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Chapter 1

Introduction

1.1 Motivation of the work

A synthetic aperture radar (SAR) is a coherent micro-wave remote sens-
ing system which offers a number of advantages over optical remote sensing,
mainly the all-day, all-weather acquisition capability. However, the main
drawback of SAR images is the presence of a signal dependent granular phe-
nomenon, that is usually called speckle. Speckle is inherent of all active
coherent imaging systems and it is a radiometric feature of the imaged ter-
rain, but it visually degrades the appearance of images. Furthermore, it may
severely diminish the performances of automated scene analysis and infor-
mation extraction techniques, as well as it may be harmful in applications
requiring multiple SAR observations. For these reasons, speckle is consid-
ered as noise in incoherent SAR imaging; hence, a preliminary processing
of real-valued detected SAR images aimed at speckle reduction, or despeck-
ling, is of crucial importance for a number of applications. On the other
hand, despeckling methods are required to preserve some features like local
mean of backscatter, point targets and textures, in order to avoid the loss of
informations useful for further processing.

A steadily increasing number of papers specific on despeckling has ap-
peared in the literature over the last ten years, presumably because the new
generation of satellite SAR systems has dramatically raised the attention of
researchers in signal processing towards this problem. The COSMO-SkyMed
constellation—four satellites launched by the Italian Space Agency (ASI) be-
tween 2007 and 2010—features X-band SAR with low revisit-time; as a sec-
ond generation mission, two additional satellites are foreseen in 2014 and
2015. The twin-satellite constellation TerraSAR-X/TanDem-X (2007/2010)
launched by the German Space Agency (DLR) and the upcoming Sentinel-
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2 Chapter 1. Introduction

la/-1b satellite constellation (2013/2015) from the European Space Agency
(ESA), which shall extend the EnviSat mission, complete the European sce-
nario of satellite SAR. Also, the Canadian RADARSAT 3 mission is expected
in a near future, with 3 satellites operating at C-band, to be launched in 2017.

The most recent advances in despeckling pursue the technological objec-
tive of giving an extra value to the huge amount of data that are routinely
collected by current and upcoming SAR systems mounted on orbiting plat-
forms. In fact, with the exception of applications related to production of
digital elevation models (DEMs) or interferometric phase maps useful for
studies of terrain deformation (landslides, subsidence, etc..), SAR data do
not find the same full utilization, as optical data do, by either users’ or sci-
entists’ communities. As an example, the functional development of efficient
techniques for fusion between optical and SAR data would constitute an en-
abling technology that would allow a relevant number of new applications to
bring benefits both for data providers and for producers of software applica-
tions. Unfortunately, speckle is the main obstacle towards the development
of an effective optical SAR fusion, together with the different acquisition
geometry of optical and SAR systems.

In this thesis the overall results of the study that has been carried out
within the topic of SAR images despeckling during the Ph.D. Course are pre-
sented. In the first part, the class of Bayesian estimators in the undecimated
wavelet domain are discussed, proposing some interesting despeckling filters
and analysing their performance with different image formats. The second
part of this thesis is dedicated to other topics related to the despeckling: the
removal of correlated speckle and the quality assessment for the despeckling.
In the former issue, a solution that allows to improve the performances of
filters designed for uncorrelated speckle is proposed, demonstrating that, un-
der some assumptions, it is formally the optimal solution; in the latter case,
the problem of assessing the quality of despeckled images is analyzed and a
method based on the scatter plot which does not require the reference image
is presented.

1.2 Organization of the thesis

The achievements and the results presented in this thesis have been also
published in specific magazine, journal or conference papers. In the following,
the list of topics and the relative contribution to publications is presented.
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Chapter 2: Signal models for despeckling of SAR images

The first part of this chapter is dedicated to the fundamentals modeling of
reflectivity, speckle and SAR imaging system, which are introduced under a
signal processing perspective. In the second part, the most used models of
SAR data exploited for despeckling applications are introduced

This chapter is mainly based on the following paper:

e F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on
speckle reduction in synthetic aperture radar images,” IEEE Geo-
science and Remote Sensing Magazine, vol. 1, no. 3, pp. 6-35, 2013.

Chapter 3: Bayesian methods in the wavelet domain

The adoption of the Bayesian estimation framework and the introduction
of the multiresolution analysis for the despeckling are presented in the first
part of this chapter, with a specific attention to the undecimated wavelet
transform domain. In the second part, despeckling filters working in the un-
decimated wavelet domain are proposed and compared. A fast filter adopting
classification of wavelet coefficients is proposed in the third part of the chap-
ter and its performance is shown by means of experimental results.
This chapter is mainly based on the following papers:

o F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on
speckle reduction in synthetic aperture radar images,” I[EEE Geo-
science and Remote Sensing Magazine, vol. 1, no. 3, pp. 6-35, 2013,

e F. Argenti, T. Bianchi, A. Lapini, and L. Alparone, “Fast MAP de-
speckling based on Laplacian—Gaussian modeling of wavelet coefficients,”
IEEFE Geoscience and Remote Sensing Letters, vol. 9, no. 1, pp. 13-17,
Jan. 2012.

and also on the following conference papers:

e F. Argenti, T. Bianchi, A. Lapini, and L. Alparone, “Bayesian despeck-
ling of SAR images based on Laplacian—Gaussian modeling of undec-
imated wavelet coefficients,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2011, pp. 1445-1448,

e F. Argenti, T. Bianchi, A. Lapini, and L. Alparone, “Simplified MAP
despeckling based on Laplacian-Gaussian modeling of undecimated wavelet

coefficients,” in Proc. 19th European Signal Processing Conf. (EU-
SIPCO), 2011, pp. 1140-1144.
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Chapter 4: Image formats for despeckling

In this chapter, the problem of despeckling SAR images when the input
data is either an intensity or an amplitude signal is revisited. Firstly, it
is shown that there exists a unique formulation for Bayesian estimators in
the undecimated wavelet transform domain; second, the different methods
are compared by assessing their performances on both true SAR images and
synthetically speckled test images in order to determine the best filtering
strategy.
This chapter is mainly based on the following paper:

e T. Bianchi, F. Argenti, A. Lapini, and L. Alparone, “Amplitude vs
intensity Bayesian despeckling in the wavelet domain for SAR images,”
Digital Signal Processing, , no. 5, pp. 1353-1362, Sep. 2013,

and also on the following conference paper:

e T. Bianchi, F. Argenti, A. Lapini, and L. Alparone, “Amplitude vs in-
tensity despeckling in the wavelet domain using Bayesian estimators,”
in Proc. Tyrrhenian Workshop on Advances in Radar and Remote Sens-
ing, 2012, pp. 267-274.

Chapter 5: Removal of correlated speckle noise

Despeckling filters are usually designed on the hypothesis of uncorrelated
speckle, despite of the transfer function of SAR acquisition systems can in-
troduce a statistical correlation which decreases the despeckling efficiency
of such filters. In this chapter, the influence of speckle correlation on the
despeckling accuracy of single-look images is addressed. Furthermore, a pre—
processing stage, which allows despeckling methods derived for uncorrelated
speckle to be successfully applied also for the case of correlated speckle, is
proposed.
This chapter is mainly based on the following paper:

e A. Lapini, T. Bianchi, F. Argenti, and L. Alparone, “Blind speckle
decorrelation for SAR image despeckling,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 2, pp. 1044-1058, 2014,

and also on the following conference papers:

e A. Lapini, T. Bianchi, F. Argenti, and L. Alparone, “Blind whitening of
correlated speckle to enforce despeckling of single-look high-resolution
SAR images,” in SAR Image Analysis, Modeling, and Techniques XII,
2012, vol. 8537 of Proc. of SPIFE, pp. 85370Z-85370Z-8,
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e A. Lapini, T. Bianchi, F. Argenti, and L. Alparone, “Blind whitening of
correlated speckle to enforce despeckling of single-look high-resolution
SAR images,” in Proc. SPIE 8537, Image and Signal Processing for
Remote Sensing X VIII, Nov. 2012, vol. 8537, p. 85370Z.

Chapter 6: Quality assessment of despeckling methods

Quality assessment is a non-trivial task in the remote sensing field because
of the lack of the reference image. In this chapter, the development and eval-
uation of a fully automatic method for the quality assessment of despeckled
SAR images is proposed.

This chapter is mainly based on the following paper:

e B. Aiazzi, L. Alparone, F. Argenti, S. Baronti, T. Bianchi, and A. Lap-
ini, “An unsupervised method for quality assessment of despeckling:
an evaluation on COSMO-SkyMed data,” 2011, vol. 8197 of Proc. of
SPIE, pp. 81790D-81790D-10,

Chapter 7: Conclusions

The last chapter is dedicated to the conclusions about the work carried out
during the Ph.D. Course.







Chapter 2

Signal models for despeckling
of SAR images

The aim of this chapter is to introduce the most used SAR signal models
for incoherent imaging, which are the bases for developing despeckling meth-
ods. Under a statistical signal processing perspective, despeckling filters aim
at estimating the noise-free radar reflectivity from the observed noisy SAR
image [11]. In order to describe the estimation methods that have been de-
veloped for the despeckling problem, we need firstly to introduce models for
speckle, SAR system and reflectivity separately; such models are mainly re-
lated to the description of the several features involving all the acquisition
process. In the second part of this chapter, a signal model, which is suitable
for incoherent signal processing, is presented.

2.1 Modelling of SAR signal features

2.1.1 Speckle models

SAR is an active acquisition instrument that produces a radiation and
captures the signals backscattered from a small area of the imaged scene (res-
olution cell). The received signal, as output from the in-phase and quadra-
ture channels, is complex. If we assume that the resolution cell contains
several scatterers and that no one yields a reflected signal much stronger
than the others (distributed target), then the received signal can be viewed
as the incoherent sum of several backscattered waves, i.e., Ae?® = > A;el%
as shown in Figure 2.1. The amplitudes A; and phases ¢; are the results of
several factors, including propagation attenuation, scattering of the illumi-
nated targets, antenna directivity. Each individual component, however, can

7



8 Chapter 2. Signal models for despeckling of SAR images

not be resolved within a resolution cell. A first approach to modeling the re-
ceived signal is solving the Maxwell’s equations according to the propagation
geometry and scattering medium [12; 13]. By using this approach, the way
each propagation path interferes gives us basic information about the ob-
served scene. On the other hand, if we consider that the phases of each path
are highly different and that they may sum in a constructive or destructive
way, then the amplitude of the received signal varies randomly. So, even if
the underlying reflectivity field is uniform, it appears as affected by a “gran-
ular” noise after the imaging system. For visual inspection and for specific
applications that involve visual information retrieval, such as mapping and
segmentation, the highly varying nature of the signal may be considered as
a disturbance and is commonly denoted as “speckle”.

It should be remarked that speckle is considered a noise from the perspec-
tive of incoherent imaging, but it is actually a radiometric feature emerging
by using a coherent system and it has information content (even if difficult
to exploit).

Al ej¢1

A2 €j¢2

Figure 2.1: Scattering model explaining fully developed speckle.

The phases ¢; are highly varying (since the wavelength is much shorter
than the resolution cell size and scatterers distances) and may be considered
as uniformly distributed in (—m,7) as well as independent of A;. If the
number of scatterers is sufficiently high, the central limit theorem applies
[14] and the resulting signal Ae/® = 2; + jzy can be seen as a complex signal
whose real and imaginary parts (in-phase and quadrature components) are
independent and identically distributed zero-mean Gaussian variables with
variance o/2. When this applies speckle is termed as fully developed [15].
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The joint probability density function (pdf) is given by

1 _=f+ed

Pz1,20 (21; ZZ) = %6 e (21)

whereas the amplitude A is distributed as a Rayleigh pdf, that is

24 a2
pa(A) = —e @ (2.2)
o
and the power or intensity I = A? is distributed according to an exponential

pdf, that is
1 _:

pr(I) = ;6_; (2.3)

so that the mean of the intensity is equal to o. It can be shown [16, 17] that
the intensity measurement carries information about the average backscatter-
ing coefficient (for distributed targets) related to the resolution cell. Hence,
for specific applications, the parameter o is the actual information we would
like to extract from a single channel SAR system. This can be considered as
the radar cross section (RCS) of the observed resolution cell. The received
signal pdf can be reformulated into

1 1
prio(I|lo) = =€ (2.4)
o
or
I =ou (2.5)
where u is exponentially distributed, that is,
pu(u) =e™ (2.6)

Eq. (2.5) is termed the multiplicative model of speckle.

If only one image (realization of the stochastic process) is available, the
best estimate of the scene average reflectivity is just the pixel-by-pixel inten-
sity. This will be a quite noisy estimate because of the previously described
constructive/destructive combination effects. From (2.3), it follows that the
variance of the intensity in each pixel is 02, so that brighter pixel will be
affected by stronger disturbances than darker ones. A way to improve the
estimation of o is to average L independent intensity values related to the
same position. This processing, named “multilooking”, maintains the mean
intensity o but reduces the estimator variance to 0?/L. Independent “looks”
of a target resolution cell can be obtained either by appropriate processing
in the Doppler domain (splitting the Doppler bandwidth within the imag-
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ing system that compensates the quadratic phase variation created by the
platform movement) or by averaging L spatial observations. In both cases,
the cost to be paid for estimation accuracy improvement is spatial resolution
loss by a factor L. If the hypothesis of independent intensity measurements
holds (in the case of correlated data the assumption fails), the L-look aver-
aged intensity [, is I'-distributed, that is

Loy = L (B 2.7
pIL\U( L‘O-> - F(L) o L e ( : )

whereas the relative amplitude image A; = +/I; has a square-root I' distri-
bution [17]. For visual inspection and for automatic interpretation tasks, the
use of amplitude images is preferable, thanks to their reduced dynamic range
with respect to intensity images, which is accompanied by an increment in
SNR.

The model described above is valid under the assumption that the imaged
scene is characterized by distributed scatterers. In the presence of a scat-
terer much stronger than the others (point target), the received signal pdf
becomes a Rice distribution and the model above described does not apply.
In this case, the received signal power is related to the single target reflection
coefficient and, for the purpose of speckle removal, point targets are treated
separately from distributed targets.

2.1.2 SAR imaging system model

In the above analysis, the effect of the imaging system has not been taken
into consideration. Indeed, the SAR system can achieve a spatial resolution of
the order of the antenna size only if proper processing, referred to as focusing,
is applied. The energy of the transmitted frequency modulated (FM) chirp
pulse is spread into the range-Doppler domain and such a processing consists
of matched filtering along the range and along iso-Doppler curves and is
needed to compact energy back in the spatial domain [16]. From this point
of view, a SAR system can be seen as an encoding transfer function h.(r)
followed by a compression transfer function h.(r) [17, 18]. If o.(r) denotes
the complex reflectivity, the observed single-look complex (SLC) signal after
the imaging processor is

ge(r) = [C - 0.(r) * he(r) + n(r)] * he(r) (2.8)

where the constant C' absorbs propagation information (e.g., loss and antenna
gains) and the term n(r) accounts for thermal noise at the receiver. For




2.1 Modelling of SAR signal features 11

sufficiently high signal-to-noise ratios, the noise term can be neglected and
the received complex signal becomes

ge(r) = C - 0.(r) * he(r) * he(r) = C - o.(r) * h(r) (2.9)

For well-designed SAR, the impulse response h(r) is pulse-like and represents
the point spread function (PSF) of the system that, in a first approximation,
can be assumed as independent of the position. Again, the intensity |g.(r)|?
is proportional to the average backscattering coefficient of the cell and is the
information we would like to achieve from the observation. An accurate de-
scription of the model in (2.9) and of the statistical properties of the acquired
SAR image is given in [18].

2.1.3 Reflectivity models

The speckle formation model yields a pixel-wise description of the ob-
served signal. For many applications, including despeckling, more refined
models are needed. Such models describe the observed received signal at a
coarser scale than the single pixel one and try to intercept information about
the underlying texture of the imaged scene and its correlation. It is then cru-
cial to consider also the average intensity, i.e., RCS o, which is considered the
information to be retrieved, as a random process. Unfortunately, the RCS is
not directly observable and its properties must be inferred from the intensity
values over an area in which the texture is homogeneous. In this sense, RCS
modeling can be seen as an inverse problem whose solution is made difficult
by the fact that homogeneity can be stated only if a ground truth is avail-
able, but often this is not the case. Furthermore, since the problem can be
formulated only in a statistical sense, the dimension of the homogeneous area
becomes crucial: it should be as large as possible in order to reliably apply
statistical hypothesis testing methods, but this contrasts with the natural
scenes structure that is often characterized by the presence of limited size
homogeneous areas (such as fields, woods, orchards, forests, trees, man-made
areas) and mixing the information of different textures makes the hypothesis
tests to fail.

The starting point for solving this inverse problem is the statistics of the
observed intensity over a homogeneous area. The pdf of the intensity signal
can be written as

p(I) = / p(I|0)p(o)do (2.10)

where p(I|o) is the single pixel speckle model, given by (2.4) and (2.7) for the
1-look and L-look cases, respectively. Eq. (2.10) is referred to as the product
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model of the observed intensity [11]. One of the assumptions that must be
made to state the validity of the model (2.10) is that the RCS fluctuation
scale is larger than that of speckle.

Even though several pdfs have been proposed for the intensity I (e.g.,
Weibull, log—normal), one of the most used pdf is the K distribution. The K
distribution is a parametric pdf that, with a suitable choice of its parameters,
well fits observed intensity histograms. It has also the advantage that a closed
form of the RCS pdf, i.e., p(0), exists such that the product model in (2.10)
yields a K distribution. In fact, if the RCS pdf is a I" distribution, that is

1

plo) = (?) ;Z;>e—”f (2.11)

o

where v is an order parameter and & is the mean, then the pdf of the observed
intensity signal is given by

where K,(-) is the modified Bessel function of order n and I is the mean
of intensity. Fitting the parameters of the pdf to the observed signal allows
information on the RCS to be retrieved.

The model in (2.12) yields a pixel-wise statistical description of the ob-
served intensity values. A complete description of the scene, however, needs
the inclusion of the autocorrelation function into the model. If such a func-
tion is estimated from the observed data, then the exact autocorrelation
function of the RCS is quite difficult to achieve and usually it does not exist
in a closed form [17].

2.2 Modelling of noisy SAR signal

From the previous discussion, it emerges that modeling the received SAR
signal should take into account several physical, statistical and engineer-
ing aspects of the overall system. Such a complexity makes the process of
extracting average backscatter information from the observed signal a non-
trivial task. From a signal processing perspective, a first step towards finding
efficient solutions is stating the acquisition model in the simplest form as
possible. In [11], several multiplicative models of speckle are described and
classified according to the autocorrelations of the imaged scene and of the
noise term.
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Perhaps, the most used model in the literature on despeckling is the
following:

g=fu (2.13)

where f is a possibly autocorrelated random process and represents the noise—
free reflectivity; w is a possibly autocorrelated stationary random process,
independent of f, and represents the speckle fading term; g is the observed
noisy image. All the quantities in (2.13) may refer to either intensity or
amplitude as well as to single-look or multilook images, whose pdfs have
been described previously.

The variable u may be assumed as spatially correlated [19]. Recently,
it has been shown [20] that a preprocessing step that makes speckle uncor-
related, that is “whitens” the complex signal, allows despeckling algorithms
designed for uncorrelated speckle to be successfully applied also when speckle
is (auto)correlated. Therefore, in the following we shall analyze only algo-
rithms working under the hypothesis of uncorrelated speckle.

The nonlinear nature of the relationship between observed and noise-free
signals makes the filtering procedure a non-trivial task. For this reason, some
manipulations have been introduced to make the observation model simpler.
Several authors adopt the following model, derived from (2.13):

g=f+u—-1)f=f+n, (2.14)

where v = (u—1) f accounts for speckle disturbance in an equivalent additive
model, in which v, depending on f, is a signal-dependent noise process.

A second way that allows the multiplicative noise to be transformed into
an additive one is using a homomorphic transformation [21]. It consists of
taking the logarithm of the observed data, so that we have

loggi = lo/gf 4,— log u (2.15)

g=rf+u
where ¢/, f" and u’ denote the logarithm of the quantities in (2.13). Unlike the
case in (2.14), here the noise component v’ is a signal-independent additive
noise. However, this operation may introduce a bias into the denoised image,
since an unbiased estimation in the log-domain is mapped onto a biased
estimation in the spatial domain [22]; in math form, if u exhibits Efu] = 1,
Elu] = Ellog(u)] # log(E[u]) = log(1) = 0.

The relations in (2.14) or in (2.15) express two formulations of the prob-
lem in the spatial domain; a despeckling method which estimates f (f’) by
directly processing g (¢') is said to be a space domain filter.

Over the last two decades, approaches to image denoising that perform
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estimation in a transformed domain have been proposed. Transforms derived
from multiresolution signal analysis [23, 24|, such as the discrete wavelet
transform (DWT), are the most popular in this context. Despeckling method
adopting a multiresolution framework is usually referred to multiresolution
filter or scale-space filter. Despeckling in a transformed domain is carried out
by taking the direct transform of the observed signal (g or ¢’ in such case),
by estimating the speckle-free coefficients and by reconstructing the filtered
image through the inverse transform applied to the despeckled coefficients.
A more in-depth analysis is given in 2 3.

Figure 2.2 summarizes the despeckling process on various versions of the
additive models. The block “Estimator” attempts to achieve a speckle-free
representation of the signal in a specific domain; for example, in the transform
domain, as in Figure 2.2-(c), or in the homomorphic-transform domain, as
in Figure 2.2-(d), in which the noise-free informative signal is contaminated
with additive signal-dependent or signal-independent noise, respectively.

g=f+v—>| Estimator f

(a)

g=fu_—»{ log > Estimator > exp —> f
(b)
g=f+v —>| w >| Estimator > Wli—s f
(c)
g=fu_—>{ log > W > Estimator > Wll—>expt— f

(d)

Figure 2.2: Additive models commonly used in despeckling algorithms: (a)
signal-dependent in spatial domain; (b) signal-independent in spa-
tial domain; (c) signal-dependent in transform domain; (d) signal-
independent in transform domain.




Chapter 3

Bayesian methods in the
wavelet domain

The aim of this chapter is to present the framework of despeckling based
on the Bayesian estimation in the undecimated wavelet transform (UDWT)
domain. The fundamental of Bayesian estimation and the wavelet transform
are firstly recalled, and emphasis to the problem of probability density func-
tion (pdf) is given. In the second part, a review of some methods proposed
in the literature is discussed. Finally, a fast MAP despeckling filter which
reach state-of-art performances is presented.

3.1 Preliminary concepts

3.1.1 Bayesian estimation

From the discussion in Section 2.2 about the most widely used signal
models for despeckling, it can be seen that the multiplicative model is often
manipulated in order to obtain an additive one. The basics of Bayesian
estimation are now reviewed for the simplest case, shown in Figure 2.2-(a),
even though analogous derivations hold for all the other cases in Figure 2.2.
Since the following analysis can be generalised to quantities which belong to
any domain, the symbols 8, r and x will be used. The relationship between
such quantities is given by the model of additive signal-dependent noise:

r=0+r (3.1)

A Bayesian estimator [25] tries to achieve an estimate 6 of 6 - which is
assumed to be a random process - by having some prior information about
the signal to be estimated, summarized in pg(f), the a-priori pdf of 6. Given

15
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tpe(#) and the pdf of noise process pr(r), the a posteriori probability density
function of the noise-free reflectivity conditional to the observed signal, that
is po|x (f]z), can be achieved. Specifically, from the Bayes’ rule it follows

. :pX\e(xw)p@(@)
perc(fle) =

__ prie(z—010)pe(0)
[ prie(z — 0]0)pe(0) do

(3.2)

Different Bayesian estimators can be defined according to the choice of
the Bayesian “risk”, i.e., the function of the estimation error € = 6 — 6 to be
minimized.

The maximum a-posteriori probability (MAP) estimator minimizes the
quantity F[C(e)], where C(g) = 1 for |¢| > 0 and C(e) = 0 elsewhere. It is
well-known [25] that the solution , when ¢ is small, is given by

OMAY — arg m(slxp@|x[9|x]. (3.3)

By exploiting the Bayes rule and the additive model, it yields

GMAP — argmax pxje(r|f)pe(0)
Z (3.4)
= arg mQaX pR(fU - 0)p9(0)
or, equivalently,
OMAP — arg max [log pr(z — 0) + log pe(0)]. (3.5)

The minimum mean square error (MMSE) estimator minimizes the quan-
tity E[e?] = E[(0 — 0)?]. The solution is given by

PMSE — Eo x[0]7] (3.6)

which is the expectation of the noise-free signal conditional to the noisy
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observation. Again, by exploiting the Bayes rule and using (3.1), it follows

OMMSE / Opo)x (0)x)db
0)
/pre (z]0) p@ >d9 (37)

[ Opr(z — 9) o(0)df
[ pr(z—0)pe(0)do

The estimate in (3.7) would require the knowledge of the nonstationary joint
pdfs of any orders.

A simpler solution requiring only second order moments is the linear
MMSE (LMMSE) estimator, in which the MMSE solution is sought by con-
straining the estimator to be a linear combination of the observed variables.
The LMMSE estimator is given by

éLMMSE — E[Q] + C@mc_l

rx

(x — Elz]), (3.8)

in which Cp, is the covariance matrix between ¢ and x and C,, is the au-
tocovariance matrix of x. Prior knowledge is now embedded in the second
order statistics of the noise-free and noisy signals, which can be derived by
exploiting the additive model.

Finally, the absolute error function C(¢) = |¢| yields the minimum mean
absolute error (MMAE) estimator, corresponding to the median of the pos-
terior pdf pex(0|x), that is

1 éMI\/IAE
5= petele)as

élVIMAE

B f,oo pxje(z]0)pe(0) db
fj;opme(x\@)p@(@) do

éMMAE

_ I~ pr(z—0|0)pe(8)dd | (39)

S22 pr(x — 0]0)pe(0) do

Egs. (3.7), (3.8), (3.4) and (3.9) reveal that all solutions, besides to the
a-priori information on 6, require also knowledge of the pdf of the noise
component r.
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3.1.2 Wavelet transforms

A Bayesian estimation carried out in the spatial domain leads to a solution
that adaptively depends on local statistics, i.e., is a space-adaptive estima-
tor. A Bayesian estimation carried out in the multiresolution, or scale-space,
domain may have the extra value of leading to a scale-space adaptive es-
timator, that is, an estimator adaptive not only in space but also in scale.
Such an extra value is not automatic and requires careful pdf modeling in the
transformed domain, otherwise the spatial adaptivity may get lost in favor
of the scale adaptivity.

The wavelet analysis provides a multiresolution representation of contin-
uous and discrete-time signals and images [24]. For discrete-time signals, the
classical maximally decimated wavelet decomposition is implemented by fil-
tering the input signal with a lowpass filter Hy(z) and a highpass filter H;(z)
and downsampling each output by a factor two. The synthesis of the signal is
obtained with a scheme symmetrical to that of the analysis stage, i.e., by up-
sampling the coefficients of the decomposition and by lowpass and highpass
filtering. Analysis and synthesis filters are designed in order to obtain the
perfect reconstruction of the signal and by using different constraints (e.g.,
orthogonal or biorthogonal decomposition, linear phase filters). Applying the
same decomposition to the lowpass channel output yields a two-level wavelet
transform: such a scheme can be iterated in a dyadic fashion to generate a
multilevel decomposition. The analysis and synthesis stages of a two-level
decomposition are depicted in Figure 3.1-(a).

In several image processing applications, e.g., compression, the DW'T is
particularly appealing since it compacts energy in few coefficients. How-
ever, for most of the tasks concerning images, the use of an undecimated
discrete wavelet transform (UDWT) is more appropriate thanks to the shift-
invariance property. UDWT is also referred to as stationary WT (SWT)
[26, 27], as opposite to Mallat’s octave (dyadic) wavelet decomposition DWT
[24], which is maximally, or critically, decimated. The rationale for working
in the UDWT domain is that in DWT, when coefficients are changed, e.g.,
thresholded or shrunk, the constructive aliasing terms between two adjacent
subbands are no longer canceled during the synthesis stage, thereby resulting
in the onset of structured artifacts [28].

As to the construction of the UDWT, it can be shown that omitting the
downsamplers from the analysis stage and the upsamplers from the synthesis
stage, then the perfect reconstruction property can still be achieved. The
relative scheme for a two-level decomposition is depicted in Figure 3.1-(b).
In the block diagram, by applying the noble identities [29], the downsamplers
(upsamplers) have been shifted towards the output (input) of the analysis
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Analysis stage Synthesis stage

Analysis stage Synthesis stage
T Hl(Z) ¢2 TZ Gl(z) j—
Ho(z) Hy(22) (4 ta G1(z%) Go(2)
L Hy(2?) v4 ta Go(2?)

(b)

Figure 3.1: Two-level non redundant wavelet decomposition / reconstruction (a)
and the equivalent scheme obtained applying the noble identities (b).
The undecimated wavelet transform is obtained by eliminating the
downsamplers and upsamplers contained in the shaded box.
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(synthesis) stage. Eliminating these elements yields the UDWT. As a conse-
quence, the coefficients in the transform domain can be obtained by filtering
the original signal by means of the following equivalent transfer functions:

1 (2) = T Ho(="),
m=0 (3.10)

HI,,(2) = [1:[ HO(sz)] ¥ AC

where the subscripts [ and h refer to the approzimation (lowpass) and detail
or wavelet (bandpass and highpass) signals, whereas j denotes the level of
the decomposition. An example of the equivalent filters frequency responses,
relative to a four-level decomposition, is shown in Figure 3.2.

1
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Figure 3.2: Equivalent filters frequency responses obtained from 8-tap
Daubechies orthogonal wavelets [23].

Let A% (n) and W(n) denote the approximation and wavelet coefficients,
respectively, of the signal x at the jth level of the decomposition, whereas
n is the spatial index. Since the wavelet transform is linear, from equation
(2.14), it follows

Al (n) = A4(n) + Al (n) (3.11)
W (n) = Wi(n) + Wi(n) (3.12)

Usually, only the wavelet coefficients (3.12) are processed for despeckling; the
baseband approximation is left unchanged.
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The wavelet transform is usually implemented for images by using sepa-
rable filtering along the columns and the rows of the image. The effect of this
processing is the extraction, in each subband, of a rectangular region of the
frequency plane which corresponds, in the spatial domain, to the extraction
of horizontal and vertical details with different degrees of resolution. The
frequency plane splitting relative to a single level decomposition is given in
Figure 3.3-(a). However, extracting directional information has been demon-
strated to be useful in several image processing tasks.

Wy
s
HH LH HH
HL LL HL
T
—T 0 Wy
HH LH | HH
—T
(a)
Lowpass
D subband
d|
o [ ] drectionl
subbands
Bandpass
— directional
subbands

(b)

Figure 3.3: Frequency splitting from a single-level separable DWT (a), obtained
by lowpass (L) and highpass (H) filtering along the rows and the
columns (LL, HL, LH, and HH denote all possible combination); in
(b), the splitting obtained from the nonsubsampled Laplacian pyra-
mid decomposition (on the left) and the nonsubsampled directional
filter banks (on the right) composing the contourlet transform.
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Recently, multiresolution transforms embedding directional information,
such as contourlets [30], curvelets [31, 32], and many others, have been suc-
cessfully applied to denoising in general and despeckling in particular. The
nonsubsampled contourlet transform is a combination of a nonsubsampled
Laplacian pyramid (NLP) decomposition and of nonsubsampled directional
filter banks (NDFB). The relative frequency splitting is depicted in Figure
3.3-(b). As in the case of the UDWT, also the coefficients of the nonsubsam-
pled contourlet transform can be achieved by means of linear time-invariant
(LTT) systems directly applied to the input, which allows statistical param-
eters to be easily computed. Using directional information is effective in
terms of despeckling performance [33], even though a higher computational
cost must be paid due to the need of a nonseparable implementation.

By assuming that the transform is linear, the additive models in (2.14)
and (2.15) can be easily generalized to a generic transformed domain. Specifi-
cally, for the formulation given in (2.14), if W, denotes the transform operator
applied to the signal z, it follows

W, = W; + W, (3.13)

In an analogous way, by applying both the homomorphic filtering concept
and the linear transform, the observation model in (2.15) becomes

Wg/ = Wf/ + Wy (3.14)

The Bayesian estimator explicitly derived for the additive model in (2.14),
can also be applied to the additive models defined in (2.15), (3.13), and (3.14)
by simply changing the type of variables and prior knowledge, that is: 1) the
prior pdf of the signal of interest (related to the reflectivity) and represented
by f, f', Wy and Wy in equations (2.14), (2.15), (3.13), and (3.14), in that
order; 2) the pdf of the additive noise component, represented by v, u’, W,
and W, in the same equations.

In the following dissertation will uniquely focus in the UDWT domain,
hence it will be assumed the symbols appearing in (3.13) have the same
meaning of the corresponding ones in (3.12); for sake of simplified notation,
whenever the reasoning refer to a generic subband, the subband index j will
be dropped.

3.1.3 Pdf modeling

Bayesian estimation relies on an accurate probabilistic modeling of the
signals under concern. However, the choice of pdfs suitable for modeling the
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data of interest is not a simple task. In Section 2.2, some of the most used
pdfs for the speckle and reflectivity processes have been described. While the
former derive from the image formation mechanism and may be considered
as valid in most of the images where the fully developed speckle model holds,
the latter highly depend on the imaged scene. It should be noted again that
different types of landscapes and land covers induce different distributions
on the reflectivity signal. Models of the underlying land cover may help to
derive a pdf of the imaged signal, but this knowledge may not be available
for despeckling or may be insufficient. As to the modeling of signals in the
homomorphic domain, an exact derivation of the log-intensity and of the log-
amplitude of the fading variable is available [22], whereas the characterization
of the backscattering coefficient still remains crucial.

The modeling of the involved variables may be simpler and more robust
if one works in a multiresolution, or scale-space, domain, instead than in the
spatial domain. In fact, it is well-known that the pdf of wavelet coefficients
can be approximated by several unimodal distributions - as noticed by Mallat
in his seminal paper [24], where a generalized Gaussian was used - that can
be described by a small number of parameters. They can be adaptively
estimated from the coefficients of the observed image, independently of the
distribution of the image that is transformed.

Validating a hypothetical pdf model is, in general, quite hard. In some
works, wavelet coefficients pdfs are validated “globally” from the observation
of the histogram of the amplitude of the coefficients in a whole subband.
However, since the signal is nonstationary, spatially adaptive methods should
be used instead. A single observation, or realization, of the scene is usually
available; thus, one may only conjecture that wavelet coefficients “locally”
follow a given distribution (only few samples are available to perform the
validation of the local model) whose parameters locally vary. A way to check
the validity of the pdf model is experimentally observing the performances of
despeckling filters on either true SAR or synthetically speckled images. As
a general rule of thumb, the higher the number of parameters, or degrees of
freedom, of the pdf, the better its ability to model the true wavelet coefficients
pdf within a whole subband, but the lower their estimation accuracy from the
few samples available in a local window within a subband and the higher the
complexity of the resulting estimator. Therefore, the use of reasonably simple
distributions may be expected to yield better results than more complex ones,
that is, overfitting is not rewarding.

Another fact that should be considered when a pdf model is chosen is
the computational cost. Some combinations of estimation criterion and pdf
model yield a Bayesian estimator that can be achieved only numerically [34].
This fact may prevent from using the filter when huge amounts of data need
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to be processed. In this case, a closed form solution may be preferred, even
though a possible loss of performances may be experienced.

In order to find the explicit expressions of the estimators defined in Sec-
tion 3.1.1, a model for the pdfs of the wavelet coefficients relative to the
original reflectivity and to the additive signal-dependent noise is needed. In
the following, different pdf models are proposed. The different models will
be denoted by two acronyms (or labels) referring to the statistical distribu-
tion of the coefficients of the signal W and of the noise W,. The proposed
pdfs represent a trade-off between simplicity (few parameters to be estimated
from the observed data) and modelling capability.

G—G model A classical pdf modelling used for this purpose is the zero-
mean Gaussian (G) distribution [35], which depends only on the variance o
and is symmetric around zero,

(@) = - (3.19
x) = exp| ——= | . .
Px o p 902
This is a quite simple and particular case, because it is know that the pos-
terior pdf of a G-G model is a Gaussian distribution. Hence, the three
considered Bayesian estimators yield the same expression.

GG—-GG model Since the birth of the wavelet recursive algorithm by
Mallat [24], a generalized Gaussian (GG) pdf has been used to model im-
age wavelet coefficients and several other authors use the GG distribution
for many image processing tasks involving wavelets. A zero-mean GG pdf
depends only on two parameters and is characterized by being symmetric
around the mean. Its expression is given by

v-n(v,o) y
_ . 1
() = | ST exp (lv.0) - a1} (3.16)
where I is the Gamma function, ¢ is the standard deviation of the distribu-
tion, v is a shape factor, and n(v, o) is given by

\71/2
n(u,a)zé{?ﬁ?yﬂ | (3.17)

The GG distribution is still reasonably simple, since the use of only two pa-
rameters allows different levels of “peakedness” to be achieved. As particular
cases, the GG pdf includes both the Laplacian and the Gaussian pdfs, for
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v =1 and v = 2, respectively. A plot of GG pdf curves for different values
of v is shown in Figure 3.4

25 q

0.5 4

Kol

Figure 3.4: Zero-mean GG pdfs obtained with unity variance and different vs.

In [36], a method for the estimation of the parameters relative to the
GG model, i.e., the standard deviation ¢ and the shape factor v of the
distributions relative to Wy W, is given. The estimation of the parameters
is based on the computation of some moments of the observable variables ¢
and W.

L—G model Some experimental observations of the shape parameters sug-
gest us that the GG assumption for the distributions of the wavelet coef-
ficients can be simplified. As to the pdfs of the wavelet coefficients of the
speckle-free signal, i.e., py,, an example of the histogram of the estimated
shape parameters, obtained from the test image Lena degraded with 4-look
synthetic speckle, is shown in Figure 3.5-(a): as can be seen, it may be
assumed that they roughly approach the value 1. An analogous example,
relative to the pdfs of the wavelet coefficients of the signal-dependent noise,
ie., pwowe = Pwy (Wy—Wy), is shown in Figure 3.5-(b): in this case, it may
be assumed the shape parameters approach the value 2. A similar behaviour
has been also encountered for different subbands and different decomposition
levels. Hence, the simplest combination of Laplacian and Gaussian pdfs gives
the L—G model. Specifically, it assumes that the wavelet coefficients of the
noise—free reflectivity follow a zero-mean Laplacian distribution, whose pdf
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Figure 3.5: Examples of the histogram of the estimated shape parameters: (a)
wavelet coefficients of the speckle-free signal; (b) wavelet coefficients
of the signal-dependent noise.

is given by

1 V2|z|
Px($)—\/§anp (— - ) (3.18)

As it can be seen, it depends only on a single parameter, the variance 0. In
the L—G model, the coefficients of the signal-dependent noise are supposed
to be distributed as a Gaussian.

MIX—-G model An alternative model based on Gaussian and Laplacian
pdfs is the MIX-G model, in which the wavelet coefficients of the noise—
free reflectivity are supposed follow a mixture of zero-mean Laplacian and

Gaussian kernels, having both the same variance 2. Such a pdf is expressed
by:

1 V2| 1 x?
px(z) = aﬂa exp (— - ) +(1—a) N exp (_Tc?) . (3.19)

where « is the mixture coefficient (0 < a < 1). As it can be seen, this
distribution is characterized by two parameters. Concerning the estimation
of the mixture coefficient v appearing in (3.19), it can be easily shown that
this can be computed as

E[W?
a= [4f]—1. (3.20)
30Wf

Both E[W}] and o7y, can be obtained by using the method in [36], where
the statistical moments are replaced by the empirical averages. Also in this




3.2 Despeckling filters in the UDWT domain 27

model, the coefficients of the signal-dependent noise are supposed to follow
a Gaussian distribution.

3.2 Despeckling filters in the UDWT domain

In this section, some Bayesian despeckling filters in the undecimated
wavelet domain that use a multiresolution analysis are proposed and dis-
cussed. The methods refer to the additive model in (3.13), that is, they do
not exploit the homomorphic transform, which may introduce bias in the
estimation of the despeckled image. A performance gain in the removal of
speckle can be achieved by considering strategies that deal with the SAR
image heterogeneity, as it is explained in the last part of the section.

Figure 3.6 outlines the flowchart of a generic Bayesian despeckling filter
in the UDWT domain. As it appears, the majority of processing is carried

Spatial | _|UDWT domain s“b';';‘"d Bayesian
statistics statistics par estimation
modeling y
[ i Tl
| e
| . !
H I I I
] | I |
I | I |
! Yy oy

Speckled UDWT » | Subband »n INverse Despeckled
image | 'plube illg V| " | uDWT image

Legend: . > o »
-—--» “necessary to” relationi - . .
— Processing flow | |
UDWT: Undecimated wavelet Subbar]d |
transform "

UDWT domain

Figure 3.6: Flowchart of Bayesian filtering in the undecimated wavelet domain.

out in the transform domain. Statistics in the transform domain are directly
calculated from the spatial statistics of the image by exploiting the equivalent
filters (3.2), as firstly proposed by Foucher et al. [37]. By substituting the
pdfs of a specific model into (3.2) and selecting the Bayesian functional to
be minimized, the mathematical expression of a Bayesian estimator can be
obtained. The results obtained solving (3.4), (3.7), and (3.9) are presented
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model-by—model below, explicating that the estimation is performed in the
UDWT domain. Thus, in the following, the symbols 6, » and = are replaced
by Wy, W, and W,, respectively, such that the relationships (3.1) and (3.13)
are equivalent. A common assumption for all the proposed solutions is that
Wy are W, statistically independent.

Some of the results presented in this section have been derived elsewhere
in the literature. Several estimators, instead, are an original contribution of
the presented study. A complete mapping of estimators for several Bayesian
criteria and for several different pdfs will allow to derive insights about the
influence of the choice of either the estimation type or the pdf modelling on
the overall performances.

For sake of simplicity, the following expressions are defined:

def 0-12/[/
p= V2 (3.21)
O'Wf
o V2
ot YWy (322
O'Wf
ot T (3.23)
UWf

2 oo
erfe(z) = —— e " dt, (3.24)
VT Jo

A = exp (—¢) erfe (w — %) , (3.25)
B = exp (¢) erfc (1/) + %) , (3.26)
2
c= ! exp | — Wy : (3.27)

\/27r (a%vf + U%VU>

W,

D= 3.28
1+ w2’ ( )
e?erfc <w + Do > , ifz <0
F(z) & V2ow, (3.29)

A—i—B—e_‘Perfc(w—%gff;ﬁ), ifx>0.
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3.2.1 G—G model

Due to the particular features of the Gaussian distribution, the expression
of the three estimators coincide in the LMMSE estimator (3.8) [35]:

2
O'Wf

37LMMSE __
f - Wg o2+ g2
Wy W

, (3.30)

where 0"2/Vf and of, are the variance of the noise-free and noise wavelet coef-
ficients, respectively. Hence (3.30) has a simple and closed analytical form.

3.2.2 GG-GG model

No estimator of this model is known in a closed analytical form. Mode,
mean and median of the posterior pdf have to be found numerically.

MAP estimator

The solution [36] is given by

2 nw,Vw
}\/IAP =argmax |In g

Wy 2F(1/VWJ)

nw,Vw, v
l v v _ _ Wv
+ In 21—\(1/va) (an |Wg Wf|>

=argain [, (W)™ + (w Wy = Wi)™ ] (331)

- (an |Wf|)VWf

In [36] an optimized solution is proposed to solve (3.31) numerically.
Despite the expression in (3.31) may appear implicit, MAP estimator for
the GG-GG model can be easily analysed as function of the parameters oy, ,

ow,, vw, and vy,. In Figure 3.7, a set of curves plotting W}V[AP v. W, is
given for particular values of such parameters: in Figure 3.7-(a), the curves
refer to ow, = 2, ow, =1, vy, = 2 and to Vw, varying from 0.4 to 2 with
step 0.2; in Figure 3.7-(b), the parameter vy, has been changed to 1.2 (the
other parameters were not modified). Such curves define a remapping of the
observed coefficients onto noise-free ones in a similar as done by hard and soft-
thresholding schemes proposed commonly used for denoising signals affected
by additive signal-independent noise [38, 39]. It is important, however, to
point out that for despeckling the wavelet coefficients are modified according
to the multiplicative model of speckle and thus adaptively vary according to
the locally estimated parameters.
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Figure 3.7: Mapping of the W}VIAP estimates vs. the observed Wy: in (a) ow, =
2, ow, = 1, vw, = 2 and vy, varies from 0.4 to 2 with step 0.2; in
(b) vy, = 1.2 (the other parameters are unchanged).
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MMSE estimator

The solution is given by

00 nw v VW,
— S Wi sy oxp A= (mw W)™ ]}
f co MweV v
[T TR ITE
oty P A= O, [Wy — W)™ 1} dW;
ey exp {[=(mw, Wy — W)™ ]} dW;

(1 /vw,)

(3.32)

The integrals in (3.32) need to be computed by using numerical methods.

MMAE estimator

The solution can be found by solving
HTNAP) =0,

where ¢;(x) is given by

oo Pty e = e ) ™11}
Cbl(I) = +oo MW,Vwg

[ i (=G, W)™ 1]}
[—
[~

) 2?I?‘W1U/I;VV[[//U eXp{ (77Wv|Wg - Wfl)VWv]} de B 1
([ Wy — W) ]} a2

(3.33)

MWy YWy
(1 /o) exp{

The integrals in (3.33) are computed numerically. The solution of the MMAE
estimator can be determined by using numerical methods for finding the zeros
of a function.

3.2.3 L—-G model

The MAP and the MMSE estimators can be obtained in closed analytical
forms [40].
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MAP estimator

The solution is given by

Wy—p, itW,>p
PAP =W, 4, W, < —p (3.34)

0 otherwise .

Hence, MAP estimator is given by a simple soft—thresholding.

MMSE estimator

The solution is given by

A}\/IMSE: (Wg_P)A‘F(Wg"'P)B.

N (3.35)

Although (3.35) is expressed in a closed analytical form, the product between
the exponential function and the complementary error function erfc may
cause numerical instability and must be handled with care.

MMAE estimator

The solution can be found by solving

Go(WHMAEY = 0| (3.36)
where ¢(x) is given by
exp(go)-GI'fC Y+ \%(gjiw )
AJ(FB W”)—%, ifz <0
bolz) = (3.37)
exp(—Lp)-eI'fC P— V‘;iiz
- A+(B va>+§, if 2> 0.

The mathematical details of the derivation can be found in Section 3.5.1. The
solution of the MMAE estimator can be determined with numeric routines
for solving non-linear equations.

3.2.4 MIX—-G model

By using the model in (3.19) for the reflectivity, only the MMSE estimator
can be obtained in a closed analytical form; the MMAE requires finding the
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zeros of a non-linear function, whereas the MAP is related to a maximum
search.

MAP estimator

The solution is given by

. 1 2|W
}\/IAP = argmax\ |« exp —M +
Wf \/§O'Wf JWf

1 I/Vf2 1 (Wy — Wf>2
(1—a) \/Z_waf exp (— 20wf2>] . VIrom exp [_TVVUQ] } .
(3.38)

MMSE estimator

The solution is given by

o aep )W, — ) A+ (W, + ) B+ (1~ a)2yo, -CD
a aexp (¥2) (A + B) + (1 — @) 2v 20w, C '

(3.39)
The mathematical details are given in Section 3.5.2. Equation (3.39) is ex-
pressed in closed analytical form, but the product between the exponential
function and the error function may be affected by numerical instability.

MMAE estimator

The solution is found by solving
G3(WHMAE) = | (3.40)

where ¢3(x) is defined by
¢s(z) =

aexp (V?)F(z) + (1 — a) V20w, Cerfc {(D — ) ( ”\};52)] ]
——. (3.41)
aexp (¥?) (A + B) + (1 — @) 2v20w,C

The mathematical details are given in Section 3.5.3. The solution of the
MMAE estimator can be determined with any common method for finding
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| GG-GG L-G MIX-G G-G
MMSE | MMSE GG MMSE LG MMSE MIX

MMAE | MMAE GG MMAE LG MMAE MIX LMMSE
MAP MAP GG MAP LG MAP MIX

Table 3.1: Acronyms of despeckling filters proposed in Section 3.2, for each esti-
mation method (along columns) and statistical model (along rows).

the zeros of a function. Moreover, the product between the exponential
function and the error function may be affected by numerical instability.

Filters’ acronyms

In the following of this thesis, the filters presented in Section 3.2 will be
also referred by means of acronyms for sake of simplicity. They are reported
in Table 3.1 for each combination of a statistical model with an estimation
method.

3.2.5 Experimental results and comparison

Simulated Speckled Data

To assess the performances of the different despeckling filters tests on
synthetically speckled images are presented. The test images data set in-
cludes four 512 x 512 8-bit grayscale images: Lena, Barbara, Stockton, Aerial
(the last two images are aerial photos). The images have been taken from
standard image databases and have been chosen for their different texture
content: Lena and Stockton can be considered as containing smooth details,
whereas Barbara and Aerial contain sharper details. The reader should con-
sider that such original optical images play the role of the square root of
noise—free reflectivities (1/f); thus, in order to simulate the noisy acquisi-
tions, they have been squared to obtain the noise-free SAR reflectivity, or,
simply, noise-free image (f). Then they have been multiplied by a synthetic
L-look speckle term to generate the noisy image or reflectivity (g). Results
for L = 1 and L = 4 are presented. Bi-orthogonal 9/7 wavelet filters and
four levels of decomposition have been used in all cases. Tables 3.2-3.5 re-
port the values of peak-to-noise-ratio (PSNR) calculated between noise-free
and filtered images obtained by using all the despeckling filters described in
Section 3.2 (best and worst performances for each value of L are denoted
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with bold and italic fonts, respectively). PSNR is defined as

2552

where MSE is the mean square error between the original optical image

(v/f) and the square root of the filtered reflectivity (\/} ). The tables are
organized in order to facilitate the reading of the results by using as a key
either the estimation criterion or the pdf model.

As a first consideration, we observe that the texture content of the images
has a strong influence on the performances of the filters. For sharp images
(Barbara and Aerial), the results obtained with the different filters are quite
uniform. For example, with a 1-look degradation, the difference A between
the best and the worst performing filter is only A = 0.41 dB for Barbara
and A = 0.52 dB for Aerial. For smooth images (Lena and Stockton), the
use of different filters has a greater influence on the results, being, for 1-look
degradation, A = 1.8 dB and A = 1.5 dB for Lena and Stockton, respectively.

Furthermore, from the observation of Tables 3.2-3.5, we can understand
that sharper images are more difficult to be filtered. In fact, considering the
filtering gain, i.e., the difference between the raw PSNR (computed between
the original and the noisy image) and the PSNR after filtering, we see that
smooth images (Lena and Stockton) exhibit a larger filtering gain than sharp
images (Barbara and Aerial).

From the observation of Table 3.2, relative to the image Lena, we ob-
serve that MAP estimation outperforms the other estimation criteria inde-
pendently from the used pdf modelling, being the GG-GG model the best
performing one. If, instead, we analyse the results of the different pdf models
given an estimation criterion, we observe that the GG-GG model outperforms
the others (in 8 cases over 9), even though the differences with the L-G model
are quite small.

From the results in Table 3.4, relative to the image Stockton, we observe
a behaviour similar as that of the image Lena. In fact, MAP is the best
estimation criterion (in almost all cases), whereas the GG-GG model out-
performs the other pdf models. We also observe that the L-G model yields
results close to the GG-GG model especially when the MAP estimation is
used.

If we analyse the results relative to the sharp images (Barbara and Aerial),
presented in Tables 3.3 and 3.5, being the differences among the filters quite
limited, it is more difficult to extrapolate a clear trend about the influence of
modelling and estimators. In these highly detailed images, we observe also
that the MMAE criterion very often obtains a performance close to that of
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the best estimation criterion.

Computing times have been calculated and are shown in Table 3.6. The
GG—-GG model exhibits affordable processing times only for the MAP case,
which incidentally is the most performing. The L-G model represents the
best trade off between computational cost and filtering performances. The
MMAE estimator is not affordable, except for the trivial G-G case.

Number of looks

1 (raw = 12.08) 4 (raw = 17.77)
‘ MMSE MMAE MAP ‘ MMSE MMAE MAP
GG-GG 25.28 25.25 26.39 | 28.99 29.056  29.71
L-G 25.02 25.38  26.21 | 28.76 29.01 29.41
MIX-G 24.80 25.00  25.57 | 28.68 28.86  29.26
GG (LMMSE) 24.59 28.57

Table 3.2: PSNR (dB) obtained on Lena corrupted by various noise patterns.

Number of looks

1 (raw = 12.33) 4 (raw = 18.01)
| MMSE MMAE MAP | MMSE MMAE MAP
GG-GG 22.57 22.46  22.87 | 26.25 26.19  26.29
L-G 22.77 22.85  22.85 | 26.09 26.12  25.85
MIX-G 22.67 22,72 22.72 | 26.14 26.17  26.07
G-G (LMMSE) 92.59 26.18

Table 3.3: PSNR (dB) obtained on Barbara corrupted by various noise patterns.

Number of looks

1 (raw = 11.74) 4 (raw = 17.42)
‘ MMSE MMAE MAP ‘ MMSE MMAE MAP
GG-GG 25.27 25.34  25.72 | 27.55 27.60 27.70
L-G 24.61 25.00  25.75 | 27.29 2748  27.69
MIX-G 24.42 24.64 2518 | 27.24 27.38  27.63
G-G (LMMSE) 24.25 27.16

Table 3.4: PSNR (dB) obtained on Stockton corrupted by various noise patterns
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Figure 3.8:

Original test images: (a) Lena; (b) Barbara; (c) Stockton; (d) Aerial.
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Figure 3.9: Results obtained with the test images Lena (a)-(c) and Aerial (d)-(f)
degraded with 4-look speckle: noisy images (top); the best (middle)
and the worst results (bottom) achieved according to Tables 3.2 and
3.5.
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Number of looks

1 (raw = 9.23 ) 4 (raw = 14.92)
| MMSE MMAE MAP | MMSE MMAE MAP
GG GG 2077 20.82 20.67 | 2354 2351 2342
L-G 2045 20.67 20.71 | 2347 2355  23.32
MIX-G 2039 2051  20.72 | 2350  23.56 23.57
G-G (LMMSE) 20.50 23.48

Table 3.5: PSNR (dB) obtained on Aerial corrupted by various noise patterns.

| GG-GG L-G MIX-G GG
MMSE | 10° 10 10" 10!
MMAE | 10° 10" 10°+10* 10!
MAP | 102 10" 10°+10* 10

Table 3.6: Execution times (order of magnitude in seconds) of the different de-
speckling filters.

COSMO-SkyMed Data

A true X-band SAR image produced by the COSMO-SkyMed satellite
constellation of the Italian Space Agency has been processed for despeckling.
The image has been acquired and processed in Hlmage Stripmap mode and
is stored in a single look complex format. The detected intensity image,
having having theoretical SNR equal to 0 dB, spatial resolution of approxi-
mately three meters and containing both natural and man-made structures,
is believed to provide a challenging subject for despeckling.

Fig. 3.10 shows the original SAR image, in which five homogeneous
areas, identified with capital letters, have been used for the estimation of
the equivalent number of look (ENL) after filtering, a quantitative measure
of the filtering gain commonly used when a reference image is not available
[11][17]. ENL is defined as

:

ENL = —,

o4

f
being 1 ; and JJ% are the mean and the variance of the filtered reflectivity,
respectively, calculated on the considered portion. A visual comparison of
the filtered images is presented in Fig. 3.11. The despeckling filters selected

for this comparison are those characterised by the MAP estimation criterion
(for all the pdf models) or by the L-G pdf model (for all the estimation
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criteria). The result obtained with the LMMSE filter is also shown. The
ENL computed after filtering in the five homogeneous areas are reported in
Table 3.7.

From Fig. 3.11 and from table 3.7 it can be observed that MAP filters
based on GG-GG and on L-G models are comparable in performances, even
though the one based on GG-GG modelling seems to be slightly more ac-
curate on textures. However, the L-G MAP filtering allows a significant
computational saving to be achieved. Conversely, the LMMSE estimator is
somewhat poorer, especially in homogeneous areas, but also on textures.

It is important to highlight that true SAR images differ from simulated
speckled images because the fully developed multiplicative speckle model
does not hold on highly heterogeneous areas and strong scatterers. Hence, a
preprocessing step of point targets, and thicker strong scatterers in general,
images has been applied for filtering the COSMO-SkyMed. As proposed
in [41], targets are firstly detected as upper percentiles of the noisy image
histogram, clipped to the threshold value and their original values are stored.
Then, wavelet analysis is performed. After synthesis of the despeckled image,
point targets are reinserted in their original places.

Actually, adjustments of Bayesian estimators to SAR scene heterogeneity
are contained in [35][41] and allow a superior despeckling performance to be
achieved on highly heterogeneous textures and target. This topic will be
discussed in Section 3.3.

| A B C D E

raw 089 094 096 1.00 1.00
MAP GG-GG | 14.37 13.93 23.29 24.00 18.24
MAP MIX-G | 12.78 12.60 19.21 18.96 15.03

MAP L-G 14.77 15.05 22.72 23.36 18.66
MMAE L-G | 10.34 10.22 16.27 14.48 12.39
MMSE L-G | 948 9.37 13.23 13.04 11.14

LMMSE 859 856 11.62 11.90 10.19

Table 3.7: ENL obtained on different areas of the COSMO-SkyMed test image.
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Figure 3.10: Original COSMO-SkyMed image (1024 x 1024, 3m resolution): five
homogeneous areas are denoted with capital letters and used for
ENL estimation.
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Figure 3.11: Results obtained despeckling the test single look COSMO-SkyMed
image (a detail is visualised) with different filters: (a) LMMSE; (b)
GG-GG model & MAP; (c) MIX-G model & MAP; (d) L-G model
& MAP; (e) L-G model & MMSE; (f) L-G model & MMAE.
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3.3 Segmentation and classification in UDWT
domain

3.3.1 Adjustments for SAR image heterogeneity

In several despeckling methods, different filtering strategies are used ac-
cording to the texture content of the scene. In [42, 43], the coefficient of
variation is used to discriminate among homogeneous, textured and highly
heterogeneous (or point target) areas. Pixel belonging to the first two classes
are filtered by using simple averaging and ['-MAP, or another local-statistics
filter, whereas no filtering is attempted on point targets. A strongly scat-
tering target, however, is concentrated in space, but after wavelet analysis
its response will be somewhat spread because of the finite support of the
wavelet function. Thus, also UDWT coefficients around a point target one
pixel wide will depend on the target response, unlike what happens in space.
In the past, this was perhaps the main objection towards a systematic use of
the wavelet transform to analyze SAR images.

Starting from [41], the proposal of a preprocessing step for point targets,
as described in Section 3.2.5, has allowed to contain the effect of strong scat-
terers when despeckling is performed in the transformed domain. Neverthe-
less, the main contribution of that paper is the introduction of segmentation
in the UDW'T domain. Specifically, UDWT subbands are segmented into tex-
ture classes according to an energy index computed in the UDWT domain.
For each subband, several classes of texture, from textureless (or homoge-
neous) to increasing textured levels, can be recognized. Homogeneous class
is usually the most populated and the statistical parameters are calculated
on a local basis for each wavelet coefficient belonging to it. On the other
side, the wavelet coefficients of each specific textured segment are supposed
to follow a unique shape factor of the GG function. Thus, the calculation of
the v is more accurate than in [36], thanks to the more consistent sample size.
Such a segmentation processing allowed the authors to propose an improved
version of the MAP GG filter, which, in the remaining of this thesis, it will
be referred to as the GG MAP-S filter. In Figure 3.12-(b) and 3.12-(c), the
results of LMMSE and GG MAP-S filtering on the image in Figure 3.12-(a)
are respectively shown. Furthermore, Figure 3.12-(d) reports the result ob-
tained by means of LG MAP-S filter, which will be introduced in Section
3.3.2.

A segmentation based approach seems also a natural solution to changes
in the speckle model occurring as the spatial resolution of single-look products
increases. This happens for very high resolution (VHR) new generation SAR
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Figure 3.12: Examples of the application of Bayesian estimators in the UDW'T
domain: (a) original COSMO-SkyMed 4-look StripMap image;
filtered versions obtained with (b) LMMSE; (¢) MAP GG with
segmentation (GG MAP-S) (d) MAP-LG with classification (LG
MAP-S).
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systems, especially with Spotlight products. As the size of the elementary
resolution cell decreases, the assumption of distributed scatterers is less and
less verified. In substance, what is homogeneous at 10 m scale may no longer
be so at 1 m. So, VHR SAR images are expected to be more textured and
contain more persistent scatterers, and less homogeneous regions, than earlier
products. A viable solution with segmented processing in UDWT domain
is introducing corrective factors for undersmoothing in textured segments,
depending on the class of texture energy measured in the UDW'T domain,
analogously to what proposed in [35].

3.3.2 MAP LG despeckling based on classification of
wavelet coefficients

In [41], it was demonstrated that the performance of the MAP GG filter
can be noticeably improved using a segmented approach, where each wavelet
subband is divided into different classes of heterogeneity according to the
texture energy of the wavelet coefficients of noise—free reflectivity. The key
point is to assume that the wavelet coefficients within a particular class follow
the same GG distribution, so that the parameters of the GG—-GG model can
be accurately estimated within each class.

As in the case of the GG-based MAP solution, also for the L-G based
method an improvement in performances can be achieved by using a classi-
fication of wavelet coefficients according to their texture content. The main
idea is that segmentation can be used, at a very little additional cost, to select
classes of wavelet coefficients to which apply different fast filters, or even no
filtering at all. The computational cost can be reduced of one order of mag-
nitude or more with respect to the solution obtained numerically with the
GG-GG model assumption, without significantly affecting the performance
in terms of speckle reduction.

Here, the key observation is that the L-G model may be well suited
only for a particular class of heterogeneity, whereas for other classes it may
be better to use alternative models. According to the class each wavelet
coefficient belongs to, we propose to apply the following three processing
strategies.

o Wavelet coefficients belonging to the lower energy class are processed
by means of the MAP LG filter reported in (3.34). This class represents
the set of coefficients of weakly textured areas, or homogeneous areas,
which are better modelled by the assumption of Laplacian distribution.

o Wavelet coefficients belonging to the middle energy class are processed
by means of the LMMSE filter reported in (3.8). The LMMSE filter is
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a general-purpose first—order approximation filter and it represents the
optimal MAP filter when both the coefficients of noise—free reflectivity
and the coefficients of speckle noise follow a normal distribution. We
assume that this hypothesis is sufficiently valid for coefficients belong-
ing to heterogeneous areas.

o Wavelet coefficients belonging to the last class are supposed to represent
strongly heterogeneous areas or point targets. Because these areas do
not follow any longer the fully—developed speckle model, the wavelet
coefficients of the last class are left unchanged.

In the following of this thesis, the above filtering strategy will be referred to
as LG MAP-S filter.

3.3.3 Experimental results and comparison

In order to ascertain the performance loss/gain of the LG versus the GG
assumption, a first set of quantitative results obtained by using a 8 bit 512 x
512 test image (Lena), degraded by synthetically generated speckle noise
according to the model in (2.13), are shown. Then, some results derived from
true SAR images are also presented. In the case of synthetically generated
speckle degradation, the quality of the filtered image can be measured by
means of PSNR. A more general method to assess the effectiveness of the
different filters, which can be used also when the noise-free reference image
is not available, is based on the statistics of the ratio image, defined as

a=g/f,

where f represents the estimated noise—free reflectivity. When a fully de-
veloped speckle model can be assumed, the above image represents the fil-
tered out speckle noise. Hence, for a good despeckling filter o should satisfy
Elu) =1 and Var[d] = 1/L, where L is the number of look [11]. The mean
and the variance of the ratio image are estimated by using a scatter plot
method similar to that proposed in [44]. The method consists of the follow-
ing steps. First, a scatter plot is obtained by plotting the occurrences of each
pair of local mean and standard deviation, calculated on a moving local win-
dow over the image 4. Hence, the bivariate pdf is estimated from the scatter
plot, and the mean and standard deviation of u are estimated as the coordi-
nates of the maximum of the bivariate pdf. The rationale of this method is
based on the assumption that each local window would give a contribution
centered on such a maximum if the size of the window is sufficiently large.
Thanks to using statistics computed on local windows, the above method is
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accurate also in the case of real SAR images, for which the assumption of
fully—developed speckle is not valid everywhere and global statistics would
be biased due to the presence of outliers.

The despeckling filters that are compared in the following are: 1) the
LMMSE filter [35]; the GG MAP-S filter [41]; the MAP LG filter proposed
in Section 3.2.3; the LG MAP-S filter proposed in section 3.3.2. All filters
use a 9/7 biorthogonal wavelet with four multiresolution levels.

In Table 3.8, the performance of the despeckling filters are compared in
terms of PSNR. The order of magnitude of the computational times, ex-
pressed in seconds and related to our Matlab implementation, are shown in
Table 3.9. As can be seen, the complexity of the LG filters is the same as the
LMMSE one. However, especially for multilook images, the performance of
the LG MAP-S filter is very close to that of the GG-MAP-S filter, showing
that a valuable computational gain is achieved at the price of almost unal-
tered performances in terms of PSNR. These results are confirmed by the
observation of Table 3.10, where the mean and the variance of u, estimated
by using the scatter plot method on the test image Lena for the different
algorithms, are shown.

Table 3.8: PSNR obtained by using Lena degraded by synthetically generated
speckle.

‘ 1-look 2-look 4-look 16-look
LMMSE 2459 26.62 2857 3261
GG MAP-S | 26.40 28.04 29.77 33.24
MAP LG 26.21 2777 2941  32.95
LG MAP-S | 26.21 27.82 29.55  33.27

Table 3.9: Order of magnitude of the computational times (in seconds) of the
analyzed algorithms for 512 x 512 images. Tests have been performed
on a 2.40 GHz CPU with 4GB RAM.

computational cost (s)

LMMSE 10
GG MAP-S 102
MAP LG 10
LG-MAP-S 10

As to the results on true SAR data, they have been assessed by using a 8
bit 512 x 512 4-look X-HH image representing an airport in Ontario, and a 16
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Table 3.10: Mean and variance of extracted noise 14, measured on synthetically
corrupted Lena through scatter-plot method.

1-look 2-look 4-look 16-look

Ha o, \ Ha o; \ Ha o; \ Ha o,

LMMSE | 0.928 0.698 | 0.957 0.360 | 0.975 0.186 | 0.992 0.047
GG MAP-S | 0.985 0.936 | 0.988 0.476 | 0.992 0.239 | 0.997 0.060
MAP LG |0.979 0.897 | 0.985 0.455 | 0.989 0.230 | 0.994 0.058
LG MAP-S | 0.979 0.897 | 0.985 0.455 | 0.989 0.230 | 0.995 0.057

bit 1024 x 1024 COSMO-SkyMed 1-look X-HH image representing an area in
Veneto, Italy. The original Airport and Veneto images are shown in Figure
3.13. Two portions of the above images, together with the despeckled versions
obtained with the LMMSE, GG MAP-S, MAP LG, and LG MAP-S filters,
are shown in Figure 3.14 and in Figure 3.15, respectively. In Table 3.11, the
mean and the variance of 4, estimated on the Airport and Veneto images
using the scatter plot method, are shown. From Table 3.11, we observe that
the LG methods have similar performances as the GG MAP-S method and
outperform the LMMSE one. It can be also observed that the performances of
the LG MAP and of the LG MAP-S are almost identical, highlighting that
they behave in the same way in homogeneous areas. However, comparing
Figures 3.14-(c) and 3.14-(d) (and, similarly,Figures 3.15-(c) and 3.15-(d)),
we observe that the LG MAP-S yields a better preservation of texture details.
As to the Veneto image, we notice that o2 is underestimated with respect
to the nominal value 1. This is probably due to the fact that Veneto images
present correlated speckle.

Table 3.11: Mean and variance of extracted noise u, measured on nominal 4-look
SAR image Airport and nominal 1-look SAR image COSMO-SkyMed
through scatter-plot method.

Airport COSMO-SkyMed
Ha o \ Ha o3

LMMSE | 0.9298 0.1584 | 0.8592  0.4044
GG-MAP-S | 0.9722 0.2878 | 0.9237  0.5916

LG-MAP | 0.9606 0.2540 | 0.8916  0.5463

LG-MAP-S | 0.9583 0.2515 | 0.8905  0.5348

The effectiveness of despeckling filters on textured areas can be better
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Figure 3.13: SAR images Airport (left) and Veneto (right). The scene coefficient
of variation C'y has been estimated in the highlighted areas.

evaluated by using the scene coefficient of variation [11], defined as

Cp=/(C2=a2)/(1+02) (3.42)

where C;, = 0,/p, is the coefficient of variation of the original image, o,
and p, are, respectively, the estimated standard deviation and the estimated
mean of the observed signal, and o, is the estimated standard deviation of the
speckle noise. Under the fully developed speckle model, an image processed
by a good despeckling filter should yield a coefficient of variation C'; = o¢ /i i
as close as possible to the corresponding C';. The scene coefficient of variation
has been evaluated on three 64 x 64 areas of Airport and three 96 x 96 areas
of Veneto, characterized by different features of the underlying scene, as
shown in Figure 3.13, and compared to the C’f obtained with the different
filters. The results are presented in Table 3.12. The LG-MAP-S filter shows a
behaviour very close to the GG-MAP-S in each analyzed area. Interestingly,
all filters tend to overestimate the C; for the Veneto image. This is in
accordance with the estimated o2, and can be explained by the presence of
spatially correlated speckle.

3.4 Conclusions

In this chapter, Bayesian estimators and different models for the pdf of
wavelet coefficients have been used to implement several non-homomorphic
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" i _ m

Figure 3.14: Results obtained by filtering 4-look Airport image (left): (a)
LMMSE; (b) GG MAP-S; (c) MAP LG; (d) LG MAP-S.

Table 3.12: Scene coefficients of variation (Cy) obtained on three 64 x 64 areas
of Airport and three 96 x 96 areas of COSMO-SkyMed.

Airport COSMO-SkyMed
A B C ‘ A B C
Cy 0.426 1.245 0.770 | 0.791 3.108 0.442

LMMSE | 0.367 1.002 0.606 | 1.048 4.118 0.502
GG MAP-S | 0.325 1.223 0.733 | 1.040 4.123 0.479
MAP LG | 0.312 0.937 0.530 | 1.016 4.100 0.437
LG MAP-S | 0.317 1.158 0.646 | 1.027 4.127 0.446
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Figure 3.15: Results obtained by filtering 4-look COSMO-SkyMed image (left):
(a) LMMSE; (b) GG MAP-S; (¢c) MAP LG; (d) LG MAP-S.
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despeckling filters in the undecimated wavelet domain. Classical MMSE,
MMAE and MAP estimator and different unimodal pdf models have been
chosen. Some of the filtering solutions were already considered in the litera-
ture, whereas some others are an original contribution of this study.

The availability of the whole set of filters coming from the different com-
binations and the comparison of their performances have allowed us to assess
the influence of either the type of estimator or the pdf model on the achieved
performance. Analysing the results obtained with synthetically speckled im-
ages, we have observed that the proposed filters have a different behaviour
depending on the content of the image. On images with smooth details,
the best results come from the maximum a-posteriori (MAP) estimator with
coefficients of reflectivity and noise both modelled as generalized Gaussian
(GG) densities. However, MAP estimation with Laplacian reflectivity and
Gaussian noise provides comparable results with a computational complexity
more than ten times lower, thanks to the closed-form analytical solution. On
images with sharp details, the performances of the proposed filters are quite
similar and the characteristics of the best filter can not be easily identified.

The proposed filters have been also tested on true high-resolution single-
look X-band SAR images (Cosmo—SkyMed). Filtering results achieved on the
Cosmo-SkyMed SAR image seems to confirm those achieved on synthetically
speckled images.

The Laplacian-Gaussian modeling is also combined with a segmentation-
based approach, in which different filtering strategies are applied according to
the classification of wavelet coefficients. The experimental results show that
the performance of the fast algorithm, assessed on both simulated speckled
images and on high-resolution SAR images, are comparable with those of
the segmentation-based MAP GG solution, with a computational complexity
more than ten times lower.

3.5 Appendix

In this section, for the sake of clarity, the quantities 8, r and x will replace
Wy, W, and Wy, in that order. Moreover the definitions given in equations
(3.21) — (3.29) are used.

3.5.1 L—G model: derivation of MMAE estimator

In order to evaluate the MMAE estimator, the numerator and the de-
nominator in equation (3.9) are needed.
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As to the denominator, according to the L—G model
too ] V2|6 1 (z —6)°
xr) = ——exp | — exp | — do
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The second integral can be written, after some manipulation, as
o0 _(7"70)2_L co 1 —x \/503 2 oy 2 -
T d9=/ o) g ()
0 0
= \/garA eV (3.44)

In an analogous way, it can be shown that the first integral in (3.43) can be

written as

2\ 2
0 w02, v 0 (9717\/3%) () 42
e 202 ) d@ — e 207 0 d@ . e\ )

—00 —0o0

= \/EUTB e’
2

Joining the results in (3.44) and (3.45) yields

1

pX(x):Z\/ﬁaged} (B+A) .

As to the numerator in equation (3.9)

 o® 0) df ! "
— Ry — 207 "
/_Oope( )pr(z =) 2y/T0g0, /_ooe |

Hence, if 6 < 0, we have

é - 0)2 é \/50% 2 2
=02, o . (e_x_ 2 ) ()42
e 207 2 de = (& r d9 - e\N7o 7

—00 —00

s Tr — é 2
=4[ =oerfe | ¢ + eV
\/g (1/1 \/iar)

(3.45)

(3.46)

(3.47)

(3.48)
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whereas, for 8 > 0, we have

0 =02, 3 9 =02 a0
B BT =2 Y
0

— o0

0 1 Vo2 or )2 o
:\/EUTB eV +/ Eﬁ( e ) de - 6(5) -
2 0
/T R _ b VP
\/gar (A+B)-e \/garerfc <¢ \/_Ur> . (3.49)

Substituting (3.48) and (3.49) into (3.47) yields

/ po(0)pr(z — 0) do

—00

2\/l%eelrfc (w + %) cevire 6<0
_ (3.50)
2\[00 (A+B) ¥ — 2\[ erfc (1/1 faT) eV’ 0>0,

and, by dividing for the expression in (3.46), the posterior cumulative distri-
bution function (cdf) follows:

exp(p)-erfc (w+ \’;gjr )
. A+B )
Poyy (6l) = (3.51)
exp(—p)-erfc <w— \lfaer )

11— ATE , 0>0.

D>
IN
o

The MMAE estimator in (3.36) is obtained by numerically solving Peg < (0]z)
0.5.

3.5.2 MIX—G model: derivation of MMSE estimator

To evaluate the MMSE estimator, the numerator and the denominator
in equation (3.7) are needed. According to the MIX—G model, the quantity
px(z) appearing at the denominator is given by

px () :/_:O [a\/%ae exp <_ \f{\fl) +(1-a) \/%ae exp (_ zi—;)]
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1 (x —0)?
5o exp | — 502 ] do
1 2 1 ZE2
—o— e (B+ A)+ (1 -0 e {_—}
2209 ( )+ ) 21 (0f + 02) P17 (03 + 02)
1 2
= Y (B+A)+(1-a)C. 3.52
05 (B A+ (=) (3:52)

Since, in general, we have

/_ h Ope(0)pr(x — 0) do =px (x) OV™MSE (3.53)

[e.e]

the numerator in (3.7) is given by

| tvo0)wra—0)do
Y e 1 V206 DTS S 6
-/ Glaﬁaeexp< 2 )+<1 ) oo 2002>]

—00
1 (z —0)?
V2ro, P [_ 20,2 ] a0

~a| [~ 0 peO)pate - 0)as]

L-G model

+(1-a) [px(as)éMMSE] . (3.54)

éMMSE]
G—G model

= X
[pX( ) L-G model

A zero-mean Gaussian function with variance o2 + 02 and the estimator

(3.30) must be substituted for the G-G model, whereas the expression in
(3.43) and the estimator in (3.35) must be substituted for the L-G model.

Hence, the above expression becomes

/_ Z 0 pol0)pulc — 0) db =a j%e e [(z — p)A + (z + p)B]

+(1—a)

1+4¢ /21 (02 + 02) P {_2(03+03)]
Y@= p)A+(x+p)B]+(1—a)-DC.
(3.55)

1
= e
2\/50'9
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The ratio between (3.55) and (3.52) yields the MMSE estimator, that is

JMMSE _ & CXD (W) [(z — p) A+ (z+ p) B] + (1 — ) 2v/204 - DC
aexp (¥2) (A + B) + (1 — a) 2v/20,C ’

(3.56)

which coincides with (3.39).

3.5.3 MIX—G model: derivation of MMAE estimator

The quantity appearing at the denominator in the estimator given in
(3.9) has been computed in (3.52). The expression at the numerator can be
computed as follows. In general, it is given that

/ po(0)pr(z — 6) d8 =px (v) Poyx(B]z) | (3.57)

—0o0

where Pox (f|z) is the posterior cdf computed in 6. Hence, it follows

6

| ve®wntc -0y

I V210l 1 (z — )2
~of e (‘ % )mp [—2] “

6 b2 1 (z — )
- . _ do
T ) /oo V2Tmoy P ( 2092> V2mo, P 20,2

g 6
—a [ | pelowlz-6) de] +1-a)| [ pol®)pate—0) de]
% L-G model - G-G model
=a[px@Pox(@n)] _  +(1-a) [px@Pex(@lg)] ., (358)

where Py X(9| g) denotes the posterior cdf, computed in 0, relative to the
indicated model.

The first term is given by the product of the expressions in (3.46) and in
(3.51), and eventually can be written as

(0%

_ (Ul i)
— V() 3.59
G—G model 2\/50‘9 ( ) ( )

@ |px(2)Porx(Bla)|

where the function F' has been defined in (3.29).
The second term in (3.58) involves a Gaussian pdf of the variable z ~

2 2 2
N(0,02 + 02) and a Gaussian posterior cdf, i.e., |z ~ /\/( ol R )

024027 02+02
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Exploiting the property

o1 (t—a)? 1 a— b
e 22 dt = —erfc | —— |, b>0, 3.60
/_oo V2mh 2 ( V2b > ( )

and after some manipulation, we can achieve

(1—a) [pX(ZE)P@MéM)} GG model

(1-— a)gerfc (3.61)

(p-9) (%)

Combining (3.59) and (3.61), the following posterior cdf for the MIX-G
model can be achieved:

~

Pox(0lz) =
aexp (YHF(0) + (1 — a) v204C erfc [(D — é) < V\gfz)]
(3.62)
aexp (¥2) (A + B) + (1 — a) 2v/20,C

The MMAE estimator in (3.40) is achieved by searching f such that P@‘X(é|x) =
0.5.







Chapter 4

Image formats for despeckling

As already pointed out in Section 3.1.3, the knowledge of the pdf of
the speckle is fundamental in the formulation of despeckling filters based on
Bayesian estimation that attempt to extract the noise-free reflectivity from
a speckled observation [45, 11] as well as for other tasks, e.g., SAR imagery
segmentation [46]. Such pdf is related to the format of the single-look image,
that is, the original incoherent image; for instance, the amplitude format
(AF) is obtained, according to (2.2), when the modulus of complex data is
used; instead, the intensity format (IF) expressed in (2.3) is given by using
the square modulus. In order to reduce the variance of speckle (at price of
resolution degradation), the multilooking process can be adopted by averag-
ing over L independent adjacent samples; if a IF single-look image is mul-
tilooked, then the intensity of the multi-look datum is distributed according
to a (2.7), whereas its square root is distributed according to a Nakagami
distribution [22]. If an AF single-look image is multilooked, the pdf of the
speckle can not be expressed in a closed form, even though its moment can
be computed.

The introduction of despeckling methods using Bayesian estimation in
the UDWT domain has somehow “shifted” the problem of statistical charac-
terization from the space domain to the UDWT domain. Such methods have
been proposed, for instance, in [37, 35, 47, 36, 41, 48, 2, 49] for the case of
SAR data and in [50, 51, 52, 53, 54] for the case of ultrasound and sonar data.
Although the above methods are based on different models of the wavelet co-
efficients, a common feature is that they consider only IF images. However,
the pdf modeling of the wavelet coefficients is very often conjectured a-priori
and it is not directly related to the actual distribution of the speckle, i.e.,
on the format of the SAR image. For example, in [36] wavelet coefficients
are modelled by a very flexible generalized Gaussian model, requiring only
the knowledge of the moments of the involved variables. To the best of our

59
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knowledge, there is no study in the literature assessing whether it is more
convenient to filter wavelet coefficients of intensity or amplitude images.

In this chapter, the problem of despeckling SAR images when the input
data is either an intensity or an amplitude signal is revisited. State-of-the-art
despeckling methods based on Bayesian estimators in the UDWT domain,
presented in 4.0 3, are taken into consideration. First, how these methods
proposed for one format (e.g., intensity) can be adapted to the other format
(e.g., amplitude) is investigated. Second, the performance of such algorithms
in both cases is analyzed. Experimental results carried out on simulated
speckled images and on true SAR data are presented and discussed in order to
assess the best strategy. From these results, it can be observed that filtering
in the amplitude domain yields better performances in terms of objective
quality indexes, such as preservation of structural details, as well as in terms
of visual inspection of the filtered SAR data.

4.1 Unique formulation of Bayesian despeck-
ling in the UDWT domain

4.1.1 Image formats

For sake of simplicity, we recall the multiplicative model (2.13) given in
Section 2.2

g(n) = f(n)u(n)

In this expression, f(n) and g(n) are the noise-free reflectivity and the ob-
served signal at the position n, respectively. They can be in either amplitude
or intensity format. The random variable u(n) represents the fully developed
speckle noise. We assume that u(n) is unit-mean, uncorrelated and indepen-
dent from f(n) [55, 18, 17]. An equivalent additive model, as in (2.14), can
be straightforwardly derived.

g(n) = f(n) + f(n) - (u(n) = 1) = f(n) + f(n) - u'(n)
— f(n) +v(n).
The mean of u/(n) = u(n) — 1 is zero and its pdf is directly derived from

that of u(n). The term v(n) is signal-dependent and accounts for speckle
disturbance.

(4.1)

The pdf of the speckle process u depends on the specific format of the
signal [22]. For IF single-look images the pdf of u is exponential, whereas for
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multi-look images the pdf of u becomes a I'(L, L), given by

R
= —u" e . 4.2
For AF single-look images the pdf of u is a unit mean Rayleigh pdf, given
by

TU _ xu?

pu(u) = 5¢ 7 (4.3)

whereas for AF multi-look images u is distributed according to the average of
L independent unit mean Rayleigh variables and its pdf can not be expressed
in a closed form.

Sometimes, it is convenient to consider also the squared root of an IF
(SIF) image, which can be considered as an alternative amplitude format.
In this case, for a SIF single-look image v is Rayleigh distributed with mean
equal to /7 /2, whereas for SIF multi-look images the pdf of u is a Nakagami
pdf given by

2L" 2L—1,—u?L

pu(u) = ——=u"""e . (4.4)
For SIF images the mean of w is different from one, however the model
in (2.13) is still valid if we rescale the square root of the intensity by a
factor pgip(L) = L™2T(L)/T(L + 3). It is worth noting that single-look AF
and rescaled SIF images have identical distribution, whereas multi-look AF
and rescaled SIF images have different distributions and must be considered
different formats. In the following, with SIF images we will always refer to
rescaled SIF images.

As to the knowledge about w in (4.1), it will be shown that to achieve
the solution of the despeckling problem only the moments of u are necessary.
In the following, some despeckling methods are reviewed and the necessary
information that is needed to achieve the solution is provided for the IF, AF,
and SIF signals.

As to the knowledge about u in (2.13), it will be shown that to achieve
the solution of the despeckling problem only the moments of u are necessary.

4.1.2 Generalizing Bayesian filters as function of mo-
ments

In the last decade, several despeckling methods based on Bayesian estima-
tion in the DW'T or in the undecimated DWT domain have been proposed.
The methods differ each other for the choice of the estimation criterion used
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to achieve the despeckled coefficients and for the modelling of the data in
the wavelet domain.

Bayesian estimation requires the knowledge of the pdfs of the wavelet
coefficients relative to the signal of interest (the reflectivity), also referred to
as prior pdf, and to the noise component.

In the following list, some of the despeckling methods already presented
in Section 3.2 and Section 3.3 are reviewed and their dependency upon the
moments of wavelet coefficients is highlighted.

e LMMSE filter: the moments of the second order of both noise-free
and noise component wavelet coefficients appear directly in (3.30).

e MAP GG filter: the scale and shape factors of both the noise-free
(nw,, vw,) and noise component (nw,, vw,) wavelet coefficients appear
in (3.31); the shape factors can be estimated by inverting the following
relation [36]:

VEXT]  I(vx )L /vx)
where X is either Wy(n) or W,(n); then the related scale factors are
obtained by means of (3.17). Thus MAP GG filter requires the knowl-
edge of the second and the fourth order moments of both noise-free and
noise component wavelet coefficients.

o GG MAP-S filter: same as MAP GG filter, since (3.31) is still valid,
provided that the correct expression of o, is used in the computation
of the variance of the texture component [41].

e MAP LG filter: the moments of the second order of both noise-free
and noise component wavelet coefficients appear in (3.34)

e LG MAP-S filter: same as MAP LG filter or LMMSE filter (see
Section 3.3.2).

Interestingly, all of the above solutions are based on the knowledge of
some moments of either Wy(n) or W,(n). In general, such moments can be
expressed as a function of the moments of the observed variables g(n) and
Wy (n), the equivalent filter h(n), and the moments of the speckle variables u
and u'. Several expressions have been proposed in the literature. We report
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the exact expression derived in [41]:

[2]
E[W2(n)] = Z v (M ()] (4.6)

B [Win)] —E

Wi (n) + (% — 1) M (n)] (4.7)

M
a2\ )
E [Wy(n)] =E 3(%) (M (n))
[’:] " e (4.8)
(s -(28) )
EW}Hn)] =E |W}(n) + (% — 6) W2(n) M (n)
3 6 2
+ (W — gt 3) (M (n))
(i)™ o (4.9)

4 12
+ (W ] + 8> Wg(n)Mf’](n)

1 3 12
et e g
(uﬁq p (Wl !

where we define pll! = E[u*] and Mgk} (n) = >, h*(i)g"(n — 1). In practice,
the moments of the observed variables can be estimated using local averages,
whereas the moments of u and u' can be computed according to the number
of look L and the image format, as specified in the following.

The solutions derived so far are not based on a specific image format.
As long as the input signal obeys the model in (2.13), the filters defined by
(3.8), (3.31) and (3.34), based on the moments given in (4.6)-(4.9), can be
applied to IF, AF, or rescaled SIF images, provided that the correct moments
of the speckle variables are use. Hence they represent a unique formulation
of Bayesian filters in the UDWT domain. Such conclusions are still valid
for the remaining filters presented in Section 3.2 and every Bayesian filter
in the UDW'T domain, provided that the expressions of the moments in the
transformed domain are given.
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4.1.3 Moments of speckle noise variables

In order to use the relations (4.6)-(4.9) for filtering, the quantities ME{“ ],
k=1,2,3,4, are required. In the following, we will derive the expression of
the moments of u according to the number of look L and the image format.
As to the moments of u/, they can be easily derived from the moments of u
as follows:

,LLE/] :O
plh = 2 -1

it =l = 3l + 2
il = ¥ — 4l 162 3

Intensity

When w is distributed according to (4.2), its moments can be expressed
as [56]
I'(L+m) 1

(L) = ML) L (4.10)

Amplitude

In the case of single-look AF signals, u has a Rayleigh pdf given by (4.3)
and its moments can be expressed as

(1) = (%)MF<1+%> (4.11)

When u is the average of L i.i.d. variables distributed according to (4.3), it
can be shown (see Section 4.4.1) that its moments can be expressed by

(L) =1 (4.12)
(L) =4+ n(L — 1) (4.13)
u2I(L) :5[6 +12(L — 1)+ 7(L — 2)(L — 1)] (4.14)
(L) :# [32 +48(L — 1) + 24w (L — 1)?

+7*(L —3)(L —2)(L —1)] (4.15)
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Square Root of Intensity

If we denote as @ the square root of an intensity speckle process, dis-
tributed as (4.4), its moments are given by [22]
F'(L+%2) 1
(L) L%

pi(L) = (4.16)

Hence, the moments of u for a rescaled SIF signal can be obtained as

p'(L) _TL)"T (L4 ) (417)

Ty e

[m]

Hay

4.2 Experimental Results

The performances of the different filters on different image formats have
been assessed on both simulated images and true SAR images. As to simu-
lated images, the performances are measured by computing the PSNR and
the mean structural similarity index (MSSIM) between the original and the
filtered images. For sake of convenience, the PSNR, already defined in Sec-
tion 3.2.5, is redefined as

12
PSNR = 10log,, | — 2% — (4.18)
E[(I-1)]

where [ is the original image, I is the filtered image, and I,cq; is the peak
value (for 8-bit images, we assume I, = 255). The PSNR, as well as
closely related metrics like the mean square error between the original and the
filtered images, have been often used to assess the performance of despeckling
applications [36, 57]. The MSSIM is a measure of degradation of structural
information and it is defined as [58]

(2urp; + C1) (20,7 + Cs)

MSSIM = FE
(17 + p3 + Ci)(0f + 02 + C)

(4.19)

where py, 0%, uj, a?, and o,; are the local mean, variance, and covariance
of the original and filtered images, whereas C; and C5 are two suitable con-
stants. Since we want to avoid the comparison to be biased by the the format

in which the measures are taken, we consider both I and [ in the amplitude
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format; that is, for IF we use I = /f and I= \/} , while for both SIF and
AFweuseI:fandf:f.

Moreover, as a no-reference index of the quality of the filtered images,
we report the sample mean and the sample variance of the ratio between the
observed and the filtered images, @ = g/ f . For a good despeckling filter, @
should be as close as possible to the speckle process u and we should obtain
pa = 1 and 02 = o2, In the case of IF and SIF images, the statistics have
been evaluated on intensity values and we have o2 = 1/L. In the case of AF
images, the statistics have been evaluated on amplitude values and we have
02 = (4—m)/(rL). For a better evaluation of the estimated values, in all the
following tables the normalized values 02 - L or o2 - (wL)/(4 — ) are reported.
Since there is no need of using the original image as a reference, the above
indexes can be used for both simulated and true SAR images.

For all tested filters, the biorthogonal 9/7 wavelets [59] have been used,
with a four level decomposition.

4.2.1 Simulated Images

We considered three 8-bit 512 x 512 optical images, Lena, Barbara, and
San Francisco, corrupted by synthetic speckle generated according to the
models in (4.2)-(4.4) considering different number of look L. The original
images are shown in Figure 4.1. In Tables 4.1-4.3, we report the results
obtained in the case of IF and SIF images, whereas in Tables 4.4-4.6 we
report the results obtained in the case of AF images.

Figure 4.1: Original images: (a) Lena; (b) Barbara; (c¢) San Francisco.

The results clearly show that filtering SIF images outperforms filtering IF
images. For each image and for each number of look, all filters yield a higher
PSNR when operating in the SIF domain. For example, the MAP-GG filter
gains about 0.6 dB in PSNR for the single-look Lena and Barbara images and
about 0.9 dB in PSNR for the single-look San Francisco image. As to the
MSSIM, in the case of the Lena image we have very similar values for both
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Table 4.1: Results for despeckling of simulated image Lena, obtained on different
number of looks by means of various filter, in the case of IF and SIF.

L filter PSNR MSSIM L o2 L
IF SIF IF SIF | IF SIF | IF SIF
noisy 11.30 0.109 -
LMMSE | 24.55 24.69 | 0.513 0.524 | 0.90 0.89 | 0.639 0.619
1 MAP GG | 26.32 26.90 | 0.736 0.735 | 0.98 0.98 | 0.998 0.938
GG MAP-S | 26.33 26.87 | 0.736 0.734 | 0.98 0.98 | 0.999 0.937
MAP LG | 26.16 26.67 | 0.725 0.718 | 0.95 0.96 | 0.874 0.875
LG MAP-S | 26.17 26.66 | 0.725 0.718 | 0.95 0.96 | 0.874 0.874
noisy 14.46 0.175 -
LMMSE | 26.65 26.95 | 0.630 0.635 | 0.93 0.94 | 0.666 0.661
9 MAP GG | 28.03 28.74 | 0.785 0.787 | 0.99 0.98 | 1.037 0.935
GG MAP-S | 28.06 28.71 | 0.785 0.786 | 0.99 0.98 | 1.014 0.933
MAP LG | 27.82 2848 | 0.775 0.772 | 0.97 0.97 | 0.885 0.887
LG MAP-S | 27.86 28.50 | 0.775 0.772 | 0.97 0.97 | 0.888 0.886
noisy 17.55 0.258 -
LMMSE | 28.53 28.98 | 0.720 0.725 | 0.96 0.96 | 0.678 0.683
4 MAP GG | 29.64 30.34 | 0.824 0.824 | 0.99 0.99 | 1.085 0.938
GG MAP-S | 29.71 30.32 | 0.825 0.824 | 0.99 0.99 | 1.041 0.933
MAP LG | 29.38 30.10 | 0.814 0.815 | 0.97 0.98 | 0.899 0.901
LG MAP-S | 29.50 30.19 | 0.816 0.817 | 0.98 0.98 | 0.914 0.895
noisy 23.68 0.468 -
LMMSE | 32.55 32.95 | 0.850 0.852 | 0.98 0.99 | 0.672 0.668
16 MAP GG | 33.13 33.70 | 0.883 0.886 | 1.00 0.99 | 1.066 0.917
GG MAP-S | 33.16 33.64 | 0.881 0.884 | 1.00 0.99 | 1.021 0.892
MAP LG | 32.89 33.52 | 0.880 0.883 ] 0.99 0.99 | 0.926 0.894
LG MAP-S | 33.18 33.66 | 0.882 0.883 | 0.99 0.99 | 0.989 0.869
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Table 4.2: Results for despeckling of simulated image Barbara, obtained on dif-
ferent number of looks by means of various filter, in the case of IF and

SIF.
L filter PSNR MSSIM L 02-L

IF SIF IF SIF | IF  SIF IF SIF

noisy 11.52 0.181 - -
LMMSE 22.61 22.85 | 0.518 0.548 | 0.88 0.88 | 0.633 0.593
1 MAP GG | 22.89 23.51 | 0.606 0.640 | 0.98 0.97 | 1.198 0.969
GG MAP-S | 23.056 23.70 | 0.617 0.653 | 0.98 0.97 | 1.190 0.953
MAP LG | 2289 23.44 | 0.603 0.631 | 0.94 0.96 | 0.903 0.883
LG MAP-S | 23.00 23.59 | 0.610 0.640 | 0.94 0.95 | 0.897 0.874

noisy 14.68 0.280 - -
LMMSE 24.33 24.68 | 0.634 0.657 | 0.92 0.92 | 0.636 0.624
9 MAP GG | 2442 25.11 | 0.691 0.720 | 0.98 0.97 | 1.220 0.929
GG MAP-S | 24.79 25.38 | 0.707 0.734 | 0.98 0.97 | 1.172 0.909
MAP LG | 24.17 24.89 | 0.680 0.709 | 0.95 0.96 | 0.883 0.879
LG MAP-S | 24.56 25.18 | 0.696 0.722 | 0.95 0.96 | 0.870 0.863

noisy 17.80 0.397 - -
LMMSE 26.17 26.56 | 0.737 0.754 | 0.94 0.95 | 0.637 0.630
4 MAP GG | 26.31 26.92 | 0.777 0.794 | 0.99 0.98 | 1.215 0.897
GG MAP-S | 26.64 27.18 | 0.792 0.806 | 0.99 0.98 | 1.321 0.872
MAP LG | 25.86 26.59 | 0.762 0.783 | 0.96 0.97 | 0.878 0.868
LG MAP-S | 26.30 26.96 | 0.780 0.797 | 0.97 0.97 | 0.941 0.844

noisy 23.93 0.630 - -
LMMSE | 30.21 30.55 | 0.873 0.878 | 0.98 0.98 | 0.610 0.581
16 MAP GG | 30.35 30.86 | 0.886 0.892 | 0.99 0.99 | 1.052 0.826
GG MAP-S | 30.30 30.84 | 0.890 0.895 | 1.00 0.99 | 1.149 0.778
MAP LG |29.93 30.55 | 0.879 0.887 | 0.98 0.99 | 0.879 0.819
LG MAP-S | 30.35 30.84 | 0.888 0.893 | 0.99 0.99 | 0.955 0.765
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Table 4.3: Results for despeckling of simulated image San Francisco, obtained
on different number of looks by means of various filter, in the case of

IF and SIF.
L filter PSNR MSSIM m o2 L

IF SIF IF SIF IF  SIF IF SIF

noisy 15.23 0.194 - -
LMMSE 23.94 24.58 | 0.573 0.588 | 0.88 0.88 | 0.655 0.620
1 MAP GG | 23.99 24.90 | 0.623 0.646 | 0.98 0.98 | 1.184 1.009
GG MAP-S | 24.03 24.89 | 0.624 0.646 | 0.98 0.98 | 1.128 1.002
MAP LG | 24.00 24.87 | 0.624 0.645 | 0.94 0.96 | 0.919 0.917
LG MAP-S | 24.03 24.89 | 0.624 0.645 | 0.94 0.96 | 0.919 0.915

noisy 18.42 0.303 - -
LMMSE 2547 26.23 | 0.658 0.675 | 0.92 0.92 | 0.668 0.647
9 MAP GG | 25.27 26.28 | 0.672 0.695 | 0.99 0.98 | 1.379 0.983
GG MAP-S | 25.35 26.28 | 0.674 0.695 | 0.99 0.98 | 1.517 0.972
MAP LG | 25.27 26.25 | 0.674 0.695 | 0.95 0.97 | 0.921 0.915
LG MAP-S | 25.39 26.34 | 0.677 0.697 | 0.96 0.97 | 0.961 0.908

noisy 21.53 0.435 - -
LMMSE 27.07 27.84 | 0.727 0.741 | 0.94 0.95 | 0.673 0.646
4 MAP GG | 26.71 27.73 | 0.719 0.738 | 1.00 0.99 | 2.226 0.972
GG MAP-S | 26.88 27.79 | 0.722 0.739 | 1.00 0.98 | 1.652 0.947
MAP LG | 26.67 27.70 | 0.721 0.740 | 0.96 0.98 | 0.955 0.923
LG MAP-S | 26.92 27.86 | 0.726 0.743 | 0.98 0.98 | 1.446 0.901

noisy 27.66 0.716 - -
LMMSE 30.80 31.36 | 0.840 0.846 | 0.97 0.98 | 0.611 0.544
16 MAP GG | 30.39 31.10 | 0.813 0.822 | 1.00 0.99 | 1.633 0.884
GG MAP-S | 30.35 30.86 | 0.813 0.822 | 1.00 0.99 | 1.102 0.762
MAP LG | 30.24 31.12 | 0.818 0.827 | 0.98 0.99 | 1.039 0.868
LG MAP-S | 30.69 31.22 | 0.824 0.830 | 0.99 0.99 | 1.197 0.772
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Table 4.4: Results for despeckling of simulated image Lena, obtained on different
number of looks by means of various filter, in the case of AF.

L filler [ PSNR | MSSIM | ua | of - 7=

noisy 11.27 0.109 - -
LMMSE 24.67 0.520 | 0.97 | 0.744
MAP GG 26.92 0.736 | 0.99 | 0.969
GG MAP-S | 26.88 0.735 | 0.99 | 0.968
MAP LG 26.68 0.717 |1 0.99 | 0.937
LG MAP-S | 26.67 0.717 | 0.99 | 0.936

noisy 14.29 0.170 - -
LMMSE 26.79 0.628 | 0.98 | 0.739
MAP GG | 28.55 0.781 | 0.99 | 0.957

2 GG MAP-S | 28.52 0.781 | 0.99 | 0.955

MAP LG 28.30 0.766 | 0.99 | 0.928

LG MAP-S | 28.31 0.767 | 0.99 | 0.927
noisy 17.31 0.252 - -

LMMSE 28.89 0.722 | 0.99 | 0.728

4 MAP GG | 30.29 0.825 | 1.00 | 0.949

GG MAP-S | 30.25 0.824 | 0.99 | 0.945

MAP LG 30.04 0.815 | 0.99 | 0.924

LG MAP-S | 30.12 0.816 | 0.99 | 0.919
noisy 23.31 0.455 - -

LMMSE 32.74 0.847 | 1.00 | 0.684

16 MAP GG | 33.52 0.883 | 1.00 | 0.926

GG MAP-S | 33.46 0.881 | 1.00 | 0.902
MAP LG 33.35 0.880 | 1.00 | 0.908
LG MAP-S | 33.49 0.880 | 1.00 | 0.882
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Table 4.5: Results for despeckling of simulated image Barbara, obtained on dif-
ferent number of looks by means of various filter, in the case of AF.

L filter | PSNR | MSSIM | py | of - £=

noisy 11.54 0.180 - -

LMMSE 22.83 0.548 | 0.96 | 0.722

1 MAP GG | 23.50 0.641 | 0.99 | 0.980

GG MAP-S | 23.68 0.653 | 0.99 | 0.969

MAP LG 23.40 0.632 | 0.98 | 0.939

LG MAP-S | 23.56 0.641 | 0.98 | 0.933
noisy 14.54 0.276 - -

LMMSE 24.65 0.659 | 0.97 | 0.708

9 MAP GG | 25.06 0.720 | 0.99 | 0.955

GG MAP-S | 25.36 0.734 | 099 | 0.938

MAP LG 24.83 0.708 | 0.98 | 0.926

LG MAP-S | 25.15 0.722 1 0.98 | 0.912
noisy 17.55 0.388 - -

LMMSE 26.44 0.746 | 0.98 | 0.685

4 MAP GG | 26.77 | 0.788 | 0.99 | 0.929

GG MAP-S | 27.04 0.801 | 0.99 | 0.904

MAP LG 26.45 0.777 1099 | 0.911

LG MAP-S | 26.81 0.791 | 099 | 0.885
noisy 23.57 0.617 - -

LMMSE 30.32 0.873 | 0.99 | 0.602

16 MAP GG | 30.65 0.888 | 1.00 | 0.842

GG MAP-S | 30.63 0.892 | 1.00 | 0.795

MAP LG 30.32 0.883 |0.99 | 0.841

LG MAP-S | 30.62 0.890 | 1.00 | 0.784
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Table 4.6: Results for despeckling of simulated image San Francisco, obtained
on different number of looks by means of various filter, in the case of

AF.
L filler | PSNR | MSSIM | pg | o} - £=
noisy 15.23 [ 0.194 [ - -
LMMSE | 24.67 | 0594 | 0.96 | 0.740
| | MAPGG | 24.97 | 0.648 |0.99 | 0.988
GG MAP-S | 24.98 | 0.648 |0.99 | 0.985
MAP LG | 2493 | 0.646 | 0.98 | 0.948
LG MAP-S | 24.96 | 0.647 | 0.98 | 0.947
noisy 18.26 0.297 - -
LMMSE | 26.14 | 0.672 |0.97 | 0.727
o | MAP GG | 2619 | 0.692 |0.99 | 0.991
GG MAP-S | 26.23 | 0.693 | 0.99 | 0.981
MAP LG | 26.15 | 0.692 | 0.99 | 0.953
LG MAP-S | 26.24 | 0.694 | 0.99 | 0.945
noisy 21.29 | 0426 | - -
LMMSE | 27.77 | 0.739 | 0.98 [ 0.700
4 | MAP GG | 27.66 | 0.736 | 0.99 | 0.986
GG MAP-S | 27.69 | 0.737 | 0.99 | 0.962
MAP LG | 27.63 | 0.738 |0.99 | 0.953
LG MAP-S | 27.78 | 0.741 | 0.99 | 0.930
noisy 2730 [ 0702 | - -
LMMSE | 3113 | 0.841 |0.99 [ 0.578
16| MAP GG | 30.85 | 0.816 | 1.00 | 0.913
GG MAP-S | 30.68 | 0.818 | 1.00 | 0.801
MAP LG | 30.88 | 0.821 |0.99 | 0.901
LG MAP-S | 31.00 | 0.825 | 1.00 | 0.808
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formats, whereas in the case of the Barbara and San Francisco images, the
MSSIM is slightly better for SIF, indicating that filtering the square root of
intensity neither introduces artifacts nor alters structural information. The
above results are also confirmed by inspecting the values of y; and o2 for the
different filters: the values of u; are always very similar for both formats,
whereas the values of o2, especially for the MAP-GG and MAP-GG-S filters,
in the case of SIF tend to be closer to the theoretical variance of the speckle.

In the case of AF images, we can see that all filters obtain results very
close to those obtained on SIF images. Also the values of the statistical
parameters ji5 and o2 confirm a good performance of the filters for this kind
of images, especially in the case of the MAP-GG filter, which yields a o2
quite close to the theoretical value. It is interesting to note that the LMMSE
filter exhibits a bias irrespective of the SAR image format, indicating that
Gaussian modeling of wavelet coefficients is not adequate even in the case of
amplitude and square root of intensity signals.

4.2.2 True SAR images

Results on true SAR data have been assessed by using two 16 bit 512x512
COSMO-SkyMed 1-look X-HH images showing the area near the airport of
Florence, Italy. For showing results on intensity multilooked data, two corre-
sponding 4-look 256 x 256 intensity images have been obtained by averaging
four neighbouring pixels and downsampling the intensity of the 1-look im-
ages. Furthermore, by means of the same procedure, two corresponding
4-look 256 x 256 amplitude images have been obtained from the amplitude
of the 1-look images. The 1-look COSMO-SkyMed images are shown in
Figure 4.2.

The statistics pg and o2 of the extracted speckle in the three considered
image formats and for all the considered filters have been evaluated on two
different homogeneous areas, denoted as “A” and “B” in Figure 4.2.

The results for the IF and SIF domains, reported in Table 4.7, indicate
that the despeckling performance of both approaches is very similar on areas
affected by fully developed speckle. All filters, apart from the LMMSE one,
are virtually unbiased irrespective of the image format. Also, the variance
of the estimated speckle noise is quite close to the theoretical value, with no
appreciable difference between IF and SIF. In Table 4.8, the results for the
4-look image in the AF domain are shown. It is interesting to note that the
indexes are very similar to those obtained for the 4-look SIF case, except for
the LMMSE filter where a reduction of bias is observed in the AF domain.

For visual inspection, we propose the images obtained by applying the
MAP-GG-S filter in the IF and SIF domains for the 1-look case (Figure 4.3)
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Figure 4.2: 1-look COSMO-SkyMed images selected for the experiments; high-
lighted homogeneous zones are used to compute performance indexes.

and for the 4-look case (Figure 4.4), as well as the images obtained by apply-
ing the same filter for the 4-look case in the AF domain (Figure 4.5). From
all the examples, it is apparent that filtering SIF or AF images is usually
beneficial. As to homogeneous areas, the smoothing degree obtained by the
filter, as well as the artifacts produced by the wavelet synthesis stage, are
similar for all the proposed formats. Conversely, it is particularly evident
that filtering SIF or AF images yields a better preservation of details, since
it produces less artifacts near edges, high variance regions, and targets. From
the comparison of 4-look SIF and AF images we can observe no appreciable
differences between the despeckled images obtained from the two formats.

4.3 Conclusions

In this chapter, we have presented a study on despeckling images affected
by multiplicative noise in either amplitude or intensity format. Bayesian
despeckling algorithms in the wavelet domain have been considered. We
have shown that a common framework for the despeckling problem can be
setup for various formats - satisfying the multiplicative model - based on the
computation of the moments of the speckle component. Such moments are
derived for single-look and multi-look images. In the latter case, amplitude
multi-look images can be obtained either averaging amplitude signals or tak-
ing the square root of the average of intensity signals. The experimental
results have been carried out on both synthetically speckled images and on
true SAR COSMO-SkyMed images.




4.3 Conclusions 75

Figure 4.3: Example of despeckling of the 1-look COSMO-SkyMed images: (a)-
(b) original; (c)-(d) MAP-GG-S filtered, IF; (e)-(f) MAP-GG-S fil-
tered, SIF.
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Figure 4.4: Example of despeckling of the 4-look intensity COSMO-SkyMed im-
ages: (a)-(b) original; (c)-(d) MAP-GG-S filtered, IF; (e)-(f) MAP-
GG-S filtered, SIF.
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Figure 4.5: Example of despeckling of the 4-look amplitude COSMO-SkyMed
images: (a)-(b) original; (c)-(d) MAP-GG-S filtered.
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Table 4.7: Statistical parameters derived from 1-look (CS-1L) and 4-look inten-
sity (CS—4L) COSMO-SkyMed images despeckled by means of various
filter.

image filter Zone A Zone B

Ha oi-L Ha o2 L
IF SIF| IF SIF | IF SIF [ IF  SIF
LMMSE | 0.92 0.91 | 0.661 0.627 | 0.91 0.90 | 0.630 0.606
MAP GG | 0.99 0.99 | 0.980 0.954 | 0.98 0.98 | 0.935 0.918
CS-1L | GG MAP-S | 0.99 0.99 [ 0.980 0.954 | 0.98 0.98 | 0.935 0.918
MAP LG | 0.98 0.98 | 0.912 0.890 | 0.96 0.97 | 0.868 0.859
LG MAP-S | 0.98 0.98 | 0.912 0.890 | 0.96 0.97 | 0.868 0.859

LMMSE 0.95 096 | 0.726 0.721 | 0.95 0.96 | 0.701 0.706
MAP GG |0.99 1.00 | 1.280 1.170 | 0.99 1.00 | 1.143 1.117
CS4L | GG MAP-S | 0.99 1.00 | 1.269 1.156 | 0.99 1.00 | 1.143 1.117
MAP LG | 098 0.99 | 1.078 1.085 | 0.98 0.99 | 1.034 1.045
LG MAP-S | 0.98 0.99 | 1.073 1.079 | 0.98 0.99 | 1.034 1.045

Table 4.8: Statistical parameters derived from 4-look amplitude (CS-4L-AF)
COSMO-SkyMed images despeckled by means of various filter.

image filter Zone A Zone B

pa o L| pa  of- 2
LMMSE | 0.99 | 0.731 | 0.99 | 0.736

MAP GG | 1.00 | 1.140 | 1.00 1.121

CS—4L-AF | GG MAP-S | 1.00 | 1.127 | 1.00 | 1.121
MAP LG | 0.99 | 1.062 | 0.99 | 1.068

LG MAP-S | 0.99 | 1.057 | 0.99 | 1.069
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The results obtained on synthetically degraded images show that a signif-
icant improvement of objective quality measures can be observed when the
wavelet decomposition is applied on amplitude images. On the other hand,
for both synthetically speckled and true SAR images, filtering either in the
amplitude or in the intensity domain yields statistical parameters of the ex-
tracted speckle noise which are quite similar. For the MAP GG and MAP
GG-S filters this is not surprising, since both filters already achieved almost
optimal performance in the SIF case. Moreover, this fact indicates that, even
though the domain of filtering may not significantly affect the global statis-
tical performance of the filters, filtering in the amplitude domain yields a
better preservation of structural details. The above observation is confirmed
by the visual inspection of filtered SAR data, since images filtered in either
SIF or AF domain show less artifacts in the presence of highly heterogeneous
areas.

The observed behaviour can be explained by a more effective modeling of
the wavelet coefficients of amplitude SAR signals and a more robust estima-
tion of the moments for the amplitude case. The above results also suggest
that AF and SIF should be the preferred image formats when despeckling is
performed in the wavelet domain, and that existing IF images should always
be converted to SIF before processing with this kind of despeckling filters.

4.4 Appendix

4.4.1 Derivation of amplitude multi-look speckle mo-
ments

In this section we explicitly derive the relations in (4.12).

When u is the average of L i.i.d. variables r;, © = 1,..., L, distributed
according to (4.3), its moments can be derived as follows:

pi(L) = E %Z] = %Z Elr)) = Elr] (4.20)

2
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where E[r™] = /LLm](l). After some simple algebra, the moments result to be
those expressed in (4.12).







Chapter 5

Removal of correlated speckle
noise

An assumption that is made in most of the despeckling methods that have
been proposed in the literature is that the speckle noise is an uncorrelated
process that affects the noise-free data. However, this hypothesis does not
often hold in practice and other issues inherent to the acquisition system,
such as band-limitedness, suggest the use of a more sophisticated model. A
model of a SAR acquisition system, often considered as sufficiently realistic,
includes a linear time-invariant system, whose impulse response or point
spread function spatially correlates the data. In actual SAR data, the point
spread function (PSF) must be considered as an unknown and its estimation
is based on the observed image. An accurate description of a model that
includes the presence of a PSF and of the statistical properties of a SAR
image satisfying that model is given in [18].

Applying despeckling methods derived from the uncorrelated data hy-
pothesis to actually correlated data yields a significant loss of performance
in speckle removal. Hence, some methods have been developed relying upon
the correlated signal model. In [60], using a linear minimum mean square
error (LMMSE) estimation approach, a local Wiener solution that assumes
correlated data is proposed. In [61], a whitening/Gaussianization approach
is developed for despeckling ultrasound images. Ultrasound (US) probes are
incoherent imaging systems that produce data having a model quite close
to that of SAR systems, so that despeckling methods developed for US are
also useful for SAR data. Spectrum flattening is applied in [61] to the ra-
diofrequency ultrasound signal; the envelope of the signal is then followed
by a logarithmic transformation and Gaussianization process in order to ap-
ply denoising algorithms developed for additive noise. In [19], a Wiener
filter for correlated SAR images working in the stationary-wavelet domain

83
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is proposed. The method uses some results derived in [18]. It also uses the
hypothesis that the imaged scene is characterized by homogeneous statistics;
hence, a quad-tree decomposition is found before applying the filter. The
problem of estimating the PSF and image decorrelation is also faced in [62].

In this chapter, we propose a whitening approach to produce single-look
complex (SLC) data that can be suitably processed with despeckling filters
designed for uncorrelated speckle noise. For invertible PSFs, we demonstrate
that the whitening stage is optimal to achieve the information of interest, that
is the variance of the underlying reflectivity. This result is obtained both in
the Bayesian and in the classical estimation framework. The PSF is estimated
by using the results in [18]. Several issues related to robustly decorrelating
the SLC image, such as the treatment of point targets, whose model deviates
from the fully developed speckle one, are also described. The experimental
results demonstrate that the whitening process is effective and allow classical
despeckling filters, derived under the hypothesis of uncorrelated noise, to be
fully exploited. Three different filters, having different characteristics, have
been chosen in order to assess the generality of the proposed procedure and to
quantify the performance gain introduced by the whitening stage. Our tests
also show that whitening is useful even when the invertible PSF hypothe-
sis does not hold. The experimental results have been produced by using
both synthetically speckled correlated images and true SAR images acquired
by the COSMO-SkyMed constellation of satellites, which are affected by a
strongly correlated speckle.

The following notation is used in this chapter: boldface upper case and
lower case letters denote matrices and vectors, respectively; a superscript H
indicates the Hermitian, i.e., the transpose and conjugation, operator; the
expectation operator is denoted by E[-] (a subscript letter may be added to
indicate the variable it operates on); CA(u, C) denotes a complex-valued
Gaussian variable with mean p and covariance matrix C.

5.1 Modelling of correlated SLC data

In Section 2.1.2 the SAR imaging system has been accounted in the ac-
quisition process; it has been stated that, under the hypothesis of negligible
thermal noise, the SLC signal after the image preprocessor is given by (2.9).
In order to develop a useful model from the despeckling perspective, we firstly
point out how (2.9) represents a generalization of the multiplicative model
(2.5) under the hypothesis of fully-developed speckle for SLC images|[18].

Assuming the observed scene be composed by a set of point scatterers, let
o.(r) be the discrete complex backscatter coefficient per area that describes
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the radar target scene for each 2-D Cartesian coordinates r = (r,;7,). Under
the hypothesis of fully—developed speckle, o.(r) is modelled as a white com-
plex circular symmetric Gaussian process, having zero mean and variance
o(r), where o(r) is the radar backscatter or target scene that we would like
to estimate. Supposing that the entire acquisition chain is likely represented
by a cascade of linear filters, we can denote the transfer function of the SAR
system as h(r). Using the previous assumptions, the complex radar image
ge(r), i.e. the coherently acquired image, can be defined as

ge(r) = o.(r) x h(r) (5.1)

where * denotes spatial convolution; clearly, (5.1) matches (2.9) by assuming
(without loss of generality) C' = 1. In an equivalent way, using the 2-D
Fourier transform, (5.1) becomes

where §*{-} denotes the inverse Fourier transform operator, 3.(f) denotes
the Fourier transform of o.(r), H(f) is the Fourier transform of h(r), and
f = (fs; fy) denotes 2-D spatial frequencies. Hence, the despeckling problem
consists in finding the estimator of the non-stationary radar backscatter o(r)
given the observation of g(r). Although its general validity, the model ex-
pressed in (5.2) requires the knowledge of the frequency response H(f) of the
SAR system. The problem of its estimation will be dealt with in a successive
section.

In the particular case h(r) = §(r), the mostly used multiplicative model
is obtained [14]

19(r)[* = |oe(r)[* = o(r) - u(r) (5-3)

where u(r) is a white random process having exponential distribution, with
unitary mean and variance.

A more general model assumes that

|9¢(r)[* = o (r) - es(r) (5.4)

where ¢s(r) is a noise process that is supposed to be statistically indepen-
dent from o(r) but spatially correlated. In [18], it has been shown that the
correlation of the process cs(r) depends on the frequency response of the
SAR system and that the model expressed in (5.4) is valid when the power
spectral density (PSD) of o(r) is narrower than the PSF of the SAR system.
However, even the model in (5.4) may not be very accurate for a generic
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o(r). According to (5.1), the expected value of |g.(r)[* can be derived as

E[|ge(r) Zzh Efoc(r —r')oi(r —1")]
—Z|h )PE [Joc(r — )] (5.5)
:Z]hr o(r —1'),

where we have exploited the fact that o.(r) is a zero-mean white process
having variance o(r). The above equation shows that the expected value of
|g.(r)|? is in general different from o(r), implying that cs(r) has not unit
mean and should be modelled as a nonstationary process, which is quite far
from the classical model in (5.3).

Despite of the fact that the model in (5.1) is more general and more
realistic, most of the despeckling filters present in the literature are based
on the multiplicative model with uncorrelated speckle, i.e., on (5.3), due
to its simplicity. However, applying despeckling methods derived from the
uncorrelated speckle hypothesis to SAR images satisfying the model in (5.1)
yields a significant loss of performances.

5.2 Optimal whitening for correlated SLC data

5.2.1 Two stages method for despeckling

In order to obtain a more effective despeckling process, we propose to
divide the task of despeckling in two consecutive steps:

1 Whitening stage: an estimator of the complex backscatter coefficients,
d.(r), is obtained from the complex image ¢.(r) using the general model
given in (5.2).

2 Despeckling stage: despeckling filters based on the model given in (5.3)
are applied to d.(r) in order to obtain the estimated radar backscatter
o(r).

Under the hypothesis that the linear transformation in (5.1) is invertible,
it will be shown in the following that an appropriate preprocessing applied
to g.(r) allows classical despeckling methods to work without loss of per-
formances. Hence, we do not focus our attention in developing a new de-
speckling filter, but instead in showing that the whitening stage permits to
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Figure 5.1: Despeckling model in the presence of a correlated signal (a); inclusion
of the whitening stage (b).

achieve optimal solutions by using already known despeckling filters working
on 6.(r). Before stating such an optimality, some notation describing the
observed variables is given. In Figure 5.1, the despeckling model in the pres-
ence of a correlated signal and that including the whitening stage are shown.

Equation (5.1) can be manipulated using R and I superscripts in order
to indicate real and imaginary parts, respectively. Equation (5.1) can be
rewritten as (the index r is dropped for the sake of simplicity)

ge +ige=(N"+jh)x (ol +5-0p)
= (hR*O'R hl*ag) +7- (hl*af—l—hR*ag)

- —

(5.6)

where j = +/—1. Without loss of generality, suppose that the observed
discrete complex backscatter signal g.(r) is constituted by N samples. Thus,
the model in (5.6) can be expressed in vector notation as follows:

gc = Ho. (57)
where

ge = [¢™(0)---g"(N = 1),4"(0)--- g"(N — 1)
oc.= [05(0) o (N —1),00(0)- - o/ (N -1

C
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and

H - ER _HHRI] (5.9)

where HR and H! are the matrix representations of the linear filters h® and
h!, respectively.

Considering that o.(r) is a realization of a white circular symmetric com-
plex Gaussian random process having zero mean, we have that

o.~CN(0,C,,), C, = diag <[0'T, UT}T> /2 (5.10)

with o = [#(0) - - o(N — 1)]".

Since g, is a vector of linear combinations of o, it follows that
g. ~CN (0,Cq), C, =HC,H". (5.11)

In the following, we will state the optimality of a whitening stage for the
estimation of o. The classical and Bayesian estimation frameworks are dealt
with separately.

5.2.2 Classical estimation theory framework

In a classical estimation framework, the vector of parameters o is a de-
terministic, but unknown, vector. Optimality of estimators can be assessed
by computing the Cramer-Rao lower bound (CRLB) for any estimator of o

In Section 5.7.1, it is shown that the CRLB for any unbiased estimator
o of the target scene o given the acquired signal g, is given by

C; — diag (o) > 0 (5.12)

where Cg is the covariance matrix of the estimator and the notation A > 0
means that the matrix A is positive-semidefinite. The relation in (5.12) shows
that the CRLB is not influenced by the presence of the frequency response
of the SAR system. This fact suggests that an estimator may remove the
influence of the SAR system frequency response in order to reach the CRLB.
Furthermore, it is interesting to note that the performance of each estimator
is locally bounded by the local parameter itself, i.e., estimations of brighter
points are noisier than estimations of darker ones.

The inequality expressed in (5.12) has a general validity since it has been
derived only under the hypothesis that the filtering matrix H (representing
the SAR system impulse response) is invertible. Interestingly, in this case
an efficient estimator based on the observation of g. exists. Let’s define the
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N x 1 estimated vector &4 as

2
’, 0<n<N-1.  (513)

WﬂnZHH*&LV+HH*&LH¢
or equivalently, in scalar form,

Gei(r) = [h ) *go(r)]T 0<n <N -1, (5.14)

where h™!(r) denotes the inverse filter of h(r), that is h =1 (r) = F* {1/H(f)}.
In section 5.7.1, it is shown that such an estimator is efficient for the despeck-
ling problem.

The expression in (5.14) highlights that the efficient estimator can be
seen as a cascade of the whitening filter A~ (r) followed by the squared mod-
ulus operator | - |2. In other words, the whitening stage is the first part of
the minimum-—variance estimation strategy within the framework of classical
estimation theory. It is interesting to note that no assumptions have been
made on the value of o, except that it has no zero entries.

5.2.3 Bayesian estimation theory framework

In this section, we reformulate the optimality of the whitening processing
in the framework of Bayesian estimation, in which the parameter vector o
is assumed as a random vector. In particular, we show that any Bayesian
estimator based on the observation of the variable g. coincides with that
obtained observing any linear invertible transformation of g..

Let o be the vector of parameters to be estimated, coinciding with the
radar backscatter and let o, and g. be the observed signals in the whitened
and correlated domain, respectively. Bayesian estimation is based on the pos-
terior probability density function (pdf) of the parameter o after observing
either o, or g, that is either p(o|o.) or p(o|ge).

Let x = [0 gt and y = [6® o.7]" be the random vector ob-
tained concatenating the parameter vector and the observed variables, so
that p(x) = p(o,g:) and p(y) = p(o, 6.). According to (5.7), x is obtained
from y by using a linear transformation, that is

x =Ty (5.15)

where T denotes the invertible transformation given by

T = [(I) ;ﬂ . (5.16)
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The relation between p(x) and p(y) is given by

p(x) = p(y)[Jz(y)| (5.17)

where Jr denotes the Jacobian of the transformation T, defined by [Jx(y)]i; =

gz;, and |A| denotes the determinant of the matrix A. According to the pre-

vious definitions, we have

Jr(y)="T. (5.18)
Hence, the posterior pdf p(o|g.) is given by

_plo,ge)  px)  ply)|T|
Plolee) = =) = e~ pled)

(5.19)
_po.0)IT| _ ploloop(eolT]
p(8e) p(ge)
Considering the transformation from o to g., we have
p(ge) = ploe)|Juloe)] (5.20)

where Jyg denotes the Jacobian of the transformation H given in (5.7). Hence,
we have

Ju(oe) = H. (5.21)
Since |T| = |H|, substituting (5.20) and (5.21) into (5.19) yields

p(olge) = ploloe). (5.22)

From this expression, we can conclude that any Bayesian estimator, e.g.,
those based on the MAP and MMSE criterion, can be derived in an equivalent
way by using either the variable o, or the transformed variable g..

5.3 Estimation of the complex backscatter co-
efficients

The estimation of the source signal o.(r) given the observation of the
output g.(r) from an unknown linear system h(r) is a typical problem of blind
deconvolution [63]. Several methods have been proposed in the literature in
the last two decades in the field of image restoration [64, 63, 65]. Many of
them are based on iterative algorithms and/or require some hypotheses on
the prior distribution and the hyperparameters of the source signal in order
to use the Bayesian inference framework.
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In our approach, any assumption on the statistical distribution of the
target scene o(r) is avoided. We will use some results from [18] as well as
some hypothesis on the frequency response of the SAR system.

From the observation of the spectrum of a real SAR acquisition (see the
experimental results section) it can be inferred that the SAR system can be
represented by a band-limited lowpass filter with cutoff frequencies f., and
fey, 1.€., by defining F, = {f : |fo| < fou, | [yl < fey} we have

Hf)~0 f¢F, (5.23)

Moreover, without loss of generality, we can assume that the filter H(f) has
unit energy, i.e.,

/ |H(f)|*df = 1. (5.24)

Equation (5.23) implies that the PSF of a real SAR system may not
be invertible. In this case a true whitening operator can not be defined.
Nevertheless, we may intuitively assume that flattening the spectrum of the
received complex radar image in the passband of the filter H(f) remains a
good strategy to approximate a white process. A flattening approach to
despeckle ultrasound images has been used in [61, 66]. Our experimental
results show that the flattening strategy yields a significant improvement in
terms of despeckling performance.

If H(f) is an estimate of H(f), then we can define an estimate of the
complex backscatter coefficients 7.(r) as

(5.25)

0 otherwise

bulr) = {S V(D) G0 fe,

where W (f) = yH(f)™! is the whitening filter, G(f) = F{g(r)}, and v is a
suitable scaling constant. In Section 5.7.2, we show that the above solution
yields the minimum norm estimate of &.(r).

5.3.1 Estimation of the SAR system frequency response

The estimation of H(f) can be performed by using the results in [18],
where it has been demonstrated that the average spectrum of g.(r), denoted
as Sy, (f), is given by

Sy.(£) = F{Ry.(r) } =7 |H(E)[*, (5.26)
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where R_gc(r) is the average autocorrelation of g.(r) taken over an Np x Np
spatial window D when Np tends to infinity [18], that is

_ . 1
Bo.v) = m

> Elge(r +1)g."(r")] (5.27)

r'eD

and where the spatial average radar backscatter & is given by
= lim — > o). (5.28)

It is worth noting that, under the hypothesis of a unit energy filter H(f), the
average radar backscatter of the scene is preserved, since [ S, (f)df = 5.

As in [19], we will use a nonparametric spectrum estimation method to
achieve the average spectrum S, (f). By using the Bartlett-Welch method

[67], we have 2
s{gc<r) . WN—;C)H (5.20)

5.0 = 3 3

ceC

where w(r) is a zero-centered N, —points weighting window, c is a shift ap-
plied to the window, C is the set of all shifts of the window over the image,
N¢ is the cardinality of C. It is well-known that S’gc(f ) is an asymptotically
unbiased and efficient estimate of S, (f), i.e.

5, (F) = 5,.(6) + A(F) (5.30)

where A(f) represents a zero-mean approximation error. As to the average
radar backscatter of the scene, this can be estimated as

~

G = / S, (F)df. (5.31)

It is easy to verify that this is also an asymptotically unbiased estimator,
since

E[s] =E [/ [T H () + A(f)] df}
=E [5+ / A(f)df} (5.32)

=0

In order to facilitate the whitening process and to avoid phase distor-
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tion in the detected image, we will assume that the SAR system impulse
response h(r) is a linear-phase FIR filter. We will also assume that the
SAR system frequency response H(f) can be approximated by a real central—
symmetric non-negative function with unit energy belonging to a set of known
parameter-dependent curves F'(f; ¢), where ¢ is a vector parameter. In the
experimental results section, we will show that a raised-cosine function fits
quite well the observed S, (f). Formally, we assume that

Iy € O : F(f; ) ~ H(f) VE (5.33)

where ® is the ¢ parameter space and where, for all ¢, F'(f; ¢) satisfies the
properties

F(f;¢) >0
F(f; ) = F(—f;¢)

/ F2(f; p)df = 1.
fer,

Hence, by using (5.33) together with (5.30), the approximation model be-
comes

Sy (£) = TEF(£; ) + A(f)

~ 62 (f; @) + A(F) (5:34)

where, according to (5.32), we have assumed 7 ~ &.
The least square (LS) solution to our approximation model aims at min-
imizing the energy of A(f). Hence, the LS estimator of ¢, is given by

S, (£) — GF2(f; p) . (5.35)

(AﬁLs = arg mdin /

feF,

Finally, the whitening filter can be obtained as

W(f) =7 F(f; )" (5.36)

5.4 Implementation of the despeckling algo-
rithm

In this section, we take into account some practical issues that must
be faced for implementing the proposed whitening method in order to pre-
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vent undesired results. At the end, the complete procedure of the proposed
method is given.

5.4.1 LS fitting and average spectrum estimation

In order to simplify the estimation of the whitening filter, we assume
that the band-limited frequency response H(f) of the SAR system can be
expressed by a separable function

F(f7 ¢) = Fz(fza ¢m) ' Fy(fy; (by)v
where both F,(fs; ¢.) and Fy(f,; ¢,) are such that

[Esoaras = [ 1Rk =1

In this way, the approximation model in (5.34) can be simplified as

Sponlfs) = / S0 (B)f, ~ 6F2(fs o) + / AR,  (5.37)
S0onlf) = / S0 (E)dfs ~ 6F2(fy: o) + / AB)d,  (538)

and the decorrelating filter can be estimated by solving two separate LS
problems. The two quantities S ca(f)s S’gay( fy), corresponding to one-
dimensional average periodograms along the z and y coordinates, respec-
tively, are estimated as follows

Spalt) = [ I8 {auto) (5:39)
Sus(5) = [ 13 L0u0)) . (540

According to (5.35), LS fitting only considers frequencies in which H(f) is
supposed to be nonzero. In our implementation, the cutoff frequencies along
each spatial frequency are either supposed to be known from the technical
specifications of the SAR system or manually estimated from the inspection
of the average periodograms.

5.4.2 Choice of the scaling constant

The scaling constant v influences the value of the radar backscatter of
the decorrelated signal d.(r). In our implementation, we choose to preserve
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the average backscatter & of the observed scene, i.e., we impose

/?de(f)df =7 (5.41)

which, from (5.25) and (5.26), is equivalent to
/ |W(£)H (f)|*df = 1. (5.42)
feF,

If we assume that the whitening filter is ideal, i.e., W(f) = vH(f)™!, the

above condition implies
~1/2
v = / df (5.43)
fer,

showing that the ideal scaling constant depends on the cutoff frequency of
the system.

By ensuring that the average radar backscatter is preserved on the whole
scene we also ensure that the backscatter is approximately preserved in lo-
cally stationary areas affected by fully developed speckle, i.e, in areas for
which it is valid the approximation in (5.4). Nevertheless, the above strat-
egy does not work well in highly heterogeneous areas that do not obey the
fully developed speckle model, e.g., in the presence of point targets. In the
following, we will see how to cope with the above problem.

5.4.3 Processing of point targets

Real SAR images usually contain point targets, which are due to man-
made features or edges. Such strong scatterers must be generally preserved
because they show a high level of reflectivity with no speckle noise. Since
point targets do not obey the zero-mean white complex circular symmetric
Gaussian model, they have to be detected and replaced in order to estimate
the complex backscatter coefficients according to (5.25).

Let the set of non—point targets pixels of the complex image g.(r) be
Q. = {r €7 |g.(r)]* < 7'} (5.44)

where 7 is a suitable threshold, which can be experimentally determined by
observing the histogram of |g.(r)[>. Then we define the modified complex
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image g,,(r) as

%m=&£>$g% (5.45)

where €(r) is a complex circular symmetric Gaussian variable satisfying

e(r) ~CN [ 05> [ge(r)* /]Qs. (5.46)

re Qgc

with |Q,, | the number of the elements of Q, . In other words, we substitute
each point target of the original complex image g.(r) with a realization of
a zero-mean white complex circular symmetric Gaussian variable, whose
variance is given by the average energy of non—point targets pixels.

It should be pointed out that, in the case of a band-limited SAR system,
the replacement proposed in (5.45) is also useful to prevent the whitening
method from spreading the energy of point targets in the surrounding areas
and making cross-like features appear around strong scatterers.

5.4.4 Summary of the complete despeckling procedure

1) Detect the set of point targets Qg according to (5.44);

2) Generate the modified complex image g,,(r), removing point targets as
stated in (5.46);

3) Estimate the SAR system frequency response, H (f), using (5.35), where
the complex image g.(r) is replaced with the modified version g,,(r);

4) Estimate the complex backscatter coefficients, .(r), by means of (5.25),
where the complex image ¢.(r) is replaced with the modified version

gm(r)§

5) Estimate the radar backscatter ¢(r) applying a despeckling filter based
on the uncorrelated speckle hypothesis to |6.(r)|?;

6) Re-insert the point targets in o(r):

A . o(r) r¢ Qe
dw_awmzre%y (47
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5.5 Experimental results

In this section, the experimental results obtained with the proposed method
are presented!. As to the despeckling stage, we will consider three different
filters: the I-MAP filter [42], the MAP filter in the undecimated wavelet do-
main with the assumption of generalized Gaussian distributed coefficients and
segmentation (GG MAP-S) [41], and the probabilistic patch-based (PPB)
filter [57]. For each of them, we compare the results obtained with the inclu-
sion of the whitening stage we have introduced (denoted in short as W) and
without using it (denoted as NW).

Tests have been carried out on both synthetically speckled images and
real SAR images. In all tests, we assumed that the separable components
of the frequency response of the SAR system belong to the class of raised
cosine functions, that is

Az_Bz'cos[’]r(fz—i_fc,z)/fc,z] ’fz‘ é fc,z

] (5.48)
0 otherwise

Hz(fz) = {

where z € {z,y}, f.. is the known cutoff frequency, and A, > B, > 0 are
the model parameters chosen with the constraint of unit energy.

As to the threshold used to select the point targets, described in Sec-
tion 5.4.3, we set 7 = oo for synthetically degraded images and 7 = 5 -
median||g.(r)|?] for real SAR images.

5.5.1 Performance indexes

The performances of the filters have been assessed by using different in-
dexes. As to simulated images, the performances are measured by computing
the PSNR (4.18) and MSSIM (4.19) between the original and the filtered im-
age, defined in Section 4.2, where I = /o and I, = 255 are substituted.

As to performance index which does not require the reference image, ac-
cording to Sections 3.3.3 and 4.2 and the notation adopted in this chapter, the
ratio image is defined as 4(r) = |g.(r)|?/5(r), where 6(r) represents the es-
timated noise—free reflectivity. When a fully—developed uncorrelated speckle
model can be assumed, the above image represents the filtered out speckle
noise. Hence, for a good despeckling filter 4(r) should satisfy E[u(r)] = 1
and Var[a(r)] = 1 [11]. When the above statistics are computed on local
windows, the method is accurate also in the case of real SAR images, for

! An implementation of the proposed whitening approach can be tested through a Web
service available at http://iapp.dinfo.unifi.it/despeckle.
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which the assumption of fully—developed speckle is not valid everywhere and
global statistics would be biased due to the presence of outliers. However,
when the SAR signal follows the general model in (5.1), the expected value of
|g.(r)|? is different from o(r), as shown in equation (5.5). As a consequence,
even in the presence of an ideal despeckling filter the statistics of u(r) would
differ from the expected ones. Hence, in the presence of correlated speckle
we re-define the ratio image as

N 1

2w [P(x) 26 (xr — 1)

where in the case of real SAR images the impulse response of the SAR system
is replaced by the estimated response h(r) = §H{F(f; ¢dr5)}-

U

(5.49)

In the case of SAR images, we also compute some other indexes. The
effectiveness of despeckling is evaluated by computing the ENL of the filtered
image over manually selected regions in which a homogeneous backscatter is
assumed; ENL is defined, according to Section 3.2.5, as

ENL(r) = (5.50)

The effectiveness of the whitening procedure is evaluated by estimating the

normalized autocorrelation of the speckle. Following the approach in [18],
this is computed as

_ palP

|pg. (0)?

where p, (1) = ﬁ > weo,, 9o(r+1')g;(r') and N(r) takes into account both
the size of Q, and the number of overlapping points between translated
replicas of g.(r).

(r) (5.51)

The preservation of radiometric features is measured using the target-to-
clutter ratio (TCR), defined as

|P| - maxeep |ge(r)|”

2 rep |9e(r)]?

and the bias between the original and the whitened image, measured as

. 2
Bias = 101log,, —ZrE’P ’UC(r>’2
Zre'P |gC(r)|

(5.53)

where P denotes an appropriate image patch.
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(@)

Figure 5.2: Original optical images: Lena (a), Barbara (b), San Francisco (c),
Stockton (d)

5.5.2 Results on synthetically degraded images

A set of synthetically speckled images have been generated according to
(5.2). A reference test image has been first multiplied with a white circular
complex Gaussian process, with zero mean and unit variance, and then fil-
tered by H(f). As reference target scene, we have used four optical 8 bit,
512 x 512, images (Lena, Barbara, San Francisco, Stockton), which are shown
in Figure 5.22.

In order to avoid the results to be biased by a specific shape of the filter,
the parameters (A, B.) have been randomly generated for each realization
of the complex images. Ten realizations have been used for the computation
of each performance index and the mean taken.

In Table 5.1-5.4, the PSNR, the MSSIM, the mean and the variance of
the ratio image u are presented. The results are shown by using the cutoff
frequency f. (normalized to half the sampling frequency) as a parameter. For
each considered despeckling filter, the results obtained by using the whiten-
ing stage (W) and without using it (NW) are reported. From the observation
of the Tables, some considerations can be made. The whitening stage always
improves reference-based performance indexes, i.e., PSNR and MSSIM, ex-
cept for two specific cases in 5.3. This trend can be observed irrespective of
the test image and of the despeckling filter. The performance gain is higher
for lower cutoff frequencies. This fact is not surprising, since for lower cutoff
frequencies speckle correlation is higher and poorer performances of despeck-
ling filters based on the uncorrelated noise assumption are expected. The
filter that benefits more from the use of whitening is the GG MAP-S, fol-
lowed by the PPB. This can be explained by the fact that these filters rely
more heavily on the uncorrelated speckle assumption.

The whitening stage also improves performance indexes which are not

2The corresponding degraded and filtered images are available at
http://iapp.dinfo.unifi.it/index.php/decorrelation-despeckling-results.




100 Chapter 5. Removal of correlated speckle noise

Table 5.1: Performance indexes obtained on Lena by means of different filters
applied in the absence (NW) and in the presence (W) of a whitening
stage (best index values for each cutoff frequency are highlighted in
bold).

fe I-MAP GG MAP-S PPB
NW W NW W NW W

0.6 | 20.31 21.64 | 18.33 23.23 | 21.11 24.53
0.7 21.04 2207 | 20.88 24.75 | 23.60 25.23
0.8 21.61 2231 | 23.30 2543 | 25.06 25.62
0.9 | 21.78 2231 | 24.26 25.70 | 25.47 25.96

0.6 | 0.405 0.447 | 0.273 0.529 | 0.453 0.606
0.7] 0431 0.467 | 0.381 0.650 | 0.557 0.638

PSNR

MSSIM 0.8 0.454 0.481 | 0.525 0.702 | 0.618 0.651

0.9] 0464 0.489 | 0.593 0.716 | 0.637 0.658

0.6 | 0.989 0.988 | 0.904 0.926 | 0.914 0.936

E[d] 0.7 1 0997 0.999 | 0.923 0.949 | 0.929 0.946

0.8 | 1.000 1.007 | 0.936 0.962 | 0.936 0.949

0.9 | 1.001 1.009 | 0.952 0.967 | 0.939 0.948

0.6 | 0.750 0.825 | 0.477 0.698 | 0.614 0.807

., | 0.7] 0791 0.863 | 0.593 0.819 | 0.716 0.859
Var|[u]

0.8 ] 0.803 0.883 | 0.672 0.894 | 0.762 0.881
0.9 ] 0.807 0.870 | 0.785 0.932 | 0.806 0.881
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Table 5.2: Performance indexes obtained on Barbara by means of different filters
applied in the absence (NW) and in the presence (W) of a whitening
stage (best index values for each cutoff frequency are highlighted in

bold).
1. I-MAP GG MAP-S PPB
NW W | NW W | NW W
0.6 19.13 20.04 | 17.62 21.04 | 19.64 21.70
psng || 07| 1961 2032 | 1948 21.90 | 2119 22.12
0.8 19.91 20.39 | 20.99 2227 | 22.03 22.46
0.9 | 20.12 20.32 |22.02 2247 | 22.70 22.93
0.6 ] 0.385 0.414 [0.286 0.460 | 0.420 0.520
vissny || 07 | 0407 0.431 1 0.366 0535 | 0.495 0.547
0.8 | 0.426 0.445 | 0.458 0.567 | 0.544 0.565
0.9 | 0445 0.459 | 0.536 0.582 | 0.584 0.594
0.6 0.984 0.983 [0.901 0.919 [0.907 0.927
Ed] 0.7]0.993 0.990 [ 0.919 0.936 | 0.923 0.931
0.8 0.997 0.996 | 0.933 0.948 | 0.930 0.933
0.9 | 0.998 1.003 [0.944 0.953 | 0.931 0.931
0.6 0.740 0.822[0.473 0.695 | 0.597 0.795
V]l 0.7] 0790 0.852 [ 0.599 0.811 | 0.714 0.840
0.8 0.805 0.867 | 0.702 0.895 | 0.774 0.866
0.9 0.801 0.862 | 0.781 0.938 | 0.801 0.864
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Table 5.3: Performance indexes obtained on San Francisco by means of differ-
ent filters applied in the absence (NW) and in the presence (W) of
a whitening stage (best index values for each cutoff frequency are
highlighted in bold).

fe I-MAP GG MAP-S PPB
NW W NW W NW W
0.6 | 21.41 2196 | 20.53 22.79 | 21.77 23.21
PSNR 0.7 21.65 2210 | 21.75 23.29 | 22.78 23.48
0.8 21.92 2211 | 23.03 23.51 | 23.58 23.68
0.9 ] 21.91 22,02 | 23.41 23.67 | 23.88 23.93
0.6 | 0.469 0.497 | 0.378 0.544 | 0.521 0.581
MSSIM 0.7] 0488 0.511 | 0.457 0.586 | 0.573 0.594
0.8 ] 0.511 0.523 | 0.555 0.601 | 0.605 0.601
0.9 1] 0.521 0.533 | 0.583 0.607 | 0.617 0.610
0.6 | 0.992 0.998 | 0.904 0.930 | 0.918 0.946
Eld] 0.710.998 1.003 | 0.920 0.947 | 0.931 0.951
0.8]10.999 1.006 | 0.936 0.958 | 0.939 0.953
0.910.998 1.011 | 0.948 0.963 | 0.941 0.953
0.6 | 0.767 0.847 | 0.499 0.709 | 0.637 0.835
Varli] 0.71 0.799 0.875 | 0.604 0.828 | 0.732 0.890
0.8 ] 0.811 0.880 | 0.714 0.907 | 0.797 0.918
0.9 ] 0.803 0.868 | 0.810 0.955 | 0.838 0.930
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Table 5.4: Performance indexes obtained on Stockton by means of different filters
applied in the absence (NW) and in the presence (W) of a whitening
stage (best index values for each cutoff frequency are highlighted in
bold).

fe I'-MAP GG MAP-S PPB
NW W NW W NW W

0.6 | 20.20 21.64 | 18.20 23.18 | 21.23 24.24
0.71 20.95 2216 | 20.67 24.73 | 23.41 24.78
0.8 | 21.56 2242|2288 25.32 |24.36 25.00
0.9 | 21.82 2242 | 24.08 25.48 | 2480 25.13

0.6 | 0.317 0.364 | 0.199 0.436 | 0.366 0.492
0.7] 0.343 0.384 | 0.300 0.533 | 0.450 0.516
0.8 0.367 0.401 | 0.416 0.567 | 0.493 0.525
0.9 ] 0.380 0.408 | 0.486 0.571 | 0.515 0.529

0.6 | 0.995 1.007 | 0.909 0.952 | 0.933 0.966
0.7 11.002 1.015]0.928 0.972 | 0.947 0.972
0.8 11.005 1.018 | 0.945 0.982 |0.954 0.973
0.9 | 1.007 1.018 | 0.964 0.986 | 0.957 0.968

0.6 | 0.760 0.842 | 0.490 0.744 | 0.666 0.852
0.7 0.802 0.877 | 0.606 0.863 | 0.757 0.894
0.8 0.824 0.894 | 0.712 0.934 | 0.811 0.911
0.9] 0834 0.886 | 0.833 0.966 | 0.849 0.905

PSNR

MSSIM
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(b)

Figure 5.3: Original SLC SAR images: Peretola (a), 1024 x 1024, and Campi
Bisenzio (b), 2048 x 2048

based on reference image, i.e., E[u] and Var[u]. The gain is particularly
evident for Var[d]. In fact, all despeckling filters, in the presence of corre-
lated noise, tend to underestimate the speckle-noise variance, so that their
effectiveness in speckle removal is degraded.

5.5.3 Results on real SAR images

The results on true SAR data have been assessed by using two 16 bit,
single-look complex images, extracted from 3-m resolution COSMO-SkyMed
HImage Stripmap acquisitions. We used calibrated and focused in slant
range-azimuth projection SAR data, referred to as Level 1A SCS product in
the COSMO-SKyMed handbook [68]. The images represent two areas near
Florence, Italy, denoted as Peretola and Campi Bisenzio, having dimensions
1024 x 1024 and 2048 x 2048, respectively. The images are shown in Figure
5.3.

Apart from the normalized autocorrelation p(r), the values of ENL, El[d],
Var[a], and Bias have been evaluated on four homogeneous areas manually
selected in each of the two test images, whereas TCR has been computed on
five patches containing point targets (the areas are indicated with squares
in Figure 5.3). The size of the homogeneous areas are 40 x 40 and 64 x 64
for the images Peretola and Campi Bisenzio, respectively, whereas the TCR
patches are 64 x 64 for both images.

In the case of real SAR images, it is interesting to evaluate the effective-
ness of the whitening stage before despeckling, both in terms of decorrelation
properties and preservation of radiometric features. In Figure 5.4, the fitting
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of the periodograms computed on the COSMO-SkyMed images are shown.
The results, presented for both the range and azimuth directions, demon-
strate that a raised cosine function fits well the shape of the periodograms.
It has to be noted that the periodograms of the original SAR data relative
to the azimuth direction, shown in Figure 5.4-(b) and 5.4-(e), are affected by
a frequency shift that has been compensated before fitting.

The normalized autocorrelation measured before and after applying the
proposed whitening stage is shown in Tables 5.5 and 5.6, for Peretola and
Campi Bisenzio, respectively. For both images, it is evident that the whiten-
ing approach effectively reduces speckle correlation.

As to the preservation of radiometric features, the values of TCR mea-
sured before and after the whitening stage, shown in Table 5.7, and the value
of the bias, shown in Table 5.8, show that the whitening stage yields a good
preservation of point targets and introduces only a small bias on homoge-
neous areas.

Table 5.5: Values of p(r) for Peretola, original image g(r) and whitened image
ge(r).

ge(r) Ge(r)
re =0 r,=1]|r,=0 r,=1
ry, =0 1.000 0.296 | 1.000 0.044
ry, =11 0276 0.090 | 0.032 0.003

Table 5.6: Values of p(r) for Campi Bisenzio, original image g.(r) and whitened
image d.(r).

ge(r) ge(r)
re =0 r,=1|r,=0 r,=1
ry,=0] 1.000 0.315 | 1.000 0.049
ry,=11 0302 0.103 | 0.034 0.004

Regarding the effect of the decorrelation approach on despeckling perfor-
mance, the values of the ENL and the statistics of u evaluated on Peretola
and Campi Bisenzio are reported in Table 5.9 and Table 5.10, respectively.
We can observe that introducing the whitening stage always improves the
ENL value for all the despeckling filters. The improvement is particularly
significant for the GG MAP-S and the PPB filters.

As to the extracted speckle statistics, we note that the whitening stage
has a beneficial effect as concerns Var[u] that becomes quite close to the the-
oretical value for all despeckling filters. We observe also that the whitening
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Table 5.7: TCR values for original image g.(r) and whitened image d.(r).

zone Peretola Campi Bisenzio
0.1 6.1) | ) Gul)
31.22 31.08 | 26.95  26.78
34.10 34.33 | 31.25  31.28
11.90 11.37 | 10.88  10.52
11.27 11.27 | 22.37 2248
23.63 23.76 | 24.94  24.89

T W N =

Table 5.8: Bias (dB) measured between the original and the whitened image.

zone \ Peretola \ Campi Bisenzio

A -0.25 -0.14
B -0.60 -0.31
C -0.55 0.05
D -0.44 -0.29

stage produces also a small increment of E[a]: while this fact tends to de-
grade the performance of the I'-MAP filter, it usually compensates the bias
affecting the GG MAP-S and PPB filters when applied without the whitening
stage.

For a visual inspection, some results of the filtering are shown in Figure
5.5 and Figure 5.6. Specifically, a 512x 512 detail of the two COSMO-SkyMed
images is presented, together with the whitened image and the images filtered
with the GG MAP-S and the PPB filters in the W and NW cases. As can
be observed, the whitening stage produces a significant improvement of the
visual quality of the filtered images. Even though some blurring can be
noticed in Figure 5.6-(f), it is interesting to note that the whitened image
shown in Figure 5.6-(b) still preserves all the details of the original image
shown in Figure 5.6-(a), so that blurring has to be ascribed to the despeckling
filter applied after the whitening stage.

As to the computational complexity, a MATLAB® implementation on
an Intel® Core™2 Quad 2.0 GHz processor with 8 GB RAM performs the
whitening step in about 4.7 seconds for the 2048 x 2048 Campi Bisenzio
image. Such time is negligible with respect to the despeckling step, which
on the same image requires about 240 seconds for the GG MAP-S filter and
1560 seconds for the PPB filter.




5.5 Experimental results

107

45 : : : 45 : : :
- - -Periodogram 5 - - -Periodogram 5
4r ___Estimated [H | 4r ___ Estimated [H |
3.50 D 1 35t E‘
3 ¥ T It
N b
2.5+ any 1 25t iﬂ"x‘w
T R
L AR , L AR
2 W”‘u ‘J‘ | ] Hl‘“l‘ 2 1 ﬂ' \; M‘N
1.5 £ ™ 1 15 Y
1t £ ] i |
05/ Lo Jo4 o5 i o
91 -0.5 (f) 0.5 1 91 -0.5 (]? 0.5
(a) (b)
4.5 i i 4.5 : :
4f 1 4t ]
3.5r ] 3.5¢
3r ] 3r
2.5¢ ]
| Nl
LM
P ﬂv‘\‘w‘ ¥ Wﬁ(‘?h% ‘7
’ ! i
157 ", L
41 "‘"r»., ,w““ |
i, M\,\M
0.5 1
91 -0.5 (f) 0.5 1
()
45 i i : 4.5 . : .
---Periodogram 2 ---Periodogram 5
4r __ Estimated |Hy| i 4r __ Estimated |Hy| I
3.5r ] 3.5¢
3r ] 3r
2.5¢ " 1 25f ol
M i ‘w,‘ ! L A
2r y " M“m‘ 1 2r ‘ ‘
P N
1.5¢ / 4 R ] 1.5¢
1r ’ ] 1r
0.5r i ] 0.5r
91 -0.5 (f) 0.5 1 91 -0.5 ? 0.5 1

Figure 5.4: Periodograms of Peretola (left) and Campi Bisenzio (right) and rela-

tive estimation of |H (f)|?:

along range (a),(b); along azimuth (c),(d)

; along azimuth after frequency shifting recovery (e),(f).
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Table 5.9: Performance indexes obtained on Peretola (best index values are high-
lighted in bold).

zone I'-MAP GG MAP-S PPB
NW W NW W NW W

A 19.27 24.64 | 2790 14229 | 7844 153.19

ENL B 1775 29.87119.26 184.24 | 60.76 150.21
C 18.03 29.17 | 30.52 329.48 | 90.91 224.91

D 20.86 2494 | 27.62 196.06 | 118.28 173.17

A | 1.005 1.033]0.940 0.997 | 0.921  0.979

E[d] B ]0.989 1.080|0.929 1.052 | 0.929  1.037
C | 1.008 1.092|0.964 1.070 | 0.962 1.062

D |1.002 1.111]0.950 1.069 | 0.967  1.069

A ] 0847 0928 |0.702 0.936 | 0.740  0.887

Var[i] B 0.844 1.063 | 0.684 1.087 | 0.767 1.021
C 0.804 0.975|0.707 1.036 | 0.761 0.985

D 0.788 0.972 | 0.661 0.994 | 0.749  0.962

Table 5.10: Performance indexes obtained on Campi Bisenzio (best index values
are highlighted in bold).

zone ~MAP GG MAP-S PPB
NW W NW W NW W
A 12,53  20.71 | 15.21  83.57 | 37.86 90.58
ENT B 12,12 18.87 | 22.07 105.50 | 68.28 98.03
C 16.73  24.88 | 24.87 243.45 | 82.78 146.27
D 14.40 15.18 | 22.45 123.23 | 79.52 126.68
A 1.012 1.035 | 0.944 1.003 | 0.959 0.984
E[q] B [1.018 1.091 | 0947 1.045 |0.956 1.042
C |1.002 1.017{0.949 0.991 |0.971 0.972
D |1.003 1.064|0.943 1.032 | 0.958 1.028
A | 0.842 0.939 | 0.681 0.965 | 0.802 0.904
Varli] B 0.879 1.070 | 0.731 1.100 | 0.834 1.052
C 0.808 0.887 | 0.699 0.931 | 0.808 0.864
D | 0.801 0.939|0.682 1.001 |0.784 0.972
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(e) (f)

Figure 5.5: Peretola, left to right, top to bottom: original detail (a); after the
whitening stage (b); GG MAP-S filtering obtained in the NW (c)
and W (d) cases; PPB filtering obtained in the NW (e) and W (f)

cases.
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(f)

Figure 5.6: Campi Bisenzio, left to right, top to bottom: original detail (a); after
the whitening stage (b); GG MAP-S filtering obtained in the NW

(c) and W (d) cases; PPB filtering obtained in the NW (e) and W
(f) cases.
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5.6 Conclusions

In this chapter, the problem of despeckling single-look complex SAR
images affected by correlated noise has been addressed. Several despeckling
filters in the literature have been developed under the hypothesis of white
speckle noise, so that they suffer from a significant loss of performance when
used in the correlated speckle case. We have demonstrated that this is not
the case if a whitening stage, restoring the hypothesis of whiteness on the
single-look complex image, is introduced before filtering. The motivation of
the whitening stage has been formally derived by using classical and Bayesian
estimation frameworks. Specifically, it has been shown that estimators can
be derived equivalently in the correlated and whitened domain, and that the
approach is optimal if the SAR system has an invertible transfer function.

Based on Madsen’s work, a robust estimation of the SAR system point
spread function, relying only upon the acquired single-look complex SAR im-
age, has been proposed; practical implementation issues, such as the treat-
ment of point targets, has been faced as well. The experimental results
confirm that despeckling filters based on the uncorrelated speckle assump-
tion can be successfully applied also in the correlated speckle case when the
proposed procedure is applied. Interestingly, a significant performance gain
is obtained even when a perfect whitening of the single-look SAR image can
not be achieved, for example when the SAR system frequency response is
zero in some interval. Results on true SAR images also demonstrate that the
proposed decorrelation technique adequately preserves radiometric features.

5.7 Appendix

5.7.1 CRLB and efficient estimators of o

In order to prove the efficiency of the whitening stage, we firstly derive the
CRLB for the estimation of the target scene o = [0(0) - -o(N — 1)]7 given
the observation of g. expressed by (5.7). Since g is a zero-mean Gaussian
vector, the Fisher information matrix I (o) relative to any estimator of o
is given by [25]

1 0C 0C
I _ —1 8c —1 8c
[ 8c (0->]n7m 2tr Cgc 80'(77/) Cgc ao_<m)

(5.54)
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where, from (5.11), we have

C -1 _ H_TCU —lH—l

gc

8Cg° — H aCO’(: HT (555)
do(p) do(p)
for 0 < p < N. From (5.10) we get
-1
C,, ' =2-diag ([O'T, o-T]T>
[anc:| . %, form:n:p’m:n:p+N’ (556)
do(p) nm N 0, otherwise.

In (5.55), both H and C,,_ are required to be invertible; while the former
condition is strictly dependent on the the expression given in (5.9), the latter
one is always verified if o has no zero entries. Hence, substituting (5.55) into
(5.54) yields

1 1 1137 9Coe 11
L (0)],0 =5t {H Co. 'H 'Hy ZsH
« HTC, O e gy
¢ do(m)
_1 [ =T —1 8CUC —1 aco'c T
=5t _H C.. aa(n)c"° 80(m)H (5.57)
1T oC oC
=_t HTH—T —1 Oc -1 Oc
2" | Coe atn) O 80(m)]
1 [ 4 0Cs . , OC,
=3 | O Go(n) O 8J(m)]

where the property tr(AB) = tr(BA) has been used in the third equality.
Furthermore, from (5.56), it follows that

oC
Cac_l Oc :|
{ 90 (P) | pm

(5.58)

{o_l(p), form=n=pm=n=p+ N,

0, otherwise
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that is, such an N x N matrix has all zero entries but in the pth and (N +p)th
positions of the main diagonal. Consequently, for p # ¢ we have

1, 0C,,
do(p)

C,. ! 0Co. _ =0 (5.59)

o 0014)

whereas for p = g we have

o —19Ca o ac% }

9o(p) ™ Dolp)
{ (p), form:.n:p,m:n:p—i—N, (5.60)
otherwise.
Substituting relations (5.59) and (5.60) into (5.57) yields

c2(n) n=m
I, (o = 5.61
Hee( )] {O otherwise (5.61)

or, more compactly,

I, (o) = diag (o) > (5.62)

By applying the CRLB theorem [25], the covariance matrix Cs of every
unbiased estimator & of o satisfies

Cs I, '(o)>0 (5.63)

where equality holds if the estimator is efficient. Hence, substituting (5.62)
into the last inequality yields the explicit expression of the CRLB of the
despeckling problem given in (5.12).

Now, we demonstrate that the estimator in (5.14) is efficient. It is

straightforward to show that &g is unbiased, that is (for the sake of clearness,
vector entries are indicated by a subscript index)

Eﬂ@@J=E{HH*&LV+MH4&th}

~E{llod,} +E{lodn]}
=[o],/2+[o],/2=[0],

where equation (5.7) and the statistical model (5.10) have been used in the

(5.64)
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second and third equality, respectively. Similarly, it can be shown that

E {‘ H g 2}
~5{,

2 -1
|,

2

—

o

) E ‘[ac],,2 -E{)[Gc]qZ} D7 4 (5.65)
- E ‘[ac]p4 D=4q

B [U]p[d]q2/4 P Fq

)3 lol,| /4 p=q

where we have exploited the fact that the entries of . are independent Gaus-
sian variables. By using the last expression, each entry of the autocorrelation
matrix of &g, Rs,, is given by

Roeilnm = E[0enl, [Fel,, }

—E { [) H'Ho], |’ + |[H'Ho] Wﬂ

' D [Hflﬂac}mf + ][H*Hac]mw 2]} (5.66)
_{whmm,m¢n
2- [U]RF , M = "n.

The covariance matrix of &, Cs_,, Obtained by its definition and (5.66), is
given by

0 ,m#n

o], I”

[Cffeff]n,m = [R&efr]mm - [O'}n [O’]m = { (567)

T =,

or, in compact form,

Cs.. = diag (o)*. (5.68)

&eH

By replacing Cs with Cs_, in (5.12), the equality is verified; thus e is an
efficient estimator for the despeckling problem.
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5.7.2 Pseudo-inverse of H(f).

Let us rewrite the model in (5.1) in complex vector notation as
g. = Hé. (5.69)

where §c = [gc(0), ..., g.(N —1)]" and &, = [0,(0),...,0(N —1)]" whereas
H models 2-D convolution by A(r). When the matrix H has not full rank, it
is well known that the minimum ¢? norm solution of (5.69) is given by

. =H'g, (5.70)

where HT denotes the Moore-Penrose pseudo-inverse of H [69].

In the case of a circular 2-D convolution, the matrix H is block circulant
and can be diagonalized using a unitary 2-D discrete Fourier transform (DFT)
matrix Wap [70], that is

H =W AgW,p (5.71)

where Ag is a diagonal matrix whose diagonal contains the 2-D DFT of h(r),
rearranged by stacking its columns. If we assume that H(f) is different from
zero only on a given passband, this can be expressed as

H = Wi}, pAupWap p (5.72)

where Ay p is a diagonal matrix obtained by removing the zero diagonal
elements from Ay and Wyp p is obtained by removing the corresponding
columns from Wyp. In this case, the Moore-Penrose pseudo-inverse of H is

readily found as _
H' = Wi}, p AL s Wap p. (5.73)

Hence, the above formula shows that equation (5.25) is equivalent to com-
puting the minimum norm solution of the whitening problem.







Chapter 6

Quality assessment of
despeckling methods

In this chapter, the non—trivial task of quality assessment for the despeck-
ling filters is discussed. In the first part a review of the most popular indexes
used in the literature is presented; such list includes also measures which have
been used in the previous chapters. In the second part, a fully automatic
method for quality assessment of despeckled SAR images is proposed; such
a method does not require a reference image to be computed.

6.1 Overview

One of the most challenging tasks is the validation and quality assessment
of data processed for speckle reduction. The most evident problem is that
the noise-free reflectivity that we wish to estimate is unknown, so that no
comparison can be carried out between the output of the despeckling pro-
cess and the actual ground truth. Another important issue is the relationship
between quality and fidelity of despeckled SAR data. Like many other denois-
ing frameworks, the quality of a processed SAR image is usually evaluated
in terms of blurring of homogeneous areas, i.e., suppression of speckle noise,
and detail preservation in heterogeneous areas. Nonetheless, in incoherent
SAR imagery, a fundamental part of the information is represented by the
relative values of the reflectivity of the targets, which allow measurements
and inferences on the target scene. The radiometric preservation of the sig-
nal is an important requirement, that is, a good despeckling filter should not
introduce bias on the reflectivity.

An immediate and subjective approach for quality assessment is repre-
sented by visual inspection of filtered images. Visual inspection permits

117
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detection of the main human—visible features that characterize the behaviour
of a despeckling filter. Such features include edge preservation capability,
degree of blur, point target preservation, as well as structural artifacts which
are hardly detected by objective and direct measurements. On the other
hand, visual assessment does not allow either quantitative comparisons be-
tween the performances of different despeckling filters to be made or the bias
introduced by the filter to be effectively estimated.

In order to overcome the limitations of visual comparison, several objec-
tive performance indexes have been proposed in the literature for the quality
assessment of despeckling filters. They can be mainly divided into two classes:
with—reference and without-reference indexes.

With-reference indexes are commonly used in the image denoising field.
Their use implies that the noise—free, or reference, image is known. A typical
approach consists in choosing a reference image, either optical or synthetic,
representing the actual reflectivity or ground—truth, and creating a synthet-
ically degraded version according to a given signal model. These indexes
permit a quantitative and objective comparison between the performances of
different filters, which are expected to perform similarly on real SAR images.
Moreover, insights on filters behaviour on specific image features, like edge
preservation and homogeneous areas smoothing, can be easily highlighted
by choosing appropriate reference images and even synthetic—generated pat-
terns. Unfortunately, experimental results carried out on simulated SAR
images often are not sufficient to infer the performances of despeckling fil-
ters on real SAR images, since the synthetically speckled image may not be
consistent with the actual SAR image formation and acquisition processes.
Furthermore, the statistical properties of the chosen reference image and of
a real ground—truth reflectivity can substantially differ.

On the contrary, without-reference indexes do not trust on the knowledge
of the ground—truth. They are uniquely based on specific statistical hypothe-
ses on the signal model. Since the signal model is strongly dependent on the
degree of scene heterogeneity, a supervised selection of the most appropriate
areas for the computation of a specific index, e.g., homogeneous areas, may
be required.

In the following, the most used indexes belonging to both the above men-
tioned classes are presented. Note that the statistical operator of expectation
EJ-] and the moments of the involved variables, such as the variance and co-
variance, here denoted as Var[-] and Cov/[-] for the sake of simplicity, should
be replaced by their empirical versions based on spatial averages when eval-
uating the indexes.
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6.1.1 With-reference indexes

The mean square error (MSE), or Euclidean distance, between the ground—
truth f and the despeckled image f, defined as

MSE(f, f) = E[(f — f)?]. (6.1)

has been widely used for the quality assessment of both denoising and de-
speckling [71]. Other common related measurements are the Signal-To—Noise
Ratio (SNR) [22]

e Var|f]
SNR(f, f) = 10 - logy, —MSE(f, f)] : (6.2)
the Signal-to-Mean Square Error (SMSE) [72]
; E[f?]
—10-1 _ :
SMSE(f, f) = 10 - log, MSE(/, f)] , (6.3)
and the Peak Signal-To—Noise Ratio (PSNR) [41]
PSNR(/f, f) = 10 - log,, M] . (6.4)
MSE(f, f)

where fprak denotes the maximum value allowed by the samples dynamic
range. Unlike the case of additive signal-independent noise, in the presence
of signal-dependent noise the MSE is strongly influenced by the average
signal level of the ground truth. Consequently, a quantitative evaluation of
despeckling filters using this kind of indexes is strongly dependent on the
content of the ground—truth image, even though performance hierarchy is
usually preserved across different images.

MSE-based measurements are useful to obtain a global performance as-
sessment on the whole image, but usually they yield little information about
the preservation of specific features, for which other indexes can be used.
The mean structural similarity index measurement (MSSIM) [58], proposed
for the general denoising framework and adopted also in the context of de-
speckling, underlines the perceived changes in structural information varia-
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tion after the filtering process. The MSSIM is defined as

1 Ml Z'E[fp]'E[fp} +Cy

MSSIM = -
= (B +E|]+a
A (6.5)
2+ Cov | fy fy] + Cy
Var [ f,] + Var [fp} L Oy |
where f, and fp, p=20,...,M — 1, represent two corresponding patches in

the original image and in the despeckled one, respectively, and C;,Cy are
two suitable constants. MSSIM takes values over the interval [0, 1], where 0
and 1 indicate no structural similarity and perfect similarity, respectively. As
demonstrated in [58], MSSIM can substantially differ between images having
very similar MSE values.

The edge correlation (EC) index has been proposed as a measure of edge
preservation for despeckling of echographic images [73] and has been extended
to the SAR field [74]; it is defined as the correlation coefficient (0 < EC < 1)
between highpass versions of the original image f and despeckled one fH ,
that is

cov[fH,fH}
\/Var [fH]- Var [fH]

This index may be distorted by possible residual speckle noise that is en-
hanced by the highpass filtering.

Another index of edge preservation is Pratt’s figure of merit (FOM) [75],
which has been used in [76] for the quality assessment of despeckled SAR and

ultrasound images. FOM is defined on a local patch of the image containing
an edge as

EC =

(6.6)

N
1 1
FOM = . ) 6.7
max(N, N) 2 L+ duo o0

where N and N are the points belonging to the edge in the original and
despeckled patches, respectively; d2 is the Euclidean distance between the
edge pixel in the despeckled image patch and the nearest ideal edge pixel in
the original one, and « is a suitable constant. The more similar the edge
maps, the closer to zero the FOM values. Consequently, this index is strictly
related to the map edge detector that is used, which is crucial especially for
the despeckled image when a residual noise component is present.
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Table 6.1 summarizes the above mentioned indexes.

In order to show despeckling how filters’ performances are measured by
the previous indexes, in the following we present some experimental results.
A synthetically speckled images has been produced starting from a 512 x 512
digitized aerial photograph of San Francisco. Firstly, the original speckle-free
image, regarded as an amplitude format, has been squared and multiplied by
an exponentially distributed fading term, in order to simulate a single-look
SAR image in intensity format. The simulated speckle is spatially uncorre-
lated and fully developed. The noisy intensity image, together with all filtered
intensity versions, has been square rooted, for displaying convenience, and is
shown together with the 8-bit original, regarded as an amplitude image, in
Fig. 6.1-(b) and Fig. 6.1-(a), respectively.

The filters compared here are representative of different approaches : GG
MAP-S [41] and LG MAP-S (Section 3.3.2) as Bayesian filters in the wavelet
domain (input format is square root of intensity); Probability Patch-Based
(PPB) [57] and SAR-BM3D [77] as non-local mean filters in the spatial and
wavelet domain. Visual comparisons of the results obtained with the same
filters can be made observing Fig. 6.1. Clearly, all filters fail to reconstruct
the textured area in the bottom-right of the image. Performance indexes
obtained by means of the test despeckling filters are reported in Table 6.2.
Interestingly, There is no filter leading in all indexes. Moreover, there is no
common trend between the EC and the FOM indexes which are supposed to
measure similar features.

A second set of experiments have been carried out by simulating a 4-look
SAR image in intensity format, that is, by multiplying the original speckle-
free image by a unitary variance I' distributed fading term having variance
1/4. Results are reported in Table 6.3. Results are quite aligned with those
ones obtained in the case of the single-look speckle realization. The only
exception is represented by the GG MAP-S filter which scored the best in
terms of FOM in the previous case.

6.1.2 Without-reference indexes

As previously stated, without-reference indexes do not rely on the com-
plete knowledge of the true reflectivity, but are based on the statistical model
of the SAR signal as well as on some simple assumptions and the degree of
heterogeneity of the underlying scene.

The equivalent number of look (ENL) [78] is an index suitable for evalu-
ating the level of smoothing in homogeneous areas, that is where the scene
variation is supposed to be negligible with respect to speckle noise fluctua-
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Table 6.1: List of commonly used with-reference indexes for evaluating perfor-
mances of despeckling algorithms.

Index Note
MSE = EJ( f — ) ifl;la]; :e Sspeckle—free despeckled
. Var[f] Var|f]:  speckle{ree image
SNR = 10 logyq [ MSE } varigﬂce ’ °
, frEak: maximum value al-
PSNR = 10 - log;, [f&%/}f] lowed by the samples dynamic
range
2 E[f?]: speckle—free image
MSSIM = L 321 {—Q'E[fp]'E[’?’]”l for fpr p = 0. M —
g _OA B[f2]+E[f]+C 1: speckle—free and despeckled
, Z‘Cov[fpvfp]f % w image patches; Cj,Cy: suit-
Var|fp] +Var | fp|+C2 able constants.

fH fH.  highpass-filtered
speckle—free and despeckled
images

Cov[fH,fH]

EC = -
\/Var[fH]-Var[fH}

N, N: number of points be-
longing to an edge in speckle—
free and despeckled image
) patches; d?: FEuclidean dis-
FOM = max(leN) 22;1 % tance between the edge pix-

els in the despeckled image
patch and the nearest ideal
edge pixel in the speckle—free
one; «: suitable constant.

Table 6.2: Performances of with-reference indexes obtained on San Francisco
corrupted with 1-look speckle noise

\ideal noisy GG MAP-S LG MAP-S PPB SAR-BM3D

PSNR oo 19.02 26.08 26.13 24.73 26.00
MSSIM 1 0.411 0.707 0.709 0.696 0.724
EC 1 0.279 0.372 0.397 0.304 0.374
FOM 1 0.133 0.302 0.285 0.282 0.286
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Figure 6.1: Results on San Francisco corrupted with 1-look synthetic speckle
noise: (a) noise-free reference; (b) noisy (1-look); (c) GG MAP-S;
(d) LG MAP-S; (e) PPB; (f) SAR-BM3D.



124 Chapter 6. Quality assessment of despeckling methods

Table 6.3: Performances of with-reference indexes obtained on San Francisco
corrupted with 4-look speckle noise

| ideal noisy GG MAP-S LG MAP-S PPB  SAR-BM3D

PSNR oo 24.67 28.93 29.37 27.60 29.06
MSSIM 1 0.668 0.806 0.815 0.782 0.820
EC 1 0.515 0.635 0.657 0.522 0.632
FOM 1 0.255 0.426 0.469 0.460 0.471

tions. The ENL is defined as
a2
B[/l

ENL = Var [ﬂ .

(6.8)

The ENL of the original SAR image is related to the nominal number of looks
through the autocorrelation function of speckle [79], whereas it increases after
the despeckling stage according to the smoothing capability of the filter.

Other typical measures can be computed from the ratio image r, defined
as the point—by—point ratio between the noisy and the filtered image [17]

rin) = 9. 69
f(n)

The ratio image is a useful information in both homogeneous and heteroge-
neous scenes, wherever fully developed speckle model holds. It represents the
noise pattern removed by the despeckling filter that, according to the model,
should be I'-distributed. An ideal filter should result in a pure random pat-
tern, whereas poor speckle noise removal causes structural informations, such
as borders and edges, to be clearly visible in the ratio image. The mean and
the variance of r, that is

wr = Elr], o2 = Var[r] (6.10)

should be as close as possible to the respective theoretical statistical moments
of the speckle noise process. For this reason, they are often used as indexes
of bias and speckle power suppression, respectively.

A measure of bias is also given by the B index [19],defined as

ey
B_E[—g ] (6.11)
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where a value close to zero indicates an unbiased estimation.

Under the hypothesis of multiplicative speckle noise, a measure of texture
preservation on heterogeneous areas is given by the comparison between the
scene coefficient of variation C, defined as

]
C;= W (6.12)
with its expected theoretical value C [11], given by
Cf = Cr-Ci (6.13)
14 C2

where C7 and C), are the coefficient of variations of the observed image and
of the speckle noise, respectively. Intuitively, a poor preservation of details
yields C's > C'r, while the introduction of strong artefacts leads to C's < C'r.

Since the speckle model does not hold in the presence of strong scatterers
or point targets, despeckling filters should keep their values unchanged. A
point target is usually characterized by a cluster of pixels whose reflectivity
values are much higher, even some orders of magnitude, than the mean reflec-
tivity of the surrounding scene. The target-to—clutter ratio (TCR) [80, 81]
aims at measuring the relative value of strong scatterers with respect to the
values of the surrounding pixels. It is defined as

maxp [g]

TCR =20 logw W’

(6.14)

where P is a patch containing a point target. TCR values computed before
and after the despeckling stage are indicative about how a filter preserves
the radiometric properties in the patch.

Table 6.4 summarizes the most commonly used without-reference indexes
for evaluating despeckling algorithms performance.

Fig. 6.2 reports the visual results obtained by filtering an original 1024 x
1024 1-look StripMap COSMO-SkyMed SAR image representing Cascine,
an area of Florence. The relative without-reference indexes are presented
in Table 6.5; ENL, p, and 02 have been computed in the zone indicated by
“A” in Fig. 6.2, C; has been computed in “B”, TCR in “C”, while B has
been computed on the whole image. PPB filter scores the best results for all
indexes but B. On the other side, the relative visual result looks like artificial
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Table 6.4: List of commonly used without-reference indexes for evaluating per-
formances of despeckling algorithms.

Index Note

B f]2 f, f: speckle—free and despeckled im-
ages; ENL is evaluated in homoge-
neous areas

pr = E[r], 02 = Var[r] | r(n) = %: ratio image
B==F |
g
_ Cr = \/ Clifc%’% (expected value); Cy,
Cp= ;F;][f] C,: coeflicients of variation of the ob-

served noisy image g and of the speckle

noise . .
maxplg] | P: patch containing a point target;

Erlgl | maxp, Ep computed over the patch

due to the mosaic behaviour which is typical of this kind of filter.

Table 6.5: Performances of without—reference indexes obtained on Cascine

\ideal noisy GG MAP-S LG MAP-S PPB SAR-BM3D

ENL 00 1.05 29.36 22.15 82.14 13.56
i 1 1.000 0.926 0.914 0.940 0.919
o? 1 0.000 0.651 0.607 0.719 0.527
B 0 0.000 -4.086 -3.980 -3.978 -3.431
Cy; | 0355 1.119 0.458 0.448 0.321 0.580

TCR | 48.238 48.238 47.964 48.017 48.148 48.106

A 512 x 512 4-look version of the same image has been also generated
by means of spatial multilooking (that is, applying a 2 x 2 box filter and a
subsampling by 2 in both range-azimuth directions). The resulting indexes
are presented in Table 6.6. PPB filter still exhibits an outperforming ENL.
Interestingly, the ENL of the noisy image is not 4 as expected, because both
the randomness of the noise realization and the not perfect homogeneity of
the scene in the zone “A”. GG MAP-S and LG MAP-S now achieve the
best performances in terms of bias avoidance (p, and o2, respectively). This
fact is explained by considering that the multilooking process reduces the
correlation of speckle and allow all filter to operate in more ideal hypotheses.
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Figure 6.2: Results on Cascine, an 1-look StripMap COSMO-SkyMed SAR im-
age: (a) original, with highlighted interesting zones; (b) GG MAP-S;
(c) LG MAP-S; (d) PPB; (e) SAR-BM3D.
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Table 6.6: Performances of without-reference indexes obtained on 4-L version of
Cascine

\ideal noisy GG MAP-S LG MAP-S PPB SAR-BM3D

ENL 00 2.49 31.79 26.86 220.80 20.54
Ly 1 1.000 0.999 0.986 0.980 0.941
o2 0.25  0.000 0.263 0.237 0.309 0.157
B 0 0.000 -0.359 -0.345 -0.425 -0.320
Cr | 0.544 0.788 0.395 0.389 0.354 0.477

TCR | 43.001 43.001 42.949 42.992 42.982 42.964

6.2 The unsupervised change detection fea-
ture

6.2.1 Motivations and rationale for a new quality as-
sessment index

From the discussion developed in Section 6.1, it emerges that the eval-
uation of the quality of despeckling is a difficult task. With-reference in-
dexes can be used by corrupting a test image by means of synthetic noise
with speckle statistics and computing a distance metrics between the original
noise free and the filtered noisy image. Unfortunately this approach is correct
only for scenes where speckle is fully developed. In the presence of natural
textures, e.g., forests, and of man-made structures, e.g., roads together with
buildings, the fully developed speckle model no longer holds. As a limit case,
a persistent scatterer produces an almost deterministic image, without any
speckle.

Since despeckling filters should be optimized on true SAR images, where
speckle may not be fully developed on textured areas, the problem arises
even if the evaluation is performed by means of the most popular without—
references indexes. Indeed, no indexes is capable to evaluate the behaviour
of filtering on textures, where speckle may be not fully developed. Hence,
the evaluation on such areas is usually carried out only by visual inspection.

Another important issue is that evaluation indexes are often supervised.
For instance, let’s consider the ratio of the original to the despeckled image
(e.g. [11]), which is taken on suitable manually chosen regions of interest
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(ROI), where speckle is assumed to be fully developed; then its statistics
(e.g. mean, variance, correlation, skewness) are matched to the nominal
ones of speckle. Unfortunately, suitable regions may not be available on such
images (e.g. highly textured areas as cities) or they could be even wrongly
chosen by the supervisor, yielding to misleading results.

Goal of this section is the development and evaluation of a fully automatic
method for quality assessment of despeckled SAR images. The rationale of
the proposed approach is that any structural perturbation introduced by
despeckling, e.g. a local bias of mean or the blur of a sharp edge or the
suppression of a point target, may be regarded as the introduction of a new
structure, or the suppression of an existing one. Conversely, plain removal
of random noise does not changes the structures in the image. Implemen-
tation of the new method is performed on the two-dimensional scatterplot
between local means of the filtered and unfiltered image, or equivalently on
the bivariate distribution obtained after binning. An ideally optimal filter
would yield a scatterplot constituted by the superposition of several clusters,
corresponding to classes encountered in the image. The ensemble of clus-
ters is aligned along the diagonal of the first quadrant and spread across the
plane far apart from the diagonal, where, however, all centers of clusters lie.
The presence of filtering impairments produce secondary clusters that may
be significantly far apart from the diagonal. Under this perspective, a mea-
sure of the accuracy of despeckling for each pixel may be formulated in the
following way. For each point in the scatterplot, corresponding to one pixel
in the original and in the filtered image, apply the mean shift algorithm to
attract the scatterpoint towards its dominant cluster. If the final position of
the point is on the diagonal, the corresponding pixel in the image has been
correctly filtered. If the scatterpoint is attracted by a secondary cluster not
lying on the diagonal, filtering was inaccurate. A measure of such inaccuracy
is given in terms of the offset of the attracting cluster from the main diagonal.
A fast implementation is obtained by preliminarily binning the scatterplot
and by applying the mean shift algorithm to the central scatterpoint of each
bin.

In the following, after validating the proposed feature by means of simu-
lated speckled images, results on true SAR images are presented. Bayesian
estimators presented in 63 and operating in the undecimated wavelet domain
are considered for experimental results. Quality measurements of despeck-
led SAR images carried out by means of the proposed method are discussed
exploiting visual comparisons.
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6.2.2 Description of algorithm

The key of the proposed change detection feature is to define a statistical
feature measuring the degree of impairment undergone by the SAR image
after filtering. The problem may be stated a a structural change detection
between original and filtered image. Actually all pixels in the filtered image
are changed with respect to the original because speckle noise has been re-
moved. Hence the original and filtered images are statistically different but
should be structurally similar.

The rationale is that ideally, the scatterplot of despeckled to original
image should contain clouds of points, whose gravity centers lie along the
main diagonal. Whenever this does not occur, filtering moves clusters of
scatterpoints far from the diagonal, same as if changes were occurred between
original and filtered images. The offset of a cluster from the main diagonal
is a measure on the amount of change occurred.

All joint probabilities are calculated by quantizing the 2D histogram
(scatterplot) of locally windowed backscatters values according to the fol-
lowing procedure:

1. Let gi(m,n) and ga(m,n) denote noisy and denoised SAR images, re-
spectively.

2. Local averaging with Gaussian windowing
e Compute the square root of the Gaussian-weighted local means of
pixel intensities: gy(m,n) and gz(m,n), over a (2p+1) x (2p+ 1)
sliding window (best trade-off is p = 3)
3. Scatter plot
e Report gz(m,n) against gi(m,n) in a scatter plot

4. Quantization (binning) (L = 512 or L = 256)

e Partition the scatterplot plane into L x L blocks, obtaining a 2D
histogram h(i, ), i <> gz and j <> g1

5. Normalization

e Normalize the scatterplot to the overall number of points = ap-
proximated discrete joint pdf p(i, j) ~ p(gz, 91)

6. Clustering & migration
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e Apply mean-shift clustering [82] to p(i, j) bins by adopting a flat
kernel of radius 3/2 (1.5 times the bin size), obtaining a map ¢(%, j)
of clusters’ gravity centers

e Each point p(i,7) is now associated to one and only one cluster;
be w the vector function which binds each point (i, 7) of p to the
gravity center (7', j') of the corresponding cluster (i, j'): (i, ;') =
w(i, j)

7. Compute the pixel change feature C(m,n), for each pixel (m,n):

C(m,n) =j' =i, where (i', j') = w(i, j) = w (|g2(m, n) |, [gi(m,n)])

e whenever 5/ > i/, the change feature C(m,n) is by excess

e whenever j' < i/, the change feature C(m,n) is by defect.

8. The two maps of changes by excess and by defect can be superimposed
to obtain a unique change map, or kept separate.

The size of the Gaussian sliding window and the resolution of binning
represent two important settings which have to be considered to balance be-
tween stability and sensitivity of the final feature. Indeed, a smaller window
and/or a finest binning allow a more accurate joint pdf to be obtained, at
the cost of a nosier 2D histogram, that is, more modes are likely to appear.
On the contrary, a greater window and/or a coarser binning can lead to a
smoother 2D histogram, but at risk resolution loss.

Mean shift clustering is necessary to detect the clusters’ gravity centers,
which are the main modes of the joint pdf. The number of clusters and their
sizes can be set by modifying the radius of the flat kernel: the greater the
radius, the lower the number of clusters and, consequently, the bigger their
sizes. It follows that, in case of too big radius, closer clusters that would be
naturally separated are more likely to merge, altering the change measure.
Similarly, a lower radius implies an increased number of smaller clusters; a
too small radius would fragment valid clusters, leading to wrong bindings and
wrong change measures. Hence, the radius dimension is also a key parameter
which represents a trade-off between stability and sensitivity of the measure.

Finally, it should be noted that the measure of change is actually repre-
sented by the vertical offset between a cluster center and the main diagonal.
A possible alternative to this is choice is represented, for instance, by the Eu-
clidean distance between the cluster center and the main diagonal. Metrics
based on concepts of information theory, such as Kullback—Leibler diver-
gence, could be also exploited. However, according to our tests, the vertical
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offset between a cluster center and the main diagonal has pointed out the
most interesting results.

6.2.3 Experimental results

Simulated speckled data

A synthetically speckled image has been produced starting from a 512 x
512, 8-bit, digitized aerial photograph of San Francisco. The original noise-
free image, regarded as an amplitude format, has been squared and mul-
tiplied by an exponentially distributed fading term, in order to simulate a
single-look SAR image in intensity format. The simulated speckle is spa-
tially uncorrelated and fully developed. The noisy intensity image, together
with all filtered intensity versions, has been gamma-corrected, namely square
rooted, for displaying convenience and is shown together with the 8-bit orig-
inal, regarded as an amplitude image, in Fig. 6.3.

Despeckling filters that have been compared are all based on undecimated
wavelet transform: LMMSE [35], GG MAP-S [41], MAP-LG and LG MAP-S.
Biorthogonal 9/7 wavelet filters and four levels of decomposition have been
used in all despeckling filters. For each filtered version, the error map (pixel
difference map between filtered noisy version and noise-free original) has been
calculated. Its positive values indicate that filtering has introduced a change
by excess; negative values a change by defect.

Table 6.7 report values for the following parameters:

e p: correlation coefficient between the error map and the structural
change map;

e p.: correlation coefficient between the error map and the structural
change map (only positive part of both);

e oZ: global variance of the structural change map;

° 0%’ .+ global variance of the structural change map (only positive part);
e 0%: global variance of the error map;

° 0123’ .+ global variance of the error map (only positive part).

Concerning the error between noise-free and filtered images, it is evident
that segmentation is rewarding. The LMMSE estimator in [35] includes a
multiscale adjustment to scene heterogeneity, which is substantially a rough
segmentation. The MAP-LG method provides the poorest results. The GG
MAP-S method is far the best, closely followed by LG MAP-S.
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Fig. 6.4, Fig. 6.5 and Fig. 6.6 show filtered noisy test image, map
of error between noise-free original and filtered noisy version and change
map between noisy version and filtered noisy version, respectively, for the
four despeckling filters that are compared. The structural change feature
exhibits a significant correlation with the error map. Correlation is even
better between the positive values of change and the positive values of error.
In Figs. 6.5 and 6.6, positive values are shown in light gray, while negative
values in dark gray. Table 6.7 highlights that correlation between change
and error is around 0.6 and reaches value over 0.7 when negative values of
error and feature are removed. The ranking of filtering methods based on the
variance of positive values of change is identical to the ranking based on the
variance of positive error values. The variance of positive change is different
from zero for the original image, unlike what one would expect; however its
value is far lower than that of any other filtered image.

~

(b)

Figure 6.3: Simulated image of San Francisco (512x512): (a) original; (b) speck-
led, single-look.

COSMO-SkyMed data
A true X-band SAR image produced by the COSMO-SkyMed satellite

constellation has been processed for despeckling. The image has been ac-
quired and processed in HImage Stripmap mode and is stored as a single-look
complex format. The detected intensity image, having spatial resolution of
approximately three meters and nominal SNR equal to 0 dB, contains both
natural and man-made structures. It is believed to provide a challenging
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‘ P P+ ot o o UJZE’,Jr

Original - - 0.502 0.273 - -
LMMSE 0.599 0.693 1.158 0.891 44.02 29.17
MAP-LG |0.649 0.716 1.201 0.911 51.65 36.80
LG MAP-S | 0.584 0.661 1.088 0.786 41.10 27.21
GG MAP-S | 0.537 0.607 0.982 0.693 37.98 24.26

Table 6.7: Results on simulated image of San Francisco.

Figure 6.4: Results obtained despeckling the San Francisco image: (a) LMMSE;

(b) MAP-LG; (c) LG MAP-S; (d) GG MAP-S.
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(d)

Figure 6.5: Error map on the San Francisco image measured with respect to the
original image: (a) LMMSE; (b) MAP-LG; (c) LG MAP-S; (d) GG
MAP-S.
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Figure 6.6: Structural change map on the San Francisco image obtained with
the proposed algorithm: (a) LMMSE; (b) MAP-LG; (c) LG MAP-S;
(d) GG MAP-S.
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subject for despeckling, being the worst case that can be encountered. Two
different scenes of the same image, featuring different types and amounts of
texture and point targets, are shown in Fig. 6.7.

(%) (b)

Figure 6.7: Single-look SAR images from COSMO-SkyMed (1024 x 1024, 3m
pixel size, amplitude format): (a) CS-1; (b) CS-2.

Table 6.8 reports variances of change feature o2 and of positive part of
change feature aé 4 for the two Cosmo-SkyMed images. Differences in accu-
racy of methods follow a trend similar to that in Table 6.7. The sole exception
is that LMMSE is now ranked second instead of third. The explanation is
that LMMSE [35] is not a plain LMMSE estimator in undecimated wavelet
domain, but contains adjustments specifically devised for true SAR images,
which are ineffective for simulated SAR images. The ranking of methods
still highlights that GG MAP-S provides the most accurate despeckling and
that the sole scheme not exploiting segmentation (MAP-LG) is the poorest.
Interestingly, the second image CS-2 is more textured and hence its changes
are larger than those of CS-1, but the ranking of methods stemming from
the proposed feature is identical for the two images.

The visual comparison of the filtered images in Figs. 6.8 and 6.10 show
that all methods are comparable in performances, even though GG MAP-S,
seems to be slightly more accurate on textures. The maps of the proposed
feature, shown in Figs. 6.9 and 6.11, highlight that the GG MAP-S filtered
image is the least impaired and that the second image CS-2, being more
textured, is less accurately filtered than CS-1, in average.
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CS-1 CS-2
o ot + o U%,Jr
LMMSE | 0.185 0.116 | 0.287 0.183
MAP-LG | 0.227 0.146 | 0.367 0.246
LG MAP-S | 0.205 0.138 | 0.353 0.224
GG MAP-S | 0.174 0.109 | 0.303 0.166

Table 6.8: Variances of change feature for filtered COSMO-SkyMed images.

(c) (d)

Figure 6.8: Results obtained by despeckling the COSMO-SkyMed image CS-1:
(a) LMMSE; (b) MAP-LG; (¢) LG MAP-S; (d) GG MAP-S.
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() (d)

Figure 6.9: Structural change map of the filtered COSMO-SkyMed image CS-1:
(a) LMMSE; (b) MAP-LG; (¢) LG MAP-S; (d) GG MAP-S.
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© (d)

Figure 6.10: Results obtained by despeckling the COSMO-SkyMed image CS-2:
(a) LMMSE; (b) MAP-LG; (c) LG MAP-S; (d) GG MAP-S.
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() (d)

Figure 6.11: Structural change map of the filtered COSMO-SkyMed image CS-2:
a) LMMSE; b) MAP-LG; ¢) LG MAP-S; d) GG MAP-S.
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6.3 Conclusions

The assessment of the performances of despeckling filters on real SAR
data is often problematic due to the lack of with-reference indexes. Without—
reference indexes have been used in the literature by several authors, but they
are valid only in areas where the signal have specific statistical properties.
Moreover, the supervision of an expert is required.

In order to overcome such problems, a possible idea (not discussed in this
thesis) is to use electromagnetic SAR image generators [83]. Such simulators
are based on more physical-oriented models, which consider the propagation
of the electromagnetic wave and its interaction with targets and surfaces, and
usually require a more detailed parametric description of the target scene
with respect to the models used in signal processing applications. In [84, 85],
the authors use an electromagnetic SAR image generator to simulate several
independent acquisitions of the same scene. If the number of acquisitions is
sufficiently high, their average can be considered as a good approximation of
the noise-free reflectivity and can be used to compute with-reference indexes.
The advantage of this technique is that the simulated images do not neces-
sarily obey the fully developed speckle model and provide insights on the
behaviour of the filter on point targets and highly heterogeneous areas. On
the other hand, the underlying reflectivity follows a synthetically generated
pattern, which may not be fully representative of the reflectivity usually en-
countered in real SAR images, especially in complex scenes, due to the ideal
models of objects fed to the simulator.

In this thesis, a viable alternative approach based on a novel change fea-
ture has been devised to measure despeckling impairments. It relies on the
joint probability density function of the amplitude values of original and
despeckled SAR images and exploits the mean—shift clustering algorithm to
improve detection of filtering inaccuracies. A preliminary validation has been
carried out on simulated SAR images, with a good correlation between the
proposed feature and the objective filtering error. Experiments on Stripmap
Cosmo-SkyMed images (single look) have highlighted that the automatic
ranking of filtering methods matches subjective trials of experts. The pro-
posed feature detects filtering impairments but is unable to measure the
overall effectiveness of filtering. Therefore its use must be coupled with an-
other method measuring the effectiveness of noise cleaning, regardless of its
accuracy.
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Conclusions

Different thematics inherently the despeckling of SAR images have been
examined in depth during the three years of the Ph.D. course. In the last
two decades, despeckling has generally experienced a dramatic increasing of
interest from the scientific community, mainly thanks to the introduction of
the multiresolution analysis. The key features of despeckling in the multires-
olution domain is represented by the higher degree of freedom in statistical
characterization of coefficients than in the spatial domain, where strict con-
straints due to the physical model are unavoidable.

Since the advent of the first wavelets-based despeckling filters it has been
clear that the new tools could ensure a considerable performance boost. Nev-
ertheless, two different approaches have been developed. Several authors have
chosen overfitting models sacrificing space adaptivity, while others have tried
to keep the advantages of an adaptivity in both scale and space by using pdf
with few parameters to be estimated locally on subbands/frames. In this
thesis, Bayesian estimators in the undecimated wavelet domain have been
discussed and proposed according to the latter approach. A preprocessing
step of point targets that must retain their radiometry after despeckling and
a segmented approach, in which sample statistics are calculated on homoge-
neous segments, complete Bayesian despeckling in wavelet domain.

In the literature, further improvements have been demonstrated to be
achievable by introducing the concept of segmentation in the wavelet domain.
By following this idea, a strategy based on adopting different fast despeckling
filters according to classification of texture has been successfully proposed
and discussed.

As previously stated, Bayesian estimators in the transformed domain al-
low to overcome the statistical constraints present in the spatial domain.
Specifically, each pdf model of wavelet coefficients can be reasonably as-
sumed valid independently of different image formats. A unified framework
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for different image formats have been presented and it has been shown that
artefacts due to undecimated wavelet synthesis stage can be effectively re-
duced by using the square root of intensity instead of intensity.

The problem of removal of correlated speckle has been also addressed. It
is known that despeckling filters usually exhibit performance losses due to
the focusing window applied to the complex SAR signal, which introduces
correlation in the speckle process. A common solution is represented by the
multilooking processing, which allows to trade-off resolution loss with lower
power and correlation of speckle noise. As an alternative, a preprocessing
stage, which aims to whiten the speckle by estimating and inverting the
focusing window system, has been developed. Experimental results have
shown that, when such a whitening stage is used, noticeable performance
improvements are achievable by different kinds of already known despeckling
filters.

By now, the state-of-the-art despeckling methods are consolidated and
validated. Some improvements of already know filters have been recently
proposed in order to slightly increase filtering effectiveness and/or efficiency.
New research fields, such as compressive sensing for despeckling, are presently
under investigation, but no noticeable performance boosts have been ob-
tained so far. On the other side, the problem of quality assessment for
despeckling filters is still open. A fully-automatic method based on the mea-
sure of change between noisy image and filtered one has been presented; it
has been shown to be able to detect local impairments occurred in real SAR
images after despeckling, even though overall effectiveness must be evaluated
also by means of global indexes.
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