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Abstract Landslides are a serious problem for humans

and infrastructure in many parts of Europe. Experts know

to a certain degree which parts of the continent are most

exposed to landslide hazard. Nevertheless, neither the

geographical location of previous landslide events nor

knowledge of locations with high landslide hazard neces-

sarily point out the areas with highest landslide risk. In

addition, landslides often occur unexpectedly and the

decisions on where investments should be made to manage

and mitigate future events are based on the need to dem-

onstrate action and political will. The goal of this study was

to undertake a uniform and objective analysis of landslide

hazard and risk for Europe. Two independent models, an

expert-based or heuristic and a statistical model (logistic

regression), were developed to assess the landslide hazard.

Both models are based on applying an appropriate com-

bination of the parameters representing susceptibility fac-

tors (slope, lithology, soil moisture, vegetation cover and

other- factors if available) and triggering factors (extreme

precipitation and seismicity). The weights of different

susceptibility and triggering factors are calibrated to the

information available in landslide inventories and physical

processes. The analysis is based on uniform gridded data

for Europe with a pixel resolution of roughly

30 m 9 30 m. A validation of the two hazard models by

organizations in Scotland, Italy, and Romania showed good

agreement for shallow landslides and rockfalls, but the

hazard models fail to cover areas with slow moving land-

slides. In general, the results from the two models agree

well pointing out the same countries with the highest total

and relative area exposed to landslides. Landslide risk was

quantified by counting the number of exposed people and

exposed kilometers of roads and railways in each country.

This process was repeated for both models. The results

show the highest relative exposure to landslides in small

alpine countries such as Lichtenstein. In terms of total

values on a national level, Italy scores highest in both the

extent of exposed area and the number for exposed popu-

lation. Again, results agree between the two models, but

differences between the models are higher for the risk than

for the hazard results. The analysis gives a good overview

of the landslide hazard and risk hotspots in Europe and

allows a simple ranking of areas where mitigation mea-

sures might be most effective.
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Introduction

The public and media focus on landslide hazard and risk

in Europe is greatly increased in the immediate aftermath

of catastrophes such as the widespread flooding and

landsliding in Switzerland and Austria in summer 2005,

Messina (Italy) in autumn 2009, or the events in Madeira

in January 2010 and southern Italy in February 2010.

Besides catastrophic events, numerous landslides occur in

Europe each year (EEA 2010; EM-DAT 2003), and

experts know to a certain degree which parts of the con-

tinent are most exposed to landslide hazard. Nevertheless,

landslide events, such as the examples mentioned above,

do not necessarily highlight the areas in Europe with the

highest landslide risk, as a landslide is not hazardous

unless it threatens some elements at risk (Alexander

2004).

Landslide susceptibility and/or hazard has been studied

at the global scale by Nadim et al. (2006), NASA (Hong

et al. 2007; Kirschbaum et al. 2009) and the World Bank

(Dilley et al. 2005). Van Den Eeckhaut and Hervas (2012)

present a review on available national landslide databases

in Europe and use the data in a new approach to landslide

susceptibility for Europe based on logistic regression

modeling, Van Den Eeckhaut et al. (2012). On a national or

regional scale similar studies were conducted for Cuba

(Castellanos Abella and Van Westen 2007), Pakistan

(Peduzzi 2010), Serbia (Marjanovic et al. 2011) and Tur-

key (Nefeslioglu et al. 2011) to mention some recent

examples.

The objective of this study is to perform a first-pass

analysis of landslide hazard at the European scale to

identify the landslide hazard and risk ‘hotspots’: i.e.,

where hazard and risk are highest. Landslide hazard is

estimated by two different models applying an appropriate

combination of the parameters representing susceptibility

factors (slope, lithology, soil moisture, vegetation cover)

and triggering factors (extreme precipitation and seis-

micity). The intersection of the landslide hazard, popula-

tion density and infrastructure density map allows

identification of areas where potential landslide activity

coincides with areas of higher population and/or infra-

structure density, thus providing a first-pass estimate of

landslide risk ‘hotspots’. The results give an overview

over the exposed areas and allows a simple ranking of

countries in which the investment of money will yield the

highest protective effect for humans and infrastructure.

After the introduction and a general section on suscepti-

bility, hazard and risk and the difficulties of assessing

them at continental scale, the datasets available for the

risk assessment are described before the presentation of

the applied models.

Materials and methods

Susceptibility, hazard and risk

Three consecutive assessments have to be combined to

achieve an estimate of the risk (i.e., susceptibility, hazard

and risk: Hansen 1984; Guzzetti et al. 1999; Glade et al.

2005; Hervás and Bobrowsky 2009). The physical envi-

ronment in itself gives the basis for the susceptibility to

landslides. This category includes the terrain (steep, flat),

geology, soils, vegetation and land use. These factors

decide if the area has the potential to generate a landslide

but do not give any estimate of the likelihood of an event.

The likelihood of an event is determined by a trigger. This

trigger can be the effect of water (precipitation and snow

melt), seismic activity or human activities such as exca-

vation or blasting in or close to the landslide-prone terrain.

The most common trigger is heavy rainfall that exceeds the

normally experienced rain events in an area (Cepeda et al.

2010).

Landslides as a natural process present no danger or

threat in themselves. For this to happen there must be some

form of interaction with humans and/or their activities. The

presence of humans, their infrastructure and possessions is

usually described as the element at risk or exposure. Once

the areas where a landslide hazard exists are identified, the

number of people and assets located in these hazard zones

as well as their vulnerability, i.e., degree of loss (UNDRO

1979), can be assessed. For example, a wooden shack

would be more easily destroyed by a landslide than a solid

house with concrete foundations. On the other side, the

value of a solid house with concrete foundations would, all

other factors being equal, be greater than that of a wooden

shack leading to the same risk in terms of economical loss.

The combination of hazard and vulnerability leads to the

risk. This can be described in a mathematical way as

(Varnes and The International Association of Engineering

Geology Commission on Landslides and Other Mass

Movements 1984):

Risk ¼ susceptibility� triggerð Þ � vulnerability� exposureð Þ;

with susceptibility 9 trigger = hazard.

A high quality hazard assessment is a more complex

task than assessing susceptibility in terms of models, data

availability and resource use. Introducing a trigger creates

instant challenges. The information on landslide frequency

needed for inclusion in the hazard models is generally

obtained from the study of past landslide events. However,

detailed historical records are often not available, and if

available, the information stored is not always reliable.

Precipitation extremes are, for example, often not even
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captured by the standard meteorological network, which is

often configured for synoptic purposes. Another difficulty

is that the correct threshold of the amount of rainfall

actually needed to produce landslides can be very different

from region to region.

Even more challenging than hazard assessment is the

study of risk. For a true estimate, one should sum up all the

assets that can be destroyed in a landslide event. This can

range from a road with cables and pipes to entire houses with

their content. On a European scale, this kind of approach is

not applicable. Therefore, only two types of elements at risk

are considered in this study, the number of people living in

landslide exposed areas and the accumulated number of

kilometres of national and international roads and railroads.

The analysis helps to identify where in Europe the risk hot-

spots are located and allows comparison of the risk level

between the countries included in the analysis.

Input data

A comparative hazard and risk analysis for Europe requires

homogeneous datasets. Locally and nationally, detailed

maps of population, development index, geology and other

relevant information are generally available. They are,

unfortunately, of little value for use in a Europe-wide

analysis. Often the methods used for creating the maps are

different from one country to another and in some cases the

methods (e.g., resolution, classification/language, date of

document, projection, quality and accuracy, etc.) are not

publicly available at all. Local data are, therefore, appli-

cable for the verification of the European model but not as

inputs to the model.

Homogenous European datasets are difficult to access,

with many datasets only covering the countries within the

European Union. The alternatives are global datasets which

may lack accuracy and in many cases are not well suited to

study differences between European countries. The first

challenge for this study was, therefore, to gather the best

possible datasets for each input parameter (Table 1).

Topography is a key factor for landslide susceptibility. In

flat terrain, the gravitational forces are too weak to move

land masses. With increasing inclination, the terrain

becomes more susceptible to landsliding. Natural loose

geological material is usually stable up to slope angles of

27�. In terrain steeper than 30�, rocks and other loose

materials fall continuously and do not create deposits which

can form larger landslides. Above 45�, usually only rock-

falls and large rock avalanches occur. The applied datasets

for the European study are SRTM (2009) (resolution 3

arcsec) with data up to 60�N and GTopo (1996) (resolution

30 arcsec) with data for the northern parts of the continent.

The geology gives information about the strength of the

available material that could form a landslide. A European

geological map of scale 1:5 million (IGME 5000 2009,

BGR, Asch 2003), originally distinguishing 91 classes, was

used to classify the type of rock (sediment, igneous,

metamorphic) and age of the rock according to its impact

on landslide susceptibility (Fig. 1).

Land cover data yields information on the type of sur-

face and its effect on landslide susceptibility. The

GLOBECOVER v2.2 data available from ESA (Globcover

2003) has originally 22 different classes of land use and the

data was reclassified as input to the ICG and JRC models

(Fig. 2).

Table 1 Data sources for the two models by ICG and JRC

Type Source Resolution Data type Date ICG JRC

Topography SRTM

GTOPO

3 arcsec

30 arcsec

Numerical 2002

1996

X X

Lithology—type IGME 5000 1:5 million Categorical (11 classes) 2005 X X

Geology—age IGME 5000 1:5 million Categorical (9 classes) 2005 X

Land cover GLC 2000 30 arcsec Categorical (7 classes) 2003 X X

Soil type FAO Categorical (8 classes) 2000 X

Soil moisture JRC 5 km Numerical 2002 X

Precipitation GPCC 30 arcsec Numerical 2005 X X

Ground acceleration GSHAP 6 arcminutes Numerical X X

Landslide inventories

Norway NGU Points 2009 X X

France University Strasbourg Polygons X X

Italy AMRA Polygons X X

Population GRUMP, v1 30 arcsec Numerical 2011 X X

Roads OpenStreetMap Vector 2009 X X

Railways OpenStreetMap Vector 2009 X X
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Databases of historical landslide events are essential for

the calibration and the validation of the model results. Such

databases exist in many European countries (Van Den Ee-

ckhaut et al. 2012) but are exceedingly difficult to access. In

many cases no national databases, but local collections,

often on paper only, are available. Scientific inventories

often concentrate on a particular type of landslide and leave

out the total picture. For validation of the hazard model in

this study, national experience from Romania (Romanian

Geological Survey, written communication), inventories

from Norway (Jaedicke et al. 2009) and local datasets for

the Barcelonnette; France (Flageollet et al. 1999; Remaı̂tre

2006; Kappes et al. 2011), Campania; Italy (Catani et al.

2005) and some locations in the UK, particularly in Scot-

land (Winter et al. 2009; Foster et al. 2012) were used.

Precipitation is a key trigger for landslides with shallow

landslides often being released by short time extreme

events while deep seated landslides are often triggered by

long lasting intense rain fall. Data related to such events are

scarce and pose a big challenge to landslide hazard mod-

ellers. Currently, European maps are only available for

monthly mean precipitation (Rudolf and Schneider 2005).

An extreme value analysis was combined with a variance

index to model the expected distribution of extreme

monthly rainfall.

Seismicity is the second key trigger for landslides.

Earthquakes have triggered landslides in many regions of

the world, including some of the largest known landslides.

The expected peak ground acceleration (PGA) with

475-year return period was available from the Global

Seismic Hazard Program, GSHAP (Giardini et al. 2003). In

this analysis, separate hazard models were developed for

precipitation and seismically triggered landslides.

The consequence of landsliding depends of the presence

and amount of human or environmental assets in the affected

area. Such assets can be buildings, constructions, roads,

railways or other infrastructure, forest, crops and animal life

in addition to the humans themselves (GRUMP 2011). There

are readily available datasets for major roads and railways

for incorporation in the analysis of risk (Fig. 3). Individual

buildings cannot be identified at a European scale, but pop-

ulation maps give an indication of the number of people that

are exposed to landslide hazard (Fig. 4).

Models

Two models were developed separately at the International

Centre for Geohazards (ICG) and at the Joint Research

Centre (JRC). Both research groups had the same datasets

available for their models and the models covered the same

study area (i.e., the whole of Europe extending up to the

Ural and Caucasus mountains; Figs. 1, 2, 3, 4). The models

use two different approaches. While the ICG model is

purely expert-based or heuristic, the JRC model uses a

statistical technique in the form of logistic regression. Both

models assign different weights to each dataset that is used

to model the landslide susceptibility and hazard. The

resulting hazard maps are then used together with popu-

lation and infrastructure data to give an estimate of risk.

ICG model

The ICG model is based on the model developed for the

global hotspot analysis (Nadim et al. 2006). The model

uses topography, geology, land cover, precipitation and

seismicity as input parameters and was modified to meet

the European datasets available for this study. Each of

these input parameters factors are reclassified and the

classes are weighted according to geotechnical experience

and comparison with landslide inventories.

Fig. 1 Map showing the geology of the study area (IGME 5000,

BGR 2005)

Fig. 2 Map showing the land cover of the study area (Globcover

2003)
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The hazard maps are divided in precipitation-induced

landslide hazard and earthquake-induced landslide hazard.

The landslide hazard indices were estimated using the

following equations:

Hr ¼ ðSr � Sl � SvÞ � Tp; ð1Þ

He¼ðSr � Sl � SvÞ � Ts; ð2Þ

where Hr and He are landslide hazard indices for rainfall

and earthquake-induced landslides, respectively, Sr is the

slope factor within a selected grid, Sl is lithological (or

geological) conditions factor, Sv is the vegetation cover

factor Tp is the precipitation factor, and Ts describes the

seismic conditions.

The slope factor uses two datasets, the SRTM (\60�N)

and GTOPO ([60�N) data which have a different spatial

resolution. Therefore, the slope factor, Sr, was adjusted to

achieve an equal representation of slopes all over Europe

(Table 2).

The IGME 5000 Geological map only gives information

on the type and age of the lithology. Therefore, the data

was reclassified into susceptibility classes taking into

account the likelihood for a certain type of rock to produce

landslides (Table 3). Young and weak sedimentary

deposits have a higher potential for landslides than old hard

base rock.

The 22 different classes of land use of the GLOBE-

COVER v2.2 database have been translated into five cat-

egories (scale 1–5) with respect to resistance to landslides.

Table 4 shows the range of vegetation factors, Sv, for these

five categories which are different for precipitation and

seismically induced slides (Nadim et al. 2006) is reclassi-

fied into urban areas, water bodies, forest and farm land.

Fig. 4 Population density in Europe (GRUMP 2011)

Table 2 Slope factor (Sr) and corresponding slope angle ranges for

each hazard class for SRTM (\60�N) and GTOPO ([60�N) data used

in the ICGhazard analysis

Sr Angle SRTM (�) Angle GTOPO (�)

From To From To

0 0 1 0 0

1 1 6 1 3

2 6 12 4 7

3 12 18 8 10

4 18 24 11 13

5 24 40 14 22

3 40 45 23 26

3 45 90 27 90

Table 3 Lithology factor (Sl) and corresponding lithology class

based on the European geological map (IGME 5000, BGR 2005) used

in the ICG hazard analysis

Lithology and stratigraphy Susceptibility Sl

Extrusive volcanic rocks—Precambrian,

Proterozoic, Paleozoic and Archean

Low 1

Endogenous rocks (plutonic and/or

metamorphic)—Precambrian, Proterozoic,

Paleozoic and Archean

Old sedimentary rocks—Precambrian, Archean,

Proterozoic, Paleozoic

Moderate 1

Extrusive volcanic rocks—Paleozoic, Mesozoic

Endogenous rocks—Paleozoic, Mesozoic,

Triassic, Jurassic, Cretaceous

Sedimentary rocks—Paleozoic, Mesozoic,

Triassic, Jurassic, Cretaceous

Medium 2

Extrusive volcanic rocks—Mesozoic, Triassic,

Jurassic, Cretaceous

Endogenous rocks—Meso-Cenozoic, Cenozoic

Sedimentary rocks—Cenozoic, Quaternary High 3

Extrusive volcanic rocks—Meso-Cenozoic

Extrusive volcanic rocks—Cenozoic Very high 3

Fig. 3 Network of European roads and railways (OpenStreetMap

2009)
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Precipitation is derived from global monthly rainfall

measurements (Rudolf and Schneider 2005). First, the

expected monthly 100 year extreme rainfall was estimated

by fitting a Gumbel distribution to the data and a suscep-

tibility factor (Tp1) was assigned to the resulting values

covering Europe (Table 5).

Second, to accommodate the variability of the precipi-

tation an anomaly factor (Ta) was assigned by considering

the coefficient of variation CoV (r/l; mean divided by

standard deviation) of the data. The following range for the

anomaly factor is suggested (Table 6) a denotes the

smallest value of CoV = r/l obtained for the whole globe,

and b denotes the largest value of CoV. The values of ’a’

and ’b’ obtained from the calculations were, respectively,

0.11 and 3.60.

The precipitation trigger factor, Tp, was obtained by the

equation below:

Tp ¼ Tp1 � Ta: ð3Þ

The variation range for Tp is, therefore, 0.8–6.0.

The expected PGA (Giardini et al. 2003) was used for

the classification of the seismic trigger factor seismically-

induced landslides. The seismic trigger factor, Ts, was

evaluated from the GSHAP PGA475 data according to

Table 7.

Using these input data in Eqs. 4 and 5, results in values

of Hr = 0–108 (precipitation trigger) and He = 0–165

(Table 8). The results are then reclassified into three hazard

categories, low, medium and high landslide hazard.

The population exposure maps were calculated by

counting the amount of people in the respective hazard

classes and of the four classes:

Number of exposed people ¼ negligible� 0þ low� 0:1
þ 0:3�mediumþ 1� high:

The same procedure was applied to count the number of

exposed kilometres of roads and railroads. Results are

available both on maps and as tables and allow a ranking of

the countries.

JRC model

In contrast to the ICG model which considered all landslide

types, the JRC model considered only landslides of the

slide and flow type. The first step in the JRC model con-

sisted of an assessment of landslide susceptibility using

logistic regression. In the second step, the resulting clas-

sified landslide susceptibility map was then combined with

Table 4 Vegetation factor (SV) and corresponding classification of

land cover (GLOBECOVER 2003) used in the ICG hazard analysis

Category of land

cover w.r.t.

resistance to

landslides

Vegetation cover

factor Sv for rainfall-

induced slides

Vegetation cover

factor Sv for

earthquake-induced

slides

Water 0.0 0.0

Urban 0.8 0.9

Forest 0.9 0.95

Grassland 1.0 1.0

Farmland 1.1 1.05

Bare surface 1.2 1.1

Table 5 Classification of the estimated monthly extreme rainfall

used as susceptibility factor (Tp1) in the ICG hazard analysis

100-Year extreme monthly rainfall (mm) Susceptibility Tp1

0000–0330 Low 1

0331–0625 Moderate 2

0626–1,000 Medium 3

1,001–1,500 High 4

[1,500 Very high 5

Rainfall data of Rudolf and Schneider (2005) was used

Table 6 Classification of coefficient of variation (CoV) of highest

monthly annual rainfall used as an anomaly factor in the ICG hazard

analysis

Coefficient of variation of highest monthly annual

rainfall, CoV = r/l
Anomaly

factor Ta

a ? a ? 0.2 9 (b - a) 0.8

a ? 0.2 9 (b - a) ? a ? 0.4 9 (b - a) 0.9

a ? 0.4 9 (b - a) ? a ? 0.6 9 (b - a) 1.0

a ? 0.6 9 (b - a) ? a ? 0.8 9 (b - a) 1.1

a ? 0.8 9 (b - a) ? b 1.2

Rainfall data of Rudolf and Schneider (2005) was used

a The smallest value of CoV = r/l obtained for the whole globe, and

b denotes the largest value of CoV. The values of a and b obtained

from the calculations were, respectively, 0.11 and 3.60

Table 7 Classification of the maximum estimated ground accelera-

tion into seismic trigger factor (Ts) as used in the ICG hazard analysis

GSHAP PGA475 (m/s2) Ts

0.00–0.50 0.1

0.51–1.00 0.4

1.01–1.50 0.8

1.51–2.00 1.5

2.01–2.50 2.5

2.51–3.00 3.5

3.01–3.50 5

3.51–4.00 6

4.01–4.50 7.5

[4.50 10

PGA values of GSHAP (Giardini et al. 2003) were used
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classified precipitation and seismic data, respectively, to

obtain two qualitative hazard maps, one for hydrologically-

triggered landslides and one for seismically-triggered

landslides. In the third step, the risk analysis was similar to

the one of the ICG model.

A detailed description of the landslide susceptibility

model using ordinary logistic regression (ORL) can be

found in Van Den Eeckhaut et al. (2012). Seven indepen-

dent variables were extracted from available maps

(Table 1). For this purpose the maps were resampled to a

uniform grid of 30 arcsec (ca. 930 m), i.e., the resolution of

the SRTM v2 DEM available for the whole study area.

Maps with categorical variables such as the lithological and

geological, soil and land cover maps had a high number of

classes and were reclassified into 11, 9, 8 and 7 classes,

respectively, using expert knowledge.

The binary dependent variable used in the OLR is the

presence (1) or absence (0) of a landslide. Rockfalls were

not included in the selected sample. From available land-

slide inventories, a random sample of 100 landslides in

Norway, 100 landslides in Campania (Italy) and 50 land-

slides in the Barcelonnette Basin (France) was extracted.

Additionally a landslide inventory created by JRC, con-

taining 972 landslides was used. This inventory is produced

in Google Earth. The ca. 1,200 landslides included in the

study obviously only represent a very small proportion of

the true number of landslides in Europe.

For the OLR, an equal number of ‘landslide-free’ grid

cells are needed. The preparation of this dataset is chal-

lenging due to the lack of a complete landslide inventory

map of Europe. A specific selection procedure was set up to

select a representative sample. It was decided, for example,

not to extract the sample of landslide-free grid cells uni-

formly over the selected study area because otherwise more

than 80 % of the selected grid cells would be located in flat

areas.

OLR describes the relationship between a dichotomous

response variable (Y, i.e., the presence or absence of a

landslide) and a set of independent variables (x1, x2,…, xn).

The independent variables may be continuous or discrete

(with dummy variables) and do not need a normal fre-

quency distribution. The logistic response function can be

written as (Hosmer and Lemeshow 2000; Allison 2001):

PðY ¼ 1Þ ¼ p ¼ 1

1þ e� aþ
Pn

i¼0
bixið Þ ; ð4Þ

where p is the probability of occurrence of a landslide, a is

the intercept and bi is the coefficient for the independent

variable xi estimated by maximum likelihood. Equation (4)

can be linearized with the following transformation in

which the natural logarithm of the odds, log[p/(1 - p)] is

linearly related with the independent variables:

log
p

1� p

� �

¼ aþ b1x1 þ b2x2 þ � � � þ bnxn: ð5Þ

During the last decade, OLR has been increasingly used

for landslide susceptibility assessment and attention has

been paid to objective evaluation and validation of the

calibrated models (e.g., Beguerı́a 2006; Van Den Eeckhaut

et al. 2006). Also in this study, the obtained logistic

regression model was evaluated and validated (with data

not used for model calibration) prior to proceeding to the

landslide hazard assessment. Confusion matrices and

receiver operation characteristic (ROC) curves were

produced and analysed (Hosmer and Lemeshow 2000).

Analysis of confusion matrices and ROC curves were

further useful for the selection of the boundaries of the ten

classes in which the final landslide susceptibility map was

reclassified. The objective here was to classify a large

proportion of the known landslides without classifying a

too large proportion of the European territory as highly

susceptible.

Several models were calibrated and evaluated. For the

finally selected logistic regression model, the area under

the ROC curve (AUC) is 0.888, which indicates excellent

discrimination of the landslide-affected and landslide-free

Table 8 Classification of the landslide hazard due to precipitation and seismicity

Values for

Hlandslide, rainfall

Values for

Hlandslide, earthquake

Class Classification of

landslide hazard potential

Representative annual

frequency in 1 km2 grid cell (%)

Final hazard

classes

B3 B2 0 Negligible *0.00 Negligible

4–9 3–5 1 Very low *0.00 Negligible

10–16 6–11 2 Low 0.01 Negligible

17–24 12–18 3 Low to moderate 0.03 Low

25–32 19–26 4 Moderate 0.10 Low

33–41 27–36 5 Medium 0.30 Medium

42–53 37–51 6 Medium to high 1.00 Medium

54–69 52–79 7 High 3.00 High

[70 [80 8 Very high 10.00 High
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grid cells in our sample. Hence, the model was able to

classify correctly a high proportion of the landslide sample

without incorrectly classifying a high proportion of the

landslide-free sample.

The stability of the model was further tested by pro-

ducing ten logistic regression models using each time 75 %

of the sample for calibration and the remaining 25 % for

validation.

The rainfall information used for hydrologically-trig-

gered landslide hazard assessment is extracted from the

same dataset as applied in the ICG model. This map dis-

plays 100-year extreme monthly precipitation. The con-

tinuous rainfall depths were first classified in six categories

(Table 9) and then multiplied with the classified landslide

susceptibility map. The resulting hazard map contained

10 9 6 = 60 different hazard classes, which were reclas-

sified in seven hazard classes showing increasing landslide

hazard from 1 to 7 (Table 10). In this final rainfall-induced

landslide hazard maps class 0 represents lakes.

The seismic information was first classified in nine

categories (Table 11). These class boundaries are corre-

sponding with those used by UN/IDNDR personnel who

produced the map. Then, the classified GSHAP map was

multiplied with the classified landslide susceptibility map.

The resulting hazard map contained 9 9 10 = 90 different

hazard classes that were reclassified in seven hazard classes

showing increasing landslide hazard from 1 to 7. In this

final earthquake-induced landslide hazard map, class 0

represents lakes.

Results

The analysis covers 44 countries and the extent of the study

is roughly defined according to the physical boundaries of

Europe. This area encompasses 9.7 million km2 of land

area and 729 million inhabitants. Figures 5 and 6 compare

the results from the ICG and JRC models for precipitation-

induced and earthquake-induced landslides, respectively. A

distinct difference can be observed between the two mod-

els, where JRC in general defines larger areas being

exposed to landslides than the ICG model. This already

shows that classification of landslide zonation maps is

subjective and depends on the choice of the experts. The

classified hazard map of JRC is definitely more conserva-

tive although it does incorporate hotspots of known hazard

such as north-west Scotland, which the ICG model does

not. One can also see that the parts of Europe exposed to

landslide hazard due to seismic activity are much smaller

Table 9 Classification of 100-year extreme monthly precipitation

(Global Precipitation Climatology Centre, Deutscher Wetterdienst) in

six classes

Class Numerical/categorical (mm)

1 \200

2 200–249

3 250–299

4 300–349

5 350–399

6 C400

Table 10 Distribution of the selected study area over the seven hazard classes of the rainfall-induced and earthquake-induced landslide hazard

map produced by JRC

Hazard level Description % Study area % Study area (cumulative)

Precipitation trigger Seismic trigger Precipitation trigger Seismic trigger

1 Very low 61.48 59.31 100.00 100.00

2 Low 20.89 22.52 38.52 40.69

3 Low to moderate 10.15 10.61 17.64 18.18

4 Moderate 3.80 3.80 7.49 7.57

5 Moderate to high 1.49 1.70 3.68 3.77

6 High 1.40 1.47 2.20 2.07

7 Very high 0.79 0.60 0.79 0.60

100.00 100.00

Table 11 Classification of the classified Global Seismic Hazard

Assessment Program (GSHAP) map (http://www.seismo.ethz.ch/

GSHAP) in nine classes

Class Numerical/categorical

1 \0.20

2 0.20–0.39

3 0.40–0.79

4 0.80–1.59

5 1.60–2.39

6 2.40–3.19

7 3.20–3.99

8 4.00–4.79

9 C4.80
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than hazardous areas due to precipitation that triggers

slides particularly for the ICG model.

Precipitation-induced landslides cover to some degree

all mountainous areas in Europe, while the earthquake-

induced landslides are much more concentrated in the

south-eastern part of Europe and Iceland, where the seismic

hazard is known to be high. The main mountain ranges are

well reproduced and the results look reasonable at a

European scale.

The resulting hazard maps were then used to validate the

model. National authorities and experts in Romania, Italy,

France and Scotland were asked a set of questions if the

performance of the model results represent the landslide

situation in their countries. The results show that the

models work well on a national to regional scale. However,

they fail to recognise local scale patterns in individual

basins or areas. Agreement was found to be good for fast

Fig. 5 Landslide hazard caused by precipitation (results from the ICG model left, from the JRC model right). Red circles show possible hotspots

Fig. 6 Landslide hazard caused by seismicity (results from the ICG model left, from the JRC model right). Red circles show possible hotspots

Fig. 7 Good fit (in green) and bad fit (in red) between the

susceptibility map of the Arno river basin and the ICG precipitation

hazard map
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moving landslides of flow type and debris flows. Never-

theless, the models fail to identify areas where slow

moving landslides are the biggest concern. Figure 7 shows

an example from the Campania region in Italy. Here the

northern part with relatively steep terrain fits well, while

more gentle terrain in the central part of the basin are not

well represented by the model.

For precipitation-induced landslides, the results from the

hazard model were used to estimate the exposure of pop-

ulation and infrastructure to the hazard. For this purpose

the affected land areas, number of people and kilometres of

roads and railways were counted for each of the 44 coun-

tries in this study.

In the following paragraphs the results from the two

models will be mentioned side by side for the ICG/JRC

model respectively. Looking at all 44 countries, a total

number of 167,000/255,000 km2 are exposed to medium or

high landslide hazard. This is 1.7/2.6 % of the land area of

Europe. In these areas live 8.2/15.4 million people, which

represents 1.1/2.1 % of the total population of Europe.

Focusing on the areas with high hazard, one finds 17,000/

84,000 km2 and 1.3/3.7 million people exposed

(0.2/0.5 %).

The hazard maps in Fig. 5 show the areas of highest

hazard represented by the mountain regions of the Pyre-

nees, northern and south eastern Alps, Italy, the Balkan,

western Norway and Iceland. On the other hand, the

European exposure maps in Fig. 8 show the highest

exposure in the densely populated areas around cities that

are surrounded by mountains, such as Barcelona, Lisbon

and Rome. The exposure map clearly shows that the

highest level of risk is not necessary correlated to the

hazard but much more dependent on the distribution of

population in Europe. This is in agreement with statement

of Alexander (2004) that in many cases the consequences

determine the losses to a greater degree than does the

hazard.

Ranking countries by exposed land area (i.e., relative

exposure), one finds that Lichtenstein is the country with

the highest percentage of exposed land area (40 %), while

Italy features the most terrain exposed to landslide hazard

in total numbers (20,000 km2, Fig. 9).

The countries with the highest level of exposed people

can be found in the mountainous areas (Fig. 10). Small

countries like Montenegro and Liechtenstein score high on

risk as a large portion of their population actually live in

the mountains. Italy has the highest total number of

exposed people, but due to large areas of low or negligible

landslide risk in the country, Italy moves down to ninth

place on the list of countries ranked by relative exposure

(exposed divided by total population). In total numbers

Italy has more than 2.3/3.5 million (ICG/JRC) people liv-

ing in landslide terrain (Fig. 10). That is nearly 20 % of the

total amount of people exposed in Europe.

The ten countries with the highest number of exposed

people represent 77/78 % of the total number of people

exposed to landslides in Europe. On the other end of the

scale are the countries with little topography (e.g., the

Netherlands, Latvia) or countries where the mountainous

areas are not inhabited (e.g., Finland).

Looking at the ICG results in terms of exposed infra-

structure, Italy tops the list of countries both for roads

(6,597 km) and railways (2,274 km). Second is France

while Germany is in fourth place (Fig. 11). Relative to the

total length of roads and railways, the smaller countries

again score highest with Montenegro and Liechtenstein on

top of the list. In Greece 10 % of the roads are exposed and

in Switzerland around 9 % are exposed. In Montenegro

almost 40 % of the 187 km of railways are exposed while

in Switzerland 9 % of its total 4,600 km is exposed. The

Fig. 8 Exposure map for Europe (results from the ICG model left, from the JRC model right). Possible hotspots marked in green
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JRC data shows a slightly different ranking of the coun-

tries, but the general impression is the same. Looking at

Europe as a whole, 31,000/42,000 km (2.6 % ICG/3.3 %

JRC) of the road network and 13,000/18,500 km (1.8/

2.5 %) of the railways are exposed to landslide hazard. A

summary and comparison of the results are given in

Table 12.

Discussion

The results from the two models represent the landslide

situation in Europe reasonably well. They identify the main

hotspots both for hazard and risk. Recalling that the study

takes a rather coarse approach, the results could be com-

pared to much more detailed studies at national and

regional scales. In absolute numbers, the JRC model

identifies twice the exposed area, people or infrastructure

kilometres compared to the ICG results. This is most likely

caused by the two different approaches of a purely heuristic

and a statistical regression approach on the other hand.

Compared to national totals of area, population or infra-

structure kilometres, differences between the models are

within a few percent. This is promising and shows that the

two different approaches give similar answers to the task of

identifying European hotspots.

The main challenge for a uniform landslide hazard and

risk analysis for Europe is the selection of the most

appropriate input data. The applied datasets could be

improved in many respects. For example, resolution could

be improved and data holes could be filled; in addition

many of the datasets are overdue for updating. The models

depend mainly on terrain steepness, focusing the hotspots

to the mountainous areas in Europe. New precipitation

datasets with higher resolution in space and time are under

development (Haylock et al. 2008) and will improve the

hazard models significantly by including a quantification of

the likelihood of extreme precipitation events. Also, data

on the thickness of soils and geological deposits would

improve the estimation of landslide susceptibility espe-

cially in less steep terrain, where the models’ terrain factor

does not indicate a hazard to exist. For the validation of the

model results, a European landslide inventory is essential

but not existing.

Landslide hazard can be mitigated by both physical

countermeasures (such as slope stabilisation, reforestation

Fig. 9 Total and relative exposed area (km2) in the countries within the study area. Top red, ICG bottom blue JRC. Only the top 15 countries (of

44) are shown in each case
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and water management) and non-physical countermeasures

(such as evacuations and road closures). Many known

landslide areas in Europe already have such warning and

other mitigation systems in place. As the collection of

physical data at a European scale is close to impossible,

this is not considered for the model used in this analysis

resulting in overestimation of the risk for areas with miti-

gation measures in place. As an alternative to mapping the

areas with mitigation in Europe, the human development

index could be used for Europe as a measure for the ability

to manage the landslide hazard in a given area and

situation.

The results from the models were tested and validated in

Italy, Norway, Romania, and UK. Both areas, where the

models perform well and areas where the agreement is

poor, were identified quantitatively using landslide location

data for Italy, Norway, and the UK (local analysis) and

qualitatively using expert knowledge for Romania and UK

(national analysis). For precipitation-induced slides, the

four countries reported good agreement between the model

results and observed landslide events at a national scale.

However, more detailed studies at regional and local scales

show discrepancies. In both Norway and Romania this is

found in areas with less steep terrain and geological set-

tings that are not represented by the available geological

map (marine and fluvial settings). Torrents and shallow

landslides seem to be well represented in all areas. Also

rockfalls are reproduced reasonably well by the models,

even though the JRC model was not specifically designed

for these types of landslide.

The areas exposed to hazard from earthquake-induced

landslides are generally well represented by the ICG and

JRC models. However, probably the JRC model overesti-

mates the hazard in Northern Europe (e.g., UK). Romania

reports a decreasing fit in less steep areas with complex

geology. In steep mountain areas the results fit well. In

Italy, the seismic-induced landslide maps give good results

at a national scale and the results are adequate for a

European study. Problems arise at a local scale, where

complex geological sedimentary settings cause landslide

hazards in more gently-sloping terrain.

To achieve a picture of the risk hotspots in Europe, the

exposure of both population and infrastructure to landslides

was calculated. Although absolute numbers have to be

analysed with care, the results clearly point to Italy and

Spain being the countries with the largest number of people

Fig. 10 Total and relative exposed people (millions) in the countries within the study area Top ICG orange, bottom JRC purple. Only the top 15

countries (of 44) are shown in each case
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exposed. However, relative to the total population, small

alpine countries such as Lichtenstein show the highest

exposure. It is suggested from experience that areas with a

higher risk also have a higher resilience and have well

established risk mitigation strategies in place. However,

areas in the middle of the risk scale are often the areas that

are less frequently affected by landslides and where the

consequences, often due to a lack of planned management

and mitigation measures, are most severe.

The comparison of the ICG and JRC models shows that

the differences between the models are not too large. They

range mostly within 5–10 % of the total area or population

in a country. Considering the relatively coarse nature of the

analysis, and taking into account that each analysis was

undertaken at a different resolution, this is a promising

trend. Nevertheless, it should be mentioned that the dif-

ferences are largest in the mountainous countries such as

Norway, Switzerland and Slovenia. Here, the different

weighting of terrain may play a role. This difference also

shows that countries with a generally high exposure need to

assess the hazard and risk in more detail at a national level.

Fig. 11 Total and relative exposed infrastructure in the countries within the study area. Top ICG dark blue , bottom JRC light blue. Only the top

15 countries (of 44) are shown in each case

Table 12 Summary and comparison of the results from the ICG and

JRC model

ICG precipitation JRC precipitation

123,000 km2 are exposed (1.3 %

of the land area)

255,000 km2 are exposed (2.6 %

of the land area)

17,500 km2 in covered by high

hazard

84,000 km2 in covered by high

hazard

8.2 million Europeans are

exposed to landslide hazard

(1.1 % of the tot. pop.)

15.4 million Europeans are

exposed to landslide hazard

(2.1 % of the tot. pop.)

1.3 million live in high hazard

areas

3.7 million live in high hazard

areas

Approximately 31,000 km

(2.6 %) of roads and 13,000 km

(1.8 %) of railways exposed

Approximately 42,000 km

(3.3 %) of roads and 18,000 km

(2.5 %) of railways exposed

6,000 km of roads and 2,000 km

of railways in high hazard areas

15,000 km of roads and

5,500 km of railways in high

hazard areas

Italy has the highest total number

of people exposed

Italy has the highest total number

of people exposed

Small countries in the Alps show

the highest relative exposure

Small countries in the Alps show

the highest relative exposure
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The ranking of the most exposed countries both in total

and relative numbers is similar from the two models. The

first five countries agree well between the models, such that

the selection of hotspots is possible (Figs. 6, 7). Italy is the

country with the highest exposure according to both

models. Here, the combination of high population density

and large areas with moderate to high landslide hazard

yields large numbers of exposed people and infrastructure.

Conclusion

Landslide hazard and risk in Europe were estimated using a

method based on homogenous European or global data for

Europe. The method proved to be successful in producing a

dataset that allows a comparison of the European countries

and the definition of hazard and risk hotspots. The results show

that hazard and exposure related to landslides is widely dis-

tributed. Some European countries are mostly unaffected by

this natural phenomena, while landslides seriously affect daily

life in many other countries. Italy has the highest number of

people exposed to landslide hazard. On the other hand, Italy is

a country well experienced in mitigating landslide risk. In

other countries such as Romania, where the majority of the

exposed people live in low or medium hazard areas, landslides

events are less common and, therefore, catch local people and

authorities unprepared, thereby causing greater damage.

It is estimated that in the range of 1.3–3.6 million

Europeans live in areas with high landslide hazard. In

addition to the people directly threatened in their homes,

8,000–20,000 km of roads and railways are exposed to

high hazards causing additional direct threats to life and

economic assets as well as problems for emergency

response and recovery operations.

The applied methods yield only rough estimates and can

easily be improved by acquiring new and better datasets.

Especially for the precipitation trigger, lithology and soil

cover, new datasets with a higher resolution would improve

the models significantly. Also the inclusion of additional

landslide locations and of information on their history would

allow better calibration of landslide susceptibility and hazard

models. Although currently available in many national

landslide databases, this information is unfortunately diffi-

cult to access. The establishment of a European landslide

database should a major goal for future European projects.

On the other hand, the validation in four countries with

various topographical, lithological and climatological con-

ditions shows good results at a national scale. Therefore, it

can be concluded that in total, the results represent the

landslide hazard and risk in Europe reasonably well. On a

local scale, the models fail to reproduce the landslide pattern.

The results should be used at a maximum regional scale.
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