

is proposed (i.e. Opinion and affinity model evolution: the repulsion dynamics). The

general considerations of our study are summarized in the conclusions, Chapter 8).



Chapter 2

Theoretical framework

In this chapter we present the roots of our research. The following paragraphs are

not meant as a deep and comprehensive explanation of the methods that have been

developed within each theoretical corpus, but rather as a general overview about the

multidisciplinary nature of our work.

First of all, we focus on the social psychology and on the social cognition, highlighting

the contribution of the psychological literature to the explication of the small group

dynamics and of the social phenomena emerging from the social interaction.

Subsequently, we link the previous consideration to the implications deriving from con-

sidering the small group as a complex system, explaining the different levels of analysis

that can be applied to description of the small group dynamics. We refer to the graph

theory to explain how such dynamics, considered as the complex networks dynamics, can

be investigated, and to the social network analysis to interpret some network measure,

both from the local and global point of view.

Eventually we discuss about the sociophysics approach to the social dynamics, how such

domain tries to model what happen within a group of people. The sociophysics approach

represents a large part of the rationale of our experiments, that can be thought both

as an experimental verification of the reference models. Furthermore, the sociophysics

approach gives us the opportunity to explore the direct mechanisms for the interpretation

of the experimental data.

On the basis of the experimental observations, that we will describe in Chapters 4, 5

and 6, we try to infer the mental processes of the individuals and how such processes

determine and are determined by the group dynamics, essentially with a measure of the

correlation between the processes. In the psychological approach the processes are often

represented by linear models, usually obtained from the analysis of experimental data.

5
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Through the sociophysics approach we hypothesize non- linear processes that determine

the group dynamics and, in retrospect, we try to adapt the model to the experimental

observations. In this way it is possible to speculate how non-linear processes can give

rise to the observed dynamics.

All the research areas presented in this chapter, apparently far apart, are merged by our

work, each maintaining his role, starting from a diverse starting point and contributing

to the same goal, the small group dynamics.

2.1 Social psychology and social cognition

The focus of the social psychology is the interaction between the individual and the social

environment (i.e. between individuals and the group), considering both the relations

within the group and the relations among the groups. In such a way the social psychology

aims to figure out both the relationship that the individuals establish with them and

with the society.

In the past century, many leading researchers have attempted to define the peculiar

features of a group of people.

Lewin has defined the group as “a dynamic whole based on the interdependence of its

members (or rather, the sub-parts of the group). It is important to emphasize such point

because many definitions of group used the similarity among the members rather than

their interdependence as a constitutive factor” [18]. For Sherif and Sherif the group is “a

social unit which consists of a number of individuals in relationships, with status and role

(more or less) defined and, in some measure, stable in time. The group has a set of values

and norms that regulate the behaviour of the members, at least in matters of importance

for the group ” [19]. Tajfel and Turner, in the 1986, have conceptualized the group as

“a collection of individuals who perceive themselves as members of the same social

category, sharing a certain emotional involvement. The group members reach a certain

degree of social consensus on the evaluation of their group, and their are recognized

as belonging to the group” [20]. Around the 90’s, Brown simplifies the definition of a

group, summarizing it into the following sentence: “A group exists when two or more

people self-define themselves as members of the group, and when the existence of the

group is recognized by at least one other person” [21].

What emerges from all these definitions is that the group can not be considered as a

simple agglomerate of people; rather, to define a group, one have to consider in some way

also the qualities of “being in group”. All the features pointed out by the definitions of

the group refer to something arising within the people in interaction, both regarding the
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interdependence among members, the roles and the norms, and something distinguish

who belong from who do not belong to the group.

The interactions among individuals appear to be a necessary criterion to establish the

existence of a group, while the direct relationships are not essential for a simply assembly.

Such assumptions allow us to differentiate between at least two types of human groups:

the small groups, or groups face-to-face, related to the micro-social scale, and social

groups, or collective, related to macro-social scale.

The number of the members of a group is an important feature to take into account

to investigate and to interpret the kind of relationships established between the people

who belong to it, and consequently the kind of emerging dynamics that one can expect.

Traditionally, a couple of people is defined as a dyad, three people form a triad, from

four to twelve members we have the small group, up to thirty members we have the

median group, and over thirty individuals the large group.

The intra-group dynamics depends on the size of the group. In the dyad there is a

preponderance of the affective dynamics, that guarantees the group existence. The

communicative aspect is very important, because a mutual interaction is necessary for

the existence of a dyad. Within the triad the communicative aspect changes, since two

of the three elements may temporarily interact with each other, excluding the third

individual. The small group is one of the fundamental patterns of social interaction,

since a lot of social and functional activities takes place in groups of this size. The larger

groups tend to give rise to the spontaneous formation of sub-groups of such dimension.

Finally, the larger groups are characterized by “less affective” relationships, and in such

a context the individuals are more predisposed to uniformity and identification.

The small group is characterized by some essential factors, which emphasize the dif-

ference with smaller and larger group. The small group is a special social dimension,

showing a fusion of features of dyadic relationship and collective behaviours.

Due to the low number of the members, up to 10-12, frequent and regular interactions

can take place. As consequence, within the small group the members can have a precise

perception and a mental representation of each other person. The members of a small

group often pursue a common target, share theirs interests, and at the same time within

the small group diverse needs of members emerge.

Differently from larger groups, within the small groups the individual/local features

(i.e. the subjective variables and the peer-to-peer relations) have a relevant weight on

the group/global evolution, so a challenge in the study of the small group dynamics

is to establish relations between the individual and local aspects and the small group
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dynamics. The psychological and subjective dimensions, related to the individuals, and

the social dimensions, rooted in the collective and structural features of society and

of social life, are deeply intertwined. From the social point of view we can interpret

the change of opinion (or whatever) as the effect of a “push” or “force” exerted by the

group on the individual (i.e. social pressure). Through the psychological approach we

try to understand how such force originates within the interpersonal relationships and

intra-personal processes.

The small group is characterized by a strong interdependence among members, by feel-

ings of union among the members, by the differentiation of roles, by a sharing and

the creation of beliefs, rules, jargon, typical of the specific small group. The affective

and cognitive ingredients colour and give meanings to the relationships within the small

groups, giving rise to different dynamics. One way to investigate the relationships among

members is to consider the communications occurring within the small group interaction,

as we will explain in the next paragraphs.

The relation between the individual and the group is a central issue both to understand

the personal attitude and to explain the collective behaviour. At the collective level,

the group is approached taking into account the shared rules, the roles of the members,

the purposes and the goals pursuit; in general the aim is to study the push towards

the consensus and cohesion, or alternatively, the disintegrating forces. Regarding to the

individual level, the bull’s eye of the researchers is largely oriented towards the areas of

emotions and cognition, with a privileged attention to the interpersonal relationships,

with the aim to understand the mechanism bringing to the mental representation of the

social environment.

Many studies of social psychology describe the emergence of peculiar phenomena focusing

on the group/global dynamics. Known phenomena drive the small group towards the

consensus. The social conformity, defined by Turner [22] as the shift of one or more

“discrepant” persons towards the majority of the group, is a function of an explicit or

implicit pressure exercised by the members of the group. As consequence of the group

pressure, people can be prompted to the adherence to the prevailing opinions, even when

such opinions are in conflict with their own way of thinking.

The study of Asch [10] about the phenomenon of social compliance explains why people

conform to majority: complacency (the subjects give a public answer in order to not to

look different from others), acceptance (people shift towards the majority opinion be-

cause of fear of failure), convergence (an affective motivation pushing to the conformity,

because fight against the majority opinion is stressful and unpleasant).
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According to Festinger [12], the group pressures towards the opinion uniformity have the

function to preserve the social reality (the reality built and shared by the individuals,

as reference point and as a way to identify themselves as member of the group).

Moreover, the theory of cognitive dissonance [23] describes the tendency to be coherent

to the way of thinking and the way of acting. If an individual feels a dissonance between

his mental and behavioural processes, he try to reduce the discomfort by changing certain

aspects of his behaviour or of his inner world, made up of ideas, beliefs and opinions.

Such vision of Festinger well synthesized the circularity of the relation between the

individuals and the social environment, between the personal opinion and the opinion

of the group.

Together with the cohesive forces that lead people to the uniformity of opinion, the small

group can be characterized also by some forces tending to the divergence of opinion.

Within the group, the presence of a deviant, defined as someone who claims a different

opinion from those of the majority, can be perceived as a threat to the cohesion of the

group. The group can increase the communication rate in order to bring the deviant

towards the group opinion, and when the attempts fail, there is a dramatic fall of the

communications towards the deviant. The more the members are cohesive, the stronger

the aversion to the deviant.

Another possible expression of the dissent is made up of minority opinion. The studies

on the minority influence [24–26] has highlighted the power of the minority to persuade

and of convert the majority. According to Moscovici, the influence of the minority is

quite different from the effect exercised by the majority.

The majority mainly produces complacency, while the minority may have an indirect and

hidden influence, which consists in an effective change of the opinion of the individual

with respect to a given issue.

Obviously, such phenomena are mediated by the will, by the desires and by the needs

of the individual, biased by the mental representation made on the social environment.

Many insights from social cognition indicate that every information coming from the

social environment to our senses undergoes an interpretation processes based of the

individual present and past knowledge. People actively elaborate the information, giving

them specific meanings and personal values [27–30]. This process would allow the human

beings to categorize, and then to recognize the world and and interact with it. Often,

however, this mechanism requires a large processing capacity and an amount of time

that would not allow an easy and real time interaction with the environment [31].
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The human beings tend to interpret the social world basing on the mental representation

of the environment. The limited calculus capacity that characterizes the human brain

compels to the selection of the informations to take into account. As example, a recent

work demonstrates the importance of cognitive constraints for the size of the social

network [32, 33]. The number of people with whom an individual can maintain a stable

and “rich” social relationship is around 150 people. This number would represent a sort

of cognitive limit of the human ability to recognize and keep track of the cognitive and

affective events within a group.

In order to study the psychological activities implied in the social cognition, we refer to

the concepts of heuristics and mental schemes. The mental schemes can be considered

as a kind of short-cuts of thinking that gets judgements and makes decisions, based

on limited information [34, 35]. The cognitive heuristics should be considered as meta-

algorithms which, by producing, selecting and removing mental schemes, permits the

human decision making and problem solving processing that we observe in the social

dynamics. While the heuristics are substantially stable and hard-wired in the cogni-

tive system, the mental scheme are learned by the individuals through the experience.

Individuals use these rules when certain conditions are met.

Heuristics examples are: availability (i.e. the rules must be learned in previous analo-

gous experiences), accessibility (i.e. the rules must be easily and quickly available) and

perceived reliability (i.e. the rules must be perceived as trustworthy). The literature

testifies that these three conditions may differ with respect to situational issues (e.g. the

context or recent activation) or with respect to the individual factors (e.g. mood, ex-

pectations) [36]. Recently the operative translation of the concept of cognitive heuristic,

mainly accomplished by Gigerenzer and Kahneman [37, 38], has opened a new direction

in the exploration of the human social interactions. Their approaches are based on the

social cognition theories and consider the cognitive systems as a satisfier more than an

optimizer system. The implicit assumption suggests to observe the strategies used by

the subjects to integrate the social information incoming during every social interaction,

in accordance with the particular constrain they are facing.

Summarizing, the perception of the outside world is not the same for every individuals,

while sharing the same environment. So, in a context of small group, the members may

share a similar mental representation of the social environment, or not.

As consequence, the group dynamics could arise in a complex way from the merging of

the all social environment representation built by the members of a group, as something

more from the sum of all individuals point of view on the group.
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In our work we take into account such consideration, gathering some data about the

“hidden” network, different from one individual to another, that can affect the interac-

tions among the members and the opinion dynamics. We consider such network as the

affinity among the individuals.

For affinity we intend the strength of the relation between people, on their coupling in

terms of social closeness [32, 33]. In other word, the affinity between two individuals can

be considered as a “force” that influences the permeability with respect to the others’

opinion within the own system of attitudes and opinions.

Let us report the point of view of the three major authors, that brought us to treat

small groups as complex systems.

Bion and Tuckman focused on the different states and the different behaviours of the

group development, while Lewin, with his “Social field theory”, brings the concept of

the small group towards the dynamical system.

The experiences of Bion, an influential British psychoanalyst, with small groups [39]

suggested the hypothesis of the existence of a specific group mentality, functioning as a

unit, resulting from the group processes. The existence of a “collective mental activity”

when people gather together in group prompt to consider the global behaviour of the

small group. The theory proposed by Bion argues that in every small group, two different

aspect have to be considered: the work group, and the basic assumption group. The

work group refers to the group functioning, depending on the task and on the target that

the group tries to accomplish, while the basic assumption group refers to the underlying

processes and the implicit movements that deeply influence the group behaviour. Bion

focused on the behaviour of the latter, identifying three basic assumptions: dependency,

fight-flight, and pairing, based on the emotional and affective relationships among the

members rather than on the functional and goal-oriented relations.

Beyond the psychoanalytic meanings given to Bion’s basic assumptions, not so important

for this dissertation, it is interesting to point out that in the study of group dynamics

we have to take into account the different kinds of processes that can emerge within

the group, characterized by diverse content and different structures, that affect and

constrain the dynamics observed.

Tuckman [40, 41], with his study on the development of the small groups, gives some

insights to the evolution of the relationships among the members. Tuckman identi-

fies five different stages describing the small group. Every phase is characterized by

different kinds of processes and features. During the forming phase, the members be-

come familiar with each other and with the group, and some issues of dependency and

inclusion emerge. The communications among the members are tentative and polite,
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and the members behaviour is generally compliant. After that, the small group passes

through the storming stage, where the disagreement and the dissatisfaction emerge, and

the group is characterized by polarization phenomena and coalition formation. Succes-

sively, within the norming phase, the arising processes of cohesion bring to the unity;

the roles, the norms and the relationships are established. The communication, as well

as the “we-feeling”, increases. During the performing stage the processes are generally

directed to the goals achievement, characterized by a mutual cooperation to the decision

making. Eventually, in the adjourning phase, we have the completion of the tasks, the

reduction of the dependency, with a consequent increase of the independence and of the

emotionality related to the disintegration of the group.

A common interesting aspect deriving from the theory of Bion and Tuckman is that

the small group is describable observing it’s temporary configuration and the kind of

relationships among the members, depending on the phase where the group is involved.

Lewin [18] considered the constant and complex interaction between the individual and

the social dimension, studying the integration of the needs and expectations of the

individual with the norms and the goals of the group. The group is not reducible to his

members; the group is something more, or rather, something different from the sum of

its parts.

The essence of the point of view pursued by Lewin is on the interdependence among

the members of the group. This means that a change of any part affects the state of

all the others. Such definition highlights the scope of the concept of group as a whole,

recognizing and enhancing the two components that constitute its specificity: on the

one hand the individuals who compose it, on the other the social field in which they

act. The group is here considered as a dynamics system of relationships characterized

by continuous interactions and by a deep interdependence among the members who are

part of it.

Under these considerations, the group has to be studied in an integrated multidimen-

sional perspective, including both the emotional dimension as well as the expectations,

the needs and the desires, the feelings of each individual, as well as their thoughts, ac-

tions and behaviours. All the events occurring in the group are both the cause and the

consequence of the interdependence between members, group and context.

The essential points of the theory of Lewin can be synthesized in a few key concepts:

• the concept of a whole. A group does not represent only the sum of its members;
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• the concept of interdependence. A group is defined not so much by the similarities

among its members, rather by the fact that the members are dependent on each

other. In such way a change of a part has an impact on the rest of the group;

• the concept of dynamics. A group is not a static reality, as a place of activities

and multiple processes. Within the group the forces, the tensions and the conflicts

determine changes and transformations. A group is not only a place where the

interactions happen, but should be seen as a crucible of forces and processes driving

the evolution of the group;

• the concept of equilibrium. The groups tend to the stationary states. Because of

the dynamics, such equilibrium is not definitive, but almost stationary.

The new events occurring inside or outside the group constantly change his structure. In

other words, within the group there is an ongoing conflict between the forces that lead

to cohesion, designed to keep an individual within the group, and the forces pushing

towards disintegration of the group. Referring to the group as a complex system implies

to take into consideration both the organization of the elements that compose it, and

the events that constantly cause the evolution of the group. Ultimately, the group lives

within a system of both positive and negative tensions, observable within the network

of relationships between the members, and the group behaviour consist in a sequence of

operations aimed to solve such tensions, to re-establish a more or less stable equilibrium.

2.2 Small groups and complex systems

A complex system can be described consisting by many diverse but interrelated and

interdependent elements, linked through many interconnections [42, 43]. Due to their

characteristics, the complex systems are not reducible to only one level of description,

taking into account only the microscopic level or only the macroscopic level. The complex

systems exhibit certain properties that emerge from the non-linear interaction of their

parts which cannot be predicted only from the properties of the parts [44–46].

So a very interesting feature of the complex systems is the mesoscopic level, the network

of interactions and feedbacks between the macroscopic and the microscopic level. Such

feature is maybe the most interesting characteristic of the complex system: the possi-

ble amplification of a small local phenomenon, bringing the whole system into a state

qualitatively new.
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One of the main reasons underlying the emergence and development of the study of

complex systems is to find the simple models that can explain and reproduce those

phenomena that seem to have not a deterministic nature.

The concepts of order parameters and the control parameters are very important for

the study of complex systems. The order parameters are defined as the observables

that describe the macroscopic behaviour of the system, while as the control parameters

may be considered as the particular configurations and processes that determining the

macroscopic evolution. In many cases, when a control parameter is changed, the systems

are subjected to a series of qualitative changes.

Under this perspective, a system is both something more and something less, maybe

something different, than the sum of its parts.

Another interesting phenomenon derived from the relation among the elements is the

emergence of the self-organizational processes, for which the system organized itself

in a specific spatial, temporal or functional structure without any need of a specific

intervention from the outside [47, 48]. The organization of the elements may impose

some constraints that inhibit certain potentials of the singular elements, but, at the

same time, a self-organized system shows some qualities that would not exist without

the self-organization. Such qualities are an example of emerging properties. In many

dynamic systems, the global variables tend to settle into certain values or sets of values

(attractors). The system may settles into a single state (a point attractor) or a recurring

cycle (a periodic attractor), depending by the parameters of the system.

The complex systems are neither rigidly ordered, nor highly disordered, showing an inter-

esting behaviour between the fixed order and deterministic chaos. Such behaviour may

shows many kinds of regularities generated by multiple rules, differentiating a complex

behaviour by a completely deterministic or random dynamics.

The small group can be treated as a complex and adaptive systems. As it well explained

by Arrow, McGrath & Berdahl [49] it is possible consider the small groups as open and

complex systems, that interact with the smaller system (i.e. the members) embedded

within them and the larger systems (i.e. the collective) within which they are embedded.

All such systems have fuzzy and permeable boundaries, that both distinguish them to

their members and their embedding context. Within such definition we can embrace the

complex reality of the small group, that can be considered both as a macroscopic and

microscopic entity, depending on the level of social analysis adopted. In our work, we

refer to the small group as the macroscopic system, while the individuals represent the

microscopic system.
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As complex system, the small group dynamically evolves. The group behaviour involves

the interactions across at least three levels of causal dynamics that continually influence

the group. The local dynamics refers to the activity of a group’s constituent elements:

members using tools and doing tasks. The local dynamics gives rise to group dynamics

(i.e. global dynamics) and are affected and constrained by them. The global dynamics

refers to the evolution of system variables, emerging from and shaping the local dynam-

ics. In addiction, the contextual dynamics refers to the impact of the features of the

group’s embedding contexts that affect and constrain the local and the global dynamics.

As every dynamical system, the group changes over time. This imply to take into

account the qualitative and quantitative patterns exhibited by the dynamical variables

describing a social entity over time. The local dynamics rules the activity of the system

in its constituent parts and elements. The global dynamics rules the activity of the

system properties emerging from the local dynamics. The contextual dynamics affect

the system parameters influencing the overall trajectory over time. So, the interplay

between the micro and macro levels of the system is a two-way influence; the global

variables emerge from, and subsequently guide and constrain, the local dynamics.

Referring to the structure of a group, we refer to the global variables, understood as the

emergent aspects of the system. In our experiments, we take into account such global

variables considering the development of the communicative networks and of the affinity

networks emerging during the small group interaction, as will be discussed in depth in

later chapters.

The contextual parameters are the features of a system that affect the dynamic operation

of local variables and hence constrain the pattern over time of global variables. In our

experiments, as context parameters must be considered the interaction environment,

the nature of the interaction (i.e. virtual interaction) and the experimental design. The

impact of the contextual parameters on the small group affect the behaviour of the group

both to adapt to the context features and to change some features of their immediate

embedding contexts.

If we consider the small group as a complex system, we have to look to the evolution of

the entire system not as a directional and causal effect of some specific features of the

system on other features (the effects of one variable on another). A complex approach to

the small group dynamics is then realized by taking into account the interactions among

the variables at local level (the individuals and the communication network), considering

the evolution of the system over time (the communication dynamics), and describing how

such variables affect the trajectory of a given set of local or global variables of a given

small group (the group dynamics).
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In our study we face with what can be thought as the mesoscopic level, between the

emerging dynamics and the individuals that composed the small group. Through the

experimental framework and the different conditions, we gathered the data to explore the

dynamics of such mesoscopic level, using a quantitative approach to provide a qualitative

interpretation of the emerging dynamics.

We focus on the networks of communication and the relationship networks to put in

relation the local, the global and the contextual dynamics, in order to describe what

happen within the small group in virtual interaction. In other words we study how

the complex networks of relationships between the members evolve, affecting the small

groups dynamics.

2.3 Complex networks, graph theory and social network

analysis

The complex networks provide a useful way to study the evolution of those systems

whose behaviour emerges from the interaction among the elements that compose it. A

complex network is a network with non-trivial topological features, with patterns of

connection between their elements that are neither purely regular nor purely random. If

the relation among the elements are non-linear, it’s very likely that the system described

with the network exhibits a complex dynamics.

The complex systems can be represented in terms of networks of interacting elements.

There are many types of networks, but essentially they are characterized by a set of

nodes and a set of connections between the nodes. For what concern the small group,

the links connecting the individuals differ depending on what type of elements they

connect, and what kind of network they describe. Within the small group, as example,

the links among members may represent symmetrical relations such as friendship, or

asymmetric, directional relations such as communication, influence, or in our study, the

affinity among the individuals.

The nodes can be seen as a computing entities, processing the inputs and providing the

outputs. Input and output comes and goes along the links that connect the nodes to

the networks. Such connections determine the flow of information among the nodes,

that can be unidirectional (i.e. the information goes from the node i to the node j)

or bidirectional (i.e. the information goes from the node i to the node j, and vice-

versa, from b to a,). The interactions among the nodes and the connections leading

to the overall behaviour of the system, that can not be observed considering only the

individual components. The properties of the network outweigh those of the nodes,
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resulting as something different with respect to the simple sum of individual behaviours.

At the same time, the features and the number of nodes, as well as the topology of the

network, affect the final behaviour of the system.

In such a way the complex networks allows to keep an eye on the local dynamics (the

nodes and the links among the nodes), on the global dynamics (the evolution and the

topology of the network), and on the contextual dynamics (the network features), con-

sidering the system as a graph.

Figure 2.1: Network and adiacency matrix

In addiction to a graphical representation, as it shown it Fig. 2.1, a network can be

represented also as a matrix (i.e. adjacency matrix). Such representation is useful when

the network is formed by many elements, and it permits to map in a mathematical way

the networks. Through the adjacency matrix we can represent both the directed or

undirected network, and in the case of undirected networks, the adjacency matrix will

be symmetrical.

The adjacency matrix is defined as a matrix NxN , where N is the numbers of nodes

composing the network. The element of the adjacency matrix will be equal to 0 if the

two corresponding nodes are disconnected, while, if the two nodes are connected, it will

be different from zero, representing in such a way the weight of the connection.

The tools provided by the graph theory allows to consider several network/global param-

eters as, for example, the diameter of the network, understood as the greatest distance

between any pair of nodes. To find the diameter of a graph, we have to find first the

shortest path between each pair of nodes (i.e. the number of the links necessary to

connect the pair at issue). The greatest length of any of these paths is the diameter of

the graph. So, given two nodes i and j, we can define the distance dij (i.e. shortest

path). If i and j are directly linked, we have dij = 1, while dij > 1. In this way the
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diameter of the graph gives an idea of the maximum number of links required to connect

two different nodes.

Another relevant network/global parameter is the density of the graph, understood as

the ratio between the actual number of the links and the maximum number of the

possible links connecting the nodes of the graph at issue. The density indicates the

general level of cohesion of a graph. Obviously, if the network is fully connected, the

diameter will be equal to 1.

Together with the diameter and the density, the clustering is another important aspect

of the topology of the network. Many algorithms and different methods can be applied

to find the cluster configuration, but in general it defines an area of the network highly

connected. So, the clustering coefficient may be defined considering the nearest neigh-

bours of each node, and calculating the probability of a link between any pair of its

nearest neighbours.

To better understand the significance of coefficient clustering, we can refer to a generic

social network of people. In such network, the nodes are the individuals, and a links

may indicate that two people know each other. The clustering coefficient indicates the

probability that my friends are also friends with each other [50].

Such probability, also known as transitivity, is a typical property of the social networks.

In terms of a generic graph G, transitivity means the presence of a high number of

triangles. This can be quantified by defining the transitivity T of the graph as the

relative number of transitive triples (i.e., the fraction of connected triples of nodes)

which also form triangles [13, 51].

The study of the clusters, beyond providing some important information about the

topology of the network, gives us idea of the importance of interactions among the

nodes, since it is affected by the structural position in which the node is located, and

how, and how much, interacts with his neighbours.

Other indexes useful to study the topology of the network, but at the same time to

define the properties of the specific node, are the measures of centrality.

The centrality degree of a node is the most studied parameter because allows to discrim-

inate both the importance of a node and the structural features of a network. In the

undirected graphs, the centrality degree of a given node is determined by the number

of links emerging from the node, equivalent to the number of nodes directly reachable,

called first neighbours nodes. If the network is characterized by directed links, the cen-

trality degree is determined by the in-degree (i.e. the number of the input links) and

the out-degree (i.e. the emerging links).
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For what concern the sociometric and the social network analysis, many measure of

centrality, and consequently implications, are introduced from the middle of the last

century [4, 5, 52]. The social psychology start to take into account the topology the

features of the individuals (i.e. actors), in terms of closeness, direction of the commu-

nication and of information flow passing through an individual, as depending by his

position within the network of communication. Bavelas [3] suggested that a useful way

to understand the effects of different communication structures, affecting the process

and the group dynamics is to conceive the group members as individuals in relation

to each other, via communication links. In his study is pointed out the importance of

the way in which the actors and their communicative links are ordered by a topological

point of view.

Taking a cue from the topological mathematics, Bavelas conceived various quantitative

indexes by means of which different types of network are described. One of the most

relevant indexes is the concept of distance, understood as the minimum number of

communication links that a member of the group must pass through to communicate

with another individual. An important measure for the group is the index of centrality,

which refers to the flow of information, and how much such flow is centred on one

particular actor, or is distributed in uniform way among the members.

The relevance of an individual due to his position within the network can be summarized

with the concept of closeness centrality and betweenness centrality degree [17, 50, 53, 54].

The closeness centrality is a measure based on the distance among nodes, defined as the

inverse of the average distance from all other nodes. The betweenness centrality degree

refers to the structural and topological centrality of a node, and using the formalization

of the graph theory, is defined as the ratio between the shortest paths passing through

a node and the number of the shortest paths connecting all the nodes of the network.

The network of relations among the individuals belonging to the small group, allow to

observe the configuration of the relationships structure among the individuals. In our

study we focused on the networks detected within the small group interactions, as it is

described in Chapter 3. Considering the small group as complex system, and using the

graph theory to study the local and global variables, we shed light on how such variables

affect the local and global dynamics.

2.4 Sociophysics and opinion dynamics

A first contribution from the physics to the study of the social systems it was to introduce

the methods and tools derived from the theories of non-linear dynamic systems and
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complex systems.

The sociophysics is a discipline that study the social phenomena from a physics point

of view, often using the human/atom, social/atom, or human/particle perspective. The

individuals in social context seem to behave, with a large degree of approximation, as

particles that can be studied with the tools provided by the statistical physics.

The sociophysics considers that, within the groups of people, there are transitions be-

tween states of disorder and state of order, as example the spontaneous emergence of

a common language or the emergence social norms [55, 56]. The focus of statistical

physics on the social dynamics field is to understand how such phenomena emerge.

Translating the meaning of order from the physics to the social sciences we refer to the

concepts of consensus, uniformity, agreement; while the disorder may be translated with

the concepts of disagreement or the fragmentation of the group.

A first difficulty occurring in the study of the social dynamics from the point of view

of the statistical physics relies into the fact that the latter studies relatively simple

objects, with-well known behaviours. The macroscopic phenomena are due to non-trivial

collective effects caused by the interactions of a large number of simple elements. Human

beings are exactly the opposite of such simple entities. The individual behaviour is surely

more complex, and the contribution of the sociophysics is to model the interactions

between individuals by defining few simple parameters.

The strength of the statistical physics approach is due to the fact that for many issues

the qualitative properties of large scale phenomena do not depend on the microscopic

details of the process. The higher level features, such as symmetry, the synchrony, or the

conservation laws, are more relevant to the overall behaviour. Under such considerations,

the statistical physics models are anyway useful to the social dynamics field, especially

in order to explain the qualitative characteristics exhibited by such models based on the

most simple and essential properties of the individuals, and their interactions.

The first step in this direction is realized by the comparison between the empirical data

and the predictions of the model. Such procedure allows to check if the trend of the real

data is close to what expected from the microscopic/individuals model, if the results are

consistent or if the model needs to add some variables or to modify certain parameters.

The opinions, the cultural and linguistic traits, the social status are treated as a small

set of variables whose dynamics is determined by the social interactions.

Basically, the dynamics of the social systems tends to reduce the variability of the initial

state, leading to a state of order, with all the agents that share the same characteristics,

or, where not possible, to a state of disorder. The direction that takes the evolution of
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the system can be addressed using the appropriate concepts and tools from the statistical

physics.

The challenge is to find those fundamental mechanisms of interaction that allow the

emergence of consensus, of a shared culture, of the language, of the collective movements

of a specific hierarchy, and what prevents them born.

Anyway, each model of social agents inevitably neglects many details. One way to

remedy to such lack is to include the details within the definition of the noise affecting

the dynamics of the system. The time-dependent noise is often used to represent the

intrinsic variability of the individuals. On the other hand, such noise may give rise to

spontaneous transitions of the agents from one state to another. In this direction, the

crucial question is to understand and to define when and how the system reaches the

stability, in respect of the perturbations emerging from the interactions between the

agents and the effect of the noise.

Another important feature to take into account, as previously discussed, is the topol-

ogy of the network of interactions. The traditional statistical physics often develops

structures whose elements are regularly localized in a space, or simply it considers the

hypothesis that each object interact with every other, thus ensuring that the mean

field approximation is correct. This assumption generally allows to analytically treat

the problem, but it is not very realistic regarding a social network, where it is much

more plausible that the pattern of interactions is determined by a complex network of

interaction among the individuals.

The agreement degree is one of the most important aspects of the dynamics of social

group. In everyday life many situations in which it is necessary that a group reaches

a shared decisions happen. The dynamics of agreement or disagreement between indi-

viduals are very complex, depending both from the individuals variables and the group

tendencies. Within a statistical physics approach, the opinion is generally understood

as any output produced by the cognitive system when exposed to an external informa-

tion. The statistical physics works in the field of opinion dynamics with the aim to

define the opinion of a population, considered as order parameter of the system, and the

elementary processes that determine the various transitions between the states.

Some interesting ingredients of the various model of sociophysics and opinion dynamics

can be summarized as load-bearing structure of the bridge between physics and social

sciences [57]. Translate some concepts from physics to social sciences, and vice-versa,

may seem a stretch, but generally changing the point of view on the object under inves-

tigation, at least adds something new to the old perspective. In sociophysics and opinion

dynamics, the concept of opinion, was initially treated as spin (i.e. a binary variable
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assigned to an agent, or actor). The agents are generally distributed on a lattice, or on a

graph, and in such way the spin and the eventual links among the agents are treated in

a mathematical way, for the analytic explanation, or for the computer simulations. The

interactions among the agents, following a physics approach, can be detected observing

the correlations between their states. Such aspects of interaction can easily transposed

into the concept of relation among individuals (i.e.interpersonal interactions), consid-

ered as information exchanges. The interaction between a pair of agent may favour the

sharing of a common opinion or vice-versa, depending on the rules implemented within

the interaction rationale. As example, in the voter model, an agent takes the opinion

of his neighbours [58–61], while in the Sznajd model the opinion change depends on the

occurrence of a pair of neighbours with the same opinion [62]; in Deffuant-Weisbuch [63]

and in Hegselmann-Krause model [64] the interaction is subjected to the difference in

opinion threshold, and finally in many model of Galam [65], the interaction and the

change of the opinion are mainly based on several forms of majority rule.

Another interesting ingredient to take into account for social and opinion dynamics mod-

elling is the “temperature”. Conceptually similar to the time-dependent noise mentioned

just above, the temperature is often used in order to modify the probability distribu-

tion of the interactions, including the external information, or a sort of memory term

of past interactions. The temperature is also used to simulate the willingness to behave

randomly, against rules [66, 67], putting into the model a certain amount of uncertainty.

Finally, a concept that plays an important role in the social dynamic models is the

concept of “bounded confidence” (i.e. if two individuals interact, they should not be

too different). Such consideration recalls the conceptualization about the interactions

in physics: if two particles are too far from each other, they do not exert any influence

on their own. However, if we consider that the distance within the concept of bounded

confidence is not necessarily spatial, we have to define a different kind of space that in-

fluences the probability of interaction (in Hegselmann-Krause and in Deffuant-Weisbuch

models the difference in opinion, in our experiments and in our model the affinity and

the opinion).

Taking all the ingredients and concepts mentioned above, the sociophysics aims to find

into the dynamics of opinion the factors leading, or not, to a stable or meta-stable state

of equilibrium, and studying the eventual phase transitions emerging, to find a set of

mathematical rules describing the mechanisms for the opinion evolution and the opinion

changing.

In the mathematical models, the opinion is considered as a variable, or a set of variables,

represented in numerical way. This may seem simplistic, considering the complexity of

people. However, in the majority of the situations faced in everyday life, people have a
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limited number of positions for a specific issue: the democrats or republicans, Windows

or Apple, buy or sell.

The opinion dynamics models can be grouped into two major classes. Early models have

dealt with binary opinions, taking a cue from physics , where agents behave as magnetic

spins; so the opinion could have only two states (−1, +1). In this case, the social agents

update their opinion under the pressure of social influence, according to the dynamics

of majority rule. The other class of models of opinion dynamics treat the opinion as a

continuous variable, which dynamically evolves depending on the interactions between

the individuals.

The Ising model [68], originally conceived to describe the ferro-magnetism mechanism

in mathematical way, represents the baseline for the binary opinion dynamics [65]. The

spin-spin coupling is viewed as the interaction of two agents, and the magnetic field as

the majority opinion. In addition, the individual fields are then introduced to determine

the personal preferences. Depending on the strength of individual fields, the system can

reach a total consensus or a state in which both opinions coexist.

The continuous opinion models [69] are characterized by a range of opinion, expressed

with a real or an integer number. The most famous model existing in literature are

developed independently by Hegelsmann-Krause [64, 70] and by Deffuant-Weisbuch [63,

71, 72]. Such models consider a population of N agents, and the opinion of the agents

change, respectively, taking the average opinion of all the agents in the system which do

not differ too much of the agent opinion, or through a random binary encounters, if the

opinions of the couple of agents are not too far.

The contribution of these models to the study of social dynamics is to explore different

scenarios by numerical simulations, depending on small changes in the initial conditions

or changing the parameters that define the models.

In the next paragraph we will present more in detail the Deffuant-Weisbuch model and

its variation, made by our working group, coupling the opinion dynamics to the evolution

of the affinity among the agents. These models are then used to fit the real data gathered

in the opinion modality (see Chapter 6) and to realize a comparison of the discrepancy

of real data simulation with the Repulsion model, as will be explained in Chapter 7.

2.4.1 Deffuant-Weisbuch model

The Deffuant-Weisbuch model [71, 72] considers a population of N agents, and at each

instant of time t two agents i and j, randomly selected, meet. The key strength of the

Deffuant-Weisbuch model is the simplicity of the rule of the opinion adjustment. If the
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opinions of the two agents selected are not too different, namely |Oi − Oj | < d, where

d is the critical threshold taken as constant in time, the opinions of i and j get close,

according to the following rules:

ot+1

i
= oti + µ(otj − oti) (2.1)

ot+1

j
= otj + µ(oti − otj) (2.2)

where µ is the convergence parameter, taken between 0 and 0.5 during the simulations.

The Deffuant-Weisbuch model explores several opinion dynamics (random encounters

among agents, agents on a lattice, vectors of opinion), and the results seem robust

across different conditions, exhibiting the more or less same clustering behaviour.

The results of such model demonstrate that the opinion distribution fundamentally

depends by the critical threshold d, while the N and µ affect the convergence time

and the width of the distribution of final opinions. The model, starting from an initial

uniform distribution of opinion, shows one cluster (i.e. the uniformity) only for larger

value of d (d > 3), and the maximum number of peaks (i.e. the basins of attraction in

the space of opinion) decreases as function of d. Furthermore, for d = 3, the simulations

shows from 2 to 7 significant peaks (i.e. clusters), and some isolated opinions, while for

d = 2 a large number (around 500 for N = 1000) of small clusters is observed.

The main result of the computer simulations suggest that when the opinion exchange

is limited by the similarity of opinions among agents (d), the dynamics yield isolated

clusters among initially randomly distributed opinions. Initially all the agents were

communicating either directly or indirectly through several connected agents, while, as

the dynamics operate, the exchange of opinion only occurs inside the clusters.

2.4.2 Opinion and affinity model

In the celebrated Deffuant-Weisbuch [71] model the agents adjust their opinion as a

results of random binary encounters whenever their difference in opinion is below a given

threshold. The rationale behind the threshold reflects the humans’ natural tendency

to avoid conflicting interests and consequently ignore the perception of incompatibility

between two distant cognitions. In this respect, the threshold value measures the average

openness of mind [72] of the community.

In real life, the difference in opinion on a debated issue is indeed playing a crucial role.

However, the actual outcome of an hypothetical binary interactions also relies on a
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number of other factors, which supposedly relate to the quality of the inter-personal re-

lationships. Mutual affinity condensates the past interactions’ history and contributes to

select the preferential interlocutors for the future discussions. In this model [73, 74] the

affinity is dynamically coupled to the opinion, and consequently updated in time. More-

over, the affinity is also translated into the concept of social distance, here introduced

to drive the preferential interactions among the affine individuals. Macroscopically, the

system shows an asymptotically organization in clusters of agents sharing a common

opinion, whose number depends on the choice of the parameters involved. Most im-

portantly, the proposed theoretical scenario captures the so-called cognitive dissonance

phenomenon, a psychological theory pioneered by Leon Festinger [23].

The model consider a population of N agents, where, at every time t, the agent opinions

are defined as Ot
i
∈ [0, 1]. Moreover, a N ×N time dependent matrix αt is introduced,

whose elements αt
ij

are defined within the interval [0, 1]. Such elements specify the

affinity of individual i vs. j, and the larger numbers are associated to more reliable

relationships. Both the opinions vector and the affinity matrix are randomly initialized

at time t = 0. At each time step t, two agents i and j, are selected according to a

strategy based on their social distance (2.7). They interact updating their respective

opinion and affinity values according to the following recipe:

Ot+1

i
= Ot

i − µ∆Ot
ijΓ1

�
αt
ij

�
(2.3)

αt+1

ij
= αt

ij + αt
ij [1− αt

ij ]Γ2 (∆Oij) (2.4)

where the functions Γ1 and Γ2 respectively are:

Γ1

�
αt
ij

�
=

1

2

�
tanh(β1(α

t
ij − αc)) + 1

�
(2.5)

Γ2 (∆Oij) = − tanh(β2(|∆Ot
ij |−∆Oc)) (2.6)

Here, ∆Ot
ij
= Ot

i
−Ot

j
, while αc, ∆Oc are constant parameters. For the sake of simplicity

is considered the limit β1,2 → ∞, which practically amounts to replace the hyperbolic

tangent, with a simpler step function profile.

Within this working assumption, the function Γ1 is 0 or 1, while Γ2 ranges from -1 to 1,

depending on the value of the arguments. Γ1 and Γ2 act therefore as effective switchers.

Notice that, for αc → 0, Eq. (2.3) reduces to Deffuant-Weisbuch scheme [71]. To clarify

the ideas inspiring the proposed formulation, we shall focus on specific examples. First,

suppose two subjects meet and imagine they confront their opinions, assumed to be di-

vergent (|∆Oij | � 1). According to Deffuant-Weisbuch’s model, when the disagreement
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exceeds a fixed threshold, the agents simply remain to their positions. Conversely, in

the present case, the interaction can still result in a modification of each other beliefs,

provided the mutual affinity αt
ij
is larger than the reference value αc. In other words, an

individual exposed to the conflicting thoughts, have to resolve such dissonance in opinion

by taking one of two opposite actions: if αt
ij
< αc, the agent ignores the contradictory

information, which is therefore not assimilated; when instead the opinion is coming from

a trustworthy source (αt
ij
> αc), the agent is naturally inclined to seek the consistence

among the cognitions, and consequently adjust its belief. The mechanism here outlined

is part of Festinger’s cognitive dissonance theory [23]: contradicting cognitions drive

the mind to modify existing beliefs to reduce the amount of dissonance (i.e. conflict)

between cognitions, thus removing the feeling of uncomfortable tension. The scalar αij

schematically accounts of a larger number of hidden variables (personality, attitudes,

behaviours,..), which are non trivially integrated in an abstract affinity concept. Notice

that the matrix αt is non symmetric: hence, following a random encounter between

two dissonant agents, one could eventually update his opinion, the other still keeping

his own view. A dual mechanism rules the self-consistent evolution for the affinity el-

ements (see Eq. (2.4)). If two people gather together and discover to share common

interests (|∆Ot
ij
| < ∆Oc) they will increase their mutual affinity (αt

ij
→ 1). On the con-

trary, the occasionally encounter with an agent characterized by a different viewpoints

(|∆Ot
ij
| > ∆Oc), causes a reduction of the affinity value (αt

ij
→ 0).

The logistic contribution in the Eq. (2.4) confines αt
ij
in the interval [0, 1]. Moreover, it

maximises the change in affinity for pairs with αt
ij

� 0.5, corresponding to the agents

which have not come often in contact. Couples with αt
ij

� 1 (resp. 0) have already

formed their mind and, as expected, behave more conservatively.

The selection rule implemented is defined as follow. First the agent i is randomly

extracted, with uniform probability. Then a new quantity dij is introduced, hereafter

termed social distance, defined as

dtij = ∆Ot
ij(1− αt

ij) j = 1, ..., N j �= i. (2.7)

The smaller the value of dt
ij

the closer the agent j to i, both in term of affinity and

opinion. A random, normally distributed, vector ηj(0,σ) of size N − 1 is subsequently

generated, with mean zero and variance σ. The social distance is then modified into

the new social metric Dη

ij
= dt

ij
+ ηj(0,σ). Finally, the agent j which is closer to i with

respect to the measure Dη

ij
is selected for interaction.
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The additive random perturbation η is hence acting on a fictitious 1D manifold, which is

introduced to define the pseudo-particle (i.e. agent) interaction on the basis of a nearest

neighbours selection mechanism. η is thus formally equivalent to a thermal noise [75].

Based on this analogy, σ is here labelled social temperature and set the level of mixing in

the community. Notably, for any value of σ, it is possible that the agents initially distant

in the unperturbed social space dt
ij
mutually interact: their chances to meet increase for

larger values of the social temperature.

Numerical simulations are performed and the dynamical evolution of the system moni-

tored. Qualitatively, asymptotic clusters of opinion are formed, whose number depends

on the parameters involved. The individuals that reach a consensus on the question

under debate are also characterised by large values of their reciprocal affinity. The final

scenario results from a non trivial dynamical interplay between opinion and affinity:

the various agglomerations are hence different in size and, centred around distinct opin-

ion values, which cannot be predicted a priori. The dynamics is therefore significantly

more rich, and far more realistic, than that arising within the framework of the original

Deffuant-Weisbuch scheme [71], where the cluster number and the average opinions are

simply related to the threshold amount. Notice that, in the model the affinity enters

both the selection rule and the actual dynamics; such ingredient appear to be crucial to

reproduce the observed self-organization.

2.5 Where psychology and physics yet meet: the psycho-

logical field

The concept of psychological field, proposed by Lewin around the middle of the past

century [18], was inspired by physics, by means of analogies with the local field felt by

a spin in a magnetic material. Other concepts of sociophysics also arose as analogies

with physics, so let me try to draw a quick summary of the main concepts of classical

(computational) physics and how they can be “translated” to the context of psychology.

In physics, a particle i is identified by its spatial coordinates xi and velocities ẋi, and

by some internal degrees of freedom yi, which is the quantity related to the interactions

(e.g., mass, charge, magnetic moment or spin, . . . ). For simplicity we consider scalar x

and y. We shall indicate by x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ) the set of all

N properties of particles.

There are interactions among objects: pair interaction, triplet interactions, etc. Let us

consider only the pair ones.
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In general the interactions are expressed by means of an energy function

H(x) = −
�

i

hiyi, (2.8)

where hi is the local field (the minus sign implies that the energy is lower if hi and yi

have the same orientation). The local field hi depends on the state yj and position xj

of other particles j. For pair interactions

hi =
�

j

f(yj , xi − xj). (2.9)

For instance, the local field could simply be represented as a decreasing function of the

distance, like

hi = γ
�

j

yj
(xi − xj)2

. (2.10)

The energy is then used to obtain the deterministic equation of motion, with the intro-

duction of the inertia mass m,

mẍi = −∂H

∂xi
, (2.11)

or equivalently

ẋi = vi,

v̇i = − 1

m

∂H

∂xi
.

(2.12)

The inertia mass is in principle different from the mass that originates the gravitation

force, and is essentially a memory term. If the quantities yi vary with time, other

equations are required.

Although classical mechanics is deterministic and conservative, the motion of everyday

objects is in general dissipative and (sometimes) stochastic. We can think that the

above description is microscopic, including all interactions of all particles, but that our

macroscopic perception is only able to observe collective quantities. In other words, it

is like if we project the trajectory of the system from a highly (N) dimensional space

onto a space with much less dimensions (M). It is in general impossible to perform this

procedure exactly, and we therefore introduce phenomenological equations of motion,

that retain some of the symmetries of the original ones.

For instance, we can introduce a dissipative friction and a stochastic force and get

ẋi = vi,

v̇i = −γvi −
1

m

∂H

∂xi
+ η(t).

(2.13)
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If the dissipation is strong (γ large), the term v̇ is negligible with respect to γv, and we

can assume that the velocity has no memory of the past

vi = − 1

γm

∂H

∂xi
+

1

γ
η(t), (2.14)

so that we only have one dynamic equation

ẋi = − 1

m�
∂H

∂xi
+ η�(t), (2.15)

where m� = γm is the effective inertia (memory term) and we have rescaled the noise.

If the internal variable y is not constant, there is a similar equation for its evolution.

The stochastic and the viscous terms represents the influence of the (chaotic) parts not

included in this description. The central limit theorem assures that the exact form of

the stochastic term is not very important, unless there are long-range correlations like

in the proximity of a phase transitions.

In general one is not interested in the trajectory, but in computing the value of some

observable A(y). Given a trajectory x(t), y(t) = y(x(t) and we get A(t) = A(y(t)). If

the system reaches a stationary state one is interested in computing the average value

of A over a long enough trajectory, or averaged also over different initial conditions. If

the trajectory visits the available space in short times, the system is said to be ergodic.

Chaotic and stochastic system are generally ergodic (again, with exceptions due to long-

range correlations).

Given a stochastic system, in principle it is possible to write down the equation for the

evolution of the probability distribution P (x, t) (Markov or Master equation, if discrete

or continuous in time)
∂P (x, t)

∂t
=

�

x�

W (x|x�)P (x�, t) (2.16)

but in general this is a highly-dimensional equation, difficult to solve. Assuming a

smooth behavior in space (we already assumed a smooth time variation since we used a

differential approach), we can get a diffusion-like equation (the Fokker-Plank equation),

which is simpler and from which one can derive sometimes a closed equation for the

observables. However, from a computational point of view, it is often easier to generate

stochastic trajectories and average over them.

The equilibrium case is generally simpler to approach. We can assume that the asymp-

totic distribution is one that maximizes the entropy (or minimizes the information) given

the constraints. For instance, in the case of conserved volume and average energy, the
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equilibrium distribution is

P (x) =
1

Z
exp

�
−H(x)

T

�
, (2.17)

where

Z =
�

x

exp

�
−H(x)

T

�
(2.18)

is the normalization constant (partition function) and T is the temperature (that fixes

the average value of the energy).

The computation of Z is however impossible in general (too many terms). However, we

can profit of the asymptotic distribution in order to separate the variables that appear

additively in the energy (due to the properties of the exponential). In this way one

can reduce the number of degrees of freedom and concentrate on the difficult (non-

separable) part of the system. Moreover, one is free to choose the dynamics, provided

that the symmetries and the constraints (for instance the volume and the energy) are

maintained.

Considering that one is interested in the average value of observables

�A� =
�

x

A(y(x))P (x), (2.19)

the idea is that of generating ”fictitious” trajectories x(t), such that averaging the same

result of averaging over P (x).

In practice, one writes a series of stochastic equations of the form

y�i =
�

j

f(yi, yj , xi − xj ; ηi),

x�i =
�

j

g(yi, yj , xi − xj ; ξi),
(2.20)

where x� = x(t+1), y� = y(t+1) and all other quantities are computed at time t, η and

ξ are random numbers, and the positions xi may or may not evolve with time, according

to the model.

This is the Monte Carlo technique. It consists in proposing a displacement∆x or∆y and

computing the corresponding variation of energy ∆H, used to decide if the displacement

is accepted or not. The simplest recipe for having p(x) as asymptotic distribution, is to

use the ”golden rule” of the detailed balance

W (x�|x)
W (x|x�) = exp

�
−H(x�)−H(x)

T

�
, (2.21)
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where W (x|x�) is the probability of accepting the displacement (∆x = x� − x).

The Langevin or Fokker-Plank equation can be computed also in out-of equilibrium con-

ditions, and assuming local equilibrium also the Monte Carlo approach can be extended

to such cases.

In physics the interactions are generally symmetric, and this has the consequences that

the asymptotic state is unique (with fixed boundary conditions, finite number of elements

and short-range interactions) and is reached without oscillations. Again, in the presence

of a phase transition this uniqueness is no more valid (ergodicity breaking).

A classical example of this approach is the Ising model, in which the state variables are

the spins Yi = ±1 and we completely disregards the dynamical variables. The “difficult”

part of the energy is simply

H(y) = −J
�

i,j

aijyiyj , (2.22)

where the adjacency matrix aij = 0, 1 defines the topology of the interactions (for

instance, a square lattice, a random network, etc.).

A formally similar system is given by neural networks

H(y) = −
�

i,j

Jijyiyj , (2.23)

where now the interactions Jij (that includes the adjaciency term aij) need not to be

symmetric, and therefore the dynamics can exhibit cycles and the asymptotic state is

no longer unique.

2.5.1 Socio-psychological field

The above concepts suggest some application to the psychological domain. In this case

x can be a real spatial variable, if we are interested in the displacement of people for

instance in a crowd, or they can be other variables related to the efficacy communication,

i.e., they can be the variables used to establish the “distance” among two individuals,

affecting the efficacy of the communication.

Almost all applications of these concepts to the psychological domain start by stochastic

equations that can be considered the equivalent of a Monte Carlo dynamics. In practice,

one starts from Eq. (2.20) without explicitly giving its derivation.
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The variable y can be considered a sort of opinion, or the contents of the communication.

In physics the interactions are symmetric (i.e. distance) but in psychology they do not

need to be so, and therefore we can have different dynamical behaviours such as limit

cycles, chaos, etc. In many cases, one in not interested in the real position of actors, but

rather in their “social” distance, that does not generally obeys to the rules of Euclidean

spaces.

Therefore, we can replace the “position” xi with an affinity matrix αij , considering that

for the spatial position the “distance” ||xj − xi|| becomes αij = ||xj − xi||, but that one
can extend the problem to cases where one considers a “social” distance or its inverse,

the affinity, for which αij �= αji. We consider that αij is the affinity of person j to person

i (i.e., how much j influences i).

Lewin’s psychological field can be considered the equivalent of Eq. (2.10)

hi =
�

j

αijyj , (2.24)

and for instance one can study the influence of highly influential individuals i (leaders

or authoritas) such that αji � αij .

In particular, for what concerns the chat-line experiments, the affinity αij can be con-

sidered equivalent to the radial distance from origin of individuals j in the private radar

of individual i (see Chapter 3).

The first applications are “consensus” theories, that are somewhat inspired by the Ising

model and neural networks. In this cases one considers two (or more) opinions, and

assumes that people change their opinion after an interaction with connected neighbours.

One can be interested in the influence of temperature or topology in the asymptotic state

(phase transitions), the influence of leaders or external fields, or in the dynamics of the

system (oscillations due to parallel dynamics).

Another studied problem is the investigation of the form of the asymptotic distribution

as a function of the initial distribution and of the form of the affinity. In the Deffuant

model [71] the affinity αij drops to zero after a certain threshold distance, and this

induces the formation of clusters of opinions (yi is in this case a continuous variable).

In this sense, peace mediators are those individuals with a larger threshold distance, so

that they are able to “cross” the group boundary and promote consensus.

A more realistic case is to assume that the affinity also evolves in time, for instance

according to previous agreements in opinions. In this case we can write equations of the



Theoretical framework 33

form

y�i =
�

j

f(yi − yj ,αij ; η),

α�
ij = g(yi − yj ,αij ; ξ),

(2.25)

where one can introduce also memory (inertia) terms. For instance, stubborn individuals

can be considered the equivalent of highly massive particles.

Similar equations have been studied in [73] and will be the subject of further investigation

in Chapter 7.

These considerations constitute a basic knowledge for physics, but not for psychologists

and I found them quite useful for focussing the “inspiration source” of many concepts

in the modelling of complex systems.



Chapter 3

Experimental framework

In recent years we have seen a growing presence of virtual interactions, due to the

technological development and to the massive diffusion of internet connections and of

computers, and due to the innate need of communicating of the human beings, as evi-

denced by the use of Internet that people do, especially in the last decade, where there

been a proliferation and a sharing of social networks [76–78].

Consequently the people more and more often coexist in a new environment of social

interactions, similar in some way, but different with respect to the real environment [79].

As example, the virtual interactions are characterized by a predominant role of the

writing form of communication, to the detriment of all the elements typical of the face-

to-face communications, such as the speech language and all its features (i.e. tones,

inflections, pauses), and those relating to non-verbal language (i.e. facial expressions,

body gestures) [80].

The new technologies provide an high level of accuracy in the detection of the variables of

interest, and the possibility of gathering a large amount of data, allowing the extremely

refined experimental investigations. In that regard, we present a framework of research

and an interface environment, based on a classical model of chat lines. Such experimental

design allows us a precise extrapolation of the data, a quantitative investigation of the

communications and the possibility to treat the group dynamics with the mathematical

approach and with the tools and concepts deriving from the theory of complex networks

and from the social networks analysis [13, 14].

We explore the communication flow of the messages sent or received by the subjects and

the relationships among the individuals, analysing the frequency and the direction of the

messages produced. Furthermore, we examine also the affective contents of the messages

(i.e. mood) and the affinity network defined by the experimental subjects. The semantic

34
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contents of the textual messages is not been taken into consideration, so one challenge

of our research is to interpret the group dynamics and the individual processes using a

quantitative approach substantially based only on the number of messages exchanged

and the displacements on the radars (Fig. 3.1). In such a way, a real advantage of

this experimental framework is to introduce the dynamic developments in the study of

social and psychological processes, avoiding the difficulties concerning the measurement

of the communication structure and about the quantification of the relationships in a

real environment.

The experimental framework we have developed was inspired by the models of com-

munication topology [3, 4, 6], together with the implications deriving from the Lewin’s

field theory [18], and in general with the suggestions borrowed from the social cognition

theories [30], and in last instance by the sociophysical model of opinion and affinity

dynamics [73].

3.1 Interaction environment

A classical and obvious difficulty in the study of the human group dynamics is the

effectiveness of data collection, and the standardization of the experimental settings.

Nowadays the use of the modern information and communication technologies can easily

solve such criticality, representing at the same time a new domain of research [81, 82].

The initial step of our work was to define and to realize the interaction environment:

a chat room interface, consisting in a middle-ware platform built with Java language.

Such platform was used to provide the resources for the communication among the

participants and to collect the data related to the virtual interactions. We consider the

chat room a great tool to study the dynamics of human social behaviour under controlled

or nearly controlled experimental conditions, giving us the possibility to precisely collect

all the events produced by the experimental subjects.

Each session (i.e. a small group (10 members) engaged in virtual interaction) guarantees

the anonymity of the participants by the random assignment of a different avatar for each

subject, thus excluding both the influence of the prior knowledge among the participants

and all those features (i.e. age, gender, etc.) that could affect the mental representation

of the others. Such a procedure standardizes the information available to the subjects

at the beginning of any session.

We arranged a virtual environment in order to simulate an ecological situation of group

discussion. Each participant had at his disposal an interface with two textual windows

(Fig. 3.1), one for communicating with the rest of participants in a public way (i.e.
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Figure 3.1: The experimental interface. On the left the community side, on the right
the private side, each with its own space for entering messages and choosing the mood
that accompanies the message. On the top-right there are two “radars”, a spatial two-
dimensional environment, labelled “place others” and “place yourself”, manipulable by

the subjects

community), and one for the communication in a private way (i.e. private chat). This

should replicate respectively the loud and group conversations and the whispering or se-

cret discussions. Within the community, a subject may address his message to one other

up to all the participants, while within the private chat one may exchange the textual

messages only with another person at once. The messages have also be accompanied by

the information about the mood of the senders. So the subjects have to choose between

a neutral, a negative or a positive mood, represented by a small icon with thumb up,

down or neutral. This should condense the non-verbal content of a message, as usual in

textual chats.

Moreover, to allow an interaction closer to the ecological experience, we added two

“radars”, manipulable by the subjects. In the public radar (place yourself) a subject

may change his position, dragging and dropping his avatar within this space. The

displacement of a subject in the public radar is instantaneously visible on the screens

of the other participants. The distance between two subjects affects the contrast of the

textual messages exchanged in the public side of the chat room. Such an effect is used

to simulate the loudness variation of a spoken verbal exchange (the farther away is an

individual on the radar, the dimmer is his message, analogously to what happens with

sound and distance in a real environment).

In the private radar (place others) the subjects may change the positions of the oth-

ers’ avatars only, while the personal one was kept fixed in the center. Everyone has

his/her own private personal radar. For all the experimental sessions, the subjects were
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instructed to properly manipulate this space moving closer to their own avatar those

avatars perceived as more affine, and moving away the others. In other words, the sub-

jects were asked to configure their private radar (affinity space) before the end of the

experiment.

The public radar (place yourself) was thought in order to offer an equivalent to external

non-verbal communication similar to changing place in order to be closer to a given

person, while the private radar (place others) can be seen as a mnemonic aid for the

representation of others’ identities and their perceived social proximity.

Furthermore, the data related to the affinity network, resulting from the distances among

the avatars in the private radar, allowed us to interpret the relation between affinity and

communication (see Chapter 5) and between opinion, affinity and communication (see

Chapter 6).

Within such experimental framework, 200 subjects, divided into 20 small groups of

10 members each, were engaged in the virtual discussions. We organised 4 different

experimental tasks (i.e. social constraints) that we will describe in next chapters.

The subjects were asked to fill a questionnaire, in order to anonymously collect the

socio demographic data like gender, age, educational qualification, years of schooling,

and current profession. These data have been connected to the avatar assigned by the

software for the statistical analysis. The experimental setting has been set up in a

computer lab. At each subject was given a personal computer running the client chat;

a server machine managed the message exchanging and data collection. Each subject

was isolated from the others, in order to preserve the subjects’ anonymity and to permit

the interaction only through the chat. Each experimental session had a standardized

duration of 60 minutes with the following temporal subdivision: 5 minutes dedicated to

the collection of socio-demographic data, 10 minutes of standardized training in which

the basic usage of the chat and the experimental task was communicated to the subjects,

and 45 minutes of virtual interaction. The subjects were explicitly trained in the use of

the radars, and were asked as part of the task to use them.

3.2 Procedures and methods

All the events produced by the participants are collected in a log file created by the

software that manage the virtual environment, on the server side. This file is structured

to collect all the informations available about the dynamics of the observable commu-

nications. In such way the file provides a list of all the events occurring within each

experimental session.
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Table 3.1: Experimental observables considered as order parameters of our study. The
first 9 observables concern the communication dynamics and are labelled in this study
as “Communicative dimensions”, at the contrary the last 2 observables are related with

the avatar positions on the radars and are labelled as “Spatial dimensions”.

DIMENSION DESCRIPTION

GM Messages globally sent, both in community and private chat

CM Messages sent in the community

CPOS

M
Messages sent with positive mood in the community

CNEG

M
Messages sent with negative mood in the community

CNEU

M
Messages sent with the neutral mood in the community

PM Messages sent in the private chat

PPOS

M
Messages sent with positive mood in private chat

PNEG

M
Messages sent with negative mood in private chat

PNEU

M
Messages sent with neutral mood in private chat

PUBRADAR (x, y) coordinates of the subject in the public radar (place yourself)

PRIRADAR (x, y) coordinates of the subject in the private radar (place others)

The data gathered during every experimental session have been manipulated to define

some parameters useful to explore the evolution of the system, from the macroscopic

(i.e., the group) to the microscopic (i.e., the individual) point of view.

In this analysis all the possible events excepted those related to the contents of the com-

munication (i.e., length, syntactic and semantic structure), and the mood that accom-

panied the textual messages, have been considered. An interaction between individuals

i and j at time t is denoted by M t
ij
= 1 (M t

ij
= 0 for the absence of contact). Through

a data mining of the log file we extracted the cumulated interaction matrices W ,

W t
ij =

t�

τ=0

M τ
ij . (3.1)

The components of the matrices W are defined by the cumulative number of messages

for each communicative dimension, obtaining in this way a different matrix for each

communicative dimension considered (Tab. 3.1). The index is here and later omitted

for simplicity’s sake. Regarding the spatial dimensions, related to the two radars, we

considered the Euclidean distances between the coordinates of i and j as a measure of

their coupling.

We define the probability P t
ij

of having an interaction between subjects i and j before

time t, normalized on the number of events involving the subject i, as



Experimental framework 39

P t
ij =

W t
ij�

j
W t

ij

. (3.2)

The activity at
i
, the rate of events involving the subject i, is defined as

ati =
N�

j=1,i �=j

W t
ij

t
. (3.3)

This parameter was collected from the public and the private communications, and from

radar manipulation.

We tried to put into evidence the topological and metric characteristics of the interaction

networks by introducing the centrality degree and the betweenness centrality degree,

used in the theory of network analysis.

The centrality degree ct
i
is defined as

cti = diag(P t)2i ; (3.4)

where diag is the diagonal of the matrix P t
ij

In our framework the centrality indicates the sum of the probabilities of connection

between a subject i and the rest of his network, at time t. We consider the centrality

as a measure of the “social distance” between two individuals. As a consequence, the

centrality would be defined on a continuous domain in [0, 1].

Finally the betweenness bt
i
provides the indications regarding the importance of the node

with respect to the topological structure of the network [53, 54]

bti =
�

j,k∈N,j �=k

St

jk
(i)

St

jk

; (3.5)

where St

jk
(i) are the shortest paths passing trough i and connecting j and k, while St

jk

are the total number of shortest paths connecting j and k.

The most ambitious target that moved the development of the present framework was

to study the cognitive heuristics used by humans during small group interactions, to

explore and to build their representations of the social psychological field. Moreover,

assuming the small group dynamics as prototypical events of the human social environ-

ment, we can presume the existence of some shared and adapted cognitive strategies,
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developed within the community to face with those tasks. Consequently we should ex-

pect to reveal a certain agreement among the adapted strategies (cognitive heuristics)

shown by the subjects, and a certain degree of variation of such strategies between the

different experimental conditions. The cognitive heuristics have been frequently defined

as computational algorithms which operate on the available data (knowledge and per-

ception) producing an adaptive answer/behaviour [34, 83]. Following such definition

we used a linear regression modelling approach to relate the communicative observables

(the behaviour of the subjects) with the affinity spaces (the subjects’ representation of

the group). In other words we try to model the average cognitive recipes used by the

subjects to estimate their affinity with the others as a mathematical linear function of

some predictors deriving from the experimental observables.

Summarizing, through the experimental framework proposed we analyse the virtual in-

teractions among the individuals engaged in small group discussions, taking into account

the emerging networks of interest (see Tab. 3.1), where the subjects represent the net-

work nodes, and the communicative (i.e. messages) or affective (i.e. mood or affinity)

relationships representing the link among the nodes, exploring the temporal evolution

of such networks using the parameters presented in Eqs. (3.3), (3.4), (3.5).



Chapter 4

Blank vs Topic condition

Nowadays the “cyberspace” constitutes a natural-ecological environment (i.e. experi-

mental setting) to explore and investigate the nature of the social dynamics between

human beings. In the modern society, social groups are used to exploit internet-based

communication devices, as suggested by the proliferation of social networks. The cy-

berspace provides a unique opportunity to track individual and collective dynamical

behaviours in interactive settings.

The small group is considered as a complex dynamical system, describable as a net-

work of relationships, where the subjects represent the network nodes. In this way, we

have the possibility to explore the control parameters to be subsequently inserted into a

model which takes into account the groups and the individual dynamics; and to inves-

tigate, through some order parameters, the emerging properties arising from the group

dynamics.

In the present study, we present the baseline of our research, represented by two different

tasks faced by the subjects.

4.1 Experimental design

In this preliminary study we basically focused on the structure of the communication

network, by considering three different dimensions: the communicative dimension, vi-

sualizing the communication in terms of messages sent or received by the subjects and

the relationships among the members of the group as influenced by the content and the

number of messages produced; the quality of the interactions among the subjects and

in particular the emotional moods that accompany the textual messages [84]; and the

“spatial” dimension of the group interactions, namely the affinity space, defined by the

41
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private radars (i.e. place others), in which the subjects build their own social space

representation of the group.

In order to study also the effect of the task on the subject’s cognitive strategy, first we

designed a control task, labelled as Blank condition, whose target was to introduce the

smallest possible number of constraints and biases. Accordingly, we selected a classic

everyday social problem, estimating the affinity with another subject by freely chatting

for 45 minutes. The participants could interact using public and private messages, and

were asked only to assess their affinity with the others, reporting them on their private

radar before the end of the experiments. The experimental task proposed to the subjects

(Blank condition) demanded them to interact freely, without any argument specified,

only through the chat. This means that the subjects are completely free to adopt

personal communication strategies to explore the social environment in which they are

inserted.

The affinity with someone was introduced to the subjects as the perceived degree of

similarity in terms of opinions, beliefs and attitudes, reflecting in this way the inverse

of the “social distance” among the subjects.

The Topic condition was designed to introduce a first constraint affecting the small

group interaction. The subjects were asked to participate in a role game where they

belonged to an ethic committee that was charged to reform the law that controls the

researches involving animals (i.e. animal experimentation). The requirements were to

discuss about the given topic, developing before the end of the experiment one or more

shared ethical positions, and assessing the affinity space accordingly. The experimental

task proposed to the subjects (Topic condition) demanded them to discuss about animal

experimentation. The subjects have been asked to support and negotiate its position

during the entire discussion. This topic was chosen in order to polarize the opinions of the

subjects in virtual interaction and to force the communication strategies of the subjects

around a specific topic. The two experimental conditions should allow the exploration

of the differences between the appropriate (i.e. optimal and stable) strategies required.

The sample of 100 individuals has been randomly spilt in two, respecting the balance

for the gender, and each sub-sample (50 subjects) has been asked a different task. The

two experimental procedures have been designed to study the effect of the task on the

cognitive processes emerging within the small group in virtual interaction.
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4.2 Procedure and methods

The experimental setting has been set up in a computer lab. At each subject was given

a personal computer running the client chat; a server machine that managed message

passing and data collection. Each subject was isolated from the other, in order to

preserve the subjects’ anonymity and to permit the interaction only trough the chat.

Each experimental session had a total duration of 60 minutes with the temporal subdi-

vision described in Chapter 3. The subjects were explicitly requested to accomplish the

experimental tasks (i.e. free discussion vs topic discussion) and to use the private radar

(place others) to represent the social space in terms of affinity perceived.

4.2.1 Sample

The population selected for the experiment is composed of 100 subjects. The subjects

were asked to fill a questionnaire, in order to anonymously collect socio demographic data

like gender, age, educational qualification, years of schooling, and current profession.

These data have been connected to the avatar assigned by the software. Each of the ten

experimental sessions consists for a total of 51 males and 49 females. The average for

each experiment has been around 5 females and 5 males, unknown to each other, with

mean age equal to 23.8 years, std.dev. 2.83. The average age of education is equal to

16.3 school years, std.dev. 1.52.

4.2.2 Data Analysis

Through the study of the order parameters referring to the Eqs. (3.3), (3.4), (3.5), we

explore the development of the different networks defined by the communicative and

spatial dimensions (Tab. 3.1) considered.

We studied the main differences among all the experimental observables taken into

account data collected by the socio demographic questionnaire, computing the student-t

statistic [85], considering the two series of five experiments as independent samples.

4.3 Results

A first and rational class of observables related to human group dynamics is the “ac-

tivity” (Eq. (3.3)). In order to analyse this dimension we consider the total amount of
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actions for each subjects during the 45 minutes of the experiment. As an example, the

activity plot of the first of the ten experiments is shown in Figs. 4.1 and 4.2.

(a) Activity in Blank public mes-

sages

(b) Activity in Blank private mes-

sages

Figure 4.1: Public vs Private activity in Blank condition (average number of messages
exchanged into the public or private area by a subject).The coloured lines identify
different individuals. On the X axis is reported the time of the experiments and on the

Y axis the density of messages per minute.

(a) Activity in Topic public mes-

sages

(b) Activity in Topic private mes-

sages

Figure 4.2: Public vs Private activity in Topic condition. The coloured lines identify
different individuals. On the X axis is reported the time of the experiments and on the

Y axis the density of messages per minute.

The Figs. 4.1 and 4.2 show the average activity of the subjects in the global message

dimension for respectively the Blank and the Topic condition. After an initial phase,

observed in every experimental session, where the subjects explore the chat environment

and present themselves to each other, the system reaches very quickly (in less then

15 minutes) a stationary state where all subjects exchange a comparable number of

messages, both in Blank and in Topic condition. A remarkable feature is the strong

similarity of this observable in all the experiments.

The corresponding behaviour of the activity in the private chat is quite different, as it

shown in Figs. 4.1 and 4.2. In this case the individual attitude in exchanging private

messages seems different from each other, and the patterns appear as different for all the

experiments. From a psychological perspective this two ways of communications have to

be considered as theoretically quite different, because the nature of the communication

in dyadic or group discussion.
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Another important class of observables are represented by the centrality degrees (3.4).

These variables give qualitative and quantitative information about the group structure,

and the communication dynamics among the individuals. As it shown in Figs. 4.3

and 4.4, the public centrality degree 3.4 quickly tends to a stationary state in both

experimental conditions (i.e. Blank and Topic condition).

(a) Centrality degree in Blank

public messages

(b) Centrality degree in Blank

private messages

Figure 4.3: Public centrality degree in Blank condition. The coloured lines identify
different individuals. On the X axis is reported the time of the experiments and on the

Y axis the weighted centrality degree for all the subjects.

(a) Centrality degree in Topic

public messages

(b) Centrality degree in Topic pri-

vate messages

Figure 4.4: Public centrality degree in Topic condition. The coloured lines identify
different individuals. On the X axis is reported the time of the experiments and on the

Y axis the weighted centrality degree for all the subjects.

At the same time the centrality degree seems efficiently characterizes the private mes-

sages spaces, as shown in Figs. 4.3 and 4.4. Interestingly, we found that the average

public centrality degree always tends towards a steady state around the value of 0.11.

Such value indicates that for all the experimental sessions we observe in the commu-

nity a fully connected network, where each person establishes a direct contact with all

the other nodes of the network. Each node therefore has an equal probability of being

connected with any other node, differently for the private chat.

The last communication observable we have taken into consideration is the betweenness

centrality degree (3.5). As examples in Fig. 4.5 the temporal series of this parameter

are reported for both the Blank and the Topic condition. In general, this measure has

shown an average increasing behaviour over time, always assuming at the end of each
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(a) Betweenness degree in Blank

private radar

(b) Betweenness degree in Topic

private radar

Figure 4.5: Temporal trend of the betweenness centrality degree in the private radar
for Blank condition and Topic condition. The coloured lines identify different individu-
als. On the X axis is reported the time of the experiments and on the Y axis the value

of the betweenness degree of the subjects.

session a particular structured hierarchy. Such observable reveals the nodes’ relevance

in the topological communication structure of the network.

The Blank and Topic modalities seem to be well differentiate by the average trend of

the betweenness centrality degree. In the Blank condition, an hierarchy among subjects

seems arise during the first 15 minutes of interaction, keeping its structure for the rest

of the session. On the contrary, in the Topic condition, the evolution of the betweenness

centrality degree appears more complex. In particular for the private radar, where the

subjects configure their social representation of the small group, it appears to be less

stable, evolving until the end of any experimental session with respect to the Blank

condition (Fig. 4.5).
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Figure 4.6: Public and Private temporal dynamics of the network diameters in Blank
condition. On the X axis is reported the time of the experiments and on the Y axis the

diameter of the network.

The collective network dynamics is reported in Figs. 4.6 and 4.7 using the network

diameter as order parameter. The public diameter for the community network messages

shows a quite trivial behaviour in both the experimental conditions, because the full

connected network configuration for both the experimental modalities. On the other
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(a) Diameter in Topic public mes-

sages

(b) Diameter in Topic private

messages

Figure 4.7: Public and Private temporal dynamics of the network diameters in Topic
condition. On the X axis is reported the time of the experiments and on the Y axis the

diameter of the network.

hand the diameter of the private network messages appears more informative for both

the Blank and the Topic condition, showing a continuous process of clustering.

After a first preliminary exploration of the graphical behaviour of the experimental

observables considered, we used some inferential statistics in order to profile the peculiar

subjects strategies among the two experimental conditions.

The activity related variables shows many large differences on the subjects’ commu-

nicative behaviour. In particular, the communication rates are significantly larger for

the Blank condition public and private dimensions (e.g. activity CM (45�); t = 2.697,

p. < .01; activity PM (30�); t = 3.471, p. < .01), as so as for the communications with

“positive” and “negative” mood on the community and private chat (e.g,. activity CPOS
M

(45�); t = 4.611, p. < .01; activity CNEG
M

(30�); t = 2.139, p. < .05; activity PPOS
M

(45�);

t = 4.395, p. < .01.

On the other hand, the neutral messages (i.e. the messages which have a neutral mood)

in the community side show the opposite behaviour, and within the Topic condition the

messages with a neutral mood prevail (e.g. activity CNEU
M

(45�); t = −2.401, p. < .05;

activity CNEU
M

(15�); t = −3.085, p. < .01).

Finally we dedicated an apposite activity measure for the private radar (i.e. place others)

management, that was just the number of adjustments/displacements the subjects done

during the experiments. Such measure can be interpreted as reflecting the complexity

of the social problem faced by the subject and the length/effort in the configuration of

the affinity space (i.e. private radar). Interestingly also this observable distinguishes

significantly the two experimental modalities.

In details the subjects within the Topic condition spent a larger period making more

adjustments/displacements on their private radars, with respect to the subjects engaged
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in Blank discussion (e.g. activity PRIRADAR (45�); t = −2.826, p. < .01). The observ-

ables related to the nodes’ centrality degree on both the communicative and the radar

networks delineate a similar scenario, highlighting some interesting additional aspects.

In our framework the centrality degree on the communication network indicates the

weight of a subject on the entire communicative dynamics, while the same measure for

the private radar space represents the degree of closeness that characterizes the subjects’

average representation of the small group.

As happened for the variables related to the activity, the average centrality degree for

all the communicative dimension is larger for the Blank condition (e.g. centrality degree

CPOS
M

(45�); t = 3.616, p. < .01; centrality degree CNEG
M

(30�); t = 4.468, p. < .01;

centrality degree PM (45�); t = 2.356, p. < .05; centrality degree PPOS
M

(45�); t = 4.223,

p. < .01; centrality degree PNEG
M

(45�); t = 2.064, p. < .05), with the only exception of

the neutral messages in community side, where coherently with the activity measures

the average degree of the subjects within the Topic condition is greater than the others

(e.g. centrality degree CNEG
M

(45�); t = −4.030, p. < .01).

The analysis of the centrality degree distributions on the private radar dimension has

supported the previous results, the average closeness (i.e. the normalized average dis-

tance of a subject from the others considering all the subjects’ private representations

on their private radars) appear as larger for the Blank condition than for the Topic con-

dition (e.g. centrality degree PRIRADAR (45�); t = 3.375, p. < .01). This result suggests

that the cohesion, or the degree of connection among the sub communities, is smaller in

the task with more cognitive constraints, probably due in part to the polarizing nature

of the experimental task in Topic condition.

The subsequent analysis of the betweenness centrality has confirmed and replicated ac-

curately the previous results, and has indicated the betweenness as more stable and

cleaner measure of the centrality degree for the private radar dimension (e.g. between-

ness PRIRADAR (30�); t = −2.512, p. < .05). As a consequence of a minor average

centrality degree, the nodes belonging to the Topic condition are characterized by a

greater average betweenness, that is the destruction of a single link could operate an

abrupt change of the network topology.

4.4 Discussion of results

This study proposes a quantitative approach to the investigation of the existing rela-

tionship between the individual dimensions, considering the personal cognition of the

interactions with others, and the group dimension, and its dynamical evolution. We
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have presented some preliminary results of our experimental framework, consisting of

a standard chat environment with some enhancements, such as the social and spatial

representation of subjects by mean of the “virtual” two-dimensional spaces (i.e. radars).

The chat was ergonomic and user friendly: all subjects performed the experimental task

without problems, as demonstrated by the analysis of activity in time, where we do not

observe any drop in interest and participation. The message rate was constant for the

duration of a session, after an initial phase of “thermalization” of the group.

We can assume that the proposed interface is very efficient for the subjects with a high

confidence with new technologies and the type of assigned task. We have developed a set

of analytical tools, with the goal of detecting some relevant characteristics of the group

dynamics. The analysis is independent of the semantic content of the exchanged mes-

sages, and the standardized interface avoids hard-to-detect non-verbal communications,

still providing the expression of emotional contents.

The subsequent analysis, mixing social network theory and concepts from social and

opinion dynamics, allows us to investigate quantitatively how people creates their social

space in virtual interactions, exploring the role of topology and the structure of the

group evolution.

It is possible to consider the communication topology, which characterizes a given com-

municative dimension, as a state variable characterizing the role of different final con-

figurations with respect to the affinity dynamics. In other words, we have started inves-

tigating the process by which the mental schemes representing the small group arise.

The observables taken in account represent some potential order parameters to describe

the virtual human community. The experimental data appear to be consistent with the

classical psychological theories and description of little group dynamics. More precisely

the differences between the public and private space with respect to many of the observ-

ables previously describe, confirm well known axioms in psychology: that is, individuals

use different strategies with respect to the environmental condition (i.e. when they par-

ticipate to a group interaction or when they are engaged into a dyadic conversation).

Furthermore the knowledge of both microscopic and macroscopic dynamics are required

in order to explore and understand the human group dynamics.

Obviously, the artefact experimental conditions, and the generality of the task presented

may be considered as a too limited approach to the investigation of the social dynam-

ics. For that reason further experiments are required to explore different aspects and

processes. Nevertheless, the present data represent a baseline for the interpretation of

futures experiments.
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In conclusion, we present a framework to study the small group dynamics within a virtual

setting. After a preliminary definition of some features of interest both at the individual

and collective level, we have shown how it is possible to design real experiments affecting

the communicative behaviour of subjects in interaction.



Chapter 5

Blank vs Topic vs Game

condition

The study of the interdependence between the social environment and the people that

are immersed in it, dates back to the first half of the twentieth century with the works

of Kurt Lewin [18] known as “Field theory”. This theory assumes the existence of an

emerging object, the psychological field, which partially behaves as a sort of attracting

force, producing intense and disruptive effects (e.g. revealable at a psychological and/or

social level of description) specially within small groups.

Recent literature has approached the description of the psychological field, designing

model of opinion formation in which the affinity between agents is introduced and cou-

pled with the opinion/social dynamics equations [73, 82]. Sharing a similar opinions

with a person towards whom we feel a low degree of affinity, might give rise to a psy-

chological distress. The cognitive dissonance theory describes how such a process would

result alternatively in a shift of the opinion, or of the affinity itself. In this way the cog-

nitive dissonance could affect the psychological field postulated by Lewin, influencing

the function between personality and environment to determine the behaviour of people

in interaction.

The computational models linking affinity and opinion are perfects to test some very

fundamental theories from social cognition. In particular, the group effect, introduced

and structured by Asch, Sherif and Festinger [10–12] can be considered as the reference

scenario to be assessed.

Given the previous theoretical scenario, it is possible to hypothesize different relations

between cognitive dissonance and social influence, depending on the constraints imposed

to the small groups involved in our study. The impact of type of task reflects on the

51
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interaction between emerging social relations (i.e. affinity) and communication. In such

a way our purpose is to research the effects of the cognitive dissonance that affect the

psychological field putting the social constraints (i.e. the experimental conditions) as

the independent variables.

The dynamics of small groups has been the target of interesting research approaches in

the latest years [86–89], and in this work we consider explicitly the interaction between

the complex topology of the social structure of the experimental groups (i.e. affinity and

opinion communities), and the cognitive processes characterizing the individuals’ level.

The studies concerning the dynamics of communication within small human groups show

how the relevance of the affinity group structure depends on and affects the different

tasks faced by the subjects. The shape of the affinity group structure determines the

constraints for the communicative exchanges, and influences the outcome in a group

problem solving. Moreover the different “positions” into such an “affinity space” directly

affect many aspects of communication and individual cognition, defined as a sense of

belonging to the group, the personal satisfaction or frustration, and the motivations of

the subjects to successfully accomplish the task [5, 6].

At the same time, people immersed in a social context tend to interpret the behaviour

of others to make judgements and anticipate their behaviours, such as the role that

they play in the group, their pleasantness, their perceived affinity. Often, people reach

these judgements in the early stages of the interaction, the so-called first impression, in

conditions of limited time and information [30].

The main goal of this study is to investigate how communication among people im-

mersed into a virtual environment is related to the group affinities structure, in different

conditions where the complexity of the psychological field increases. Furthermore, the

three different tasks adopted as experimental conditions have been introduced to evalu-

ate how different constraints affect the subjects’ elaboration and interpretation process

of the social environment.

5.1 Experimental design

In the present study we investigate how communication among people immersed into a

virtual environment is related to the group affinities structure, in different conditions

where the complexity of the psychological field increases. Furthermore, the three dif-

ferent tasks adopted as experimental conditions have been introduced to evaluate how

different constraints affect the subjects’ elaboration and interpretation process of the

social environment.
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A web based chat room provided the experimental environment for the investigation

of the social interactions of a 10 people group, reaching a fairly accurate quantitative

estimation of the interesting features related to the group communication. This work es-

sentially studies the impact of three different tasks, the interaction between the emerging

social relations (referred to as affinities) and the communication patterns.

From the theory we argue that the complex interaction between such dimensions could

play a crucial role in modulate the social influence effect.

Within such a challenge we search for an experimental confirmation of Asch, Sherif and

Festinger theories about social conformity, social assimilation and social comparison [90];

combining them with the cognitive dissonance theory into the theorical framework that

drives our work.

We tested 150 interacting subjects, divided into 15 small groups (i.e., 10 subjects per

group, 5 groups per condition).

Specifically, within the first experimental task(Blank condition) the subjects were invited

to discuss freely, within the second experimental task (Topic condition) they were asked

to face with a specific topic introduced to polarize the opinions, and finally, within the

third task (Game condition), the subjects were asked to face with a frustrated minority

game based on a voting procedure. In the field of game theory, we can define a “

Frustrated game” as a game in which the pay-off function depends in a complex way

on the strategies of the various players, so it is not easy (or sometimes not possible) to

find an optimal strategy [91–94]. The minority games are frustrated games because the

strategy that leads to being in a minority (and winning) group may also lead to be in

the majority (and losing) group following a change of another player. That is why a

local perturbation may establish an ”avalanche” of changes, that makes very difficult to

reach the global optimum.

Finally the introduction of different experimental conditions (i.e., different environmen-

tal constraints) allows to study how the increasing complexity of the resulting psycho-

logical field topology affects in different ways the communicative patterns adopted by

the subjects.

5.2 Procedure and methods

The common aspect between the different conditions relies on the affinity estimation

requirements. The concept of affinity was first introduced to the subjects as the perceived

familiarity toward, and the emotional closeness with, another subject. Thus in each
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condition the subjects were asked to estimate before the end of the experiment their

perceived affinity with the others.

We labelled as Blank condition the task in which the first five small groups interact.

In this condition the subjects could interact freely (i.e., the number and type of the

arguments were freely determined by the subjects), without any specific constraint or

requirement. The experimental task was to present themselves and their instances/opin-

ions to the others throughout the communication, and to configure their private radar

in accordance to their perceived feelings of affinity toward the others. Eventually they

were not asked to reach any consensus.

The second tranche of five experiments was conducted using a different condition labelled

as Topic. In this case the subjects were asked to talk about a specific topic, in particular

about animal experimentation. The topic was deliberately chosen to strongly polarize

the opinions within the group. Even in this condition the subjects were not asked to

achieve a consensus, but only to mediate as much as they could in order to give strength

to their “position” at the end of the session.

The last experimental session, labelled as Game condition, consisted in a frustrated

minority game. In this case the subjects were required to discuss about three different

features (i.e., colour, shape, acronym) and to choose their favourite one. The exper-

imental task required the subjects to belong to the second largest cluster in the each

preference expression. Such a structure prevents the subjects to find a trivial strategy

for winning the game. The collection of the preferences was performed in three different

times, one every 15 minutes of discussion, by means of 3 different paper cards, one for

the colour, one for the shape and one for the acronym. Only one preference could be

expressed for a single time. After each voting phase the winners were to be announced

to the subjects by the person responsible for the experiment.

5.2.1 Sample

We selected 150 subjects, 74 females and 76 males, randomly assigned to 15 small groups,

approximately composed by 5 females and 5 males unknown to each other. The average

age of the entire sample was 24.38 years (std.dev. 3.24), and the average of years of

education was 15.59 years (std.dev. 1.57). The sample was divided into 15 different

small groups, 5 groups for each experimental session. All the 15 experiments had a

duration of 45 minutes, were held in a standardized setting in which every subject was

isolated from the others to allow communication only through the chat.
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Before each session the subjects filled out anonymously a form for the collection of

the socio-demographic data, with the aim to control the effects related to sex, age,

educational qualifications, years of education, and the current profession.

5.2.2 Data analysis

The dynamics and the structures of the complex networks created by the participants and

their cognitive dynamics of communication were detected, and their relations estimated,

in order to model the node’s behaviour in the different regimes. A classical statistical

approach has been used to test the experimental hypotheses and to refine the useful ob-

servables that will be taken into account. We have used the product-moment correlation

of Bravais Pearson (r.) [95] to test the relations among the quantitative variables, and

we have compared the different experimental conditions using the ANOVA [96, 97] and

Student-t tests [85].

Then we have fit, with a preliminary linear regression method, the best linear models

describing the relation between the affinity and the communicative behaviours adopted

by the subjects in the different conditions. The resulting models could describe how the

subjects assess their affinity with the others, and the way they promote/manage their

status within the group (e.g. to win/cope the game/task). In order to achieve that,

during the game proposed in the last experimental condition, it is shown how subjects

reach a very good ability to face with the frustrated task they were participating. Since

the game is introduced as major frustrated condition to study the relation between

affinity and communication dynamics, we analysed the performances of the subjects

only in a qualitative way comparing the results of the experimental votes with those

produced by an appropriate random model to assess the randomness of the player’s

behaviour.

5.3 Results

In order to characterize the macroscopic aspects of the communicative dynamics we

analysed the activity, centrality degree and betweenness for all the communicative sub

spaces (i.e., public messages, private messages, public radar, private radar), for each

experimental task.

The dynamics of the public centrality degree for the 15 experiments, represented in

Fig. 5.1, look very similar, and appears as characterized by the same features. The

centrality degree of the public messages network tends to a stationary value, and provides
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Figure 5.1: Time evolution of the centrality in the community side of the chat for
the three different experimental conditions (Blank; Topic; Game). The color of the line
identifies a different subject. On the X axis is reported the time of the experiments
and on the Y axis the normalized centralities of the subjects. In all the modalities, the
system tends in the first third of each experiment towards an order state, giving us a
first indication about the structure of the network, a full-connected network, regardless

of the task required.

a first indication about the communicative structure of the network. In the Fig. 5.1 a first

effect of the social influence emerges. Regardless to the task faced by the subjects, the

distribution of communication within the public space early reach an equilibrium state.

In particular all the individuals, in every small group interaction, tend to stabilize the

probability to send and receive a message to the others around the value of 0.11. Such

a value indicates the presence of a fully-connected network (i.e., each person exchanges

messages with all other people within the network).

All the 15 small groups that participated in the experiments reached, in the first third of

the session, a stationary state in their centrality degree, which remains unchanged until

the end of the experiment. The first third of the experiments seems to correspond to

the characteristic time for the construction of the first approximation of the perceived

social structure (i.e., preliminary social negotiation).

The measure of the centrality in the private space, reported in Fig. 5.2, clearly shows a

very different dynamics with respect to that characterizing the public space. The private

channel allows only the dyadic relationships between individuals and the trajectories

within this space appear highly irregular, never reaching a stationary state during the

first 45’ of interaction. The task does not appear to trivially affect the dynamics of

relationships in the private space, since this looks similar (i.e., non-stationary) along

the three tasks and the 15 experimental sessions. A first inspection of the public and

private communication dynamics (Fig. 5.1 and Fig. 5.2) does not show any evident
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Figure 5.2: Time evolution of the centrality in the private side. The color of the line
identifies a different subject. On the X axis is reported the time of the experiments and
on the Y axis the normalized centralities of the subjects. The trajectories are highly

unstable and never reach a stationary state.

Table 5.1: Significant average differences for the activity between conditions

Blank Topic

Condition Condition

Observables Average difference Average difference Average difference
with Topic with Game with Game

Activity GM 81.7* - -107.1**
Activity CM 73.8* - -95.7**
Activity CPOS

M
106.3** - -127.4**

Activity CNEU

M
-46.8* - 44.1*

Activity PM 7.8* - -11.3**
Activity PPOS

M
5.2** - -7.6**

Activity PRIRADAR - -20.1** -
**: p. < .01, *: p. < .05 (Bonferroni Test for ANOVA)

difference on the evolution of the communication patterns, depending on the different

experimental conditions (i.e., social constraints).

In order to answer to the main question posed by this work we have introduced the

communicative and affinity variables as order parameters to investigate the virtual social

dynamics, and the three experimental conditions as control parameters. First of all, the

conditions were compared with respect to each communicative variables searching for

significant differences in the communicative regimes.

Using the analysis of variance statistics (i.e., ANOVA, with Bonferroni test for posthoc)

the activity related to all the quantitative dimensions taken into account (Tab. 3.1) is
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Table 5.2: Significant average differences for the Betweenness between conditions

Blank Topic

Condition Condition

Observables Average difference Average difference Average difference
with Topic with Game with Game

Betweenness CPOS

M
.015** - -.15**

Betweenness CNEU

M
- - .020**

Betweenness CNEG

M
.051** .032* -

Betweenness PM .078* -.068* -.146**
Betweenness PPOS

M
.056** -.049** -.105**

Betweenness PNEU

M
- - -.109**
**: p. < .01, *: p. < .05 (Bonferroni Test for ANOVA)

compared in relation to the varying experimental conditions (Blank, Topic and Game)

(Tab. 5.1). As activity we reported the rough number of events which characterize the

communicative dimensions and the private radar dynamics (i.e., the total number of

messages and displacements produced by a subject). The analysis reveals many signifi-

cant differences mainly among the Topic condition and the Blank and Game conditions.

The Topic condition appears to be the one that differs the most from the others two.

In such a condition less messages are generally exchanged, with the only exception of

the public messages with neutral mood. This is a first effect probably due/introduced

by the task. Within this condition, the subjects seem to be more conservative on their

opinion, avoiding, if possible, confirming or dis-confirming mood messages. The average

activities suggest that, in the Blank and in the Game condition, people tend to behave

similarly in terms of communication, with the only exception of the activity related to

the affinity space.

The activity for the affinity space dimension is referred to the amount of the private

radar manipulation (i.e., the affinity space), and it is significantly different only be-

tween the Blank and Game condition. In the Game condition the subjects tend to

manage more frequently their private radar, probably because of the nature of the task

(i.e.,“frustrated game”) and to the procedure of voting, that promotes the birth and the

death of temporary alliance among the members.

In Tab. 5.2 is reported the average betweenness bt
i
(Eq. (3.5)) of the subjects for all the

selected variables, which is used to compare with the ANOVA test the three experimental

conditions.

This measure generally reflects the topological relevance of a node for the structure of

the entire network; here, according to the definition given by Freeman [53, 54] provides
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a measure of “where” a node is located among the various nodes of the graph taken into

consideration, and of how much such a node is structural for the network.

The data presented in Tab. 5.2 suggests some differences regarding the communicative

patterns depending on the experimental task.

The average betweenness for the public messages with positive mood (CPOS
M

) is greater

in the Blank and Game conditions than in the Topic condition. Moreover no significant

differences emerge between the Blank and Game conditions.

On the contrary the average betweenness bt
i
for the public messages with a neutral

mood (CNEU
M

) appears to be significantly different only between the Topic and Game

conditions, with the Blank condition that ranks among the others.

The average betweenness for the network formed by the public negative messages (CNEG
M

)

seems to be significantly different in the Blank condition with respect to the other con-

ditions. Such result indicates that in a context of free interaction, the subjects in a

small virtual group tend to be involved in conversations exchanging also messages with

negative mood (i.e., dis-confirming messages), suggesting that, without any specific so-

cial constraint, the subjects can reduce their cognitive dissonance being involved in

dis-confirming conversation.

The three previous results suggest the way the social influence effect could be modu-

lated by the cognitive dissonance, within the tasks under investigation. The prevalence

of positive messages, in the Blank and Game conditions, could indicate how the subjects

involved in such a tasks tend to manage the more (i.e., to be more affected/sensitive

to) the collective level, as so as to promote the cohesion of the group. In other words

the social effect appears to be promoted by the cognitive dissonance within such ex-

perimental conditions. On the contrary the Topic task appears as characterized by a

prevalence of messages with neutral mood, as well as by a greater betweenness within

such a space. Even this evidence support the previous hypothesis, here the cognitive

dissonance elicited by the task is hardest to be solved with respect to the others tasks,

consequently the tendency of the subjects to belong to the biggest group (e.g. one of

the social influence effects) decreases.

Focusing on the peer-to-peer communication performed in the private side of the chat

interface, the data shows that the average betweenness for private messages is signifi-

cantly different in all three experimental conditions, with the only exception being the

variable PNEU
M

. Such a variable presents a significant difference only between Topic and

Game conditions. In particular, the subjects in the Game condition are more involved

in conversation with neutral mood than the subjects in the Topic condition.
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Table 5.3: Significant correlations for the different experimental session between the
private radar betweenness and the observables under scrutiny

Observables Blank Condition Topic Condition Game Condition

Activity CM
(15�).51* ns (30�).37*

Activity CPOS

M

(30�).50* ns (15�).38*
Activity PNEG

M
ns ns (15�).36*

Activity PRIRADAR ns (30�).53* ns
Centrality CM

(45�).46* ns (45�).51*
Centrality CPOS

M

(45�).49* ns (45�).44*
Centrality PRIRADAR

(45�).52* (45�).40* (45�).51*
Betweenness CPOSM (45�).67* ns ns
Betweenness CNEG

M
ns (15�).35* ns

Betweenness PM ns ns (30�).46*
Betweenness PNEG

M
ns ns (30�).39*

**: p. < .01, *: p. < .05

The results related to the analysis of the public and the private communication seems

to indicate two different regimes of interaction in the small groups involved in virtual

discussion, which depends in different way on the social constraint imposed to the small

group.

In order to characterize the dynamics determined by the individuals during the inter-

action, we have taken into account the values of all the considered observables in three

different times of the interaction (e.g., respectively after 15�, 30� and 45� of interaction).

In Tab. 5.3 the greater correlations between such observables and the betweenness in

the private radar (i.e., the affinity space) are reported. The betweenness degree of a

subject i in the affinity network is determined by the entire group as the average degree

of affinity perceived by the others towards him.

The betweenness in the private radar correlates with the number of messages sent in

the community side of the chat during the first 15 and 30 minutes of interaction, with

the amount of messages with positive mood sent in the community side in the first 30

and 15 minutes of interaction, respectively for the Blank and the Game conditions. For

these two conditions the public messages network appears as a good observable to reveal

the correlation between affinity and communication dynamics.

Moreover, when considering the messages with positive mood, for what concern the

Blank condition, the betweenness in the affinity space appears to be strongly correlated

with the position in the communicative network.
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With respect to the Topic condition the activity in the private radar management,

together with the participation in conversations with a negative mood in the community

side, seem to be the best predictors of the betweenness in the affinity space.

The peer-to-peer communication occurring in the private chat appears to be correlated

with the betweenness in the affinity space only within the Game condition, and always

before the final vote (i.e., only in the first 30 minutes). The communication in the

private side seems to be the best observable to distinguish the Game condition from the

others two conditions. The large correlation between the peer-to-peer communication

in the Game condition, and the betweenness in the affinity space, of course partially

depends on the sharing of the strategies of vote (e.g. establishment of “secret” voting

negotiations, in order to satisfy the experimental request and to “win” to the game).

Eventually, the centrality in the private radar, indicating the degree of average affinity

“received” by a subject, is correlated with the betweenness in every conditions.

The betweenness in our affinity network (i.e., the private radar) defines the average

affinity perceived by the group toward a subject. We choose such a variable to study the

dynamics of the affinity between subjects with respect to their communication dynamics,

and to study the impact of different social constraints on the affinity and communication

dynamics.

We then isolated the communicative factors explaining the variance of this important di-

mension, summarizing them in three linear regression models, one for each experimental

condition. The regression models could be seen as an estimation of the recipes through

which the subjects have built their own social field.

The best regression model for the Blank condition can be written as

B(i) = β1(CM )15
�

Act(i)
+ β2(C

POS
M )45

�

Cen(i)
+ β3(C

POS
M )45

�

Betw(i)
+ �(i) (5.1)

The model summarizes the control parameters describing the way in which the subjects

build their affinity network.

In the Blank condition the betweenness in the affinity space of a subject i (B(i)) appears

to be related with the public activity in the first third of the interaction ((CM )15
�

Act(i)
),

with the centrality in the communicative network defined by the messages with a positive

mood during the entire session ((CPOS
M

)45
�

Cen(i)
) as well as with the betweenness in the

network formed by the messages with positive mood ((CPOS
M

)45
�

Betw(i)
).
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Table 5.4: Summary of the Blank model

r. Adj.r St.Err S.S Model S.S. Residual F

.823 .656 .03 .081 .039 32.163*
S.S.: sum of squares; *: p <.01

Table 5.5: Predictors coefficients of Blank Condition’s best model

Predictor Stand.Coefficient t Sig

Activity CM
(15�) β1 = .599 7.063 p.<.01

Centrality CPOS

M

(45�) β2 = .277 2.830 p.<.01
Betweenness CPOS

M

(45�) β3 = .274 2.783 p.<.01

As shown in Tab. 5.4, the linear regression model presented for the Blank condition

explains the 65% of the variance of the betweenness in the affinity space, if we consider

the predictors coefficients of Blank condition’s best model shown in Tab. 5.5.

In other words, the dynamics of the affinity can be mapped (i.e., approximated and

predicted) quite efficiently considering only the public communicative dynamics, as we

have done in our experiments.

The best significant regression model for the Topic condition shows many differences

with respect to the Blank one, and can be summarized as follows,

B(i) = β1(PRIRAD)
30�
Act + β2(C

NEG
M )15

�
betw�(i) (5.2)

Given the conditions imposed in this session of experiments, the construction of the

affinity networks appears to follow a completely different route with the respect to

the Blank condition (Tab. 5.6). Surprisingly, the only best predictors (Tab. 5.7) of

the final betweenness of subject i are his number (i.e., activity) of adjustments in the

affinity space during the first 30� of interaction (PRIRAD)30
�

Act
), and the betweenness in

the network formed by the public messages with negative mood during the first 15�

((CNEG
M

)15
�

Betw
).

Noteworthy is the fact that the entity of the activity in the private radar is not public

information, so its relation with the final affinity of a certain subject should be studied

more in depth.

The best linear regression model for Topic condition explains only the 33% of the vari-

ance of the betweenness in the affinity space (Tab. 5.6).
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Table 5.6: Summary of the Topic model

r. Adj.r St.Err S.S Model S.S. Residual F

.589 .330 .04 .033 .060 13.057*
S.S.: sum of squares; *: p <.01

Table 5.7: Predictors coefficients of Topic Condition’s best model

Predictor Stand.Coefficient t Sig

Activity PRIRADAR
(30�) β1 = .517 4.410 p.<.01

Betweenness CNEG

M

(15�) β2 = .271 2.310 p.<.05

Table 5.8: Summary of the Game model

r. Adj.r St.Err S.S Model S.S. Residual F

.656 .431 .07 .179 .224 11.592*
S.S.: sum of squares; *: p <.01

Table 5.9: Predictors coefficients of Game Condition’s best model

Predictor Stand. Coefficient t Sig

Centrality CM
(45�) β1 = .508 4.534 p.<.01

Betweenness PRIRADAR
(15�) β2 = −.280 −2.488 p.<.05

Activity PRIRADAR
(45�) β3 = .267 2.365 p.<.05

Finally, the best model for the Game condition, is

B(i) = β1(CM )45
�

Cent + β2(PUBRAD)
15�
Betw + β3(P

NEG
M )45

�
Act + �(i) (5.3)

Within the Game condition the subjects seem to assess their space of affinity mainly

considering the centrality of the others in the community messages network, at the end

of the experiment ((CM )45
�

Cent
), together with the betweenness in the public radar space

during the first 15� of the interaction ((PUBRAD)15
�

Betw
), and the number of negative

messages sent in the private side of the chat during the whole interaction ((PNEG
M

)45
�

Act
)

(Tab. 5.9).

As shown in Tab. 5.8, the best regression model for the Game condition explains the

43% of the variance for the betweenness in the affinity space.
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Similarly to the regression model characterizing the Topic condition, and contrarily to

that of the Blank condition, the regression model for the Game condition seems to take

into account also the non-communicative variables, as the activity in the private radar

or the betweenness in public radar.

Noteworthy, there seems not to be any relation between the vote expressed at the end

of the Game condition and the affinities among subjects in the same experiments.

Finally, although the main topic of the present work concern the relation between affinity

and communicative dynamics in such a conditions, the analysis of the vote strategies

adopted by the participants in the Game condition demonstrate the groups efficiency in

facing the proposed social problem solving. The graphs in Fig. 5.3 show the frequency

distribution of the clusters size defined by the preferences expressed through the votes

in the 5 experimental sessions of the Game condition.
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Figure 5.3: Distribution of the clusters size along the three vote (from left to right,
from the first to the third vote). The graph shows the trend of the clusters size relative
to the voting preferences. The line color identifies the different experiments, and the
dotted line indicates their cumulative distribution. On the X axis are reported the sizes

of the clusters, and on the Y axis are reported the normalized frequencies.

The winning strategy for our game, as it is demonstrated by the random model results in

Fig. 5.4 is that of being in a group of one, two or three people. To face the task proposed

by the game, people need to explore the environment and exchange information with

others, possibly cheating. Indeed, the intermediate polls reveal that during the first two

votes the subjects apparently adopt not optimal game strategies. The distribution of

the final clusters size reveals that only in the third vote the subjects adopt the winning

strategy, trying to belong to a small cluster composed mainly by two components, and

never bigger than 3 (Fig. 5.4).
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Figure 5.4: Comparison between a simulated random process of cluster size distri-
bution and the experimental data (from left to right, from the first to the third vote).
The dotted lines indicate the distributions generated by a random process (in blue the
size distribution and in red the winning size probability distribution), the continuous
lines show the trend of the experimental data (in black the size distribution and in
pink the winning size probability distribution). On the X axis are reported the sizes of
the clusters, and on the Y axis are reported the normalized frequencies. The subjects
approximate the best strategy of vote with a global standardized error of 9%, 8%, 6%,

respectively for the three votes

In the third vote, all the participants were able to be part of a cluster with a high

probability of victory. The participants’ voting strategies seem to approximate effectively

the distribution of the probability of victory of the clusters size in the case of a random

process of vote, but making a sort of correction on it and voting not at random.

5.4 Discussion of results

The main goal of the series of experiments presented in this work was to test the the-

oretical predictions deriving from the social cognition about the coupling between the

people “affinity” and “opinion/behaviour”. A secondary result is of course related with

the predictability of the affinity between two subjects considering only some variables

concerning the communication dynamics. Many relevant socio-physical models adopting

the social cognition theories as a reference scaffolding assume a “mandatory” coupling

between affinity and opinion. Our results suggest that such a socio-physical approxima-

tion is valid but related to the psychological field.

The affinity among individuals appears to be sensitive to different aspects related to the

task, and the subjects appear to adapt the cognitive heuristics used to assess the affinity

with the others, depending on the constraints imposed by the task.
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A linear regression method has been used to test such hypotheses. The three best

resulting models indicate the interaction parameters used by the subjects to define their

affinity network. In particular the explained variance of the models is significantly

greater in the Blank condition (65%), where the affinity dynamics appears to be more

related to the number of interactions and to their moods. On the contrary in the Topic

and in the Game condition the explained variances are respectively of 33% and 43%,

suggesting how the constraint imposed by the task can eventually slow the dynamics

and make them less effective (i.e., more complex/frustrated).

Of course a part of information is lost with the contents of the messages, while in the

Blank condition the mood and the semantic contents of the messages tend to be always

correlated, for different reasons such the dimension of messages becomes less correlated

in the other conditions. For instance in the Game condition the euphemism and the

irony are frequently used by the subject to manipulate the others and win the game.

In the same way, in the Topic condition the mood is no longer sufficient to classify the

messages because their content can be deeply different and play a completely different

role within the communication dynamics.

As a consequences the affinity within the Game and the Topic conditions result to be

less related with the rough variables about the mood based communication dynamics.

A way to investigate the dependence between the affinity and the communication be-

haviour it was to study (and to compare) the betweenness dynamics of the subjects in

the affinity space for the different experimental conditions.

For what concerns the general aspects of the communication dynamics, it emerges how

the first 15� of interaction (at least when the entire session is 45� long), correspond to

a sort of characteristic time for the construction of the first “stable social structure” in

the public space.

Within the Blank condition, the betweenness of a subject in the affinity space appears to

be related both to the amount of positive messages exchanged in the community space

during the first 15� of interaction, and to the centrality and betweenness degree in the

positive messages network in the whole experiment.

This result reveals that the relevance of a subject within the group is correlated, within

the Blank condition, with the number of messages with positive mood produced. In

other words, the more a subject promotes social aggregation, the greater become its

social relevance (i.e., his betweenness in the affinity space increases).

Such a result seems to partially confirm the general assumption, deriving from the

social psychology and partially adopted by all the modern socio-physical models [98];
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the assimilation process within certain conditions (i.e., psychological field topology) is

no longer related to the sheer opinion differences.

Apparently in contrast with part of the literature [90], this result actually generalises

the overview suggesting that the assimilation process is very much affected by type of

task (Topic versus other 2), probably because the effect of the cognitive dissonance on

the psychological field determined/shaped even by the task itself.

Within the Topic condition, the betweenness in the affinity space is related with the

frequency of the private radar adjustments in the first 30�, and with the centrality of the

subject in the network of the negative public messages during the first 15� of interaction.

The Topic condition creates a system which behaves differently from the one created

by the Blank condition. Within the adopted constraints the dynamics of affinity are no

longer related with the most diffused theoretical assumption of sociophysics. The more

a subject manages its private affinity space, and participates actively in the negative

messages network, the greater is his final betweenness in the general affinity space. This

result could be explained as an effect both, of the group polarization, and of the in-

out group effect [7, 8]. Finally, of course in the Topic task “sheer opinion differences”

do matter because the topic matters to the participants. Nevertheless within this task

the interesting result is that the affinity space appears as no longer correlated with the

opinion, as well as with the communication among the participants. While the cognitive

dissonance would suggest a decreasing of affinity between subjects belonging to different

opinion, especially when the opinion is perceived as “relevant” by the subjects, in this

case only the social influence appears as moderated by the task.

The betweenness in the affinity space defined within the Game condition is related with

the number of the messages with positive mood sent and received by a subject during

the entire session, with his betweenness in the public radar in the first 15�, and with

the amount of private negative messages in the entire session Furthermore, in the Game

condition, the votes seems not to be associated with the affinity. In other words in

this condition the affinity between subjects appeared to be affecting the communicative

dynamics of the group less than it does in the others two experimental conditions.

The regression models (Eqs. (5.1), (5.3), (5.2)) suggest that, while the betweenness

in the Blank ’s affinity space of a subject can be effectively forecast just taking into

account the dynamics of its communication in the first 45�, the same challenge cannot

be accomplished within the others two tasks. This evidence suggests a less trivial effect

of the cognitive dissonance on the social influence, and in particular that a lack of

correlation between affinity and communication dynamics can be provided by different

reasons. Concerning the Topic condition we observe a decreasing of the social influence
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effect probably produced by the cognitive dissonance. On the contrary, in the Game

condition we should get into consideration the structure of the problem solving required

to the subjects.

The introduction of the Game condition allowed to study a very frustrated condition, in

which the psychological field is distorted by the constraints of the game. Within such a

condition we study how the social problem solving affects the coupling between affinity

and communication.

All the participants of the Game condition appear to play so to belong in the third vote

to a cluster of size equal to 2 or 3. Noteworthy such a dimensions are the most probable

winning cluster size for a random process of 10 subjects (Fig. 5.3). In other words

they were able to synchronize enough their vote with their knowledge of the network

to maximize their probability of victory, at least in a random process approximation.

During the first two votes the subjects apparently adopted other game strategies, and

the distribution of the final clusters’ sizes reveals that only in the third vote the subjects

tried to win, determining only small clusters composed by one, two or three components

(Fig. 5.4). The subjects game strategies seem to effectively approximate the best strategy

(i.e., to belong to a small cluster with a size around 2) for a random voting process,

but making a correction on it and not voting at random. Noteworthy, in the Game

condition, the different votes were not associated with the affinity. In other words the

affinity between subjects appears in this condition less affected by and less affecting

the communicative dynamics of the group, with respect to the others experimental

conditions.

The affinity space does not appear as correlated with any composition of the clusters

generated by the three votes, neither with the real preferences expressed after the ses-

sions. This last result suggests that the affinity dynamics is not correlated, or directly

affected by, the winning strategies within the Game condition.

To sum up, results show that in the Blank condition it is possible to forecast the final

affinity between any two subjects using the classical socio-physical models, while this

is no longer possible in more structured tasks. The interpretation of this result is that,

in the absence of a specific task, people tends to structure their communication space

according with their affinity, while for structured tasks others dimensions become more

important.

The small group dynamics, as described by Lewin in the last century, are characterized

by a different regime with respect to the big community of people. Probably the typ-

ical social problem solving represented by small group dynamics is faced using refined

cognitive strategies shaped and adapted through the experience.
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Our data suggest that when there is no specific/external tasks (i.e., constraints) affect-

ing the dynamics, the behaviour of the subject is easily foreseeable without considering

(nevertheless very important) the semantic contents of the messages, starting from the

structure of the communicative exchanges. In other words we could say that the psycho-

logical field of such systems can be approximated quite efficiently just considering the

communication network. On the contrary, when an external field (i.e., a specific task)

is introduced the psychological field is no longer easy to approximate and at least the

semantic content of the messages has to be get into account.

An interpretation of the data brings towards some principal considerations. The Blank

condition is the more un-frustrated task is essentially well predicted using a linear model.

In the other tasks, the subjects experience a sort of dissonance between the task require-

ments and their inner state. The results suggest that to face with such tasks, the subjects

maintain partially separated such representations and developing an opportunistic men-

tal representation of the community, not related only with their affinities.

Finally within the small group dynamics the predictions of social cognition inspired

models appear as modulated by the complexity of the psychological field. The coupling

between affinities and behaviours of the subjects follows easily such a theoretical predic-

tions for unconstrained interactions, confirming the simplest socio-physical models. On

the contrary, the relation between affinities and behaviours thus not disappear whenever

the complexity of the psychological field increases, but it becomes just more complex to

be “captured” without considering the external factors.



Chapter 6

Opinion condition

The main target of the work presented in this chapter is to explore the relations between

personality, communication dynamics, affinity network and opinion dynamics.

Starting from the point of view proposed by Lewin in the “Field theory” [18], in this

work we explore the role of the topology of the “psychological field”, and the theorized

interaction between personality and environment,

B = f(P,E) (6.1)

where B, the behaviour of people, is a function of P (personality, or personal attitude)

and E (environment).

We consider the aspects related to the subjective variables, some more crystallized (i.e.

structure of personality, age, sex), other more fluid and in some way more context related

(i.e. state anxiety, opinion toward a specific topic), taking into account the environment

where the subjects interact (i.e. small group involved in virtual interaction).

We focused on the relation between such variables and the communication processes

and small group dynamics, in order to widen the “psychological field” to a “socio-

psychological field”, exploring the mutual and dynamical influences between the order

parameters (i.e. communication dynamics, group structure, etc). Our intent is to ex-

perimentally relate the Eq. (6.1) to the social environment, assuming it as shaping and

shaped by the behaviour of people engaged in small group discussion, linking in this way

the individual and the social dimension.

In the next paragraphs we will explore the correlations between personality and commu-

nication behaviours, and we will focus on the “weight” of the subjective variables, of the

70
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communication dynamics and of the affinity network on the opinion dynamics, pointing

out the relevance of the emerging communication and affinity networks topology on the

individuals’ behaviour.

6.1 Experimental Design

The experimental task and the virtual experimental environment have been designed

in order to investigate the small group opinion dynamics, considering the affinity net-

work, the opinion dynamics, the community networks and the private chat networks of

messages.

Every small group was involved in a discussion about the animal experimentation within

a chat-room environment. The task required to the subjects is the same described for

the Topic condition in Chapters 4 and 5.

In addiction, in order to gather some information about the structure of personality

and the anxiety state of the subjects in interaction, we administered two self-report

questionnaire before the begin of any experimental session.

The Five-Factor Adjective Short Test (5-FasT ) [99–101] is a psychometric measure for

the investigation of the Five-Factor Model (FFM ) [102]. The 5-FasT is configured as a

rapid and effective tool for the measurement of personality in different settings. The 5-

FasT consists of a self-description of the subjects, realized by means of the compilation

of a questionnaire. The subjects have to define themselves through a list of adjectives

describing the personality traits, and for each adjective they have to indicate, by means

of the choice on a Likert scale with five steps ( 1 = not at all , 5 = very much) how much

the adjective at issue defines him. The 5-FasT is easy to administer and to interpret,

and the items are not particularly intrusive.

The 5-FasT scoring classifies the subjects by means of 5 personality factors, describing

the personality traits of the subjects (Tab. 6.1).

Table 6.1: 5-FasT factors. Examples of adjectives defining the five personality factors

Factor Adjectives

5-FasT Ne Neuroticism melancholy, worried, anxious, pessimistic, confused, dissatisfied
5-FasT Su Surgency assertive, energetic, brave, strong, active, original, enthusiastic
5-FasT Ag Agreebleness appreciative, pacific, patient, calm, reasonable, sympathetic
5-FasT Cl Closeness quiet, distant, closed, elusive, detached, introspective
5-FasT Co Conscientiousness precise, methodical, organized, meticulous, provident
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Table 6.2: Opinion collection. The first 4 opinions have been collected during the
interaction in the small group virtual discussion, at the contrary the last 5 opinions
were expressed before (OpIN , Emp, TruSci) or after the interaction (OpFI, AbsOp)

Opinion Description

Op(15
�) Opinion expressed after 15 minutes of interaction

Op(25
�) Opinion expressed after 25 minutes of interaction

Op(35
�) Opinion expressed after 35 minutes of interaction

Op(45
�) Opinion expressed after 45 minutes of interaction

OpIn Opinion expressed before the begin of the interaction
OpFi Opinion expressed after the conclusion of the interaction
OpAbs Opinion in absolute value (0 = Adverse; 1 = Favourable)
Emp Empathy for the animals
TruSci Perceived trust in science

In a similar way, we administered a reduced form of a test for the anxiety (STAI ) [103].

The STAI measures two types of anxiety: state anxiety, or anxiety about a context,

and trait anxiety, or anxiety level as a personal characteristic. Noteworthy, while the

anxiety state usually changes frequently depending on the particular context to which

the subjects is facing, the anxiety trait is defined as a more stable feature (i.e. a

psychological trait changes slowly requiring a long time). In order to appreciate the

potential role of anxiety within our framework we considered only the measure related

to the state anxiety.

Furthermore, in order to track the opinion dynamics within our framework, we asked

to the subjects to talk about a specific topic, in particular about animals experimen-

tation, negotiating their opinion without any consensus to reach. After a standardized

training phase, where the administrations were given to the subjects, the opinions of

each participant were recorded through a self-placement within the values 0 - 100 (to-

tally unfavourable - totally in favour). We gathered this information at the begin and

at the end of any session, and after 15, 25, 35 and 45 minutes from the beginning of

the interaction. Finally, to a further individuals profiling, we asked to the subjects also

their feelings of empathy towards the animals, their perceived trust in science and their

“absolute final opinion” (contrary or favourable) to the animal experimentation. The

absolute final opinion request had the role to force the subjects to adopt only one of two

possible votes, respectively labelled as unfavourable and favourable (see Tab. 6.2).

6.2 Procedures and methods

The data collected before, during and at the end of each experimental session has been

used to examine the trend of the order parameters describing the evolution of the system,
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both from the local (i.e. individual and dyadic communication and affinity dynamics)

and the global (i.e. opinion distribution and global group dynamics) point of view.

As described in the previous Chapters 4 and 5, we use the communicative dimensions

shown in Tab. 3.1 for a precise and focused analysis of the dynamics of communication

networks. Moreover, in the present work we focus on the relations between the person-

ality traits of the subjects, the opinions’ dynamics gathered and summarized in Tab. 6.2

and the order parameters defined by the Eqs. (3.3), (3.4), (3.5).

6.2.1 Sample

We selected a sample of 50 subjects (28 male and 22 female), with an average age of

25.88 (std.dev. 6.29). The sample has been divided into 5 small groups of 10 people.

Every small group was composed by individuals unknown each others, and the number

of male and female for each group was balanced in order to have the same distribution

for each small group.

6.2.2 Data analysis

A classical statistical approach has been used to describe and to define the weight of the

subjective factors on the dynamics of communication and on the opinion formation.

A discriminant function analysis [104] was applied in order to evaluate which parameters

allowed us to classify a dyad as coherent or incoherent (i.e. equipped with the same

or two different opinions), or to identify the best predicting factors of the individuals’

opinion changing (i.e. the change of the opinion with respect to the initial one). We

used the product-moment correlation of Bravais Pearson (r.) [95] to explore the relations

between the personality factors, collected by the 5-FasT and STAI, and the order pa-

rameters within the different communication networks, considering also the correlations

between the personality traits and the opinion dynamics (Tab. 6.2). Furthermore, we

adopted a linear regression method in order to define the best linear predicting model

of the individuals’ opinion shifts.

In order to characterize the subjects who don’t change their opinion during the virtual

interaction, we analysed their differences with respect to the other experimental subjects

using the independent sample student-t test [85].
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6.3 Results

We assume that certain local dynamics happen between the individuals. The local

factors (e.g. personality) affect the mental representations of the social environment,

the communicative behaviour adopted, as well as the opinion dynamics.

Under such considerations, we analyse the correlations among the 5-FasT personality

factors and the order parameters (Eqs. 3.3, 3.4, 3.5) related to the communicative di-

mensions showed in Tab. 3.1. Such a procedure has been adopted in order to assess the

“local” variables showing a relevant impact on the communication dynamics.

Table 6.3: Significant correlations between the 5-FasT personality factors and the
communicative observables. For reasons of clarity only the correlations significant at

level of p < 0.01 are shown.

5-FasT 5-FasT 5-FasT 5-FasT 5-FasT

Observables Ne Su Ag Cl Co

STAI .423 ns ns ns ns

Activity G(15�)
M

ns .545 ns ns .369

Activity G(30�)
M

ns .511 ns ns .403

Activity G(45�)
M

ns .496 ns ns .395

Activity C(15�)
M

ns .515 ns ns .362

Activity C(30�)
M

ns .480 ns ns .395

Activity C(45�)
M

ns .459 ns ns .391

Activity Cpos(15
�)

M
ns .473 ns ns ns

Activity Cpos(30
�)

M
ns .488 ns ns ns

Activity Cpos(45
�)

M
ns .476 ns ns ns

Activity P (30�)
M

ns .373 ns ns ns

Activity P (45�)
M

ns .382 ns ns ns

Centrality Cpos(30
�)

M
-.416 ns ns ns ns

Centrality P (45�)
M

ns .376 ns ns ns

BetweennessCpos(30
�)

M
-.403 ns ns ns ns

Betweenness PUB Radar (30�) ns ns ns .381 ns

As shown in Tab. 6.3, the scores of personality factors respectively related to the surgency

scale (5-FasT Su) and to the conscientiousness scale (5-FasT Co), show significant cor-

relations with several communicative observables. The 5-FasT Su predicts the subjects

producing many messages in community or in private chat. Furthermore, such personal-

ity factor correlates with the probability to have a positive mood within the community

messages. The 5-FasT Co positively correlates with number of messages sent in the

community side. As expected, the 5-Fast Ne shows a positive correlation with the STAI

scoring. Besides this, such personality factor is negatively correlated with centrality de-

gree and the betweenness degree in the community positive messages network (CM30
pos).
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The subjects with an high degree in neuroticism appear, during first 30 minutes of inter-

action, to be less involved in positive discussion within the community. The others two

personality factors (5-FasT Ag and 5-FasT Cl) didn’t show any significant correlation

with the communicative variables, excepted for the correlation between the 5-FasT Cl

and the betweenness degree in the public radar.

Examining the correlations between the 5-FasT factors and the opinion’s related vari-

ables, we found that no 5-FasT factors show a significant correlation with any opinions

collected during the experiments, nor with the final opinion, nor with the difference,

pure or absolute, between the initial and final opinion.

Such findings suggest that there are, at least, no trivial relations between the structure

of the personality and what emerges in the opinion dynamics, but at the contrary such

apparent independence seems to be related with the communicative behaviour and the

interactions within the communication environment (i.e. emerging phenomena). There-

fore, in order to forecast the opinion dynamics, we have to take into account also the

interactions among the subjects.

In this direction we examined the local dynamics, focusing on the dyadic relationships,

and on the emerging opinion dynamics. We applied a discriminant function analysis to

mine the best model to distinguish the coherent from the incoherent dyads. A coherent

dyad is defined as a couple of subjects sharing the same absolute opinion.

Table 6.4: Discriminant function parameters: Coherent vs Incoherent dyads

Parameters Weight (β)

PNEU
M

(15�) .145
Distance in PRIRADAR

(15�) .096
Difference in 5-FasT Su .296
Difference in 5-FasT Ag .360
Difference in 5-FasT Cl −.149
Difference in Age .894
Total shift in opinion −.279

The discriminant function reaches a canonical correlation of 0.76 and a relative reliability

equal to 96,9%. The discriminant function represent a first linear approximation of a

model characterized by seven parameters, as shown in Tab. 6.4. The probability to

observe a coherent dyad increases depending on the number of neutral private messages

in the first 15�, on the distance in the private radar in the first 15� and on the difference

in age. Such probability increases also depending on the difference in the 5-FasT Su and



Opinion condition 76

5-FasT Ag. A coherent dyad seems to be also characterized by the difference in 5-FasT

Cl and by the difference in the shift in opinion.

Only two others observables, respectively related to the communicative dynamics and

with the mental representation of other (i.e. affinity) in the first 15’ appear relevant in

order to discriminate a coherent dyad. In summary, the best model take into account

three different traits of personality, the difference of age between subjects, the amount

of the opinion changing as well as the private messages and affinity representation in the

early stages (i.e. 15 minutes) of interaction.

Consequently, taking into account the parameters in Tab. 6.4, it appears as possible,

into a small group engaged in virtual discussion, to forecast whether within a dyad two

individuals share the same final opinion or not.

Successively, we have directed our attention to the global dynamics shown by the single

experiments.

In order to explore the dynamics of the average opinion within every experimental ses-

sion, we defined the opinion centroid of each small group. As we can observe in Fig. 6.1,

the opinion trends show different evolutions.
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Figure 6.1: Time evolution of the average opinion within the 5 small group experi-
ments. On the X axis are reported the time steps in which the opinions were collected
(i.e. OpIn, Op15

�
, Op25

�
, Op35

�
, Op45

�
, OpFi), while on the Y axis is reported the

average opinion for each experiment, from adverse (0) to prone (100). In order to fa-
cilitate the lecture of the slope and the trend of the trajectories, in the Y axis we took
as extremes values 25 for the adverse and 75 for the prone. The coloured lines indicate

the different experimental sessions.

The opinion centroids follow different pathways, showing a certain consistency between

the initial average value of opinion and the final one, passing through a series of fluctua-

tions due to the interactions among the subjects, and their shift in opinion. Subsequently,

in order to observe the polarizing effect of the topic of discussion on the group dynamics,

we investigated the trend of the opinions of the subjects that are located above or below
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the trajectory marked by the opinion centroid of each small group. In such a way we

separate the group into two sub-clusters (Fig. 6.2).
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Figure 6.2: The figures report the opinion evolution of the subjects during the inter-
action. On the X axis are reported the time steps in which the opinions were collected
(i.e. OpIn, Op15

�
, Op25

�
, Op35

�
, Op45

�
, OpFi), while on the Y axis is reported the

average opinion for each experiment. In the Y axis we took as extremes values 0 for
the adverse and 100 for the prone. In the graph above, the bold lines (blue and red)
represent the trends of the opinion centroids related to two sub-clusters (prone or ad-
verse), the continuous lines (blue and red) describe the subjects who do not change his
opinion and dotted lines (blue and red) represent the opinion evolution of the other
subjects. In the graph below the black lines describe the trend of the std.dev. of the
entire group, the red lines the std.dev. for the cluster of adverse subjects, the blue lines

the std.dev. for the cluster of the prone subjects.

It is interesting to observe the evolution of the standard deviation of the entire small

group and of the two sub-cluster defined. At the contrary of what suggested by the

social influence theories [10–12], the interaction among people within a small group

should reduce the differences of opinion, and consequently the standard deviation within

the group, or within the sub-cluster should decrease, which does not happen in any

experimental session, at least in our experimental setting. The majority of subjects

tends to range slightly around their initial values of opinion, and the individuals who

change their opinion do it, not always moving towards the interactor’s opinion, but

sometimes showing a repulsive behaviour (i.e. moving away from the others in the

opinion space).

To a further exploration of the opinion dynamics, we applied a discriminant function

in order to highlight what parameters would allow to discriminate those subjects that

move away from their initial opinion. The discriminant function is described by the
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Table 6.5: Function parameters discriminating the subjects who change their final
opinion

Parameters Weight β

Activity CNEG
M

(30�) 1.125
Centrality PRIRADAR

(15�) .881
Betweenness CPOS

M
(45�) .683

Betweenness PM
(45�) −2.874

Betweenness PPOS
M

(45�) 1.840
Betweenness PNEU

M
(30�) 1.534

Betweenness PUBRADAR
(15�) −.517

Betweenness PUBRADAR
(45�) .433

parameters in Tab. 6.5, and shows a canonical correlation of the model of 0.8 and a

relative reliability of 88%.

Actually the 50% (25 subjects) of the entire sample has not changed opinion after 45’

of interaction. Interestingly, as it’s shown in Tab. 6.5, only the variables related to the

groups interaction are involved in the discriminant function. The parameters related

to subjective variables, such as personality factors, anxiety, their opinions or their val-

ues/beliefs (i.e. trust in science, empathy for animals) aren’t involved in such function.

This finding seems suggesting the emergence of a group phenomenon, because its inde-

pendence by the subjective dimensions. We can determine if a person changes or not,

albeit slightly, his final opinion basing only on the dynamics of communication, espe-

cially in our study considering the frequency of the interactions (activity in community

negative messages network), the position of the individuals within the structure of the

communication detected (betweenness in community or in private network of messages

with positive or neutral mood) and taking into account also the topology of the radars

(centrality in private radar, betweenness in public radar), as it shown in Tab. 6.5.

Os = β1(C
pos

M
)45

�
Deg + β2(FFfact5) + β3(P

neu
M )45

�
Act + β4(CM )15

�
Deg + β5(PUBRad)

15�
Deg (6.2)

Considering the 25 individuals who have changed their opinion, we have defined a lin-

ear regression model, putting in relation the amount of the opinion shift with all the

observables collected. The best linear regression model explains the 79% of variance of

data (Tab. 6.6). Such model involved five parameters (Eq. (6.2), Tab. 6.7), four of which
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Table 6.6: Summary of the Opinion shift model

r. square Adj.r St.Err S.S Model S.S. Residual F

.799 .746 4.96 1856.03 467.73 15.08*
S.S.: sum of squares; *: p <.01

Table 6.7: Predictors coefficients of Opinion Shift best model

Predictor Stand.Coefficient t Sig

Centrality CPOS

M

(45�) β1 = −.696 −5.30 p.< 0.01
5-FasT Factor Co β2 = −.473 −4.44 p.< 0.01
Activity PNEU

M

(45�) β3 = −.475 −4.18 p.< 0.01
Centrality CM

(15�) β4 = −.356 −2.87 p.< 0.05
Centrality PUBRADAR

(15�) β5 = −.285 −2.75 p.< 0.05

refer to the variables detectable through the study of the interaction (i.e. the centrality

degree in the community positive messages network at the end of experiment, the ac-

tivity of the subjects in the private neutral messages network at the end of discussion,

the centrality degree in the community messages network and in the public radar within

the first 15 minutes of interaction). Only one personality factor, the 5-FasT Co (β2), is

included in the regression model.

Interestingly, all the coefficients of the parameters involved in the model are negative.

The negative sign of the communicative parameters indicates that a greater active par-

ticipation to the discussion is related to a minor change in opinion. The more a person

tends to send and receive messages (how much more one is involved in the discussion),

the smaller his shift in opinion is. It is also interesting to note that the parameters

involved affect all the areas of communication (i.e. community and private chat) for the

entire duration of the interaction. Such a finding means that the opinion dynamics are

affected both by dyadic communications (i.e. private messages) and by social side of

the communication (i.e. community messages).

Eventually, we describe the behaviour of the subjects who do not change their opinion.

We have defined these individuals with a bit of irony “Stubborn people”.

Comparing the stubborn people with the subjects who changed their opinion (Tab. 6.8),

we found that the stubbornness effect is affected by a favourable initial opinion to the

scientific research. The stubborn individuals posted far fewer negative messages within

the community, they less modified their position on the public radar in the first 15’ and

they less handled their private radar in the first 15’. The stubbornness effect is also
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Table 6.8: Mean differences characterizing the Stubborn people

Observables Mean differences

Initial Opinion +13.34
Final Opinion +18.50
Activity CNEG

M
(45�) −13.2

Activity PUBRADAR
(15�) −1.44

Centrality PRIRADAR
(15�) −.22

Betweenness CNEG
M

(15�) −.04
Betweenness PUBRADAR

(15�) −.09

related to a lower degree of betweenness in the community negative messages network

in the first 15’, and to an higher degree of betweenness in the public radar in the first

15’. We not found any significant differences between stubborn people and subjects who

changed their opinion for what concern the age, gender, personality structure, anxiety,

final absolute opinion, empathy with animals and the trust in science.

6.4 Discussion of results

The sharing of opinions around a topic is a frequent social situation in a context of small

group interaction, and it is likely that the discussion brings to the polarization of the

group, however temporary. The results of our work indicate that the interactions among

individuals engaged into a virtual discussion are affected by different factors.

First of all, we examined the local dynamics, analysing the correlations among the

personality factors and the communicative observables. We have observed that the

personality factors seem to affect the communicative behaviour of the subjects.

The neurocitism negatively correlates with the centrality degree and the betweenness

degree in the community positive messages network, exchanged during the first 30 min-

utes. The subjects with personality traits related to the melancholy, the worry and the

dissatisfy appear to be less involved within the community positive discussion.

At the contrary, the surgency and the conscientiousness positively correlate with the

average number of sent messages. The surgency, that indicates as much an individual is

energetic, active and original, affects the centrality degree of a subject within the private

communication space.
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The closeness, that describe as much a subject is distant, closed, elusive, appears to

affects the betweenness within the public radar, and consequently the position assumed

by the subjects within the affinity space.

Furthermore, it is interesting to note that no personality factor, neither any individual

variables as age, or sex, correlates with the opinions detected. This suggests that there

are no correlations between the structure of personality and what was found in the

opinion dynamics within a small group interacting into a virtual environment.

We have then explored the opinion dynamics within the local dynamics (i.e. dyadic

relationships), and we applied a discriminant function in order to distinguish the coherent

dyads from the incoherent dyads. We have considered as coherent dyad a couple of

subjects that have the same final vote in absolute terms. The parameters of the resulting

discriminant function involve the personality factors, some subjective variables and the

communicative parameters.

In particular, a coherent dyad can be found observing the exchange of private neutral

messages, the distances in the affinity space between two subjects which compose the

dyad, in the early stage of the experiments, the differences between two subjects in

the surgency, in the agreeableness and in closeness. In addition, even some subjective

variables, age difference, a sort of openness to the opinion changing allow to foresee

whether a dyad shares the same final opinion or not.

This result suggests that regarding the opinion dynamics within a dyadic relationship,

the difference related to the personality structure between two subjects, as well as their

distance in affinity, appears to be decisive, while the communication variables appear

to less rely; so within the dyadic interaction the subjective variables shown to have

much relevance, and it seems to prevail the effect of cognitive dissonance on the opinion

dynamics.

Considering the opinion dynamics within the small group, we have examined the evolu-

tion of the subjects’ opinions, and the standard deviations within the opinion space.

According to the social pressure theories, where it is assumed that more the people

interact, the more they influence each other, we expected that the opinion differences

among the subjects decreased during the interaction. For this reason, the standard

deviations related to the distribution of the opinion within the group, or within the

sub-clusters in which the small group has been divided, should show a decreasing trend,

which does not happen in any experimental session.

Such finding can be due to the context of interaction and the nature of the task. The

virtual interactions, in a context of small group engaged in a common discussion within
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a virtual environment, does not seem to favour the emergence of complacency or social

conformity. Moreover, the separation between the two sub-clusters don’t diminish during

the interaction.

We applied even a discriminant function analysis to distinguish the best set of variables

describing the subjects who changed, and the subjects who changed not their final

opinion. It is very interesting to note that the resulting discriminant function suggests

that only the parameters related to the interactions within the small group are involved.

This it means that no subjective parameter such as age or sex, nor any personality factor,

neither state anxiety nor the attitudes toward animal experimentation, the empathy for

the animals or the trust in science are necessary to individuate who change his opinion

during a small group interaction within a virtual environment.

More interestingly, six parameters are related to the topology of the group, involving

the betweenness degree of several dimensions analysed. Such a feature could be related

with the concept of “socio-psychological field” topology.

We characterized the behaviour of stubborn people, resulting from the analysis of the

mean differences between the two sub-samples of people who changed or not their opin-

ion. Specifically, the stubborn people are more favourable to the animal experimentation,

and less involved in negative mood conversation in the community, less central within the

affinity space (i.e. private radar) and less oriented to modify their position in the public

radar. The majority of the features found as defining the stubborn behaviour refers

to the first 15 minutes of interaction, therefore within the small group the stubborn

individuals are recognisable considering the early stage of a virtual discussion.

Moreover, we brought to light 5 parameters involved into a linear regression model

explaining the shift in opinion. Such a model explain the 79% of variance of the data.

For what concern the parameters involved, only one is related to the personality, while

the other parameters depend by the dynamics of communication among the subjects.

Such result suggest that it is possible to forecast the shift in opinion, once individuated

the individuals who have changed their opinion, taking into account the amount of pos-

itive messages exchanged in the community side at the end of the session, the messages

sent and received in the community, and the centrality degree in the public radar. Also

the activity in private messages with neutral mood seems related with the total shift

in opinion, as well as the personality trait of conscientiousness, which is related to the

precision and to the meticulousness of the individuals.

The results of our work suggest that within the small groups engaged into a virtual

interaction, facing a structured discussion around a polarizing topic, part of the opinion

dynamics is mediated if not dominated by the group structure and its evolution (i.e.
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topology of the “socio-psychological field”). The stubbornness effect appears as related

only to the topology of the network of communication and affinity. In other words, the

group seems to require/impose a certain “location” (role) to the individuals, regardless

their personal features.



Chapter 7

Opinion and affinity model: the

repulsion dynamics

In this chapter, we first summarize the reference model [73] discussed in Chapter 2. We

referred to such model for the design of the experimental framework and for the definition

of the experimental conditions, as are described in Chapter 3. Successively, an evolution

of the opinion and affinity models are proposed, consisting in the introduction of a

repulsion mechanism among agents (OAR model).

We describe the rationale behind the introduction of the repulsion process, and the new

model in depth. We demonstrate the validity of the new model, comparing it with the

opinion and affinity model (OA model) and the Deffuant-Weisbuch model (O model),

through the study of the discrepancy of the models, understood as the distance between

the model behaviour and the experimental observations. We successively investigate the

effects of the variation of the control parameters of the evolved model, in order to explore

several scenarios depending on the role of different opinion critical values (∆Oc
i
), and

different affinity critical values (αc
i
), for several sizes of the system. We study also the

convergence time of the system dynamics and their final configuration. Finally, some

psychological interpretations of such scenarios are proposed.

7.1 Reference model

The model from which we started [73] links the dynamics of opinion with the concept of

affinity. In such model, the affinity is dynamically coupled with the opinion, and both

are updated for every time step t.

84
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The affinity is derived from the mutual representation of the subjects, and evolve taking

into account the history of past interactions of agents i as a Markovian process.

In the OA model the affinity is involved also into the mechanism of selection of the

interacting agents at every time step t, affecting, together with the difference in opinion

between i and j, the social distance, and consequently the probability of the interactions

between two agents.

Let us define the social distance di,j between agents i and j as

dtij = ∆Ot
ij(1− αt

ij) + η j = 1, ...N j �= i. (7.1)

The social distance is defined as the product of the difference of opinion between i and

j (∆Ot
ij
) and the mutual affinity between i and j (1 − αt

ij
) + η. In such way the

distance between two agents depends by their distance in opinion and on their affinity.

The constant η corresponds to a noise with Gaussian distribution with zero mean. The

experiments were performed extracting random numbers η with a standard deviation of

0.1.

The rule of encounter uses the social distance to select the nearest j to interact with the

agent i for every time step t.

The OAmodel can be synthesized with the following equations. Such equations represent

the rules of update of opinion and affinity:

Ot+1

i
= Ot

i − µ∆Ot
ijΓ1(α

t
ij) (7.2)

αt+1

i
= αt

ij + αt
ij [1− αt

ij ]Γ2(∆Oij) (7.3)

with the values of Γ1 and Γ2 defined as

Γ1(α
t
ij) =

1

2
[tanh (β1(α

t
ij − αc)) + 1] (7.4)

Γ2(∆Oij) = − tanh (β2(
��∆Ot

ij

��−∆Oc)) (7.5)

For a detailed description of this model see Chapter 2.
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7.2 Opinion, affinity and repulsion

We extend the previous model by including a repulsion process among the opinions of

agents. The repulsion mechanism is realized through the modification of the opinion

evolution recipe, as follow:

Ot+1

i
= Ot

i − µ(∆Ot
ij)

�
Ot

i

max O

��
1− Ot

i

max O

�
(tanh(αt

ij − αc
i )), (7.6)

where the opinion of an agent i at time t+1 is updated depending by the opinion of the

agent i at time t (Ot
i
), by the convergence factor µ introduced in the Deffuant-Weisbuch’s

model (see Chapter 2), by the difference between the critical affinity of the agent i (αc
i
)

and by the values that define the relationship (affinity) αt
ij

between i and j (i.e, the

element αij in the affinity matrix ).

Comparing the equations for the opinion update in the OA model (Eq. (7.2)) and for the

opinion update in OAR model (Eq. (7.6)), the mechanism of the repulsion between the

agent’s opinion is implemented as an the hyperbolic tangent function. Such function,

keeps the values of the difference between αt
ij

and αc
i
within the values −1 and +1, so

that the opinions can both converge or diverge, according to the affinity; while in the

OA model, the hyperbolic tangent function is bounded between 0 and 1.

The update rule of affinity works in a similar way. The affinity aij is updated depending

on the affinity between two agents i and j selected at time t and applying an hyperbolic

tangent function to the difference between Oi and Oj and the critical opinion Oc.

αt+1

ij
= αt

ij + (αt
ij)(1− αt

ij)(tanh(∆Oc
i −∆Ot

ij)). (7.7)

In such way, the affinity is dynamically coupled with opinion updating. At every time

step t, the element αij is updated, and the higher value of the vector i is associated

to the more reliable agent. The affinity matrix is not symmetric, because the mutual

affinity between two agents can have different values for the agent i and for the agent j.

The logistic contribution in the Eqs. (7.6) and (7.7) keeps the opinion values and the

affinity values within the range [0, 1].

The encounter dynamics of our model depends on the social distance among agents,

Eq. (7.1), similarly to what happens in the OA model. In this way, the affinity and the

opinion are coupled not only in the updating dynamics, but also for the selection of the

interacting agents. Furthermore, both the opinion and the affinity are subjected to a
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random variation of amplitude of ε = 0.01 that prevents the collapse of the agents on

the extreme values (0, 1) for the opinion and for the affinity.

Such modification of the OA model lead to a better simulation of the experimental

data acquired from the opinion modality (see Chapter 6) with respect to other reference

models.

The rationale behind the introduction of the repulsion mechanism lies into some theoret-

ical and experimental considerations. The coupling of the affinity and opinion is used to

take into account the history of the previous interactions, and moreover for simulating

a process inspired by the Festinger’s cognitive dissonance theory [23]. Such theory can

be summarized as the human tendency to seek a sort of coherence between beliefs and

behaviours. In the OA model, the possible inconsistency between beliefs (affinity) and

behaviours (opinion) was resolved avoiding the agents with which the affinity is below to

the critical threshold αc
i
. Moreover, in such model the evolution of opinion can proceed

in only two ways: converge, if αt
ij
> αc or, vice-versa, stay constant. It follows that the

affinity critical threshold can stop the opinion updating, implementing the mechanism

by which an individual ignores an unreliable interactor.

In the OAR model, the cognitive dissonance is solved by increasing the opinion distance

between i and j, if αt
ij
< αc. Such implication allows to solve the incongruity both from

the beliefs point of view, and from the behavioural point of view. An agent i that “feels”

the cognitive dissonance in the encounter with j, can change his affinity in accordance

to his opinion (if αt
ij
→ 0, ∆Oij → 1), and vice-versa.

Furthermore, all our experiments have shown that within the virtual interaction of a

small groups, the network of communication exhibits soon a full-connected network

configuration, where everyone interacts with everybody. In a such sense, the mechanism

of repulsion can represent a more realistic way by which an individual can manage the

cognitive dissonance in the interactions within small group; if it is impossible to avoid

the interaction with someone with whom one has a low degree of affinity, it is possible to

resolve the inconsistency between beliefs and behaviours with the divergence in opinion.

7.2.1 Discrepancy between simulations and experimental data

We used the real experimental data obtained from the opinion condition described in

Chapter 6 to initialize the simulation of OAR model.

The procedure used to feed the model adopts as initial parameters of the simulations:
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• the data relating to experimental interactions occurred in the private side of the

interface presented in Chapter 3 for the simulation of the encounters,

• the final configurations of the private radar (affinity space) defined as the distances

between the coordinates of the avatar to initialize the affinity matrix,

• the opinion gathered for each subject before the beginning of the interaction.

We chose to model the interactions of the private part of the chat because the simulation

model includes only pair interactions, and because in such way we are sure that the

message produced by the subject i is actually directed to the subject j, and not to

other recipients. In such a way we exclude the experimental bias due to a possible non-

rigorous specification of the recipients in the community, the public side of the chat-

room. On the other hand, if we consider only the interactions occurred in the private

part of the chat-room, we neglect the public communication, where a considerable part

of the communication happens. Under these considerations, the discrepancy between

simulations and experimental data can be attributed in part to the accuracy of the

model, in part to the finite consistency of data processed.

In order to define the best critical values for the opinion (∆Oc
i
) and for the affinity (αc

i
),

we used a iterative approach, consisting into 5 cycles of refinements of the model with a

Monte Carlo method. The results of such refinements, with the parameter µ = 0.5, gives

a common critical value ∆Oc
i
= 1, while αc

i
is found to be different for each subject.

The percent mean error of the model for the estimation of the opinions resulted equal

to 6.70 ,with a standard deviation of 6.03. The critical value of the opinion (∆Oc
i
= 1

for all the subjects), could be interpreted considering the affinity between the subjects

as crucial to change the opinion, in a context of a small group in virtual interaction.

With the aim to assess the relative accuracy of OAR model, we applied the same pro-

cedure to O and OA models. For what concern the simulation with O model, only

the experimental opinion are taken into account, because the affinity is not provided by

such model. In addiction, the Heaviside function used in the O model (i.e.the fact that

difference between Oi and Oj must be less than ∆Oc
i
for the opinion shifting) has not

been considered, because ∆Oc
i
is found to be equal to 1.

Specifically, we have developed a statistical analysis to estimate the discrepancy of each

simulation starting from the experimental data. Such statistics have been set-up by

repeating 5 cycles of refinements for each model, with a fixed parameter µ = 0.5, and

then applying the t-test to each paired samples.

We can see in Tab. 7.1 that the model that seems to fit better the experimental data is

the OAR model.
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Table 7.1: Paired sample statistics

Models Mean Std Deviation Std. Error Mean

OAR model 6.70 6.03 .85
OA model 9.40 5.49 .78
O model 11.29 9.05 1.28

Figure 7.1: Comparison between models: percentage error for each experimental
opinion. The black line identifies the O model, the blue line the OA model and the red
line the OAR model. On the X axis is reported the percentage of the error and on the

Y axis the steps of opinion collection

As it also shown in Figs. 7.1 and 7.2, the OAR model seems generally more precise, with

a large number of small deviations and few high. The most part of the deviations is

around 5 and 10 (Fig. 7.2(c)).

The OA model exhibits deviations below the value of 5, and an high number over the

value of 20 (Fig. 7.2(b)), but the average around 10 make such model less accurate to

fit the experimental data. The O model (Fig. 7.2(a)), even considering only the opinion

dimension, it works pretty well. Such model exhibits many deviations near to the value

of 10, but, unlike to OAR model and OAmodel, we found also some very high deviations,

between the value of 40 and 50 of deviation from the experimental data.

Furthermore, to assess the differences between the models, we adopt a t-test for paired

samples statistics, since each model started with the same data. It is interesting to

note that, as reported in Tab. 7.2, the differences between the averages deviations of

the models were found to be significant regarding the comparison between the OAR

model and OA model, as well as between OAR model and O model, while the difference

between the averages of the error between O model and OAR model was not found to be

statistically significant. As the t-test for paired samples analysis showed, the addition



Opinion and affinity model evolution: the repulsion dynamics 90

(a) Deffuant model (b) Opinion and affinity model

(c) Opinion, affinity and repulsion model

Figure 7.2: Comparison between models: error distribution. The red lines are the
graphical representation of the Gaussian distribution with mean and std. dev. of the
error of each model. On the X axis is reported the frequency and on the Y axis the

average of the errors

of the mechanism of repulsion regulating the evolution of the opinions into the reference

model provides a significant improvement for the simulation of the opinion dynamics in

small group, if we consider the experimental data from which we started.

Table 7.2: Paired sample test

Models Comparison t Sig.(2-tailed)

OAR model vs O model −4.627 p. < .01
OAR model vs OA model −2.589 p. < .05
OA model vs O model 1.345 ns.
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7.2.2 Correlations between αc

i
and ∆Oc

i
and the experimental data

Once found the optimum regarding the values of αc
i
and ∆Oc

i
, as resulting from the

fitting of the experimental data on the OAR model (Eqs. 7.6 and 7.7 ), we performed

a correlation analysis between such values, the experimental observables and the data

gathered within the Opinion condition (i.e. the subjects’ opinion (see Tab. 6.2, Chap-

ter 6) and all the communicative dimensions (see Tab 3.1, Chapter 3).

As expected, the value of ∆Oc
i
= 1 for every subject does not correlate with any variable

taken into account, analogously to the fact that in the experiment the opinion does not

correlate with any subjective variable. As it shown in Tab. 7.3, some interesting signifi-

cant correlations emerge among αc
i
and variables detected. Such correlations involve the

local variables, the dynamics of interaction and the global dynamics.

Table 7.3: Significant correlations between the critical affinity value and the experi-
mental observables.

Observables Critical Affinity Value

Age −.29*
5-FasT Ne −.31*
Centrality CPOS

M

(15�) .38**
Centrality CPOS

M

(45�) .30*
Centrality PNEU

M

(30�) .30*
Centrality PNEU

M

(45�) .29*
Centrality PRIRADAR

(15�) .29*
Centrality PRIRADAR

(45�) .35*

**: p. < .01, *: p. < .05

We found a negative significant correlations with two subjective variables: the age (αc
i
→

1 for the younger subjects) and the score in 5-FasT Ne (αc
i
→ 0 for individuals with

personality traits of melancholy, pessimism, anxiety and worry).

On the contrary, we found some positive significant correlations with the communica-

tive variables, specifically with the centrality degree within the different communication

networks analysed. Such evidence show that the subjects who are more involved in

private discussion with positive mood, and the subject who are more central within the

positive community network have an high value of αc
i
. Consistently to the rationale

behind the experimental interface and the experimental design, an high value of αc
i
is

positively correlated with the centrality in the affinity space (private radar) in the first

15’ minutes and at the end of interaction. In such way, the concept of affinity, and the

multidimensionality of meanings within it, it is in any case reproduced by the simulation

model.
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7.3 Different scenario

We provide some numerical simulation exploration of the role of the control parameters

on the dynamical characteristics of the system.

The recipe used to initialize the numerical simulations (Eqs. (7.6) and (7.7)) is conceived

as follows:

• maximum number of events tmax = 10000

• the elements of Ot0
i

follow an uniform random distribution from 0 to 100,

• At0
i
with all elements equal to 0.5, considered as the best value to simulate a neutral

beginning of interaction, item the elements of �oij follow a normal distribution, with

std. dev. = 0.05 and the average equal to the different critical values used.

• the elements of �αt
ij

follow a normal distribution, with ds. = 0.05 and the average

equal to the different critical values used.

• µ= 0.5

We investigated several values of the control parameters, several values forαc
i
(αc

i
=

0.01, 0.1, 0.3, 0.5, 0.9), for ∆Oc
i
(∆Oc

i
= 0.01, 0.1, 0.3, 0.5, 0.9) and different size of the

system (N = 10, 20, 50, 100, 150). For every combination of such control parameters,

we performed 10 numerical simulations. In the following paragraphs we present and

discuss the results of the simulations.

7.3.1 Convergence time

We defined the convergence time through a process of control applied the affinity matrix.

According to this criterion, we declare a metastable state of the system and we stop the

simulation if, for 20 consecutive events, the matrix Aij shows a change in any of its

elements less than 10−5, or, alternatively, the number of events reach the maximum of

10000 events t. We chose this criterion for the convergence time because the temporal

evolution of the opinions shown continuous micro-fluctuations (probably due to the

mechanism of mutual attraction-repulsion between the opinions), while the affinity was

found to be more reliable to define a meta-stable state of the system. We performed a

comparison between 5 different scenarios.

As we can see in Fig. 7.3, it seems that the evolution of the simulation is influenced

by the size of the system. We can note that the convergence time increases with the
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(a) N=10 (b) N=20

(c) N=50 (d) N=100 (e) N=150

Figure 7.3: Convergence time for different size of the system

increase of N . The plateau reached by the system with size equal to 50, 100 and 150 is

due to the maximum events that we set for our simulations (tmax = 10000).

In the small system (Fig. 7.3(a)) the convergence time is around 200/300 events for every

critical values of ∆Oc
i
, and for αc

i
≥ 0.1. For ∆Oc

i
and αc

i
equal to 0.01 the convergence

time increases, reaching a peak of 2000 events.

Turning from the system with 10 agents (small group) to the system with 20 agents

(medium group) (Fig. 7.3(b)) something changes. We can observe the same peak for the

convergence time with small values of ∆Oc
i
and αc

i
equal to 0.01 or 0.1. For such values

the system with 20 agents reaches the convergence time around 7500 events, similarly

to what observed in the system with 10 agents. A notable difference with the smaller

system emerges for high values of ∆Oc
i
and αc

i
, specifically equal to 0.5 and 0.9. In

such conditions, the convergence time reaches a peak of 9000 events. We can note that

for values of ∆Oc
i
equal to 0.1 and 0.3 the convergence time is quickly reached, while

for critical values of ∆Oc
i
≥ 0.5 the convergence time increases and finally explodes if

coupled with αc
i
≥ 0.3.

Considering the system with 50 agents, we note that for high values of ∆Oc
i
and αc

i

the convergence criterion is not satisfied, and the systems never reach the convergence

within the maximum of 10000 events (see the purple plateau in Fig. 7.3(c)). We can
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still observe a peak for values of ∆Oc
i
= αc

i
= 0.01; for such parameters the convergence

is not reached within the maximum of 10000 events.

It is interesting to note that a very low value of critical affinity (αc
i
= 0.01) drastically

reduces the convergence time, if ∆Oc
i
→ 0.9. As example, for ∆Oc

i
= 0.1, the system

reaches the convergence around to the 7500 events, for ∆Oc
i
= 0.3 around 3000 events

until to reach the 1500 events for ∆Oc
i
≥ 0.5.

The systems with N = 100 and N = 150 show a similar behaviour in our simula-

tions, since for such sizes the system show a very similar trend within the 10000 events

(Figs. 7.3(d) and 7.3(e)). For such systems is more appreciable the role of very low values

of ∆Oc
i
, as happens for the systems of size equal to 10, 20 or 50. For what concern the

systems with N = 100 and N = 150, it seems to be necessary a very low value of critical

affinity (αc
i
= 0.01), combined with ∆Oc

i
≥ 0.3, to have a convergence time lesser than

10000 events.
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(b) Oc=0,1
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(c) Oc=0,3
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(d) Oc=0,5
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Figure 7.4: Convergence time for different ∆0c

As it shown in Fig. 7.4, the systems with different size behave in a different way. The

role of ∆Oc
i
and αc

i
changes depending on the size of the system.

The systems with size equal to 10 seem to be more or less robust to the variation of

∆Oc
i
and αc

i
, while the systems of 20 agent differently behave for different combinations

of ∆Oc
i
and αc

i
. As we can see in Fig. 7.4, the convergence time shows a sharp rise for

αc
i
> 0.1 (Fig. 7.4(d)) and for αc

i
> 0.01 (Fig. 7.4(e)).
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Regarding the systems with 50 agents, we can note that such systems show a behaviour

similar to the smaller system for ∆Oc
i
= 0.01 and αc

i
= 0.1 (Fig 7.4(a)), while for ∆Oc

i

equal to 0.3 and 0.5 (Figs. 7.4(c) and 7.4(d)), the convergence time is reached only for

αc
i
= 0.01. For ∆Oc

i
= 0.9, the behaviour of the systems with 50 agents is similar to the

systems with 10 and 150 agents (Fig. 7.4(e)).

Finally, the role of ∆Oc
i
and αc

i
seems the same for systems with 100 and 150 agents. For

such sizes, the combination of ∆Oc
i
≥ 0.3 and αc

i
≤ 0.1 (Figs. 7.4(c), 7.4(d) and 7.4(e))

appears crucial to satisfy the convergence criterion.

7.3.2 Number of clusters

We explored the number of clusters when the simulations reached the convergence time,

according to the criterion explained in the previous paragraph. We can observe an

increase in the number of clusters if the size of the system increases (Fig. 7.5). Such

effect is probably due to the strategy adopted to define the cluster boundaries, basing on

the size of the system. As clustering criterion we used the ratio between the maximum

value of opinion and the number of agents of the system at issue. In such way, for

example, the system with 10 agents may show a maximum of 10 clusters; within each

cluster are grouped the agents with ∆Ot
ij
< 0.1.

Obviously, adopting this method the width of the clusters is affected by the size of the

system, whereby for systems with N equal to 100 or 150 we classify the agents with

∆Ot
ij

< 0.01 for N = 100 and ∆Ot
ij

< 0.006 for N = 150 as belonging to a specific

cluster, while for N = 50 agents with ∆Ot
ij
< 0.02 , and for N = 20, ∆Ot

ij
< 0.05.

On the other hand this procedure, since we treat the opinion as a continuous value,

allows us to allocate within a cluster the agents that “exactly” share the same opinion,

also for the larger systems, that for particular values of ∆Oc
i
and αc

i
have shown a chaotic

evolution.

As it shown in Fig. 7.5, the systems with 10 and 20 agents exhibit not many clusters for

αc
i
= 0.01. Such configuration seems robust with respect to the increase of ∆Oc

i
. In the

smaller systems (N = 10) a value of αc
i
= 0.01 keeps the number of clusters around the

4−5 (Fig. 7.5(a)), while for the systems with 20 agents the number of clusters is around

6 (Fig. 7.5(b)). For αc
i
> 0.01 we appreciate a fragmentation for both these systems,

with an average number of cluster around 7− 8 for N = 10 and around 13 for N = 20.

Examining the number of clusters of the systems with of 50 agents, we note that such

systems seem to behave in a similar manner to the smaller systems (Fig. 7.5(c)), showing

a final number of clusters around 20−30. However, we point out a first change regarding
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(a) N=10 (b) N=20

(c) N=50 (d) N=100 (e) N=150

Figure 7.5: Final Number of Clusters for different size of the system

the role of ∆Oc
i
and αc

i
. If for smaller systems a low number of clusters was mainly

dependent by αc
i
, the system with 50 agents seems to be affected also by the values of

∆Oc
i
. For example, a value of ∆Oc

i
equal to 0.9 keeps the system under a number of 15

final clusters, if coupled to αc
i
≤ 0.1.

Concerning the systems with 100−150 agents, the weight of ∆Oc
i
still increases, keeping

down the number of cluster. As we can see in Figs. 7.5(d) and 7.5(e), the number of the

clusters for such systems drastically decreases for ∆Oc
i
≥ 0.5 and αc

i
≤ 0.1, giving rise

to less than 10 clusters.

As we can note in Fig. 7.6, the system with N = 10, 20, 50 for each αc
i
and ∆Oc

i
< 0.9

show more or less the same trends, in a proportional way to the size of the system.

For such systems, the ∆Oc
i
seems slightly affect the number of the clusters. A value

of ∆Oc
i
= 0.9 causes a change on the clusterization of the system with 50 agents, with

respect to the smaller ones (Fig. 7.6(e)).

With regard to the larger systems, with 100 and 150 agents, the average final number of

clusters is strongly influenced by the different combinations of ∆Oc
i
and αc

i
. As we can

see in Figs. 7.6(a) and 7.6(b), for values of ∆Oc
i
≤ 0.1, such systems behave similarly to

the smaller ones.
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(b) Oc=0,1
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(c) Oc=0,3
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(d) Oc=0,5
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Figure 7.6: Final Number of Clusters for different ∆0c

For ∆Oc
i
= 0.3, the bigger systems (N = 150) show an huge reduction of the number

of clusters for αc
i
≤ 0.1 (Fig. 7.6(c)), as well as for the system with 100 agents, for

∆Oc
i
≥ 0.5 (Figs. 7.6(d) and 7.6(e)).

7.3.3 Clusters size

As we could expect, the average size of the clusters (Fig. 7.7) is somehow specular to

the number of clusters (Fig. 7.5).

The systems with 10 agents exhibit a final average size of clusters around 2 agents for

αc
i
= 0.01. An increase of the values of ∆Oc

i
and αc

i
brings down the average size of the

clusters final to 1.50, so for αc
i
�= 0.01 the system is ever highly fragmented (Fig. 7.7(a)).

In the same way, we can observe that for the systems with 20 agents, for αc
i
= 0.01

the average size of the clusters settles around to 3 agents per cluster. Even for such

systems, the final average size of clusters does not seem to be particularly influenced by

a variation of ∆Oc
i
(Fig. 7.7(b)).

The system with 50 agents shows a final configuration influenced also by ∆Oc
i
, al-

though αc
i
seems to be the parameter that more affect the average size of the clusters

(Fig. 7.7(c)). The final average size of clusters increases for combinations of αc
i
= 0.01

and ∆Oc
i
respectively equal to 0.5 (with an average size of the cluster with 16 agents) or
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(a) N=10 (b) N=20

(c) N=50 (d) N=100 (e) N=150

Figure 7.7: Final Size of Clusters for different size of the system

to 0.9 (12 agents); therefore the affinity seems to still have a crucial role. Furthermore,

we observed a partial fragmentation of the system for αc
i
= 0.1 and ∆Oc

i
= 0.9, with

clusters of 7 agents.

For what concern the system with 100 agents, we can note that the relevance of ∆Oc
i

increases (Fig 7.7(d)). We can observe that clusters of large size are again determined by

a very low value of critical affinity (αc
i
= 0.01), but only if coupled with the intermediate

values of critical opinion (∆Oc
i
= 0.3 or 0.5). For this combinations, the final average

size of the clusters is above 30 agents per cluster. Keeping a fixed value of αc
i
equal to

0.01, we can note that the average size of the clusters widely changes depending on the

value of ∆Oc
i
. For ∆Oc

i
= 0.9 we have around 20 agents per cluster, while around 5 or

12 agents per cluster for ∆Oc
i
respectively equal to 0.1 or 0.01. For αc

i
≥ 0.3, the final

average size of the clusters never changes, regardless of the value of ∆Oc
i
.

Regarding the systems with 150 agents, we can observe that for ∆Oc
i
≥ 0.5 and αc

i
le0.1,

the average final size of the clusters settles around to 50 agents per cluster, with a peak

of 56 agents for ∆Oc
i
= 0.5 coupled with αc

i
= 0.1 (Fig. 7.7(e)), while for ∆Oc

i
= 0.5 we

have around to 43 agents per cluster, if coupled with αc
i
= 0.1. If the value of ∆Oc

i
drops

to 0.1, we appreciate a drastic reduction of the average size of the final clusters (8 agents

per cluster), down to around 3 agents for ∆Oc
i
= 0.01. The values of critical affinity,

if below 0.3 determine few clusters with many agents. If αc
i
> 0.3, the system exhibits
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(b) Oc=0,1
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(c) Oc=0,3
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(d) Oc=0,5
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Figure 7.8: Final Number of Clusters for different ∆0c

many clusters with few agents, around 3 agents per cluster, for each combination of ∆Oc
i

and αc
i
.

As we can observe in the graphs in Fig. 7.8, the critical affinity equal to 0.01 causes the

formation of clusters with many agents, obviously proportionally with the size of the

system simulated. For all the systems, and for ∆Oc
i
< 0.5, the higher average size of

clusters is reached with αc
i
= 0.01 (Figs. 7.8(a), 7.8(b) and 7.8(c)). Regarding the bigger

systems (N ≥ 100), it’s interesting to note that for ∆Oc
i
≥ 0.5 (Figs. 7.8(d) and 7.8(e))

a value of αc
i
= 0.1 gives rise to the emergence of maximum size clusters (Fig. 7.8(e)).

7.4 Discussion of results

With the present study we came back to the sociophysics and to the simulations, start-

ing from the results and the experimental data gathered throughout the experimental

sessions discussed in Chapter 6.

Such approach brought us to evolve the opinion and affinity model, from which we

started, in order to better simulate the individual processes and the social dynamics

emerging within the small group. We introduced a repulsion effect for opinions’ dynamics

of interacting agents, with the aim to involve and simulate a comprehensive version of

the cognitive dissonance within this opinion dynamics model.
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The rules that drive the dynamics in the OAR model are a good way for simulating

the small group behaviour, better fitting the data experimentally collected then the

other models. Nevertheless all the models of opinion dynamics taken into account (O,

OA, OAR model) behaved pretty well in the approximation of the agent’s opinion when

feeded with the experimental data.

The repulsion mechanism seems more effective for simulating the cognitive dissonance

effects, also from a conceptual point of view. In every experimental session, presented

in Chapters 4, 5, and 6, the small groups engaged in discussions within a virtual en-

vironment have always shown a full-connected network configuration. If avoiding the

interactions with the agents who are not affine, may be economical and adaptive to sat-

isfy the “inconsistency”, in cognitive dissonance terms, between affinity and opinion in

large groups, in a small group it should not be the case. The repulsion mechanism offers

the possibility to restore the coherence between affinity and opinion by increasing the

distance from an interacting agent in the opinion space, if such agent is not recognized

as affine.

Studying the dynamical characteristics of OAR model by changing the values control

parameters, we found that such system behaves in a different ways depending by different

initial conditions. For different size of the system, and for several values of the control

parameters ∆Oc
i
and αc

i
, the model gives rise to different scenarios. We have studied

the dynamical characteristics through a statistical analysis. Every system behaves in

different way depending on the different initial conditions, since the affinity and opinion

are coupled in an highly non-linear dependence, giving rise to a complex evolution of

the system.

For what concern the impact of ∆Oc
i
and αc

i
on the convergence time for the smaller

systems (N = 10 or N = 20), we have to consider that, mathematically, the affinity

matrix Aij scales quadratically with the number of agents; therefore for large size of the

system, an high value of ∆Oc
i
probably affects the meta-stability of the affinity matrix

Aij , causing a considerable delay for the satisfaction of the convergence criterion for

systems with N > 20.

Substantially, the smaller systems with N equal to 10 or 20 seem similarly behave,

specially considering the final number and the average size of the clusters. Such order

parameters are mainly affected by the value of critical affinity αc
i
, while different values

of ∆Oc
i
don’t perturb in relevant way the final configuration of the system.

Moreover, a very low value of critical affinity increases the amount of the shift in opinion.

Such shifting brings the agents closer within the space of opinion, increasing the prob-

ability of a later encounter. Higher values of αc
i
slow down such dynamics, increasing
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the influence of noise η and consequently the probability to meet an agent distant in

opinion, or in affinity, increases, leading to a possible fragmentation of the system. The

opinion and the affinity are coupled not only into the updating rules, but also into the

equation of the social distance (7.1), affecting the probability of encounter between the

agents.

On the contrary, we appreciate the crucial role of ∆Oc
i
for the clusterization of the

systems with N equal to 100 or 150. For the large systems, it seems to be necessary

the simultaneous presence of a very low value of critical affinity and an high values of

critical opinion, to keep the system clustered, presumably attenuating the effect of η on

the probability of encounters.

Furthermore, it’s interesting to note that, despite the fact that clusters are quite big for

the smaller systems, if compared to the bigger system, (for N = 10, the cluster range is

equal to 0.1, a and for N = 20 equal to 0.05), we have observed an average configuration

in pairs for N = 10 and in triplets for N = 20, while for bigger systems (N ≥ 50)

clusters up to 56 agents emerge.

Such evidence suggests that for the larger groups, for a specific combinations of ∆Oc
i

and αc
i
, is easier to collapse on the same opinion, while the smaller systems shown, on

average, a more variance of final opinion, and consequently less clusters.

The concept of critical affinity can be translated, from a psychological point of view,

into a sort of openness to the listening, or a tendency to be persuaded. In this way,

a low value of critical affinity causes a big shift in opinion, because the subject judges

the interactor somehow reliable. For the smaller systems (i.e.small groups), the affinity

seems to be more involved into the opinion change, because it is possible, for the small

number of interactors, to “compute” and “manage” the affective relationships with the

others. When the size of the group increases, it is more difficult to keep into consideration

the complex networks of relationships among the people, and how they relate to each

other. Considering that the human cognitive capacities are limited, in a context of a

large social group an individual “have to choice” which information to consider in order

to represent the social environment in the most satisfying way. In the large group, the

opinion of the people is surely more explicit and less complex (maybe complicated) to

infer, therefore it offers a sufficient approximation for the interpretation of the social

environment and of certain dynamics of the large group.

Concluding, the OAR model seems a good approximation about what happens in a small

group for what concern the experimental data forecasting, for the behaviour showed by

the model in different simulation scenarios, as well as for the shift observed concerning

the role of affinity and opinion on the dynamics of the system when N increases. In
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this way, putting into relation the cognitive dissonance theory and the social pressure

within the same opinion dynamics model, we pointed out the importance of the rela-

tionships among people within the small group, and at the same time the relevance of

such relationships for the opinion dynamics within small systems.



Chapter 8

Conclusions

The modelization of the dynamics of small groups represents a hard challenge, but at the

same time it is also a very interesting field of research, since the small group represents

a very common social environment.

In psychology, the researches on the small group dynamics produced many qualitative

insights about the emerging phenomena, but from a quantitative point of view they miss

many aspects related to the interaction among the members, due to the difficulty to take

into consideration and measure the factors that affect the dynamics of relationship.

On the other hand, the sociophysics approach to the study of social dynamics does not

adequately consider many qualitative aspects of the individuals in interaction, that in

our opinion are essential to correctly simulate the dynamics of a small group. At first, the

sociophysics brutally neglected almost the totality of the individual variability. Recent

works [73, 89, 105] tried to overcome this lack, implementing some individual factors

influencing both the local and global dynamics. This direction reflects the importance of

and the interest towards the individual processes, or at least towards the local dynamics,

for what concern the study of the social dynamics also from a physical point of view.

So the main purpose of our research was to link the cognitive individual processes and

the small group dynamics, exploring in our experiments the communication and affinity

networks, in order to provide some quantitative results and qualitative suggestions both

for the psychological and sociophysical models.

We faced the study of the small group starting from the conceptual theorization of com-

plex systems. In this way we studied the relations among the elements of the system

(i.e. individuals) and the influences between these elements and the system (i.e. group),

focusing on the temporal evolution of the network of interactions and of the relation-

ships among the elements. We believe that the analysis of the communication dynamics

103
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is a good approach to interpret the individual processes effects on the group dynamics,

since the relations among the members and the topology of the communication structure

deeply influence such processes [3, 6, 106]. For these reasons, we focused on the com-

munication and the affinity networks and we used the tools deriving from the complex

network analysis and social network analysis to describe the individual behaviours and

the group phenomenology in a virtual environment.

In the presented research we refer to the small group as 10 individuals engaged in com-

mon discussion within a virtual environment. A key feature of the small groups are

the face-to-face interactions between their members, in which everyone directly inter-

acts with each other, influencing each other; so the choice of a chat room as “virtual”

experimental setting appears theoretically appropriate for the study of the small groups.

Moreover, the large use of new technologies for the communications among people repre-

sents a new reality in the context of human relationships, and makes the use of the chat

interface in some ways ecological and of a great interest. We designed the experimental

set-up in order to keep under control most of the communication aspects, leaving lit-

tle space to non-controlled communication. The “virtual” environment as experimental

setting allowed us to track the relationships evolution in a precise manner, consider-

ing their dynamical development from the beginning until the end of any experimental

session. The private radar, the sub-environment within the chat interface where the

subjects configured their personal affinity space during the interaction, was interpreted

as a kind of sociometric measure about the affective relationships among people, and

the analysis of such space has been related to the communication patterns. We used a

set of analytical tools in order to detect the relevant characteristics of people engaged in

virtual discussion. The analysis implemented was independent of the semantic content

of the exchanged messages in order to be more context-free as possible, and the chat

room interface avoided the hard-to-detect (i.e. non-verbal) communications.

The first stage of our research regarded the exploration of the relations between the

affinity among individuals and their communication dynamics, focusing mainly on a

quantitative investigation of the way in which the subjects create their own cognitive

representation of the social space. We designed three different experimental tasks (i.e.

social problem), with an increasing degree of social complexity, in order to test the

impact of different social constraints on the evolution of the affinity network, as well

as on the dynamics of communication. Our mainly aim was to define the “cognitive

recipes” used by the subjects to solve the required social problems.

We exposed 150 subjects (i.e. 15 groups of 10 people ) to three experimental condi-

tions. In the Blank condition, we proposed the subjects to engage just a free chatting,

without any constraint. The only requirement was to accomplish the assessment of their
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affinity space after the end of the session, reporting it on their “private radar”. In the

Topic condition, we introduced a polarizing subject in the discussion, and we asked

the participant to develop their own opinion about the topic. In the Game condition

we proposed a frustrated minority game based on a voting procedure where only the

individuals belonging to the second biggest clusters were the winners.

Our results showed that the complexity of the social problem faced by the group, affects

the relation between affinity and communication networks. The betweenness degree in

the affinity networks has been used as a measure of the average affinity perceived by

the group toward a subject. The affinity among individuals appears to be sensitive

to different aspects related to the task, and is apparently assessed by the subjects in

different ways. In other words, the subjects appear to adapt their cognitive heuristics

used to assess the affinity with the others, depending on the constraints imposed by the

task.

A linear regression method has been used to test such hypotheses. The three resulting

best models indicate the different strategies adopted by the subjects. In particular, the

explained variance of the models is significantly greater for the Blank condition (65%),

where the affinity dynamics appears related to the number of interaction and to the

mood accompanying the textual messages. At the contrary in the Topic and in the

Game conditions the explained variances are respectively of 33% and 43%, where the

affinity seems related also to the non-communicative factors, as the configuration of the

radars. Noteworthy, in the Game condition, the affinity does not appear correlated with

any composition of the clusters generated by the three votes. This last result suggest

that the affinity dynamics is not correlated or affecting the strategies of votes in the

Game condition.

Such results shown that in the Blank condition it is possible to forecast the final affinity

between any two subjects, while this is more difficult in more structured tasks. The

interpretation of this result could be that, in the absence of a specific task, people tends

to structure their communication space according with their affinity, while for structured

tasks other dimensions become more important.

Our results demonstrate how it is possible to realize experiments on small group dynam-

ics using ICT techniques (without considering the semantic content of the messages).

We have shown that different tasks elicited different cognitive strategies of the subjects.

In particular, in unstructured task the affinity among subjects seems to play a funda-

mental role, while this is not true for more polarized tasks. The development of the

affinity, in unstructured tasks, seems to be consistent with sociophysics models.
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As second step, we investigated the relation among the subjective variables (i.e. person-

ality, gender, age), the individuals opinion, the affinity network and the communication

patterns emerging within the small group in virtual interaction. We focused on the

opinion dynamics in a small group discussing about a polarizing topic (i.e. the animal

experimentation). Within such condition, 50 subjects (5 small groups of 10 people)

interacted.

With this study we tried to extend the investigation to the relations between personality

and opinion dynamics. We administered a standardized personality test (5-FasT) and

a reduced form of a test for the anxiety state (STAI), to gather the data related to the

personality of the subjects, and we collected the opinion about the topic at issue before,

during and at the end of any experimental session.

We studied the weight of the subjective variables on the dynamics took into account,

and we found that the influence of the subjective variables on the opinion dynamics

change if we consider the local dynamics (dyadic interactions) or the global dynamics

(group dynamics), affecting more the local dynamics with respect to the global ones.

Examining the correlations among the 5-FasT factors (i.e. Neuroticism, Surgency,

Agreeableness, Closeness, Conscientiousness) and the opinions gathered, we found that

no personality factor correlates with the opinions detected, neither with their dynamics.

Maybe the personality of the subjects affect the opinion dynamics in an undirected way,

influencing their communication behaviour, nevertheless no linear (i.e. simple) relations

emerges from the analysis. This finding shows that in our experiments it is impossible

to forecast the opinion of the subjects considering only their personality.

Furthermore, within our experiments we found a balance between the number of people

that changed their opinion during the interaction (25) and of people that remain on their

initial position (25). We described the behaviour of the stubborn people (i.e. subjects

who do not change their opinion) and the difference with respect to the subjects who

shift their opinion, pointing out the role of the topology of the communication networks

on the behaviour of people in virtual interaction, considering the cognitive and affective

aspects. Our results suggested that the dynamics of a small groups of people engaged

in virtual discussion about a specific topic is strongly affected by the topology of the

communication and affinity network.

Regarding to the sociophysics simulation, in our model 7 we introduced a repulsive mech-

anism into an affinity and opinion model, considering the affinity among the members

both as a memory term and as a mechanism that simulates the affective relationships.

given the possibility to affect the opinion dynamics in a repulsive way. Interestingly, we

found an unexpected significant correlation with the 5-FasT Ne (i.e. Neuroticism) and
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the critical affinity value, found with the progressive cycles of refinement of our model

initialized with the experimental data.

Such value, within a numerical simulation model, reflects in part the personality traits

of pessimism, anxiety and worry of real subjects, giving consistency to conceptualization

of the affinity and repulsion mechanisms and to the combination of opinion and affinity

dynamics used into the sociophysical model.

We demonstrated the validity of the presented model studying the discrepancy of the

model in the simulations of the experimental interactions, and comparing it with two

existing sociophysical models, and we explored the evolution of the system varying the

initial conditions. We found interesting differences in the system behaviours when chang-

ing the number of agents involved, due to a different impact of the opinion and affinity

critical values on the system evolution. In this way we support the empirical and psy-

chological evidences of the peculiarities behind the collective phenomena characterizing

the small groups, with respect to the larger ones.

8.1 Final discussion and future perspectives

The small group dynamics, the communication topology and the individual features and

processes are deeply linked. The interplay between the individual dimension and the

group dimension dimensions affects the complex evolution of the group dynamics, and

vice-versa. The computational models based on the theoretical premises, the experimen-

tal evidences and the empirical data may test a wide range of possibilities implied by the

theory that would be difficult to test empirically. In this way they could contribute to

a better understanding, or maybe to an improvement, of the extant theories. With the

purpose to enhance both the psychological and sociophysical models of small groups, it

appears necessary to re-think the microscopic level (agents, particles, individuals) and

the mesoscopic interactions among the microscopic entities (the interaction dynamics),

considering the specific features affecting the interactions among the elements. Regard-

ing the macroscopic level (group dynamics) it seems useful to consider the kind and

the topology of the interaction, and its feedbacks on the microscopic and mesoscopic

level. The interdependence and the qualities of the interactions among the members

of a small group may be addressed combining the field theory [18], the social influence

studies [107] and cognitive dissonance theory [23]. The results of our research bring us

to suppose that the individuals behaviour within a small groups is determined by the

fight for the inner coherence and subjected to the social pressure due to the “position/-

role” of an individual within the opinion space and in the communication and affinity

networks. Ultimately, our experimental results suggest that a future advisable step will
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be to consider also the topology of interaction, namely the position on the structure of

communication network and of the affective relationships.

The next “required” step, on which we are already working, will be to study the seman-

tics content of the messages related to the communication and relationships structure,

exploring then the contribution of the semantic content to certain group dynamics unde-

tectable and especially not interpretable from a viewpoint merely based on the frequency

and network messages.
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