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ABSTRACT

The accurate estimation of the axle loads and the correct detection of overloads and imbalances, represent
a primary concern for railways management companies, since they are strictly related to traffic safety and
maintenance planning of the track. Weigh in Motion (WIM) systems aim at the dynamic weighing of railway
vehicles through a reasonable number of measurement stations placed along the track. Such systems may
overcome disadvantages in terms of costs and traffic management exhibited by conventional static weighing
systems.

In this paper the authors present an innovative algorithm for high speed WIM applications to estimate the
wheel loads of trains by means of indirect track measurements. The formulation of the algorithm is quite
general and it can be customized for several track measurements; consequently it can be employed in dif-
ferent typologies of measurement stations. The WIM algorithm processes the set of experimental physical
quantities chosen as track inputs by means of estimation procedures based on least square (LSQ) minimiza-
tion techniques. The vertical loads on the train wheels are computed from the measurements according to
the assumption that the effects of the single wheel loads on the track are approximately superimposable.
The whole WIM architecture has been developed in cooperation with Ansaldo STS and ECM SpA.

1 INTRODUCTION

The dynamical weighing of moving vehicles can be conveniently carried out through specialized measure-
ment stations, without stopping the circulating vehicles as it must be done when performing static weighing.
In that regard, an increasing interest is addressed to the development of efficient and reliable versions of such
measurement systems, usually referred to as Weigh in Motion (WIM) systems from both the railway indus-
try and the scientific community [7, 3, 11, 9]. The crucial aspects of each WIM system are the performance
of the measurement station and the features of the algorithm employed to perform the assessment of the un-
known wheel or axle loads. In the present paper the authors introduce an innovative algorithm [7, 3, 11, 9]
for the wheels or axle loads estimation that may be accomplished by exploiting different types of track
measurements such as rail shear, rail bending, vertical forces on the sleepers or even by means of any their
combination. The innovative WIM algorithm estimates the vertical load of each wheel from indirect rail
measurements assuming that the effects of the single wheel loads on the track are approximately superim-
posable (quasi-linearity hypothesis). Thanks to the previous assumption, the track response to the transit
of the whole train (i.e. indirect rail measurements chosen as inputs) may be expressed as an appropriate
weighted combination of the effects provided by a series of single nominal loads moving along the track at
the vehicle speed. Then, the set of physical quantities selected as track inputs are properly processed by the
WIM algorithm through estimation procedures based on least square (LSQ) minimisation techniques [10].

Thanks to its accuracy, the developed WIM algorithm is able to perform also the estimation of the longitu-
dinal XG and lateral YG coordinates of the center of mass of the vehicle starting from the estimated vertical
loads acting on the wheels. The developed WIM algorithm can manage both real experimental data or simu-
lated data. The simulated data are provided by a physical model of the railway track that has been developed
expressly to test the WIM algorithm with a suitable simulation campaign when experimental data are not
available. The new algorithm has been tested through numerical simulations performed using an architec-
ture composed of a detailed 3D multibody model of a two-boogies railway vehicle and of an accurate finite



Figure 1. General architecture of the model used in the development of the WIM system.

element model of a flexible ballasted track. To reproduce real conditions, both physical noise and measure-
ment noise have been included in the developed model. Several running conditions have been reproduced to
verify the robustness of the WIM algorithm performances in several operating conditions, characterized by
different values of the parameters that influence the dynamic response of the track (vehicle speed, car body
mass, load distribution etc.). The whole WIM architecture has been developed in cooperation with Ansaldo
STS and ECM SpA.

2 General architecture of the system

The general architecture of the developed WIM algorithm [9] is illustrated in Fig. 1 and it consists of two
main parts: the physical model and the estimation algorithm. The purpose of this arrangement consists
in the chance of testing the algorithm performance also when experimental data are not available: the
necessary track inputs are provided by the dedicated mechanical model through numerical simulations of
a completely known vehicle transiting on the track. Such simulations are performed to obtain the dynamic
response of the track in terms of the specific physical inputs chosen to be used in the estimation process.
More precisely, the physical model is formed of two sub-models: the multibody model of the investigated
vehicle (implemented in Adams VI-Rail environment) and the finite element model of the track (developed
in Comsol environment) that, during the dynamic simulation, interact online through a global contact model
developed and validated by the authors in previous works [8, 1]. At each time integration step the multibody
model of the vehicle evaluates the kinematic variables (position, orientation and their derivatives) relative
to the wheelset and consequently to each wheel. Meanwhile the finite element track model evaluates the
kinematic variables (position, orientation and their derivatives) of each rail. Rail and wheel kinematic
variables are sent as inputs to the global contact model that calculates the global contact forces and sends
these values back both to the vehicle multibody model and to the finite element track model. The estimation
part is made up of the innovative algorithm (implemented in Matlab) and the module for the basis functions
evaluation (developed in Comsol) described in chapter 4. As previously introduced, the structure of the
estimation algorithm is general and it can manage different kind of physical inputs or even a combination
of them. It requires some additional information concerning the vehicle speed V , the axle number ntot
and positions along the railway vehicle xai with i = 1, ...,ntot that can be measured through the utilization
of additional sensors or transmitted by the vehicle by means of low cost technologies. In this work the
algorithm is based on the measurement of the vertical forces acting on the sleepers performed by means
of force sensitive elements placed over the sleepers in the section corresponding to the rail baseplate/pads.
These forces (simulated F f n

z r , F f n
z l if provided by a physical model of the railway track or real Fsp

z r , Fsp
z r if

coming from experimental data), represent the physical track inputs of the WIM algorithm that, starting
from the knowledge of these quantities, estimates the wheel or axle loads N̂, longitudinal X̂G and lateral ŶG



position of the center of mass G of the investigated vehicle, through suitable estimation procedures derived
from the least squares minimization [12][6][10].

3 Physical model of the railway track

To generate suitable simulations to test the WIM algorithm when experimental data are not available, a
model involving all the components of track structure and vehicle is required. The physical model consists
of a 3D finite element model of the infrastructure (rail, sleepers and ballast), a 3D multibody model of
the vehicle and an innovative 3D wheel-rail contact model. In the rest of the paper xai denotes the initial
position of the i− th axle of the vehicle (the total number of the axles is ntot ), while the generic vertical
right and wheel loads are indicated as NRi and NLi. The corresponding estimated wheel loads N̂Ri and N̂Li
will be computed by the presented WIM algorithm; the weights of the wheelsets are included in the loads
N̂Ri and N̂Li.

Rails are modelled as 6 degrees of freedom 3D beams, connected through visco-elastic elements to nsl 2D
rigid bodies representing rail sleepers, which are in turn supported by a visco-elastic foundation including
the ballast properties. The visco-elastic elements include lateral kysl , vertical kzsl and rotational kϑsl stiffness
and lateral cysl , vertical czsl and rotational cϑsl damping properties. The generic 2D sleeper is supported
by a flexible foundation characterising the behaviour of the ballast through the lateral kybal , vertical kzbal
and rotational kϑball stiffness values and lateral cybal , vertical czbal and rotational cϑbal damping values.
The 3DOF system modelling the sleepers-ballast ensemble is described by the lateral ysl and vertical zsl
translations and the rotation ϑsl around the xsl − axis of the sleeper reference system. More details on the
modelling and on the parameters of the rail-sleeper-ballast ensemble can be found in [2].

The investigated vehicle chosen for the dynamic simulations is the Manchester Wagon whose mechanical
structure and elastic and damping characteristics are easily available in literature [4, 2]. The vehicle is
composed of the car body, two bogies and four wheelsets. For further detail on the multibody 3D model
of this vehicle one can refers to [2]. The vehicle model and the infrastructure model interact online during
the simulations by means of a 3D global contact model, specifically developed to improve reliability and
accuracy of the contact points detection. In particular the adopted contact model is based on a two step
procedure; the contact points detection [8, 1] and the global contact forces evaluation [5].

The numerical results have been obtained using the IDA solver, which uses variable order variable step
size backward differentiation formulas (BDF) for the time integration; the algorithm MUMPS has been
employed to solve the linear systems arising from the FE discretisation of the rail beams [12][6]. The
maximum step size MaxStep, the absolute and relative tolerance AbsTol, RelTol and the maximum dimension
hmax of the element of the rails mesh are respectively equal to 10−4 s, 10−5(−) , 10−6(−) and 10−3 m. The
processor used in the simulations is an INTEL Xeon CPU X 5690 - 3.47 GHz, 24GB RAM.

To improve the accuracy of the physical model of the railway track, two kind of disturbances have been
taken into account. Firstly the frequency effects on the generic considered input signals Tr, Tl due to the
limited band of physical system and measurement chain are introduced. These effects have been mod-
elled through a second order low pass filter directly applied to the physical signals T sim

rk , T sim
lk relative to

the measure points xrk and xlk (with subscripts r and l denoting respectively right and left measurement
point) of the measurement station: T f

rk(t) = B2,ωn(s)T
sim

rk (t) and T f
lk(t) = B2,ωn(s)T

sim
lk (t) where B2,ωn(s) is

the second order Butterworth filter and ωn = 2π fn is the cut frequency (ωn in rad/s and fn in Hz). Besides
the frequency effects, also numerical disturbances and bias errors on the signal T f

rk,T f
lk have been mod-

elled: T f n
rk (t) = T f

rk(t)+UTr [µTr ,δTr/2] and T f n
lk (t) = T f

lk(t)+UTl [µTl ,δTl/2] where µTr ,µTl and δTl/2,δTr/2
are the means and the standard deviations of the disturbance distributions UTr ,UTr . The aim of numeri-
cal disturbances and bias errors on the signals T f n

rk ,T f n
lk is to reproduce the numerical noise affecting the

measurement.



4 WIM algorithm

4.1 Vertical wheel loads estimation

The WIM algorithm (see Fig. 2) may operate both with generic simulated (T f n
rk and T f n

lk ) and experimental
(Tsp

rk and Tsp
lk ) input data. The developed algorithm performs the estimation of the vertical right N̂Ri and left

N̂Li wheel loads starting from the specific track measurements chosen as input signals Trk and Tlk (sim-
ulated T f n

rk and T f n
lk , if provided by the physical model, or real experimental data Tsp

rk and Tsp
lk ) measured

respectively at xrk and xlk, representing the abscissas of the right and of the left side of the k− th measure-
ment point (with k = 1, ..,Nm; Nm is the number of measurement points). The WIM algorithm requires some
additional information concerning the investigated vehicle: vehicle speed V , the axle number ntot and the
axle positions inside the railway vehicle xai with i= 1, ..,ntot must be known. These supplementary physical
quantities may be identified by means of additional sensors or may be transmitted by the vehicle itself to
the WIM station through low cost technologies. The main idea on which the new WIM algorithm arises, is
that it results quite intuitive to suppose the system approximatively linear with respect to the vertical loads
NRi, NLi with i = 1, ...,ntot (the quasi-linearity hypothesis (QLH)); in other words the effect of the generic
load NRi and NLi on the generic track measurement input Trk and Tlk is assumed not to be affected by the
presence of other loads (especially the contiguous ones). Evidently the quasi-linearity hypothesis (QLH)
must hold within the whole range of velocities V and cut frequencies fn considered for the studied systems.
Then, the application of the superposition principle allows the track inputs Trk and Tlk (both the simulated
T f n

rk and T f n
lk and the experimental ones T f n sp

rk and T f n sp
lk ) produced by the whole train to be estimated.

According to the QLH hypothesis, the track inputs Trk and Tlk are respectively estimated through a linear
combination of 2ntot track fictitious input signals (namely the basis functions) produced by 2ntot single
fictitious loads N f (one for each vehicle wheel) properly shifted in the time of a delay ti. The fictitious
load N f must include the weight of the wheel itself. In this case the linear combination coefficients are
equal to N̂Ri/N f and N̂Li/N f . Obviously, since the system can be assumed only approximatively linear, a
Least Squares Optimization (LQSO) is needed to minimize the approximation error and, at the same time,
to optimize the values of N̂Ri and N̂Li.

Figure 2. Architecture of the WIM algorithm

The presented WIM algorithm takes into account the coupling effect between the left and the right rail
deformation caused by the dynamical behaviour of the sleeper-ballast ensemble. In the most general version
of the WIM estimation procedure, track basis functions due to the transit of both left and right fictitious loads
or a combination of them may be considered. More specifically, the quantities Brk

Ri and Brk
Li represent the



chosen track fictitious response due to the transit of the i− th fictitious load respectively on the right or
on the left (denoted respectively with subscripts R and L) rail, measured at the right (r) side of the k− th
measurement point. Analogously, Blk

Ri and Blk
Li indicate the chosen track responses due to the transit of the

i− th fictitious load respectively on the right or on the left rail, measured at the left (l) side of the k− th
measurement station.

The model of the rail infrastructure used in the fictitious system to evaluate the basis function is analogous
to the one adopted to simulate the real physical model (see chapter 3) but, at the same time, it is quite
simpler (only the vertical DOFs of rails, sleepers and ballast are considered). In fact, in real applications,
the exact physical model is unknown and only a simplified approximate model can be used inside the WIM
algorithm. Moreover, since the WIM procedure has to be fast and implemented almost in real-time, the
fictitious model needed to evaluare the basis functions has to be necessarily simple.

For sake of clarity, the WIM algorithm estimation procedure will be described considering general track
inputs Trk and Tlk, but it is worthwhile noticing that the following expressions hold both for simulated (T f n

rk
and T f n

lk ) or experimental Tsp
rk and Tsp

lk track inputs. The right Trk and left Tlk track inputs measured at the
k− th measurement point will be expressed as Trk(t) = Trk(xrk, t) Tlk(t) = Tlk(xlk, t) with t ∈ [TI ,TF ].

The position of a generic fictitious load N f along the track is defined as x f = xa f + t ∗V (where xa f = 0
m). Consequently the 2ntot right-side fictitious track inputs Brk

Ri and Brk
Li and the 2ntot left-side fictitious

track inputs Blk
Ri and Blk

Li (in the present case the vertical forces acting on the sleepers) produced by 2ntot
single fictitious loads can easily be assessed by introducing suitable time delays ti = (xai− xa f )/V and by
applying such delays to the track responses to the transit of a single fictitious load (i.e single wheel transit):
Brk

Ri(t) = Brk
R (t + ti), Brk

Li(t) = Brk
L (t + ti), Blk

Ri(t) = Blk
R (t + ti) and Blk

Li(t) = Blk
L (t + ti where t ∈ [TI ,TF − ti].

At this point, thanks to the superposition principle, the track inputs Trk Tlk (both the simulated T f n
rk T f n

lk and
the experimental ones Tsp

rk Tsp
lk ) produced by the transit of the entire train can be approximated according to

the following expressions:

Trk(t)≈ Trk app(t) =
ntot

∑
i=1

Brk
RiαRi +

ntot

∑
i=1

Brk
LiαLi (1)

Tlk(t)≈ Tlk app(t) =
ntot

∑
i=1

Blk
RiαRi +

ntot

∑
i=1

Blk
LiαLi (2)

where a direct proportionality between the linear combination coefficients αRi αLi, the estimated vertical
loads N̂Ri. N̂Li and the fictitious vertical load N̂ f holds: αRi = N̂Ri/N f and αLi = N̂Li/N f .

To take into account the sampling process, the time domain t ∈ [TI , T̄F ], T̄F = TF−t1 (the shortest one among
the domains t ∈ [TI , T̂F ], T̂F = TF − ti) has been discretized with a sample time ∆t. Therefore, the Trk Tlk

track inputs (both the simulated T f n
rk T f n

lk track inputs and the experimental ones Tsp
rk Tsp

lk ) are known only
at the times th with h = 1,2, ...ns (ns is the samples number while t1 = TI and tNs = T̄F ). The same time
discretization holds also for the fictitious track outputs Brk

Ri, Brk
Li , Blk

Ri, Blk
Li employed to estimate T f n

rk , T f n
lk or

Tsp
rk , Tsp

lk .

Re-arranging equations (1,2) in matrix form, the following expressions can be written: Trk≈Brk
R αR+Brk

L αL
and Tlk ≈ Blk

R αR +Blk
L αL where k = 1, ...,Nm, Trk,Tlk ∈ Rns×1, Brk

R ,Brk
L ,Blk

R ,B
lk
L ∈ Rns×ntot and αR,αL ∈

Rntot×1. Considering then the Nm measuring points, a more compact problem formulation can be obtained:
Tr ≈ Br

RαR + Br
LαL and Tl ≈ Bl

RαR + Bl
LαL, where Tr,Tl ∈ RnsNm×1, Br

R,B
r
L,B

l
R,B

l
L ∈ RnsNm×ntot and

αR,αL ∈ Rntot×1. The following expression finally holds:[
Tr
Tl

]
=

[
Br

R Br
L

Bl
R Bl

L

][
αR
αL

]
(3)

or, more briefly, T = Bα where T ∈ R2nsNm×1, B ∈ R2nsNm×2ntot and α ∈ R2ntot×1.

The estimation procedure is performed considering the coupling between the rails due to the dynamical
behavior of the sleepers/ballast ensemble and taking into account the influence, on a specific measurement
point, of the transit of both right and left loads. If the track model considered for the basis function eval-
uation exhibits some asymmetric features, the resulting estimation matrix B is asymmetric, whereas if the
track model is completely symmetrical, the B matrix is a symmetrical block matrix with Br

R = Bl
L

T .



Since the studied problem is only approximatively linear, a Least Squares Optimization (LSQO) is neces-
sary to minimize the approximation error between Trk, Tlk and Trk app, Tlk app and, at the same time, to
optimize the values of N̂Ri, N̂Li. In this specific case linear not-weighted least squares have been considered
[12][6][10].

In the present research activity the vertical forces acting on the sleepers (denoted with F f n
z rk and F f n

z lk) have
been adopted as track inputs. Furthermore, to simulate the sampling due to the measurement process, the
time domain t ∈ [TI , T̄F ] has been discretized with a sample time equal to ∆t = 0.001s. For the simulated
vertical forces acting on the sleepers F f n

z rk and F f n
z lk, equation (3) becomes: F f n = Bαsim. By means of a

least squares optimization (LQSO) (in this case linear and not-weighted), it is now possible to minimize
the squared 2-norms E f n2 =

∥∥E f n
∥∥2

2 of the approximation errors E f n = Bαsim−F f n. This leads to αsim =(
BT B

)−1 BT F f n where the matrix BT B is invertible if and only if the rank of B is maximum. Finally the
values of the estimated vertical loads N̂sim

Ri , N̂sim
Li can be computed starting from the knowledge of αsim:

αsim = N̂sim/N f (4)

where
N̂sim =

[
N̂simT

R N̂simT

L

]T
(5)

with
N̂R =

[
N̂sim

R1 N̂sim
R2 N̂sim

R3 N̂sim
R4

]T
(6)

∑ N̂L =
[
N̂sim

L1 N̂sim
L2 N̂sim

L3 N̂sim
R4

]T
. (7)

4.2 Center of gravity estimation

As previously stated, the innovative WIM algorithm, starting from the estimated wheel loads N̂Ri and N̂Li,
is able to evaluate the lateral YG and XG longitudinal coordinates of the vehicle center of gravity (see for
example Fig. 3 where a two-bogies four-axles vehicle is schematically illustred).

Considering the horizontal plane containing the center of gravity of the railway vehicle and introducing
the reference system shown in Fig.3 (the origin O coincides with the geometric center of the carbody), the
moment equilibrium around XB−axis and YB−axis can be respectively expressed as ∑

ntot
i=1(bRN̂Ri+bLN̂Li) =

0 and ∑
ntot
i=1 ai(N̂Ri + N̂Li) = 0.

Figure 3. Evaluation of lateral and longitudinal coordinates of the vehicle center of gravity.

Taking into account the nominal values of the geometrical quantities of the vehicle such as the longitudinal
position inside the train of each axle xai and the distance between the nominal rolling radius (axle track) s,
the coefficients bR, bL and ai can be re-written as function of the COG coordinates XG, YG. More specifically,
the coefficients bR, bL has the following expression: bR = s

2−YG and bL =− s
2−YG whereas the coefficients

ai can be calculated as follows: a1 =−(xa1−xa4)/2+XG = c1 +XG, a2 =−(xa2−xa3)/2+XG = c2 +XG,



a3 = (xa2− xa3)/2+XG = c3 +XG and a4 = (xa1− xa4)/2+XG = c4 +XG. At this point, the moment
equilibrium equations can be re-written as: CĜ = d where C ∈ R2×2, Ĝ,d ∈ R2 and

C =

[
∑

ntot
i=1(N̂Ri + N̂Li) 0

0 −∑
ntot
i=1(N̂Ri + N̂Li)

]
(8)

Ĝ =

[
X̂G

ŶG

]
(9)

d =

[
−∑

ntot
i=1(N̂Ri + N̂Li)ci

∑
ntot
i=1(N̂Li− N̂Ri)

s
2

]
(10)

Hence, the values of the estimated longitudinal X̂G and lateral ŶG coordinates of the center of gravity G can
be computed by simply inverting the C matrix: Ĝ =C−1d.

5 Performance of the WIM algorithm

In this chapter the capability of the innovative WIM algorithm in estimating the vertical wheel loads NRi,
NLi and the longitudinal XG and lateral YG coordinates of the vehicle center of gravity G starting from
the knowledge of the simulated vertical forces on the sleepers F f n

z r , F f n
z l is shown. The WIM algorithm

has been tested with two simulations campaign to verify the accuracy of the procedure when experimental
data are not available. In the first simulation campaign, the attention is focused on the influence of vehicle
velocity V , vehicle car-body mass M and cut frequency fn of the physical system. In this chapter the vertical
forces on the sleepers F f n

z rk(t) = F f n
z rk(xrk, t) and F f n

z lk(t) = F f n
z lk(xlk, t) evaluated through the physical model

of the railway track (see chapter 3) are compared with the vertical forces on the sleepers F f n
z rk app(t) =

F f n
z rk app(xrk, t) and F f n

z lk app(t) = F f n
z lk app(xlk, t) estimated by means of the WIM algorithm. The comparison

between the calculated and estimated vertical forces is quite important to test the algorithm accuracy when
experimental data are not available. Furthermore in this case the measurement errors will be considered
(according to chapter 3) to evaluate the algorithm robustness in presence of disturbances. To perform the
comparison between simulated F f n

z rk, F f n
z lk and estimated F f n

z rk app, F f n
z lk app forces on the sleepers, an extensive

simulations campaign has been carried out. In particular the dependence of the relative errors esim
Ri =

N̂sim
Ri −NRi

NRi

and esim
Li =

N̂sim
Li −NLi

NLi
on the vehicle speed V , car-body mass M and the cut frequency fn of the physical system

is investigated. In Tab. 1 the variation ranges for the previous quantities are reported together with the
resolutions adopted (∆V , ∆M, ∆ fn); the range boundaries take into account both the usual traveling velocity
and car-body mass of freight wagons, and the typical frequency range of the studied physical system and
measurement chain (where Nv, NM , N f represent respectively the number of simulated values of ∆V , ∆M,

Table 1. Variation ranges of V , M and fn

Parameter Min. Max. Nsim ∆

Velocity (ms−1) 10 40 10 ∆V = (Vmax−Vmin)
(Nv−1)

Car-body Mass (t) 20 50 10 ∆M = (Mmax−Mmin)
(NM−1)

Frequency (s−1) 10 40 10 ∆ fn =
( fn max− fn min)

(N f−1)

∆ fn). In the research activity, the layout of the adopted measurement station consists in Nm = 3 measure
points on both rail side (xR1 = xL1 = 33 m, xR2 = xL2 = 34.2 m and xR3 = xL3 = 38.4 m). By way of
example, Fig. 4 illustrates both simulated F f n

z r2(t) and approximated F f n
z r2 app(t) right vertical forces acting

on the second measurement point on the right side of the sleeper (xr2 = 34.2 m) relative to a simulation
performed at V = 40 ms−1, with a car-body mass M = 50 t and with a cut frequency fn = 20 s−1. The
figure shows a good agreement between the simulated and estimated quantities, confirming the accuracy of
the WIM algorithm. The global performance of the WIM algorithm have been studied by considering the
maximum relative error esim

max(V,M, fn)

esim
max = max

1≤i≤ntot ,

∣∣max(esim
Ri ,e

sim
Li )
∣∣ . (11)



Figure 4. Vertical load acting at xr2 = 34.2.

The values of the estimated loads N̂sim
Ri , N̂sim

Li acting on the vehicle wheels evaluated in a test performed
with a vehicle speed V = 40 ms−1 and a car-body mass value M = 50 t (the most critical case of all the
simulation campaign), are listed for instance in Tab. 2. Tab. 2 also summarizes the relative errors esim

Ri , esim
Li .

The algorithm accuracy in estimating the vertical loads (relative errors equal to 0.03−1.9%) is mainly due
to the capability of correctly describing the global shape of the solutions (both in space and in time). Finally
Tab. 2 shows a satisfying accuracy of the WIM algorithm even for relatively low values of fn.

Table 2. Estimated loads, N̂sim
Ri ,Nsim

Li : V = 40m/s, M = 50 t.

Cut frequency fn Parameter Value Parameter Value
Hz kN %

10
N̂sim

R1
75.4

esim
R1

1.4%
40 76.8 0.2%

10
N̂sim

L1
75.4

esim
L1

1.7%
40 76.7 0.03%

10
N̂sim

R2
75.9

esim
R2

0.7%
40 76.7 0.2%

10
N̂sim

L2
76.2

esim
L2

0.4%
40 76.1 0.5%

10
N̂sim

R3
75.2

esim
R3

1.7%
40 76.4 0.2%

10
N̂sim

L3
75.1

esim
L3

1.9%
40 76.5 0.4%

10
N̂sim

R4
75.3

esim
R4

1.7%
40 76.8 0.1%

10
N̂sim

L4
75.7

esim
L4

1.3%
40 76.7 0.06%

To test the accuracy in the estimation of the longitudinal XG and lateral YG coordinates of the vehicle center
of gravity G, a second simulation campaign has been performed. The actual longitudinal XG and lateral
YG positions have been varied according to Tab. 3 (with resolutions equal to Nx and Nx). The campaign
has been performed with the following dynamical parameters: M = 50t, fn = 20 s−1 and V = 40 ms−1.
The accuracy in the estimation of the vertical loads, makes the WIM algorithm quite suitable also for the
estimation of the longitudinal XG and lateral YG position of the center of mass of the vehicle. Some results,
in terms of absolute errors in estimating XG and YG, are reported for example in Tab. 4.



Table 3. Variation ranges of XG and YG

Parameter Min. Max. Nsim ∆

XG (m) -3.0 3.0 10 ∆XG = (XGmax−XGmin)
(Nx−1)

YG (m) -0.5 0.5 10 ∆YG = (YGmax−YGmin)
(Ny−1)

Table 4. Estimation of XG and YG - M = 50t, fn = 20 s−1 and V = 40 ms−1

Simulation eXG eYG

XG = 0.0m YG = 0.0m 0.009 mm 0.003 mm
XG = 3.0m YG = 0.5m 0.021 mm 0.010 mm
XG =−3.0m YG = 0.5m 0.020 mm 0.011 mm
XG = 3.0m YG =−0.5m 0.018 mm 0.010 mm
XG =−3.0m YG =−0.5m 0.022 mm 0.014 mm

6 Conclusions and further developments

In this paper the authors presented an innovative WIM algorithm with the aim of estimating the vertical
wheel loads N̂Ri, N̂Li and the longitudinal X̂G and lateral ŶG coordinates of the gravity center of railway
vehicles. The WIM algorithm developed by the authors can work both with real experimental and simulated
data (when experimental data are not available). The algorithm is based on the measurement of the vertical
forces on the sleepers Fz performed through force sensitive elements placed over the sleepers in the section
corresponding to the rail baseplate/pads. These physical quantities are processed by means of suitable
estimation procedures derived from the least squares minimization that allow the calculation of the loads
N̂Ri, N̂Li and of the position X̂G, ŶG of the center of mass G of the vehicle. The results of the new WIM
algorithm highlighted a good agreement between the estimated quantities and the simulated data, confirming
the good accuracy of the procedure. Concerning the future developments, the improvements will regard the
adoption of other estimation procedures (like weighted least square optimization (WLSO) and nonlinear
least square optimization (NLSO) and other possible physical inputs of the algorithm besides the vertical
forces on the sleepers Fz (like generic stresses σ and deformations ε directly measured on the rails). The goal
of the improved algorithms will be also the estimation of other geometrical and physical charachteristics of
the railway vehicle. From an experimental point of view, experimental tests are currently being carried out
by Ansaldo STS and ECM Spa to further validate the WIM algorithm. Moreover a real prototype of the
measure station is being now designed and will be soon assembled on a suitable railway track. The prototype
will aim at testing the accuracy and the robustness of the WIM algorithm together with the effectiveness of
the various measure station layouts.
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