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“I do not feel obliged to believe that the same God who has endowed us with sense, reason,

and intellect has intended us to forgot their use..”

Galileo Galilei



Abstract

Local Dynamics in complex networks:

from community detection to epidemic spreading

by Emanuele Massaro

The great attention around complex networks in the last ten years is due to two main

factors: on one hand interactions in many real systems can be generalized in the form of

graphs or networks; on the other hand the significant amount of data coming from the

web and analysed with the methods of the network science may allow to predict future

behavior in many disciplines, especially in the social context. We faced the problem

of community detection and epidemic spreading in complex networks, considering also

the role of a local dynamics, a factor often neglected in literature. Regarding commu-

nity detection, we addressed the issue of modifying existing well performing algorithms

by incorporating elements from the domain application fields, i.e., domain-inspired. We

focused on an approach inspired by psychology, which may be useful for further strength-

ening the link between social network studies and the mathematics of community detec-

tion. We introduced a community-detection algorithm derived from the van Dongen’s

Markov Cluster algorithm (MCL) method by considering networks’ nodes as agents

capable to take decisions. In this framework we introduced a memory factor to mimic

typical human behaviors such as the oblivion effect. The method is based on information

diffusion and includes a non-linear processing phase. Our approach has three important

features: the capacity of detecting overlapping communities, the capability of identify-

ing communities from an individual point of view and the fine tuning of the community

detectability with respect to a prior knowledge of data. We tested our method in both

synthetic and real-world (dynamic and static) networks and we showed that the adap-

tation of more complex heuristics allows to reach very efficient results comparing with

other well-known community detection algorithms. Turning towards epidemic spreading

in complex networks, we studied the influence of global, local and community-level risk

perception on the extinction probability of a disease in several models of social networks.

In particular, we studied the infection progression in a susceptible-infected-susceptible

(SIS) model on several modular networks, formed by a certain number of random and

scale-free communities. We confirmed the expectation that in scale-free networks the

progression is faster than in random ones with the same average connectivity degree. In

this thesis we found that the knowledge of the infection level in one’s own neighborhood

is the most effective property in stopping the spreading of a disease, but at the same

time the more expensive one in terms of the quantity of required information. Therefore,



the cost/effectiveness optimum resulted in a tradeoff among several parameters. Finally

we developed a self-organized percolation method for modeling the risk perception in

epidemic spreading in both single-layer and multiplex networks.
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Chapter 1

Introduction

We live in a world of networks. The networks around us and we ourselves, as people,

are part of the network of social relations between individuals. Examples of networks in

the world are the Internet, the rail network, the subway, neural networks, the telephone

network, or less concrete entities, such as the relations of knowledge and collaboration be-

tween people. The study of networks is therefore very important, given the wide variety

of structures and systems of the real world that can be incorporated into the category

of “complex networks”. In general, a graph or network is a very general approximation

of a system constituted by many entities, called nodes (which may represent, in various

cases, persons, computers, proteins, chemicals, etc.) linked to each other and interacting

through connections (which may be, therefore, a cable between computers, hyperlinks

between web pages, a collaboration between people, a reaction between chemical sub-

stances, etc..). A complex network is a network with non trivial topological features that

would not be recognizable as a simple network. The majority of existing networks, being

them social, biological or technological (as well as some of the phenomena that depend

on or derived from the networks) may be considered complex: this depends on some

features such as, e.g., the degree distribution of links, the high coefficient of grouping,

the assortativity between the vertices, and often evidence of a hierarchical structure.

Another important observed feature of complex networks is the presence of a commu-

nity structure. Many real networks are not homogeneous and do not consist of a single

block of indistinct nodes, rather they exhibit some community structures, i.e. group of

vertexes more connected where there are high densities of links within each group, and

a relatively low number of connections between the various groups. In recent years was

explored in detail the possibility of automatically identify communities within networks

giving rise to a new field of research called “community detection”: in this thesis we

summarize the previous works and we present a new cognitive-inspired algorithm for

detecting communities in many networks from synthetic to real and dynamic networks.

1



Introduction 2

Given the impact of community detection in many areas, such as psychology and social

sciences, we have addressed the issue of modifying existing well performing algorithms

by incorporating elements of the domain application fields, i.e. domain-inspired. We

have focused on an approach inspire by psychology and social science which may be

useful for further strengthening the link between social network studies and mathemat-

ics of community detection. The rest of this thesis is organized as follows: we start by

describing some basic features of complex networks in Section 2. In Section 3 we show

the applications of our method to different scenarios ranging from static to dynamic net-

works and from synthetic to real-world networks. Considering psychological notions as

mentioned above, we adopted a local algorithm where an individual is simply modeled as

a memory and a set of connections to other individuals. In our approach, the “learning”

(nonlinear) phase is modeled after competition in chemical/ecological world. Here we

want to emphasize not only the good efficiency of the algorithm in detecting commu-

nity but also its capability to discover overlapping nodes and to reveal the subjective

vision of hierarchical levels of the network. Moreover we show that it is very difficult

to obtain an objective definition of community and that our method is very efficient

for discovering different subjective hierarchical levels using more complicated heuristics

as reported in Section 3.8: here we show also that our method is comparable in terms

of efficiency with other well-known community detection algorithms. In the last part

of this thesis we analyse a process widely studied in complex networks: the epidemic

spreading. In particular we have a look to the risk perception in modelling the spread of

epidemics in clustered (Section 4.1) and multiplex networks (Section 4.2). This section

has a dual purpose: on the one hand we want to analyse networks in order to reproduce

real scenarios; on the other side we want to take into account the precautions that people

take when they become aware of a certain disease. Moreover we present a self-organized

percolation method for both single layer and multiplex networks: this method allow us

to detect the critical values for avoiding the epidemic spreading, simulated trough the

so-called Susceptible-Infected-Susceptible (SIS) dynamics, in a very general way. Finally

we discuss the main results achieved during my PhD in the Conclusions.



Chapter 2

Complex Networks

2.1 Introduction

Many different systems can be effectively described in terms of graphs or networks. The

best-known representation of a network is that made by drawing points (nodes) and

lines connecting them (arcs). This is also the form of a family of objects known in

mathematics as graphs. Formally, a graph G = (V,E) is defined as a pair of sets: the

set V of nodes, or vertices, and the set E of the connections between them (also known

as edges, links), and each arc is drawn as a line connects two nodes. Graph theory was

officially founded in the late eighteenth century with the solution of the famous problem

of the bridges of Königsberg by the Swiss mathematician Leonhard Euler [2]. The

technique used by him proved to be of much greater utility than simple puzzle solving.

The German physicist Gustav Kirchoff analyzed electric circuits in terms of graphs and

chemicals found a natural correspondence between graphs and structures of atoms and

molecules. A graph can describe a transportation network, a neural network of the brain

Figure 2.1: Example of an undirected graph (network) and its mapping on the
adjacency matrix.

3



Complex Networks 4

or an economy in which companies are the nodes and the transactions between them are

edges. In the twentieth century the theory has assumed a predominantly statistical and

algorithmic predisposition [3, 4]. Given the representation of the network as a graph,

all deductions, measures and indicators of the theory can be applied to this case. The

terms graph and network are synonymous in all respects. From the mathematical point

of view a graph G = (V,E) can be represented by a matrix (called adjacency matrix

A Figure 2.1) whose elements different from zero represent a link between two nodes

(if different from 1 represents a ”weight” of the connection: cost, speed, energy, etc.).

intersection if the two nodes are connected. The complex networks observed in real case

often share characteristics that include global statistics as short ”distance” between

nodes or the presence of community structure. In many of these we observe that the

relative commonness of vertices with a certain degree greatly exceeds the average. The

understanding of the elements and relationships of each class of networks is essential for

proper identification and description, and to try to discover the principles of structural

construction and groped to predict the behaviour over time (evolution).

2.2 Some basic concepts

Although many features and measures of complex networks have been proposed and

investigated in the last decades, three spectacular concepts as the average path length,

the clustering coefficient and the degree distribution of links play a key role in the

recent study and development of complex networks theory. In fact, the original attempt

of Watts and Strogatz in their work on small-world networks [5] was to construct a

network model with small average path length as a random graph and relatively large

clustering coefficient as a regular lattice, which evolved to become a new network model

as it stands today. On the other hand, the discovery of scale-free networks was based on

the observation that the degree distributions of many real networks have a power-law

form, albeit power-law distributions have been investigated for a long time in physics

for many other systems and processes [6].

2.2.1 Average path length

The shortest paths play an important role for the spreading of information within a

network. Suppose that a user needs to send a packet from one computer to another

in the Internet network: if your package arrives at its destination by the shortest path

between two nodes, ensures a faster transfer and minimizes the use of network resources.

The average path length is defined to represent the length of all the shortest paths of

a graph G in a single matrix M , in which each element j is the length of the shortest
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path between the node i and j. An important property of the network is the average

length of the shortest paths, known as average path length defined as the average of the

shortest paths, evaluated on all pairs of nodes in the network:

L =
1

N(N − 1)

N∑
i=1

N∑
j=1,i 6=j

mij . (2.1)

The diameter D of a network is defined as the maximal distance among all the shortest

path between any pair of nodes in the network. It was an interesting discovery that the

average path length of most real complex networks is relatively small, even in those cases

where these kinds of networks have many fewer edges than a typical globally coupled

network with a equal number of nodes. This smallness inferred the small-world effect,

hence the name of small-world networks.

2.2.2 Clustering coefficient

The clustering, or transitivity, of a graph measures the tendency of two nodes that are

adjacent to a common node to be connected with one another. We remember that the

clustering coefficient is a function of the number of local triples. Following the definition

of Barrat et al. [7], the clustering coefficient C is defined as the average of the local

clustering coefficients ci:

C =
1

N

N∑
i

ci =
1

N

N∑
i

 1

ki(ki − 1)

∑
j,h

aijaihajh

 , (2.2)

where ki is the connectivity degree of node i. Then 0 < ci < 1 and 0 < C < 1, and

therefore in a fully connected network C = 1. A high value of the coefficient C indicates

that there are many connections between neighbouring nodes. In a completely random

network consisting of N nodes, C ∼ 1/N , which is very small as compared to most real

networks. It has been found that most large-scale real networks have a tendency toward

clustering, in the sense that their clustering coefficients are much greater than O(1/N),

although they are still significantly less than one (namely, far away from being globally

connected).

2.2.3 Degree distribution

The simplest and perhaps the most important feature of a single node is its degree.

The degree ki of a node i is the number of links that end on the node, and is defined
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considering the adjacency matrix A as:

ki =
N∑
j=1

aij , (2.3)

where N is the number of nodes in the network. If a network is directed, nodes have

two different degrees, the in-degree, which is the number of incoming edges, and the

out-degree, which is the number of outgoing edges. The average of ki over all i is called

the average degree of the network, and is denoted by 〉k〈. The degree distribution P (k)

of a network is then defined as the fraction of nodes in the network with degree k.

Thus if there are N nodes in total in a network and nk of them have degree k, we have

P (k) = nk/n. As we will see in the next section most of the observed networks in real

world seem to follow a power-law degree distribution where P (k) ∼ k−γ .

Table 2.1: Property of several real networks. Each network has the number of nodes
N , the clustering coefficient C, the average path length L and the degree exponent γ

of the power-law degree distribution.

Network N C L γ

WWW [8] 153127 0.11 3.1
γin=2.1
γout=2.45

E-mail [9] 56969 0.03 4.95 1.81

Software [10] 1376 0.06 6.39 2.5

Electronic circuits [11] 329 0.34 3.17 2.5

Language [12] 460902 0.437 2.67 2.7

Movie actors [5, 6] 225226 0.79 3.65 2.3

Math. co-authorship [13] 70975 0.59 9.50 2.5

Food web [14] 154 0.15 3.40 1.13

Metabolic system [15] 778 — 3.2
γin = 2.2
γout=2.2

2.3 Complex Network models

Measuring some basic properties of a complex network, such as the average path length

L, the clustering coefficient C , and the degree distribution P (k), is the first step toward

understanding its structure. The next step is to develop a mathematical model to

reproduce the main features found in real-world networks, thereby obtaining a platform

for which mathematical analysis is possible.
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Figure 2.2: Regular lattice, random network and connectivity distribution of a ran-
dom network.

2.3.1 Random Networks

The classical theory of networks, first introduced by the studies of Euler (1736), was

defined by hungarian mathematicians P. Erdős and A. Rényi [16]. The basic assumption

is that each pair of nodes of the network is connected randomly with a probability p.

This leads to a statistically homogeneous network in which, despite the randomness of

the model, the majority of nodes has the same number of connections k̄. In particular,

the connectivity follows a Poisson distribution with a peak at the value k̄, then the

probability of finding a strongly connected node decays exponentially, so P (k) ∼ e−k

for k >> k̄ as shown in the Figure 2.2. In this scenario the average path between two

nodes is relatively small as well as the frequency of nodes that tend to cluster together

(clustering coefficient).

2.3.2 Small-World Effect

On the other hand, empirical studies carried out on biological, social or technological

networks shown that there are many deviations from this random structure [17]. One

of the most important kind of networks is the social network of relations among people

where the nodes are individual and there is a link between them if they know each other.

A network of this kind is hardly representable as a regular lattice, and, unlike a totally

random network, it is inhomogeneous. There are different grouping, i.e. there is a high

probability that two nodes connected to a other are connected to each other: friends of

my friends are friends (with some probability). The “small world” effect is fairly well

known: two friends find they have mutual acquaintances. The idea that the chain of

acquaintances between any two people to world was limited had been formulated by

the hungarian novelist Frigyes Karinthy in 1929 [18] and scientifically enunciated by the

sociologist Stanley Milgram in 1967 [19]. The Milgram experiment was to study the route

followed by letters sent from Nebraska to direct acquaintance with a final destination



Complex Networks 8

address of Pittsburgh. The average number of steps turned out to be five to six people

involved. The experiment was not perfectly rigorous, but since then the term ”six degrees

of separation” has become the term to identify the “small world” phenomenon. After

studying the networks of partnerships such as that of actors in films or the electricity

distribution network or the neural connections of the small worm C. elegans , Steven

Strogatz and Duncan Watts in 1998 discovered an interesting phenomenon [5]. Almost

halfway between a regular lattice and a totally random network, these real networks

are characterized by small average distance L between the nodes and high clustering

coefficient C (measure the local density of connections in groupings). The proposed

model describes the construction of a small-world network starting from a regular lattice

and replacing the links with other present between different nodes with probability p.

These shortcuts are responsible for the “small world” effect (Figure 2.3).

(a)

(b)

Figure 2.3: Small-world network.

(a) The small network includes a handful of extra links thrown in between pair of nodes
chosen entirely at random. (b) The clustering coefficient C and mean vertex-vertex
distance L in the small-world model of Watts and Strogatz [5] as a function of the
rewiring probability p. For convenience, both C and L are divided by their maximum
values, which they assume when p = 0. Between the extremes p = 0 and p = 1, there is
a region in which clustering is high and mean vertex-vertex distance is simultaneously
low [17].
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2.3.3 Scale-free Networks

In a small-world network the degree distribution of nodes follow a Poisson law, but

many real networks show an entirely different distribution of degrees. This is the case of

networks such as the WWW, film actors, metabolic networks or electric ones. Scale-free

networks are characterized by a power-law degree distribution:

P (k) ∼ k−γ , (2.4)

where 2 < γ < 3 (observed). This observation indicates that large networks self-organize

into a state without scale (hence the term scale-free), a feature not provided by existing

models of random networks. A common feature of all the random models (including the

ER) is that they provide that the degree distribution (P (k)) has an exponential trend

with a peak around the mean value k̂. In order to explain this mismatch, Barabási and

Albert have found that there are two aspects of real networks that are not incorporated

into these models [6]. First, they assume that previous models start with a fixed number

of vertices (N) that are connected or rewired randomly, without changing the size. On

the contrary, many real world networks are open and are formed by the continuous

addition of new nodes to the system, i.e., the number of nodes N grows during the period

of life of the network. For example, the network of actors grows with the addition of new

players to the system, the WWW grows exponentially over time with the addition of

new web pages, and the scientific literature increases with the publication of new papers.

Consequently, a common feature to these systems is that the network continuously

expands with the addition of new nodes, which are connected to those already present

in the system.

On the other hand random networks models assume that the probability that two nodes

are connected to each other is random and uniform. However, many real networks show

preferential connectivity: for example, it is more likely that a new player is assigned

a support role to the best-known and established actors. The probability that a new

actor recites with a more established actor is much greater than that of acting together

with other actors less known. In a similar way, it is more likely that a newly created

web page contains links to documents already well known and with high connectivity,

and more likely that a new manuscript is mentioned in a very well known paper and

already frequently mentioned, with respect to a less known article and, therefore, less

cited. These examples indicate that the probability with which a new node connects to

the existing ones is not uniform; there is a higher probability that it is connected to a

node that has already a substantial amount of connections.
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In light of this consideration Barabási and Albert they have developed a model for the

generation of scale-free networks [20]. The “evolutionary” feature of real self-organized

networks is explained trough two mechanisms by the so-called Barabási-Albert (BA)

model [6]:

1. Growth: we start by considering a network of few nodes m0 and at each time

step a new node with connectivity m < m0 is added to the network.

2. Preferential attachment: the main hypothesis of the model is that the more

connected a node is, the more likely it is to receive new links. The new node links

to an existing node in the network i with a probability
∏

which is function of the

connectivity degree k of node i, then
∏

(ki) = ki∑
j kj

, where j represents all the

nodes in the network.

2.3.4 Hierarchical Networks

The main problem of the BA model is that the clustering coefficient is vanishing when

the size of the network increases, which does not correspond to what is observed in real

networks. The idea of the hierarchical network, introduced by Ravasz and Barábasi

try to eliminate this problem [21]. In fact many real networks are expected to be

fundamentally modular, meaning that the network can be seamlessly partitioned into a

collection of modules with an underlying hierarchical structure and an high degree of

clustering. This fact is also very important in the context of social relationships where

each people, following the studies of Dunbar [22], have a sort of hierarchical structure

of relationship from family to friend until work colleagues reaching the knowledge of

around 150 people. This evolutionary model allow to generate scale-free networks with

community and hierarchical structure. A model for generating hierarchical networks will

be shown in Section 3 while a model for scale-free networks with community structure

will be shown in Section 4.



Chapter 3

Community Detection

3.1 Introduction

Detecting communities is a task of great importance in many disciplines, namely so-

ciology, biology and computer science [23–27], where systems are often represented as

graphs. Community detection is also linked to clustering of data: many clustering meth-

ods establish links among representative points that are nearer than a given threshold,

and then proceed in identifying communities on the resulting graphs [28, 29]. Given a

graph, in a broad sense, a community is a group of vertices “more linked” than between

the group and the rest of the graph. This is clearly a poor definition, and indeed, on

a connected graph, there is not a clear distinction between a community and the rest

of the graph. In general, there is a continuum of nested communities whose boundaries

are somewhat arbitrary: the structure of communities can be seen as a hierarchical

dendogram [30].

In general, community detection algorithms rely on global quantities like betweenness,

centrality, etc. [30, 31] and most algorithms require the graph to be completely known.

This constraint is problematic for networks like the World Wide Web, which for all

practical purposes is too large and too dynamic to ever be fully known.

Moreover in complex networks, and in particular in social networks, it is very difficult

to give a clear definition of community: it is caused by the fact that nodes often results

in overlapping communities because they belong to more than one cluster or module or

community. The problem of overlapping communities was discussed in [32] and recently

a solution to it were presented in [33]. For instance people usually belong to different

communities at the same time, depending on their families, friends, colleagues, etc.: so

each people, making a subjective community detection algorithm, has its own vision of

communities in his social environment.

11
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In social networks, the definition of a community could be linked to the human capability

of information processing, particularly the poor evaluation of probabilities. When faced

with insufficient data or insufficient time for a rational processing, we humans have de-

veloped algorithms, denoted heuristics, that allows to take decisions in these situations.

The modern approach to the study of cognitive heuristics defines them as those strategies

that prevent one from finding out or discovering correct answers to problems that are

assumed to be in the domain of probability theory. The ratio of a cognitive algorithm for

community detection is based on the fact that humans’ networks are the results of the

individual strategies of single subjects; on the other hand they are presumably shaped

and evolved by the social structures in which they live [34, 35].

The thesis is organized as follows: we start by describing a new algorithm for detecting

communities in complex networks in Section 3.2. Considering psychological notions as

mentioned above, we adopted local algorithm where an individual is simply modeled as a

memory and a set of connections to other individuals. The “learning” (nonlinear) phase

is modeled after competition in chemical/ecological world, where resources fighting each

other in order not to fall into oblivion. In Section 3.3 we describe the first algorithm

in which information about neighbouring nodes is propagated and elaborated locally,

but the connections do not change. Here we want to emphasize not only the good

efficiency of the algorithm in detecting community but also its capability to discover

overlapping nodes and a sort of subjective vision of hierarchical levels of the network.

Next, in Section 3.4.3 we give an interpretation of Shannon entropy of information as

quality function for estimating models parameters. Finally we discuss our results and

we propose future steps in Conclusions.

3.2 The Method

We consider N individuals, labeled from 1 to N . Let us denote by A the adjacency

matrix, Aij = 1 (0) indicates the presence (absence) of a link from site j to site i;

all links have the same weight (Figure 3.1). Each individual i is characterized by a

state vector Si, representing his knowledge of the outer world. We interpret S as a

probability distribution, assuming that S
(k)
i is the probability that individual i belongs

to the community k. Thus, S
(k)
i is normalized on the index k. We shall denote by

S = S(t) the state of the all network at time t, with Sik = S
(k)
i . We shall initialize the

system by setting Sij(0) = δij , where δ is the Kroneker delta, δij = 1 if i = j and zero

otherwise. In other words, at time 0 each node only knows about itself.
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Figure 3.1: An example of an adjacency matrix.

It is a three-level matrix composed by 4 blocks of 2 sub-communities of 8 nodes each.
The link probability inside a sub-community is 0.98, in first level blocks is 0.3 and among
blocks is 0.03. White points indicate the presence of a link between the node i and the
node j, Aij = 1.

As mentioned the competition phase is modeled thinking to a chemical/ecological anal-

ogy. Our algorithms are based on the concept of diffusion and competitive interaction

in network structure introduced by Nicosia et al. [36].

If two populations x and y are in competition for a given resource, their total abundance

is limited [37]. After normalization, we can assume x + y = 1, i.e., x and y are the

frequency of the two species, and y = 1−x. The reproductive step is given by x′ = f(x),

which we assume to be represented by a power x′ = xα. For instance, α = 2 models the

birth of individuals of a new generation after binary encounters of individuals belonging

to the old generation, with noneverlapping generations (eggs laying) [38].

After normalization we obtain:

x′ =
xα

xα + yα
=

xα

xα + (1− x)α
. (3.1)

Introducing z = (1/x)− 1 (0 ≤ z <∞), we get the map

z(t+ 1) = zα(t), (3.2)

whose fixed points (for α > 1) are 0 and ∞ (stable attractors) and 1 (unstable), which

separates the basins of the two attractors. Thus, the initial value of x, x0, determines the

asymptotic value, for 0 ≤ x < 1/2, x(t→∞) = 0, and for 1/2 < x < 1, x(t→∞) = 1.
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By extending to a larger number of components for a probability distribution Pi, the

competition dynamics becomes

P ′i =
Pαi∑
j P

α
j

, (3.3)

and the iteration of this mapping, for α > 1, leads to a Kroneker delta, corresponding to

the larger component. However, the alternation between information and competition

can generate interesting behaviors.

3.3 Information Dynamics Algorithm

The dynamics of the network is given by an alternation of communication and elabora-

tion phases. Communication is implemented as a simple diffusion process, with memory

m. The memory parameterm allows us to introduce some limitations in human cognition

such as the mechanism of oblivion and the timing effects: the most recent information

has more relevance than the previous one [39, 40].

We assume that each individual spends the same amount of time in communication, so

that people with more connections dedicate less time to each of them. Since the amount

of available time is limited, we normalize the adjacency matrix on the columns (i.e., we

assign at each link the inverse of the output degree of the incoming node), forming a

Markov matrix M

Mij =
Aij∑
k Akj

. (3.4)

Note that in many mathematical texts the indices are inverted, so that the Markov

matrices are normalized on the rows. We prefer the “physics” notation so that matrix

multiplication with a probability distribution P takes the usual form P ′ = MP . Then

in the communication phase, the state of the system evolves as

S(t+
1

2
) = mS(t) + (1−m)MS(t). (3.5)

As described in the Eq. 3.3, the competition phase is modeled thinking to a competive

interaction between the nodes in the network [36].

In this way the dynamic of the model is given by a sequence S(t)→ S(t+ 1
2)→ S(t+1):

Sik

(
t+

1

2

)
= mSik(t) + (1−m)

∑
j

MijSjk(t),

Sik(t+ 1) =
Sαik(t+ 1

2)∑
j S

α
ij(t+ 1

2)
.

(3.6)
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Figure 3.2: Simple artificial network

The graph is composed by of 9 nodes and 13 links divided in 2 communities. It is
possible to identify two different communties: the first one composed by nodes 1-2-3-4-5
and the second one by 6-7-8-9.

We assume that individuals’ memory is large enough so that they can keep track of all

information about all other individuals. In a real case, one should limit this memory and

apply an input/output filtering. Individuals do not change their connectivity. For testing

purposes we use three networks and analyzing and discussing our model peculiarities.

The three case studies, of growing or different complexity, are: a simple artificial network

used to show the typical output of our algorithm, the Zachary karate club network [1]

and the bottlenose dolphins network [41].

3.4 Static Networks

In this first case study, as shown in Figure 3.2 represented by its adjacency matrix A:

A=



0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

1 1 0 0 1 1 1 1 0

0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1

0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0


the algorithm face with a very simple task and converges to an optimal solution in few

iterations and for a wide range of model’s parameters m and α. Analyzing state matrix

S(t), it is possible to identify two different communities marked by nodes 5 and 9.
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S(T)=



0 0 0 0 0.9999 0 0 0 0.0001

0 0 0 0 0.9982 0 0 0 0.0018

0 0 0 0 0.9982 0 0 0 0.0018

0 0 0 0 0.9383 0 0 0 0.0617

0 0 0 0 0.9975 0 0 0 0.0025

0 0 0 0 0.1309 0 0 0 0.8691

0 0 0 0 0.0054 0 0 0 0.9946

0 0 0 0 0.0054 0 0 0 0.9946

0 0 0 0 0.0061 0 0 0 0.9939


In Figure 3.3(b) it is possible to identify two different communties highlighted by upper

values in the graph. The first community is composed by node 1-2-3-4-5 and the second

one by 6-7-8-9. Our algorithm is capable also to detect overlapping nodes (4 and 6) as

”middle” values between blue lines. In this way each node knows exactly its role in the

network.
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Figure 3.3: Detection of community in a simple generated network.

(a) On the x-axis of both figures there are is number of nodes. On the y-axis: the

cumulative distribution P (S) (dashed black line, P
(S)
j =

∑
i Sij , multiplied by five) and

P (A) (blue line, P
(A)
j =

∑
iAij , connectivity). The information propagation algorithm

identifies communities by leaves (nodes 5 and 9 with lower connectivity) with m = 0.3
and α = 1.4. (b) The value of state vectors, at the final asymptotic time, of node 5
(dashed black line) and node 9 (black line). We can observe upper values indentifying
communities: the first one composed by nodes 1-2-3-4-5 and the second one by nodes 6-
7-8-9. The algorithm is capable also to detect the communication nodes 4 and 6 between
the blue lines. In this way we can indentify the overlap between the communities and
also define a sort of objective vision of nodes. It is clear that the upper nodes know very
well which is their community as well as nodes 4 and 6 that know that they are in a
middle state between two communities.



Comm Detection 17

3.4.1 Zachary ”Karate Club”

The second test case is a typical network literature example: the network proposed by

Zachary in the 1977 , and known as ”karate club” [1]. Although this network (Fig-

ure 3.4(a)) is rather small, our algorithm shows interesting results. With m = 0.25 and

α = 1.4 the algorithm has detected three communities in few steps as described in the

Figure 3.4(b). In figures Figure 3.5(a-b), Figure 3.6(a-b) and Figure 3.7(a-b) we show

that each community has the own subjective vision of network structures. Analyzing

these results it is possible it is possible to detect three communities in the network and

two overlapping nodes (node 1 and 3) as shown in Figure 3.8.
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Figure 3.4: Results on the Zachary’s karate club network 1.

(a) Zachary’s karate club network. (b) On the x-axis of the figure there is the number of
nodes. On the y-axis: the connectivity (blu line) P (A) and the cumulative distribution
(dashed black line) P (S) are reported at final asymptotic time with m = 0.2 e α = 1.4.
The P (S) reveals three underlying substructures labelled by nodes 13,17 and 23.
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Figure 3.5: Results on the Zachary’s karate club network 2.

(a) Values of state vector 13: the community is defined by black nodes in Figure 3.5(b)
corresponding to upper values in the Level 1. As well as in the simple artificial network
network the algorithm has detected not only the rigth community but also the overlap-
ping node corresponding to big gray diamond in Figure 3.5(b), in the Level 2. The Level
3 and the Level 4 (respectively gray and white nodes in Figure 3.5(b)) correspond to
the different level of knowledge the others. In the Level 3 it is possible to find ”direct”
contacts while in the fourth level it is possible to detect ”friends of my friends”.
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Figure 3.6: Results on the Zachary’s karate club network 3.

(a) Values of state vector 17: the community is defined by black nodes in Figure 3.6(b)
corresponding to upper values in the Level 1. For the description see the caption of the
Figure 3.5.
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Figure 3.7: Results on the Zachary’s karate club network 4.

(Values of state vector 17: the community is defined by black nodes in Figure 3.7(b)
corresponding to upper values in the Level 1. In this case we haven’t found overlapping
but is also possible to detect a sort of scale of friendship inside the network labeled by
the 4 levels in Figure 3.7(a) and by black-to-white color scale in Figure 3.7(b) .

Figure 3.8: Communities detected by our algorithm.

Communities are marked by dark gray (shown in Figure 3.5), light gray (shown in Fig-
ure 3.6) and white nodes (shown in Figure 3.7). On the other hand three circles rapresnt
the overlap between communities because of the role of node 3 and 1 as explained in
Figure 3.5 and Figure 3.6.
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3.4.2 Bottlenose dolphin Network

The third case study concerns a community network of dolphins. The network we study

was constructed from observations of a community of 62 bottlenose dolphins over a

period of seven years from 1994 to 2001 [41] as shown in Figure 3.9(a). With m = 0.5

and α = 1.03 our algorithm detects two communities (Figure 3.9(b)). Results are

reported in Figure 3.10(a-b) and Figure 3.11(a-b) where we show the capability of our

algorithm to detect the rigth communities but also 7 overlapping nodes between them.

(a)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Nodes

P
(S

),
P

(A
)

(b)

Figure 3.9: Results on the Bottlenose dolphin network 1.

(a) Bottlenose dolphin network. This network has a size of 62 nodes and from direct
observation it is known that it has two communities.(b) On the x-axis of the figure
there is the number of nodes. On the y-axis: the connectivity (blu line) P (A) and the
cumulative distribution (dashed black line) P (S) are reported at final asymptotic time
with m = 0.5 and α = 1.03. The P (S) reveals two underlying substructures labeled by
nodes 59 and 61
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Figure 3.10: Results on the Bottlenose dolphin network 2.

(a) Values of state vector number 59: the four levels indicate respectively nodes of
community (white nodes), overlapping nodes (white diamond nodes), closer nodes of
the other community(gray diamonds) and finally nodes of the other community (gray
nodes).(b) Communities detected by our algorithm.



Comm Detection 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level 1

Level 4

Level 3

Level 2

(a)

Number1

Quasi

MN23

Notch

Mus

Web
Wave

DN16

Gallatin

TR82

Feather

Zig

Ripplefluke

SN96

Double

MN83

CCL

Beak

Fish

SN4

TR77

Bumper

Stripes
KringelScabs

Grin
Oscar

SN9

Knit

Topless
Zap

SN89

Haecksel

MN60

Jonah
Patchback

SMN5

SN100

TSN83

Whitetip

Thumper

SN63

Zipfel

Shmuddel

TR88

HookTR120

Beescratch

SN90

Jet

DN21
Upbang

PL

DN63

Five

Cross

Vau

Trigger

Fork

TR99
MN105

TSN103

(b)

Figure 3.11: Results on the Bottlenose dolphin network 3.

(a) Values of state vector number 61: the four levels indicate respectively nodes of
community (white nodes), overlapping nodes (white diamond nodes), closer nodes of
the other community(gray diamonds) and finally nodes of the other community (gray
nodes).(b)Communities detected by our algorithm.

3.4.3 Entropy of information

In order to present the temporal results in a compact way, we computed the entropy E

of a configuration S, using the cumulative distribution over the non-normalized index,

P
(S)
i =

∑
i

Sij ,

E(S) = −
∑
i

P
(S)
i log(P

(S)
i )−

∑
i

(1− P (S)
i ) log(1− P (S)

i ).
(3.7)

The entropy E is maximal for the flat distribution, when each node knows only itself,

and minimal (zero) what all the network has only one label (or has become just one star

for the rewiring algorithm). If the population is evenly distributed among n clusters,

the entropy is E = log(n). Let us to study the artificial complex network illustrated

in Figure 3.1. This network is composed by three levels with different probability to

have a link in a region.

As we observed our algorithm is able to observe all levels of a hierarchical network.

In Figure 3.12(a) it is possible to identify the final level of the artificial network. The

value of Entropy E(t) can help us understand the structure of the network at priori. In

fact, different levels of a hierarchical structure are identified by the plateau as we can

observe in Figure 3.12(b). This result is emphasized by the entropy’s first derivative

where we can observe three distinct peaks (Figure 3.12(c)). The final monocluster,

using the adjacency matrix A in the Eq. 3.6, is identified by the major hub in the

network (Figure 3.12(d)). Role of parameters m and α has shown in Figure 3.13 where

it is possible to observe the value of Entropy E at the state of convergence for each

combination of parameters. Then if we change the parameters we can discover different
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communities structures: in Figure 3.14 we show the final asymptotic state with m = 0.7

and α = 1.4 on the same network used before.
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Figure 3.12: Temporal evolution of the Shannon Entropy of Information.

Referring to the artificial hierarchical network illustrated in Figure 3.1: (a) the asymp-
totic configuration observed with our algorithm using m = 0.27 and α = 1.25. (b) The
Entropy of Information (E) vs Time: we can observe three different plateaux. The final
configuration, E = 0, corresponds to the monocluster shown in (a); (c) plot of the first
derivative of the Entropy which show the three plateu with three different peaks. (d)
We observe that the final community is identified by the higher connectivity.

3.4.4 Local and long range interaction

We have generated matrices as defined in Section 3.2, with K = 5, N = 120, G = 3,

C = 2 (3 groups of 40 nodes, and communities of 20 nodes). After having generated

the networks with uniform local connectivity K, links are rewired with probability pr.

If rewired, the site is connected to another one (possibly already connected) in the same

community with probability pc, in the same group with probability (1− pc)pg and to a

random node with probability (1− pc)(1− pg).

An example of such matrix is reported in Figure 3.15-a. The rewiring probabilities

(pr = 0.2, pc = 0.9, pg = 0.7) are such that the local structure is extremely evident,

followed by the community structure. The group structure is almost invisible.
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Figure 3.13: The asympotic configuration of the entropy as function of the parameters
m and α.

We can clearly observe many different surfaces in this 3D graph: the surfaces correspond
to different asymptotic configurations.
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Figure 3.14: Hierarchical community detection.

(a) Asymptotic configuration of the matrix S using m = 0.7 and α = 1.4 (this con-
figuration corresponds to the large green surface in Figure 3.13). We observe that the
asymptotic result corresponds to the middle layer (four communities) of the hierarchical
structure of the network; (b) We have identified all the different levels in a hierarchical
complex network changing the parameters m and α.

In order to reveal all structures of communities, we have slowly varied m, for a given

value of α. The community structure for α = 1.04 is reported in Figure 3.15-b. The

levels of exp(H) corresponding to the group and community structures are marked. By

changing the value of the memory m, nodes tend to accumulate more knowledge about

the external world, and, due to the competition phase, their memory becomes dominated

in general by just one label, that marking the community the node belongs to. There are

occasional transitions when two communities fuse together, in the sense that a label from

one community invades the other. It is possible to see these transitions. In particular,
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Figure 3.15: Undirected network.

(a) One adjacency matrix for K = 5, N = 120, G = 3, C = 2, pr = 0.2, pc = 0.9,
pg = 0.7. Black dots corresponds to Aij > 0. (b) The plot of exp(H) vs m for the
network of Figure 3.15(a). The dotted line marks the value of exp(H) corresponding
to the three groups level and the dashed line marks the value corresponding to the six
communities level.

plateaus corresponding to a structure in six and three communities are evident for large

intervals of m. The final state corresponds to just one community (we have not reported

the trivial initial phase, with H ' log(120)).
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Figure 3.16: Undirected network 2.

(a) One adjacency matrix for K = 7, N = 120, G = 3, C = 2, pr = 0.2, pc = 0.9,
pg = 1.0. Black dots corresponds to Aij > 0. (b) The plot of exp(H) vs m for the
network of Figure 3.16(a). The dotted line marks the value of exp(H) corresponding
to the three groups level and the dashed line marks the value corresponding to the six
communities level.

Since the matrices are generated stochastically, it may happen that two communities are
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more connected in one realization, and therefore the plateaus may happen for slightly

different values of H.

Actually, the long-range connections at the network levels are not strictly needed: due

to the local connectivity all nodes are connected, and we can set pg = 1 and still have

the transition to a single community, but this is favored by a larger local connectivity

K. See for instance the Figure 3.16 .
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Figure 3.17: Different results on the Zachary’s karate club and Bottlenose dolphin
networks.

(a) Zachary’s karate club network (m = 0.2 and α = 1.4). (b) Bottlenose dolphin
network (m = 0.5 and α = 1.03).

We have also applied our method to two real networks, the well-known Zachary karate

club network, Figure 3.17-a [1], and the social interaction of bottlenose dolphins observed

by Leusseau, Figure 3.17-b [41].

For the Zachary club, our algorithm identifies four communities with different over-

lapping nodes between them. Considering the hierarchical structure of the network it

is possible to merge together two sub-communities. Diamonds denote the overlapping

nodes between the two principal communities. Triangles mark the overlapping nodes

between the two sub-communities while square are the overlapping nodes between both

subcommunities and communities.

The bottlenose dolphin network has a size of 62 nodes and was obtained by direct

observation. Our algorithm detects 2 principal communities but also 7 overlapping

nodes (diamonds) between them.

Finally, in order to evaluate our algorithm’s performance we computed the normalized

mutual information (NMI) on a Girvan-Newman (GN) benchmark graph [45] varying

the mixing parameter µ, see Figure 3.18. The graph consists of 128 nodes, each with

expected degree 16, which are divided into four groups of 32. The GN benchmark is

regularly used for testing algorithms for community detection.
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Figure 3.18: Normalized mutual information on the GN benchmarks.

Test of the algorithm on the GN benchmark based on normalized mutual information
(NMI) on the y axes, and the mixing parameter µ on the x axes. (a) Infomod [42], (b)
MCL [43] (c) Infomap [44], (d) our model.

We created 11 networks varying the mixing parameters µ, and compared the results with

other well knows community-detection algorithms. We performed simulations with dif-

ferent values of parameters m and α. Results (Figure 3.18-(d)) show that our algorithm

achieves very good performance: in fact, up to µ = 0.35 it always finds the prede-

fined partition in four clusters. In the Figure 3.18-(a)-(b)-(c) we reported the results

achieved by Lancichinetti and Fortunato [46] on three well-known community detection

algorithms.

A final remark concerns the memory requirement of our cellular automata. We have

chosen here the simplest implementation by furnishing to all nodes enough memory to

contain the whole network (i.e., S is a N × N matrix), but in practice the number of

entries different from zero are always quite few. It is therefore possible to assume that

the nodes have bounded memory, as required by the “prescriptions” of human heuristics.

3.5 Dynamic Networks

Nowadays, the closer and closer interaction between devices and their users is a clear

expression of the increasing tightness among the cyber world and the physical one. Let

us consider, for example, mobile devices that are in charge of autonomously accomplish

tasks like discern, collect and redistribute the important information (for their users)

that circulate in the environment. On the one hand, devices exploit through their

applications the information coming from the physical world to adapt and optimise

their behaviour in the cyber world and, on the other hand, the status of the applications

in the cyber world can affect the behaviour of their human users in the physical world

(such as the users behaviour in social gaming or other social-oriented applications). This

strong interaction has not only the quite obvious effect of generating a huge amount of

information that flow from one world to the other, but it also triggers between the two

a deeper connection, leading to the so called Cyber-Physical World (CPW) convergence
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scenario [47]. In this context, mobile devices play an important role because they are

the actual representation of their users in the cyber world or in other terms, mobile

devices act as proxies of their human counterparts in the cyber world. The challenge

here is to devise methodologies that make devices able to properly mine the acquired

knowledge in order to let them being aware about their environment so that they can

make proper decisions for specific tasks. Opportunistic Networks (OppNets) and the

problems connected to them, represent a very well fitting example of the this general

concept.

OppNets [48] are dynamic, delay tolerant wireless networks made by mobile nodes (e.g.

human users equipped with smartphones) where the connectivity between them is not

granted at any time instant. In OppNets the communication between nodes can occur

only upon contacts, (i.e. when nodes are in reciprocal transmission range) and the

information spreading is mainly done according to the store carry and forward paradigm:

nodes exploit any contact with other peers to exchange messages under the condition

that the other peer is deemed a good candidate to bring the message closer to the

destination. The efficient delivery or spread of information to the interested users in

this kind of networks is currently an open research problem. To this end, researchers,

not only have to consider the typical physical problems of wireless networks but also

the aspects connected with the humans’ behaviour like their mobility patterns, their

natural tendency to aggregate in social communities, etc. The ability of catching and

understanding such social information, in order to predict and exploit human behaviour,

has a great relevance for the development of effective solution for the above mentioned

problems in OppNets. Let us consider for example the message forwarding problem in

OppNets: due to the high mobility of devices, the challenge for a forwarding method is to

quickly forward the message from the source to the destination, without introducing too

many duplicate messages or overhead information. Here, the nodes’ awareness about

information like the social relationships, the aggregation habits and the community

structure of their human users (all information coming from the physical world and

exploited in the cyber world), can help to select suitable forwarders while containing the

delivery costs.

In this work we focus on the community detection problem, or in other terms, we want

to identify the underlying social structure emerging from the habits and the social rela-

tionships that nodes (human users) exhibit in a dynamic network by repeatedly entering

in contact and exchange information with each other. The existing approaches of com-

munity detection can be divided into centralised and decentralised. The former consider

the network as a static weighted graph that does not evolve over time and they use the

whole global information about physical contacts and interactions between users over a
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given amount of time to accomplish the task. In the literature are present many cen-

tralized community detection approaches as reported in [49]. Moreover, both in physics

and computer science fields, many well-performed and improved algorithms for detect-

ing communities in complex networks have been presented in the last decade, among

the others we refer to the so-called OSLOM [50], INFOMAP and HIERARCHICAL

INFOMAP [44, 51], MODULARITY OPTIMIZATION [52], LOUVAIN METHOD [53]

and the LABEL PROPAGATION METHOD [54] . Though they are very useful for

offline data analysis on mobility traces to define at priori strategies of forwarding, data

dissemination, energy saving, etc, they are completely unsuitable to be used in online

contexts, i.e. to define online, distributed algorithms that nodes can use to understand

the structure of the communities of the network where they move. We recall that in

our scenario nodes must be able to make proper decision without relying on centralised

information so it is very important that nodes autonomously build a local representation

of their surrounding environment. Several decentralised approaches have been proposed

for community detection. Differently from the centralized ones, they consider the net-

work as a time-evolving entity and, more important, they do not rely on a global vision

of the network but only on a local one, i.e. every node in the network builds and up-

dates its own representation of the existing social communities over time. For example,

in [55, 56] the authors presented three community detection algorithms (i.e., SIMPLE,

k-CLIQUE, and MODULARITY) while another improved approach can be found in the

work of Borgia et al. [57]. All these methods, are based only on the contact duration to

build the representation of the nodes’ social structure, however, we tackle the problem

from another point of view. In particular in our method the representation of commu-

nity structure emerges spontaneously due the elaboration of information carried on by

the agents locally and over the time without any intervention from the outside.

Here we focus on the development of a completely local approach of community detection

considering also some social and psychological aspects: humans’ communities are large

and varied, we recognize several levels of grouping, sometimes dependent on the con-

text, and we have probably developed our language as a tool for faster communication

and discovering of social relationships. Therefore in social networks it is very difficult

to have a precise definition of community because of people often belong to different

communities at the same time and there is not a clear distinction between a community

and a rest of the graph. In general, there is a continuum of nested communities whose

boundaries are somewhat arbitrary. A community-detection algorithm should therefore

return different “views”, according to the value of some control parameters. At a super-

ficial level, most of our information processing concerns the evaluation of probabilities.

When faced with insufficient data or insufficient time for a rational processing, humans

have developed algorithms, called heuristic in the cognitive psychology area, that allow
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us to take decisions in these situations. The modern approach to the study of Cognitive

Heuristics defines them as those strategies that prevent one from finding out or discov-

ering incorrect answers to problems that are assumed to be in the domain of probability

theory. Basically the Cognitive Heuristics Program proposed by Goldstein and Gigeren-

zer suggests to start from fundamental psychological mechanisms in order to design the

models of heuristics [34]. These models have to satisfy the following constraints: (a)

Ecologically rational (i.e., they exploit structures of information in the environment),

(b) Founded in evolved psychological capacities such as memory and the perceptual sys-

tem, (c) Fast and frugal, and simple enough to operate effectively when time, knowledge,

and computational power are limited.

Our main goal is to explore the behaviour of exploratory methods inspired by human

heuristics, in the hope of exploiting the “social knowledge” of human mind and also

for developing more “natural” human-computer interfaces. Clearly, we do not pretend

to simulate the real human behaviour, but only to study the behaviour of simplified

models inspired by it. In particular, we deal with the task of identifying communities in

an existing graphs, using a local and dynamic algorithm where an individual is simply

modelled as a memory and a set of connections to other individuals. In this approach

the information about neighbouring nodes is propagated and elaborated locally over

the time as function of the previous meetings. In this way we are able to simulate a

process in which the agents, trough an alternation of communication and elaboration

phases, have their local subjective representation of network in which the communities

exploration is given by the probability to belong to one or more clusters at the same

time. This method, already tested for detecting communities in static networks [58–60],

is now applied in dynamic environments.

We now show how the algorithm performs when used in nodes moving according to one

of the reference mobility models in the opportunistic networking literature, i.e. HCMM

[61], already used in several works like [62, 63] to evaluate the performance of both for-

warding and data dissemination approaches for OppNets. This allows us to show that

our algorithm can be used to dynamically detect the structure of communities of users

in mobile social networking environments. Mobility traces generated by HCMM incor-

porate temporal, social and spacial notions in order to obtain a proper representation of

the real user movements. More precisely, nodes move in an area of 1000m2 divided in a

6× 6 grid where a single grid’s cell represent a physical location that gathers nodes be-

longing to a single social community. In this synthetic scenario, communities are placed

far from each other so as to avoid any border effect e.g. involuntary communication

between groups. In each community we find two kind of moving nodes: travellers and

non-travellers. Non-travellers roam only inside their community, while travellers, from

time to time, use to visit other social communities different from the one they belong to.
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With this configuration we want to simulate different social communities where usually

people stay, apart for few of them that due to their social relationships can meet people

from different social communities. In this context, the only way to exchange informa-

tion between nodes is through nodes mobility, and travellers play an important role

because they are the unique bridge between communities. In our experimental setup,

we consider a network of N = 90 nodes, divided in 3 separated communities and we

study the performance of the algorithm through incrementally increasing the number

of travellers for each community. We want to evaluate the average discovery time of

the underlying community structure together with the goodness of the detection itself.

Indeed, increasing the number of travellers contributes to ease the information flow from

one community to another but also to blur the actual community boundaries making

the community detection problem more and more challenging. The detailed scenario

configuration can be found in Table 3.1.

Table 3.1: Detailed scenario configuration

Paramenter Value

Node speed Uniform in [1, 1.86m/s]
Transmission range 20m

Simulation Area 1000× 1000m
Number of cells 6× 6

Number of nodes 90
Number of communities 3

Number of travellers per community 3, 4, 7, 13
Simulation time 50000s

3.5.1 Performance evaluation

In the Figure 3.19 we show the results of the algorithm in the case with 4 travellers

for each community. In Figure 3.19(a) we show the snapshot regarding the community

structure revealed by our algorithm in which we can observe the 3 principal clusters but

also the overlapping nodes between the community that are the corresponding travellers.

As we told above our model defines trough the state matrix S the probability for a node

to belong to a certain community: this result is reported in Figure 3.19(b)-(c)-(d) where

each bar of the histograms correspond to the probability for the nodes to belong to

the different communities. For instance, looking at Figure 3.19(b) we can observe that

nodes 1, 4, 7, 10 and 13 have an high probability to stay into the community 1 but the

first four nodes have also a little probability to belong to other communities. In fact

node 1 (blue bar in Figure 3.19(b)) is a member of community 1 with p ∼ 0.78 and of

the community 2 with p ∼ 0.22 because it is a traveller between the two communities.

While the node 13 has a probability p ∼ 1 to belong to the community 1: in this way
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Figure 3.19: Dynamic networks.

Case with N = 90 nodes, 3 communities and Ntr = 4 travellers for each community. (a)
Community structure of the network revealed by our algorithm where the link represent
the encounters between the agents during time while the travellers are the overlapping
nodes between the three principal communities. (b) Probability to belong to the princi-
pal communities in the case with 4 travellers for each community. Local vision of nodes
1, 4, 7, 10 and 13. These nodes are in the same community labelled as 4. As we can
observe the nodes 1, 4, 7, 10 are the travellers of the community 1. In fact they belong
with a certain probability also to other communities. On the contrary the node 13 has
a very high probability to belong only to its community.

each node is aware of its role inside its community. In Figure 3.20(a)-(b) we report

the snapshots of the final community structure detected by our algorithm considering

7 and 13 travellers, respectively: also here the algorithm is able to detect not only the

three principal clusters but also the travellers as the overlapping nodes between the

communities. In Figure 3.21 we show the different plots of the Shannon Entropy of

Information for different cases considering different number of travellers. Here we can

observe, not only the three plateaus corresponding to three principal clusters, but also

different times for reaching the final state: in fact increasing the number of travellers

the time for reaching the asymptotic state decrease as we can observe in Figure 3.21. In

Figure 3.22 we report the local entropy for a traveller (black line) and for a normal agent

(blue line) during time. The local entropy Ei is simply define as E(i) = −
∑N

j Sji logSji
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(a)

(b)

Figure 3.20: Community detection in mobility networks.

Final community structures detected by the algorithm considering (a) Ntr = 7 and (b)
Ntr = 13 travellers respectively.

that represents the knowledge of the single node about the surrounding world. As we

can observe the traveller tend to update its knowledge because of sometimes it jumps

between other communities.

In this section we want to explore the performance of our method taking into account

two different heuristics in order to allow the method to be free by the parameters m and

α. The main feature of these two heuristics called respectively IDA + LTE and Double

pruning is to reveal the hierarchical community structure of complex networks from a
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Figure 3.21: Shannon Entropy of Information during time for different scenarios.

Here Ntr = 13, Ntr = 7, Ntr = 4 and Ntr = 3 travellers.
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Figure 3.22: Comparison between the local entropy of a traveller (blue line) and a
normal agent (black line).

The peaks correspond to the jumps in other communities.

local viewpoint. We demonstrate that a node can discover the network’s multi-levels

giving its subjective vision of the world until it wants or can explore the graph without

any global information about the entire network. The experimental results show that

the proposed algorithms are efficient in both real-world and synthetic networks.
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3.6 Evaluating cerebral cortex connectivity with local in-

formation algorithm

Brain’s intricate network of neurons is one of the most prototypical examples of a com-

plex system. Since the end of the 80s, with the development of techniques that allow

to study anatomical connectivity, a considerable amount of data has become available

to researchers [64]. Classical studies have focused on the rat, cat and macaque brains

obtaining the adjacency matrix of brain structures or the weighted connection matrix

(in which the weights reflect the strength of the connection) [64, 65].

In order to find similarities between anatomical and functional/cognitive properties of

the brain, clustering organization of the cerebral cortex has been investigated in several

works. Limiting to the cat cerebral cortex, the first studies conducted on this subject [66,

67] have employed both traditional multidimensional scaling methods and evolutionary

optimization algorithm. The latter method identified clusters maximizing the intra-

cluster connections and minimizing the inter-cluster ones, i.e. areas that belong to the

same cluster should be more densely connected among them than areas in other clusters.

This is a very general principle commonly used in community detection algorithm [45,

68]. The cluster organization found with this algorithm broadly agrees with functional

distinctions of the cerebral cortex. These results have been confirmed in subsequent

works [69, 70]. Summarizing, these studies found that this kind of data analysis is

able to detect local clusters of densely interconnected areas that correspond to main

functional properties of the brain.

So, the classical approach to the cortical network clustering has been almost always based

on evolutionary algorithms that globally process the entire pattern of connectivity. The

principal aim of this section is to complement the results of such clustering approach,

using a local algorithm based on a bio-inspired model of diffusion of the information,

equipped with a bounded memory and processing capacity. We name our algorithm

NetExplorer. It is based on a modified version of the Van Dongen algorithm [43, 58,

59]. Three principal aspects distinguish our use of the Van Dongen algorithm from the

ordinary community detection algorithms. The former is represented by an intrinsic

local approach of the method, which allows the method to run even without a perfect

knowledge of the network. The second aspect relies on the stochastic (i.e instead of

deterministic) nature of the algorithm, which randomizes, using a precise recipe, the

parameters of the model in order to optimize the exploration of the network [59]. The

latter is that our method represents a microscopical model describing the communication

dynamics of a complex network, representing in this way a model potentially useful to

study more deeply the actual structure/organization of real neural networks in the brain.
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On these basis in this work we employ graph theory to investigate how different brain

areas communicate. In particular, we will apply the NetExplorer algorithm to detect

the cat cerebral cortex communities. The accuracy and effectiveness of our model have

been carried out comparing the numerical estimation of NetExplorer with the results

provided by six other classical/relevant clustering algorithms.

In the next sections, we describe our model and the other six algorithms and then we

present the results of the numerical simulations. In the last section finally the conclusions

and the discussion are reported.

3.6.1 Net Explorer

Here we introduce NetExplorer, a community-detection algorithm derived from the van

Dongen’s Markov Cluster algorithm (MCL) method [43, 60]. The MCL algorithm sim-

ulates a sort of diffusion process over the graph, followed by a prouning phase in which

the competition among the links is performed in order to eliminate the weakests. In

the model the graph is expressed by the correspondent adjacency matrix A: specifically,

the adjacency matrix of a finite graph G on n vertices is the n × n matrix where the

non-diagonal entry Aij = 1(0) indicates the presence (absence) of a link from the node

i to the node j.

In our model the number of plateaus of the function Eti correspond to the different L

levels: If we evaluate the first derivative of the entropy we can identify L peaks, while

in the second derivative, we observe L changes of sign. For this reason, we evaluate the

first and the second derivative of the local entropy for each node.

Analogously for the entropy defined above, it is possible to introduce the concept of

local entropy for each node in order to study the local view of agents. Similarly it is

possible to detect different plateaus corresponding to the different network sub-clusters

that the single node discovers during time. We observed that we can use a fixed value of

the parameter m, while we have to change the value of α in order to find the community

and in particular the hubs that labels each community. For this reason, we repeat several

times an exploration phase of the network in which the nodes save their state vector

Sti , in a temporary memory box, until they observe a change in the sign of the second

derivative. If the following condition is satisfied

sign

(
d2Et−1

i

dt2

)
6= sign

(
d2Eti
dt2

)
, (3.8)

the state vector Sti is stored into the temporary long term memory together with the

value of the first derivative of the local entropy and the entropy. When a node meets an
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impasse (e.g. its state vector entropy do not evolve any more) its α is changed by the

following mechanism, if ∣∣∣∣Et−1
i

Ki

∣∣∣∣− ∣∣∣∣EtiKi

∣∣∣∣ < ε, (3.9)

where Ki is the connectivity degree of the node i, and the parameter ε is equal to 10−5.

Then, a counter τ is increased by 1, and if τi becomes greater than a given threshold

(say τ∗), the parameter α is updated in the following way:

αi = 1.5|ησ|+ 1, (3.10)

where η is a random Gaussian variable with mean 1 and standard deviation σ, and α

ranges in the interval (0,∞).

3.6.2 Other algorithms

In order to explore different results and different scenarios we have tested other six well-

known algorithms for detecting communities in complex networks, in particular: Oslom,

Infomap, Hierarchical Infomap, Label Propagation Method, Modularity Optimization via

simulated annealing and the Louvain Method.

The Order Statistics Local Optimization Method (Oslom) [50] is a local optimization

method applied to a fitness to measure the statistical significance of individual commu-

nities. The statistical significance is defined as the probability to find a a very similar

community in a random model without community structure.

Infomap [44] is a dynamic algorithm thath compresses the information of a random walk

on the graph. It then defines a function which is optimized when it reaches the min-

imum description length of the random walk. Such optimization is carried out with a

combination of greedy search and simulated annealing. There is also a hierarchical ver-

sion of this algorithm (Hierarchical Infomap [51]) that is also able to find the multilevel

organization of several complex networks.

Modularity Optimization [52], via simulated annealing, is essentially a fast implementa-

tion of the Girvan and Newman (GN) algorithm [45]. The GN algorithm is a divisive

algorithm in which links are iteratively removed based on the value of their between-

ness. The procedure of link removal ends when the modularity of the resulting partition

reaches a maximum. The Modularity Optimization [52] via simulated annealing starts

from a set of isolated nodes and then some links of the original graph are added to these

nodes in order to obtain the maximum value of the modularity.
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Louvain Method [53] defines a fitness function in order to optimize the modularity of

Girvan and Newman in neighbourhood through a local optimization method. Then,

after finding the first partition, the clusters are agglomerate together giving rise to

super nodes, and so on until the modularity doesn’t increase any more.

Label Propagation [54] method uses the concept of the spreading of the information

over networks considering the node neighbourhood in order to identify the communities.

Similar to our model, initially, each node is labelled by an unique value then trough

the diffusion of information nodes become aware of the surrounding world. The process

ends when the knowledge of each node does reach a stationary state. The resulting

communities are labelled by the last label values.

3.6.3 Numerical Results

We applied the NetExplorer and the other community detection algorithms to a con-

nection matrix of the cat cerebral cortex comprising 52 areas (clustered into 4 different

systems, respectively the visual, auditory,somatosensory-motor, and frontolimbic one)

linked by 818 pathways [66, 67]. This database about cortico-cortical connections was

produced employing information of a large set of anatomical studies. The authors re-

viewed these studies in order to assign connection weights between cortical areas. They

employed strict criteria such as using only data from cat’s brain or giving priority to

results obtained from higher resolution techniques. Connections weights were measured

from 0 (i.e. absent or unreported) to 3 (i.e. strong or dense connections). Since our goal

was to evaluate and compare both the quantitative and qualitative predictive ability of

the community detection algorithms considered, we organize this section accordingly.

First of all we define a standardized error function to estimate the degree of agreement

between each model’s prediction and the empirical dataset considered. As a first ap-

proximation of such an error, we compute the normalized difference (3.11) between the

vectors and the adiacency matrices representing, respectively, the models’ attribution

of the cortical areas to the principal cortical clusters/communities, and the boolean

representation of the entire map.

NV
E =

∑N
i=1 1− δ(EVi − P ki )

N
(3.11)

where EV is the vector containing for each area i the id of the clusters empirically

containing it. P ki is the id of the cluster coupled by the community detection models k

to the area i. Finally the δ(x) function assumes the value of 1 whenever x = 0 (i.e. EVi

is equal to P ki ), and 0 otherwise.
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NM
E =

∑N
i=1

∑N
j=1 1− δ(EMij − P kij)
N(N − 1)

(3.12)

where EM is the real empirical cortical map, in which the element EMij assumes the

value 1 if the two areas share the same hub, and is 0 otherwise. P kij has the same shape

of EM , and represent the resulting matrix of the k models’ prediction about the entire

cortical map.

Both the normalized errors clearly range within the interval (0, 1), and represents the

effectiveness of the approximation of the empirical map made a method in terms of

percentage of correct attribution.

3.6.4 Model’s approximation of the clustering structure and of the

adjacency matrix representing the empirical cortical map of the

cat

In order to facilitate a visual inspection of the approximation accuracy of the different

methods, the empirical structure (Figure 3.23(a)) has been reported bigger than the

others in the center of the first row, and the principal clusters have been coloured just

to make easier the distinction and comparison of the clusters, respectively within and

between the sub figures (i.e. the same principal clusters are coloured the same in the

different subfigures). The resulting images are reported in Figure 3.23(b-c-d-e-f-g-h),

and the diagonal of the represented matrices is the cluster attribution vector defined

above as (P ki ).

Starting from the vectors P k the normalized errors for each method have been com-

puted, and reported in Figure 3.24. The Figure 3.24(a) reports the normalized error

of the principal clusters composition approximated by the community detection models

under scrutiny, with respect to the empirical structure coming from the literature. Each

method has been applied directly on the weighted cortical network used as reference

dataset (EM ), and each algorithms have provided as output an approximated clustering

structure, and an approximated reproduction of the entire cortical map (Figure 3.23).

A first inspection of the coloured representation of the clustering structure, suggests

that despite a slightly difference in the total number of clusters detected (i.e. sometimes

the error regards very few nodes/areas), all the methods approximate the clusters with

an error smaller than the 30% (Figure 3.24(a)). Nevertheless the goodness of such an

approximation range between the 5% to the 30%, with the NetExplorer algorithm that

made an error of misattribution of only 3 areas on 52 with respect to the empirical

reference. Noteworthy even the 3 misattributions of the NetExplorer method represent

actually a meaningful information, suggesting the possible existence of two important
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(a) (b) (c)

(d) (e) (f) (g)

(h)

Figure 3.23: Comparison of different community detection algorithms over the cor-
tical map of the cat.

In the figure are reported the different clustering structures resulting from the application
to the different methods of community detection to the weighted cortical map of the
cat. On the two axes are indicated the ID of the cerebral nodes considered. Nodes
1-16 are visual areas: 1. area 17, 2. area 18, 3. area 19, 4. PMLS (posteromedial
lateral suprasylvian area), 5. PLLS (posterolateral lateral suprasylvian area), 6. AMLS
(anteromedial lateral suprasylvian area), 7. ALLS (anterolateral lateral suprasylvian
area), 8. VLS (ventrolateral suprasylvian area), 9. DLS (dorsolateral suprasylvian area),
10. area 21a, 11. area21b, 12. area 20a, 13. area 20b, 14. area 7, 15. AES (anterior
ectosylvian sulcus), 16. PS (posterior suprasylvian). Nodes 17-23 are auditory areas:
17. AI area, 18. AII area, 19. AAF (anterior auditory field), 20. P (posterior auditory
field), 21 VP (ventroposterior auditory field), 22. Epp (posterior part of the posterior
ectosylvian gyrus), 23. Tem (temporal auditory field). Nodes 24-39 are somatosensory-
motor areas: 24. area 3a, 25. area 3b, 26. area 1, 27. area 2, 28. area SII, 29. area SIV,
30. area 4g, 31. area 4, 32. area 6l, 33. area 6m, 34. area 5Am, 35. area 5Al, 36. area
5Bm, 37. 5Bl area, 38. SSAi area, 39. SSAo area. Nodes 40-52 are frontolimbic areas:
40. PFCMil (infralimbic medial prefrontal cortex), 41. (dorsal medial part of prefrontal
cortex), 42. PFCL (lateral part of prefrontal cortex), 43. Ia (agranular insula), 44. Ig
(granular insula), 45. CGA (anterior cingulate cortex), 46. (posterior cingulate cortex),
47. RS (retrosplenial cortex), 48. area 35, 49. area 36, 50. pSb (presubiculum),
51. Sb (subiculum), 52. Enr (entorhinal cortex). (a) Oslom, (b) Empirical data, (c)
NetExplorer, (d) Modularity Opt., (e) Label Propagation, (f) Infomap, (g) Hierarchical
Infomap and (h) Louvain.
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(a) (b)

Figure 3.24: Normalized error of prediction for different algorithms.

In the figure are reported the normalized error of prediction (NV,M
E ∈ (0, 1)) for all

the computational methods of community detection taken into account. The subfigures
report respectively (a) the goodness of the principal clusters composition and (b) the
goodness of the approximation of the entire cortical map. In the subfigure (a) the
NetExplore algorithm provides the best approximation of the clustering structure of the
map (NV

E ' 0.05), and Oslom gets the closest performance to the NetExplorer with
an error of NV

E ' 0.075. In the subfigure (b) the best prediction is carried out by the
Oslom algorithm, with an error of (NM

E ' 0.2), whereas NetExplorer ranks in the third
position with an error of (NM

E ' 0.206).

hubs (i.e. the nodes 16 as bridge between the cluster 1 and the cluster 4, and the nodes

15 and 13 that together could be interpreted as a sensorial integration sub-cluster again

bridging the cluster 1 with the others, see next section).

The Figure 3.24(b) reports the goodness of the methods’ approximations of the entire

cortical map under investigation taking into account both the vector PK and the entire

matrices PM . To estimate such a function the matrices PM have been compared with

the unweighted adjacency matrix representing the known cortical network of the cat.

The average normalized error for such a challenge increases, ranging within the interval

(20%, 22%) probably indicating a lack of information to estimate the crossconnections

between different cluster. Beyond the possible interpretation of such a result, it is

noteworthy that our algorithm performs better than 4 of the 6 competitors, getting a

good result with respect to the best method which here is Oslom.

3.6.5 Qualitative evaluation of the algorithms’ performance

With regard to the functional and cognitive evaluation of the detected clusters we observe

that misattributions of cortical areas of each algorithm are not equally explainable.

NetExplorer detects five clusters three of whom perfectly correspond to auditory, so-

matosensor - motor and frontolimbic systems. Visual cortex is divided into a big cluster
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that comprehends the majority of visual regions (areas 17, 18, 19, PMLS, PLLS,

AMLS, ALLS, V LS, DLS, 21a, 21b, 20a, 7) and a smaller cluster of only two visual

regions (area 20b and AES). AES is a multimodal (visual and auditory) area that

receives information from area 20b (a retinotopically organized region). The detection

of this cluster can be explained with the multimodal nature of AES area (and its con-

nection with area 20b) that makes them sufficiently different from other visual cortical

areas to create another cluster (although there isn’t any physiological evidence of such a

role of area 20b). The only misattribution of the NetExplorer solution regards PS area,

one of the few cortical areas (the others are AES and area 7) that is well connected

to some frontolimbic structures such as Ig (granular insula) and area 36 (perirhinal

cortex). Since its role of connection between the “output” of visual system and the

more cognitive-oriented frontal regions (in particular, the brain structures responsible of

mnestic functions), it can be reasonable that NetExplorer assigns PS to the frontolimbic

system.

As far as other algorithms are concerned, the worst solution is produced by Louvain.

This algorithm detects 6 clusters in which only the auditory cortex is correctly individ-

uated. Visual areas are divided into two clusters: the first one is composed by areas

17 − 19, PLLS, AMLS, V LS, area 21a, 21b, and 20a, whereas the second cluster is

composed by PMLS, ALLS, DLS, AES and PS. A functional criterion that allows to

find something in common within the areas of this two clusters, is very hard to develop.

PMLS, PLLS, AMLS, ALLS, V LS, and DLS are visual areas that are (to a certain

extent) overlapping (their functional distinction is not so clear). Moreover, there are

visual areas that are misattributed to other clusters: 20b area (a visual retinotopic area

as we noted before) and area 7 (a visual area that responds also to other sensorial modal-

ities such as somatosensorial and auditory). Area 20b is attributed to the frontolimbic

cluster: this area might possibly have a role in the integration of visual information with

the cognitive and emotional role of the frontolimbic system. The misattribution of area

7 to the somatosensory-motor cluster is much easily explainable because it responds

also to somatosensorial and auditory stimulus beyond visual. The Louvain algorithm

also individuates two clusters in the somatosensory-motor group of cortical areas. The

first one is composed by five somatosensory areas (areas 3a, 3b, 1, 2, and SII) and two

motor areas (areas 4 and 4g) whereas the second one is formed by five somatosensory

areas (SIV , 5Am, 5Al, SSAi and SSAo) and four motor areas (6l, 6m, 5Bm, and 5Bl).

Again, interpreting this result is not easy because each cluster contains cortical areas

with very different function (somatosensorial, motor, visualmotor, somatosensorial inte-

grated with other sensorial modalities) without an apparent order. Moreover, the most

natural distinction of the somatosensory-motor cluster (that is between somatosensorial

areas and motor areas) is not respected. With regard to the frontolimbic cluster, there
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is only one misattribution: Ig (granular insula) area is attributed to the second cluster

of the somatosensory-motor system (together with areas SIV , 5Am, 5Al, SSAi and

SSAo, 6l, 6m, 5Bm, and 5Bl ). A possible explanation of this misattribution is that

Ig area responds to stimuli of different sensorial modalities. However, there are other

multimodal areas (such as CGA and CGP ) that are assigned to the frontolimbic cluster

by the algorithm (and not to a specific sensorial modality).

Infomap, Hierarchical Infomap and Modularity Optimization find five clusters. Infomap

and Hierarchical Infomap give the same solution. In particular, the visual cluster is

correctly individuated with the exception of areas 20b and 7. As we said before, the

misattribution of area 7 is easier to explain compared to area 20b. With regard to

the auditory function, we have that two regions that are incorrectly attributed to the

frontolimbic cluster (Epp and Tem areas). These two areas belong to the so-called

“auditory belt” that has a role in the multimodal visual/auditory processing of the

stimuli. It would be more reasonable that the algorithm assigned these areas to the

visual cluster. Nevertheless, due to their multimodal nature it can be reasonable to

have close relationship with the frontolimbic structures. The algorithms find again two

clusters in the sensorimotor part of the brain with the same structures as Louvain’s

(and so not so easy to explain from a functional point of view). Lastly, Ig (granular

insula) area is attributed to the second cluster of the somatosensory-motor areas (as in

Louvain’s solution). Modularity Optimization gives a similar result compared to Infomap

and Hierarchical Infomap but it is able to correctly detect all the areas that belong to

the auditory cluster.

Label Categorization and Oslom find correctly only 4 clusters. Three areas that belong

to the visual cluster, are both attributed to the somatosensory-motor system (area 7 and

AES) and the frontolimbic cortex (area 20b). We have already discussed the misattri-

bution of area 7 and area 20b. AES is very similar to area 7 (a visual area that responds

also to other sensorial modalities such as somatosensorial and auditory); an explanation

of this misattribution can rely on its multimodal nature. As in Infomap (and Hierarchi-

cal Infomap), the two areas of the auditory belt (Epp and Tem areas) are attributed to

the frontolimbic cluster. Somatosensory-motor and frontolimbic systems are correctly

clustered with the exception of Ig, as we have seen before. Lastly, Oslom algorithm

gives the best solution from a qualitative point of view. Auditory, somatosensory-motor

and frontolimbic clusters are correctly identified by the algorithm with the exception of

Ig. With regard to the visual system, as in Label Categorization area 7 and AES are at-

tributed to somatosensory-motor system whereas area 20b is assigned to the frontolimbic

cortex.
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(a) (b)

Figure 3.25: Reconstruction of the cortical map of the cat.

In the figure are represented the weighted cortical networks (WE and WNetExp) deriving
respectively from the empirical data (a), and the NetExplorer approximation (b). Note-
worthy the error characterizing such a prediction (NW

E ' 0.13) is smaller than the error
of the best methods’ performance (i.e. Oslom) in the prediction of the simple adjacency
matrix which was of NM

E ' 0.2.

To sum up, we can conclude that Infomap, Hierarchical Infomap, Modularity Opti-

mization and Louvain detect more than four clusters but it is no easy to explain the

distinction within somatosensory-motor system (for all these five algorithms) and within

visual cortex areas (only Louvain). Oslom and Label Categorization correctly detect four

clusters and misattribution of areas to other systems can have a cognitive or functional

explanation. NetExplorer is the only algorithm that is able to correctly detect the cor-

tical areas that belong to auditory, sensorimotor and frontolimbic structures. Although

it finds a second smaller cluster in the visual system areas, these misattributions are

explainable on the basis of the cognitive role of these areas.

3.6.6 Empirical weighted cortical map approximation by the NetEx-

plorer algorithm

In this section we have taken into account the weighted representation of the cortical map

provided by our model to estimate its predictive efficiency with respect to the empirical

reference weighted representation of the map. It is important to notice that, despite

the empirical weighted map is contemporary the seeding structure of the algorithms and

the final reference for the results, is absolutely not trivial to be able to explain all the

complex features of a cortical/neural network just considering its visible connectivity

pattern. The goodness of approximation of the weighted cortical map provided by our

algorithm is of 13%, and it is even better than that provided for the unweighted network,

which was around the 20% (Figure 3.25). The degree of approximation of our method
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(Figure 3.25a vs Figure 3.25b) is quite good also because the not symmetric structure

of the final matrix produced.

Finally the NetExplorer algorithm individuate even the hubs (i.e. the most important

nodes within a community) for each principal cortical cluster revealed. Such nodes are

respectively the number 3 (black), the number 15 (Red and new with respect to the

literature), the number 17 (Blue), the number 28 (Yellow), and the number 48 (Cyan).

3.6.7 Discussion and conclusions

The general results of this work confirm the goodness of the complex network analysis

to the study of the cerebral cortex connectivity and to give a valuable support to the

neurocomputational modeling [64]. The particular complexity implied by the study of

the cortical/neural dynamics, frequently requires a differential approach to the inter-

pretation of the results. In particular for the cognitive neuroscience the goodness of

an approximation of a cortical/functional structure, have to be always considered as

composed by a qualitative as well as a quantitative aspects. The former relies on the

coherence of the classification produced by the community detection method, while the

latter is related to the quantitative consistency/robustsness of the solution provided.

Both the previous indicators have been considered in the results section and will be

merged together in the present section in order to get a most general overview of the

system under scrutiny.

The overall forecasting efficiency of the analyzed methods suggests that the NetEx-

plorer algorithm is the best to predict the actual positioning of the nodes within the

cluster structure proposed in literature. The normalized error ranges within the inter-

val (5%, 30%), nevertheless all the methods detect correctly the main backbone of the

analyzed map. For what concern the entire cortical map approximation, the normal-

ized error increases (20%, 22%), indicating how the complexity of the cross connections

between the principal clusters increases with respect to the backbone. In the approxi-

mation of the entire map the best method appears to be Oslom, but even in this case the

performance of our algorithm is quite close to the best one, ranking as third in general.

The clusters (and the hubs for each clusters) detected by NetExplorer can give interesting

clues on how information flows through the connections of cat cerebral cortex. We can

interpret the cluster individuated by the algorithm (with the exception of the small AES-

20b sub-cluster within the visual system) as a further confirmation of the importance of

small range connections within distinct functional systems [71]. From a neuroscientific

point of view, neurons that are responsible of the communication among distant areas are

especially important because they break the rigid cluster organization of cortical areas
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[71]. The hubs individuated with our algorithm could represent the best candidate for

individuating the regions in which such neurons are present. In particular, we found that

for the visual system the hub is area 19 whereas for the auditory system the hub is AI

region. This means that the single areas that belong to the visual system speak mainly

with area 19 that can be an ideal candidate to send long range projections in order to

share information. The same holds for auditory system, in which AI area could have

this role too. With regard to the other two clusters, the main hub of the somatosensory-

motor system is area SII whereas the main hub of frontolimbic structures is area 35

(perirhinal cortex). The fifth cluster detected by the algorithms (composed only by

AES and area 20b) can be considered as another interesting candidate for neurons with

peculiar communicative role within visual cortex.

Concluding, a very interesting perspective, opened by our bio-inspired and local ap-

proach to the community detection, is represented by the possibility of studying the

nested network structure characterizing small range connections, long projections and

hub in cerebral networks.

3.7 A Cognitive-inspired Model for Self-organizing Net-

works

Among the capabilities of the human cognitive system that is attracting most computer

scientists, there is the ability of humans to develop local algorithms able to exploit what

might be called “collective human computation”. As collective human computation,

we refer to the natural synchronization between the cognitive elaborations made by a

person which is immersed into group dynamics. In such a condition, human beings

analyze only some relevant information coming from the group, giving to the group only

some relevant contributions for the general problem which is faced. In this way, the

group can be described as more than just the sum of its single components [72].

When being faced with insufficient data or insufficient time for rational processing, hu-

mans have developed strategies that allow to take decisions in these situations. In gen-

eral, such an effect has been well described in the cognitive heuristics program proposed

by Goldstein and Gigerenzer, which suggest starting from fundamental psychological

mechanisms in order to design models of heuristics [34].

Only some relevant information are extracted from the environment while the rest is

interpolated for building our knowledge. Among others, Milgram et al. have shown

experimentally how humans are able to adopt effective strategies to solve very complex

problems, exploiting optimally their partial knowledge of their environment [19, 22].



Comm Detection 45

This kind of human distributed computing has been studied deeply only from the per-

spective of disciplines such as social cognition and social psychology, while it is not yet

well known in other domains.

The social cognition domain studies human cognition as characterized by the use of “fast

and frugal” solutions, that are specialized for a social context in which we live using a

bounded rationality and limited computational resources [73]. Therefore, the aim of our

work is to assemble a working computational scheme inspired by the operating principles

of human cognition, based on general assumptions about cognitive high-level functions.

This approach promises to embed some fundamental aspects of the human cognitive

system in a computational model in order to obtain a minimization of computational

resources needed for the task and the evolution of a dynamic knowledge network capable

of generating strategies suitable for networks like the Internet, which are too large and

too dynamic to ever be fully/perfectly known [58].

The fundamental aspects on which we focused our modeling, involves the spread of in-

formation through a human network, and the knowledge representation arising from the

dynamics of short-term memory (STM) and long-term memory (LTM). The passage

of information between STM and LTM occurs through a simple cognitive heuristic ap-

proach, which compatibly with their computational capacity reduces the dimensionality

of the information required to represent the environment in a dynamic manner.

In our previous work [58], we applied such an approach to the community detection

problem, which can be considered as a task of great importance in many disciplines [23–

27], where systems can be represented as graphs. The first version of the algorithm

was characterized by a two step procedure (e.g. discovering and elaboration phases), in

which the effect of the nodes’ connectivity on the information spreading was exploited

by nodes to assess a first approximation of the topology of the network. In this work,

we present a second version of the algorithm in which the third phase was added in

order to refine the topology detection by a cognitive inspired strategy which embeds the

cognitive dissonance theory [74].

In general, as the Internet nowadays, human social networks have to be considered as a

continuum of nested communities whose boundaries are somewhat arbitrary [33].

Here, we propose such a tool for detecting communities in complex networks using

a local algorithm, applied as a cellular automaton. In this approximation, a node is

just modeled as a memory and a set of links to other nodes. The information about

neighbouring nodes is propagated using a standard diffusion process, and elaborated

locally using a non-linear competition process among the information. This process can

be considered an implementation of the “take the best” heuristic [35], which relies on
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the assumption that the most relevant or easily detectable information gives an accurate

estimate of the frequency of the related event/contents in the population. The result

of the algorithm equips each node with information about possible hubs or super-nodes

present in its environment, and such information can be used by the node to rewire its

connections whenever its fitness does not satisfy some given requirements.

In real-world applications, such a process can be engineered within the ICT domain.

Consider for instance resilience and scalability effects in service ecosystems. There, one

important factor is to decentralize services. This can be done with the help of creating

overlay networks on top of large-scale ones such as the Internet. An adaptive, intelligent

or even resource-optimizing algorithm plays a crucial role for the (self-)maintenance of

such systems.

In that way, we could tackle the first steps to create an intelligent, semi-structured

peer-to-peer overlay network from an unstructured one, e.g. like a self-optimizing Fast-

Track [75] network. FastTrack itself uses a semi-structured overlay network with a mix

of designated super-nodes and normal nodes. The latter have to connect to one of the

super-nodes in order to minimize redundant communication overhead. There, partici-

pating nodes could retrieve content at a certain time with given resource constraints (e.g.

bandwidth, energy, latency), detect super-nodes automatically during an operation, and

thus change their connections (and therefore the overlay topology) for better conditions.

Analogously for the entropy defined above, it is possible to introduce the concept of

local entropy for each node in order to study the local view of agents. Similar as we can

observe in Figure 3.12 (d), it is possible to detect different plateaus corresponding to the

different network sub-clusters that the single node discovers during time. We observed

that we can use a fixed value of the parameter m, while we have to change the value of α

in order to find the community and in particular the hubs that labels each community.

For this reason, we simulate an exploration phase of the network several times in which

the nodes save their state vector Sti , in a temporary memory box, when they observe a

change in sign of the second derivative. If the following condition is satisfied

sign

(
δ2Et−1

i

δt2

)
6= sign

(
δ2Eti
δt2

)
, (3.13)

the state vector Sti is stored into the temporary long term memory together with the

value of the first derivative of the local entropy and the entropy. When a node meets

an impasse (e.g. its state vector entropy and its cognitive dissonance do not evolve

anymore) its α is changed by the following mechanism, if∣∣∣∣Et−1
i +Dt−1

i

Ki

∣∣∣∣− ∣∣∣∣Eti +Dt
i

Ki

∣∣∣∣ < ε, (3.14)
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Figure 3.26: Fitness function and mean energy.

(a) The fitness function shows the mean number of retrieved items per node. The fitness
of the randomized algorithm is represented as the dashed line, our approach as the solid
line. (b) Mean energy usage per node of the randomized algorithm (dashed) and our
approach (solid).

where Ki is the connectivity degree of the node i. Then, a counter τ is increased by 1

(τi ← τi + 1), and if τi becomes greater than a given threshold (say τ∗), the parameter

α is updated in the following way:

αi = 1.5|ησ|+ 1, (3.15)

where η is a random Gaussian variable with mean 1 and standard deviation σ. After a

typical period of a fixed length (∆T ), the process is stopped for all nodes and a node’s

long term memory is updated with a new sample respectively experience. The long

term memory is characterized by a bound threshold B1 (here B1 = 5) in order to mimic

the ecological limits of such cognitive functions (i.e. bounded rationality). After the

node has saved its state vector when the sign of its second entropy derivative changed

( Eq. 3.8), it proceeds in structuring its long term memory. First, its first derivatives

are decreasingly sorted, and then the first B1 time positions are recorded. Later, such

B1 element vectors are descendingly sorted with respect to the entropy. Finally, using

the time positions, the correspondent state vectors is analyzed and larger elements for

each state vector are assumed as potential hubs and therefore stored into the long term

memory. At this stage, the long term memory of each node is composed by a list of B1

sets of potential hubs, ordered following the procedure from the more local to the more

global one. Moreover, the long term memory is bounded by another threshold (B2),

which represents the long term memory buffer, i.e. the maximum number of the B1

sets it can consider/contain, so that the long term memory is represented by a (B1, B2)

matrix. Finally, each node summarizes its knowledge of the network building a hub list

obtained by analyzing the frequency in which each hub appears within the long term

memory, which is subsequently ordered from the most represented (i.e. the hub with a
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larger frequency) to the least represented one. The knowledge of the network (i.e. the

hub list) is used by weak nodes in order to increase the fitness.

The nodes’ fitness is computed in a general and conservative way following the ratio

presented in section II. In the first scenario, the nodes are sorted with respect to the

number of objects they collected trough their neighbors, while in the second scenario,

they are sorted with respect to the amount of energy they spent to collect the maximum

number of items. After this phase, the last 9% of the nodes (e.g. the weakest nodes)

are chosen for the cognitive rewiring, and in addition 3% of the nodes are chosen for a

random rewiring.

Whenever a node does not have a “sufficient” fitness, it eliminates a portion of unnec-

essary links (i.e. those links which point to nodes detected as non-hubs, in this work

just 1 link) and proceeds to try to establish new connections using the hub list it has.

Starting from the most relevant hub (i.e. the first from the list) and continuing towards

the last one, the rewiring node tries to build new links. Finally, if no hubs have available

links, because they have reached the maximum number of connections, the rewiring node

adopts a random strategy and establishes a link towards the first available node it finds.

3.7.1 Evaluation

We compared our model from section 3.2 with a randomized algorithm. For compara-

bility reasons between the algorithms, they are kept similar, apart that the randomized

algorithm is memoryless and therefore nodes have no knowledge about its surrounding

and potential hubs they might connect to. Consequently, the randomized algorithm

selects the nodes that have to rewire using the same method as the cognitive algorithm

does; but where the cognitive algorithm prefers to connect to a hub, the randomized one

chooses a random node.
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Figure 3.27: Energy minimization approach.

Mean energy usage per node of the randomized algorithm (dashed) and our approach
(solid).
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For the evaluation, we used the two scenarios described before in order to test our

algorithms. The initial network topology consists of N = 200 with a mean connectivity

per node of 4. A total of I = 50 unique items is distributed among the nodes, where

each node needs to retrieve Imax = 45 objects from its neighbors. We used this setting

in order to analyze a network on a larger scale. Further, we also tested the algorithm for

smaller networks, and the results imply a similar behaviour as presented here. We run

the simulation 50 times on our Matlab cluster with different random seeds. Figure 3.26

shows an initial result for the first scenario and Figure 3.27 for the second. Both figures

show values of the median run regarding final results of fitness and energy.

In the first scenario, the number of retrievable items shall be maximized. Therefore,

the “weakest” nodes are determined by the sum of collected items. In Figure 3.26, it is

shown that both approaches improve the initial topology significantly at the beginning.

After having reached a plateau of 36 items, the randomized approach begins to oscillate,

whereas the cognitive approach can exploit its knowledge of potential hubs and steadily

micro-optimizes the topology up to more than a mean of 1.1 items by not having signif-

icant differences in their energy usage. We can also observe that the cognitive approach

is less prone to oscillations.

The second scenario shown in Figure 3.27 shows the energy dynamics of both approaches.

Each node has unlimited energy available, so that it is able to retrieve all necessary 45

items. The weakest nodes are now defined as nodes who consume the most energy of

all. Hence, those are candidates for rewiring in order to minimize the system’s energy.

The behaviours of both approaches are quite similar as in the fitness optimization from

Figure 3.26. The initial topology improvement significantly reduces the energy con-

sumption of the system. However, oscillation effects occur more often than in the first

scenario. Our cognitive approach reduces the mean energy consumption of the nodes of

more than 4.1 hops per node compared to the randomized algorithm.

3.7.2 Final remarks

In this section, we described how we optimize a topology by the means of a cognitive-

inspired algorithm. The resulting online optimization problem was tackled with a cog-

nitive model that enables a node to be self-aware about its surrounding community and

eventually to detect and distinguish between hubs and non-hubs. This knowledge was

exploited by a node to gain a more effective rewiring to other nodes than by random se-

lection. We showed the effectiveness of our approach in two scenarios, in each comparing

the achieved results to a randomized algorithm using the same network conditions. In

the first scenario, the goal was to find a topology in which a maximum number of unique
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items can be retrieved for the system under a given energy constraint that was spent

for “hopping”. In the second one, we removed the energy constraint, so that nodes had

enough energy for retrieving all items in each round, with the focus on decreasing the

system’s overall energy. In both scenarios, the cognitive-inspired algorithm performed

significantly better than the random one.

Despite the fact that the algorithm uses global information for the selection of rewiring

nodes, the approach shows first steps towards a pure self-organizing network since only

local information is used for the hub detection. Overall, we showed first steps that

information generated by a cognitive-inspired algorithm can be exploited in order to

optimize network topologies. As future work, we plan to (i) deploy the algorithm on a

wide range of large scale network topologies, (ii) localize the decision making of a node

when to rewire or not, and (iii) further elaborate the used scenario by introducing more

dynamics into items and nodes. We think that our algorithm is generic enough that it

could also be used as a foundation in a wide area of applications beyond the scenario

proposed here.

3.8 Considerations on more complex heuristics

3.8.1 IDA + LTE

Recently, Huang et al. [76] proposed a local algorithm for detecting communities in net-

works. We report briefly the algorithm procedure. Usually, a network can be represented

by a graph G = (V,E), where V is the set of vertices and E is the set of edges.

Definition 1 (Neighborhood) Let G = (V,E,w) be a weighted undirected network and

w(e) be the weight of the edge e. For a vertex u ∈ V , the structure neighbourhood of

vertex u is the set Γ(u) containing u and its adjacent vertices which are incident with a

common edge with u : Γ(u) = {v ∈ V | {u, v} ∈ E} ∪ {u}.

Definition 2 (Structural Similarity) Given a weighted undirected network G = (V,E,w),

the structure similarity s(u, v) between two adjacent vertices u and v is:

s(u, v) =

∑
x∈Γ(u)∩Γ(v)

w(u, x) · w(v, x)

√ ∑
x∈Γ(u)

w2(u, x) ·
√ ∑
x∈Γ(v)

w2(v, x)

. (3.16)
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When we consider an unweighted graph, the weight w(u, v) of any edge {u, v} ∈ E can

be set to 1 and the equation above can be transformed to:

s(u, v) =
|Γ(u) ∩ Γ(v)|√
|Γ(u)| · |Γ(v)|

. (3.17)

It corresponds to the so-called edge-clustering coefficient introduced by Radicchi et

al. [77].

Definition 3 (Tightness) By employing the structural similarity, we introduce tightness,

a new quality function of a local community C, which is given as follows:

T (C) =
SCin

SCin + SCout
(3.18)

where SCin =
∑

u∈C,v∈C,{u,v}∈E

s(u, v) is the internal similarity of the community C which

is equal to two times of the sum of similarities between any two adjacent vertices both

inside the community C;

SCout =
∑

u∈C,v∈N,{u,v}∈E

s(u, v) is the external similarity of the community C which is

equal to the sum of similarities between vertices inside the community C and vertices

out of it.

he tightness measure is extended from the weak community definition proposed by F.

Radicchi [77]. Similar to other community definitions, the tightness value of a community

C, denoted by T (C), will increase when sub-graph C has high internal similarity and low

external similarity. The whole network without outward edges will achieve the maximal

value 1, but the problem here is to find the local optimization of the measurement for

each community. Suppose a community C is detected from a certain vertex s. We

explore the adjacent vertices in the neighborhood set N of S. So the variant tightness

of the community C ∪ {A} becomes

T (C ∪ {A}) =
SCin + 2Sain

(SCin + Sain) + (Scout − Sain + Saout)
=

=
SCin + 2Sain

(SCin + Sain + Scout + Saout)
,

(3.19)
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where Sain =
∑

{v,a}∈E∧v∈C

s(v, a); Saout =
∑

{a,u}∈E∧u6∈C

s(a, u). Then the tightness incre-

ment of a vertex a joining in C is:

∆TC(A) = T (C ∪ {A}) =

=
SCin + 2Sain

(SCin + Sain + Scout + Saout)
− SCin
SCin + SCout

=

=
2Sain · SCout − SCin · Saout + SCin · Sain

(SCin + Sain + Scout + Saout)(S
C
in + SCout)

(3.20)

If ∆TC(A) > 0, then 2Sain · SCout − SCin · Saout + SCin · Sain > 0 which is equivalent to
SCout
SCout
− Saout−Sain

2Sain
. Then they define the tightness gain in the following [76].

Definition 4 (Tightness Gain) The tightness gain for the community C adopting a

neighbor vertex a can be denoted as

τC(A) =
SCout
SCin
− Saout − Sain

2Sain
. (3.21)

It means that the ratio of external similarity to internal similarity of community C is

greater than the ratio of external similarity increment to internal similarity increment

caused by adopting vertex a. Obviously, this case will result in the increase of the

tightness value of community C. Therefore, τC(a) can be utilized as a criterion to

determine whether the candidate vertex a should be included in the community C or

not. In the following, they introduce an optional resolution parameter α to control the

scale at which we want to observe the communities in a network.
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Figure 3.28: Schematic rapresentation of IDA + LTE algorithm.

We suppose that LTE detect for the node 1 the dark-gray nodes as community nodes
(CLTE): after that we compute the IDA on the selected nodes. The node takes the
information from those accepted as its community creating a virtual link with these
(dotted line in figure). The LTE decides whether to accept the new nodes memebrs of
own community or not.
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Definition 5 (Tunable Tightness Gain) The tunable tightness gain for the community

C merging a neighbor vertex a can be denoted as

τC
α(A) =

SCout
SCin
− αSaout − Sain

2Sain
. (3.22)

A parameter α ∈ (0,∞) is introduced as the coefficient of Saout which can increase or

decrease the proportion of the external similarity of the candidate vertex a. Here, the

criterion for accepting a vertex a is changed to τC
α(A) > 0. For α = 1 , the criteria

is moderate and can be used in most normal cases. In [76] the authors shows different

scenarios for different values of the free parameter α: setting α ∈ (0, 1), the value of Saout

is reduced by this coefficient which increases the chance of a candidate vertex a joining

C and bigger communities will be formed compared to the normal case with α = 1. On

the contrary, it will result in the formation of smaller communities in a network when we

set α > 1. We report the local algorithm proposed by Huang et al. [76] in the following:
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Figure 3.29: IDA+LTE algorithm on the Zachary’s Karate Club network.

(a) Node 17 in the Zachary’s Karate Club. In the first step the LTE algorithm accept 3
nodes for the local community. After that we compute the IDA + LTE algorithm: the
knowledge of the other nodes permits to discover the structure of the whole network.(b)
The color of nodes mark communities of the node 17 during the time. At time T=1 the
community nodes are 17-6-7 (white nodes). After that the node is capable to discover
other nodes in the network (blue-scale color). At T = 2 the community is detected by
nodes 17, 6, 7 plus the nodes 11 and 5. We report the knowledge of the network as
communities during the time: starting from the white community to arrive to dark-blue
nodes.

1. Pick a vertex s ∈ V as the starting vertex.

Let C = {S} and N = Γ(S)− {S}

2. Select the vertex a ∈ N that possess the largest similarity with vertices in C.
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3. If τC
α(A) > 0,

set C = C ∪ {a} and N = N ∪ Γ(a)− C

4. Repeat 2 and 3 until N = ∅.

This algorithm, called local tightness expansion algorithm (LTE), is a very efficient

local algorithm for detecting communities in networks from an individual point of view.

Anyway when N = ∅ we arrive at a static convergence. Here we want to introduce

a new algorithm merging together our algorithm that we call Information Dynamics

Algorithm (IDA) and LTE for analysing how the information dynamics can improve the

performance of LTE and viceversa. We descibe the new algorithm in the following (its

representation is illustrated in Figure 3.28):

1. Pick a vertex s ∈ V .

2. Run LTE and discover CLTE for the vertex s.

3. Run IDA and take information of other nodes by community nodes

4. Run LTE and decide to accept new nodes.

5. Repeat 3 and 4 until a fixed memory or when the vertex s knows the whole network.

For testing purposes we use four real networks analysing and discussing our model

peculiarities. The four case studies, of growing or different complexity, are the Zachary

karate club network [1], the bottlenose dolphins network [41], the network of social

interaction in the novel Les Miserables by Victor Hugo [78] and the NCAA college

football network [41]. For all the simulations we used always the same parameters. For

the IDA we assumed α = 1.4 and m = 0.2. For the LTE we used α = 0.3 for the first

step and α = 2 during LTE+IDA dynamics.

Zachary’s karate club

The first test case is the typical network benchmark used in literature: the network

proposed by Zachary in the 1977 , and known as ”karate club” [1]. We studied the

dynamics of node 17 during the time. Results are reported in the Figure 3.29 (a) and

Figure 3.29 (b). The increasing of information is reported in the Figure 3.29 (a): here

we can observe that the CLTE is a community composed by 3 nodes, the white nodes in

the Figure 3.29 (a). After that the node asks to nodes 6 and 7 their knowledge about

the networks giving their informations by IDA; the node 17 can decide to accept the new

nodes as community nodes trough LTE algorithm. At T = 2 it accepts only the node
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Figure 3.30: Trigger in the Lusseau’s network of bottlenose dolphins.

(a) LTE algorithm in the first step discover 11 nodes for the community. After that we
show the increase of the community size trough information dynamics.(b) Nodes’ color
indicates the community of Trigger during the time. At time T = 1 the community
nodes are the white nodes. After that the node is capable to discover other nodes in the
network. At T = 2 cyan nodes. At T = 3 green nodes. At T = 4 violet nodes. At T = 5
red nodes. At T = 6 it discovers the whole network with the dark blue nodes except of
Zip (gray node) that it knows at T = 7.

11 and 5 so the community is formed by 5 nodes, and so on. At T = 3 we can observe

that the network is splitted in 2 communities that is the same observed by Zachary [1]

except only for the node number 22.

Bottlenose dolphin network

The second real-world network represents the social interactions of bottlenose dolphins

living in Doubtful Sound, New Zealand. The network was studied by the biologist David

Lusseau, over a period of seven years from 1994 to 2001, who divided the dolphins into

two groups according to their age [41]. He we observed the information and community

detection dynamics of Trigger : results are shown in the Figure 3.30 (a) and in the Fig-

ure 3.30 (b). The CLTE at T = 1 is a community composed by 11 nodes (Figure 3.30 (a))

labeled by white nodes in the Figure 3.30 (b). If we consider DN63, Beescratch and

Knit as overlapping nodes between the two principal communities [79], we can say that

at T = 4, Trigger discovers the same community structure observed by Lusseau [41].

Social interaction in the novel Les Miserables by Victor Hugo

Results are shown in the Figure 3.31 (a) and in the Figure 3.31 (b).
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NCAA football college network

Results are shown in the Figure 3.32 (a) and in the Figure 3.32 (b).
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Figure 3.31: Myriel in the novel Les Miserables by Virctor Hugo.

(a) LTE algorithm in the first step discover 10 nodes for the community. After that
we show the increase of the community size trough information dyanamics. (b) Nodes’
color idicate the community of Myriel during the time. At time T = 1 the community
nodes are the white nodes. At T = 2 cyan nodes. At T = 3 green nodes. At T = 4
violet nodes. Finally the blue nodes.
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Figure 3.32: (a) Washington in NCAA footbal college network.

(b) Nodes’ color indicate the community of Washington during the time. At time
T = 1 the community nodes are the white nodes. At T = 2 the only light blue node.

At T = 3 blue nodes. At T = 4 red nodes. Finally the green nodes.
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Figure 3.33: Adjacency matrix of a network composed by 200 nodes and 3 levels
where p1 = 0.9, p2 = 0.2 and p3 = 0.

Trough the double pruning heuristic it is possible to detect the different community
levels reaching the discover of the four principal communities for b = 8.

3.8.2 Double pruning

The model has two free parameters m and α and in previous works we have shown

that it is very difficult to have good values of these parameters for general and dif-

ferent cases. This procedure is very simple: in particular at some moments for each

node we evaluate the histogram of the state vector with 4 bins and we set to zero the

values that are lower then the second bin values as reported in the Algorithm 2. In

this way we are able to generate different view of the clustering levels on hierarchical

community structure networks as shown in Figure 3.33 and in Figure 3.34. We use the

Lancichinetti-Fortunato-Radicchi (LFR) benchmark graph [46, 80] to evaluate the ac-

curacy of this method. We adopt the normalized mutual information (NMI) to evaluate

the quality of detected communities which is currently widely used in measuring the per-

formance of graph clustering algorithms [46]. The accuracy of our method is compared

with three others well-known community detection algorithms. The observed results

on our hierarchical networks and on the Zachary karate club network as shown in Fig-

ure 3.34 allow us to state that for b = 4 we are able to detect the principal communities.

For this reason for comparing our method with others we set b = 4. In order to eval-

uate and partially validate our approach, we have applied our algorithm comparing its

performance with 3 community detection algorithms namely Infomap [44], Infomod [42]

and MCL [43]. The input parameters of the benchmark graphs used here are: average

degree is 20, the maximum degree 50 for all the networks. While we changed the range
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Figure 3.34: Evolution of the double pruning heuristic on the Zachrary Karate Club
network [1].

We show that the method is capable to discover different community structure but we
reach the observed two communities for b = 4. Different colors correspond to different
communities.

of community size generating two kind of networks of 1000 nodes: 1000S (S stay for

small) means that communities have between 10 and 50 nodes and 1000B (B stay for

big) means that communities have between 20 and 100 nodes. Results of the perfor-

mance’s comparison between our algorithm and the others are reported in Figure 3.35.

As we can observe our algorithm with the double pruning heuristic is very competitive

with the other algorithms except for the Infomap method which is nowadays the best

algorithm for detecting communities in static network even if it can not be easily ap-

plied in dynamic environments. Moreover we can observe that our method improves the

performance of the MCL algorithm which was our starting point.
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Figure 3.35: Normalized Mutual Information on LFR benchmarks.

(a)-(b) Comparison between our method and other algorithms on LFR Benchmark
graphs with different size of communities respectively Small (a) and Big (b) increas-
ing the mixing parameter µ.

3.9 Impact of local information in growing networks

The emergence and the global adaptation of social networks has influenced human in-

teraction on individual, community, and larger social levels. Most notably, perhaps,

is the rise of Facebook, which in October 2011 reached more than half (55%) of the

world’s global audiences, catching 835.6 millions of users in 2012 [81]. A large number
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of models have been proposed that aim at exploring and explaining how local mecha-

nisms of network formation produce global network structure. In the context of social

networks it is important to understand why and how people decide to make connections

and how they change or modify their own local structure. For this reason it is essential

to understand some aspects of how humans behave in social networks: How do people

acquire information in on-line social networks and what are the mechanisms that lead

people to join together or to visit a specific website?

One of the the most well known mechanism that is used in growing networks is prefer-

ential attachment, where new connections are established preferentially to more popular

nodes in a network, giving rise to a scale-free network [82]. Moreover, users in on-line

social networks tend to form groups, called communities: given a graph, a community

is a group of vertices “more linked” among them than between the group and the rest

of the graph [45]. This is clearly a poor definition, and indeed, on a connected graph,

there is no clear distinction between a community and the rest of the graph. In general,

there is a continuum of nested communities whose boundaries are somewhat arbitrary:

the structure of communities can be seen as a hierarchical dendrogram [30]. Our com-

munities are large and varied, and we recognize several levels of grouping, sometimes

dependent on the context. In recent work we have shown that using information dy-

namics algorithms where nodes elaborate information locally, we are able to detect such

communities in complex networks [58, 59].

Recently, Papadopoulos et al. [83] explored the trade-off between popularity and simi-

larity in growing networks. Nodes in growing networks tend to link not only to the most

popular nodes (as in preferential attachment [6]) but also to the closest nodes in terms of

affinity. Comparing their results with real-world complex networks, the authors showed

that they were able to predict the probability of forming new links with remarkable

precision.

In this section we develop a model that emulates the growing of a social network, start-

ing from psychological assumptions that allow us to simulate how people acquire and

elaborate information in social networks. We demonstrate the concept of similarity and

popularity in growing networks, not by a geometric approach as in Papadopoulos et

al. [83], but by using a simple mechanism that explain users’ behaviour in on-line social

networks.

The rest of this section is organized as follows: we start by summarizing previous work in

section 3.9.1. In section 3.9.2 we describe our model, which uses a local algorithm where

an agent is modeled with a memory and a set of connections to other individuals. In

the first step the new agent explore the local structure of the network, where it receives

information about the neighborhood. The learning (nonlinear) phase is modeled after
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competition in the chemical/ecological world, where agents compete with each other.

Section 3.9.3 shows the principal results of our simulations. Finally, we discuss our

results and propose future steps in the Conclusions.

3.9.1 Related work

The goal of much of the research that model the growth of real networks is to reproduce

networks with certain properties as well as properties of real-world networks. For in-

stance, we know that many observed networks fall into the class of scale-free networks,

meaning that they have power-law (or scale-free) degree distributions. An influential

model is the so called Barabási–Albert (BA) model [82]. The main hypothesis of the

BA model is that the more connected a node is, the more likely it is to receive new links.

From the BA model, however, it is not trivial to generate networks with a community

structure or with a high clustering coefficient, something we observe in real social net-

works. Regarding social networks, Jin et al. [84] presented a model where the friendship

between individuals depends on the number of mutual friends and the number of meet-

ings between them. The resulting networks from their simulations show high levels of

clustering and a strong community structure in which individuals have more links to

others within their community than to individuals from other communities.

In these two models we can already single out two important and psychologically plau-

sible features: (1) the predisposition of people to link with hubs (nodes with higher

connectivity degree, where the connectivity degree, C(k), of a node in a unweighted

network is defined as the sum of its links) and (2) the tendency of people to connect

with friends of friends (social community).

A recent paper highlighted the relevance of existing communities in a network [85]. Here,

a new node connects to a random node in the network and with a probability p it links

to some nodes in the community of the selected node and with probability 1 − p with

some random nodes. Simulation results showed that this model can reproduce features

of real world networks, but the authors used a global community detection algorithm,

the well-known Louvain Method [75], without considering the local and subjective view

of agents in the network.

Popularity is not the only thing that determines if a node will link to another node,

social closeness is also important. It has been shown that more similar nodes have

higher chances to connect to each other even if they are not popular [86]: this effect is

known as homophily in social science. As mentioned above, in 2012 Papadopoulos et

al. [83] published a paper giving an important contribution to the understanding of the

evolutionary properties of complex networks. The authors showed that the popularity
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of a node in a network is just one dimension of attractiveness. In their framework, the

probability that a new node that arrives in a structured network links to another node is a

function of two variables: the connectivity degree of the target node (popularity) and the

similarity (affinity) between the new node and the target node. In order to evaluate the

trade-off between popularity and similarity they exploited a geometric representation.

They place nodes in circles whose distance from the origin depends on the birth time

while the angular position define the social identity of nodes. Initially the network is

empty. At each time t > 1, a new node labelled t appears at a random angular position θ

on the circle, with polar coordinates (rt, θt). In order to implement the trade-off between

popularity and similarity, it is assumed that the node evaluates its hyperbolic distance

from other nodes with label s (s < t), with coordinates (rs, θs), by means of the function

xst = rs + rt + ln(θst/2), where θst is the relative angle of the two polar coordinates.

The node finally connects to the m nodes with the smallest hyperbolic distance. This

approach is interesting, but the mechanism appear rather artificial. In our model, we try

to take into account all of these features by considering a simple information dynamics

algorithm that allow to us to model not only the preferential attachment mechanism

but also the social closeness between individuals.

3.9.2 The model

The model is based on a mechanism that emulates people’s strategies for acquiring

information in social networks, emphasising the local subjective view of an individual

and what kind of information the individual can receive when arriving in a new social

context.

We start from a simple assumption: we suppose that a new individual, or node, arrives

in an already structured network and picks information about it. According to this idea

we begin, at time t = 0, with a fully-connected network of N0 vertexes and then, at

each time step, a new node is added to the network. For explaining our idea we describe

a simple case, illustrated in Figure 3.36 (a), representing a new node i that joins the

Zachary’s Karate Club network [1] (assuming that the node i is invited by node 17).

It discovers n ordered levels: the nodes in level 1 are those adjacent to the connected

node (node 17 in Figure 3.36 (a)), nodes in level 2 are the friends of my friends, and

so on. With different probabilities p1 > p2 > ... > pn it links to nodes in the different

levels. This mechanism implements the assumption that the probability of getting new

friends in a social context is strictly correlated with the local structure of the network;

it is easier that two persons become friends if they a have a friend in common. Here we
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Figure 3.36: Schematic description of the method.

(a) Starting configuration of the Zachary’s Karate Club network [1]: the new node i
links to node 17. The new node has the local hierarchical representation of the network,
labelled by levels 1, 2, 3, 4 and 5. With probability p1 it could link to nodes of level 1,
with probability p2 to nodes of level 2, and so on. (b) Different probability functions
derived from Equation 3.23 for different values of parameter β and a = 1. The y− axis
represents the probability to join with some nodes in the corresponding level shown on
the x− axis.

use a simple exponential function

y = ae−β(x−1), (3.23)

where x is the considered level. The β represent the “temperature”: the probability of

joining farther nodes, and a is a normalization constant. In the Figure 3.36 (b) we show

the function Eq. ref:exp for some values of β with a = 1. Assuming −β(x − 1) = z

and ez = bz, we can express the probability distribution of Eq. 3.23 as
∞∑
z=0

abz = a 1
b−1 .

Setting the previous equation equal to 1 we obtain a = 1− b.

Then, y = (1 − b)bz =
(
1− e−β

)
e−β(x−1) = P (x). For high values of parameter β the

probability to join other levels is very low (e.g., the continuous line in Figure 3.36 (b)).

The second part of the algorithm allows new nodes to locally elaborate the information

about the nodes belonging to a given level. The network is represented by the adjacency
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matrix Aij = 1 (0), 1 if there is a link between i and j, 0 otherwise.

Each individual i is characterized by a knowledge vector S(i), representing his knowledge

of the world. The knowledge vector S(i) is a probability distribution, assuming that

S
(i)
j is the probability that individual i knows about the community j. It can also be

seen as the probability that i belongs to the community ”leaded” by j, and therefore,

S
(i)
j is normalized over the index j. In order to use a compact notation, we arrange

the knowledge vectors for all individuals column by column as Sij = S
(i)
j , forming a

knowledge matrix S = S(t) of the whole network at time t. We initialize the system by

setting Sij(0) = δij , where δ is the Kronecker delta, δij = 1 if i = j and zero otherwise.

In other words, at time 0 each node knows only about itself.

The dynamics of the network is given by an alternation of communication and elabo-

ration phases. The communication is implemented as a simple diffusion process, with

memory m. The memory parameter m allows us to introduce some important features

of the human cognitive system, for example that recently acquired information have

more relevance than information gained in the past [39, 40].

In the communication phase, the state of the system evolves as

Sij(t+ 1/2) = mSij(t) + (1−m)
∑
k

AikSkj(t), (3.24)

where A is the adjacency matrix. We assume that nodes talk with each other and we

suppose that nodes with high connectivity degree have greater influence in the process

of information’s diffusion. This is due to the fact that during a conversation it is more

likely to know a vertex with high degree instead of one that has few links. For this

reason, the information dynamics is a function of the adjacency matrix A.

The elaboration phase implements elements of fast and frugal heuristics [35]. When

people are asked to take a decision, very rarely do they weight all available pieces of

information. If there is some aspect that has a higher importance than others, and one

item exhibits it, than the decision is taken, otherwise, the second most important factor

is considered, etc. In order to implement an adaptive scheme, we exploit a similarity

with competition dynamics among species.

If two populations x and y are in competition for a given resource, their total abundance

is limited. After normalization, we can assume x+ y = 1, i.e., x and y are the frequency

of the two species, and y = 1− x. The reproduction phase is given by x′ = f(x), which

we assume to be represented by a power x′ = xα. For instance, α = 2 models birth of

individuals of a new generation after binary encounters of individuals belonging to the

old generation, with non-overlapping generations [36].
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After normalization x′ = xα

xα+yα = xα

xα+(1−x)α . and introducing z = (1/x)−1 (0 ≤ z <∞),

we get the map z(t + 1) = zα(t), whose fixed points (for α > 1) are 0 and ∞ (stable

attractors) and 1 (unstable), which separates the basins of the two attractors. Thus, the

initial value of x, x0, determines the asymptotic value, for 0 ≤ x < 1/2 x(t → ∞) = 0,

and for 1/2 < x < 1 x(t→∞) = 1. By extending to a larger number of components for

a probability distribution S(i), the competition dynamics becomes

Sij(t+ 1) =
Sij(t+ 1/2)α∑
k S

α
ik(t+ 1/2)

, (3.25)

and the iteration of this mapping, for α > 1, leads to a Kronecker delta, corresponding

to the largest component. The parameter α allows us to model a “pruning effect” of

the information, which eliminates unnecessary clutter and a clears the way for more

information to enter the field of view of the individuals [87]. The convergence time

depends on the relative differences among the components and therefore, when coupled

with the information propagation phase, it can produce interesting behaviours. The

model has two free parameters, the memory m and the exponent α.

Finally, the probability of making a new link (Pn) depends on the joint probabilities of

two functions f(y) and g(S): Pn = f(y) · g(S).

In summary: (1) we start with m0 nodes (m0 ≥ 1); (2) at time t a new node, labelled

by t, appears in the network; (3) the new node connects with a random node in the

network, discovering n levels; with probability p1 given by Eq. 3.23 it joins the selected

level; (4) the new node links with probability p2 given by the Eq. 3.25 to the level’s

nodes. In this way we take into account the social closeness because of the probability

to link to nodes in the network depends on the social distance from my closest friend

and the popularity of nodes given by the information dynamics procedure.

Table 3.2: Results from the information dynamics algorithm for the different levels
in the network shown in Figure 3.36 (a). L is the number of the level, n is the id of the

node and p is the probability to join with the most connected node (bold node).

L n p

1 6, 7 0.5-0.5
2 1, 5, 11 0.97
3 2, 3, 4, 8, 9, 12, 13, 14, 18, 20, 22, 32 0.35
4 10, 25, 26, 28, 29, 31, 33 34 0.67
5 15, 16, 19, 21, 23, 24 , 27, 30 0.47
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Figure 3.37: Politcal Blogs and hamsterster.com networks.

(a) Cumulative frequency of node degree distributions (log− log scale) of Political blogs
network (blue points) and model generated predictions (black points). (b) Cumulative
frequency of node degree distributions (log − log scale) of the network of friendships
between users of the website hamsterster.com and model generated predictions (black
points). Model predictions are averaged over 10 simulation runs.

3.9.3 Results

Results obtained with the information dynamics algorithm, applied to the network rep-

resented in Figure 3.36 (a), are shown in Table 3.2. It is more likely that a new node
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Figure 3.38: Simulation of the temporal density evolution of the Political blogs
network.

Table 3.3: Statistics of the social networks.C (mean clustering coefficient), l (average
path length) and d (diameter of the network).

No.vertices No.edges C l d

Political blogs 1490 19090 0.24 3.39 9
Simulation 1490 0.24 3.23 9

Hamsterster.com 2426 12534 0.09 3.54 10
Simulation 2426 0.09 3.84 11

will be connected to a node with a high degree, as is also predicted by preferential

attachment.

In order to validate our model we compare predictions from the model with two real

networks. The model predictions are averages over ten simulation runs. The first social

network is the Political blogs network. It is a directed network of hyperlinks, with

N = 1490 nodes, among weblogs on US politics, recorded in 2005 by Adamic and

Glance [88]. The degree distribution of the resulting network from a simulation of the

model with the same number of nodes is comparable with the real network as shown

in Figure 3.37(a). The mean clustering coefficient of the network generated with our

simulations is C = 0.24, the average path length is l = 3.23, and we obtained a network

with the same diameter, d = 9. The second social network contains friendships between

users of the website hamsterster.com [89]. The degree distribution of the network is

shown in Figure 3.37(b). The cumulative frequency of the degree distribution is very

similar to the network generated with the model (black points in Figure 3.37(b)). The

mean clustering coefficient C = 0.09, the average path length is l = 3.84, and the
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diameter d = 11. Another important feature of the model is that the final structure

of the network spontaneously arises without any constraint on the degree of the new

node. In fact in our simulations we don’t assume any constraints on the number of links

that the new node can do: theoretically the new node can link with all the nodes in

the network. In Figure 3.38 we show a simulation of the temporal evolution of network

density, defined as the average number of links connected to each node, for the Political

blogs network. From this result we show that the number of links of incoming node

increase over time: in fact the number of link that the new node can do depends on the

number of nodes in the network (for instance in a network of 10 nodes the probability

to make a certain number of link is less than in a network of 1000 nodes). It is a well

known result that the density increases in networks that grow over time.

3.9.4 Conclusions

In this section, we introduced a new model of growing complex networks. The model is

based on the idea that local structure plays a fundamental role in social networks and

may be involved also in the growing process of the network itself. Our model repro-

duces the main features observed in real networks, such as high clustering coefficient,

low characteristic path length, strong division in communities and variability of degree

distributions.

Following these encouraging results, future work will compare this model with the model

proposed by Papadopoulos et al. [83] and validate new results with larger real world

networks. Moreover, we plan to derive analytical predictions from the model in order to

fix a priori the model’s parameters for forecasting some graph’s properties (eg. degree

distribution, clustering coefficient, diameter, etc.).

3.10 Final remarks

Here we have described an algorithm to identify the communities structures in a network

from a local point of view. The method is based on pure information propagation

where the nonlinear part of these method, responsible for the actual elaboration of

information, is inspired by a chemical/ecological competition model [36]. There is not a

unique definition of a community, so an exploratory algorithm, like the one that humans

have presumably developed during their evolution, should present different clustering for

different values of the parameters, or for different iterations. In this implementation we

adopted a frequency-based approach and an unbounded memory at the level of nodes.

Unbounded memory means that the node’s state vector Si has not been limited and it
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could potentially reach a size equal to the network size N . Despite this because of the

explanation and normalization phases are sufficient to avoid this problem. Nevertheless

it will be very important to limit the computational resources of the node explicitly,

as suggested by Simon in 1955 [73], so increasing both the ecological plausibility of

the model and the insights which drive the algorithm design. The results that we

have obtained are promising. The method under investigation is not competitive with

respect to others (see the review [90]), but it provides a natural “scanning” of the various

clustering levels. Moreover, our method can be naturally applied to weighted graphs.

We have demonstrated, through the definition of Entropy of Information, our algorithm

is efficient to discover all cluster levels for general networks. We believe that the local

algorithm procedure will not only allow to us to study much larger networks but also

to mimic single human behavior in social network trough specific and simple heuristics

decision rules. The model parameters m and α play a crucial role for the detection

of communities. These results suggests how cognitive heuristics could be designed as

those mechanism which allow humans to optimize those parameters in order to maximize

the gathered information from the environment. Following this assumption the future

works will investigate what kind of computational procedures could be used to mimic

this human behavior. We plan to investigate the consequences of bounded memory and

computational resources of nodes, in particular in a dynamic environment.





Chapter 4

Epidemic Spreading

4.1 Single-layer networks

4.1.1 Introduction

Epidemic spreading is one of the most successful and most studied applications in the

field of complex networks. The comprehension of the spreading behavior of many dis-

eases, like sexually transmitted diseases (i.e. HIV) or the H1N1 virus, can be studied

through computational models in complex networks [7, 91]. In addition to “real” viruses,

spreading of information or computer malware in technological networks is of interest

as well.

The susceptible-infected-susceptible (SIS) model is often used to study the spreading of

an infectious agent on a network. In this model an individual is represented as a node,

which can be either be “healthy” or “infected”. Connections between individuals along

which the infection can spread are represented by links. In each time step a healthy

node is infected with a certain probability if it is connected to at least one infected

node, otherwise it reverts to a healthy node (parallel evolution).

The study of epidemic spreading is a well-known topic in the field of physics and com-

puter science. The dynamics of infectious diseases has been extensively studied in scale-

free networks [92–95], in small-world networks [96] and in several kind of regular and

random graphs.

A general finding is that it is hard to stop an epidemic in scale-free networks with slow

tails, at least in the absence of correlations in the network among the infections process

and the node characteristics [92]. This effect is essential due to the presence of hubs,

71
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which act like strong spreaders. However, by using an appropriate policy for hubs, it is

possible to stop epidemics also in scale-free networks [94, 97].

This network-aware policy is inspired by the behavior of real human societies, in which

selection had lead to the development of strategies used to avoid or reduce infections.

However, human societies are not structureless, thus a particular focus must be devoted

to the community structures, which are highly important for our social behavior.

Recently, a wave of studies focused the attention on the effect of the community structure

in the modelling of epidemic spreading [98–100]. However, the focus was only set towards

the interaction between the viruses’ features and the topology, without considering the

important relation between cognitive strategies used by subjects and the structure of

their (local) community/neighborhood.

Considering this scenario, an important challenge is the comprehension of the structure

of real-world networks [31, 45, 101]. Given a graph, a community is a group of vertices

that is “more linked” within the group than with the rest of the graph. This is clearly

a poor definition, and indeed, in a connected graph, there is not a clear distinction

between a community and a rest of the graph. In general, there is a continuum of nested

communities whose boundaries are somewhat arbitrary: the structure of communities

can be seen as a hierarchical dendrogram [30].

It is generally accepted that the presence of a community structure plays a crucial role

in the dynamics of complex networks; for this reason, lots of energy has been invested to

develop algorithms for the detection of communities in networks [43, 90, 102]. However,

in complex networks, and in particular in social networks, it is very difficult to give a clear

definition of a community: nodes often belong to more than just one cluster or module.

The problem of overlapping communities was exposed in [32] and recently analyzed in

[33]. People usually belong to different communities at the same time, depending on

their families, friends, colleagues, etc. For instance, if we want to analyze the spreading

of sexual diseases in a social environment, it is important to understand the mechanism

that leads people to interact with each other. We can surely detect two distinct groups

of people (i.e., communities): heterosexual and homosexual, with bisexual people that

act as overlapping vertexes between the two principal communities [99, 103, 104].

The strategies used to face the infection spreading in a community is itself a complex

process (i.e., social problem solving) in which strategies spread (as the epidemics) along

the community, and are negotiated and assumed or discarded depending on their social

success.

Several factors can affect the social problem solving which is represented by the adoption

of a behaviour to reduce the infection risk. Of course, personality factors, previous
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experiences and the social and economical states of a subject can be considered as

influencing variables. Another important variable is represented by the structure of the

environment in which the social communities live, because it determines at the same

time the speed of the epidemic diffusion and the strategy of the negotiation process; in

particular large and more connected communities are often characterized by conservative

strategies while small and isolated communities allow more relaxed strategies.

The same strategy can be more or less effective depending on the strategies adopted by

the neighbours (community) of the subject. For instance, a subject in a conservative

community can adopt a more risky (and presumably profitable) attitude with a certain

confidence since he would be protected from the infection because of their neighbours’

behaviours. This “parasitic” behavior (like refusing vaccinations) can be tolerated up

to a certain level without lowering the community’s fitness.

Not only the neighbor’s behaviours affect the evolution of the cognitive strategies of a

subject, but also the position he has in the network should be a relevant factor. A hub,

or a subject with a great social betweenness, is usually more exposed to the infection

than a leaf, and as a consequence, the best strategy for him has to be different. In

the same way, since the topology of the network (e.g., small world, random) determines

variables such as the speed of the spreading, or its pervasiveness, it should also affect

the development of the “best strategy”.

Moreover, while the negotiation process evolves, the cognitive strategies usually develop

within the most intimate community of a subject, thus the behaviour adopted by subjects

could be an interesting feature for the community detection problem as well.

The understanding of the effects of the community structure on the epidemic spreading

in networks is still an open task. In this section we investigate the role of risk percep-

tion in artificial networks, generated in order to reproduce several types of overlapping

community structures.

The rest of this section is organized as follows: we start by describing a mechanism

for generating networks with overlapping community structures in section 4.1.2. In

section 4.1.3, we describe the SIS model adopted to model the risk perception of subjects

in those networks. Finally, section 4.1.4 contains simulation results from our model with

a throughout discussion and future work proposals.

4.1.2 The networks model

There are nc different communities with nv vertices (here we consider only undirected

and unweighted graphs); we assume that the probability to have a link between the



Epidemic 74

15
17

18

25

28

27

3

1
0

4

2
9

6

8

5
7

10
11

13

20
21

23

1612
19

14

22
29

24

26

38

37

31

35

32
39

34

30

33

36

(a)

31

34
39

7

32

33

30

37

35

38

36

10

13

14

16

15

19

12

18

17

11

24

29

23

21

27
25

28

20

22

26
2

5

4

1

9

0

3

6

8

(b)

Figure 4.1: Schematic representation of our network-generation model.

(a) An example network with 4 different communities composed by 10 vertices: in this
case, considering p1 = 1 and p2 = 0, we generate 4 non-interconnected fully connected
networks. (b) The same 4 communities with parameters p1 = 0.95 and p2 = 0.05.

vertexes in the same community is p1, while p2 is the probability to have a link between

two nodes belonging to different communities. For instance, with p1 = 1 and p2 = 0, we

generate nc fully connected graphs, with no connections among them as shown in the

Figure 4.1(a). It is possible to use the parameters p1 and p2 to control the interaction

among different communities, as shown in Figure 4.1(b). The algorithm for generating

this kind of networks can be summarized as:

1. Define s1 as number of vertexes in the communities;

2. Define nc as number of communities;

3. For all the nc communities create a link between the vertexes on them with prob-

ability p1;

4. For all the vertexes N = s1nc create a link between them and a random vertex of

other communities with probability p2;

Constraining the condition p1 = 1− p2, we can reduce the free parameters to just one.

The connectivity degree itself depends on the size of the network and on the probabilities

p1 and p2. In particular, the connectivity function f(k) has a normal distribution from

which we could define the mean connectivity 〈k〉 as

〈k〉 = (s1 − 1)p1 + (nc − 1)s1p2 (4.1)

with standard deviation σ2(k) = (s1 − 1)p1(1− p1) + (nc − 1)s1p2(1− p2).
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Figure 4.2: Connectivity degree distribution of generated networks.

(a) Random networks: in this figure, we show the frequency distribution of the connec-
tivity degree changing the value of the parameter p2. The circles represent the values
for p2 = 0.01, crosses for p2 = 0.1 and eventually squares for p2 = 0.2. Here, s1 = 1000
and nc = 5, thus we have generated networks with 5 communities of 1000 nodes for
each. (b) Distribution of connectivity degree for the scale-free network generated with
the mechanism described above (dots). The straight line is a power law curve with
exponent γ = 2.5.

In Figure 4.2(a) we show the frequency distribution of the connectivity degree of nodes

varying the value of the parameter p2 for a network composed by N = 5000 nodes and

nc = 5 communities.

It is widely accepted that real-world networks from social networks to computer net-

works are scale-free networks, whose degree distribution follows a power law, at least

asymptotically. In this network, the probability distribution of contacts often exhibits

a power-law behavior:

P (k) ∝ ck−γ , (4.2)

with an exponent γ between 2 and 3 [105, 106]. For generating networks with this kind

of characteristics, we adopt the following mechanism:

1. Start with a fully connected network of m nodes;

2. Add N −m nodes;

3. For each new node add m links;

4. For each of these links choose a node at random from the ones already belonging

to the network and attach the link to one of the neighbors of that node, if not

already attached.
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Figure 4.3: Modularity values of generated networks.

Different values of modularity (Q) by increasing the mixing parameter p2 for two net-
works with N = 4 · 105 nodes and N = 4 · 102 nodes.

Through this mechanism we are able to generated scale-free networks with an exponent

γ = 2.5 as shown in Figure 4.2(b). There, we show the frequency distribution of the

connectivity degree for a network of 106 nodes. To generate a community structure with

a realistic distribution, we first generate nc scale-free networks as explained above. Then,

for all nodes and all outgoing links, we replace the link pointing inside the community

with that connecting a neighbor of a random node in a random community with a

probability of p2 = 1− p1. Thus, the algorithm can be summarized as:

1. Generate nc communities as scale-free networks with nv vertices;

2. For all the vertices, with a probability p2 = 1− p1;

• Delete a random link;

• Select a random node of another community and create a link with one of its

adjacent vertex;

3. End.

In this way, we are able to generate scale-free networks with a well defined community

structure. A good measure for the estimation of the strength of the community structure

is the so-called modularity [45]. The modularity Q is defined to be:

Q =
1

2

∑
vw

[
Avw −

KvKw

2m

]
δ(cv, cw), (4.3)

where A is the adjacency matrix in which Avw = 1 if w and v are connected and 0

otherwise. m = 1
2

∑
vw Avw is the number of edges in the graph, Ki is the connectivity

degree of node i and (KvKw)/(2m) represents the probability of an edge existing between
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vertices v and w if connections are made at random but with respecting vertex degrees.

δ(cv, cw) is defined as follows:

δ(cv, cw) =

nc∑
r

ĉvr ĉwr (4.4)

where ĉir is 1 if vertex i belongs to group r, and 0 otherwise.

In Figure 4.3 we show the values of modularity for two networks that were generated

with the same algorithm, but with different sizes. Here, we consider a network with 4

communities: in the first case s1 = 105, while in the second case s1 = 102. What one can

observe in Figure 4.3 is that the modularity’s behaviour does not change significantly

for different network sizes with the same number of communities.

In the case of scale-free networks, the mean connectivity degree 〈k〉 is fixed a priori when

we choose the number of links the new nodes create. In the case of random networks

the mean connectivity is given by Eq. 4.1.

4.1.3 The risk perception model

We use the susceptible-infected-susceptible model (SIS) [92, 104] for describing an infec-

tious process. In the SIS model, nodes can be in two distinct states: healthy and ill. Let

us denote by τ the probability that the infection can spread along a single link. Thus,

if node i is susceptible and it has ki neighbors of which sn are infected, then, at each

time step, node i will become infected with the probability:

p(s, k) = [1− (1− τ)sn ]. (4.5)

We model the effect of risk perception considering the global information of the infec-

tion level for the whole network, the information about the infected neighbors and the

information about about the average state of the community. Thus, the risk perception

for the individual i is given by:

Ii = exp

{
−H + J1

(
sni
ki

)
+ J2

(
sci
nci

)}
, (4.6)

where H = J(s/N) is the perception about the global network on which s is the total

number of infected agents while N is the number of agents in the network. The second

term of the Eq. 4.6 represents the perception about the neighborhood, while the third

term represents the perception about the local community of the agent i.
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In this model, we assume that people receive information about the network’s state

through examination of people in the neighborhood. The global information could refer

to entities like media while the information about the community could be assumed as

word of mouth. Here, we don’t consider the cost that people should pay in order to get

these information, but it is clearly an important constraint to consider in future works.

The risk perception Ii, defined in Eq. 4.6, is assumed to determine the probability that

the agents meet someone in its neighbourhood. The algorithm is given by:

1. For all nodes i = 1, 2, . . . , N ;

2. For all its neighbors j = 1, 2, . . . , ki;

3. If Ii > rand;

• i meets j;

• If j at time t− 1 was infected then i becomes ill with probability τ ;

4. End.

Then, we propose a gain function defined as the number of meetings in time considering

different values of j = J, J1, J2 and different kind of scale-free and random networks; the

gain function G(j) is given by:

G(j) =

∑Te
t=1Mt

Te
, (4.7)

in which Te is the time for the extinction, while Mt is the number of meetings during

time. Based on that, we can eventually define a fitness function that considers the

probability to extinct the epidemic in the given time. Thus, the fitness function is given

by:

F Tj = G(j)Pe(j) (4.8)

It is possible to make a mean-field approximation of this model. Pastor-Satorras and

Vespignani defined the mean-field equation for scale-free networks in [92]. In 2010,

Kitchovitch and Liò [107] modeled the mean number of infected neighbors g(k) for

individuals i with connectivity degree k. In fact, given the probability of receiving an

infection by at least one of the infected neighbors (Eq. 4.5), it is possible to define the

rate of change of the fraction of individuals i with degree k at time t by the following:

dik
t

= −γ + (1− ik)g(k), (4.9)
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on which γ is the rate of recovery (in our simulations we set γ = 1).

Then, as shown by Boccaletti et al. [108], for any node, the degree distribution of any

of its neighbors is,

qk =
kP (k)

〈k〉
, (4.10)

hence, it is possible to define the number of infected neighbors as:

in =

kmax∑
Kmin

qkik, (4.11)

and it allows to give a definition of g(k) as:

g(k) =

k∑
s=0

(
k

s

)
p(s, k)isn(1− in)k−s, (4.12)

where s = sn is the number of infected neighbors.

The temporal behavior of the mean fraction c of infected individuals in the case of a

network with fixed connectivity is given by:

c
′

=
k∑

sn=1

(
k

sn

)
csn(1− c)k−sn [1− (1− τ)sn ], (4.13)

where c ≡ c(t), c′ ≡ c(t+ 1) and the sum runs over the number kinf of infected individ-

uals.

4.1.4 Results and Discussion

We studied the behavior of our model for different scenarios. In Figure 4.5, we show

results considering a network of 500 nodes and 5 communities where the initial number of

infected agents is ≈ 10% of all agents in the network. We focus on the information about

the community (parameter J2), while we kept J = J1 = 1 fixed. It is very interesting to

observe the time necessary for the extinction of the epidemics, with the probability of

being infected τ = 0.5 and changing the community structure of the network.

The effects of the parameters J2, J1 and J on the fitness function F considering dif-

ferent scale-free and random networks with different values of modularity are shown in

Figure 4.4. The results were averaged over 100 simulations for each value of J , J1 and

J2.
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Figure 4.4: Effect of the precuation parameters in different networks.

J2 (a), J1 (b) and J (c) (x-axis) versus the fitness function F (y-axis) considering
different scale-free and random networks with different values of modularity. Results
are averaged over 100 simulations for each value of J , J1 and J2.

On the left side of Figure 4.5 we show the temporal evolution of the percentage of

infectious agents for different kind of networks and different values of J2. We can observe

that the extinction time increases when the modularity of network decreases, even if we

use higher values of J2. On the right side of Figure 4.5, we show the effect of the

precaution on the extinction time. The straight line corresponds to different values
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Figure 4.5: Infected individuals and the effect of precaution parameter in community-
structured networks.

On the left side of the figure we show the temporal evolution of infected individuals
by varying the mixing parameter p2. The time necessary for the epidemic extinction
increases as the modularity Q decreases. On the right side, we show the effects of the pre-
caution parameter J2 on the extinction time by varying the modularity Q. The straight
line represents the results for different value of J2, while the dashed line represents the
results for a constant value of J2.

of J2, while the dotted line corresponds to the same value of J2 in different kind of

networks. It is also possible to observe that when a network becomes less clustered, the

information about the community becomes less important.

In the case of scale-free networks, the mean connectivity degree 〈k〉 is related to the

number m of links the new nodes create. In the above example, considering m = 5, we

obtained a mean connectivity degree 〈k〉 = 7.8.

For comparisons, we generated random networks with a mean connectivity degree 〈k〉 ∈
(7, 8). The first result that we obtained is that the extinction time is larger than in the

scale-free case. In Figure 4.6, we show the temporal evolution of the infected agents

for a random network with modularity Q = 0.78 considering J2 = 25 as in the upper

plot on the left side of Figure 4.5. For the scale-free network the time necessary for the

extinction is Te ' 3 · 102 while for the random one it is Te ' 3 · 103.

Regarding the effects of the global and local (neighborhood) information, we investigated

scale-free networks composed by 500 nodes and 5 communities with a fixed maximum

threshold time Tmax, necessary for the extinction of the epidemics. We assume Tmax =

1000 and separately measure critical values of J, J1 and J2. In table 4.1, we show the
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Figure 4.6: Percentage of infected agents for a random network.

Here N = 100 nodes and 5 communities with modularity Q = 0.78. Adopting the same
parameter used for the simulation reported in Figure 4.5, we show how the time for the
extinction (approx. 2900 units) of the epidemic is greater than for the scale-free case
(i.e., upper plot on the left side of Figure 4.5).

Critical Values
Q (modularity) J J1 J2

0.78 45 15 25
0.64 40 15 45
0.35 40 20 55

Table 4.1: Critical values for the extinction of the epidemic on case of scale-free
networks of 500 nodes and 5 communities considering a maximum threshold time

Tmax = 1000, necessary for the extinction of the epidemics.

critical values of the three parameters by changing the modularity Q. As we can observe,

the most variable parameter is J2 while the other two parameters do not appear to

change. From this figure, we observe that the information about the fraction of infected

neighbors is the most effective for stopping the disease. However, in order to get this

piece of information, each node needs to check the status of all its neighbours, a task

that can be quite hard and possibly conflicting with privacy. On the other hand, the

information on the average infectious level in the community or in the whole population

is more easily obtained. Therefore, one needs to add the cost of information into the

model in order to decide what the most effective solution for risk perception is.

Summarizing, we have studied the progression and extinction of a disease in a SIS

model over modular networks, formed by a certain number of random and scale-free

communities. The infection probability is modulated by a risk perception term (modeling

the probability of an encounter). This term depends on the global, local and community

infection level. We found that in scale-free networks the progression is slower than

in random ones with the same average connectivity. For what concerns the role of

perception, we found that the local one (information about infected neighbours) is the

most effective for stopping the spreading of the disease. However, it is also the piece of

information that requires most efforts to be gathered, and therefore it may result a high

cost/efficacy ratio.
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The main element of originality of this model is that we introduced a network model

based on communities, which still retains the scale-free structure with the possibility of

changing the modularity, and we think that this structure (albeit being quite theoretical)

is more realistic than standard scale-free networks. The fact the knowledge about own

community is more effective than other indicators is surely trivial (and we expected to

get this result), but it is also the information that is more expensive to get, at least for

the standard data gathering existing today. We would like to quantify the advantage in

using this indicator in order to compare its efficiency with respect to its cost (and for

doing it we need to include a cost model, that will be done in a future work) and also

point to the necessity of gathering this kind of local information, that in a real case may

also present problems related to the privacy, but might be of great importance in the

case of a pandemic.

We plan to extend the model by inserting a cost function, taking into account what

are the best strategies to avoid the spreading of epidemics in different environments

considering agents as intelligent entities capable to change or select the best strategies

dynamically in order to minimize the risk and to maximize the economy of the system.

In combination to this, we plan to add a more complex model such as the SIR eventu-

ally with vaccinations, for which there are important factors like the penetration and

the possibility that the modular structure may be exploited to “shield” a community

that may remain not exposed – similarly like people that refuse vaccinations, but are

“shielded” by a surrounding community that vaccinates.

4.2 Multiplex Networks

4.2.1 Introduction

Recently, the Health magazine reported “Although H1N1 influenza killed more than

4,000 people in the United States in 2009-2010, this outbreak was relatively mild com-

pared to some flu pandemics” [109].

Indeed, the twentieth century was characterized by a series of more serious events.

During the 1918-19 the world assisted to the so-called Spanish Flu. Starting three

different places: Brest (France), Boston (Massachusetts) and Freetown (Sierra Leone),

the disease spread worldwide, killing 25 million people in 6 months (about 17 million in

India, 500,000 in the United States and 200,000 in the United Kingdom). According to

recent studies on the bodies of some American soldiers who died from the flu, recovered

in the ice of Alaska [110, 111], it has been possible to reconstruct the 1918 virus through

the synthesis of all of its eight subunits. The sequencing has put fully in the light that it
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was a much more lethal virus than “normal” flu strains, belonging to the H1N1 subtype.

The H1N1 is a bird flu virus that seems to have jumped directly from birds to humans

in 1918.

In 1957, another pandemic originated in China and spread rapidly in Southeast Asia,

taking hence the name of Asian. The virus responsible was identified in the subtype

H2N2, new to humans, resulting from previous human H1N1 virus that was remixed with

a duck virus from which it received the genes encoding the H2 and N2. This pandemic

took eight months to travel worldwide and caused one to two million victims.

The 1968 pandemic was the mildest of the twentieth century and began once again

to China in July 1968. From there it spread to Hong Kong, where more than half a

million people fell ill, and in the same year reached the United States and the rest of

the world. The virus was identified in subtype H3N2, a mutation of the H2N2 virus in

1957. Estimates of casualties range from 750,000 to 2 million people worldwide (34,000

in the U.S.) in the two years (1968-69) of its activity.

Given these facts (and the whole records of pandemics in history [112]), it is not surpris-

ing that the public health organizations are concerned about the appearance of a new

deadly pandemics.

However, in recent decades there have been many cases of false or exaggerated informa-

tion about epidemics. One example if the Swine flu of 1976, or the Avian flu in 1997

where a United Nations health official warned that the virus could kill up to 150 million

worldwide [109] or the more recent 2009 H1N1 flu, during whose outbreak the U.K. De-

partment of Health warned about 65000 possible deaths as reported by the Daily Mail

in 2010 [113]. Fortunately these fears did not realized.

These catastrophic scenarios and the extent of their impact on the economic and social

contexts induced a reflection on the method used to forecast the evolution of a disease

in real world. It is well known that in deeply connected networks (and in particular in

scale-free ones without strong compartmentalization) the epidemic threshold of standard

epidemic modeling is vanishing [114–118]. Indeed, lazzarettos [119] experience first in in

Venice and then in many ports and cities was so successful in the absence of effective

treatments because it was able to break the contact network. Indeed, the pest was last

observed in Venice in 1630, whereas in southeastern Europe, it was present until the

19th century [120].

However, the last deadly pandemics of pest in Europe happened in 1820 [112], and world-

wide in Vietnam in the 60’s; the last pandemic influenza, Hong Kong flu, in 1968-1969.

In other words, the last rapid deadly pandemics happened well before the appearance
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of the highly-connected human networks. We are here interested in diseases for which

no vaccination is possible.

Is the absence of “modern” pandemics related to higher prevention efforts, more accurate

hygiene and better health services or is it related to the influence of information on the

effective infection rate of diseases?

Clearly, the public health systems put a lot of efforts in trying to make people aware of the

dangers connected to hygiene, dangerous sexual habits and so on. However, the current

worldwide diffusion of large-scale diseases (HIV, seasonal influenza, cold, papilloma virus,

herpes virus, viral hepatitis among others) is deeply related to their silent (and slow)

progression or to the assumption (possibly erroneous) or their harmlessness.

Therefore, in order to accurately modeling the spreading of a diseases in human societies,

we need to take into account the perception of its impacts and the consequent precautions

that people take when they become aware of an epidemic. These precautions consist in

changes in personal habits, vaccination or modifications of the contact network.

In a previous work [121], some of us investigated the influence of the risk perception in

epidemic spreading in the case in which the network of contacts is not affected and no

vaccination is possible, so the only modification is through a change in personal habits.

We assumed that the knowledge about the diffusion of the disease among neighbors

(without knowing who is actually infected) effectively lowers its infectivity. We studied

the worst case of an infection on a scale-free network with exponent γ = 2 and we showed

that in this case no degree of prevention is able to stop the infection and one has to take

additional precaution for hubs (such as public officers and physicians). We extend here

the investigation to different network structures, on order to obtain a complete reference

frame. We investigated also the case in which the risk perception of being infected was

function of the global information (e.g. media) and the fraction of neighbors infected

nodes [121]. In this model there are always a finite level of precaution parameter for

which the epidemics go extinct.

Here, we consider an important factor of modern society: the fact that our information

no more comes mainly from physical contacts nor from broadcast media, but rather from

our “virtual” contact network [122–124]. A recent study, State of the news media for

the United States [125], highlights this phenomena. It shows the extent of the influence

of social networks, for what concerns subscribers who can read news published by news-

papers. The 9% of the population claims to inquire “very often” through Facebook and

Twitter and the seven out of ten members is addressed to articles (from newspapers and

other sources) by friends and family members.
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Figure 4.7: Distribution of connectivity degree of scale-free and random networks.

Scale-free (points) and random (stems) networks with N = 10000, m = 5, < k >=
2m = 10 (the solid line corresponds to a power-law with exponent γ = −3).

We are therefore confronted with news coming mainly from a virtual network. On the

other hand the real network of contacts is the environment where physical and biological

reactions take place. We extend our model to the case in which the source of information

(the virtual contacts) does not coincide with the actual source of infection (the real

contacts). This system is well-represented as multiplex-networks [126–130], i.e., graphs

composed by M different layers in which the same set of N nodes can be connected to

each other by means of links belonging to M different classes or types, which represents

a specific case of Interdepent Networks [131, 132]. Recently, Granell et al. [133] have

pointed out the attention to an interesting scenario where the multiplex corresponds to

a two-layers network, one where the dynamics of the awareness about the disease (the

information dynamics) evolves and another where the epidemic process spreads.

The first layer represents the information network where people become aware of the

epidemic thanks to news coming from virtual and real contacts in various proportions.

The second layer represents the real contact network where the epidemic spreading takes

place.
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In this paper we want to model the effect of the virtual information for simulating

the awareness of the agents in the real-world network contacts. We study how the

percolation threshold of a susceptible-infected-susceptible (SIS) dynamics depends on

the risk perception (that affects the infectivity probability) when this information comes

from the same contact network of the disease or from a different network. In other

words, we study the interplay between risk perception and disease spreading on multiplex

networks.

We are interested in the epidemic threshold, which is a quantity that it is not easy to

obtain automatically (for different values of the parameters) using numerical simulations.

We extend a self-organized formulation of percolation phenomena [134] that allows to

obtain this threshold in just one simulation (for a sufficiently large system).

In Section 2 we present the multiplex network system. In Section 2 the self-organized

percolation method and in Section 3 and 4 we apply the method to the standard risk

perception problem and to the multiplex version, respectively. Conclusions are drawn

in the last section.

4.2.2 The network model

In this section we show our method for generating multiplex networks. First of all we

describe three different mechanisms for generating three different kind of undirected

unweighted networks, namely regular, random and scale-free networks. Let us denote

by aij = 0, 1 the adjacency (symmetric) matrix of the problem, aij = aji = 1 if there is

a link from j to i and zero otherwise. We shall denote by ki =
∑

j aij the connectivity

of site i and by j
(i)
1 , j

(i)
2 , . . . j

(i)
ki

its neighbors (ai,nj = 1). For all these mechanisms we

define the number of links m of the incoming node. Here m is a parameter controlling

the average connectivity degree < k >= 2m. Then at time t = 0 we have fully connected

networks composed by N(0) = m+ 1 nodes.

• Regular: for generating regular networks of N nodes at time t + 1 the incoming

nodes will link to the closest m nodes. For instance if we define m = 2, at time

t = 0 the network is composed by nodes 1, 2, 3 fully connected, then at time t+ 1

the new node 4 will link to nodes 2 and 3 and so on until the closing of the circle

where the node 1 will receive two more links from nodes N and N −1. In this way

all the nodes will have a connectivity < k >= 2m.

• Random: starting from N(0) = m + 1 nodes at t + 1 the incoming node will like

with an uniform probability p to m different nodes: i.e. the algorithm is developed
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Figure 4.8: Clustering coefficient (y-axis) as function of transitivity parameter pt.

The three different lines correspond to three random networks composed by N = 10000
nodes and average connectivity degree < k >= 4, 10, 20 as shown in the legend.

for avoiding self-loops and multiple links. So the total number of links in the

networks will be L = 2 ·m ·N and the average connectivity degree is defined by:

< k >=
1

N

N∑
i

ki =
1

N
2mN = 2m. (4.14)

The probability distribution of random networks is Possonian, P (k) = zke−z

k! , where

z =< k >.

• Scale-Free: they are generated following the so-called Barabási–Albert model [135].

Also here we start with m fully connected nodes, then at each time step each node

establishes m links according to the following mechanism:

1. pick a random node in a network (rn);

2. link to a random adjacent node of rn (if not already connected);

3. repeat 1, 2 until it makes m links.
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Figure 4.9: Example of multiplexes generated with our method.

(a) Rnet and (b) Gnet are both networks of N = 20 nodes and < k >= 4. (c) Multiplex
networks where the Virtual network (Vnet) is given by the mixing of (a) and (b) with
pr = 0.5.

this mechanism allow us to generate scale-free networks (P ∼ kγ) with exponent

γ = −3. Also in this case, the total number of links is L = 2 · m · N and so

< k >= 2m.

Now we can turn the problem of generating networks by controlling the clustering coef-

ficient. We remember that the clustering coefficient is a function of the number of local

triples. Following the definition of Barrat et al. [7], the clustering coefficient C is defined

as the average of the local clustering coefficients ci:

C =
1

N

N∑
i

ci =
1

N

N∑
i

 1

ki(ki − 1)

∑
j,h

aijaihajh

 , (4.15)

where ki is the connectivity degree of node i. Then in order to increase the number of

triples in our model we simply define a transitivity parameter pt which is the probability

to link to the adjacent nodes of the first selected nodes instead of another random node.

In the Figure4.8 we show that the clustering coefficient increases decreasing the average

connectivity degree < k >.

4.2.3 Multiplex network model

Now we can turn the problem to generate multiplex networks. In particular we are

going to generate systems where the multiplex is given by two networks that we call Real
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(Rnet) and Virtual (Vnet) networks. For doing that we first generate the real network

by choosing one from regular, random or scale-free. The we generate a Ghost network

(Gnet) chosen also in this case from the our three benchmark networks with same average

connectivity < k >= 2m. We define a probability pr for which each node iv in Vnet links

with probability 1− pr to all the adjacent nodes of ir in Rnet and with probability pr to

all the adjacent vertices of ig in Gnet. In this way for pr = 0, av(i, j) = ar(i, j); viceversa

for pr = 1, av(i, j) = ag(i, j); where ar(i, j), ag(i, j) and av(i, j) are respectively the

adjacency matrices of Rnet, Gnet and Vnet. This procedure allow us to study the effect of

the difference between the Rnet where the epidemic spreading takes place and Vnet which

is the information network where actors become aware of the disease (i.e. they evaluate

the perception of the risk of being infected). An example of multiplexes is reported in

the Figure4.9.

4.2.4 The self-organized percolation method

Here we show a self-organized percolation method that allow to obtain the critical value

of the percolation parameter in a single run. We consider a SIS problem and the (di-

rected) percolation direction is time (bond percolation). The dynamics of the SIS model

is described by the following differential equations:

ds

dt
= −τis+ γi,

di

dt
= τis− γi (4.16)

where i and s correspond to the fraction of infected and susceptible individuals while

τ and γ are the infection and the recovery rates. Let us assume γ = 1. Let us denote

by xi(t) = 0, 1 (0 =healthy, 1 =infected), the percolating variable and by p the control

parameter (percolation probability). Considering p is fixed, the stochastic evolution

process for the network is defined as

xi(t+ 1) =
∨

j=j
(i)
1 ,...,j

(i)
ki

[p > rij(t)]xj(t) (4.17)

where ∨ represents the OR operator and the multiplication represents the AND. The

square bracket represents the the truth function, [·] = 1 if “·”” is true, and zero otherwise.

The quantity rij(t) is a random number between 0 and 1 that varies with i, j and t. We

want to derive an equation for pi(t), which is the minimum value of p for which xi(t) is

infected. We can replace xi(t) by [p > pi(t)]. (4.17) becomes

[p > pi(t+ 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[p > rij(t)][p > pj(t)]. (4.18)
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Figure 4.10: Cumulative frequency distribution of the infected individuals for the SIS
dynamics achieved with our self-organized percolation method for different networks.

In x-axis there is the probability τ to be infected while on the y-axis the fraction ρ of
infected individuals (realizations are averaged over 100 simulations).

Now [p > a][p > b] is equal to [p > max(a, b)] and [p > a] ∨ [p > b] is equal to

[p > min(a, b)], therefore Eq.4.18 becomes

[p > pi(t+ 1)] =

p >
 MIN
j=j

(i)
1 ,...,j

(i)
ki

max
(
rij(t), pj(t)

) , (4.19)

and therefore we get the equations for the pi’s

pi(t+ 1) = MIN
j=j

(i)
1 ,...,j

(i)
ki

max
(
rij(t), pj(t)

)
. (4.20)

Let assume that at time t = 0 all sites are infected, so that xi(0) = 1 ∀p. We can

alternatively write pi(0) = 1 (since the minimum value of p for which xi(0) = 1 is

one. We can therefore iterate Eq. 4.20 and get the asymptotic distribution of pi. The

minimum of this distribution gives the critical value pc for which there is at least one

percolating cluster with at least one ”infected” site at large times. As usual, t cannot be
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Figure 4.11: Evolutionary process of the direct percolation.

The case of the regular network with < k >= 2.

infinitely large for finite N otherwise there will be surely a fluctuation that will bring the

system into the absorbing (healthy xi = 0) configuration. A schematic representation of

this modus operandi is illustrated in the Figure 4.11. In Figure 4.10 we show the results

of the self-organized percolation method for the SIS dynamics over different networks:

in particular for regular networks with k = 2 (pc = 0.644, compatible with the results of

the bond percolation transition in the Domany-Kinzel model [136]), random networks

with mean connectivity degree < k >= 6 and < k2 >= 39 (pc = 0.165) and for scale-free

networks (< k >= 6, k2 = 200) with γ = −3 (pc = 0.0715) which can be compared with

other well-known results [114–118].

4.2.4.1 Risk perception

Now, let us apply the method to a more difficult problem, for which the percolation prob-

ability depends on the fraction of infected sites in the neighborhood (risk perception).

We define the infection probability q as

q = τ exp
(
−J · s

k

)
(4.21)

where τ is the bare infection probability, s is the number of infected neighbors and

k is the node connectivity. In this case we want to find the minimum value of the
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Figure 4.12: Schematic phase diagram and results for the risk perception.

(a) The perception threshold Jc (y-axis) separates two regions: one in which for values
of J ≥ Jc it is possible to stop the spread of the disease and one for which for values of
J < Jc the is system is not able to avoid the epidemic spreading. (b) (log x) Critical
values of the precaution level Jc (y-axis) increasing the bare infection τ (x-axis) for
different networks (� regular, • random and � scale-free). Results are averaged over 10
simulations.
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parameter J for which there is no spreading of the infection at large times. The quantity

[q > r] = [τ exp(−Js/k) > r] is equivalent to [J < −(k/s) ln(r/τ)]. Therefore Eq. 4.18

is replaced by

[J < Ji(t+ 1)] =

=
∨
j=j

(i)
1 ,...,j

(i)
ki

[
J < −ki

si
ln
(
rij(t)
τ

)]
[J < Jj(t)]

(4.22)

where

si ≡ si(J) =
∑

j=j
(i)
1 ,...,j

(i)
ki

xj =
∑

j=j
(i)
1 ,...,j

(i)
ki

[Jj(t) ≥ J ]. (4.23)

So
[J < Ji(t+ 1)] =

=
∨
j=j

(i)
1 ,...,j

(i)
ki

[
J < − ki

si(Jj(t))
ln
(
rij(t)
τ

)]
[J < Jj(t)]

(4.24)

and therefore

Ji(t+ 1) =

= MAX
j=j

(i)
1 ,...,j

(i)
ki

min
(
− ki
si(Jj(t))

ln
(
rij(t)
τ

)
, Jj(t)

)
.

(4.25)

Analogously to the previous case, the critical value of Jc is obtained by taking the

maximum value of the Ji(t) for some large (but finite) value of t. The results of the

method are reported in Figure 4.12 for different networks, increasing the probability

of infection τ . Results are quite interesting if compared with the simple SIS dynamics

(Figure 4.10) here we are able to stop the epidemic increasing the bare infection τ until

τ = 1. Considering for instance the case of random networks with < k >= 6 in which

we found a critical value of τc = 0.165 (Figure 4.10) while in Figure 4.12 we observe

that after that value of τc we need to adopt a precaution level J > 0 in order to stop

the spreading of the disease. The same consideration can be done also for the other

scenarios.

4.2.4.2 Virtual risk perception

We can now turn to the problem of computing the critical value Jc if the perception is

computed on tne information network that is different from that of the real infection.

Here the perception si is computed on the neighbors j̆(i) on the information network.

The perceived number of infected neighbors depends on how many, in the information



Epidemic 95

r

Figure 4.13: Schematic phase diagram for the virtual risk perception.

The perception threshold Jc separates two regions: one in which for finite values of J it
is possible to stop the spread of an epidemic and one for which there are no values of J
able to avoid the epidemic spreading. On the y-axis there is the difference pr between
the real contacts network and the virtual one; while on the x-axis there is the bare
infection probability τ .

network, own Jj larger than that computed in the real network, i.e.,

Ji(t+ 1) = MAX
j=j

(i)
1 ,...,j

(i)
ki

min

(
− ki

s̆i(Jj)
ln

(
rij(t)

τ

)
, Jj(t)

)
, (4.26)

where

s̆i(J) =
∑

j̆= j̆
(i)
1 ,..., j̆

(i)

k̆i

[J j̆ ≥ J ]. (4.27)

In other words: for any value of J in the real neighborhood one computes how many of

the information neighbors j̆ have J j̆ ≥ J . This is the perceived value of the risk. A

schematic phase diagram for the risk-perception in modelling SIS dynamics in multiplex

networks is reported in the Figure 4.13 where it is possible to catch the most interesting

point of this paper. In particular, by increasing the difference d between the information

network and the real one (e.g., by increasing the weight of the virtual network on the

information dynamics) the stopping of the infection spreading becomes harder to achieve
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Figure 4.14: Risk Perception in multiplex networks.

(a) Rnet scale-free and Gnet random networks with < k >= 6.(a) Rnet random and Gnet
scale-free networks with < k >= 6. Here 1000 corresponds to ∞. In both the simulated
scenarios we can observe a drastic phase changing between white area in which there
are no values of Jc able to stop the epidemic and the color area where for finite values
of Jc it is possible to avoid the system’s percolation.
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(and finally impossible). The effective results of the self-organized percolation method

on two different scenarios are reported in Figure 4.14. We can notice that the general

trend is that, with the increasing of the difference d among the information network and

the real one it becomes harder to stop an epidemics. However, it seems that, unless

the case in which the real contact network is scale-free, there is always a finite value

of the bare infection probability τ for which the infection is stoppable, which confirms

the evident fact that a sufficient level of hygiene, more effective drugs and better health

services (that contribute to lowering τ) are fundamental elements also in our web 2.0

society.

4.2.5 Final remarks

In conclusion, we have studied the effects of virtual risk perception in a SIS model

in multiplex networks. The purpose of this work was to demonstrate how the virtual

information can be counterproductive in the case of epidemic spreading in the real world

networks. These effects are modulated by two parameters, J and pr that respectively

represent the precaution level and the mixing parameter between the real networks and

a ghost network for generating the multiplex environment. We found that increasing the

value of pr there are not finite values of Jc that make the epidemics go extinct. Finally,

we proposed a self-organized percolation method for detecting the critical values of

parameters in the case of both single-layer and multiplex networks.





Chapter 5

Conclusions

In this thesis we have proposed pioneer methods for analysing both the structure and

dynamics of complex networks.

Community detection

We described an algorithm to extract communities structures in a network from a local

point of view using algorithms inspired by a competitive interaction. The nonlinear

part of this method, responsible for the actual elaboration of information, is inspired

by a chemical/ecological competition model [36]. There is not a unique definition of

a community, so an exploratory algorithm, like the one that humans have presumably

developed during their evolution, should present different clustering for different values

of the parameters, or for different iterations.

In a first implementation we adopted a frequency-based approach and an unbounded

memory at the level of nodes. Unbounded memory means that the node’s state vector

Si is not been limited and it could potentially reach a size equal to the network size N .

Despite this, the expansion and normalization phases are sufficient to avoid this problem.

Nevertheless it is very important to explicitely limit the computational resources of the

node, as suggested by Simon in 1955 [73], increasing both the ecological plausibility

of the model and the insights which drive the algorithm design. The first results that

we obtained are promising. The method provides a natural “scanning” of the various

clustering levels. Moreover, our method can be naturally applied to weighted graphs. We

have demonstrated, trough the use of information entropy, that our algorithm efficiently

discovers all cluster levels for general networks. We believe that the local algorithm

procedure will not only allow to study much larger networks but also to mimic single

human behavior in social noetwork trough specific and simple heuristics decision rules.

99
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These results suggest that cognitive heuristics could be defined as those mechanism

that allow humans to optimize those parameters in order to maximize the gathered

information from the environment. Following this assumption, the future works will

investigate what kind of computational procedures could be used to mimic this human

behavior.

We also applied this method to the problem of discovering communities also in dy-

namic networks. Given the growing interactions between mobile devices and humans we

focused our attention on the importance of the spreading and elaboration of the informa-

tion which has a crucial role in the so-called Cyber-Physical-World [47]. We evaluated

it on different synthetic human mobility scenarios and we found that our method is

capable to detect not only the right communities from an individual viewpoint but also

to spontaneously reveal the role of each nodes inside the network (travellers and normal

agents). In the future, we would like to evaluate the scaling of our algorithms with the

system size and apply it to more realistic scenarios. In particular we plan to compare

our algorithm with others targeted to pocket switched networks (that use also global

information). We would also like to combine the geographic proximity with additional

social information so as to better catch the complex association between the real and

the virtual world.

Moreover, we proposed a computational scheme inspired by the workings of human

cognition. We embedded some fundamental aspects of the human cognitive system

into this scheme in order to obtain a minimization of computational resources and the

evolution of a dynamic knowledge network over time, and apply it to computer networks.

Such algorithm is capable of generating suitable strategies to explore huge graphs like the

Internet that are too large and too dynamic to be ever perfectly known. The algorithm

equips each node with a local information about possible hubs which are present in

its environment. Such information can be used by a node to change its connections

whenever its fitness is not satisfying some given requirements. Eventually, we have

compared our algorithm with a randomized approach within an ecological scenario for

the ICT domain, where a network of nodes carries a certain set of objects, and each

node retrieves a subset at a certain time, constrained with limited resources in terms

of energy and bandwidth. Finally we have shown that a cognitive-inspired approach

improves the overall networks topology better than a randomized algorithm.

In addition we performed a more complex heuristic for testing this method in real bi-

ological networks. Previous have analyzed the cluster organization of the cat cortical

network using both traditional multidimensional scaling methods and evolutionary op-

timization algorithms. Interestingly, the evolutionary optimization principle of previous

works was based on the modularity measure used to find communities in network with
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global algorithms. In this thesis, we deepened this point taking into account differ-

ent community-detection algorithms. We compare the performances of NetExplorer, a

local information dynamics algorithm for detecting communities in networks, with six

well-known community detection algorithms: Infomap, Hierarchical Infomap, Louvain,

Modularity Optimization, Label Propagation and Oslom. The results indicate that our

method (NetExplorer) is able to detect the four functional clusters where misattributions

of some areas are explained by their multimodal function. Results have been discussed in

terms of misattributions of brain areas to the different clusters emphasizing connections

which are explainable (or not) by a cognitive point of view.

The proposed method is able to identify communities in different networks, and we

showed that it is capable to identify communities also in dynamic networks. Moreover,

we demonstrated that our algorithm is a multi-levels solution that can be used to capture

the hierarchical community from a local viewpoint at any resolution. Experimental

results on the real-world and synthetic datasets shown that our algorithm achieves good

performance. Concluding we have shown that the adaptation of two heuristics, namely

IDA+LTE and Double Pruning are very effective to allow the method to be independent

of the two parameters m and α showing that it is competitive with respect to other

algorithms (see the review [90]).

Growing networks

We presented a new model of the evolutionary dynamics and the growth of on-line

social networks. The model emulates people’s strategies for acquiring information in

social networks, emphasising the local subjective view of an individual and what kind

of information the individual can acquire when arriving in a new social context. The

model proceeds through two phases: (a) a discovery phase, in which the individual

becomes aware of the surrounding world and (b) an elaboration phase, in which the

individual elaborates locally the information trough a cognitive-inspired algorithm. We

showed that model generated networks reproduce main features of both theoretical and

real-world networks, such as high clustering coefficient, low characteristic path length,

strong division in communities, and variability of degree distributions.

Epidemic Spreading

We studied the influence of global, local and community-level risk perception on the

extinction probability of a disease in several models of social networks. In particular,

we studied the infection progression as a susceptible-infected-susceptible (SIS) model

on several modular networks, formed by a certain number of random and scale-free
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communities. We found that in the scale-free networks the progression is faster than in

random ones with the same average connectivity degree. For what concerns the role of

perception, we found that the knowledge of the infection level in one’s own neighborhood

is the most effective property in stopping the spreading of a disease, but at the same

time the more expensive one in terms of the quantity of required information, thus the

cost/effectiveness optimum is a tradeoff between several parameters. Moreover we have

developed a self-organized percolation method for in both single-layer and multiplex

networks for the SIS model considering an important factor of the modern society:

he fact that our information no more comes mainly from physical contacts nor from

broadcast media, but rather from our “virtual” contact network. Here we demonstrated

that when the differences between the virtual and real networks is too elevate there no

finite values of precaution parameter Jc in order to avoid the spreading of a certain

disease.



Appendix A

Algorithms pseudocode

Algorithm 1 pseudocode for dynamic networks
1: m = 0.25, α = 1.25
2: for T = 1 to Tmax do
3: A(i, j, t)→M(i, j, t)→ S(i, j, t) From Adjacency index to state network
4: for i = 1 to N do
5: for j = 1 to N do
6: if S(i, j, t) > 0 then
7: C(i, j, t) i belong to community j with probability S(i, j, t)
8: p(i, j) = [S(i, j, t) + S(i, j, t− 1)]
9: end if

10: end for
11: end for
12: A(i, j, t)weight = A(i, j, t) +A(i, j, t− 1)
13: end for
14: Aweight/Tmax Weighted network
15: p/Tmax Community matrix
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Algorithm 2 pseudocode for double pruning heuristic
1: T , Tmax, tb = 0, t1 = 0, c = 0, a = 0
2: m = 0.2, α = 1.4
3: while t < T do
4: t = t+ 1; b = b+ 1;
5: if b < 2 then
6: tmax = b ∗ 50
7: else
8: tmax = b ∗ 10
9: end if

10: for t1 = 1 : ttmax do
11: a = a+ 1;
12: if a = b then
13: we evaluate the state vector of each node, then S1 is vector state of node 1, S2 of node 2 and so

on...
14: for i = 1 : N do
15: dxi = (Simax − Simin)/3
16: for j = 1 : N do
17: if Si,j < Simin + 2 ∗ dxi then
18: Si,j = 0
19: end if
20: end for
21: end for
22: we normalize S
23: else
24: S1 = mS0 + (1−m)M ′S0, S2 = Sα1
25: we normalize S
26: a=0
27: end if
28: end for
29: S = I(N)
30: end while
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larity versus Similarity in Growing Networks,” Nature, vol. 489, pp. 537–540, Sep

2012.

[84] E. M. Jin, M. Girvan, and M. E. J. Newman, “Structure of growing social net-

works,” Physical Review E, vol. 64, no. 4, 2001.

[85] A. Buscarino, L. Fortuna, M. Frasca, and A. S. Fiore, “A new model for growing

social networks,” Engineering. Complexity in, vol. 0, pp. 103–105, 2010.

[86] D. J. Watts, P. S. Dodds, and M. E. J. Newman, “Identity and search in social

networks,” Science, vol. 296, pp. 1302–1305, 2002.

[87] T. G. Brown, “Cognitive pruning in foreign language teaching,” The Modern Lan-

guage Journal, vol. 56, no. 4, pp. 222–227, 1972.

[88] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 u.s. elec-

tion: divided they blog,” in Proceedings of the 3rd international workshop on Link

discovery, LinkKDD ’05, (New York, NY, USA), pp. 36–43, ACM, 2005.

[89] “The koblenz network collection.” //konect.uni-koblenz.de/. Accessed:

05/05/2012.

[90] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5,

pp. 75 – 174, 2010.

[91] M. Newman, Networks: An Introduction. New York, NY, USA: Oxford University

Press, Inc., 2010.

[92] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics and endemic states in

complex networks,” Phys. Rev. E, vol. 63, p. 066117, May 2001.
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