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Chapter 1. 

Introduction: conservation science, 

biodeterioration and nanotechnology 

1.1 Outline 

 

This thesis is the result of a work that has the purpose to find innovative long-

term solutions to biodeterioration problems of stone artworks, i.e. to damages caused 

by microorganisms on lithic Works of Art. 

Since the floods that devastated Florence and Venice in 1966, conservation 

science has been based on the paradigm that good results can be obtained only if an 

appropriate analytical characterization of both the artistic object and the proposed 

remedy is performed, in order to conceive adequate solutions in terms of durability 

and compatibility with the materials (Giorgi et al., 2010). 

In this scenario, nanotechnology offers a new reliable way to restore and 

preserve artworks, as it enables to specifically tailor proper remedies to each case 

study. In particular, certain nanoparticles (NPs) are known to constitute very 

interesting antimicrobials to be used in several fields, including the preservation of 

different surfaces to the attack of degrading microorganisms (Ruffolo et al., 2010; 

Ditaranto et al., 2011; Wang et al., 2013). The outstanding potentials shown by NPs 

are due to their high surface-to-volume ratio with respect to the bulk material, which 

confers them very particular physico-chemical characteristics. 

Step by step, in this thesis work it has been studied the potentials of two 

typologies of NPs as antimicrobial agents. First, the NPs were synthesized and 

characterized; second, the NPs were surface modified with a linker able to graft them 

to the lithic substrate; third, the antimicrobial activity was assessed through 

microbiological tests. 

Among the metal oxides or metallic NPs featuring antimicrobial behavior, in 

this dissertation the attention was focused on titanium dioxide and silver 

nanoparticles (TiO2 NPs and AgNPs, respectively), whose general characteristics and 
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antimicrobial mode of action are widely discussed in Chapter 2. The same chapter 

also deals with the chemistry of alkoxysilanes, as it was taken advantage of their 

reactivity to surface modify the NPs in order to be grafted to the rocky surface.  

The efficacy of the proposed nanosystems toward the inhibition of microbial 

viability was evaluated mainly toward a common biodeteriogen of stone surfaces, 

Bacillus subtilis, using both classical and specifically tailored microbiological 

methods. Serena stone was chosen as reference lithic substrate, being commonly 

used for artistic expression in Tuscany. Brief discussion about B. subtilis (and some 

other microorganisms used) and Serena stone is also presented in Chapter 2. 

Chapter 3 reports about the chemical synthetic procedures and experimental 

methods used to characterize the proposed nanosystems. A specific subsection is 

associated with microbiological cultural techniques and with the test typologies 

performed to assess the NP antimicrobial activity. 

Chapter 4 is divided in two main sections that widely discuss the results 

obtained using either titanium dioxide or silver nanosystems. In each section, the first 

part deals with chemical synthesis and characterization results, the second part 

describes microbiological results. 

Conclusions and future perspectives are summarized in Chapter 5. 

The Annex is devoted to introduce the fundamentals of the main 

characterization techniques used along this thesis work.  

The following paragraphs (Chapter 1) deal with general description of 

biodeterioration processes and address common and innovative approaches to 

conservation science. It is in fact introduced the breakthrough of nanotechnology in 

science of conservation of cultural heritage. 

Information about the approach followed to study the proposed nanoremedies 

are given in the last paragraph of Chapter 1, where the aim of the project is 

discussed. 
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1.2 Science of cultural heritage conservation 

 

During the last decades, scientific community have become seriously aware of 

the need to preserve our huge cultural heritage, as its conservation is fundamental for 

conveying to future generations our culture and traditions. 

This thesis work is part of a project that has the aim to find adequate long-term 

remedies to the biological degradation of stone artifacts. Such conservation 

treatments can be conceived only if the degradation mechanisms and the 

characteristics of the proposed remedy are fully understood. That is the only way to 

develop appropriate and compatible restoration methodologies and achieve the goal 

to transfer to future generations the world cultural heritage that we have inherited 

from the past. 

What is generally referred to as “conservation treatments” are all the 

interventions aimed at cleaning, restoring and protecting cultural artifacts. The 

scientific approach to that subject characterizes modern conservation science, 

originated from the emergency situation that followed Florence and Venice floods in 

1966. In that contingency, the research for new conservation methods resulted 

dramatically stimulated. Since that time, the research activity in conservation science 

has been based on the paradigm that the most important prerequisites to obtain 

excellent results are the reversibility of the treatment, its durability and the 

compatibility of all the materials (Baglioni et al. 2009; Giorgi et al., 2010). 

Science of cultural heritage conservation is a discipline in its very infancy and 

represents an interesting scientific challenge, requiring the collaborative efforts 

between experts of different fields, ranging from chemists, microbiologists, 

physicists or material scientists. Given the complexity of the subject, it is not 

sufficient that scientists are aware of the conservation problems, but it is conversely 

very important to sensitize general public, policy makers, private or public 

institutions and funding agencies that massive efforts have to be undertaken in order 

to limit damages to relevant parts of our history. 

Historic monuments, paintings, manuscripts, textiles, archeological woods and 

stone artifacts are some examples of the objects that need to be preserved from 
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deterioration. Natural aging and human related events act in synergy to put cultural 

heritage at risk. With its multiple activities, mankind contribute to degradation 

problems inducing air pollution (SO2, NOx, VOC), acid rains and, more directly, 

carrying out incorrect conservation treatments. On the other hand, natural aging of 

the artifacts is caused by the balance of weathering agents and environmental 

conditions, such as wind, sunlight, temperature, rain, marine aerosols, dust and 

biological deterioration (Papida et al., 2000). The problem that makes so hard to find 

adequate and durable conservation treatments lies in the fact that degradation 

processes and mechanisms are not precisely known. 

 

1.3 Biodeterioration 

 

Biodeterioration is referred to as the damages and changes in material 

characteristics caused by microorganisms (Guiamet et al., 2013). The term 

“biodeterioration” was first defined by Hueck (1965) as “any undesirable change in 

the properties of a material caused by the vital activities of living organisms”. 

Microbial deterioration, either of a common surface or of a cultural heritage object, 

occurs through several steps. A single species or a community of species establish on 

a surface and, under favorable conditions, they undergo cellular division and create 

cell-to-cell communications that eventually lead to the formation of a “biofilm”, a 

complex community of microorganisms, dead or alive, embedded in their secreted 

metabolic products and attached to the surface. That process is referred to as 

“biocolonization”, and is generally initiated by bacteria, the first organisms to foul 

exposed surfaces through adhesion, cell growth and biofilm formation. The biofilm 

formation represents a natural stationary phase of bacterial growth in which bacterial 

cells physiology is changed by increasing the production of secondary metabolites 

(Lopez et al., 2010). Bacteria adhesion to solid surfaces is governed by nonspecific 

interactions, such as electrostatic, van der Waals and Lewis acid-base interactions. 

The initial adhesion phase is affected both by the metabolites produced by bacteria 

and by surface properties, such as roughness, porosity, chemical structure, 

hydrophobicity and surface charge (Faille et al., 2002; Li and Logan, 2005). It is the 
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subsequent irreversible adhesion process that leads to the biofilm formation, through 

the synthesis of extracellular polymeric substances (EPS). EPS are responsible not 

only for cell cohesion and their surface adhesion, but also play the key role to 

enclose and shield the community from desiccation and erosion, and serve as a 

reservoir of nutrients and energy storage. Biofilms also have the role to balance 

moisture changes and protect microorganisms from extreme environments (UV 

radiation, pH shifts, osmotic shock) and toxic impact of salts and heavy metals 

(Belie, 2010). Because of all the benefits that microbial communities obtain from 

biofilm formation, it is simple to understand why biofilms are ubiquitous: about 90% 

of all the microorganisms in natural environment occur attached to surfaces (Belie, 

2010). Once established, biofilms are extremely difficult to be eradicated (Costerton, 

1995; Urzi and Realini, 1998; Tommaselli, 2003) and they impact on human life in 

many ways, inducing detrimental effects on materials like medical devices, food-

processing equipments, industrial settings, buildings and cultural heritage objects.  

As long as biofilm growth causes enormous economic damages, it is very 

advantageous and challenging to minimize bacterial attachment to the surfaces and 

prevent the early stages of biofilm formation (Li and Logan, 2005). This thesis work 

has the aim to contribute in this direction. 

 

1.3.1 Deterioration of stone materials 

 

The use of stones as media for artistic expression has ranged from the 

construction of ancient monuments and historic buildings to statues and little objects. 

Stone artifacts are exposed to the action of physical, chemical and biological factors, 

along with the exposure to mankind-related activities that also contribute to their 

decay (Fig. 1). The resulting deterioration is associated with a consortium of 

weathering mechanisms that are greater than the actual sum of the individual action 

of each parameter (Papida et al., 2000). The relative impact of each factor varies 

according to the environmental conditions, the stone type and the preservation state 

of the object. As long as natural stones exhibit a wide range of mineral composition, 

texture and structure, also their ability to resist weathering is widely differentiate. 

The location of the artifact plays a crucial role in degradation as well, since outdoor 
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exposed objects degrade faster than the indoors due to rain, solar irradiation, thermal 

variations and wind. Indoor located artifacts are conversely mainly degraded by 

microorganisms carried in from outdoor through ventilation and visitors. 

Conservation interventions aimed at reducing microbial colonization involve 

cleaning actions and the application of biocides hopefully able to prevent, inhibit or 

slow down the occurrence of biodegradation in the future. 

 

 
Figure 1. Maya pyramids in the archeological site of Calakmul. It is evident the state of 

physico-chemical and biological degradation of the stone constituting the monuments. 

 

Physico-chemical degradation. The major physical degradation problems that  

affect stone matrix stability are related with the loss of mechanical resistance, 

fissuration, formation of salt efflorescences (crusts), deformations (thermal 

expansion-contraction of the minerals) and erosion. Chemical degradation is 

conversely associated with the detrimental effects of all the reagents that can attack 

rock mineral constituents, causing chemical corrosion, oxidation/dehydratation 

reactions or the dissolution of some mineral elements (Guiamet et al., 2013). For 

example, alkalies degrade silicate minerals, especially granitic rocks; acid solutions, 

on the contrary, react with carbonates and dissolve this way the primary constituents 

of calcite and dolomite rocks. 
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Biodeterioration. When the substrates colonized by microorganisms are 

cultural heritage materials, biodeterioration becomes not only an economic but also a 

social and cultural problem. One of the degradation consequences is in fact the loss 

of the original message of the object, i.e. of its cultural and artistic value. It was 

estimated that ~30% of the visible alteration on building materials is due to microbial 

impact, responsible for aesthetic, biogeophysical and biogeochemical decay (Sand, 

2001).  

Lots of investigations were oriented to elucidate the essential role played by 

microorganisms in the deterioration of different kind of artworks, either paintings, 

woods, papers, textiles or stones, and it emerged that their degradative capability is 

related with metabolic characteristics and with the ability to form biofilms (Palmer et 

al., 1991). Moreover, the degree of colonization depends on the “bioreceptivity” of 

the lithic substrata, defined as the intrinsic properties of the material (surface 

roughness, porosity and chemical composition) that affect the initial adhesion of 

microorganisms to the surface (Miller et al., 2012). For example, rough surfaces are 

usually colonized more quickly than smooth surfaces, since the irregularities 

constitute anchoring sites for microorganisms. The detrimental effects associated 

with the accumulation of biological deposit is referred to as “biofouling”, strongly 

dependent on environmental conditions. 

The consequences of microbial impact on the deterioration of porous inorganic 

material that constitute cultural artifacts have been widely acknowledged and 

reviewed (Warscheid and Braams, 2000). Microbial communities interact with 

mineral materials from the cleavages and fissures present on the surface, and the 

biodeterioration process that follows strongly depends on the surface-invading 

microorganisms and the lithotype. 

Microbial colonization induce alterations that range from aesthetic and 

chromatic changes (i.e. pigmentation, discoloration, black crust or patina formation, 

stains and pitting) to the variation of physical properties (i.e. changes in water 

circulation and diffusivity, changes in thermohygric behavior, weakening of the 

mineral structure, disaggregation, detachments of materials, corrosion, powdering, 

cracks formation, exfoliation) (Gaylarde et al., 2003; Scherrer et al., 2009).  

Two types of biodeterioration can be considered: biogeophysical and 

biogeochemical. The former is defined as the mechanical damage caused by the 
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pressure exerted during biological growth and it is mostly regulated by the porosity 

of the rocks; it can result in surface detachments and increased porosity. The latter is 

caused by metabolic processes of the organisms on the substratum. It involves the 

release of organic agents (acids such as lactic, pyruvic, oxalic, succinic, acetic, 

glycolic, citric, formic, fumaric) and the consequences are determined by the 

chemistry of the minerals composing the stone artifact (Griffin, 1991; Warscheid and 

Braams, 2000; Macedo et al., 2009). 

 

Microorganisms involved in biodeterioration processes. Potentially, all types 

of microorganisms can be involved in biodeterioration processes, and nearly all 

naturally occurring substrates can be degraded (Belie 2010). Biodeterioration is not a 

process in which only one group of microorganisms is involved, and rarely a single 

species can be pointed out as entirely responsible of the biodecay. Opposite, close 

interactions between several groups can be found. The microorganisms most 

frequently implicated in biodeterioration events are bacteria, cyanobacteria, algae, 

fungi and lichens. They can either induce assimilative or non-assimilative decay: the 

former is promoted by microorganisms that use stone material as nutrient, the latter 

is originated by metabolites produced by microorganisms (Gaylarde et al., 2003). In 

the following paragraphs it is given a brief introduction to each category of 

microorganisms and their detrimental effects on stone surface. 

Bacteria can be primarily categorized as Gram-positive (Gram+) and Gram 

negative (Gram) on the basis of their cell-wall structure. Cell wall is designed to 

provide strength, rigidity and shape, and to protect cells from osmotic rupture and 

mechanical damages (Hajipour et al., 2012). Gram+ cell wall contains a thick layer 

of peptidoglycan, consisting of linear chains of polysaccharides cross-linked to form 

a three-dimensional rigid structure, very difficult to be penetrated. Gram cell wall is 

quite more complex, and comprises an external layer of lipopolysaccharide and a thin 

peptidoglycan layer between two membranes (outer and plasma membrane). The 

outer membrane is composed of a complex layer of lipids, lipopolysaccharides and 

proteins. Lipopolysaccharides are not as rigid as peptidoglycan and are negatively 

charged. Bacteria responsibility in degradation of stoneworks is related to the ability 
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to oxidize inorganic compounds (chemolithoautotrophic bacteria) and to the release 

of acids and metabolites (Lewis et al., 1987). 

Cyanobacteria and algae are photolithoautotrophic microorganisms. They use 

sunlight as energy source and release oxygen through the photosynthesis. The 

photosynthetic communities are very common on stone cultural heritage materials 

(generally evidenced by green to black stains) and are considered the pioneering 

inhabitants in stone colonization, as they can develop even when no organic matter is 

present. They also have an active role in supporting the growth of heterotrophic 

microorganisms, conditioning the surfaces and excreting nutrients (McNamara and 

Mitchell, 2005). The detrimental effects induced by cyanobacteria range from 

surface discoloration produced by their pigments to excretion of erosive metabolites 

(Gaylarde et al., 2012). 

Fungi are chemoorganotrophic organisms and they use organic substrates as 

energy source. Their detrimental effects are due to the release of organic acids or the 

oxidation of metal cations of the mineral lattice of the lithic substratum. In addition, 

fungal hyphae can penetrate beneath the stone surface and cause deterioration 

through their shrinking and swelling. They can also provide an entry for water, 

promoting its dangerous freeze and thaw cycles (McNamara and Mitchell, 2005). 

Lichens are symbiotic association of fungi (that in this association feed upon the 

nutrients produced by the algae) and algae or cyanobacteria (which gain minerals 

leached from the stone by fungal acids). 

The predominant role of photosynthetic microorganism (such as microalgae, 

cyanobacteria and lichens) in the deterioration of stone surfaces have been 

extensively studied by Miller and coworkers (Miller et al., 2009 and citations 

within). They reproduced in laboratory conditions the photosynthetic colonization of 

stones, studying the primary bioreceptivity of different lithotypes. 

Even though the microbial colonization commonly starts with phototrophic 

organisms, the establishment of heterotrophic microorganisms on the rocks is 

possible even without the pioneering participation of phototrophic organisms 

(Warscheid and Braams, 2000). 
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1.4 Nanotechnology and nanoparticles 

 

The first concept of nanotechnology was given by professor Feynman in his 

lecture “There’s plenty of room at the bottom” (Feynman, 1959), but the actual term 

“nanotechnology” was coined by Professor Taniguchi of Tokyo Science University 

in the year 1974 (Taniguchi, 1974) and describes the manufacturing of new materials 

at the nanoscale level (10-9 m). 

Nanostructured materials are attracting a great deal of attention because, 

especially if shape and size are controlled, they can achieve specific characteristics 

and reaction selectivity. As the dimensions decrease down to the nanoscale, materials 

present particular physical, chemical, electronic, mechanical, magnetic, thermal, 

optical and biological properties that differ pronouncedly from the bulk material. 

These properties are due to the large surface-to-volume ratio, the large surface 

energy, the spatial confinement and the reduced imperfections. 

The synthetic strategies to obtain nanosized material can be grouped in two 

main categories: “top-down” and “bottom-up” methods. In the top-down approach, 

bulk material is gradually broken down to nanodimensions using externally 

controlled microfabrication methods and specific tools to cut, mill and shape 

materials into the desired assembly. The top-down process to prepare, for example, 

inorganic particles consists in breaking down bulk solids into fine particles, either by 

mechanical approach or by thermal decomposition (mainly for ceramics 

manufacturing). This method suffers of the contamination of the particle surface with 

atmospheric gases or materials used for the mill, and cannot produce particles with 

size below a few microns, because of their tendency to re-aggregate (Baglioni and 

Giorgi, 2006). 

Bottom-up approaches, conversely, refer to the buildup of a material from the 

bottom, atom-by-atom, molecule-by-molecule or cluster-by-cluster, to assemble 

molecular structures in the nanometer range of dimensions. That requires controlled 

growth conditions that allow the regulation of the nanomaterial characteristics. This 

kind of approach is commonly used for chemical and biological synthesis of 

nanoparticles. 
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Among the nanosystems, nanoparticles (NPs) have a primary role. They are 

gaining an ever increasing importance in several fields due to the fact that, being 

constituted by clusters of a few thousands atoms, they show extraordinary 

intermediate properties between the molecular state and the bulk material. Particle 

size, morphology and composition can be manipulated to obtain end products with 

different and specifically controlled properties (if a bottom-up approach is used). 

A common synthetic pathway to obtain inorganic particles of oxides, 

hydroxides, metals or sulfides with nanodimensions is from water-in-oil 

microemulsion or reverse micelles. Micelles are used as nanoreactors capable to 

exchange the content of different droplets. This methods enables the reduction or 

precipitation in situ of the nanoparticles, whose final dimensions are dependent on 

the concentration of the reagents, the nature of the reducing agent as well as the 

relationship between the content of water and the surfactant of the microemulsion. In 

this case the final nanoparticles are stabilized by the surfactant and do not have the 

tendency to re-aggregate (Baglioni and Giorgi, 2006). 

Another common method to synthesize size- and shape-controlled inorganic 

nanoparticles is the sol-gel technique, that involves the phase transition from a liquid 

colloidal sol into a solid gel phase, usually starting from inorganic metal salts or 

metal-organic compounds, such as metal alkoxides. The sol-gel process transforms 

the precursor through hydrolysis and polymerization reactions to form a colloidal 

suspension (sol). The increase in viscosity of the suspension leads to the formation of 

a network (gel) by polycondensation and polyesterification reactions. By aging, gel is 

transformed into a solid mass, through the expulsion of the solvent from the pores. 

The gel is then converted into a polycrystalline powder or a dry gel through further 

drying and heat-treatment (Schmidt et al., 1994). 

Another common way to obtain inorganic NPs is through a solvothermal 

process. It requires a sealed vessel in which the solvents can be brought to 

temperatures above their boiling points, thanks to the increase in pressure. If water is 

the solvent, the process is referred to as  hydrothermal. This process is useful to take 

advantage of the increased solubility and reactivity of metal salts and complexes at 

high temperatures and pressures. Solvothermal processing allows many inorganic 

materials to be prepared at temperatures substantially below those required by 

traditional solid-state reactions. Unlike the cases of co-precipitation and sol-gel 



Chapter 1 – Introduction 
 

12 
 

methods, the products obtained by solvothermal reactions are usually crystalline and 

do not require post-annealing treatments. 

More recently it has been developed an innovative thermal treatment to obtain 

metallic or oxide nanoclusters, the flame-spraying. Using this method, nanoparticles 

synthesized from inverted micelles or microemulsions are introduced as aerosol onto 

a flame produced by a flame spraying system. In this step they lose the surfactant 

that initially stabilized them and can be deposited to be collected as powders (Bonini 

et al., 2002). 

However, the most simple and cheapest way to obtain NPs is probably through a 

precipitation reaction from a liquid phase. By changing the reaction conditions, such 

as temperature, reagent concentrations or aging time, it is possible to adjust size, 

shape, structure and composition of the particles (Baglioni and Giorgi, 2006). 

Nanoparticles have been successfully used in several fields by our research 

group: as agents for the delivery of therapeutic molecules (Bellissima et al., 2013 b), 

for DNA transfection for therapeutic purposes (Montis et al., 2012), for biosensors 

nanostructuring (Mariani et al., 2013), for the development of antimicrobic fabrics 

(Falletta et al., 2008), for innovative extrusion processes of cementitious materials 

(Ridi et al., 2013) or for conservation science purposes (Bonini et al., 2007; 

Domingues et al., 2013). 

 

1.4.1 Nanoparticles as antimicrobials 

 

Nanoparticles can be exploited as antimicrobials in many different fields, 

ranging from water and air disinfection to conservation of cultural heritage materials. 

The reason lies in the fact that whilst bacteria can be able to develop resistant strains 

toward metal ions and antibiotics, it is quite difficult that they get resistant to NPs 

(Gong et al., 2007). Among the antibacterial NPs can be cited some metal oxides as 

TiO2, ZnO, MgO, CuO as well as metal hydroxides (such as Ca(OH)2 and Mg(OH)2) 

and metallic nanoparticles (AgNPs, CuNPs) (Dong et al., 2011). 

The cytotoxic properties of each nanomaterial towards bacteria is dependent 

both on the type of NPs and on the bacterial strain. Regarding the typology of NPs, 

for example, the antibacterial effect of AgNPs is higher than CuNPs both against E. 
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coli (–) and S. aureus (+). Among common oxide NPs such as CuO, NiO, ZnO, and 

Sb2O3 used against E. coli or B. subtilis, CuO NPs have the highest toxicity, followed 

by ZnO, NiO and Sb2O3 NPs. As far as bacterial strain is concerned, E. coli (–) is 

more susceptible to CuO NPs then B. subtilis (+), and conversely S. aureus (+) and 

B. subtilis (+) are more susceptible than E. coli (–) to NiO and ZnO NPs (Hajipour et 

al., 2012). 

Nanoparticles exert their antimicrobial effect through lots of different routes, 

depending on their composition, surface characteristics and bacterial species. It is 

important to highlight that enteric bacteria are 1-3 m in length, and hundreds of NPs 

can accumulate on the bacterial cell surface. 

 

 
Figure 2. Mechanisms of toxicity of NPs against bacteria (Hajipour et al., 2012). 

 

NPs can attach by electrostatic interaction to the cell membrane and disrupt its 

integrity by direct contact. They can also interfere with electron transport 

mechanisms or induce nanotoxicity by generation of reactive oxygen species; the 

oxidative stress induced by free radicals damage essential proteins and DNA. 

Moreover, NP effect depends also on the toxic properties of the heavy metals by 

which the NP is composed. Some examples of heavy metals toxic to bacteria can be 

Cu and Zn, and their use resulted effective in the prevention of recolonization on 

clean surfaces (Wessel, 2003; Henriques et al., 2007). Another possibility of NP 

toxicity is the nitric-oxide-release, whose behavior relies on the delivery of NO to the 
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target (Hajipour et al., 2012). All the possible mechanisms of action of NPs toward 

bacteria are summarized in Figure 2. 

 

1.5 Traditional approaches in Conservation Science of 

stone artifacts 

 

Traditionally, conservation treatments on stone materials include interventions 

aimed at cleaning (transient intervention), restoring and protecting cultural artifacts 

(durable interventions). Very often though, even the use of consolidated procedures 

for a specific problem do not produce the desired result in the long period. For 

example, some drawbacks can arise i) when the treatment applied ages, ii) when the 

remedy is not durable enough or iii) when it amplifies the occurrence of other related 

deteriorations. In the following sub-sections some traditional approaches to different 

kinds of stone degradation (either chemical, physical or biological) are briefly 

described. 

 

1.5.1 Chemical and physical degradation 

 

As far as chemical and physical degradation is concerned, well established 

procedures can be applied. For example, to remove spots and other alterations it is 

commonly used the application of oxalic acid, sand blasting or oxygenated water. 

For the treatment of chips and cracks, it is common the fulfilling with plastic mass or 

white cement mixed with powder of the damaged rock. 

An interesting approach to consolidate carbonate lithotypes takes advantage of 

bioremediation. Microbial hydrolysis of urea (degraded to carbonate and ammonium) 

produces high amounts of carbonate within a short period of time; in presence of 

calcium ions, that results in calcium carbonate precipitation that acts as consolidant 

once a certain level of supersaturation is reached (Belie 2010). However, the most 

common practice for preserving stones is the application of polymeric consolidants, 

designed to penetrate beneath the stone surface and re-establish the cohesion between 

the deteriorated grains. Up to recent years, this kind of restoration consisted in the 
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application of different classes of synthetic polymers, especially acrylic and vinylic, 

as it was generally accepted that these substances could be removed at any time with 

no drawbacks. That assumption revealed not to be true, and nowadays the use of 

such polymers is subject to frequent controversies due to their non-reversible 

application and their performance limited in time. Afterwards, silicon-based products 

have been introduced as consolidants (Favaro et al., 2007), being able to restore the 

natural binder lost during the weathering processes and to increase the material 

mechanical strength. But also their use has some drawbacks, due to i) the enhanced 

hydrophobicity of the consolidated material, ii) poor effectiveness in carbonate 

stones, iii) significant cracking during shrinkage and drying (Mosquera et al., 2008; 

Sandrolini et al., 2012). 

The progressive deterioration of building materials treated with polymers have 

led to the new approach of performing comprehensive studies on the chemical 

deterioration of the proposed remedy prior to its application, in order to develop 

consolidation systems tailored to the nature of the stone to be treated. Moreover, if a 

stone artwork experiences also biodeterioration problems associated with loss of 

cohesion of its constituting material, the risk using polymeric organic consolidants is 

that they can be degraded by microbial community that, as a result, is stimulated in 

its growth and accelerates stone decay (Cappitelli et al., 2004). 

 

1.5.2 Biological degradation 

 

Conservators and restorers are coming to realize that also biodeterioration is a 

fundamental parameter to be controlled in order to preserve our cultural treasures. To 

do so, it is required an interdisciplinary approach aimed at understanding the 

environmental factors and the material properties implicated in the process of 

biogenic damage. 

Traditionally, the very first intervention facing with biodeteriorated materials is 

the mechanical cleaning (Tretiach et al., 2007). The second step relies on the 

synergic use of water repellents and the application of biocidal products. One of the 

critical factors that influence biocolonization of stones is in fact the water absorption, 

dependent on surface roughness, porosity and the presence of cavities. The use of 



Chapter 1 – Introduction 
 

16 
 

water repellents helps in the direction of reducing bioreceptivity, and the application 

of biocidal products is conversely intended to inhibit biological activity. 

Among the biocides, we can mention various inorganic and organic compounds, 

such as organosilicon, organotitanium, or phenolic, quaternary ammonium, copper, 

zinc, magnesium, tin, and boron compounds (Khamova et al., 2012). Biocide carriers 

are often based on epoxies or alkoxysilanes, traditional compounds used for stone 

consolidation (Khamova et al., 2012). Benzalkonium chloride is a quaternary 

ammonium salt very commonly used as a biocide for its cationic character. To 

enhance its activity, it is useful to take advantage of permeabilizers such as EDTA, 

polyethylenimine (PEI) or succimer (meso-2,3-dimercaptosuccinic), able to change 

the structure and permeability of target biological membranes (Alakomi et al., 2006). 

It has been reported that the use of quaternary ammonium salts as biocides may 

lower the water-repellent properties of the products applied, so that it would be 

important to develop single step applications of both water-repellent and biocide 

(Magoldi et al., 2000). 

The main problem related to the use of chemical biocides is their limited long-

term benefits. The rapid re-grow of microorganisms could be ascribed both to the 

development of resistance to common biocides and to the rain water washing. In 

addition, bactericides are generally not targeted to specific classes of microorganisms 

and they may represent a risk for environment and human health. 

 

1.6 Nanotechnology revolution in Conservation Science 

 

The real revolution in conservation field comes from nanoscience and 

nanotechnology. In the last decades, nanoscale materials have emerged in cultural 

heritage conservation scenario and have appeared as excellent durable remedies to 

solve many conservation debates that, up to their advent in this field, did not find any 

satisfactory solution. Nanotechnologies are usually considered to be involved only in 

miniaturization of systems or electronics, but that is far from being true. On the 

contrary, they contribute to lots of different fields such as chemistry, biology, 

physics, medicine and material science. Due to the exploitation of these new 
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technologies, also conservation science is maturing and it is getting lots of benefits. 

Borrowing methodological tools from scientific field makes possible the 

development of new generation of control strategies, respecting the physico-chemical 

characteristics of the material to be restored. This new approach is eventually 

intended to counteract or even revert the deterioration processes that threaten cultural 

heritage preservation. 

More specifically, it is colloid science that is playing the dominant role in 

providing new palettes of tools for conservation treatments. The application of 

nanotechnologies offers new reliable ways to restore and preserve artworks through 

the synthesis of systems specifically tailored to each case study, and may offer the 

possibility to solve conservation issues with long-term and substrate-compatible 

responses. 

 

1.6.1 General conservation issues 

  

Some of the most advanced applications of nanotechnology to conservation 

science are related to cleaning procedures. They are oriented not only to remove 

natural dirt and accidental contaminants from artworks, but also to remove the 

synthetic polymers applied during past restorations that have undergone loss of 

solubility and yellowing (Carretti, et al., 2007; Baglioni et al., 2009). These cleaning 

methods take advantage of micelles and swollen micelles dispersed in aqueous 

medium that work as nanocontainers of organic solvents able to dissolve polymers 

up to their complete removal from the work of art. The detergency capability mainly 

depends on the very large surface area of micelles and nanodroplets available for 

specific interaction with the polymeric coating. If the aqueous medium is not suited 

for the substrate to be cleaned, it is preferred to use oil-in-water microemulsions and 

micellar solution confined into gel network, with the possibility to make the gels 

responsive to external stimuli (Giorgi et al., 2010). Another innovative cleaning 

approach consists of magnetic particles associated with a permanent hydrogel that 

can be loaded with oil-in-water microemulsions to form a magnetically responsive 

system tailored for specific applications (Bonini et al., 2007). 
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An additional common conservation issue is represented by the deacidification 

of cellulosic materials, whose degradation, consisting in the chemical disruption of 

the cellulose polymer, is catalyzed by acidification processes. Innovative tools have 

been successfully used also in this field, getting rid of the traditional approach with 

alkaline aqueous solution that may cause the swelling of cellulose fibers and the 

leaching of associated compounds, such as inks. Conversely, the application of 

alkaline nanosized particles (such as Mg(OH)2 and Ca(OH)2) from non-aqueous 

dispersions (alcoholic solvents) have found to be particularly efficient for the 

preservation of cellulose-based materials (Baglioni and Giorgi, 2006). Another step 

forward in the direction of paper deacidification consists in the use of nanocomposite 

of Mg(OH)2–TiO2–hydroxyethylcellulose that, due to the intervention of the 

antimicrobial activity of TiO2 particles, increases the durability of paper by imparting 

fungal growth resistance, moderate alkalinity, mechanical reinforcement and UV 

protection (Wang et al., 2013). 

The powdering of the surface also constitutes a pervasive conservation issue that 

requires consolidation intervention. Through the use of new technologies, it has been 

implemented the application of alkaline-earth inorganic metal hydroxide NPs such as 

Ca(OH)2 and Ba(OH)2 (Giorgi et al., 2005; Poggi et al., 2010; Chelazzi et al., 2013) 

in place of classical consolidants that involve the use of silanes, acrylics or epoxy 

resins. Another alternative approach to the common consolidation treatments has 

been proposed by Mosquera et al. (2008) that synthesized particle-modified silica 

consolidant using a range of colloidal oxide particles with different colors in order to 

achieve the ability to tailor remedies whose color matches each stone under 

consideration. 

 

1.6.2 Biodeterioration issue 

 

The research of novel materials for the protection of artworks from the action of 

microbial communities may follow two main directions: the first is to develop 

techniques capable of preventing and inhibiting biodeterioration, the second is to 

improve the biocides to be used once the biodeterioration has occurred.  
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A successful approach for the prevention of biocolonization on stone surfaces is 

the research for suitable non-toxic active natural compounds to be incorporated in 

antimicrobial coatings (Villa et al., 2009). It was recently developed a mild biocide 

based on epoxy siloxane sol modified with a nanostructured biocide additive 

(nanoparticulate carbon denominated detonation nanodiamond). This remedy 

demonstrated to be environmentally safe and to produce biologically stable 

protective coating (Khamova et al., 2012). 

In a recent study it was analyzed an anatase treatment for preventing 

biodeterioration of mortars caused by phototrophic microorganisms (cyanobacteria). 

The result was satisfactory, as the anatase modified mortars displayed reduced 

cyanobacteria growth with respect to mortars treated with conventional biocide 

(Fonseca et al., 2010).  

Also the use of copper NPs provides new concepts for the lithic cultural heritage 

preservation. It was in fact recently reported (Ditaranto et al., 2010) on the role of 

copper-based nanocoatings as agents capable of acting both as a remedy and as a 

prevention tool against microbial proliferation. CuNPs mixed with a silicon-based 

product (commonly used as water repellent) and a consolidant formed a bioactive 

system to be applied on stone substrates. Similar results were obtained using nano-

Cu particles mixed with consolidants and water repellents for the prevention of 

biological growth on substrates with either low or high bioreceptivity. These 

mixtures hold promise for preventing re-colonization of stones after a conservation 

treatment (Pinna et al., 2012). 

Also the problem of microbial contamination of museums and archives has been 

recently dealt with the use of nanoparticles, in particular AgNPs. It was shown that 

AgNPs can be used as disinfectant for the surface of historical objects and archival 

documents (Gutarowska et al., 2012).  

It has been explored also the possibility to use photocatalytic semiconductor 

nanoparticles to obtain biocidal and protective coating for different surfaces. If the  

photocatalytic particles (ZnO, TiO2, CdS, Fe2O3, Bi2O3,) are in direct contact with 

microbes, once they are irradiated the microbial surface becomes the primary target 

of the initial oxidative attack, resulting in a decrease of cell respiratory activity and 

cell death. In a recent study (Ruffolo et al., 2010), ZnO and ZnTiO3 oxides were 

dispersed in a polymeric matrix (either acrylic or fluorinated, commonly used as 
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protective coatings for stone materials), and the growth inhibition of Aspergillus 

niger was assessed. It was obtained a novel coating technology, with hydrophobic 

and biocidal properties suitable for the restoration of stone materials. 

The exploitation of tools borrowed from nanoscience in the field of conservation 

science is still in its infancy, but it is growing really fast. The results obtained so far 

are really encouraging, as they are safe, durable and compatible with the substrates 

analyzed. 

 

1.7 Aim of the work 

 

In this thesis work we were interested in studying the potential use of different 

kinds of nanosystems to be applied on stone materials to inhibit their 

biodeterioration. The design of a surface coating able to prevent long term microbial 

colonization on stone artifacts is in fact still challenging and of great interest. 

Biocolonization has a relevant impact on the conservation of stone-based artworks, 

with consequences ranging from esthetic changes to physical and chemical 

deterioration. Our research was oriented to the use of nanoremedies physico-

chemically compatible with the substrate to be protected, in view of a non-invasive 

application and a long-lasting effect. We studied two kinds of inorganic 

nanoparticles, titanium dioxide (TiO2 NPs) and silver nanoparticles (AgNPs), whose 

antimicrobial activity, although exerted through different mechanisms, is well 

recognized. Briefly, TiO2 NPs need to be photoactivated to exert their antimicrobial 

activity, based on oxidative stress, whilst AgNPs do not need any activation and their 

biocidal activity is based on many different synergic routes. 

Bacteria are extensively involved in biodeterioration of lithic materials. Among 

them, even heterotrophic bacteria can establish on stones as primary colonizers 

without the pioneering participation of autotrophic organisms (Warscheid and 

Braams, 2000). Gram+ bacteria, in particular, are the most frequently found on stone 

materials. Among them, organisms of the very common Bacillus and Bacillus-related 

genera (spore forming chemoorganotrophic bacteria) have been frequently identified 

on monumental stones and their potential degrading activity was demonstrated also 
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through laboratory experiments (Stassi et al, 1998; Scheerer et al., 2009). For this 

reason, B. subtilis was the main bacterial strain used along this thesis work to test the 

efficacy of the proposed nano-remedies in inhibiting bacteria viability. 

We synthesized TiO2 and AgNPs in the desired crystallographic form and shape, 

respectively, and we evaluated, through microbiological assays, their potential use as 

antimicrobials. The NPs were surface modified in order to make them able to be 

grafted to a stone surface and not to be washed off by rain. Briefly, the aim of the 

work was to alter the bioreceptivity of the lithic surface by treating it with a 

nanostructured antimicrobial agent. 

As grafting agents (i.e. linkers between the NPs and the rocky surface), it was 

taken advantage of the well known reactivity of alkoxysilanes toward lithic 

materials. The reference lithotype used was Serena stone, an ornamental sandstone 

very diffused especially in Florentine buildings. 

This dissertation is divided in two main sections, the former concerning TiO2 

NPs and the latter regarding AgNPs. Each of these sections is further divided in a 

chemical and a microbiological part. 

 

TiO2 NPs. The first part of the work was focused on the synthesis and 

characterization of anatase NPs (this crystallographic phase is the most 

photochemically active), either pristine or alkoxysilanes-functionalized. The 

photoactivation of the NPs was preliminary tested toward the degradation of an 

organic dye, with the aim to find out if the surface functionalization badly affects the 

NP photo-characteristics. The final step was to assess bacteria photokilling 

capabilities of the NPs through microbiological tests, either on solid nutrient support, 

in solution or on lithic substratum. 

 

AgNPs. In the second part of this dissertation the attention was focused on the 

synthesis of triangular silver nanoprisms, assessed to have enhanced antimicrobial 

activity (Pal et al., 2007). AgNPs were functionalized by means of an alkoxysilane 

and it was verified if such a triangular shape was retained after surface modification. 

The actual antimicrobial activity was tested through several classical and specifically 

tailored techniques, both on pristine and surface-modified NPs. Microbiological 

assays were preliminary focused on the antimicrobial activity in nutrient media (solid 
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or liquid), whilst in the last section of this work the attention was oriented to the 

antimicrobial characteristics of the NPs grafted to the stone surface. 
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Chapter 2. 

Materials and fundamentals 
 

The escalation of bacterial resistance to conventional antibiotics is subject of 

paramount concern worldwide, and that justifies the ever increasing attention on the 

research for novel and innovative antimicrobial agents. Some answers to the 

challenging problem of bacteria proliferation may come from the emerging 

nanoscale materials, which have proved to have great potentials as antimicrobials. 

This chapter has the aim to give some backgrounds on the materials used along this 

thesis work, from the nanoparticles (TiO2 or Ag NPs), the grafting agents, the 

microorganisms to the lithic support. Within this same chapter it is also remarked the 

state of the art of these materials in the cultural heritage field. 

 

2.1 Titanium dioxide nanoparticles 

 

Semiconductor photocatalysts have gained great attention in the last decades due 

to its use for many technological purposes. Titanium dioxide (TiO2) is a naturally 

occurring semiconductor and it is being employed for a wide range of applications 

for its outstanding optical and electronic properties and for its chemical stability 

(Chen and Mao, 2007; Hu et al., 2010).  TiO2 can occur in crystalline form as well as 

in amorphous state. The crystalline forms present in Nature in three phases: anatase, 

brookite and rutile. Even if rutile is the thermodynamically stable form, it is anatase 

that is reported to have the highest photocatalytic activity and the strongest oxidizing 

power, when illuminated by UV light of proper wavelength (Kato et al., 1994; 

Kakinoki et al., 2004). Anatase is a metastable phase and it has the highest 

octahedral condensation and the lowest density. The photocatalytic characteristics of 

titanium dioxide rely not only on the crystallinity degree, but also depend on 

morphology, particle size and specific surface area (Cozzoli et al., 2003). 
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Common uses. Taking advantage of its potent oxidizing effect when exposed to 

UV radiation, the pioneering use of TiO2 as a photocatalyst was in the field of 

organic compounds removal from polluted water and air; TiO2 is able to break down 

volatile organic carbon species, nitrous oxides and other pollutants into less harmful 

species. 

TiO2 is non-toxic and has been approved by the American Food and Drug 

Administration (FDA) to be used in human food, drugs, cosmetics and food contact 

materials. Its current uses range from white pigment in paint, toothpaste, sunscreen, 

cosmetics and food coloring to self-cleaning materials and photoluminescent and 

photochromic devices (Iuchi et al., 2004; Zhao et al., 2004; Fujishima and Zhang, 

2005). Strong efforts have being devoted to the development of TiO2-based 

environmental applications. Up to date, titanium dioxide is the most important 

semiconductor for photocatalytic degradation of air and water pollutants (Tian et al., 

2009; Paz, 2010), it is employed in energy efficient windows, in anti-fogging glasses 

(Allen et al., 2010), in dye-sensitized solar cells (Hagfeldt et al., 2010), gas sensors 

(Lin et al., 2007; Faia et al., 2004; Chaudhari et al., 2006) and antibacterial systems 

(Fu et al., 2005; Karunakaran et al., 2010). 

 

Synthesis. The precipitation of oxides, from both aqueous and non-aqueous 

solutions, is less straightforward than the precipitation of metals. The reaction 

pathways for the synthesis of oxides fall into two categories: those that directly 

produce an oxide and those that produce a precursor that must be further processed 

(drying, calcination). 

Several efforts have been made toward the synthesis of titanium dioxide 

nanoparticles in anatase metastable phase from the hydrolysis of different precursors, 

as titanium chlorides (TiCl4, TiCl3), titanium alkoxides (Ti(OiPr)4, Ti(OnBu)4) or 

titanium sulfate (Ti(SO4)2). Lots of different synthetic strategies for the preparation 

of anatase crystal form have been developed over the years (Chae et al., 2003; Chen 

and Mao, 2007; Yu et al., 2007; Hagfeldt et al., 2010). Some examples are the 

reverse micelle methods in nonpolar solvent, chemical precipitation, microemulsion-

based synthesis (calcination or thermal annealing is required to induce 

crystallization), hydrolytic or not hydrolytic sol-gel synthesis, hydrothermal or 

solvothermal synthesis, sonochemical methods, microwave deposition techniques, 
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direct oxidation, chemical or physical vapor deposition. The properties of the 

resulting nanocrystals are strongly dependent on the reaction conditions. Several 

studies have been made with the attempt to tailor morphology and dimension of 

nanocrystals by varying the hydrolysis conditions or controlling the hydrothermal 

treatment (Cheseddine and Morits, 1999). In a recent paper, for example, Liao et al. 

(2009) studied the effects of different water/alcohol mixtures on size, morphology 

and crystallinity of TiO2 nanostructures obtained through a solvothermal approach. 

They showed that only some solvents produce crystalline NPs and that their sizes 

range from few to few tens of nanometers, depending on the synthetic conditions. 

Just as for metal NPs, oxide NPs frequently require a capping ligand or a 

stabilizer either to prevent agglomeration of the primary particles or to enhance the 

compatibility with other materials. The most used surface-modifiers are carboxylates, 

phosphonates and silanes (Neouze and Schubert, 2008). 

 

Photocatalytic activity: mode of action. TiO2 semiconductor is activated by 

the absorption of photons of UV radiation whose energy matches or exceeds TiO2 

band gap energy: electrons are excited from the valence band (VB) to the conduction 

band (CB), photo-creating positive holes (h+) in the VB and electrons (e-) in the CB. 

These reactive species participate in oxidation and reduction processes either within 

TiO2 itself (electron-hole recombination) or with adsorbates at the surface. Any 

wavelength shorter than 385 nm induces this photoexcitation (Fig. 3). The migration 

of the electron-hole pairs to the nanoparticle surface catalyze reactions between 

electron donors and acceptors adsorbed on the surface. For instance, the 

photogenerated hole may react with moisture water adsorbed on the catalyst surface 

to produce OH. radicals; photogenerated free electrons may be transferred to 

adsorbed molecular oxygen generating superoxide radicals (.O2
- .O2H). The 

irradiation of a semiconductor results therefore in the catalytic production of reactive 

oxygen species (ROS) such as .OH, HO2
., H2O2, and O2

.- (Cozzoli et al., 2003; Chen 

and Mao, 2007; Karunakaran et al., 2010). Because of their high non-selective 

reactivity, ROS species are also very short lived and, in the absence of O2 or a 

suitable electron acceptor, no photocatalytic reactions occur due to the electron-hole 

recombination. 
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Figure 3. Schematic illustration of the photoexcitation of TiO2 semiconductor and the 

subsequent generation of an electron (e-) and a hole (h+), respectively in the conduction band (CB) 

and in the valence band (VB). The electron and the hole are trapped by the surface-adsorbed oxidant 

(O2) and the surface-bound reductant (OH-), respectively. 

 

Scheme 1 summarizes the reactions that take place when the semiconductor is 

irradiated with a proper wavelength (Sunada et al., 1998; Rincon and Pulgarin, 2003; 

Zacarias et al., 2010). 

 
Scheme 1. Redox and recombination reactions taking place when TiO2 is irradiated by UV light 

of a proper wavelength. 

TiO2 + h  TiO2 (e- + h+) 

TiO2 (e-) + O2  TiO2 + O2
- 

O2
-  + H+  HO2 

O2
- + HO2  .OH + O2 + H2O2 

2 HO2  O2 + H2O2 

TiO2 (e-) + H2O2  TiO2 + OH- + OH 

TiO2 (h+) + aRXad  TiO2 + RXad
+ 

TiO2 (h+) + H2Oad  TiO2 + .OHad + H+ 

TiO2 (h+) + -OHad  TiO2 + .OHad 
.OH + .OH  H2O2 

 
a RX, organic substance; ad, adsorbed 

 

The effectiveness of TiO2 as a photocatalyst is dependent upon the rate of 

production of reactive oxygen species at its surface, and that is in turn dependent 

upon other factors as the energy of the light illuminating the surface, the competition 

between electron–hole recombination and the redox processes occurring at the 

surface. 

 

Antimicrobial activity. Because of the widespread use of antibiotics and the 

emergence of more resistant strains of microorganisms, nowadays we are facing the 

need to develop alternative technologies against bacteria proliferation. TiO2 

photocatalytic process is a conceptually simple and promising technology. The ROS 
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species produced as a consequence of UV irradiation are not only useful in the 

oxidation of organic substances, but can also cause various damages to living 

microorganisms, as long as they consist of abundant organic compounds. 

The first application of TiO2 photocatalysis for microbiocidal purposes was 

reported by Matsunaga et al. (1985). They implemented the novel concept of 

photokilling E. coli cells in water by contact with TiO2, illuminated by UV light. 

Since then, much research work on the bactericidal effect of TiO2 photocatalyst has 

been reported, and TiO2 activity has been proved to be very effective toward a wide 

spectrum of microorganisms. Besides from water and air disinfection, TiO2 

photocatalytic technology has been extensively employed also for anti-bacterial 

activity on a variety of surfaces (Huang et al., 2000), ranging from surgical 

instruments (Haenle et al., 2011) to innovative building materials, with self-cleaning 

and self-sterilizing characteristics (Chen and Poon, 2009). 

Even though lots of the hypothesis have been proposed and validated, TiO2 

bactericidal mode of action is not fully understood. In his first work, Matsunaga 

(Matsunaga et al, 1985) proposed that the direct photooxidation of intracellular 

coenzyme A (CoA) to its dimeric form was the root cause of the decrease in 

respiratory activities that lead TiO2-treated cells to die. Another proposed 

explanation is that the ROS generated at the photocatalyst surface attack the 

cytoplasmatic membrane of the microorganisms and oxidize the polyunsaturated 

phospholipid component of the cell membrane. This process would eventually lead 

to a membrane breaching that results in the leakage of intracellular components and 

in the promotion of cell respiration disruption (Fujishima, 1999; Maness et al., 1999; 

Huang et al., 2000; Saito et al., 1992; Page et al., 2007). When a microbial cell is 

close to an irradiated TiO2 particle, microbial surface (cell wall and cytoplasmatic 

membrane) is the primary target of the initial oxidative attack and all the 

functionalities that rely on an intact membrane structure are expected to change, i.e. 

semipermeability, respiration and oxidative phosphorylation reaction (Maness et al., 

1999). Moreover, once the integrity of the cell envelopes are damaged, TiO2 can 

diffuse into cells and directly attack enzyme targets and DNA. 

The different morphologies of Gram+ and Gram− cell envelopes hinder by 

different extent the passage of ROS species. For Gram+ bacteria, the barrier to the 

cytoplasmic membrane is constituted by the thick peptidoglycan layer; in Gram‒ 
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bacteria, the passage of ROS species to the cytoplasmic membrane is protected by a 

thin layer of peptidoglycan and by an outer membrane, this one being the real barrier. 

Although the outer membrane is semi-permeable, many radicals react with the lipid 

constituents of the membrane but, once the membrane is breached, there are no 

further significant obstacles blocking radicals from approaching the cytoplasmic 

membrane, destroying it and inducing cell death (Page et al., 2007). Also cellular 

self-repair mechanisms (usually activated after irradiation) are inhibited by the action 

of TiO2 (Rincon and Pulgarin, 2003). 

Even the more resistant spore-forming bacteria (such as B. subtilis) were 

detected to be vulnerable to photocatalytic attack, as the mechanisms based on the 

action of photogenerated ROS are able to progressively oxidize spore coat together 

with spore core (Zacarias et al., 2010; Barnes et al., 2013). 

 

Cultural Heritage Applications. From the conservation point of view, it is 

important to find environment-friendly technologies for biodeterioration control. 

TiO2 is non toxic to human beings, quite inexpensive, sustainable for the 

environment and chemically stable. Given this background, the use of surface 

immobilized TiO2 NPs seem a good strategy to counteract microorganisms growth 

with respect to conventional biocides.  

In a recent study it was analyzed the possibility to use anatase TiO2 particles for 

preventing biodeterioration of mortars (artificial stones), in comparison with 

conventional biocides. Mortar slabs were treated with anatase (applied as a coating or 

mixed within the mortar when it is prepared), inoculated with cyanobacteria and  

incubated over months. From chlorophyll quantification it resulted that anatase was a 

better agent for preventing biodeterioration than the conventional biocides (Fonseca 

et al., 2010).  
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2.2 Silver nanoparticles 

 

Silver-based materials present excellent properties such as thermal and chemical 

stability, low volatility, health and environmental safety and low toxicity to human 

cells. Because of all these features, silver-based compounds are suitable for a variety 

of applications and are very attractive as antimicrobial agents (Rai et al., 2009). 

Silver ions are in fact acknowledged as one of the most toxic forms of heavy metals 

to microorganisms, and have a relevant activity against a broad range of bacteria, 

fungi and viruses (Morones et al., 2005; Kim et al., 2007). 

 

Silver compounds: uses. The use of bulk silver as antimicrobial dates back to 

ancient times, when water and wine were stored in silver vessels to prevent spoilage. 

As early as 1000 B.C., silver was used to make water potable and Greeks used it for 

its antibacterial activity. Unintentionally, also the use of silver nanoparticles dates 

back to Romans, as they used AgNPs to color the glass of the famous Licurgus cup. 

In the 17th century, diluted solution of silver salts were used to heal ulcers and 

chronic wounds. In the 19th century silver was further used in the treatment of burns 

and wounds and in the prophylactic treatment of newborn eye infections (Silver et 

al., 2006; Rai et al., 2009); this last practice on eyes was abandoned at the beginning 

of 20th century, when it was recognized as caustic. 

Nowadays, silver compounds (and silver nanoparticles among them) are largely 

exploited both in medical and non-medical fields. As antimicrobial agents, they are 

applied in textile fabrics, home water filtration, cosmetics, electronic devices and 

food packaging. In medical field, AgNPs are used to prevent bacteria colonization on 

protheses, catheters, dental materials or stainless steel materials (Panacek et al., 

2006; Xu et al, 2006; Duran et al., 2007, Falletta et al., 2008; Chaloupka et al., 2010; 

Knetsch and Koole, 2011; Gutarowska et al., 2012; Mariani et al, 2013). Besides its 

antimicrobial characteristics, nanosilver exhibits strong optical features that make it 

suitable for biological sensing and imaging (Mariani et al., 2013). The high 

conductivity of silver nanocompounds also allows to use them for conductive inks in 

a range of electronic devices. In addition, silver nanoparticles can be used as 

catalysts of several chemical reactions. 
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Synthesis. Silver NPs can be synthesized by several physical, chemical and 

biological pathways. The most common chemical method implies the liquid-phase 

synthesis through metal precipitation from aqueous or non-aqueous solution. Three 

main components are required in this chemical synthesis (Fig. 3A): a silver salt 

(usually AgNO3), a reducing agent and a stabilizer or capping agent (to control 

nanoparticle growth and avoid aggregation). The most common reducing agents are 

gaseous H2, solvated sodium or potassium borohydride (NaBH4 or KBH4), hydrazine 

hydrate (N2H4·H2O) and hydrazine dihydrochloride (N2H4·2HCl). 

 

 
Figure 3. Chemical (A) versus biological (B) synthesis of AgNPs. In the case of chemical 

synthesis, Ag+ from the silver salt is reduced by means of a chemical reducing agent. The first nucleus 

that is formed grows controlled by a capping agent, which also prevents aggregation by steric 

hindrance or electrostatic repulsion. In the case of biological synthesis, the reducing and the capping 

agents are both provided by the microorganism, for example a functional group on the bacteria cell 

wall (Sintubin et al., 2012). 

 

Some other chemical and physical synthetic methods include: microemulsions, 

supercritical liquids, high-temperature reductions, vapor-phase condensation, laser 

ablation, photoreduction, electrolysis or irradiation of Ag+ solutions with visible 

light, ultraviolet rays, microwaves or ultrasounds (Reicha et al., 2012). 

Nanobiotechnology offers further possibilities to synthesize AgNPs using 

environment-friendly procedures, where both the reducing agent and the stabilizer 

are provided by molecules produced by a living microorganism (Fig. 3B). The 

reduction may be enzymatic or non-enzymatic, and the stabilizer (or the capping 

agent) is usually represented by a protein (Sintubin et al., 2012). Microbes produce 

the inorganic particles either intra- or extracellularly (in the cell supernatant), 
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depending on the localization of the reductive components of the cell, but either way 

the NPs are collected by a post-production extraction and purification (Narayanan 

and Sakthivel, 2010). With the help of genetically engineered microbes that 

overexpress specific reducing agents, it is possible to control size and shape of 

biological NPs, that result in exquisite morphologies. 

 

Antibacterial activity. Even if the mode of action of silver compounds towards 

microorganisms is still not fully understood, some multidirectional mechanisms have 

been proposed and accepted. 

 In its metallic state silver is inert, but it can get ionized through reaction with 

moisture or other fluids, hence it can get highly reactive. 

Silver ions (Ag+) are able to penetrate inside bacterial cells and to make DNA 

molecules turn from relaxed state into condensed form, making them to lose their 

replication ability that leads to cell death. They also interfere with membrane 

permeability to protons and phosphate, and interact with proteins inducing their 

inactivation. Additionally, when Ag+ binds to respiratory enzymes, it uncouples 

respiratory electron transport from oxidative phosphorylation and induce the 

inhibition of respiratory chain (Schreurs and Rosenberg, 1982; Feng et al., 2000). 

Silver nanoparticles show enhanced antimicrobial properties compared to silver 

salts, due to their physicochemical characteristics and their large surface area-to-

volume ratio that provides better contact with microorganisms. It is generally 

believed that three different mechanisms determine the antimicrobial activity of 

AgNPs: i) the direct physical contact between NPs and microbes, that causes 

structural damages (Kim et al., 2007; Sondi and Salopek-Sondi, 2004); ii) the 

generation of reactive oxygen species (ROS), that damage the membrane (Kim et al., 

2007; Choi and Hu, 2008); iii) the slow release of silver ions, which interferes with 

DNA replication and inhibits enzymes and proteins (Feng et al., 2000; Morones et 

al., 2005; Lok et al., 2006; Rai et al., 2009). In a recent study it was suggested a 

shape-dependent interaction between AgNPs and bacterial cells: it was demonstrated 

an activity-shape correlation toward E. coli cells, and truncated triangular silver 

nanoplates resulted the most effective biocidal nanostructures, compared to spherical 

and rod-shaped NPs and to silver ions (Pal et al., 2007; Sharma et al., 2009). The fact 

that NPs are positively charged and microorganism cell membrane is negatively 
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charged, makes the electrostatic force an additional cause of interaction between NPs 

and bacteria (Morones et al., 2005). Also the cell membrane morphology plays a 

crucial role: Gram+ bacteria are in fact more difficult to be penetrated as their 

external layer of rigid and cross-linked peptidoglycan offers few anchoring sites for 

NPs. 

AgNP antimicrobial activity can be summarized as follows (Fig. 4): AgNPs get 

attached to the cell membrane and penetrate inside the cell causing changes of 

membrane permeability, perforation and eventually membrane disintegration (Sondi 

and Solopek-Sondi, 2004); once penetrated, AgNP accumulation in the cytoplasm 

constitutes an important source of cytotoxic activity, also mediated through the 

induced oxidative stress and the release of silver ions (Duran et al., 2010). 

 

 

Figure 4. Mechanism of action of silver nanoparticles. AgNPs inhibit the replication of DNA; 

disturb the electrical potential changing membrane permeability; alter the functioning of 

cytoplasmatic membranes; cause perforation of the membrane that lead to the outflow of metabolites 

from the cell; cause loss of bioactivity; disrupt respiratory processes; induce oxidative stress due to the 

generation of ROS. 

 

In contrast with conventional narrow-target antibiotics, that attack one or few 

centers in the cell, AgNP multiple and synergic mechanisms of cytotoxic activity 

make very unlikely for the microorganisms to develop resistance against silver 

containing compounds (Silver, 2003); it would be necessary that all the mutations 

required for their protection develop simultaneously. 
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A possible explanation to the fact that, opposite to microorganisms, human cells 

are not affected by silver ions might rely on the fact that mammalian cells do not 

have exterior sulphidryl groups. Ag+ ions find therefore an external barrier and do 

not manage to permeate through mammalian cell membranes to react with the 

interior -SH groups. This fact makes low silver concentrations relatively non-toxic to 

humans and animals (Shah et al., 2008). 

 

Cultural heritage applications. Nowadays it is possible to engineer synthesis, 

characterization, surface-modification and functionalization of nanosized silver 

compounds that would constitute bactericidal materials with enhanced activity for a 

variety of applications. Even though the protection of cultural heritage materials may 

constitute one of these applications, from the top of our knowledge only one example 

of silver nano-compound use in this field have been discussed. Le et al. (2010) 

reported on silver-silica core shell nanoparticles for marine antimicrobial corrosion 

coating with controlled release. They reasonably envisioned that Ag metal cores 

would release Ag+ slowly through the outer porous silica shell, so that Ag leaching 

would result more efficiently controlled. In their study, they proved that Ag/SiO2 

core-shell composites maintain the excellent antimicrobial effects of the not covered 

nanoparticles. 
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2.3 Silane functionalization 

 

The functionalization is the surface modification of the nanoparticles with 

organic or inorganic ligands, performed to add attractive features to the NPs. 

Functionalization can improve nanoparticle stability and compatibility with other 

substrates. 

To the purposes of this work, both TiO2 NPs and AgNPs need to be surface 

functionalized in order to be grafted to the stone substratum. It is therefore important 

to think of a proper surface modification for these NPs, basing on the paradigm that 

compatibility between the conservation treatment materials and the substrate is a 

fundamental pre-requisite for a good result. 

Alkoxysilanes have been selected as the surface modifying agents of choice, and 

in the following paragraphs it is presented a brief excursus of the reasons why they 

have been considered adequate reagents for our purposes. 

 

Why alkoxysilanes. The principal conservation practice on deteriorated stones, 

after accurate cleaning, is the application of consolidation products. Consolidating 

agents have to meet several criteria: they should be stable, penetrate to sufficient 

depth, improve stone mechanical properties and avoid changes in the material 

appearance (Brus and Kotlik, 1996). The agents most often used as stone 

preservatives are organosilicone compounds, acrylic polymers or epoxy resins (Brus 

and Kotlik, 1996). Also mixtures of these components should be employed, as the 

Bologna Cocktail composed of acrylic polymers and silicone (Favaro et al., 2007). 

Polymeric resins though, do not satisfy the requisites of good consolidating agents, 

as they are not stable enough and degrade rapidly in open air both due to 

microorganism attack and to thermal- and photo-aging (Yang et al., 2012). In 

addition, synthetic organic resins are not compatible with the rocky inorganic 

substrate. Eventually, organosilicone compounds are the most successfully applied in 

sandstone consolidation. They have high stability and confer good physical and 

mechanical properties to the material; they also contribute to make the stone surface 

more hydrophobic, and that is advantageous because the reduced water availability 

lowers microorganism proliferation (El-Midany et al., 2011). It has been calculated 
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that about 50% of non-functionalized silicon compounds are employed for 

architectural coatings and mineral consolidation (Zarraga et al., 2002). 

Among the organosilicons, alkoxysilanes are the most diffuse consolidant 

agents, with very good compatibility characteristics with sandstones (inorganic in 

nature) with respect to polymeric resins (Yang et al., 2012). 

 Alkoxysilane consolidation is obtained through the sol-gel process of 

polymerization within the pores of the stone upon contact with environmental 

moisture. That allows for the formation of a stable silicon-oxygen backbone that 

strengthen the stone material (Mosquera et al., 2008). The hydrolysis and 

polycondensation of alkoxysilanes take place following the reaction Schemes 2 and 

3. Once penetrated into the material pores, the consolidant undergoes hydrolysis by 

means of a classic sol-gel process, forming silanol groups (Si-OH) and alcohol, 

which evaporates (Scheme 2). 

 

 
Scheme 2.Hydrolysis reaction of alkoxysilanes: formation of silanol groups and alcohol. 

 

Afterwards, silica gel precipitates inside the porous microstructure by 

dehydratation/condensation process. In stones composed of silicate phases (i.e. 

sandstones), silica gels can react with the hydroxyl groups present onto the pore 

surface, forming chemical bounds (Si−O−Si) to the siliceous minerals (Scheme 3) 

(Sandrolini et al., 2012). 

 

 
Scheme 3. Condensation reaction between silanol groups and surface hydroxyl groups of the 

siliceous minerals of the stone. 

 

In the case of carbonatic stones, such as marble, the condensation reaction of the 

alkoxysilanes takes place with the carbonatic group forming Si−O−C bonds. 
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The widespread use of alkoxysilanes is therefore justified by their chemical 

formulation that, unlike many other polymeric consolidants, guarantees stability and 

provides compatibility with the substrate, because of the inorganic nature of silica 

(the final reaction product) and volatile by-products (alcohols). 

The alkoxysilane characteristics that have been described in the case of stone 

consolidation also constitute the reason why we chose this class of reagents to 

surface-modify the NPs. An example of application of these products in the field of 

protection from biodeterioration is presented in a research work by Nascimbene and 

Salvadori (2008). They studied lichen recolonization of limestone statues and 

detected a correlation between the consolidant and the water repellent used and the 

durability of the treatment. They found that the best performance over time was 

associated with silicate-based products. 

 

Alkoxysilanes used in this work. Along this thesis work, three kinds of 

alkoxysilanes were used to surface modify the NPs (either TiO2 NPs or AgNPs) with 

the aim to anchor them to the stone surface. Scheme 4 shows their structural formula. 

 

 
Scheme 4. Structural formula of the alkoxysilanes used in this thesis work. TSPMC (N-

trimethoxysilylpropyl-N,N,N-trimethylammonium) is a quaternary ammonium silane. TMDS 

(hexamethoxydisilane) is a disilane. TEOS (hexamethoxydisilane) is the most common alkoxysilane 

used in conservation science toward lithic materials. 

 

Each one of these alkoxysilanes eventually lead to the formation of the 

backbone structure indicated in Scheme 5, were the silane acts as the linker between 

the stone and the nanoparticles. Due to the geometry of each silane, it is not possible 

that all the alkoxyl group of a single molecule react at once onto a single NP, and 

unreacted alkoxyl groups expose out of NPs still having the ability to react with the 

hydroxyl groups present on the stone surface. 
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Scheme 5. Schematic representation of the final result obtained after NP functionalization with 

alkoxysilanes. R1 and R2 are the functional groups, different for each silane used. The silane is 

grafted to the stone surface through Si−O−Si (silicatic stones) or C−O−Si (carbonatic stones) bonds, 

and it is linked to the NP through Si−O−Ti (TiO2 NPs ) or Si−O−Ag (AgNPs) bonds. 

 

The following paragraphs briefly present the main characteristics of each of the 

alkoxysilanes used. 

 

TSPMC. N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride 

((CH3O)3Si-(CH2)3-N+(CH3)3 Cl-) has been employed to surface functionalize TiO2 

NPs. It is a quaternized aminosilane, able to cross-link on the surface of TiO2 NPs 

forming Ti−O−Si bonds through the methoxysilane ends. The silane layer that is 

formed consequently is able to react with the rocky surface, either silicatic or 

carbonatic. At the same time, also TSPMC positively-charged end can interact, 

electrostatically, with the surface of TiO2 NPs. This approach leaves the 

methoxysilane ends able to react with 

the lithic material surface. 

This aminosilane is commonly related in 

literature to the synthesis of mesoporous 

silica using an anionic-surfactant 

template route, where TSPMC works as 

a co-structure-directing agent. Briefly, 

mesoporous material syntheses rely on 

surfactant micelles as templates for the assembly and condensation of inorganic 

precursors. The alkoxysilane end of TSPMC can co-condense with the silica 

precursor to form the silica framework, and the ammonium site can interact 

electrostatically with the negatively charged head group of the surfactant (Che et al., 

2003; Beaudet et al, 2009).  

O
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TMDS. Hexamethoxydisilane ((CH3O)3Si-Si(OCH3)3) is a different 

methoxysilane used along this thesis work to functionalize TiO2 NP surface. The use 

of an alkoxy disilane would guarantee for an higher number of hydrolysable alkoxy 

groups and therefore an higher probability of 

NP grafting to the lithic material. 

The hydrolyzed alkoxy ends react with TiO2 NP 

surface through the formation of Ti−O−Si 

bonds. The resultant alkoxysilane shell that 

modifies the NP surface is in turn able to react 

with the rocky substrate, either if it is silicatic or 

carbonatic. 

Silicon alkoxy disilanes with the generic silane 

monomer type (OR)3Si−Si(OR)3, where −OR 

group is a hydrolysable alkoxy, have been used before to synthesized bulk-silica 

based luminescent material (Rodrıguez et al., 2012). 

 

TEOS. Tetraethoxysilane (Si(OCH2CH3)4) is the alkoxysilane with the most 

widespread use. We took advantage of its high reactivity to surface functionalize 

AgNPs in order to create a silane layer over the particle able to react with the rocky 

substrate. 

TEOS is particularly used for ancient building 

conservation (consolidation) as it proved to be 

more reactive than other alkylsiloxanes, to 

have the best re-aggregating effects and to 

have the deepest penetration into porous 

substrates due to its low viscosity (Zendri et 

al., 2007). TEOS polymerization occurs when 

a catalyst is added to the monomer, that 

otherwise tends to evaporate long before it can react with atmospheric moisture to 

polymerize (Wheeler et al., 1992). Moreover, the polymerization process is more 

efficient when an alcohol is added, due to the immediate miscibility between the 

alkoxysilane and the alcohol (Zarraga et al., 2002). 
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2.4 Bacillus subtilis and Aspergillus versicolor 

 

Bacillus subtilis has been chosen as the reference bacterium to test the 

antimicrobial activity of the synthesized NPs both in nutrient medium (either solid or 

liquid) and on stone material. 

A study based on the analysis of a single species is obviously not representative 

of the real natural occurrence, as microorganisms develop on stones in complex 

communities formed by different species. Nevertheless, it is a starting point to verify 

if the synthesized NPs have antibacterial properties and if this property is retained 

once functionalized and applied on lithic support; interesting information can be 

derived therefore also from these preliminary studies. 

Bacillus subtilis is a rod-shaped, Gram+ bacterium that is naturally found in soil 

and vegetation. B. subtilis has evolved the strategy to form stress-resistant 

endospores that allow survival under adverse conditions. When the nutrients required 

for the bacterium to grow are abundant, B. subtilis exhibits metabolic activity; when 

conversely carbon-, nitrogen- and phosphorus-nutrient levels fall below an optimal 

threshold, it produces spores, slows down its metabolism and remains vital for long 

time without any nutrient or water requirement (Fajardo-Cavazos and Nicholson, 

2006). Endospores are easily spreadable and highly resistant, not only to extreme 

environmental conditions but also to antibiotics and many other chemical substances. 

Among genus Bacillus, B. subtilis was found to be more resistant to disinfection 

(Gutarowska et al., 2012). 

B. subtilis is not only commonly considered as a model organism to study 

endospore formation in bacteria, but also as a model for biofilm formation. Different 

B. subtilis strains are able to secrete two distinct polymers: polysaccharide EPS and 

poly-d-glutamate (Lopez et al., 2010). These polymers participate in the biofilm 

formation process by different extent, depending on the strain and the surrounding 

conditions. B. subtilis expresses a single major protein associated with the 

extracellular matrix, named TasA; it has been shown to form extracellular filaments 

with amyloid-like properties, thought to play a key structural role in the extracellular 

matrix (Romero et al., 2010). 
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Bacillus related bacteria have been frequently identified on cultural heritage 

stones (Mc Namara, et al., 2005; Scheerer et al., 2009; Gutarowska et al., 2012). It 

acts as a stone deteriogen both through organic acid production and mechanical 

action, similarly to many other heterotrophic microorganisms that coexist in the 

biofilm biomass. 

A different bacterial strain that has been employed in some experiments along 

this thesis work is Escherichia coli, the most widely used bacterium in laboratory 

research and the most thoroughly studied life form. It is a Gram− bacterium, and we 

used it as a counterpart of the Gram+ B. subtilis. E. coli is a rod-shaped bacterium 

propelled by long, rapidly rotating flagella, and it normally inhabits the intestinal 

tracts of animals. For this reason it can be found in soil and water. 

Fungi are nonetheless important components of microbial communities, 

colonizing different types of building stones in environments ranging from temperate 

to tropical settings (Scheerer et al., 2009). Among them, we performed some studies 

on Aspergillus versicolor. It is an ubiquitous air-borne fungus widely distributed in 

nature, mostly on substrates exposed to humid conditions, and it is toxic and 

pathogenic both for humans and animals. A. versicolor is highly aerobic and is 

therefore found in almost all oxygen-rich environments, where it commonly grows 

as molds over the surfaces. It is one of the most common microfungi isolated from 

mineral substrates, and it is able to produce acid metabolites (gluconic, oxalic, acetic, 

butyric, lactic), oxidize minerals, chelate metallic cations and produce exogenous 

pigments, causing green staining. In addition, the ability of fungal hyphae to attack 

and penetrate mineral substrates creates defects in the structure of the materials, i.e. 

micro- and macroscopic cracks, deformations, roughness, stains and crusts. As a 

result, the porous material loses its original character (Simonovicova et al, 2004; 

Guiamet et al, 2013). 

 

Occurrence in cultural heritage field. The following paragraphs present some 

examples of research works in which Bacillus and Aspergillus genera were 

encountered on monumental stones. 

Bacteria from genus Bacillus were detected on the biofilms originated on the 

salted ceiling of a tunnel at the Mayan site of Edzna, Mexico (Ortega-Morales et al., 

2005). Another example of Bacillus genus on cultural heritage material is constituted  

http://en.wikipedia.org/wiki/Aerobic_organism
http://en.wikipedia.org/wiki/Mold
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by the sandstone monuments in Akgkor Wat temples, Cambodia, where Bacillus was 

identified in the microbial biofilms on monument surfaces (Gaylarde et al., 2012). 

Bacillus genus was also found in the biofilms covering the surface of paleolithic 

caves in Zuheros, Spain (Urzì et al., 2010). In that habitat, chemoorganotrophic 

bacteria (90% prevalence of Gram+ bacteria) were closely associated to phototrophic 

microorganisms. Bacillus was identified as the main bacterial strain associated with 

mineral precipitates of white fluffy biofilm covering deteriorated surfaces of caves 

and catacombs. In a recent study, Bacillus was shown to actively participate in the 

precipitation of mineral phases (De Leo et al., 2012). From microbiological sampling 

and identification on funeral sculptures in Argentina (Guiamet et al., 2013), Bacillus  

and Pseudomonas were the most commonly isolated bacteria genera. In the same 

sites, the fungal genera most commonly represented were Aspergillus, Alternaria and 

Penicillium. 

Bacillus genus was also found as an indoor biodeteriogen at the museum archive 

of La Plata, Argentina (Guiamet et al., 2011); the complex enzyme system of the 

proteolytic activity of Bacillus species was found to be able to degrade fibrous and 

non-fibrous components of paper. Among the fungal genera, in the same archive 

Aspergillus was the prevailing fungus on photographs and maps (Guiamet et al., 

2011). Aspergillus genus was isolated from the mycobial survey of the ancient 

Temple group of Satmahla (India) as one of the dominant fungal type responsible for 

biodeterioration. Its proliferation was contrasted in that situation through regular 

cleaning and the use of fumigants (Sharma and Verna, 2011). Aspergillus and 

Bacillus genera were encountered in the biofouling occurred in the valuable crypts of 

La Plata cemetery in Argentina. The appearance of biofilms and fungal colonies was 

particularly serious as it resulted not only in aesthetic deterioration but also in the 

loss of historical information, since it has become impossible to read some of the 

inscriptions engraved in the stones (Guiamet et al., 2012). 

  



Chapter 2 – Materials and fundamentals 
 

42 
 

2.5 Serena stone 

 

Serena stone is a gray colored clastic sedimentary rock composed mainly of 

sand-sized minerals or rock grains. It is a sandstone (arenite) ascribable to feldspathic 

greywacke with an abundant clay matrix and poor cement. 

It is a very compact and tough material but it is porous as well, with 5-10% open 

porosity (Dei et al. 1999). Nowadays it is principally caved form Firenzuola quarry, 

Italy (Fig. 5). 

 

 
Figure 5. Firenzuola quarry. Serena stones are principally caved from that site. 

 

This kind of rock has been cited in literature since mid XVI century, and maybe 

also Dante Alighieri cited it. Even if Etruscans used Serena stone for fortification 

walls, it is in Renaissance period that this lithotype found its maximum expression 

and application in stone-based constructions, especially in Florence. Some admirable 

architectural examples in which Serena stone has been used are “Ospedale degli 

Innocenti”, “Medicea Laurenziana library” or “Uffizi” museum (Fig. 6a). 

http://en.wikipedia.org/wiki/Sand
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Particle_size_(grain_size)
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Besides for architectural purposes, Serena stone has been used also for 

architectural decoration and sculptures, such as “Annunciazione Cavalcanti” (Fig. 

6b). 

 

 

 
Figure 6. a) Uffizi, the main Florence museum and one of the most important worldwide for the 

exposed collections. It is made of Serena stone. b) Annunciazione Cavalcanti (Donatello, 1435, Santa 

Croce, Florence). It is engraved in Serena stone. 

 

Because it is a very resistant material, Serena stone was also used for paving 

entire cities, such as Florence, Siena or Arezzo (Tuscany). 

When Serena stone is used in cultural heritage objects, it is subjected to be 

weathered and eroded by the same physical, chemical and biological agents as the 

rocks in natural environments. In particular, microbial biofilm formation is relevant 

on this lithotype because it is quite porous. On the other hand, because quartz 

minerals (SiO2) that compose sandstones are rather insoluble at pH 3-9, the 

acidification produced by microbial colonization plays a minor role in weathering 

a 
b 

a 
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Serena stone (Palmer et al., 1991). However, sandstones are composed of other 

substances besides quartz, as the clay minerals that constitute the binders; the organic 

acids anions produced by microorganisms as metabolites (citrate, pyruvate, malate, 

succinate, lactate, formate, fumarate, oxalate) are known to chelate mineral cations 

and dissolve minerals themselves (Palmer et al, 1991). That aspect has a relevant 

impact on the physicochemical weathering process of Serena stone, more than the 

actual acidification of the substrate. 
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Chapter 3. 

Experimental: synthesis and characterization 

methods 
 

In the following section we are going to describe the analytical methods used to 

characterize TiO2 NPs and AgNPs both from chemical and microbiological point of 

view. The synthetic procedures and the experimental conditions are fully explained, 

along with the reagents used and the instrumental setups. Insights of the more 

complex techniques used during this thesis can be found in the Annex, where 

explanations of the concepts underlying these techniques and their basic theoretical 

background are discussed. 

 

3.1 Chemical analysis - TiO2 

 

This subsection is devoted to summarize the synthetic pathways used to obtain 

pristine and functionalized TiO2 NPs and the analytical chemical techniques and 

instrumental conditions used to characterize the nanosystems and the stone surface. 

 

3.1.1 Synthetic procedure 

 

Reagents. All chemicals were used as received, without any further purification. 

Titanium (IV) sulfate aqueous solution (Ti(SO4)2, 15% w/v) was supplied by 

Fisher Scientific. Aqueous ammonia solution (NH4OH, 33%), ethanol (C2H5OH, > 

99%), methanol (CH3OH, > 99%), 2-propanol ( 99.8%), tetramethylammonium 

hydroxide (TMAOH, 25% wt.), hydrogen peroxide (H2O2, 30%) and chloroform 

(CHCl3,  99%) were purchased from Sigma Aldrich. Methylene blue (MB, 98.5%) 

and chloroform (> 99.8%) were provided from Carlo Erba. 
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N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride solution in 

methanol (TSPMC, (CH3O)3Si-(CH2)3-N+(CH3)3 Cl-, 50% in methanol) and 

hexamethoxydisilane (TMDS, (CH3O)3Si-Si(OCH3)3, 90%) were supplied from 

ABCR. MilliQ water (18.2 M/cm) was used throughout all the synthetic steps. 

 

Nanoparticles synthesis. TiO2 colloidal dispersions were prepared following a 

solvothermal approach (Liao et al., 2009). Briefly, 40 ml of Ti(SO4)2 15% w/v were 

diluted with MilliQ water to obtain a 0.2 M titanium (IV) sulfate solution. 

The pH value was adjusted to 8 slowly adding aqueous ammonia under stirring. A 

white precipitate immediately formed. The mixture was aged for 20 h at room 

temperature and the precipitate was collected by filtration and washed until the 

electric conductivity of washing waters was below 100 s/cm. The filtrate was 

dispersed in 200 ml of water/alcohol mixtures (the alcohol being either ethanol or 

methanol, see Table 1). 

 
Table1. Sample names of the colloidal dispersions obtained performing a solvothermal synthesis 

with different reaction mixtures. E = ethanol, W = water, M = methanol. A representative picture of 

the resultant dispersion of TiO2 NPs is dispayed on the right of the table.  
 

TiO2 sample names Vwater/Valcohol 

SE 0:1 

SWE0.25 1:4 

SWE1 1:1 

SWE4 4:1 

SW 1:0 

SWM0.25 1:4 

SWM1 1:1 

SWM4 4:1 

SM 0:1 
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The dispersion was placed in an ice-water bath and 2.5 ml of 

H2O2 30% were added dropwise under continuous stirring. The 

resulting yellow mixture was refluxed at 78 ˚C for 4 h and then 

transferred to an autoclave were it was kept at 120 ˚C for 15 h. 

The nanoparticles were collected by centrifuge (1 h at 10800 g) 

and then re-dispersed in 200 ml of MilliQ water (Fig. 7). 

 
 

 Figure 7. A representative batch of TiO2 pristine nanoparticles. 
 

Surface functionalization. The surface modification has the aim to enable the 

nanomaterial to be grafted to the stone surface. The reaction was performed using 

TiO2 powders collected by freeze-drying the colloidal dispersions (from each 

different synthetic solvent combination). The surface functionalization process was 

carried out using two different alkoxysilanes: N-trimethoxysilylpropyl-N,N,N-

trimethylammonium chloride (TSPMC) and hexamethoxydisilane (TMDS). The 

surface modified NPs are referred to as TiO2@TSPMC or TiO2@TMDS. 

In a typical synthesis, 20 mg of TiO2 powder were dispersed in 4 ml of 

methanol, adjusting the pH to 8 by adding NH4OH. The effectiveness of the surface 

modification process was studied as a function of temperature and reaction time, and 

the best results were obtained at 50 ˚C for 17 h, respectively. Functionalized 

nanoparticles were collected by centrifuge and washed twice with 2 ml chloroform to 

remove the unreacted alkoxysilane. Different amounts of alkoxysilane were then 

added to the dispersion to reach the desired percentage of surface coverage. 

 

3.1.2 Characterization techniques 

 

SAXS and WAXD. Small angle X-Ray scattering (SAXS) was used to 

determine size and polydispersity of the TiO2 nanoparticles in the as-prepared 

colloidal dispersions, whilst wide angle X-ray diffraction (WAXD) was used to 

preliminarily detect their crystallographic phase. Simultaneous SAXS/WAXD 

measurements were carried out with a HECUS SWAX-camera (Kratky) equipped 
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with a position-sensitive detector (OED 50M) containing 1024 channels of 54 m 

width. Cu K radiation of wavelength  = 1.542 Å was provided by a Seifert ID-

3003 X-ray generator (sealed-tube type), operating at a maximum power of 2 kW. A 

10 µm thick Ni-filter was used to remove the Cu K radiation. The sample-to-

detector distance was 275 mm. The volume between the sample and the detector was 

kept under vacuum (P < 1 mbar) during the measurements to minimize the scattering 

from air. The Kratky camera was calibrated in the small angle region using silver 

behenate (d = 58.38 Å) (Huang et al., 1993) and in the wide angle region using the 

two strongest reflections (110 and 200) of isotropic high density polyethylene, HDPE 

(Lupolene) (Rueda et al, 2006). Scattering curves were obtained in the Q-range, 

Q=(4/sin2, between 0.01 and 0.54 Å-1, Q being the scattering vector, and 2 the 

scattering angle, while WAXD angular range spanned from about 18 to 28˚ in 2θ. 

Liquid samples were filled into a 1 mm glass capillary and sealed with an epoxy 

glue, while powdered samples were filled into a 1 mm demountable cells having 

Kapton films as windows. All samples were monitored at 25 ˚C, temperature being 

controlled by a Peltier element (accuracy  0.1 ˚C). All scattering curves were 

corrected for the background contribution. Additionally, SAXS patterns were 

iteratively desmeared using the procedure reported by Lake (Lake, 1967). Error bars 

for each intensity point were calculated as the square root of the absolute intensity (I) 

value. Some theoretical background of these techniques is reported in the Annex. 

SAXS profiles were fitted using the unified model, developed by Beaucage 

(Beaucage, 1995; Beaucage, 1996; Beaucage et al., 2004). The unified equation 

describes complex nanostructured systems in terms of consecutive structural levels. 

Each level corresponds to a Guinier regime (Guinier et al., 1995) combined with a 

power law function associated to the Porod regime of that structural level or to the 

fractal scaling law of the greater structural level. The global unified scattering 

function is (Beaucage, 1995; Beaucage, 1996): 
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where bkg is an instrumental background, N is the number of single polydisperse 

structural levels present in the investigated system, G is the Guinier prefactor, Rg the 

radius of gyration, B is a prefactor specific to the type of power-law scattering, P is 

the power-law exponent and erf( ) is the error function. If the higher level is not 

associated with the previous smaller size level, Rgi-1 is set to zero. In general k = 1, 

while in the case of mass fractal behavior k is set to 1.06. 

In the Unified approach, the polydispersity is directly obtained from a 

dimensionless parameter associated with the fitting results (Beaucage et al., 2004). In 

particular, the ratio BRg
4/G is indicative of the polydispersity index (PDI) of the 

nanoparticle distribution. This value can thus be obtained from B and G even if the 

SAXS intensity is in arbitrary units as their ratio cancels out the undetermined 

prefactor. 

The fitting was performed by using the Irena analysis package (Ilavsky and 

Jemian, 2009), version 2.40, running on IGOR pro 6.2. The unified approach has 

been limited only to two levels of complexity: the aggregates (Level 2) and the sub-

units (Level 1). In all cases P1 is equal to 4 as expected for smooth particles (Porod 

regime), while P2 varies from 3 to 4. G2 and Rg2 cannot be extracted due to the 

limited Q range associated with the SAXS experiment and consequently the P2 value 

does not have any physical meaning. 

 

HRTEM. The nanoparticle morphologies were studied by means of high 

resolution transmission electron microscopy (HRTEM). The images were recorded 

on JEM 3010 (JEOL) electron microscope operating at 300 kV. In order to keep the 

specimen stable under such an energetic beam, a cryogenic holder was used (cooled 

with liquid nitrogen). The lens parameters were Cs = 0.6 mm, Cc = 1.3 mm, giving a 

point resolution of 0.17 nm at Scherzer defocus. A few milligrams of the specimen 

were sonicated for 5 min in order to disrupt possible agglomerates. A 5 mL droplet 

of suspension was transferred onto an amorphous carbon film, coating a 200 mesh 

copper grid, dried at room temperature, and then put into the microscope. 

Moreover, the diffraction pattern that was originated from a selected area of the 

specimen was enlarged, displayed and recorded to obtain average crystallographic 

information (SAED, selected area electron diffraction analysis). Insights of these 

techniques are given in the Annex. 
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XRD. X-ray powder diffractograms were recorded to assess crystallographic 

phases and crystallite sizes of the nanoparticles under study. Measures were 

performed at 295 K, with a step size of 0.05°, on a 20–50° 2θ angular range using 

Philips X'Pert vertical goniometer connected to a highly stabilized generator, Cu K 

Ni-filtered radiation, a graphite monochromator, and a proportional counter with a 

pulseheight discriminator. The background of this technique is summarized in the 

Annex. 

 

ATR-FTIR. Fourier Transformed Infrared Spectroscopy operating in 

Attenuated Total Reflectance mode (Nexus 870 spectrophotometer equipped with a 

MCT-A detector, Thermo Nicolet, Paris, France) was performed to study the 

functionalization extent of the nanoparticle surface. Spectra of the as-prepared and of 

the surface-modified powders were collected using 64 scans at 4 cm-1 resolution in 

the 650-4000 cm-1 range. 

 

TGA. Thermal degradation of both pristine and functionalized nanoparticles 

was studied by means of thermogravimetric analysis (TGA) on a SDT Q600 

apparatus (TA instrument, Milan, Italy). The powders were first isothermally 

equilibrated at 100 ˚C for 10 min in order to remove physisorbed water and then 

heated up to 750 ˚C under nitrogen atmosphere at a heating rate of 10 ˚C/min. 

 

Arc lamp and UV-Visible spectrophotometry. The photocatalytic activity of 

the nanoparticles was studied by UV-irradiating a 2-propanol dispersion of TiO2 

nanoparticles (TiO2 0.005% w/v) and methylene blue (MB, 0.01 mM). The samples, 

contained in 10 mm path length quartz cells (Hellma), were irradiated with an Oriel 

Arc Lamp Source equipped with a Hg(Xe) lamp operating at 130 W. The UV source 

was equipped with a 35 mm water filter and focused to irradiate the sample. The 

evolution of MB concentration was measured by UV-visible spectrophotometry in 

the 450 - 750 nm range (Cary 100 Bio Varian spectrophotometer), the spectra being 

recorder at different time points up to 150 s from the beginning of sample irradiation.  

This arc lamp, filtered at 365 nm, was used also to irradiate stone samples 

treated with TiO2 NPs and their corresponding negative controls. 
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Pen lamp. Spectroline 36-380 ultraviolet quartz pencil lamp is a mercury-vapor 

(Hg(Ar)) discharge lamp which uses mercury line spectrum. It is accessorized with a 

short pass filter that absorbs the visible lines and a long pass filter that converts 

short-wave radiation to long wave radiation, due to the coating with conversion 

phosphors that absorb the 254 nm line converting this energy into a band peaking at 

365 nm. Its average intensity is 1 mW/cm2 at 2.54 cm distance. UVA intensity in 

sunny daylight is about 4.0 mW/cm2, and decreases to 0.4 mW/cm2 in cloudy 

condition (Kangwansupamonkon et al., 2009). This irradiation source was used in 

most microbiological assays to photoactivate TiO2 NPs (with the exception of tests 

performed on stone surface). 

 

SEM. Scanning electron microscopy (SEM) experiments were carried out with a 

Stereoscan 360, Cambridge (detector SE). The energy dispersive X-ray 

microanalysis (EDS) to detect the elemental composition of the material was 

performed using an INCA 300 X-sight, Oxford. Stone samples were functionalized 

with 0.4 mg/cm2 nanoparticles (TiO2(SM)@TMDS). Theoretical background of this 

technique is given in the Annex. 

 

AFM. Atomic force microscopy (AFM) images were collected using a Park XE-

100 microscope in non-contact mode (SSS-NCHR probes, nominal resonant 

frequency 330 kHz, radius of curvature < 5 nm). Stone specimens treated with silane-

modified TiO2 nanodispersions were analyzed before and after a washing treatment. 

Stone samples were functionalized with 0.4 mg/cm2 nanoparticles 

(TiO2(SM)@TMDS). Insights of this technique are summarized in the Annex. 

 

3.2 Chemical analysis - AgNPs 

 

This subsection is devoted to the description of the reaction conditions used to 

obtain pristine and functionalized AgNPs and to the overview of the chemical 

techniques used to characterize the surface of AgNP-treated stone samples. 
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3.2.1 Synthetic procedure 

 

Reagents. All chemicals were used as received, without any further purification. 

Silver nitrate (AgNO3, > 99%), poly(sodium styrenesulphonate) (PSSS, 1000 KDa), 

sodium borohydride (NaBH4, > 99%), ascorbic acid, trisodium citrate, 

tetraethylorthosilicate (TEOS) (> 99%) were supplied by Sigma-Aldrich. 

Ammonium hydroxide (30%) and 2-propanol were purchased from Panreac. All 

solutions were prepared in MilliQ water (18.2 M/cm). 

 

Nanoparticles synthesis. Silver nanoparticles were synthesized according to a 

seed-based procedure that results in the formation of triangular nanoprisms (Aherne 

et al., 2008). 

 

 
Figure 8. Pictures taken at different stages of nanoparticle growth, from seeds (light yellow 

solution) to the final nanoprisms (blue solution). 
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Silver seeds were prepared combining 5 mL of aqueous trisodium citrate (2.5 

mM), 0.250 mL aqueous poly(sodium styrenesulphonate) (500 mg/L), 0.3 mL of 

aqueous sodium borohydride (freshly prepared, 10 mM), followed by addition of 5 

mL of aqueous silver nitrate (0.5 mM, added at a rate of 2 mL/min under stirring). 

Nanoprism growth was achieved by combining 150 mL of water, 2.25 mL of 

aqueous ascorbic acid (10 mM) and 3.6 mL of seed solution, followed by the 

addition of 90 mL aqueous silver nitrate solution (0.5 mM) at a rate of 1 mL/min 

under stirring. Figure 8 shows the AgNP dispersions at different stages of the 

synthesis, during the addition of increasing amounts of AgNO3 0.5 mM. 

After the synthesis, 15 mL of aqueous trisodium citrate (25 mM) were added to 

stabilize the dispersion and avoid aggregation or precipitation of the nanoprisms. The 

solution obtained is referred to as pristine nanodispersion or naked nanoparticle 

dispersion. 

 

Surface functionalization. The surface modification with an alkoxysilane 

derivative has the aim to graft the nanosystem to the lithic material, in order to make 

the nanoremedy able to resist to stressing conditions such as rain water washing. 

Pristine nanoprisms were functionalized using a modified procedure inspired to a 

known literature approach (Niitsoo et al., 2011). The grafting agent used was a layer 

of tetraethyl orthosilicate (TEOS), ideally thick as one alkoxysilane molecule 

(AgNP:TEOS 20:1 w/w). The desired amount of pristine aqueous AgNPs was 

concentrated up to the volume of  200 μL using centrifugal concentrators (Vivaspin 

20, Sartorius Vivascience MWCO 3,000 Da, 20 mL; Amicon 500, Merck Millipore, 

Amicon Ultra 0.5 mL) and diluted to the final reaction volume with 2-propanol (4:1 

V/V, 2-propanol:aqueous solution of AgNPs). A TEOS solution diluted in 2-

propanol (i-PrOH) was added to the AgNP dispersion while stirring. Immediately 

after, the growth of the silica coating was initiated by the rapid injection of an 

aqueous dimethylamine solution (DMA, final concentration 0.4 M) into the 

AgNP/TEOS colloidal dispersion (Kobayashi et al., 2005; Niitsoo et al., 2011). The 

amine was used as the catalyst for TEOS hydrolysis and its condensation into SiO2. 

The mixture was stirred for 30 min at room temperature and concentrated to the 
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desired volume by N2 insufflation. The functionalized nanoparticle dispersions 

(AgNP@TEOS) were resuspended by sonication before using. 

 

3.2.2 Characterization techniques 

 

SEM. Scanning electron microscopy (SEM) experiments were carried out with a 

field emission gun (FEG)-SEM, mod. ΣIGMA by Carl Zeiss, working at 8 kV of 

acceleration potential. Images were acquired by collecting back-scattered electrons 

(BSE) to highlight the differences in lightness of high atomic weight atoms (silver) 

with respect to lighter elements (calcium) and by collecting secondary electrons with 

an in-lens detector, when working at higher magnifications. Stone samples (1.5 X 1.5 

X 0.3 cm) were functionalized with 30 g/sample pristine or functionalized 

nanoparticles. Theoretical background of this technique is given in the Annex. 

 

AFM. Atomic force microscopy (AFM) images were collected using a Park XE-

100 microscope in non-contact mode (SSS-NCHR probes, nominal resonant 

frequency 330 kHz, radius of curvature < 5 nm). Stone samples (1.5 X 1.5 X 0.3 cm) 

were functionalized with 30 g/sample pristine or functionalized nanoparticles. 

Stone control samples were treated only with TEOS solution (TEOS being in the 

same concentration as for the corresponding AgNP@TEOS-treated samples). 

Insights of this technique are summarized in the Annex. 

 

Colorimetric measurements. Color changes induced by the presence of AgNPs 

were evaluated by means of colorimetric measurements. The light reflected by the 

sample (1 mm2 spot) was collected with of a fiber-optic cable (FRP series) and 

recorded with a high sensitivity CCD camera. Colorimetric data were collected using 

standard illuminant C and standard observer CIE 1931 (2°) in a  range 400-700 nm 

and with a 0°/0° geometry, operating conditions being derived from UNI NORMAL 

43/93 recommendations (Raccomandazioni NorMal, 1993). The specimens were 

analyzed in two different stone regions, three measurements being taken for each 

region. The colorimetric coordinates L (lightness), a (red-green coordinate), b 

(yellow-blue coordinate) were averaged out to obtain a single value for each 
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specimen. The resultant chromatic change (E) was determined through the 

following equation: 

 

       L 2  a 2  b 2 

 

 indicating the difference between the coordinates of the treated and untreated 

samples. 

 

3.3 Microbiological analysis 

 

This section is focused on the description of the experimental conditions used to 

grow bacterial and fungal strains. 

 

Reagents. All the reagents used in microbiological assays were sterilized before 

use. The sterilization was performed either by autoclave humid heat method 

(Vapormatic), keeping reagents and materials for 15 min at 120 °C, or by dry heat 

method, using a dry heather at 160 °C for 3 h. The autoclave method was principally 

used to sterilize culture media (liquid or solid), saline solution, water and plastic 

materials (i.e. Gilson tips, Eppendorf tubes), whilst the dry method was principally 

used to sterilize glass materials, such as flasks or glass beads. 

Luria-Bertani broth (LB, NaCl 10g/L (Merck), Yeast Extract 5 g/L (OXOID), 

bacto-triptone 10 g/L (DIFCO laboratories)) and Nutrient Broth (NB, OXOID, 13 

g/L) were used as liquid growth medium for bacteria, while Sabouraud Dextrose 

(OXOID, 30 g/L) was used for fungal growth. Nutrient Agar (NA, OXOID,  28 g/L) 

and LB-agar (1.5 % w/v agar) were used as solid growth medium for B. subtilis and 

E. coli, respectively. Malt Extract Agar (MEA, OXOID, 50 g/L) was used as solid 

medium for fungal growth. Saline solution was prepared with 0.85% w/v NaCl 

(Merck) in distilled water. 

 

Microorganisms and growth conditions. The microorganisms used in this 

thesis work were grown by classical microbiological culture techniques. 
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Bacterial cultures of B. subtilis strain 168 (genotype: trp C2, Fig. 9a) 

(Anagnostopoulos and Spizizen, 1961) were prepared in 100 mL flasks by 

inoculating a single bacterial colony into NB medium. 

Cultures of E. coli strain DH5 (Fig. 10a) were prepared in LB medium. 

Bacterial cultures were aerobically incubated on a rotary shaker at 30 °C and 120 

rpm for 18 h. 

To determine the culture viable count, the microbial suspension was serially 10-

fold diluted in saline solution and 100 μL of dilutions were spread on NA plates (B. 

subtilis, Fig. 9b) or LB-Agar plates (E. coli, Fig. 10b). Colony formant units (CFU) 

were counted after 24 h incubation at 37 °C. In such growth conditions, the viable 

count of the overnight culture was about 108 CFU/mL for B. subtilis and 109 

CFU/mL for E. coli. 

 

 
Figure 9. a) Optical microscopy (Nikon SMZ-1, 1000X) image of B. subtilis cells. Bacteria 

present the typical rod shape. b) Stereomicroscope (Nikon ALPHAPHOT-YS, 10X) morphology 

observation of B. subtilis colonies on NA solid medium. 

 

 
Figure 10. a) Optical microscopy (Nikon SMZ-1, 400X) image of E. coli cells. b) 

Stereomicroscope (Nikon ALPHAPHOT-YS, 8X) morphology observation of E. coli colonies on LB-

agar medium. 

a b 

a b 
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Aspergillus versicolor, strain M2 (Figg. 11 a, b) and Sarcinomyces petricola, 

strain M4 (Figg. 11 c, d) were isolated from the statue “Il ratto delle sabine” from 

Giambologna (1580), Piazza della Signoria, Firenze. They were allowed to grow in 

Saboraud Dextrose liquid medium and on MEA solid medium. 

 

  

  
Figure 11. a, c) Optical microscopy (Nikon SMZ-1, 1000X) image of A. versicolor fungal 

hyphae and S. petricola cells, respectively. b, d) Stereomicroscope (Nikon ALPHAPHOT-YS, 30X) 

morphology observation of A. versicolor and S. petricola colonies, respectively, on MEA solid 

nutrient medium. 

 

3.4 Microbiological methods – TiO2 

 

This section regards the description of microbiological methods used to assess 

the microbiocidal effect of TiO2 NPs, either surface modified or not. The tests were 

performed both on nutrient medium and directly on stone surface. 

 

Antibiogram. The antibiogram method was performed with different 

concentrations of TiO2 NPs, either laboratory synthesized or purchased (Sigma 

Aldrich anatase TiO2 NPs) (Fu et al., 2005). 0.1 mL of 107 CFU/mL of E. coli or B. 

a b 

c d 

a b 

c d 
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subtilis suspension were plated on LB-Agar or NA dishes, respectively, and allowed 

to dry for 10 min. The experiment was performed in duplicate. 10 L spots of TiO2 

NP solution (TiO2(SM)) at different concentration (125 mM, 12.5 mM, 1.25 mM, 

0.125 mM) were dropped on the plated bacteria along with 10 l spot of water and 5 

l spot of Ampicillin (5 mg/ml) used as negative and positive controls, respectively. 

The test dishes were irradiated for different time periods (20 min, 1 h, 5 h) with a 

black-light lamp (Pen-lamp, see section 3.1.2) peaking at 365 nm, whilst the control 

dishes were kept in dark conditions. All the samples were incubated at 37 °C 

overnight and the results visually determined. 

 

Antibacterial activity in solution. Besides the antibiogram method, another 

common test to evaluate TiO2 NP capability of killing bacteria is to UV-irradiate 

TiO2-bacteria slurries and plate sample aliquots withdrawn at different irradiation 

times (Huang et al., 2000; Swetha et al., 2010). 

Overnight culture of B. subtilis or E. coli were harvested by centrifugation (5 

min, 11000 rpm, 4 °C), washed several times with sterile water and re-suspended in 

10 mL sterile water. The bacterial viable counts of these suspensions were about 107 

CFU/mL (B. subtilis) and 108 CFU/mL (E. coli). 

1 ml of the bacterial water suspension, 1 mL of TiO2 NPs (TiO2 S(M) or TiO2 

S(M)@TMDS 125 mM) and 6 mL sterile water were added in a sterile glass Petri 

dish (test dish). This slurry was UV irradiated for different time periods (10 min, 15 

min, 30 min, 1 h, 1 h 30 min, 2 h, 3 h, 5 h) while stirring. Another glass Petri dish 

(control dish) with 1 mL bacterial suspension and 7 mL water was used as negative 

control under the same irradiation conditions. The irradiation source was a Pen Lamp 

(see 3.1.2 section) peaking at 365 nm placed at such a distance to have a light 

intensity reaching the solution of 1 mW/cm2. After the desired irradiation time 

interval, 100 L suspensions from each Petri dish were serially diluted (up to 10-4 

dilution) and plated. Cell viability was determined by colony counting after 24 h 

incubation. The initial microbial count (before any irradiation treatment) was 

evaluated withdrawing 100 L suspension from one of the dishes not containing NPs 

and plating 10-3 and 10-4 dilutions. The plates were visually counted after overnight 

incubation. The effect of the UV irradiation by itself was evaluated by keeping a test 
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dish (supplied with NPs) and a control dish (with no NPs) in dark conditions for the 

same time periods as the irradiated dispersions. 

The experimental setup is schematically shown in Scheme 6. 

Scheme 6. Schematic representation of the experimental setup used to test the antimicrobial activity 

of TiO2 NPs in solution. 

 

Antibacterial activity on stone support: cell deposition and recovery in 

solution. Serena stone samples (1.5 X 1.5 X 0.3 cm) were treated either with the test 

nanoparticle dispersion (TiO2(SM)@TDMS, test specimens), or with the 

corresponding amount of the alkoxysilane (TMDS, blank specimens), without the 

addition of NPs. The final NP concentration over Serena stone surface was 0.4 

mg/cm2. 

50 l of bacterial suspension (B. subtilis) from overnight culture were pipetted 

on one of the largest surface of Serena stone specimen and allowed to dry for 20 min. 

All the samples were exposed to arc lamp UVA light irradiation (peaking at 365 nm, 

3.1.2 section) for 20, 30 or 40 min. After the desired irradiation time period, the 

stone specimens were placed in a Petri dish (5 cm ) supplied with 10 mL saline 

solution (0.85% NaCl) and shaken for 30 min, turning the stone samples upside-

down after 15 min. 1 mL of this “washing solution” was withdrawn (twice for each 

sample) and diluted 10 and 100 times with saline solution. 0.1 mL of undiluted and 

diluted samples were plated, incubated at 37 °C for 24 h and colonies visually 

counted. In order to evaluate the effect of the UV irradiation alone, control samples 

either supplied with NPs or only with TMDS were subjected to the same treatment 
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conditions as the test and blank specimens, except for the fact that they were not 

exposed to irradiation but kept in dark conditions. 

 

3.5 Microbiological methods – AgNPs 

 

The microbiological tests described in this section were performed in order to 

evaluate the antimicrobial characteristics of silver NPs, functionalized or not, in 

different conditions. The first step involved liquid nutrient medium tests, then solid 

nutrient medium ones and eventually experiments with silver treated stone surface. 

Some of the tests were specifically tailored for the nanosystems under study. In all 

the tests the amount of the AgNPs added is described in μg units: that accounts for 

the Ag content, i.e. the weight of the NPs. 

 

Antibiogram. Preliminary tests to assess the antibacterial characteristics of 

pristine AgNPs were performed toward E. coli. 0.1 mL of either 106, 105, 104, 

CFU/mL E. coli suspension were plated on LB-Agar dishes and allowed to dry for 10 

minutes. 10 L spots of pristine AgNPs at different concentration (500 g/ml, 100 

g/ml, 20 g/ml, 4 g/ml, 0.8 g/ml) were dropped on plated bacteria. 10 L water 

spot and 5 l Ampicillin spot (5 mg/mL) were used as negative and positive controls, 

respectively. The experiment was performed in duplicate. Growth inhibition zones 

were visually evaluated after overnight incubation at 37 °C. 

 

MIC and MBC. Minimum inhibitory concentration (MIC) test was performed 

in plastic tubes containing LB as growth medium. The tubes were inoculated either 

with about 105 CFU/mL E. coli or about 104 CFU/mL B. subtilis from overnight 

cultures and supplemented with different concentrations of AgNPs (functionalized or 

not). The final volume was set at 1 mL, composed of 900 l LB broth, 50 l bacteria 

suspensions and 50 l AgNPs (whose final concentration varied from 0.05 g/mL to 

11 g/mL). Positive control tubes were composed of 900 l LB, 50 l bacteria 

inoculum and 50 l sterile water. Negative control tubes contained 950 l LB broth 

and 50 l sterile water. The tubes were incubated on the rotary shaker at 100 rpm and 
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30 °C for 24 h. Turbidity was visually evaluated. The lowest AgNP concentration 

corresponding to a non-turbid tube was indicated as the minimum inhibitory 

concentration (MIC). 

0.1 mL aliquots from non-turbid tubes were spread on NA (B. subtilis) or LB (E. 

coli) plates, incubated at 37 °C for 24 h and colonies visually counted to evaluate the 

minimum bactericidal concentration (MBC), i.e. the lowest concentration of the 

antimicrobial agent required to achieve irreversible inhibition of bacterial growth. 

 

Spot on spot. Antibacterial activity of AgNPs (functionalized or not) toward B. 

subtilis was qualitatively assessed on solid medium by determining the presence of 

growth inhibition zones. This test was used instead of the classical antibiogram 

method to overcome the problems associated with the fact that functionalized NPs 

(AgNP@TEOS) are dispersed in 2-propanol/water medium. The alcoholic dispersing 

mixture in fact inhibits bacteria growth by itself, once spotted over an inoculated 

plate. Using the spot on spot method, 10 μl of nanoparticle dispersions were spotted 

on NA plates and allowed to dry under the aspiration hood. Afterwards, 20 μl spots 

containing about 103 cells were laid onto the previous spot, so that the area covered 

by the cells was larger than the NP spot. Plates were incubated for 24 h at 37 °C and 

the inhibition activity was visually evaluated. 

 

Cell deposition and recovery in solution. To assess the antimicrobial activity 

of NP-treated Serena stones, test pieces (1.5 X 1.5 X 0.3 cm) were treated with 50 L 

of AgNP@TEOS dispersions at different concentrations (from 6 to 110 g/sample) 

and allowed to dry overnight. 

Each test sample was placed in a Petri dish ( 5 cm) and supplemented with 50 

μL of 10-1 dilution of an overnight B. subtilis culture spread on one of the largest 

surface. After 30 min from bacteria deposition (that is the time necessary to dry off 

the stone surface), 10 mL saline solution (0.85% NaCl) were added and the Petri dish 

was shaken for 30 min (the stone sample was turned upside-down after 15 min). 1 

mL of this “washing solution” was withdrawn (twice for each sample) and diluted 10 

and 100 times with saline solution. To enumerate the viable bacteria recovered from 

the stone samples, 0.1 mL of undiluted and diluted solutions were plated on NA solid 
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medium, incubated at 37 °C for 24 h and visually counted (Scheme 7). Stone samples 

treated with the corresponding amount of TEOS solution (instead of NP dispersions) 

were used as blank and treated in the same way. Two replicates with at least three 

repetitions each were performed for each concentration of AgNPs and the 

corresponding blanks. 

 

 
Scheme 7. Schematic representation of the different steps of the “cell deposition and recovery in 

solution assay”. 

 

The reduction in cell viability achieved due to NP antimicrobial effect was 

evaluated comparing final microbial counts (FMC) of AgNP@TEOS-treated and 

TEOS-treated samples. The initial microbial count was normalized at the same value 

for all the test pieces (Page et al., 2007; Ozy et al., 2010): 

 

Antimicrobial effect     
 MC untreated   MC(treated)

 MC untreated 
 100 

 

Cell deposition and recovery by contact plates. The antimicrobial activity of  

silver NPs grafted to Serena stone was also evaluated by the use of contact plates. 

Selected areas ( 5 cm) on the surface of Serena stone specimens (10 X 10 X 2 cm) 

were uniformly spread either with 27 g/cm2 AgNP@TEOS (test samples) or with 

Bacteria inoculumAgNP@TEOS

Washing solution
Plating and visually counting

30 min

30 min

Dry overnight
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the corresponding amount of TEOS (blank samples), allowed to dry overnight and 

inoculated with 100 l B. subtilis (about 104 CFU/sample). After 30 min from their 

deposition, bacteria cells were sampled using NA contact plates ( 5 cm) and the 

viable count was performed after 24 h incubation at 37°C. 

 

Fungal growth on stone. Serena stone samples (1.5 X 1.5 X 0.3 cm) were 

inoculated with different quantities of fungal spores or cells (about 104, 103 or 102 

spores/sample) of Aspergillus versicolor or Sarcinomyces petricola strains, 

respectively. To make fungal spores to grow on stone samples, the inoculated 

specimens were placed in a Petri dish ( 5 cm) which in turn was placed in a bigger 

Petri dish ( 9 cm) filled with water, to maintain high humidity level. Each stone 

sample was supplemented with 25 l Sabouraud liquid nutrient medium and 

incubated at 30 °C in the described humid conditions up to 60 days. The extent of 

growth was periodically observed with the help of stereomicroscopy. 
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Chapter 4. 

Results and discussion 
 

In the following chapter we are going to present and discuss the principal results 

obtained in this thesis work. This chapter is divided in two main sections, the first 

regarding TiO2 NPs and the second devoted to AgNPs. Each of these sections is in 

turn divided in other subsections, as chemical and biological results are discussed 

separately. 

 

4.1 Titanium dioxide nanoparticles (TiO2 NPs) 

 

The first aim of this thesis work was to obtain highly crystalline titanium 

dioxide nanoparticles to be grafted to a stone surface in order to confer it durable 

antibacterial properties. Several intermediate steps were pursued to achieve this final 

goal. First, TiO2 NPs were synthesized and characterized (size and crystallinity 

degree). Next, TiO2 NPs were surface modified with two different alkoxysilane 

derivatives able to chemically interact with a lithic substrate. Then, the antibacterial 

properties were evaluated. As long as TiO2 NPs require photoactivation to exert their 

toxicity toward bacteria, it was first assessed the actual photoactivity of pristine and 

functionalized NPs toward the degradation of an organic dye prior to test the 

synthesized nanoremedies toward bacteria. 

 

4.1.1 Chemical synthesis and characterization 

 

Anatase phase synthesis. Anatase is one of the three crystalline forms of 

titanium dioxide in Nature. Even though it is a metastable phase, it is the form with 

the highest photocatalytic activity, very important characteristic to our scopes. TiO2 

nanoparticles have been prepared from a peroxotitanate complex solution by a 

solvothermal process in water/alcohol media. This synthetic method was developed 
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by Liao et al. (2009) using Ti(SO4)2 and H2O2 as precursors. In their work, the 

authors demonstrated that different relative proportions of the crystallization solvents 

greatly influenced size and shapes of the final nanocrystals. Their investigations 

included the use of pure n-propanol, pure n-butanol and ethanol/water mixture as 

solvents. As far as pure n-propanol and n-butanol systems resulted in amorphous 

floccus-like structures, our study started from the synthesis of TiO2 nanoparticles 

using both ethanol/water and methanol/water mixtures for the solvothermal 

synthesis, in order to study if the NPs obtained differ in size or in crystallinity 

degree. Methanol/water mixtures were investigated because in their work Liao et al. 

(2009) suggested that long carbon chains badly affect the crystallinity and the growth 

rate of anatase crystals. Our study was aimed at verifying if the very short methanol 

chain gives rise to anatase phase crystallization even at higher extent than in ethanol 

or ethanol/water solutions. 

The NPs were obtained from solvothermal solvent mixtures varying from 100% 

water (SW), 4:1 V/V water/ethanol (SWE4), 1:1 V/V water/ethanol (SWE1), 1:4 V/V 

(SWE0.25) water/ethanol, 100% ethanol (SE), 100 % methanol (SM), 4:1 V/V 

water/methanol (SWM4), 1:1 V/V water/methanol (SWM1), 1:4 V/V water/methanol 

(SWM0.25) (see Table 1, section 3.1.1). All the sample batches resulted in well 

dispersed milky-white colloidal systems that tend to settle down over time, but 

promptly re-disperse if gently shaken (Fig. 7, section 3.1.1). 

 

SAXS and WAXD investigations. TiO2 nanoparticles obtained from all the 

combinations of synthetic solvents were first investigated by means of small and 

wide angle X-ray scattering techniques, SAXS and WAXD respectively. These 

measurements provide insights in dimension and crystallinity of the NPs and, 

compared to microscopy techniques, are well-suited for preliminary investigations. 

SAXS analysis can in fact be performed directly on the dispersions, without the need 

of any time consuming sample preparation. Moreover, they reflect the real 

characteristics of the systems under study, as they provide the dimensions of the 

particles in solution, without the risk of introducing artifacts in the evaluation of the 

sizes due to the use of dried specimens. Furthermore, SAXS results include the 

overall averaged information coming from all the nanoparticles present in the 

dispersion that is lightened by the X-ray beam, providing this way a very good 
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statistic over the whole sample. In addition, WAXD investigations are particularly 

useful dealing with titanium dioxide samples as the two most common titania 

polymorphs (anatase and rutile) can be easily discerned based on their most intense 

diffraction peaks. The narrow angular range (18-28˚) analyzed by the WAXD setup 

allows in fact to recognize anatase and rutile diagnostic peaks, that fall respectively 

at 25˚, (1 0 1) plane, and 27˚, (1 1 0) plane. A clear advantage as a preliminary 

investigation tool of WAXD technique over X-ray powder diffraction (XRD) is the 

use of as-prepared colloidal dispersions, without the need to freeze-dry the samples 

to obtain adequate amounts of powdered material. 

SAXS curves were collected for each sample batch prepared from different 

solvent mixtures. They were fitted according to the Unified model (Beaucage et al., 

2004) by using two structural levels: one for the primary particles (Level 1) and the 

other for the aggregates of primary particles (Level 2). The results are shown in 

Figure 12 and the parameters obtained from the fitting model are summarized in 

Table 2. 

 

 
Figure 12. Panel a displays SAXS intensity distributions for all the investigated TiO2 

nanoparticle dispersions. The continuous lines represent the Unified fit. Panel b shows an example of 

the Unified fit on sample SM. The fit consists of two levels: i) the high-q level is divided in a Guinier-

fit and a Porod-power-law fit, ii) the low-q level displays only the Porod-power-law fit. The inset 

represents the size distribution corresponding to the Unified fit.  

 

Figure 12a shows the log-log representation of SAXS intensity distributions 

versus Q (the scattering vector) obtained for all the investigated samples. One 



Chapter 4 – Results and discussion 

68 
 

example of the Unified fit is reported in Figure 12b (sample SM) along with the 

structural level corresponding to the nanoparticles. The agreement between the 

experimental data and the fitting was excellent in all the sample batches. The log-log 

plot of the scattering intensities displayed a knee-like shape in the transition region 

between Porod regime of the aggregates (Level 2) and Guinier regime of the primary 

particles (Level 1). Usually, the presence of this feature is characteristic of 

nanoparticles with a low-polydispersity (see Table 2). 

Table 2 summarizes the results obtained from SAXS curves and their relative fit 

in terms of size of the primary nanoparticles and polydispersity. Opposite to what 

was found by Liao and coworkers (2009), the solvent mixtures used during the 

synthesis did not appear to affect by a great extent the final nanocrystal dimensions 

or the crystalline phase. Only minor differences were detectable between all the 

synthesized batches. The NPs obtained from pure methanol were the smallest among 

all the others, while the NPs synthesized from pure ethanol and pure water were the 

largest, being quite similar the ones to the others. Conversely, all the colloidal 

dispersions obtained from water/alcohol solvent mixtures were very similar in terms 

of primary particle dimensions, either if the alcohol was methanol or ethanol.  

It is therefore possible to assess that these preliminary SAXS studies on the 

colloidal dispersions did not show any particular trend in the nanoparticle sizes. 

The next WAXD investigation was oriented to find out if different synthetic 

solvent mixtures affect the crystallinity degree of the colloidal nanodispersions. 

WAXD patterns evidence in all the samples the presence of the anatase phase, whose 

diagnostic diffraction peak falls at 25˚ (Fig. 13). One exception to the purity of 

anatase phase is represented by sample SWM0.25, which displays a tiny shoulder 

around 27˚ that can be ascribed to the presence of small amounts of rutile. Another 

particularity to be further investigated is represented by sample SM, whose 

crystallinity degree appears less evident. 

Also WAXD measurements did not show any particular variation between the 

samples prepared from different solvothermal reaction mixtures. 
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Figure 13. WAXD pattern for all the synthesized TiO2 samples. Panel a displays the samples 

synthesized from pure water, pure methanol or from their mixtures; panel b displays the samples 

synthesized from pure water, pure ethanol or their mixtures. The peak at about 25° is the diagnostic 

reflection for the anatase phase. It is slightly shifted to higher 2Theta values (0.3-0.4°) with respect to 

XRD pattern (Fig. 18) as a result of the fact that Lupolene has been used as a secondary calibrant. 

Sample SWM0.25 displays a tiny shoulder around 27˚, that may be due to a small amount of rutile phase. 

 

The next step in the characterization of TiO2 NPs was aimed at gaining further 

insights about the size and morphology of the synthesized nanostructures by using 

different specific techniques.  

 

HRTEM-SAED. Complementary results on the size of the NPs with respect to 

SAXS ones were obtained by means of high resolution transmission electron 

microscopy (HRTEM). Opposite to what happens with SAXS measurements, this 

technique does not provide particle dimensions in solution, but gives information on 

the sizes of the dried specimens. 

Images displayed in Figure 14 are representative for each synthetic condition 

used. The size of the nanoparticles was estimated through the analysis of several 

HRTEM images by the evaluation of the size of the NPs in each picture. The average 

dimensions, derived from a log-normal fitting process of all the data points (Fig. 15), 

are summarized in Table 2 and are in good agreement with SAXS results. 
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Figure 14. HRTEM images (300 K magnification) of all the samples originated from 

solvothermal synthetic pathway using different reaction solvent mixtures. 

 

From the images taken at higher magnification (Fig. 16) it is evident that all the 

nanoparticles display a faceted shape, highlighting their crystalline structure. 

Moreover, when the size of the nanoparticles exceeds about 10 nm, the growth seems 

to take place preferentially along one direction, as shown by the elongated shape of 

greater particles (see the arrow in Fig. 16a). 

 



 
 

 
 

 
Figure 15. Log-normal fittings of the NP dimensions derived from the HRTEM images of each sample. 
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The nanoparticle crystallinity in selected specimen regions was studied by 

means of SAED analysis (selected area electron diffraction). Diffraction rings (see 

the insets in Fig. 16) are indicative of anatase crystallographic phase. 

 

 
Figure 16. HRTEM images of samples SW (a), SM (b), SE (c) at 600 K magnification. The insets 

display the SAED analysis on selected specimen regions (60 K magnification). The diffraction rings 

are typical of pure anatase phase. The arrow in panel a indicates the preferential growth direction of 

the crystalline nanoparticles. 

 

SAED analysis do not detect any amorphous halos or other crystalline phases in 

any sample, with the exception of batch SWE1 which reveal the co-presence of a much 

weaker second diffraction ring typical of brookite phase, as indicated by the arrow in 

the inset of Figure 17. As a matter of fact, the lack of brookite characteristic 

diffraction ring in all the samples other than SWE1 can be due to the very limited area 

investigated in a SAED measurement. It is also important to stress out that brookite 

diagnostic diffraction signal appears around 30˚, i.e. outside the angular region 

examined through WAXD measurements. The result obtained in the case of our 

sample SWE1 is similar to what was found by some other researchers (Chae et al., 

2003) that synthesized TiO2 NPs using an hydrothermal reaction in ethanol rich 

conditions. Their NPs were mainly in the anatase phase, but with actual impurities of 

brookite or rutile phases.  

 

XRD. Since WAXD measurements presented some points to be clarified and 

SAED results were affected from a poor statistical relevance (the investigated area is 

very small), X-ray diffraction (XRD) on the nanoparticle powders was performed. 



Chapter 4 – Results and discussion 

73 
 

 
Figure 17. HRTEM image (300 K magnification) of sample SWE1. The biggest nanoparticles are 

in anatase phase, the smallest ones are in brookite phase. The brookite phase is represented by the 

weak colored diffraction ring indicated by the arrow in the SAED inset. 

 

These measurements had several aims: i) to actually prove that brookite phase is 

present in significant amount only in sample SWE1, ii) to verify whether sample 

SWM0.25 is also composed of a little percentage of rutile phase or not and iii) to ensure 

that sample SM consists of crystalline nanoparticles.  

XRD results of the powdered samples SE, SW, SM, SWE1 and SWM0.25 are shown 

in Figure 18. 

 

 
Figure 18. XRD diffraction patterns corresponding to samples SM, SW, SE, SWM0.25, SWE1. 
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These measurements actually confirmed SAED findings and clarified the doubts 

raised from WAXD measurements. The brookite phase is in fact detectable only in 

sample SWE1, through the diagnostic diffraction peak at 30.8°, plane (2 1 1), but even 

in this powdered sample it constitutes a minority phase with respect to the anatase 

one. Moreover, XRD results proved that the weak shoulder in the WAXD spectrum 

of the sample SWM0.25 was not due to the presence of rutile phase in significant 

amounts. It was also confirmed that sample SM is crystalline indeed and in the 

anatase form. 

The analysis of XRD data allowed also to extract the average crystallite sizes. 

According to the Warren-Averbach method (Warren, 1969), which takes into 

account the whole information contained in the XRD peak profile and not only its 

half width at half maximum as in the Scherrer method, the crystallite size diameters 

are: SW  = 8.6 nm, SE = 10.9 nm, SM = 5.4 nm SWE1 = 7.1 nm, SM = 8.3 nm. The fact 

that these dimensions nearly match those obtained from SAXS and HRTEM 

measurements, indicate that the nanoparticles are actually monocrystalline. 

 
Table 2. For each synthesized batch of TiO2 NPs, the table summarizes: the size of primary 

nanoparticles by means of different characterization techniques (SAXS and HRTEM), the 

polidispersity index (PDI, from SAXS curve fitting model) and the crystallographic phase (from 

WAXD, HRTEM-SAED and XRD measurements).  

 Vwater/Valcohol 
RSAXS  

(nm) 
PDI 

RHRTEM
a 

(nm) 
Crystalline phase 

SE 0:1 5.54  0.17 0.26 4.3  0.3 anatase 

SWE0.25 1:4 4.40  0.25  0.25 4.3  0.2 anatase 

SWE1 1:1 4.36  0.30  0.28 3.5  0.5 anatase, brookite  

SWE4 4:1 4.27  0.22  0.25 3.8  0.2 anatase 

SW 1:0 5.27  0.23  0.29 4.2  0.2 anatase 

SWM0.25 1:4 4.50  0.23 0.26 4.7  0.3 anatase 

SWM1 1:1 3.90  0.16  0.22 3.5  0.1 anatase 

SWM4 4:1 4.27  0.18 0.22 3.7  0.2 anatase 

SM 0:1 3.45  0.30 0.39 2.5  0.3 anatase 
a Results obtained by measuring 20-50 distinct particle dimensions from several HRTEM 

images. Average sizes and errors were obtained from a log-normal distribution. 
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Basing on all the results obtained, it is possible to extrapolate some conclusions 

on the effects of changing the solvent reaction mixture on particle size and 

crystallinity. Both scattering and microscopy results suggest that, no matter which is 

the reaction solvent mixture (water/(ethanol or methanol) in different proportions), 

the nanoparticles obtained are highly monocrystalline and in the anatase form. Even 

though the dimensions do not vary by a great extent in dependence of the synthetic 

solvent combination, the NPs synthesized from pure methanol (SM) are the smallest, 

particularly in comparison with the ones obtained from the other pure solvents (water 

(SW) and ethanol (SE)).  

 

Surface functionalization. Once obtained titanium dioxide nanoparticles in 

anatase form, the next step of the work was to make them able to be grafted to a 

rocky substrate, fundamental requisite to allow the NPs to exert in situ antimicrobial 

activity. Since TiO2 nanoparticles have reactive hydroxyl groups on their surface, the 

NPs were surface modified taking advantage of the reaction of these −OH 

functionalities with proper end-functional molecules, such as alkoxysilanes. 

Because of the very similar characteristics in terms of crystallinity degree and 

sizes of the primary particles of all the different NP batches, it was decided to surface 

modify only samples SW and SM. These samples were chosen on the basis of their 

dimensions; SW is in fact composed of NPs whose size is among the largest, and SM 

is composed of the smallest NPs. The as-prepared TiO2 nanodispersions were surface 

functionalized by means of two different methoxysilanes, TSPMC ((CH3O)3Si− 

(CH2)3-N+(CH3)3Cl-) and TMDS ((CH3O)3Si−Si(OCH3)3). 

TSPMC was selected as it should be able to bind to the nanoparticles both 

through chemical bonds, using its siloxane end, and through electrostatic interactions 

(reverse attachment) using its quaternary ammonium end, as documented in literature 

(Scheme 8) (Ukaji et al., 2007; Song et al., 2010). TMDS, on the other hand, can 

only be chemically bound to the surface and it was selected as it is an alkoxy-

disilane; the presence of six siloxane ends should simplify the condensation reactions 

to form Ti−O−Si bonds with the NPs (Scheme 8) and Si−O−Si or Si−O−C bonds 

with the lithic material, respectively if the stone is silicatic or carbonatic (Scheme 5, 

section 2.3). 
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The process of methoxysilane grafting to TiO2 surface can be described by the 

following equations: 

 

TiO- + +N(Me)3(CH2)3−Si(OMe)3  Ti−O−Si− (CH2)3−+N(Me)3 + 3 MeOH 

Ti-O- + +N(Me)3−(CH2)3−Si(OMe)3  Si(OMe)3−(CH2) −+N(Me)3
....-O−Ti 

Ti-O- + Si(OMe)3−Si(OMe)3  Ti−O−Si−(OMe)3 + 3 MeOH 

 

 

Scheme 8. Simplified schematic representation of the surface modification of the TiO2 NPs by 

means of two methoxysilanes. TMDS is an alkoxydisilane, TSPMC is a quaternized 

aminoalkoxysilane. 

 

FTIR. The functionalization reaction between TiO2 NPs and methoxysilanes 

was monitored by infrared spectroscopy (ATR-FTIR) and studied as a function of 

temperature, reaction time and silane concentration.  

As for the temperature, either room temperature conditions or 50 °C were 

examined; the reaction status was monitored after 2 h, 17 h or 3 days in stirring 

conditions. The best results were obtained setting the temperature at 50 °C and the 

reaction time at 17 h. 

The methoxysilane amount to be added was decided in order to reach the desired 

percentage of NP surface coverage, either 84, 100 or 130 %. The theoretical NP 

surface area and the coverage were calculated referring to the ideal assumption of 

spherically-shaped monodisperse nanoparticles (according to SAXS dimensions), 

with the silane evenly distributed on the surface. 

Figure 19 displays selected regions of the ATR-FTIR spectra of the 

functionalized and pristine NPs (samples SM or SW), together with the spectra of pure 

alkoxysilanes (TSPMS or TMDS). 

TiO2@TMDS

TiO2@TSPMC
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The spectra of the TiO2 NPs synthesized from pure water (SW) or from pure 

methanol (SM) are basically identical. In the high frequency region a broad band is 

present, which can be ascribed to the hydroxyl groups on TiO2 NPs (Ti-OH) and to 

the water complexes strongly bound to their surfaces (Xu et al., 2008). A sharp peak, 

characteristic of the scissor-bending mode of physisorbed water (Xu et al., 2008), is 

detected around 1630 cm-1. A much weaker signal is detected around 1440 cm-1, 

which could be due to the adsorption of CO2 onto the surface of the NPs (Xu et al., 

2008; Vayssieres, 2009). The region at low IR frequencies does not feature any 

significant characteristic, with the only exception of the shoulder around 900 cm-1 

that indicates the presence of peroxo groups on the surface of TiO2 particles, as 

previously reported for nanostructured systems where H2O2 is used during the 

synthesis (Coates, 2000; Gao et al., 2004; Sawicka et al., 2006).  

In the case of pure TMDS, a group of peaks is present between 3000 and 2800 

cm-1, which is due to the –CH stretching vibrations of methoxy groups (Coates, 

2000). In the mid region, the spectrum of pure TMDS features a peak slightly above 

1450 cm-1, which can be ascribed to –CH3 bendings (Coates, 2000; Sawicka et al., 

2006). These peaks reported for the pure TMDS spectrum are always present when 

the NPs are coated with TMDS and, as expected, their intensities grow as a function 

of the coverage percentage. 

The presence of TMDS onto TiO2 NPs is further confirmed by the broadening of 

peak at 1450 cm-1, due to the appearance of a shoulder between 1450 and 1400 cm-1 

that can be ascribed to Si–O–C groups in silane-based coatings on TiO2 NPs (Sabzi 

et al., 2009). As for the previously discussed signals, the intensity increases 

according to the amount of the grafting agent. This is especially evident in the case 

of the highest coverage spectrum (130%), where a further shoulder emerges at about 

1550 cm-1, also diagnostic of Si–O–C groups (Sabzi et al., 2009).  

In the low energy part of the TMDS spectrum, two strong peaks are present: one 

around 1200 cm-1, which can be assigned to –CH3 rocking vibration (Murphy et al., 

1993; Lien et al., 2005), and the other around 1050 cm-1, characteristic of Si–O–C 

vibrations (Coates, 2000). The spectra of modified NPs show the presence of the 

very same peaks, providing further evidence of the successful grafting. Furthermore, 

the shape of the peak around 1050 cm-1 is much less defined than in pure TMDS, 

likely due to the overlapping of the signals due to Si–O–Si groups eventually 
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forming during the condensation of the silane on NPs, typically appearing slightly 

below 1100 cm-1 (Zeitler and Brown, 1957; Cheng et al., 2006; Finocchio et al., 

2007; Ukaji et al., 2007; Sabzi et al., 2009). Finally, the formation of Ti–O–Si 

groups is highlighted by the appearance of a shoulder around 950 cm-1, slightly 

above the signal due to peroxo groups in naked particles. 

FTIR results of TSPMC-coated NPs almost entirely follow those of TMDS-

coated NPs, apart from the different chemical structure of the grafting agent and the 

consequent IR absorptions. All the signals discussed in the case of TMDS are present 

in TSPMC as well, with the addition of new peaks arising from the −N(CH3)3 and 

−CH2 functional groups. Therefore we discuss here only the new absorptions related 

to those functions. 

In the high energy region, a slight broadening of the –CH stretching peaks is 

visible in the spectra of pure TSPMC and TiO2@TSPMC, reasonably due to the 

overlapping –CH stretching vibrations of methylene groups in the TSPMC alkyl 

chain and methyl groups from the quaternary ammonium end. The presence of the 

N–C–H peak is clearly detected in the mid region between 1500 and 1400 cm-1 

(Sawicka et al., 2006), also in the spectra of the modified NPs, which overlaps those 

from Si–O–C groups.  

In the low energy part of the spectra, in addition to the rocking –CH3 signal 

around 1200 cm-1 and the second peak from the Si–O–C group appearing slightly 

below 1100 cm-1, the peak of quaternary N–C group is clearly visible in all the 

samples around 1040 cm-1 (Murphy et al., 1993; Lien et al., 2005). 



 
 

 
 

 

Figure 19. ATR-FTIR spectra of the TiO2@TMDS (a, b) and TiO2@TSPMC samples (c, d). Surface functionalization was performed on samples SW and SM. 

Please note that TSPMC spectrum refer to an alcoholic solution of it, this being the reason of the characteristic –OH stretching band around 3400-3300 cm-1.

a b

c d



Chapter 4 – Results and discussion 

80 
 

TGA. The successful grafting of the methoxysilanes on the surface of TiO2 NPs 

was also monitored through thermogravimetric analysis (TGA). Thermal degradation 

of both pristine and functionalized nanoparticles was studied in order to device 

potential differences before and after the NP surface modifications. The powders 

were first isothermally equilibrated at 100˚ for 10 min in order to remove 

physisorbed water and then heated up to 750 ˚C under nitrogen atmosphere at a 

heating rate of 10 ˚C/min.  

Figure 20 displays the weight loss curves of naked NPs prepared from water 

(SW) and methanol (SM), together with the curves associated with NPs functionalized 

with an excess (130% coverage) of alkoxysilane, either TMDS or TSPMC. The 

weight loss profiles are normalized to 100% after the isothermal step to get rid of the 

water contribution to the curves. All the samples show a similar trend. At 

temperatures slightly higher than 100˚C, the weight loss percentage in naked NPs is 

larger than in functionalized ones, likely due to a larger amount of water strongly 

bound to the surface. As the temperature increases, the pyrolysis of the organic 

content in the silanes causes a larger weight loss percentage in surface-functionalized 

NPs. Despite the low molecular weight of the silane molecules and their very small 

contribution to the total weight, pyrolytic processes can be detected in the weight 

loss derivative curves (Fig. 21). 

 

 
Figure 20. Weight loss curves for naked and silane functionalized samples (the grafting agent 

being either TMDS or TSPMC in excess). Samples in panel a are obtained from SW; samples in panel 

b are obtained from SM. 

 

  
 

a b a b 
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Figure 21. Weight loss derivative curves for the pristine SW (a) or SM (b) NPs and for the SW (a) 

or SM (b) samples functionalized with an excess of the grafting agent (130% coverage with TMDS or 

TSPMC). 

 

HRTEM. The surface modification of TiO2 nanoparticles with a silane 

derivative was also evident by means of high resolution TEM measurements. A 

representative image is shown in Figure 22, where the crystalline TiO2 core appears 

uniformly covered by an amorphous layer of silane (~ 1 nm thick), obtained from the 

reaction of pristine NP (SM) with TMDS in the case of 130% surface coverage. 

 

 
Figure 22. HRTEM image of SM TiO2@TMDS at 800 K magnification. Crystalline cores are 

uniformly covered by an amorphous layer of silane. 

 

From the synergic use of different investigation techniques it was therefore 

possible to make sure that the synthetic procedure used was effective in yielding 

anatase nanocrystals surface-functionalized with alkoxysilane molecules. 

ba
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TiO2 grafting to the stone surface.  Before testing the NP killing properties 

toward bacteria, it was necessary to perform a preliminary study in order to test the 

grafting efficiency of the nanoparticles to the stone surface. Two different lithic 

substrata were chosen: marble and Serena stone. 

Microscopic techniques were used to evaluate the potential differences between 

the untreated stone surface and the functionalized one. The specimens were also 

subjected to a water flow that simulates an heavy rain condition (7 mL/s for 30 min), 

with the aim to test the resistance of the grafting agent.  

AFM images of marble surface (Fig. 23) were collected before and after 

functionalization with the NPs (SM TiO2@TMDS where chosen, the ones with the 

highest photocatalytic activity). 

 
Figure 23. AFM 3D topography (left images) and corresponding error images (right images) of 

(a) untreated marble surface and of marble surface functionalized with SM TiO2@TMDS before (b) 

and after (c) the washing treatment.  

 

a 

b 

c 
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Figure 23 displays some representative images, and no significant differences 

can be appreciated between the samples. That is due to the fact that the NPs are too 

small to be visualized on such a rough surface. 

The same specimens were then analyzed by means of SEM technique (Fig. 24).  

 

 
Figure 24. a) Neat marble surface (2500 K magnification). b) and c) images show SM 

TiO2@TMDS grafted to marble surface before and after washing treatment, respectively (1500 K 

magnification). 

 

The images evidence that the NP grafting to marble surface is not efficient, as 

after the exposition to the water jet a significant percentage of the nanoparticles is 

diluted. 

It was therefore changed the stone substrate from marble to Serena stone, and 

SEM images (Fig. 25) show a better performance of the grafting agent, as the 

functionalized NPs resist well to the washing treatment, and their loss after washing 

is by far less evident than in the case of marble surface. 

 

 
Figure 25. Serena stone surface (a) and its functionalization with TiO2(SM)@TMDS before (b) 

and after (c) the washing treatment (1500 K magnification). 

 

AFM images were not collected on Serena stone treated surface, as we did 

already know that TiO2 NPs are too small to be visualized on such rough surfaces. 
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From these results, Serena stone was preferred over marble and it was used as 

the reference lithotype along this thesis work. 

The next step of our study was to investigate the response of the surface 

modified nanoparticles to UV irradiation. The suggestion to use anatase NPs as bio-

nanoremedies lies in their capability to exert photoinduced antimicrobial activity. 

Briefly, when the radiation wavelength matches the semiconductor (TiO2) band gap, 

at its surface takes place the generation of highly oxidizing species (ROS), proved to 

be active toward the degradation of organic compounds (Fujishima, 1999; Vohra et 

al., 2009). We tested if synthesized pristine NPs exhibit such photocatalytic activity 

and if surface-modified NPs also retain such photobehavior. Some literature data, in 

fact, report on a reduction of photocatalytic activity of TiO2 NPs once they are 

surface modified by means of a silane coupling agent (Siddiquey et al., 2007; Ukaji 

et al., 2007). 

 

Photocatalytic chemical degradation. Before testing the actual capability of 

TiO2 NPs to photodisinfect microorganisms, it was assayed NP photocatalytic 

efficiency toward the degradation of an organic dye. It was carried out a model 

photoreaction based on the UV irradiation of methylen blue (MB), since its 

photobleaching sensitized by TiO2 has been widely investigated (Mills and Wang, 

1999). Briefly, once the organic molecule physically adsorbs on the NP surface and 

absorbs a proper photon energy, the electrons from the excited dye molecule could 

inject into TiO2 conduction band (CB) and be trapped by electron scavengers (i.e. 

O2), forming transient radical species that break down the organic dye. This 

degradation mechanisms is summarized by the following reactions (Yu et al., 2007): 

 

Dye (h)  Dye* 

Dye* + TiO2 + O2  TiO2 + O2
- + Dye+· 

O2
- + 2 H2O  2 OH- + 2OH + O2 

O2
-(OH) + Dye+  (Cleavaged Dye) 

 

The nanometer sized particles are able to enhance photocatalytic efficiency due 

to their high surface area that can promote the contact between TiO2 and the organic 
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molecules. Moreover, the large amount of hydroxyl groups present at the surface of 

nanosized particles constitute an important parameter in the photodegradation 

mechanism, as they can accept the positive holes generated by the irradiation to form 

hydroxyl radicals and prevent electron recombination (Yu et al., 2007). 

In Figure 26a it is displayed the UV-visible spectrum of MB in iso-propanol; it 

shows a sharp absorption band centered at max = 657 nm. The UV-vis spectrum of 

TiO2 NPs (Fig. 26b) does not show any significant absorption over 400 nm, featuring 

only a broad absorption at wavelengths shorter than 400 nm, due to an intrinsic band-

band transition (Xu et al., 2008). 

 

 
Figure 26. UV-visible absorption spectra of a) MB (0.01 mM in iso-propanol) and b) TiO2 

anatase (SW 0.005% w/v in iso-propanol). 

 

It was possible to follow the absorbance variation (due to the dye deterioration) 

of MB/TiO2 mixtures monitoring the MB peak at 657 nm as a function of the 

irradiation time.  

Figure 27 shows the spectra collection obtained irradiating a representative 

dye/NP mixture, in particular MB/(SM TiO2@TMDS). The variations in absorbance 

of the test sample (MB/(SM TiO2@TMDS) were compared with a blank, i.e. a MB 

solution where no TiO2 NPs were added. The test sample exhibits higher rate of 

absorbance decrease upon irradiation with respect to the blank, indicating the action 

as photosensitizer performed by the NPs. 
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Figure 27. Variations in the UV-vis absorption spectra of (a) the test sample (MB + SM 

TiO2@TMDS) and (b) of the blank (MB) as irradiation time increases. 

 

The same experiment and spectra collection was performed with several 

representative pristine or functionalized samples. In representation of pristine NPs 

the ones synthesized from pure methanol (SM), pure ethanol (SE) and pure water (SW) 

were chosen, in addition to the NPs obtained from water/ethanol 1/1 mixture, since 

SWE1 is the only sample that displays brookite phase. In representation of 

functionalized NPs, SW or SM samples either surface modified with TMDS or with 

TSPMC were tested. 

All the results recorded over the irradiation time are summarized in Figure 28. 

 

 
Figure 28. Absorbance of the test samples (MB + TiO2) normalized for the absorbance of MB at 

max = 657 nm as function of the irradiation time. 
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Instead of displaying all the absorption curves of the test samples and the blank, 

the absorbance results were corrected for the non-catalytic contribution to 

photodegradation of MB (photochemical degradation), i.e. MB/TiO2 curves were 

normalized using the absorbances from the blank solution.  

Sample SM TiO2@TMDS shows the highest photocatalytic activity, whilst 

sample SE seems not to act as a photosensitizer toward the degradation of the organic 

dye. Anyhow, it was not observed a specific trend in the photocatalytic performance 

neither in dependence of the surface characteristics of the NPs (i.e. if they are 

functionalized or not) nor in dependence of the solvent mixture used during the 

synthetic procedure. It was previously reported that anatase powders with a small 

fraction of brookite phase display enhanced photocatalytic activity as compared to 

pure anatase, due to the electron-hole transfer between the two phases (Ozawa et al., 

2005). That was not corroborated by our experiments; sample SWE1, the one that 

contains a small amount of brookite phase according to HRTEM-SAED and XRD 

investigations, did not show any significant improvement in the photocatalytic 

performance with respect to pure anatase NPs.  

Anyway, the results of these experiments with MB prove that TiO2 NPs can be 

surface modified with alkoxysilanes without losing the photocatalytic properties of 

the naked ones. At the same time, it is difficult to extrapolate a clear correlation 

between the NP surface composition and the photoactivity, as the use of different 

samples did not incisively affect the photocatalytic results. The results were therefore 

encouraging to proceed with microbiological testing of the synthesized NPs. 

 

4.1.2 Microbiological assays 

 

Biological deterioration of lithic materials is associated with the alteration of the 

physico-chemical structure of the rocky substratum along with its appearance 

(Ortega-Morales et al., 2000; Fonseca et al., 2010). Current procedures for the 

treatment of biodeteriorated lithic materials involve the use of biocides but they fail 

in the long term protection of the surfaces and may also present problems related to 

their toxicity (Nascimbene and Salvadori, 2008). Conversely, the use of 

nanostructured TiO2 NPs as preservative treatment against microbial colonization of 
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inorganic substrata potentially constitute a compatible method of intervention that 

would not interfere with material characteristics. Moreover, this kind of treatment 

would also confer the material a long lasting anti-microbial effect with no harm for 

the environment and human health. 

The preliminary results obtained using the synthesized NPs for the 

photodegradation of the organic dye (MB) were promising and stimulated further 

investigations oriented to use TiO2 NPs as UV-activated antimicrobials. It is 

important to highlight that photocatalytic bacteria disinfection is different from that 

of organic molecules. The reason lies in the fact that the organic molecule size is less 

than 1 nm, and that makes them to adsorb on the photocatalytic NPs; contrariwise, 

bacteria have micrometer size and it is the semiconductor NPs that wraps the 

microorganisms (Karunakaran et al., 2010). Another factor to be considered is that, 

depending on the bacterium under study, sensitivity to UV-light exposure may be 

different, and also relatively low energy radiation can damage cells through oxidative 

stress (Barnes et al., 2013).  

In this thesis work, the photokilling capabilities of synthesized TiO2 NPs against 

bacteria were investigated in suspension and on surface-grafted conditions, using an 

UVA light peaking at 365 nm as energy source. 

 

Antibiogram method. The very first attempt to verify the antimicrobial 

properties of synthesized TiO2 NPs was performed through the antibiogram test, a 

very common microbiological method.  Petri dishes were inoculated with bacteria (E. 

coli or B. subtilis), spotted with different concentrations of NPs and with positive and 

negative controls (ampicillin and water, respectively), UV-irradiated for the desired 

time period and then incubated overnight. The test was conceived only for pristine 

NPs in the first place (also purchased TiO2 NPs, Degussa P25, were tested). Bacteria 

growth was evident on TiO2 and negative control spots of the Petri dishes irradiated 

for 20 min, and it was conversely totally inhibited on the ampicillin spot. On the 

other hand, 1 h or 5 h irradiation resulted in a total inhibition of bacteria growth all 

over the Petri dishes, indicating a microbiocidal effect of the radiation. Control 

dishes (not UV-irradiated) showed conversely homogenous growth all over the plate, 

TiO2 spots included. These results were quite unexpected, as on the basis of literature 

data 365 nm radiation was not supposed to have such germicidal effect toward 
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bacteria (Huang et al., 2000; Lu et al., 2003; Rincon and Pulgarin, 2003; Fu et al., 

2005; Swetha et al., 2010; Zacarias et al., 2010; Polo et al., 2011), even though 

genus Bacillus was indicated as particularly sensitive to UV irradiation (Barnes et 

al., 2013; Lin and Li, 2013). 

 

Photodisinfection in solution. Since the antibiogram test evidenced that the 

direct irradiation of Petri dishes expose bacteria to UV-related damages, we tried to 

decrease the detrimental effects of this exposure by irradiating bacteria and NPs in 

solution. The experiments were carried out by exposing the sample dishes (TiO2-

cells slurry) and the control dishes (cells slurry) to the UVA energy source (λmax= 

365 nm). Aliquots from the irradiated test samples were withdrawn after different 

periods of UV-exposure (30 min, 1 h, 2 h, 3 h and 5 h), properly diluted, plated and 

visually counted (Scheme 6, section 3.4). Additional control dishes, either with or 

without NPs, were subjected to dark conditions. The use of controls is essential to 

determine whether the action of NPs by themselves, UV exposure by itself, or the 

combination of these two contributes results in the final antibacterial effect (Page et 

al., 2007).  

 

 
Figure 29. Results of cell viability counts (CFU/mL) from six different irradiation experiments 

of the control dishes (B. subtilis cells slurries without NPs). The samples were irradiated for different 

time intervals, and then aliquots of the slurries were plated and incubated overnight. 
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No differences were encountered between the samples incubated with or without 

NPs in dark conditions. These dark controls ruled out the possibility of a 

photodisinfection based on the action of NPs by themselves, without the UV-

mediation. On the other hand, the results of the experiments performed UV-

irradiating the cell slurries suffered from the variable viability results of bacterial 

cells after irradiation. Figure 29 displays data of B. subtilis cell survival (CFU/mL) in 

the irradiated control dishes (i.e. only containing cells dispersed in water without the 

addition of the NPs) from independent experiments. 

Two main observation can be derived from these results. The first is that the UV 

irradiation at 365 nm may result in a relevant bactericidal action, from 1 to more than 

4 order of magnitude decrease of cell viability. Literature data report of about 1 order 

of magnitude reduction in cell viability for the same bacterial strain, B. subtilis (Page 

et al., 2007; Yeung et al., 2009; Zacarias et al., 2010; Barnes et al., 2013; Lin and Li, 

2013). The second observation is that from the application of the same experimental 

setup and irradiation conditions were not obtained reproducible results, which 

spanned over 4 order of magnitude. The reason why cellular response varied to such 

an extent from one experiment to the other was not well understood and constitutes a 

lack in the reliability of the tests performed.  

 

 
Figure 30. Viable cells counts expressed as CFU/mL obtained from the irradiation of TiO2 (SM)-

B. subtilis cells slurry and the corresponding negative control (only containing bacterial cells).  
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Each of the tests summarized in Figure 29 have the counterpart performed 

irradiating NP-containing Petri dishes, but the differences in terms of viability loss 

between the NP-containing and the NP-free dishes were evident in few cases (Figg. 

30 and 31). Nevertheless, these particular cases are still very interesting, since the 

pronounced differences in the results from NP-containing and NP-free irradiated 

dishes are ascribable only to the additional oxidative stress induced by the NPs. 

When B. subtilis was exposed to UV-light in TiO2 containing slurry (Fig. 30) its 

viability decreased significantly, and the extent of bacteria inactivation increased for 

longer irradiation periods. After 1 h irradiation, the loss of cell viability in Test 1 was 

of 6 order of magnitude, whilst it was of 4 order of magnitude in Test 2. In the same 

time interval, the extent of B. subtilis inactivation in the negative control dishes was 

either of 4 order of magnitude (Test 1) or 1 order of magnitude (Test 2). That means 

that the NPs incremented bacteria inactivation by two or three orders of magnitude 

(Test 1 and 2, respectively) with respect to the corresponding control dish. Moreover, 

after 2 h (Test 1) or 5 h (Test 2) exposure of TiO2-cells slurries to UVA-irradiation, 

the number of viable cells was lower than the quantification limit of this plating 

method. 

Despite the variability in cellular response to UV-light encountered also in NP-

containing dishes (CFU/irradiation time curves obtained from the two tests are far 

from being superimposable), these results still stress out the contribute to cell 

disinfection of the photoactivated NPs, as none of the NP-free experiments (Fig. 29) 

led to similar bacteria inactivation. 

Similar results have been reported both for E. coli (Rincon and Pulgarin, 2003; 

Lu et al., 2003) and B. subtilis (Zacarias et al., 2010; Barnes et al., 2013), and 

several order of magnitude of cellular viability reduction were observed in presence 

of TiO2 NPs. It was also reported that TiO2 NPs are able to kill approximately all 

bacteria after 60 min UV illumination (Hajipour et al., 2012). It is interesting to 

report that Rincon and Pulgarin (2003) found that after 2 h and 20 min irradiation, 

bacterial cells (E. coli) were totally killed even without the help of the photocatalyst. 

That evidences the oxidative stress to which bacteria are subjected by the simple 

exposure to irradiation. 

The same experimental setup and bacterial strain (B. subtilis) were used to test 

the antimicrobial performance of functionalized nanoparticles. TiO2(SM)@TMDS 
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were chosen as their photoactivity was the highest toward the organic dye. In the NP-

containing slurry it was detected a cellular killing efficiency of about 40% superior 

than the negative control dish, but that difference is not so significant given the 

experimental variability of the test. 

The experiments with the Gram+ B. subtilis were compared with the results 

obtained from the most universally studied Gram− bacterium, E. coli. In this case, 

after 2 h irradiation the difference in cell viability between NP-photoactivated and 

NP-free slurry was about 1 order of magnitude, with a loss of viability 94% higher 

when the irradiated dish contained NPs (Fig. 31). Similar results were obtained by 

Huang et al. (2000), as after 30 min illumination 96% cells lost their viability. 

 

 
Figure 31. Cell viability counts (CFU/mL) after irradiation of E. coli-TiO2 (SM) dish and of the 

TiO2-free control. 

 

In conclusion, despite the variability of cellular response to UV irradiation and 

NP effect, some good results were obtained from these experiments performed in 

solution. They in fact indicated that the synthesized NPs behave as photocatalysts in 

the reduction of cell viability. 

It was therefore prosecuted the research work by testing the antimicrobial effect 

of functionalized NPs directly on stone treated surfaces.  

 

Antimicrobial activity on stone surface. From the preliminary studies 

performed to understand the grafting efficiency of TiO2 functionalized NPs, Serena 

stone was chosen over marble as the candidate lithotype for the antibacterial tests. It 
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was designed an ad hoc experimental setup in which the stone sample is first 

functionalized with the NPs and inoculated with bacteria, then it is UV-irradiated for 

the desired period of time and eventually washed in shaking conditions with saline 

solution (30 min). Aliquots from the washing solution are plated and visually 

counted after incubation (section 3.4). 

The stone specimens were treated with a NP concentration of 0.4 mg/cm2.  In a 

recent study, 0.032 mg/cm2 PEG functionalized TiO2 NPs were spread over an 

aluminum surface to test their antimicrobial activity against lots of microorganisms 

strains, including B. subtilis (Yao and Yeung, 2011). We used an higher 

concentration of NPs as our substratum was not as even as aluminum but rough and 

porous instead, and that potentially results in less efficient NP-to-microorganism 

interactions.  

Two stone specimens were surface functionalized with TiO2(SM)@TMDS NPs 

(test samples), and two other specimens were treated only with the corresponding 

amount of the grafting agent, TMDS (blank samples, negative controls). One test 

sample and one control were UV-irradiated, whilst the other pair of stone specimens 

were kept in dark conditions. The test setup was optimized (as described in section 

4.2.2 – preliminary tests on stone sample) in order to know the number of cells to be 

inoculated on the stone surface and the lag time before recollecting viable cells by 

washing. 

UV-irradiated stone specimens (test sample and negative control) gave the same 

CFU counts as the specimens kept in dark condition, and no relevant differences 

were encountered between the TiO2(SM)@TMDS treated samples and the blanks 

(TMDS) (~ 105 CFU/sample, with an inoculum of ~ 107 CFU/sample). 

On the basis of the results obtained from the antibiogram method and from the 

experiments in solution, we expected to obtain a bactericidal effect of UV light by 

itself. The lack of this effect was surprising and could be attributed to a protective 

effect of the stone surface against UV and/or to a different UV susceptibility of 

bacteria cells in different surroundings. Regarding the additional lack of NP effect on 

cell viability with respect to the tests performed in solution, a first explanation could 

be based on the fact that in TiO2-cell slurries bacteria are surrounded by NPs, whilst 

in the case of the NPs immobilized on the stone surface the contact between 

microorganisms and TiO2 is restricted to the exposed TiO2 surface. Moreover, TiO2 
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particles on the stone surface may be more agglomerated than in solution, and that 

could be a factor that badly affects the photocatalyst behavior, as bacteria can only 

get in contact with the surface of the agglomerates rather than with all the NP. 

Checking in literature, lots of different results were encountered on the 

microorganism disinfection capability of TiO2 NPs. In a recent study (Polo et al., 

2011) it was exploited the ability of titanium dioxide as an agent for biofilm control. 

Two Pseudomonas strains and a Bacillus strain isolated from environmental biofilms 

were used as planktonic cells. Photoactivated TiO2 resulted effective in decreasing 

cells viability of planktonic cultures, but it did not have any effect toward biofilm 

cells. The same result was encountered by Gage et al. (2005) working with 

planktonic and biofilm cells of P. aeruginosa. Pinna et al. (2009) did not experience 

any benefit against colonization by cyanobacteria, green algae and lichens by treating 

ceramic materials surface with TiO2. Ramirez and De Belie (2009) conversely 

evidenced the reduction of the algal growth on outdoor concrete surface treated with 

TiO2. Rajagopal and coworkers (2006) obtained very good results observing a 4-log 

reduction in microorganism viability in 10 min irradiation of a natural biofilm due to 

TiO2 photocatalysis. A similar result was reported in a study where TiO2-coated 

package film decreased cells viability up to 3-log (CFU/mL) after 3 h illumination, 

whilst the result was only of 1-log decrease for the uncoated film 

(Chawengkijwanich and Hayata, 2008). 

 

In conclusion, in this section we presented the first part of the results obtained 

during this thesis work, the ones regarding the research performed on titanium 

dioxide nanoparticles with the final aim to use them as remedies to inhibit bacteria 

proliferation on stone surfaces. Synthesis, surface-modification and characterization 

of TiO2 NPs were successfully performed, whilst microbiological assays were biased 

by the variability of cellular response to irradiation. Even though we encountered 

some difficulties dealing with the microbiological tests, interesting results were 

nonetheless obtained. From the photodisinfection in solution assays we observed in 

fact the role of photoactivated NPs in the reduction of bacterial viability. 
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4.2 Silver nanoparticles (AgNPs) 

 

In the second part of the thesis work it was investigated the potential of a 

different nanosystem to be used as protecting agent against microbial proliferation on 

stone artworks; a nanoremedy that, contrariwise to TiO2, does not need to be 

photoactivated to exert bacterial disinfection. Silver nanoparticles (AgNPs) have 

been used for centuries for their antibacterial properties against a broad range of 

microorganisms and lots of studies have been made to develop medical and non-

medical applications for these NPs. To our knowledge, any attempts have been made 

therefore to use AgNPs on lithic materials to prevent surface biocolonization. 

Our investigation and contribution in this field followed three main steps. First, 

silver nanoparticles were synthesized and functionalized with a proper ligand to be 

efficiently bound to the stone surface. Then the grafting efficiency to the stone 

substratum was tested through microscopy techniques, and eventually the 

antimicrobial capabilities were assayed. 

 

4.2.1 Chemical results 

 

Synthesis and functionalization. The nanoparticle synthesis was aimed to 

obtain triangular nanoprisms, as it was reported that this shape is the most efficient in 

terms of antimicrobial activity with respect to any other nanostructure (Pal et al., 

2007). Prism-shaped NPs were obtained using a seed-based procedure (section 3.2.1) 

in water and at room temperature (Aherne et al., 2008); these conditions would make 

easy a scale up to produce at reasonable costs the necessary amounts of nanoparticles 

to treat large stone artifacts. The shape and size of the NPs were assessed by the field 

emission scanning electron microscopy technique (FEG-SEM), and a representative 

image is displayed in Figure 32. 

The synthesized pristine NPs were surface modified using a common 

alkoxysilane derivative, TEOS (tetraethyl orthosilicate). This agent would have the 

dual role of grafting the nanomaterial to the lithic specimen (its chemical reactivity 

toward stones is well known) and to protect Ag cores from being oxidized (Xu et al., 

2009). 
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Figure 32. FEG-SEM micrograph of AgNPs. It is clearly shown the prism shape of the particles, 

whose edge length is about 70 nm and thickness about 5 nm. 

 

These functionalized NPs (referred to as AgNP@TEOS along this dissertation) 

are usually prepared by modifications of the Stöber process (Stöber et al., 1968) or 

by reverse microemulsion method, and ammonia (NH3) is usually chosen as the 

catalyst of the reaction. The functionalization procedure that was adopted in this 

work took advantage, conversely, of the use of dimethyl ammonium (DMA) as 

catalyst, basing on the suggestions of some recent works (Kabayashi et al., 2005; 

Niitsoo and Couzis, 2011). According to these papers, the use of DMA in place of 

NH3 allows a higher reproducibility of the shell synthesis because DMA vapor 

pressure is an order of magnitude lower than the NH3 one. It was also proposed to 

use 2-propanol (iPrOH) as reaction solvent in place of ethanol (EtOH). In iPrOH 

medium, the hydrolyzed TEOS molecules are allowed to reach Ag surface before 

condensing, minimizing this way the formation of multicore or coreless NPs and 

promoting a better degree of functionalization of all the NPs. 

 

Stone surface characterization 

 

Colorimetric results. Preliminary colorimetric measurements were performed 

on Serena stone specimens in order to assess the potential chromatic changes induced 

by the NPs grafted to the stone surface. As a result, no significant color changes were 

detected between the NP-treated and untreated samples (Fig. 33), even using the 
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highest concentration of AgNP@TEOS tested in the stone-surface microbiological 

assays. Colorimetric change (E) was 0.5 for the stone specimen treated with 110 

g/sample (48.9 g/cm2) AgNP@TEOS, below the limit value of E = 2 above 

which the human eye can appreciate a chromatic difference.  

 

 
Figure 33. Serena stone specimens (a) not treated with NPs and (b) treated with AgNP@TEOS, 

48.9 g/cm2 (Bellissima et al., 2013 a). 

 

The material surface characteristics were evaluated through microscopic 

techniques before and after the NP grafting. Serena stone specimens were treated 

with pristine or with functionalized AgNPs and it was studied their disposition over 

the surface, along with their resistance to a stressing washing treatment. These 

preliminary considerations were aimed at evaluating if the proposed combination of 

NPs and surface-modifying agent were suitable (in terms of grafting efficiency) for 

the next steps of this study, i.e. the use of the nanoremedy for antimicrobial assays.  

 

SEM. Scanning electron microscopy analysis (SEM) provided insights about 

how the nanoparticles were distributed and how strongly they were bound to the 

stone surface. The strength of nanoparticle grafting was assayed subjecting the stone 

samples to a 7 mL/s water jet for 30 min  (Yao and Yeung, 2011).  

 

 
Figure 34. SEM images of the Serena stone surface treated with pristine AgNPs (1.5 kX 

magnification, BSE mode of acquisition). 

 

a b 
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Images in Figures 34 and 35 display representative regions of the surface treated 

with pristine NPs before and after the washing procedure, respectively (Bellissima et 

al., 2013 a). 

 

 
Figure 35. SEM images of the Serena stone surface treated with pristine AgNPs and subjected 

to a water jet of 7 mL/s for 30 min (1.5 kX magnification, BSE mode of acquisition). 

 

Even though pristine nanoparticles did spread all over the surface of the stone 

quite uniformly (Fig. 34), their concentration was strongly affected by the washing 

treatment (Fig. 35). The great percentage of NPs that was lost in the flowing water 

was indicative of the poor adhesion of pristine AgNPs to the stone surface. 

The same investigation was performed on AgNP@TEOS treated stone 

specimens, and representative SEM images are displayed in Figures 36 and 37 

(Bellissima et al., 2013 a). 

AgNPs@TEOS treated surfaces (Fig. 36) clearly displayed the formation of 

large agglomerates of primary nanometer-sized particles, so that the functionalized 

NPs resulted in an uneven coating on the stone surface with micrometer-sized 

clusters. Through the analysis of several SEM images (about 50) acquired moving 

frame by frame along parallel lines, can be estimated an average AgNP@TEOS 

cluster-to-cluster distance of about 150 m. These results suggest that the clusters are 

formed during the functionalization of AgNPs, as their amount is clearly higher in 

the functionalized sample. 

Conversely to what observed with pristine NPs, the washing process of the stone 

specimens treated with AgNPs@TEOS did not significantly affect the NP 

concentration over the surface (Fig. 37). This result highlights the successful 

chemical reaction between the stone surface and the functionalized NPs, and 

suggests that TEOS is a good grafting agent for the purposes of this work. 
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Figure 36. SEM images of the Serena stone surface treated with AgNP@TEOS (1.5 kX 

magnification, BSE mode of acquisition). 

 

 
Figure 37. SEM images of the Serena stone surface treated with AgNP@TEOS and subjected to 

a water jet of 7 mL/s for 30 min (1.5 kX magnification, BSE mode of acquisition). 

 

SEM images taken with higher magnification (Fig. 38) better show the 

disposition of the NPs (pristine or functionalized) over the surface.  

 

 
Figure 38. SEM images of pristine (a) and functionalized NPs (b) on Serena stone surface (50 

kX magnification). Circles in picture a highlight groups of pristine nanoparticles. 

 

In Figure 38a (white circles) it is well recognizable that pristine NPs do not form 

any kind of clusters and conversely appear as single self-standing nanostructures 

spread over the surface. On the contrary, Figure 38b clearly evidences that 

AgNPs@TEOS tend to aggregate forming clusters intimately bound to the stone 

surface (Bellissima et al., 2013 a). 

a b 
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AFM. The stone surface was also analyzed by means of atomic force 

microscopy (AFM). The presence of cracks and voids on Serena stone surface did 

not allow the analysis of the whole surface. The images were acquired over selected 

regions where no micrometric irregularities were detected with the aid of the optical 

microscope equipping the AFM (Fig. 39).  

 

  
Figure 39. Optical images of the AFM tip positioning over smooth regions during the 

investigation of the blank stone sample (only treated with TEOS) (a) and of the AgNP@TEOS treated 

sample (b). 

 

A representative AFM image of the blank sample (i.e. treated with TEOS but 

without AgNPs) is shown in Figure 40 a and c. The surface displays the typical 

aspect of a freshly cut stone slab, and no evidence of silica structure resulting from 

TEOS condensation can be detected, suggesting that the amount of TEOS added 

(which is the same present in the case of AgNPs@TEOS) is not sufficient to cover 

the surface and that the application conditions do not take to the formation of silica 

nanospheres. It is reasonable to presume therefore that in our conditions TEOS 

diffuse within the pores. Figure 40 b and d, conversely, show the aspect of the Serena 

stone surface functionalized with AgNP@TEOS after the washing treatment. AFM 

results are consistent with SEM findings, as they show the NP tendency to form 

clusters over the surface. That could be due to the fact that the hydrolysis of TEOS 

functions is not confined to the formation of Si−O−Si bridges between one NP and 

the stone surface, but can also take place between two NPs. Even though in this study 

AFM is complementary to SEM technique, the results obtained allow to demonstrate 

that AgNPs retain their triangular shape also after functionalization and that no 

spherical particles (that would suggest the formation of silica nanospheres) are 



Chapter 4 – Results and discussion 

101 
 

present, not even on the surface treated with functionalized NPs (Bellissima et al., 

2013 a). 

 
Figure 40. AFM 3D topography and corresponding error images of Serena stone surfaces 

treated only with TEOS (a, c) or with AgNP@TEOS (b, d). 

 

In conclusion, silver nanoparticles with triangular shape were synthesized and 

surface functionalized with an alkoxysilane derivative, and this surface modification 

did not lead to variation on the nanoparticle shape. Moreover, the grafting agent used 

proved to be suitable to our purposes as it is able to bind the NPs to the stone surface 

quite tightly, conferring the nanoremedy the ability not be leached after a stressing 

washing treatment. SEM and AFM images show that functionalized NPs tend to 

aggregate and dispose as clusters on the stone surface. 

In the following section, the main microbiological tests performed to elucidate if 

the nanoremedy proposed is effective as antimicrobial agent are described. 

 

4.2.2 Microbiological results 

 

Before testing the microbial viability inhibition characteristics of the treated 

stone samples, microbiological studies were performed on naked and surface 

modified NPs in liquid and in solid nutrient medium, by the use of classical methods. 

Our interest was particularly oriented in finding out if AgNP surface 
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functionalization constitutes a significant obstacle to the antibacterial activity. After 

these preliminary investigations it was assayed the actual antibacterial performance 

of AgNPs grafted on Serena stone surface. That goal was fulfilled by developing 

particular experimental setups to test the microbiocidal activity toward B. subtilis 

(bacterium) and A. versicolor (fungus).  

The procedure to obtain AgNPs in the final useful concentration from the as-

prepared nanodispersions implied the use of centrifugal concentrators, that invariably 

entrapped part of the NPs in the filter meshes. Inductively coupled plasma–optical 

emission spectrometry measurements (ICP-OES, VARIAN 720 OES) were 

performed to quantify the material loss during the concentration process, and it 

resulted an actual AgNP concentration ranging from 1.6 to 8.2 times lower than the 

nominal value. For this reason, the numeric results from microbiological assays are 

intended as indicative and not strictly quantitative. 

 

Antibiogram on pristine AgNPs. Pristine AgNPs were first analyzed with the 

common antibiogram method. 10 L NP solution were spotted directly on the 

inoculate plates because AgNPs did not manage to diffuse from discs to medium in 

the common agar diffusion test. 

 
Table 3. Pristine AgNP antibiogram results. This test was performed on LB Petri dishes 

inoculated with 0.1 mL of an E. coli suspension at different concentrations (106, 105 or 104 CFU/mL). 

Each plate was composed of several spots at different concentration of AgNPs (g/mL). Ampicillin 

(mg/mL) and water were used as positive and negative controls, respectively. +, indicates bacteria 

growth; , indicates complete growth inhibition. 

CFU/mL 
AgNP (g/mL)a Ampicillin (mg/mL) 

H2O 
500 100 20 4 0.8 2.5 

106    + +  + 

105     +  + 

104     +  + 
     a Calculated as the total Ag content 
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This preliminary test was conducted on E. coli (Gram–), as it is supposed to be 

less resistant than B. subtilis (Gram+) to the antimicrobial activity. The results are 

summarized in Table 3. Total inhibition of bacterial growth was obtained at 100, 20 

or 4 μg/ml AgNP concentration in the plates inoculated with 106, 105 or 104 CFU/mL 

respectively (Fig. 41). 

 

 
Figure 41. LB Petri dishes inoculated with different dilutions of E. coli (a 106, b 105 and c 104 

CFU/mL) and different concentrations of AgNPs. 500, 100, 20, 4, 0.8 and 0.16 g/mL are 

respectively indicated as 12.5, 2.5, 0.5, 0.1, 0.02 and 0.004 in the picture. The two negative control 

spots are indicated as H2O and SF (saline solution); the positive control spot is indicated as Amp 

(Ampicillin 2.5 mg/mL). 
 

MIC and MBC on pristine AgNPs. The indications obtained from the 

antibiogram (solid nutrient support) were useful to assay the minimum inhibitory 

concentration in solution (MIC, Fig. 42).  

 

 
Figure 42. MIC test tubes. a) A. Positive control, E. coli (105 CFU/mL), LB and sterile water, 

G. E. coli (105 CFU/mL), LB and AgNPs 0.2 g/mL, H. E. coli (105 CFU/mL), LB and AgNPs 0.1 

g/mL, I. E. coli (105 CFU/mL), LB and AgNPs 0.05 g/mL. b) A. Positive control, B. subtilis (104 

CFU/mL), LB and sterile water, B. Negative control, LB and sterile water, 4. B. subtilis (104 

CFU/mL), LB and AgNPs 8 g/mL, 5. B. subtilis (104 CFU/mL), LB and AgNPs 4 g/mL. 
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The results obtained from MIC test define the lowest concentration of silver 

additive that inhibits the visible growth of microorganisms. Both E. coli (Gram) and 

B. subtilis (Gram+) were assayed. Plastic test tubes were inoculated either with about 

105 (E. coli) CFU/mL or with about 104 (B. subtilis) CFU/mL in LB liquid medium. 

No visual turbidity of the growth medium was detected by the addition of 

pristine AgNPs at the concentration of 0.2 g/mL (E. coli tubes, Fig. 42a) or 4 

g/mL (B. subtilis tubes, Fig. 42b). 

These results are comparable with MIC values of commercial antibiotics 

(Martinez-Gutierres et al., 2010) and are promising if compared with previous 

studies on E. coli and B. subtilis. Martinez-Gutierres and coworkers (2010) found 

MIC values in the range 0.4-1.7 g/mL for several bacterial strain (E. coli and B. 

subtilis included); Martínez-Castañón and coworkers (2008) reported MIC 

concentration of 13 g/mL for E. coli; MIC values in the range 1.7-13 g/mL (E. 

coli) were found by Panacek et al. (2006); AgNPs were reported to be citotoxic to E. 

coli at concentration of 8 g/mL (Baker et al., 2005); Sondi and Solopek-Sondi 

(2004) indicated the MIC value at 10 g/mL AgNPs (E. coli), whilst Morones and 

coworkers (2006) found that only above 75 g/mL no significant Gram bacteria 

growth took place. Moreover, a recent study (Gutarowska et al., 2012) evidenced 

differences in nanosilver sensitivity in diverse Bacillus strains (B. megaterium, B. 

pumilus, B. licheniformis and B. subtilis), noticing that B. subtilis was the more 

resistant to the disinfection (MIC and MBC values in the range from 22 to 45 

g/mL). 

The minimal bactericidal concentration (MBC), i.e. the minimum concentration 

of the antimicrobial agent required to achieve irreversible inhibition of bacterial 

growth, was determined for both E. coli and B. subtilis by surface plating 0.1 mL 

aliquots from the non-turbid tubes. After the incubation (24 h at 37˚C) the MBC was 

devised at AgNP concentration of 16 g/mL for E. coli and 65 g/mL for B. subtilis. 

As expected, B. subtilis was less susceptible to AgNP bactericidal action than E. coli, 

maybe due to the thicker layer of protection of its Gram+ cells. Despite the 

uncertainty on the actual numeric results, MIC and MBC are still representative of an 

effective antimicrobial activity of the synthesized nanosystems. 
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These preliminary tests performed on pristine NPs were encouraging to proceed 

with similar tests on functionalized nanoparticles (AgNP@TEOS), in order to 

understand if functionalization represents a limit to the antibacterial activity. B. 

subtilis was the target bacterial strain. 

 

Spot on spot method. The spot on spot method on solid nutrient medium was 

performed in place of the traditional antibiogram to find out the threshold 

concentration of AgNPs@TEOS required to inhibit bacterial growth. This alternative 

method allowed to overcome a problem met when classical antibiogram method was 

used; 2-propanol, one of the dispersing solvents of AgNPs@TEOS, inhibits in fact 

by itself  the growth of B. subtilis vegetative cells or spores. This method did not 

involve NP spot application on inoculated dishes, but on the contrary the application 

of bacterial inoculum on pre-dried NP spots. 

Spots with different concentration of AgNPs were tested, as indicated in Table 

4. Figure 43 shows the plates inoculated with AgNPs@TEOS. 

 
Table 4. Spot on spot method performed on AgNPs and AgNPs@TEOS. Chloramphenicol 

(Cmf) and TEOS solution were used as positive and negative control, respectively. +, indicates 

bacteria growth; -, indicates complete growth inhibition. NP quantity is calculated as total Ag content. 

 Cmf (g) TEOS AgNPs (g) AgNP@TEOS(g) 

Sample 5 a 5 35 70 5 35 70 

Growth − + +  − +  − 

a The quantity of TEOS used was the same of the 70 g AgNP@TEOS sample. 
 

 
Figure 43. Stereomicroscope images (15 X magnification) of the inhibition zones obtained from 

the spot on spot method. The concentration of AgNPs@TEOS used are the following: a) 5g, b) 35 

g, c) 70 g.  
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Results show that 5 μg spot does not inhibit bacterial growth, 35 μg are only 

partially effective, whilst 70 μg fully inhibit bacterial growth (Bellissima et al., 2013 

a). There is no difference in antimicrobial activity between pristine and 

functionalized nanoparticles, indicating that functionalization does not affect 

nanoparticle toxicity (similar conclusion was reached by Egger et al., 2009; Xu et al., 

2009). 

 

MIC and MBC on functionalized AgNPs. The next step was to determine the 

MIC value of the functionalized AgNP@TEOS in liquid medium and it resulted at 

122 g/mL (Fig. 44). Similar values were found in literature: 100 g/mL for Bacillus 

strain (Liong et al., 2009) and 195 g/mL for S. aureus (Gram+) (Xu et al., 2009).  

 

 
Figure 44. AgNPs@TEOS MIC test tubes. B. Negative control, NB and sterile H2O. A. Positive 

control, B. subtilis (104 CFU/mL), NB and sterile H2O. T1. B. subtilis (104 CFU/mL), NB and 

AgNP@TEOS 122 g/mL. T2. B. subtilis (104 CFU/mL), NB and AgNP@TEOS 61 g/mL. T3. B. 

subtilis (104 CFU/mL), NB and AgNP@TEOS 37 g/mL.  

 

These preliminary tests performed using functionalized nanoparticles on nutrient 

media (solid or liquid), evidenced that surface modified NPs retain biocidal activity. 

The next step was to evaluate the antimicrobial characteristics of the AgNPs grafted 

to the Serena stone surface. 

 

 

 



Chapter 4 – Results and discussion 

107 
 

Antibacterial activity on stone samples 

 

It was first proposed an ad hoc experiment toward bacteria (B. subtilis) that 

implied cell deposition and recovery of viable cells by washing, briefly described as 

follows. A known number of viable cells are applied on a stone surface previously 

treated with NPs. After a proper period of time from deposition, bacteria are 

recovered by washing the stone specimen with saline solution, and dilutions of this 

washing solution are plated, incubated and colonies visually quantified. A similar 

experiment was performed recovering viable bacteria using contact plates. The 

antimicrobial characteristic of NP-treated stone samples were eventually assayed 

toward the growth a fungal strain (A. versicolor). 

 

Cell deposition and recovery in solution 

Preliminary tests. As long as this kind of experiment is based on the 

recollection of bacteria from the stone surface, it was necessary to perform some 

studies to evaluate how bacteria are retained by the stone porous structure. In 

particular, we were interested to know how many cells have to be inoculated on the 

stone surface and the lag time before recollecting them, with the aim to be able to 

appreciate significant differences in cell counts between test and control samples (i.e. 

NP treated and untreated specimens). The time interval from cell deposition to 

recollection is the period that AgNPs have on disposal to exert their antimicrobial 

activity. 

A suspension of about 106 cells was laid on each stone sample and cells were 

recovered by washing after 1 min, 30 min and 4 h from deposition (interaction time 

in Table 5). Such short exposures (minutes) have been previously found long enough 

(even though dealing with different systems) to destabilize cell membrane of bacteria 

(Lok et al., 2006). As shown in Table 5, cells collected immediately after their 

deposition (1 min) constitute 64% of the inoculated ones; after 30 min from 

deposition the number of cells collected decreases more than 10 times, and after 4 h 

the value decreases by a factor of ~ 100. The amount of cells recovered after 30 min 

is well suited for antibacterial activity experiments. In fact, although 95% of cells 

results unrecoverable, 5% of the inoculated bacteria are still enough to count a 

reliable number of CFU and to appreciate differences up to two orders of magnitude 
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in cell viability (Bellissima et al., 2013 a). It is important to highlight that to achieve 

a cell recovery useful for our aims, it was necessary to inoculate a very large number 

of bacteria on the stone surface, by far higher than what can be encountered in 

natural environment. 

It was then investigated if, after 30 min from cell deposition, there was any 

difference in cell recovery from TEOS-treated or untreated samples. The same result 

was obtained (CFU % = 5.1  0.1), indicating that TEOS does not interfere with 

CFU recovery and consequently does not have any antibacterial activity. TEOS 

treated samples were therefore used as blanks in all the following experiments. 

 
Table 5. B. subtilis cell recovery by washing at different times after cell deposition on stone. 

Values are normalized for an inoculum of 5 ·  105 cells/sample. All the experiments were held in 

duplicate and each washing solution was plated twice from two serial dilution.  

 Cells Collected 

Interaction time [min] CFU [104] CFU [%] 

1 31.90  0.84 63.8  1.7 

30 2.52  0.17 5.0  0.3 

240 0.26  0.089 0.5  0.2 

 

These preliminary tests were indicative of the fact that B. subtilis inoculum of 

about 5105 CFU/sample and 30 min interaction time were the proper experimental 

conditions for our purpose. 

 

Antibacterial activity. Serena stone specimens were treated with different 

amounts of functionalized AgNPs in the range 6-110 g/sample (test samples) and 

the antimicrobial activity was evaluated by comparing CFU recovery from treated 

samples and the corresponding blanks (TEOS-treated specimens). The results are 

summarized in Table 6 (Bellissima et al., 2013 a). 

In all the experiments, the CFU counts from AgNP@TEOS-treated samples are 

significantly lower than the blank samples. The highest bacteria inhibition (80.6 %) 
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was obtained at AgNP concentration of 15 µg/sample; higher concentrations did not 

lead to any inhibition increase, with an antimicrobial effect around 68%. 

The concentration of 6 µg/sample gave the lowest inhibition activity (54.6%). 

All the concentrations tested proved to be effective in diminishing cell viability of at 

least 50%, despite allowing NPs and bacteria to interact only for 30 min and despite 

using a very high concentration of bacteria. 

 
Table 6. B. subtilis CFU recovery from stone samples treated with different concentration of 

AgNPs@TEOS (test samples) or treated only with TEOS (blank samples). The antimicrobial effect 

was evaluated comparing the number of cells collected from test and blank samples. Values are 

normalized for an inoculum of  5 ·  105 cells/sample.  

 Cells collected CFU [104]  

Concentration 

AgNP@TEOS 

[g/sample] 

AgNP@TEOS TEOS a 
Antimicrobial 

Effect [%] 

6 1.72  0.25 3.79  0.42 54.6  8.3 

15 0.32  0.022 1.65  0.11 80.6  1.8 

30 1.03  0.067 3.38  0.36 69.5  3.8 

60 2.34  0.18 8.70  0.29 73.1  2.2 

110 1.10  0.17 2.77  0.23 60.3 7.0 

    a For each concentration of AgNP@TEOS, the corresponding quantity of TEOS was used in 

the blank samples (TEOS). 

 

The fact that the increase in concentration of AgNP@TEOS from 15 to 110 

g/sample only resulted in a slight decrease of the antimicrobial activity may appear 

in contrast with the growth inhibition results from the spot on spot assay, where an 

increase in NP concentration led to the enhancement of the antimicrobial activity. 

This could be partly due to the distribution in clusters of the AgNP@TEOS, which 

do not cover the stone surface in an uniform way, as observed by SEM analysis 

(Figg. 36-37). 
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It is also important to highlight that this cell deposition and recovery in solution 

assay is intrinsically different from the microbiological tests commonly used to 

evaluate antimicrobial activity, which generally involve a prolonged time of 

interaction between NPs and bacteria in a growth medium (solid or liquid). The 

method used, conversely, did not involve any growth of bacteria but only a 

recollection of the viable inoculated cells after a short interaction period with the 

cytotoxic NPs. 

 

Cell deposition and recovery by contact plates 

Preliminary tests. A different experimental approach was tested, and results 

were compared with those from the recovery method in solution. This method 

implied the use of contact plates both to recover cells from stone surface and to 

directly grow them. Results were visually evaluated. Preliminary tests were carried 

out to determine the proper amount of cells to be inoculated on the stone surface and 

the lag time from cell deposition to recollect a suitable amount of viable cells to give 

a countable number of colonies useful to evaluate AgNP antimicrobial effect. The 

stone specimens were not treated with NPs; the results are summarized in Table 7 

and Figure 45. 

 
Table 7. Stone samples inoculated either with 3.2·104 or 3.2·103 CFU/sample (B. subtilis). 

Bacterial cells were recovered using a NA contact plate after different interaction time. 

 ~104 CFU/sample ~103 CFU/sample 

Interaction time 

[min] 

Cells 

collected 

(%) 

CFU 

Cells 

collected 

(%) 

CFU 

1 //a //a 9.8 315 

 15 1.49 476 1.3 41 

30 0.85 272  0.59 19  
         a // indicates uncountable colonies 

 

This method allows to recollect less bacterial cells than in the recovery in 

solution method. After 30 min from the deposition, 5% of the cells were recovered 

from blank samples using the recovery in solution method, whilst only 0.85% of the 



Chapter 4 – Results and discussion 

111 
 

inoculum was recovered through contact plates. That may be due to the fact that 

contact plates only sample cells from the very top of the surface of the stone 

specimens. Despite the low recovery percentage, 30 min application of about 104 

CFU/sample was evaluated the best operative condition for this method, as the final 

cell counts allow to appreciate differences up to two orders of magnitude in cell 

viability between NP-treated and untreated samples. 

 

 
Figure 45. Contact NA plates applied on blank stone samples inoculated with 104 CFU/sample 

after different times from cell deposition: a) 1 min, b) 15 min, c) 30 min. 

 

Antibacterial activity. After these preliminary tests, stone specimens were 

treated with 27 g/cm2 AgNP@TEOS, the same concentration as in the 60 

g/sample specimen tested in the deposition and recovery in solution method. The 

reduction in cell viability due to the presence of AgNP@TEOS was 61.3% (Fig. 46), 

comparable to the 73.1% reduction obtained with the recovery in solution assay 

(Table 6). Even if the recovery by contact plate is simpler than the recovery in 

solution, that one still remains the method of choice to test the antimicrobial activity 

on stone surfaces, as it requires the use of smaller stone pieces (i.e. lower amount of 

NPs) and allows to recover viable cells also from underneath the surface, producing a 

better statistic. 

In conclusion, by these two different cell recovery methods (in solution or by 

contact plates), it was verified that AgNPs@TEOS grafted to stone surface are 

effective in inhibiting bacterial cell viability, giving high percentages of antibacterial 

activity. 
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Figure 46. NA contact plates obtained from stone specimens treated with 27 g/cm2 

AgNP@TEOS (a) and the corresponding blank (b). 

 

Microbiological activity toward fungi. The next step of this study was to 

evaluate the antimicrobial activity of AgNPs@TEOS grafted to the stone surface also 

toward another kind of microorganism. Two fungal strains were chosen: Aspergillus 

versicolor (M2) and Sarcinomyces petricola (M4), both isolated from the statue “Il 

ratto delle Sabine”, Piazza della Signoria, Florence. It was used a different 

experimental setup, based on the evaluation of fungal growth directly on the stone 

surface. Preliminary studies were performed to determine the proper amount of 

fungal spores to be inoculated on the stone specimen to have a visible growth in 

laboratory conditions. Stone samples were inoculated with about 104, 103 or 102 

spores/sample and incubated for days at 30 °C at high humidity conditions. The 

growth was monitored with stereomicroscopic observations. Since  S. petricola did 

not grow in such conditions, A. versicolor was the only fungal strain to be analyzed 

(Fig. 47). 

 

 
Figure 47. Stereomicroscope images (7 X) of Serena stone samples 7 days after the inoculum 

with 25L of growth medium and different amounts of A. versicolor spores: 104, 103, 102 

spores/sample in panel a, b and c, respectively. 
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The intermediate spore dilution (103 spores/sample) was considered the most 

appropriate to our purposes. 

Stone specimens were treated with AgNP@TEOS at two different 

concentrations (200 g/sample or 50 g/sample) and inoculated with 103 

spores/sample. From the comparison of fungal growth on untreated (blank) and NP-

treated samples, only a slight growth inhibition was noticeable in the 50 g/sample 

specimen, whilst very good results were obtained from 200 g/sample specimen, 

efficient in contrasting fungal growth (Fig. 48). 

 

 
Figure 48. Stereomicroscopic images (7 X magnification on the left, 15 X magnification on the 

right) of Serena stone samples 4 days after the inoculum with Aspergillus versicolor. a) and b) images 

show the blank samples. c) and d) images show 50 g/sample AgNP@TEOS specimens. e) and f) 

images show 200 g/sample AgNP@TEOS specimens. 

 

mailto:AgNP@SiO2.It
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In conclusion, the microbiological tests performed on NP-treated stone surfaces 

resulted in very good microorganism viability inhibition results, both toward B. 

subtilis (bacterium) and A. versicolor (fungus). These results allow to think of the 

proposed nanoremedy as a valid alternative to treat stone surfaces in order to contrast 

their biodeterioration. 



Chapter 5 – Conclusions  

115 
 

Chapter 5. 

Conclusions 
 

Modern conservation science is facing the challenge to guarantee that future 

generations have the opportunity to appreciate the cultural heritage patrimony we 

enjoy today. For this reason, scientific community and conservators are spending 

great efforts to implement appropriate treatments for the artworks to be preserved. 

Lithic materials have being used for artistic expression since ancient times, from 

prehistoric stelae, historic monuments or statues. Such stone artworks are exposed to 

the action of chemical, physical and biological deterioration, each one contributing in 

the long-term to the decay of the artifact up to the loss of its original message. 

Careful studies on these potential deteriorating causes are required to ensure stone 

artworks the proper conservation.  

In this thesis work the interest was focused on microbiological deterioration. 

Microbial colonization has a relevant impact on the conservation of stone-based 

artifacts with consequences ranging from esthetic changes to physical and chemical 

deterioration. The strategy we pursued to control detrimental biodeterioration effects 

was to prevent and reduce microorganism colonization through the design of a 

coating able to exert antimicrobial action on the exposed surfaces. Still, our scope 

was not to simulate a real case scenario, but only to demonstrate the antimicrobial 

activity exerted on lithic support by the proposed remedies. 

In the present dissertation it was discussed the possibility to use two different 

kinds of cytotoxic nanoparticles, titanium dioxide (TiO2 NPs) and silver 

nanoparticles (AgNPs), to inhibit bacteria colonization on the surface of lithic 

materials. These nano-remedies have a well recognized antimicrobial activity, and 

their use as preservative treatments against biocolonization is justified in view of a 

non-invasive application, long-lasting effect and compatibility with the substratum. 

The NPs were synthesized, characterized and surface modified. This last operation 

was necessary in order to graft the NPs to the lithic support. Alkoxysilanes were 
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chosen as the modifying agents, as long as their reactivity is known and their 

compatibility with the lithic substrate guaranteed. 

In this thesis work, B. subtilis was used as the reference microorganism for the 

microbiological assays aimed at testing the biocidal efficacy of the proposed nano-

remedies. B. subtilis is an heterotrophic spore-forming Gram+ bacterium frequently 

found on monumental stones. Some studies were also carried out toward a fungal 

strain, Aspergillus versicolor, a genus commonly found on stone degraded surfaces. 

The reference lithotype used was Serena stone, a sandstone very diffused in Italy, 

especially in Florentine buildings. 

 

TiO2 NPs. Titanium dioxide nanoparticles were synthesized in the anatase 

crystallographic phase through a known procedure (Liao et al., 2009), and the effects 

on dimension and crystallinity induced by different synthetic solvent mixtures were 

studied. Lots of techniques were used to this purpose: SAXS, WAXD, TEM and 

XRD. All the NPs obtained were highly crystalline in the anatase form and no 

relevant variations of their size were induced by different solvent mixture used 

during the synthesis. IR-spectroscopy, TGA and HRTEM were used to study the 

methoxysilane functionalization of the NPs. These techniques evidenced that the 

grafting reaction to the NP surface took place efficiently, and HRTEM images 

clearly showed crystalline cores surrounded by an amorphous layer of silane. The 

adhesion of the NPs to the lithic support was studied by means of SEM technique. 

Serena stone was chosen as the reference lithic substratum, as long as when its 

surface was functionalized with the NPs, the nanoremedy was not diluted in the 

water flow after a washing treatment, remaining well anchored to the stone surface. 

The mechanism that makes TiO2 NPs extensively used for the degradation of 

organic compounds is the same on which it is based their antimicrobial activity, and 

involves the photoactivated production of reactive oxygen radical species by means 

of UV-light irradiation. In the direction to find out if the NP surface modification 

negatively interferes with the nanomaterial photo-characteristics, the synthesized 

nanosystems (functionalized of not) were preliminary tested toward the 

photocatalytic decomposition of an organic dye molecule. Since surface modification 

did not result to badly influence the photodegradation of the organic dye, the 

nanoremedies were further tested toward bacteria photodisinfection. 
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Prior to test NP efficacy on lithic support they were tested in nutrient media 

(either solid or liquid). These experiments were biased by the fact that UV-irradiation 

itself had a variable biocide effect on bacteria. It was nonetheless possible to 

demonstrate an effective role of TiO2 NPs in increasing cell photodisinfection in NP 

irradiated batches (up to total bacteria killing). When Serena stone specimens were 

treated with the nanosystems and inoculated with B. subtilis, it was conversely not 

possible to appreciate any difference between the NP-treated and untreated samples 

or between UV-irradiated specimens and dark control. 

Further investigations are planned in order to clarify the causes of the variable 

response of bacteria to UVA irradiation and the reasons why neither the 

photocatalytic disinfection (NP-mediated) nor the photochemical disinfection (only 

UV-mediated) were encountered irradiating bacteria inoculated stone surfaces. 

 

AgNPs. Triangular nanoprisms were synthesized through a seed-based method 

(Aherne et al., 2008) and they were surface modified by means of a common 

ethoxysilane derivative (TEOS) in order to confer the NPs the ability to be grafted to 

the lithic support. The NP adhesion to the surface was studied by means of SEM and 

AFM techniques, before and after the application of a stressing treatment aimed at 

simulating heavy rain conditions (washing treatment). The non-functionalized NPs 

did spread homogeneously on the stone surface but did not remain attached to the 

lithic support after the washing treatment. The functionalized NPs, conversely, 

arranged on the stone surface in clusters and they were not affected by the washing 

treatment, indicating that the grafting agent chosen was suitable to our scopes. 

Classical microbiological methods on nutrient media (solid or liquid) were used 

to assay the surface functionalization effects on the antimicrobial activity of the NPs. 

As long as TEOS surface modification did not interfere with microbiocidal activity 

of AgNPs, an experimental setup was specifically tailored to test NP cytotoxic 

properties once grafted to the stone specimen. Cell deposition and recovery in 

solution assay was used to quantitatively evaluate the antibacterial activity of the 

NPs fixed on a lithic support. Bacteria viability was inhibited up to about 80% (6.7 

μg/cm2 AgNP@TEOS) with respect to the control sample (not NP-treated). That was 

a very good result, especially because the period of interaction between NPs and 
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bacteria was limited in time and bacteria concentration was higher than in situ 

conditions. 

 Good results in terms of inhibition of microorganism growth were obtained also 

dealing with fungal spores inoculated on AgNP@TEOS treated stone specimens, as 

about 89 μg/cm2 AgNP@TEOS resulted in a drastic reduction of fungal growth over 

treated stone surface. 

This dissertation proved that AgNPs functionalized with TEOS can adhere to 

Serena stone surface and act as effective nanoremedies to contrast microbial viability 

on treated stone specimens. The development of our research on the use of AgNPs as 

lithic surface antimicrobials implies the scale up of the experiments from laboratory 

conditions to natural environment and real case scenarios. In the prosecution of the 

work the proposed AgNPs@TEOS are going therefore to be applied as preservatives 

against microbial colonization for the in situ treatment of Serena stone Works of Art. 
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Annex. 

Principal analytical techniques 
 

In this chapter the principal and more complex characterization techniques used 

along this thesis work are outlined. First of all, the concepts underlying the scattering 

theory are briefly explained. Afterwards, it is reported an introduction to microscopy 

techniques, and more specifically two electron microscopy techniques (TEM and 

SEM) and a scanning probe microscopy (AFM) are described. The last paragraph is 

oriented to a brief introduction to the diffraction theory used in the XRD 

measurements. 

 

Scattering techniques 

 

A typical scattering experiment consists of a monochromatic beam that, through 

the interaction with the sample, is re-emitted in directions different from that of the 

incident beam (Fig. 49). The scattering centers in X-ray scattering experiments are 

the electron clouds. X-ray scattering is a suitable technique for studying structural 

features of colloidal matter. Small angle X-ray scattering is suited for probing 

distances in the range between 1 nm to 1 μm.  

 

 
Figure 49. Typical scattering geometry. K0 and k1 respectively indicate incident and scattered 

wave vectors. 
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The scattering vector Q is the fundamental variable of the experiment and 

represents the difference between the wave vectors of incident and scattered radiation 

(k0 and k1 respectively). 

 

        
          

      

 

Dealing with elastic scattering, the magnitude of the scattering vector is directly 

related to the scattering angle θ through the following relation: 

 

        
  


     

 

where  is the wavelength and n the refractive index.  

    has the dimension of reciprocal length (    ) and represents a measure of the 

spatial resolution of the scattering experiment. From the Bragg law, the distance (d) 

probed by the measurement at a given wave vector and wavelength results   

  
  . 

Scattering experiments performed at different     can be thought to give picture 

of the matter at different magnifications. 

The waves scattered at a given angle by all the scattering centers interfere with 

each other to produce one point in the interference pattern, that is then transformed to 

reconstruct an image of all the correlations between the sample. It has to be 

considered that the waves scattered at the same scattering angle differ in path length, 

so that constructive and destructive interference occurs.  

The scattering intensity is given by: 

 

               
     

  
 

 

where I0 is the incident flux,    is the solid angle subtended by the detector 

(whose efficiency is represented by  ), T is the sample transmission and          
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is the microscopic scattering cross section, that is related to the structure and 

interaction in the system over the Q range investigated. 

The differential scattering cross section is given by: 

 

     

 
                          

 

where N is the concentration number of scattering particles, V is the volume of a 

scattering particle, (Δρ)2 is the contrast factor (the difference in scattering length 

between the particle and the surrounding), P(Q) is the form factor of the particle, 

S(Q) is the structure factor and bkg is the incoherent background signal. 

The form factor is a function that describes how the scattering cross section is 

modulated by interference effects between radiation scattered by different parts of 

the same particle; the form factor is indeed related to the shape of the scattering 

particle. The structure factor can be neglected in diluted systems, as it describes the 

interference of scattering events from different particles, and contains information on 

their interactions. 

 

Microscopy techniques 

 

Brief introduction. The microscopes can be classified in three types: optical, 

charged particles or scanning probe. Optical microscopes use visible light and 

transparent lenses to see objects up to the micrometer size range. Charged particles 

microscopes use electrons or ions instead of light, electromagnetic or electrostatic 

lenses to focus the particles and their resolution gets up to tenths of nanometers. 

Scanning probe microscopes use a physical probe to scan the sample in contact or 

near-contact with it. They map forces and interactions between the probe and the 

sample to build up an image of the sample surface with atomic resolution. 

The resolution of a microscopy technique, ρ, is defined as the distance between 

two details just separable one from the another. The following formula can be used to 
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calculate resolution of microscopes that use incoherent light or electron beam as 

probe: 

 

       
      

 

where λ is the wavelength of the beam and α the maximum angle between 

incident and deflected beam in the limit of the lens aberrations. 

In the case of high-voltage accelerated electrons, their associated wavelength is  

 

        
                           

 

Electron microscopy techniques 

 

When electrons are accelerated up to high energy levels (kV) and focused on a 

specimen, a rich variety of interactions may take place (Fig. 50). Some electrons can 

be scattered elastically or inelastically (with precise directions if the specimen is 

crystalline); they can be reflected (backscattered); their impinging with the sample 

can produce Auger electrons; they can knock electrons from sample atoms, and such 

electrons escape as slow energy secondary electrons; they can induce atoms to emit 

X-rays or photons (cathodoluminescence); they can be transmitted. 

 

 

Figure 50. Possible interaction of the electron beam with the specimen. 
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Transmission electron microscopy (TEM) 

 

The transmission electron microscope (TEM) can be compared to a slide show 

projector, in which the light source is an electron source, the lenses are magnetic and 

the projection screen is a fluorescent screen or an electronic imaging device (CCD 

camera). The microscope is fully enclosed to reduce interference from environmental 

sources, all the beam trajectory is under vacuum and the specimen have to be really 

thick to allow the beam to pass through it. 

TEM instrument is constituted of four main components: an electron optical 

column, a vacuum system, the necessary electronics (lens supplies for focusing and 

deflecting the beam and the high voltage generator for the electron source), and a 

control software. Condenser lenses are used to focus the electron beam on the 

sample; objective lens is used to form the diffraction pattern in the back focal plane 

and the image of the sample in the image plane; intermediate lenses are required to 

magnify the image or the diffraction pattern on the screen. The power (focal length) 

of the magnetic lenses can be adjusted by changing the current through the lens coil. 

As the electrons pass through the thin specimen, the transmitted electron beam is 

collected, focused by an objective lens and a magnified real image of the specimen is 

projected onto the viewing device.  

In a TEM experiment, the electrons are accelerated to very high voltage, 

hundreds of kV, and their associated wavelength is five orders of magnitude smaller 

than the light wavelength. That is not the only factor that makes TEM resolution 

really high, but also the fact that the convergence angle of the electron beam is about 

0.5° (thanks to the use of magnetic lenses), instead of the 70° of the glass lenses used 

in optic microscopes. That allows for a resolution down to the Å order, that enables 

the imaging and structure determination at the atomic level. 

There are two main imaging modes: bright and dark field. If the bright field 

mode is used, the crystalline parts in Bragg orientation appear dark and the 

amorphous or non-Bragg oriented parts appear bright. In the dark field mode, the 

incident beam is tilted and each of the diffracting phases can be differentiated by 

selecting one of the diffracted beams with an objective diaphragm. In the dark field 

mode the amorphous regions will appear dark. 
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HR-TEM. While in classical electron microscopies the image is carried by only 

one beam (diffracted or transmitted), high-resolution electron microscopy uses phase 

contrast resulting from the interference of several beams. In particular, high 

resolution transmission electron microscopy (HRTEM) differs from conventional 

TEM in that not only the transmitted beams or some of the forward scattered beams 

are used to create a diffraction contrast image, but both the transmitted and the 

scattered beams are used to create an interference image. It allows for direct imaging 

of the atomic structure of the sample relying on phase contrast. The direct imaging of 

the specimens is accomplished by allowing some of the diffraction images to overlay 

the bright field image, enhancing the contrast along the lattice lines.  

The high performance of HRTEM microscope is due to the low spherical 

aberrations and high stability of several parameters, such as the high tension, lens 

currents or energy of the electron beam. HRTEM allows direct measurement of 

lattice parameters, inspection of individual defects and grain orientation. 

 

SAED analysis. In the selected area electron diffraction (SAED), an aperture is 

used to define the area from which a diffraction pattern is formed in a TEM 

specimen. This method allows to obtain a diffraction pattern of small objects by 

focusing the electron beam up to a small spot size on a selected area of the surface. 

The resulting patterns contain information about the phases present (lattice spacing 

measurement) and the sample orientation.  

The diffraction pattern is the result of the propagation of the electron wave 

through a crystal, and regular arrays of scattered intensities carry the information 

about the position of the scattering centers (atoms in the crystal). The spots of SAED 

become disks whose radii are the sources that provide the investigator with 

information about crystal symmetry, interplanar distances and the orientation to the 

beam path. This method is useful to confirm the identification of a phase.  

The use of HRTEM images together with SAED patterns enable therefore to 

obtain a structural determination that is called “electron crystallography”. This 

determination is complementary to X-ray crystallography, as the strong interaction 

between electron and matter (thousands of times stronger than X-rays) allows for the 

structural determination with the precision of atomic positions. 
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Scanning Electron Microscopy (SEM) 

 

SEM analysis can provide information on surface topography, crystalline 

structure, chemical composition and electrical behavior of the top of the specimen 

(~1 μm).  

Similarly to TEM, scanning electron microscope is constituted of an electron 

optical column, a vacuum system, lenses and electronics and a control software. The 

column used is therefore shorter than in TEM, as SEM requires only lenses above the 

specimen and no lenses below it; the sample characteristics are not in fact analyzed 

through the projection onto a screen (TEM). Moreover, SEM sample chamber is 

larger than the TEM one, as this technique does not impose restriction on the sample 

size. 

In a SEM analysis, an electron beam is emitted by an electron gun, focused by 

condenser lenses into a fine spot and deflected by scanning coils. Through the 

deflection of the beam in the x- and y-axes, the sample surface is scanned in a raster 

fashion over a rectangular area line by line. It is also possible not to sweep the 

electron beam across the surface but obtain a static analysis at one position. 

When the electron beam interacts with the sample, it loses energy in the 

interaction volume (Fig. 51), whose size is dependent on the energy of the incident 

electrons. The energy exchange between the electron beam and the sample results in 

the reflection of high-energy electrons by elastic scattering (backscattered electrons, 

BSE), in the emission of low energy secondary electrons (SE) by inelastic scattering 

and in the emission of electromagnetic radiation (X-rays). 

The intensities of the signal produced from the interaction with the specimen are 

registered and mapped as variations in brightness on the image display. 

Secondary and backscattered electrons are the most commonly used signals for 

imaging a sample: SE are most valuable for showing morphology and topography, 

whilst BSE are most valuable for illustrating contrasts in composition in multiphase 

samples. 
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Figure 51. Different types of signals originated from different volumes of interaction. 

Secondary electron signals have the smallest interaction volume and potentially the highest resolution. 

 

SE, according to their very low energy, can escape the sample and be detected 

only if they originate very close to the sample surface. For this reason, if SE are used 

to create an image, steep surfaces and edges tend to be brighter than flat surfaces, 

which appear dark. SE imaging have high spatial resolution and strong topographic 

contrast, so that images have a well-defined three-dimensional appearance. 

Conversely, BSE electrons are used for their strong atomic number contrast. For this 

reason they are useful at the presence of heavy elements, as they backscatter 

electrons more strongly than light elements, and appear brighter in the image. BSE 

are commonly used to detect contrasts between areas with different chemical 

compositions.  

X-rays originate from a large volume of interaction and they are widely used for 

elemental microanalysis. X-ray energy corresponds to a difference between two 

electronic energy levels of the atom, as X-rays are emitted when the electron beam 

removes an inner shell electron from the sample and an higher-energy electron fills 

that shell releasing energy. Since the levels are quantified, X-ray energy spectrum 

represents the signature of the atom and allows for chemical analysis of the sample. 

X-rays can be detected through the energy dispersive spectrometry (EDS) system.  

The increase in magnification in a SEM experiment is achieved by reducing the 

area scanned across the surface. The resolution of a SEM analysis depends on the 

reliability degree of the association of the signal to the position of the electron beam 
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at any time. To obtain sub-nanometer resolution at very low accelerating voltages, 

the use of a field emission electron gun is recommended (FEG-SEM), as it is capable 

of producing at these operative conditions high primary electron brightness and small 

spot size. Due to the very narrow electron beam, SEM micrographs have a large 

depth of field that yields the characteristic three-dimensional appearance of the 

surface structure of the sample. 

The spatial resolution of the SEM experiment depends on the size of the electron 

spot and the size of the interaction volume. Because the spot size and the interaction 

volume are both large compared to the distances between atoms, SEM resolution is 

not high enough to image individual atoms. The resolution of single atoms is 

possible for electrons with shorter wavelength (i.e. higher energy), that is to say the 

ones used for TEM measurements. 

 

Atomic Force Microscopy (AFM) 

 

Atomic force microscopy belongs to the family of scanning probe microscopies 

(SPM), used to study surface properties of materials up to the atomic level. These 

techniques use a probe tip that measures changes in the surface characteristics as the 

tip scans over the sample surface. AFM apparatus is based on a laser radiation 

source, a cantilever, a tip and a position sensitive detector (Fig. 52).  

 

 
Figure 52. Schematic representation of an AFM apparatus. 
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The atomic force microscope relies on the forces between the tip and the 

sample. They are calculated by measuring the deflection of the cantilever through the 

simple Hook’s law      , where F is the force, k is the stiffness of the lever and z 

the distance the lever is bent. The laser beam is reflected from the back of the 

reflective cantilever onto a position-sensitive four-segment photo-detector and the 

exact position of the probe tip is registered. 

The most common operational modes for an AFM experiment are the contact 

mode, the non-contact mode and the tapping mode. 

Using the contact mode, the tip is raster-scanned across the surface and it is 

deflected as it moves. If a constant force approach is used, the tip position is adjusted 

through a feedback circuit to maintain a lever constant deflection and these 

adjustments constitute the displayed data. If a variable-deflection approach is used, 

the deflection is measured without any adjustment. 

In non-contact mode, a stiff cantilever is oscillated in the attractive regime (see 

Fig. 53), meaning that the tip is close to the sample but not touching it. The changes 

in the resonant frequency of the cantilever are measured. 

In tapping mode AFM, a very stiff cantilever is oscillated closer to the sample 

than in non-contact mode. Part of the oscillation extends into the repulsive regime 

(see Fig. 53) so that the tip intermittently touches (taps) the surface.  

 

 
Figure 53. Schematic representation of the force between the probe and the surface as a function 

of the tip-sample distance. 

 



Annex – Principal analytical techniques  

129 
 

X-ray Diffraction (XRD) 

 

X-ray diffraction is a technique commonly used for the determination of the 

atomic and molecular structure of a crystal. The incoming X-rays are elastically 

diffracted in many specific directions and by measuring angles and intensities of 

these diffracted beams it is possible to obtain a three-dimensional picture of the 

electron density within a crystal. From this electron density, the mean positions of 

the atoms are determined.  

This technique has its foundation in the Bragg model of diffraction (Fig. 54). 

The X-rays scattered from adjacent planes (at distance d one to the other) combine 

constructively when the angle   between the crystallographic planes and the X-ray 

differ of an integer multiple n of the X-ray wavelength (λ). A given reflection is 

therefore associated with a set of evenly spaced sheets running through the crystal, 

usually passing through the centers of the atoms of the crystal lattice. 

 

                                                        

 
Figure 54. Schematic representation of the Bragg law of diffraction.  

 

The X-rays are generated by a cathode ray tube, filtered to produce 

monochromatic radiation, collimated and directed toward the sample. The sample is 

scanned through a range of angles and all possible diffraction directions of the lattice 

should be attained due to the random orientation of the powdered material. The 

diffracted rays are then detected, processed and counted. A peak of intensity occurs 

when the interaction of the incident rays with the sample produces constructive 

interference, i.e. when Bragg’s law conditions are satisfied. From the d-spacing it is 

possible to identify the crystallographic phase of the sample. 
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Abstract Microbial colonization has a relevant impact on the
deterioration of stonematerials with consequences ranging from
esthetic to physical and chemical changes. Avoiding microbial
growth on cultural stones therefore represents a crucial aspect
for their long-term conservation. The antimicrobial properties of
silver nanoparticles (AgNPs) have been extensively investigated
in recent years, showing that they could be successfully applied
as bactericidal coatings on surfaces of different materials. In this
work, we investigated the ability of AgNPs grafted to Serena
stone surfaces to inhibit bacterial viability. A silane derivative,
which is commonly used for stone consolidation, and Bacillus
subtilis were chosen as the grafting agent and the target bacte-
rium, respectively. Results show that functionalized AgNPs
bind to stone surface exhibiting a cluster disposition that is not
affected by washing treatments. The antibacterial tests on stone
samples revealed a 50 to 80 % reduction in cell viability, with
the most effective AgNP concentration of 6.7 μg/cm2. To our
knowledge, this is the first report on antimicrobial activity of
AgNPs applied to a stone surface. The results suggest that
AgNPs could be successfully used in the inhibition of microbial
colonization of stone artworks.

Keywords Silver nanoparticles . Conservation of cultural
heritage . Stone biodeterioration . Bacillus subtilis .

Antibacterial activity

Introduction

Microbial colonization has a relevant impact on the conserva-
tion of stone materials with consequences ranging from esthetic
changes to physical and chemical deterioration of the stone
itself. Biodeterioration processes are the result of complex
activities and interactions of the microbial community that is
present on stone surfaces in the predominant form of biofilms.
Deterioration mechanisms include acidolysis, accumulation of
organic nutrients, discoloration, changes in the porosity, ther-
mal–hydric alterations, vapor diffusion changes, and mobiliza-
tion of ions (Gaylard et al. 2003; McNamara and Mitchell
2005; Scheerer et al. 2009; Warscheid and Braams 2000).
Bacteria are extensively involved in biofilm formation, and
heterotrophic bacteria can also establish on stones as primary
colonizers without the pioneering participation of autotrophic
organisms (Warscheid and Braams 2000). Gram-positive bac-
teria are the most recurrent chemoorganotrophic bacteria.
Among them, organisms of the Bacillus and Bacillus -related
genera have been frequently identified on monumental stones,
both through culture and molecular biology techniques
(McNamara and Mitchell 2005; Sheerer et al. 2009). Bacillus
is able to withstand extreme environmental conditions because
of its spore-forming ability (Fajardo-Cavazos and Nicholson
2006). Its potential degrading activity, taking place through the
production of acids and surfactants, has been demonstrated
through laboratory experiments (Stassi et al. 1998). Bacillus
bacteria were also found in association to mineral precipitates
of white fluffy biofilm, covering deteriorated surfaces of caves
and catacombs, and they may actively participate to the pre-
cipitation of mineral phases (De Leo et al. 2012).
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Avoiding the formation and growth of biofilms on stone
surfaces of high cultural interest represents a crucial aspect for
their long-term conservation as well as for their esthetic as-
pect. A recent study (Pinna et al. 2012) has evaluated the
effectiveness of mixtures of consolidants, water-repellents,
and copper nanoparticles (NPs) in preventing biological
growth, and yielded good results also as a preservative treat-
ment against recolonization after conservation treatment.

Silver ions are known as one of most toxic heavy metal
ions to microorganisms, having a relevant activity against a
broad range of bacteria, fungi, and viruses (Kim et al. 2007;
Morones et al. 2005). Silver-based antimicrobials present
excellent properties such as thermal and chemical stability,
health and environmental safety, and low toxicity to human
cells. These features make silver-based materials suitable for a
variety of applications (Rai et al. 2009), including those where
they are exposed to a broad range of temperature, irradiation,
and humidity. Both the release of silver ions and the nanopar-
ticle characteristics play a key role in the antimicrobial activity
of silver nanoparticles (AgNPs) (Lok et al. 2007; Pal et al.
2007; Panacek et al. 2006). AgNP bactericidal activity in-
cludes: (1) the direct interaction with cell membranes, affect-
ing the transport through the membrane itself and causing
perforations (Sondi and Solopek-Sondi 2004); (2) the accu-
mulation of reactive oxygen species (ROS) at the surface of
the particles (Choi and Hu 2008); and (3) silver ion's interac-
tion with DNA or sulphidryl groups of vital enzymes, which
lead to cell death (Lok et al. 2006; Rai et al. 2009). The
synergy between these mechanisms makes the resistance of
microorganism to silver not frequent (Silver 2003).

Silver-containing materials are exploited to prevent bacte-
rial colonization both in medical and nonmedical applications
(Chaloupka et al. 2010). In some of these cases, AgNPs have
been successfully applied as coatings on different materials
(Knetsch and Koole 2011; Falletta et al. 2008). To the best of
our knowledge, little is known about the application of AgNPs
to protect stone artworks from biodeterioration. To this aim,
we investigated the antibacterial properties of stone samples
whose surface was treated with functionalized silver nanopar-
ticles in laboratory conditions. Serena stone was chosen as the
substrate since it is a much diffused stone in Italy, especially in
Tuscany. A silane derivative was used as the grafting agent to
take advantage of its chemical reactivity toward stones; more-
over, it is known that silane functionalization of AgNPs does
not hinder their antimicrobial activity (Egger et al. 2009; Xu
et al. 2009). Bacillus subtilis was used as the reference
bacterium, as it is very frequently identified on cultural heri-
tage materials. Moreover, Bacillus is a Gram-positive bacte-
rium and, due to their thicker cell wall, Gram-positive cells
usually result to be more tolerant and resistant to silver com-
pounds than Gram-negative bacteria (Feng et al. 2000; Jung
et al. 2008).

Materials and methods

Nanoparticle synthesis

Silver nanoparticles were synthesized according to a seed-
based procedure (Aherne et al. 2008) that results in the for-
mation of triangular nanoprisms. Silver nanoprisms were pre-
ferred over any other nanostructures because of their high
antimicrobial activity (Pal et al. 2007).

The synthesis was performed in water at room temperature,
so that it could be easily scaled up to produce at reasonable
costs the necessary amount of nanoparticles to treat large
artifacts. Silver seeds were prepared combining 5 mL of
aqueous trisodium citrate (2.5 mM), 0.250 mL of aqueous
poly(sodium styrenesulphonate) (500 mg/L), and 0.3 mL of
aqueous sodium borohydride solution (freshly prepared,
10 mM), followed by the addition of 5 mL of aqueous silver
nitrate solution (0.5 mM, added at a rate of 2 mL/min under
stirring). Nanoprism growth was achieved by combining
150 mL of water, 2.25 mL of aqueous ascorbic acid solution
(10 mM), and 3.6 mL of seed solution, followed by the
addition of 90 mL aqueous silver nitrate solution (0.5 mM)
at a rate of 1 mL/min under stirring (AgNP dispersions at
different stages of the synthesis are shown in Fig. SI-1 in the
Supporting Information). After the synthesis, 15 mL of aque-
ous trisodium citrate solution (25 mM) were added to stabilize
the dispersion and avoid aggregation and precipitation of
nanoprisms.

Nanoparticle functionalization

In order to chemically graft the nanoparticles to the stone
surface, pristine silver nanoprisms were functionalized
through the condensation of a silane precursor on the surface
of AgNPs using dimethylamine (DMA; Sigma Aldrich) as a
catalyst (Kobayashi et al. 2005; Niitsoo and Couzis 2011). We
used tetraethylorthosilicate (TEOS;Merck, AgNP/TEOS 20:1
w /w ) as a grafting agent in order to coat AgNPs with a
monolayer of silane molecules. To reduce the amount of water
during the condensation of TEOS on the surface of
nanoprisms, the pristine aqueous AgNP dispersion was con-
centrated to a volume of <200 μL using centrifugal concen-
trators Vivaspin 20 (Sartorius Vivascience MWCO, 3,000 Da,
20 mL) and Amicon 500 (Merck Millipore, Amicon Ultra,
0.5 mL) and diluted to the final reaction volume with 2-
propanol (2-propanol/aqueous solution of AgNP 4:1 v /v ).
Under stirring conditions, DMA (Aldrich, purum, final con-
centration of 0.4 M) and TEOS (Merck, synthesis grade, 2-
propanol solution) were added. Functionalized nanoparti-
cles (AgNP@TEOS) were resuspended by sonication be-
fore their use.
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Stone surface characterization

Serena stone samples (1.5×1.5×0.3 cm3) caved from quarry
in Firenzuola, Italy, 5–10 % open porosity, were used (Dei et al.
1999). AgNPs (either TEOS-functionalized or not) were applied
on stone specimens by dropping 50 μL of the dispersion and
allowing the samples to dry under a laboratory hood. Stone
surface was characterized by means of scanning electron mi-
croscopy (SEM), atomic force microscopy (AFM), and colori-
metric measurements. All themeasurements were carried out on
fully dried surfaces, i.e., typically 24 h after sample preparation.

SEM experiments were carried out with a field emission
gun (FEG)-SEM, modelΣIGMA by Carl Zeiss, working with
an 8-kV acceleration potential. Images were acquired by
collecting backscattered electrons (BSE) to highlight the dif-
ferences between high atomic weight (silver) and light ele-
ments (calcium) and by collecting secondary electrons with an
in-lens detector, when working at high magnifications.

AFM images were collected using a Park XE-100 micro-
scope in noncontact mode (SSS-NCHR probes, nominal
resonant frequency of 330 kHz, radius of curvature <5 nm).
Stone specimens treated only with the corresponding amount of
TEOS solution (without NPs) were used as reference samples.

Color changes induced by the presence of AgNPs were
evaluated by means of colorimetric measurements. The light
reflected by the sample (1mm2 spot) was collected bymeans of
a fiber-optic cable (FRP series) and recorded with a high
sensitivity CCD camera. Colorimetric data were collected
using standard illuminant C and standard observer CIE 1931
(2°) in a λ range of 400–700 nm and with a 0°/0° geometry,
operating conditions being derived fromUNI NORMAL 43/93
recommendations (Raccomandazioni NorMal 1993). Stone
specimens were analyzed in two different regions, three mea-
surements being taken for each region. The colorimetric coor-
dinates L*, a*, b* were averaged out to obtain a single value for
each specimen. The resultant chromatic change (ΔE) was
determined through the equation:

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔL*2 þΔa*2 þΔb*2
p

Δ indicating the difference between the coordinates of the
treated and untreated samples.

Bacterial strain and growth conditions

Bacterial cultures of B . subtilis strain 168 (Anagnostopoulos
and Spizizen 1961) were prepared in 100-mL flasks by inoc-
ulating a single bacterial colony into Nutrient Broth (NB;
Oxoid) medium. The culture was aerobically incubated on a
rotary shaker at 30 °C and 120 rpm for 18 h. To determine the
viable count of the B . subtilis culture, the microbial suspen-
sion was serially diluted and 100 μL of each dilution were

spread on Nutrient Agar (NA; Oxoid) plates. Colony formant
units (CFU) were counted after 24 h of incubation at 37 °C. In
such growth conditions, the viable count of the starting culture
was about 108 CFU/mL.

Zone of inhibition “spot on spot” technique

Antibacterial activity of AgNPs on solid medium was assessed
by evaluating the presence of growth inhibition zones. Ten
microliters of nanoparticle dispersion were spotted on NA
plates and allowed to dry under aspiration hood. Afterwards,
20-μL spots (containing about 103 cells) were placed over the
same spot, so that the area covered by the cells was larger than
the nanoparticle spot. Plates were incubated for 24 h at 37 °C,
and the inhibition activity was visually evaluated.

Antimicrobial activity on stone by cell deposition
and recovery assay

Serena stone samples (1.5×1.5 cm2) were treated with 50 μL
of AgNP@TEOS dispersions at different concentrations and
allowed to dry overnight. Each test sample was placed in a
Petri dish (∅ 5 cm), and the surface was treated with 50 μL of
10−1 dilution of an overnight B . subtilis culture. After 30 min,
10 mL of a saline solution (0.85 % NaCl) was added and the
Petri dish was shaken during 30 min (the sample was turned
upside down after 15 min). One milliliter of this “washing
solution” was withdrawn (twice for each sample) and diluted
10 and 100 times with saline solution. To enumerate the viable
bacteria recovered from the stone samples, 0.1 mL of undilut-
ed and diluted solutions were plated on NA, incubated at
37 °C for 24 h and visually counted. Stone samples treated
with the corresponding amount of TEOS solution were used
as reference and treated in the same way. Two replicates, with
at least three repetitions each, were performed for each con-
centration of AgNPs, and the same was done for the corre-
sponding references. The whole method is sketched in Fig. 1.

The reduction in cell viability due to AgNPs was evaluated
by comparing final microbial counts (FMC) of AgNP@TEOS-
treated and TEOS-treated samples (Ozy et al. 2010; Page
et al. 2007):

Antimicrobial effect% ¼ FMC untreatedð Þ−FMC treatedð Þ
FMC untreatedð Þ *100

Results

Nanoparticle characterization

The shape and size of the obtained nanoparticles were
assessed by FEG-SEM. Results are reported in Fig. 2, where
the prismatic shape of particles is shown.
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Stone surface characterization

SEM analysis provides insights about the distribution and the
adhesion of AgNPs on the stone surface. In order to assess the
resistance of nanoparticle grafting, samples were subjected to
a water jet at 7 mL/s for 30min (Yao and Yeung 2011). Images
in Figs. 3 and 4 display representative regions of AgNPs and
AgNP@TEOS-treated samples, before and after washing.

Pristine nanoparticles (Fig. 3) are quite homogeneously
spread over the stone surface, while functionalized AgNPs
(Fig. 4) tend to form micrometer-sized clusters. Through the
analysis of several SEM images (about 50) acquired moving
frame by frame along parallel lines, it was estimated an
average AgNP@TEOS cluster-to-cluster distance of about
150 μm.

Results suggest that clusters are formed during the
functionalization of AgNPs. Nevertheless, the adhesion of
AgNPs to the stone surface is allowed by the presence of
unreacted ethoxyl groups on the surface of clusters that are

still able to react with the hydroxyl groups present on the
stone. When pristine AgNPs are applied to stones, they ho-
mogeneously spread over the surface, but they display poor
adhesion as they could be removed through a washing treat-
ment (Fig. 3). This is not the case when AgNPs were previ-
ously functionalized with TEOS, highlighting the strong in-
teraction between AgNPs and the stone surface (Fig. 4).

SEM images at higher magnifications (Fig. 5) show the
details of the disposition of the nanoparticles (pristine or
functionalized) on the stone surface.

The stone surface was also analyzed by means of AFM
microscopy. Due to the presence of large cracks and voids on
the surface of Serena stone surfaces, images were acquired
over selected regions where nomicrometric irregularities were
detected with the aid of the optical microscope equipping the
AFM (see Fig. SI-2 in the Supporting Information). A repre-
sentative AFM image of the reference sample (i.e., after the
treatment with TEOS, but without AgNPs) is shown in
Fig. 6a. The surface displays the typical aspect of a freshly
cut stone slab. No evidence of silica structures resulting from
TEOS condensation could be detected, suggesting that the
amount of TEOS added (which is the same present in the case
of AgNPs@TEOS) is not sufficient to cover the surface and
that the application conditions do not take to the formation of
silica nanospheres.

Figure 6b shows an AFM image of the Serena stone
surface after functionalization with AgNP@TEOS and wash-
ing treatment. Consistently with SEM, results show the pres-
ence of clusters, highlighting that the AgNPs retain their
triangular shape also after TEOS functionalization.

Colorimetric measurements reveal that grafting nanoparti-
cles to the stone surface does not produce any significant
change in the chromatic aspect of the specimens, even using

Dry overnight

30 min

Bacteria inoculumAgNP@TEOS

Washing solution

Plating and visually
counting

30 min

Fig. 1 Schematic representation
of the different steps of cell
deposition and recovery method

Fig. 2 FEG-SEM micrograph of AgNPs. The edge length is about
70 nm, thickness is about 5 nm
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the highest concentration of AgNP@TEOS tested in the
microbiological assays (ΔE=0.5 for sample treated with
110 μg/sample).

Antimicrobial activity

We evaluated the growth inhibition properties of TEOS-
functionalized and pristine AgNPs against B . subtilis by the
“spot on spot” method on solid nutrient medium. In order to
assess the minimum amount of AgNPs (i.e., Ag weight) show-
ing an effective antimicrobial activity, spots with different
concentration of AgNPs were tested. Results show that 5 μg
do not inhibit bacterial growth; 35 μg are only partially effec-
tive, while 70 μg fully inhibit bacterial growth (Table 1). There
is no difference in antimicrobial activity between pristine and
functionalized nanoparticles, indicating that functionalization
does not affect nanoparticle toxicity.

It was therefore possible to assay the antimicrobial action
of AgNP@TEOS grafted to the stone surface. An ad hoc
experiment was set up to this purpose, comparing the viable
bacteria recovered from silver-treated and untreated stone
samples. Bacteria suspensions were deposited over the stone
surface, and cell recovery was performed through washing.

Preliminary tests were carried out to evaluate the B . subtilis
CFU recovery from Serena stone at different times from
bacteria deposition. A suspension of about 5×105 cells was
laid over each stone sample. Cells were recovered by washing
1 min, 30 min, and 4 h after deposition (corresponding to the
interaction times given in Table 2). As shown in Table 2, cells
collected immediately after their deposition (1 min) constitut-
ed the 64 % of the inoculated amount; after 30 min of incu-
bation the applied bacterial suspension was absorbed onto the
stone surface, and the number of collected cells decreased by
one order of magnitude, while after 4 h, the value decreased by
two orders of magnitude. The amount of cells collected after
30 min is well suited for antibacterial activity experiments: in
fact, although 95 % of cells result unrecoverable, 5 % of the
inoculated bacteria is still enough to count a reliable number
of CFU and to appreciate differences up to two orders of
magnitude.

TEOS-treated samples were also investigated, showing that
the number of cells recovered after 30 min was nearly identi-
cal (CFU %=5.1±0.1) to that obtained with pristine AgNPs,
clearly indicating that TEOS does not interfere with CFU
recovery. These conditions (both in terms of inoculum and
interaction time) were then used to test the B . subtilis CFU

Fig. 3 SEM images acquired in
BSE mode of stone surface
treated with pristine AgNPs
before (a–c) and after (d–f)
washing with 7 mL/s water for
30 min. All the images are
collected at 15 kX magnification
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recovery from AgNP@TEOS-treated samples. TEOS-treated
samples were used as reference.

Results of the experiments carried out using AgNP@TEOS
in the range of 6–110μg/sample are reported in Table 3. In all the
experiments, the CFU counts from silver-treated samples were
always significantly lower than the ones from the reference.

The maximum bacteria inhibition (80.6 %) was obtained
with a nanoparticle concentration of 15 μg/sample; higher
concentrations did not lead to any increase, with an antimi-
crobial effect around 68 %. On the other hand, the concentra-
tion of 6 μg/sample gave the lowest inhibition activity
(54.6 %).

Discussion

In this work, we investigated the use of TEOS-functionalized
silver nanoparticles grafted to stone surfaces to inhibit bacte-
rial viability. We used Serena stone as the substrate because it
is a sandstone very commonly used in Works of Art, especial-
ly in architectural elements located outdoors and subjected to
biocolonization. The grafting agent (TEOS) was chosen as it
is commonly used for consolidation treatments of stones
(Mosquera et al. 2008).

The first step involved the surface characterization of Serena
stone after the application of nanoparticles. Microscopy results

Fig. 4 SEM images acquired in
BSE mode of stone surface
treated with functionalized
AgNPs before (a–c) and after
(d–f) washing with 7 mL/s water
for 30 min. All the images are
collected at 1.5 kX magnification

Fig. 5 SEM images of unwashed
pristine NPs (left image) and
functionalized NPs (right image)
on Serena stone surface (50 kX
magnification). The circles
highlight groups of NPs
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showed that pristine nanoparticles are arranged in a much more
uniform manner than functionalized ones, which conversely
tend to dispose as clusters over the surface. This is reasonably
due to the fact that the hydrolysis of TEOS functions is not
confined to the formation of Si–O–Si bridges between one
AgNP and the stone surface but could also take place between
AgNPs, taking to the formation of clusters. Results also show
that the treatment of the stone surface with AgNP@TEOS is
resistant to washing treatments, conversely to what happens
when pristine AgNPs are used.

Colorimetric measurements reveal no significant color chang-
es of stone surface after treatment, validating the possible use of
silver nanostructures for inhibition of the microbial growth on
Works of Art made of Serena stone. In the case of the maximum
amount of AgNP@TEOS applied on stone (110 μg/sample),
ΔE results at 0.5, below the limit value ofΔE<2 above which
the human eye can appreciate a chromatic difference.

To evaluate the antimicrobial properties of AgNP@TEOS
in standard microbiological culture experiments as well as
after grafting on stones, B . subtilis was used as the target
microorganism. It belongs to a very common genus frequently

isolated from stone monuments, and, being a Gram-positive
bacterium, it is also acknowledged to have a much higher
resistance to antimicrobial silver compounds (Egger et al.
2009; Rai et al. 2009). In particular, the well-known labora-
tory strain 168 was used to test the AgNP@TEOS antibacte-
rial effectiveness in laboratory conditions.

To understand if AgNP functionalization is effective
against antibacterial activity, preliminary microbiological tests
were carried out using a spot on spot technique on solid
growth medium, comparing the inhibition activity of pristine
and functionalized AgNP. This test allowed to overcome the
usual problems met when more conventional microbiological
methods are used: (1) 2-propanol, present in the
AgNP@TEOS solution, inhibits the growth of B . subtilis
vegetative cells, as well as spores, both in liquid and in solid
medium, when applied after plating cell or spore suspensions
and (2) AgNPs, either naked or functionalized, do not diffuse
from disks to medium in the classical agar diffusion test. No
inhibition differences were observed between pristine and
functionalized AgNPs, the amount of nanoparticles needed

Fig. 6 AFM results (a , b 3D
topographies; c , d corresponding
error images) of the surfaces after
washing of a stone sample treated
with TEOS (a , c) and with
AgNPs@TEOS (b , d)

Table 1 Results of the spot on spot method. Chloramphenicol (Cmf) and
TEOS solution were used as positive and negative control, respectively

Cmf (μg) TEOS a AgNPs (μg)b AgNP@TEOS (μg)b

Sample 5 5 35 70 5 35 70

Growth − + + ± − + ± −

+ indicates bacteria growth, − indicates complete growth inhibition
a The quantity of TEOS used was the same of the 70 μg AgNP@TEOS
sample
b Calculated as the total Ag content

Table 2 B . subtilis cell recovery by washing at different times after their
deposition on stone. Values are normalized for an inoculum of about 5·
105 cells/sample

Cells collecteda

Interaction time [min] CFU [·104] CFU [%]

1 31.90±0.84 63.8±1.7

30 2.52±0.17 5.0±0.3

240 0.26±0.089 0.5±0.2

a The values are mean standard deviations for measurements obtained
from two independent stone samples with at least three repetitions each
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to fully inhibit the bacterial growth being 70 μg in both cases.
Results indicate that functionalization with TEOS does not
alter the AgNP antimicrobial characteristics, as previously
observed (Egger et al. 2009; Xu et al. 2009), and suggests
that antimicrobial properties are very promising also in the
case of functionalized nanoparticles.

The antimicrobial activity of the AgNP@TEOS was tested
on stone specimens. A quantitative assay was set up to quan-
tify the viability of bacteria: a known number of viable bacte-
rial cells were applied over previously treated stone samples;
cells were recovered by washing, and dilutions of the washing
solution were plated and evaluated. Preliminary experiments
were carried out to assess the proper amount of B . subtilis to
be inoculated on the stone surface and the proper interaction
time in order to recollect enough microorganisms for viability
count. We found the inoculum of about 5 ⋅105 CFU and
30 min interaction time as the most suitable experimental
conditions to our purpose. In these conditions, bacterial cell's
recovery from untreated stone samples or from specimens
treated with different amounts of TEOS is the same, indicating
that TEOS does not interfere with CFU recovery and, conse-
quently, does not have any antibacterial activity.

Samples were then treated with different amounts of func-
tionalized AgNPs, and the antimicrobial activity was evaluat-
ed by comparing CFU recovery from treated sample and the
corresponding reference (TEOS-treated). All tested concen-
trations proved to be effective in decreasing cell viability of at
least 50% despite the use of an interaction time of only 30min
and a very high concentration of bacteria, not likely to be
found in in situ conditions.

The most effective AgNP@TEOS concentration is 15
μg/sample, a lower concentration (6 μg/sample) results less
effective, while the increase of up to 110 μg/sample results in a
slight decrease of the antimicrobial activity.

In contrast with the growth inhibition results from the spot
on spot assay, the increase in NP concentration do not lead to
the enhancement of antimicrobial activity. This could be partly

due to the distribution in clusters of the AgNP@TEOS which
do not homogeneously cover the stone surface, as observed by
SEM analysis (Fig. 4). It is important to highlight, however,
that the cell deposition and recovery assay on stone is intrin-
sically different from the common microbiological tests used
to evaluate antimicrobial activity, which generally involve a
longer interaction time between AgNPs and bacteria in a
growth medium, either solid or liquid.

Conclusions

It was investigated in this study the possibility to use func-
tionalized silver nanoparticles grafted to Serena stone surface
as novel antimicrobials. Microscopic investigations show that
TEOS, used as grafting agent, binds the NPs to the surface in a
cluster disposition and does not change their morphology and
dimensions. Moreover, microbiological tests prove that
functionalization does not modify the antibacterial activity of
the AgNPs toward the reference bacterium B . subtilis . The
antibacterial assay performed on stone samples reveals an
effectiveness ranging from 50 to 80 % in reducing cell viabil-
ity, with the most effective AgNP@TEOS concentration of
6.7 μg/cm2. In our knowledge, this is the first report where
antimicrobial activity of silver NPs applied on a stone surface
is demonstrated. These preliminary results obtained in labo-
ratory conditions are encouraging for further studies, aiming at
using the proposed nano-remedy for in situ treatment of
Works of Art made of Serena stone to discourage bacteria
colonization of the surface.
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Table 3 B . subtilis CFU recovery from stone samples treated with
different concentration of AgNP@TEOS or TEOS only (reference).
The antimicrobial effect is evaluated comparing the number of cells

collected from silver-treated and reference samples. Values are normal-
ized for an inoculum of about 5·105 cells/sample

Cells collected CFU [·104]

Concentration AgNP@TEOS
[μg/sample]

AgNP@TEOS TEOSa Antimicrobial
Effect [%]

6 1.72±0.25 3.79±0.42 54.6±8.3

15 0.32±0.022 1.65±0.11 80.6±1.8

30 1.03±0.067 3.38±0.36 69.5±3.8

60 2.34±0.18 8.70±0.29 73.1±2.2

110 1.10±0.17 2.77±0.23 60.3±7.0

a For each concentration of AgNP@TEOS, the corresponding quantity of TEOS was used in the reference samples (TEOS)
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Abstract The use of nanoparticles (NPs) can substantially
improve the analytical performance of surface plasmon res-
onance imaging (SPRi) in general, and in DNA sensing in
particular. In this work, we report on the modification of the
gold surface of commercial biochips with gold nanospheres,
silica-coated gold nanoshells, and silver nanoprisms, respec-
tively. The NPs were tethered onto the surface of the chip and
functionalized with a DNA probe. The effects of tethering
conditions and varying nanostructures on the SPRi signals
were evaluated via hybridization assays. The results showed
that coupling between planar surface plasmons and electric
fields, generated by localized surface plasmons of the NPs, is
mandatory for signal enhancement. Silver nanoprisms gave
the best results in improving the signal change at a target
DNA concentration of <50 nM by +50 % (compared to a
conventional SPRi chip). The limit of detection for the target
DNAwas 0.5 nM which is 5 times less than in conventional
SPRi.

Keywords Nanoparticles . Surface nanostructuring .

Analytical performances . DNA sensors . Optical sensors .

Surface plasmon resonance imaging

Introduction

Biosensors are innovative analytical devices based on the
close integration between a biological receptor and a trans-
ducer. The bioreceptor is immobilized on the surface of the
transducer and it is responsible for the selectivity of the
system. The receptor recognizes the analyte in solution and
binds it, generating an event sensed by the transducer. Dif-
ferent receptors coupled to a variety of transduction princi-
ples are available. Among receptors, we can distinguish
between enzymes, leading to catalytic sensors, and receptors
based on affinity interactions. Antigen-antibody reactions
(immunoreactions), nucleic acids binding (DNA and/or
RNA), aptamers and their ligands, lead all to Affinity-
Based Biosensors (ABBs). About the detection of the event,
transduction can be electrochemical, gravimetric, optical,
thermometric, etc. Therefore, different combinations among
receptors and transduction principles result in a wide variety
of possible analytical applications [1–4].

Since 20 years Surface Plasmon Resonance (SPR) has
been applied to a variety of problems related to biochemistry,
molecular biology, drug development, and analytical chem-
istry [5, 6]. Conventional SPR and its most recent advance-
ment, SPR-imaging (SPRi), are more and more exploited for
advanced applications aiming at fast, label-free, real-time
multiplexed analysis of bio-interactions for clinical diagnos-
tic as well as anti-doping analysis, where high sample
throughput and fast analysis time are mandatory [7]. In
particular, SPRi technique results to be a suitable asset for
developing versatile DNA affinity biosensors [8, 9]: in fact,
as we recently reported [10], SPRi has been used in a variety
of affinity systems, including DNA/DNA, DNA-binding
protein, DNA and RNA aptamers/protein, antibody-antigen
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and carbohydrate/protein interactions. SPRi can eventually
contribute to support membrane related studies [11].

Among the analytical challenges behind SPR biosensing,
increased sensitivity is of crucial importance. Recently, some
authors have reported interesting improved detection limits
by using catalytic activity of enzymes [12]. Alternatively,
improved analytical performances in SPR based-sensing are
obtained when using nanoparticles to enhance SPR signal
[13–16]. Metallic Nanoparticles (NPs) are nanoscale mate-
rials that possess optical and electronic properties opening
new perspectives in the strategies for detections of biomol-
ecules such as DNA, RNA, and proteins. Different ap-
proaches have been pursued to obtain higher sensitivity in
optical SPR-based sensing. Most of them deal with nano-
structures incorporated within sandwich-like assays, using
NPs as mass enhancers or to obtain plasmon coupling. Inter-
esting advances on the use of functionalized Au NPs in DNA
biosensing strategies have been recently summarized [17].
Particular attention has been devoted to ultra-sensitive DNA
detection, aiming at DNA sequence detection directly in
genomic, unamplified samples, bypassing Polymerase Chain
Reaction (PCR). Behind this work, excellent reviews that
have given comprehensive summaries of updated processes
involving DNA sensors and DNA microarrays have been
also published [18–22]. Quantum dots were also used in
SPRi immunosensors [23].

More recently, applications of SPRi-based sensing have
been reported for the detection of target sequences in real
samples of genomic DNA from plants and human blood, in
sandwiched gold NPs-based assays [24]. NPs were coated
with streptavidin and further modified with biotinylated
probes. In particular, a marker sequence of transgenosis
was detected in genomic DNA samples carrying different
amounts of genetically modified (GM) sequences (Roundup
Ready soybean, RR) [25]. The same assay scheme was used
for the detection of single nucleotide polymorphism (SNP),
meaning the difference in one nucleotide, in samples from
human genomic DNA extracted from lymphocytes to detect
a mutation present in the globin gene, involved in thalasse-
mia [26].

Our group has recently explored the possibility to use NPs
for improving analytical performances of SPRi-based
sensing.

In particular in this work, different nanostructures were
introduced in a SPRi biochip to be used in DNA sensing. In
particular gold nanoparticles, silica-coated Au nanoshells
and silver nanoprisms were synthesized and immobilized
on gold surfaces and the efficiency in the amplification of
the analytical signal was evaluated in a DNA biosensor.

First, NPs were synthesized and then covalently linked
via dithiols on the gold chip surface, which could provide a
simple and reliable platform for immobilization [27], and
finally nanostructured surfaces were functionalized with

thiolated-DNA probes. The nanostructured surfaces have
been characterized by scanning electron microscopy (SEM)
and atomic force microscopy (AFM). Finally, hybridization
experiments between the immobilized probe and its specific
complementary target sequence in solution were performed
and the relative sensor performances were evaluated, with
the final aim of finding the best NP structure for improving
the analytical performances of the sensor, mainly in terms of
sensitivity.

Experimental

Immobilization

Immobilization Solution (IS) was a water solution 1 M
KH2PO4 (pH 3.8). Hybridization Solution (HS) was a water
solution of 300 mM NaCl, 20 mM Na2HPO4, 0.1 mM
EDTA, 0.05 % TWEEN®20 (Polyethylene glycol sorbitan
monolaurate), pH 7.4. Solutions were prepared in MilliQ
water. Reagents were purchased from Sigma Aldrich
(www.sigmaaldrich.com/, Milan, Italy). All synthetic oligo-
nucleotides were purchased from Eurofins MWG Operon
(www.eurofinsgenomics.eu/, Germany). Nucleotide se-
quences were: TProbe (Testing Probe) 5′ HS-(CH2)6-
GTGGTGTCACAGGAAGAGATT 3′ and the complemen-
tary TTarget (Testing Target) 5′ AATCTCTTCCTGTGA-
CACCAC 3′. The TProbe sequence at its 3′ end maps the
rs1045642 single nucleotide polymorphism (position
87138645 of the chromosome 7 on human ABCB1 gene),
a variation in human genome related to the incidence of
many diseases [28, 29] and drug resistance [30, 31].

An unspecific sequence was used as negative control: 5′
HS-(CH2)6-GAGGGCGATGCCACCTAC 3′. The TTarget
was removed from the hybrid with immobilized TProbe
using a regeneration solution (RS) consisting in 100 mM
HCl in MillQ water.

Nanoparticles (NPs)

Silver nanoprisms: trisodium citrate (>99 %), poly(sodium
styrene sulfonate), sodium tetrahydridoborate (>99 %) and
silver nitrate (>99 %) were purchased from Sigma Aldrich
(www.sigmaaldrich.com/, Milan, Italy). Solutions were pre-
pared in milliQ water. Silica-coated Au nanoshells: ammo-
nium hydroxide (30 %) and sodium hydroxide pellets
(>98 %) were from PanreacQuimica (www.panreac.com/,
Spain). Tetraethylorthosilicate (TEOS) (>99 %), ethanol
ultrapure p.a., milliQ water 18.2 MW/cm, tetrachloroauric
acid (>99.9 %), tetrakis(hydroxymethyl)phosphonium chlo-
ride (THPC, 80 % solution in water), (3-Aminopropyl)
trimethoxysilane ATPS (97 %), hydrochloric acid (37 %),
formaldehyde (37 % w/w) were all from Sigma Aldrich-
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Fluka (www.sigmaaldrich.com/, Milan, Italy). Pentane
(96 %) was from Riedel de Haen (www.riedeldehaen.com/,
Milan, Italy), potassium carbonate p.a. was from Merck
(www.merck.it/, Darmstadt, Germany). Gold nanoparticles:
tetrachloroauric acid (>99,9 %) and trisodium citrate dehy-
drate (>99 %) were purchased from Sigma Aldrich-Fluka,
(www.sigmaaldrich.com/, Milan, Italy). All solutions were
prepared in MilliQ water.

Thiols and dithiols: 11-mercapto-1-undecanol (MU), 6-
mercapto-1-hexanol (MCH), 1,8 Octanedithiol (ODT) and
1,4-Benzenedimethanethiol (BDMT) were purchased from
Sigma (www.sigmaaldrich.com/, Milan, Italy).

Thiols and dithiols

11-mercapto-1-undecanol (MU), 6-mercapto-1-hexanol
(MCH), 1,8 Octanedithiol (ODT) and 1,4-Benzenedime-
thanethiol (BDMT) were purchased from Sigma (www.
sigmaaldrich.com/, Milan, Italy).

SPRi setup

SPRi-Lab+ instrument was from GenOptics-Horiba Scientific
(www.horiba.com/, USA). The opto-mechanical part of the
instrument consisted in a light source emitting at 635 nm.
Biochip were housed in a cell integrated with a fluidic system
(PEEK tubing, Restek Corporation, www.restek.com/, 1/16″
OD×001″ ID) equipped with a Rheodyne valve (50 μL loop
volume) and the continuous flow of HS was generated by a
peristaltic pump (Miniplus 3, Gilson Inc., www.gilson.com/,
USA) using accurate tubing from Elkay Laboratory Products
(www.elkaylabs.com/, UK) orange/black, 0.015 cc·min−1.

NPs synthesis

Three different types of nanoparticles were synthesized: gold
nanospheres, gold nanoshells and silver nanoprisms. Gold
nanospheres were synthesized according to the Turkevich
method [32]. Gold nanoshells have been grown on silica
spheres [33]. Silver nanoprisms were synthesized with a
seed-based method [34]. Details about the synthesis of the
nanostructures are given in the Online Resource, together
with respective UV–vis absorption spectra.

NPs and surface characterization

All nanoparticles suspensions were characterized by UV–vis
spectrophotometry using a Perkin Elmer Lambda 900
(www.perkinelmer.com/). Gold nanospheres were 15 nm in
diameter, the total diameter of the nanoshells were 150 nm
and silver nanoprisms side was 40 nm. Nanostructured gold
surfaces of SPRi biochips were characterized by SEM (Scan-
ning Electron Microscope) and AFM (Atomic Force

Microscope). Scanning electron microscopy experiments
were carried out with a ZEISS Sigma FEG-SEM
(www.zeiss.it/). Atomic force microscopy images were col-
lected by means of a PSIA XE-100 (www.parkafm.com/)
microscope in non-contact mode (NCHR probes, radius of
curvature <10 nm).

Chip surface nanostructuring

NPs were immobilized onto the gold surface of SPRi bio-
chips through a dithiol linker. To this aim, two different
dithiols were tested 1,8-Octanedithiol (ODT) and 1,4-
Benzenedimethanethiol (BDMT). Dithiols immobilization
was carried out by applying a pre-punched PDMS mask to
obtain a removable micro-welled (1 mm in diameter) support
for the deposition of dithiols (concentration: 1 mM in MilliQ
water, 0.8 μL/micro-well). After the deposition of the drops,
the chip was placed into a moist chamber to which vacuum
was applied for about 20 min to eliminate air bubbles from
micro-wells and left into the moist chamber for 20 h,
avoiding the drying of the immobilization solution. Finally,
drops in micro-wells were aspired with micro-syringe and
micro-wells were washed with MilliQ water. Control spots,
where the unspecific sequence was immobilized, and blanks
(bare gold) were also prepared on the biochip.

Nanoparticles suspensions were eluted in MilliQ water to
a certain density ensuring the total coverage of the spot area
(1 mm in diameter each). NPs were also alternatively diluted
in 20%vol/vol ethanol or 5 % vol/vol ammonium hydroxide
water solutions (pH~10). After that, silver nanoprisms, gold-
silica core-shell NPs and gold nanospheres were covalently
immobilized on the gold chip by depositing 0.8 μL onto
different dithiolated micro-wells.

DNA probe immobilization on nanostructured SPRi biochips

Thiolated DNA probes (TProbe) were immobilized onto
nanostructured surfaces, exploiting the affinity of sulphur
for gold and silver. A 10 μM TProbe solution was prepared
in IS and 0.8 μL were deposited in each micro-well and let
react in the moist chamber for 20 h. Finally, after the removal
of the PDMS mask, the prism was immersed in a Passivation
Solution PS (1 μM 11-mercapto-1-undecanol, MU, and
1 μM 6-mercapto-1-hexanol, MCH, in MilliQ water) for
20 h to passivate the rest of the gold surface. Finally, the
chip surface was rinsed with MilliQ water and housed in the
instrument cell.

SPRi measurements on nanostructured surfaces

Calibration curves were obtained by injecting 100 μL of the
complementary TTarget in HS, within the range of concen-
tration 5 nM–250 nM. The immobilized TProbe was then
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regenerated from the hybridized TTarget after each measure-
ment by RS solution for 30 s. All measurement cycles were
performed at fixed angle of incident light (maximum slope of
reflectivity curve), and the variation of intensity of reflected
light due to the target interaction was monitored as SPRi
signal.

Results and discussion

In this work commercially available SPRi biochips were mod-
ified with different nanostructures and tested for their potential
use in enhancing the sensitivity of a SPRi-based DNA biosen-
sor. The basic idea was to functionalize the gold layer of
biochips with NPs through the covalent linking offered by
dithiols. To this aim, the most suitable dithiol was selected
and the nanostructures obtained with different NPs were stud-
ied. DNA sequences were immobilized on the obtained three
nanostructured chip surfaces and the hybridization reactions
with the complementary target sequence were evaluated by
SPRi sensing. The rationale of this approach was based on the
occurrence of two phenomena: i.e. the increase of the surface
area available for sensing (due to the functionalization of the
chip surface with nanostructures) and the electronic properties
of the nanostructured surface. The nanostructuring of a flat
surface, such as the one of the chip, carries to an increase of the
surface area that could enhance the amount of immobilized
DNA.At the same time, the presence of structures on top of the
chip gold surface could result in non-optimized instrumental
conditions, which are eventually re-established by adjusting
the source-gold surface impinging angle. On the other hand,
the sensitivity of SPRi biosensor could take advantage of the
coupling between the planar surface plasmons and electric
fields generated by localized surface plasmons. Recently, this
approach has been successfully exploited in the func-
tionalization with noble metal NPs of the interacting surface
of a gold SPRi biochip [35].

Nevertheless, many aspects are still to be optimized when
introducing nanostructure onto the surface of commercial bio-
chips. For this reason we decided to investigate the effect of
the plasmon resonance wavelength of the nanostructures in
relation to that of the chip gold surface, especially in terms of
improvement performance. To this aim, the gold surface was
therefore functionalized with three different nanostructures.

Silver nanoprisms were selected because of their surface
plasmon resonance peak at 633 nm, almost matching the
wavelength of the instrumental light source (635 nm).

On the other hand, the resonance of the plasmon of the
gold nanospheres (Absmax=528 nm) is well separated from
the resonance of the chip surface, while gold nanoshells
(Absmax=588 nm) were selected as an intermediate case.

Nanostructuring procedures were optimized in terms of
the best dithiol and solutions to be used to immobilize the

NPs, i.e. MilliQ water, ethanolic, or ammonia solution.
Nanostructured surfaces were compared to bare gold surface
in terms of stability under HS flow and of the reflectivity
curves.

In order to choose the best linker for the NPs, two differ-
ent dithiols, BDMT and ODT, were tested. After NPs immo-
bilization, reflectivity curves relative to different dithiol/NP
combinations were compared. Nanostructures built on ODT
dithiol did not show significant shifts in the resonance angle,
contrary to BDMT. Shift observed in presence of BDMT
points toward the coupling between planar surface plasmons
and electric fields generated by localized surface plasmons of
NPs, so BDMT was chosen as the best linker to be used for
NPs immobilization.

Gold nanospheres and silica-coated Au nanoshells were
successfully deposited by simply adding their water disper-
sions on top of the BDMT layer. The nanostructured biochip
surface resulted stable under HS flow: in fact, no change in
the plasmonic curves was recorded by the real-time CCD
image of the spots after 48 h of continuous flow of HS (data
shown in the Online Resource). This is consistent with the
high affinity between sulphur and gold.

Nanostructuring with water dispersions of silver
nanoprisms reflected the lower affinity between silver and
sulphur, resulting damaged after 8 h of exposure to HS.
Then, to perform successfully and steady a surface
nanostructuring with silver nanoprisms, 5 % of ammonium
hydroxide was added to aqueous dispersion of NPs (optimi-
zations and data were shown in Online Resource). The
success of optimization could be explained by the dithiol
deprotonation in presence of ammonia solution that could
promote the covalent binding with nanoprisms.

Among the studied nanostructures, nanostructuring with
silver nanoprisms displayed the largest shift (0.51°, see
Table in Online Resource), highlighting the coupling be-
tween the plasmon resonances of NPs and chip. These results
showed that the position of the plasmon resonance peak of
nanoparticles represented a useful parameter when designing
a nanostructured biochip for SPRi.

The nanostructured SPRi biochip surfaces were investi-
gated by SEM (Scanning Electron Microscopy) and AFM
(Atomic Force Microscopy). In Fig. 1, the images relative to
the three different nanostructured spots are reported, together
with bare gold spots as reference.

Gold nanospheres and silica-coated Au nanoshells
appeared irregularly distributed on the dithiolated surface,
forming large aggregates which could take to a loss of
sensitivity of the SPRi biochip, possibly because of the
distance from the sensing surface (due to aggregate thick-
ness) and/or because the irregular distribution of the DNA
probe immobilization, affecting the hybridization of the
complementary TTarget. On the other hand, a homogeneous
coverage was obtained with silver nanoprisms on dithiolated
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surface. The platelet-like shape of nanoprisms and their
reduced thickness was of great help in the formation of a
homogeneous and thin coating, which from a structural point
of view, made nanoprisms the best candidate among the
tested nanostructures in the design of highly sensitive SPRi
biochips.

Once covalently bound to the chip surface, nanostructures
were functionalized by coupling the thiolated TProbe on their
surface. The effect of the different nanostructures was evalu-
ated through the study of hybridization signals obtained by
injecting the complementary TTarget onto nanostructured
spots modified with TProbe, compared with those obtained
from the same TProbe directly bound to the unmodified gold
biochip surface. Signal intensities of the observed interactions
were evaluated at different TTarget concentrations for the all
three nanostructures. Negative control oligonucleotides

solution was also assayed giving no significant signal. The
results are summarized in Fig. 2.

Both gold nanospheres and silica-coated Au nanoshells
caused a loss of sensitivity of the system. In particular,
nanoshells produced the strongest decrease on SPRi
hybridation signals, probably because of the large distance
between the probe and the sensing surface. Nanoshells were
characterized by a diameter of about 150 nm, making the
biochip surface insensitive (from the plasmonic point of
view) to the hybridization taking place on the surface of the
nanoshells. In the case of gold nanospheres, their size should
not represent a problem, as long as a monolayer (or few
layers) of NPs is deposited onto the chip surface. Unfortu-
nately, as highlighted by the microscopy results, large aggre-
gates were present on the surface, indicating that an accurate
control of the deposition step is a prerequisite for the

Fig. 1 Schematic representations of chip surfaces (left) together with
SEM (center) and topography and error AFM images (right) of the
nanostructured surfaces. SEM images were taken with a Zeiss Sigma

FEG-SEM (www.zeiss.it/). AFM height and error images were taken
with a PSIA XE-100 microscope (www.parkafm.com/)
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preparation of an efficient system. Finally, silver nanoprisms
showed a significant improvement over the conventional
approach for target concentrations lower than 50 nM (see
Fig. 2): in fact, an enhancement up to 50 % in SPRi signals
was recorded at 20 nM (see Fig. 3).

A calibration curve on silver nanoprisms nanostructure, in
the linear dynamic range between 20 nM (LOL, limit of
linearity) and 0.5 nM (LOD, limit of detection), was even-
tually obtained and reported in the Online Resource. LOD
was 5 times smaller than that of nucleic acid biosensor based
on conventional SPR imaging (2.5 nM) [8].

The increased sensitivity could be explained by the anal-
ysis of the reflectivity curves (reflectivity vs. angle of inci-
dent light, reported in the Online Resource) of TProbe di-
rectly bound on gold and the corresponding tethered on the
silver nanostructure.

In the case under study, the nanostructure produced a
sharper reflectivity curve than the control spot one (probe
on bare gold). As a consequence, for the same interaction on
the sensing surface, variations of the resonance angle,
corresponded to a greater variation of intensity of reflected
light. To further analyze the increase in sensitivity obtained

with silver nanostructures, one could eventually evaluate the
first derivate in the inflection point of reflectivity curves,
which corresponds to the measuring angle (inflection angle),
both for bare gold and nanostructured surfaces. In particular,
the fitting was achieved using a polynomial interpolation of
the reflectivity curves which provided an excellent coeffi-
cient of determination (0.999) for both reflectivity curves. As
results the first derivate in inflection angle of the silver
nanostructured surface was 6.5 % greater than the one of
bare gold surface. As consequence, for the same variations of
angle in the neighborhood of the inflection angles, the var-
iations of intensity of reflected light are greater for nano-
structured surface respect to bare gold surface, explaining the
increased sensitivity for the nanostructured DNA sensors.

Finally, the biosensor resulted to be usable with an excel-
lent reproducibility (CV% <10) within the first 10 measure-
ments cycles (TProbe-TTarget interaction and hybrid dena-
turation by TProbe regeneration with RS).

Conclusion

The surface of a commercial SPRi biochip was functionalized
with nanostructures differing in terms of composition, dimen-
sion, and shape, but all showing a surface plasmon resonance
peak in the visible range. Then, nanostructured surfaces were
functionalized with DNA probe and the hybridization reaction
between the immobilized probe and the complementary target
DNA in solution was studied. A significant improvement of
the SPRi sensitivity (below 50 nM target concentrations) and a
decrease of LOD to 0.5 nM (5 times less than conventional
SPRi one) was achieved, when silver nanoprisms were
employed in gold surface nanostructure. These results showed
that the morphology of the nanostructured coating, the tether-
ing conditions and the electronic properties of the nanostruc-
tures were key factors in the engineering of nanostructured
SPRi, showing that coupling between surface plasmon reso-
nances of substrate and nanostructure was an effective ap-
proach to SPRi signal enhancement. Further enhancement of
the analytical performances could be achieved by optimizing
these aspects. This would allow a more sensitive label free
direct detection of DNA, possibly bypassing DNA amplifica-
tion, i.e. the PCR step, and reducing time and cost of DNA
analysis. Therefore, nanostructured SPR biochips could be
employed as platform for the study of DNA defects (i.e. point
mutations, deletions and insertions), relevant in diagnostics
and pharmacogenomics, through the development of fast,
label free and ultrasensitive assays.
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Fig. 2 Reflectivity variation for different concentrations of DNA target
recorded from DNA probes immobilized on different functionalized
surfaces

Fig. 3 Reflectivity variation percent for 20 nM DNA target, recorded
from DNA probes immobilized on different functionalized surfaces
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Abstract. Gold nanoparticles (AuNPs) have gained attention for their potential and application in differ-
ent fields, e.g. nanomedicine. This study explores the surface functionalization of AuNP with inhibitors of
carbonic anhydrases (CAs, EC 4.2.1.1). Some CA transmembrane isoforms have been recognized as thera-
peutic targets for the treatment of hypoxic tumors. Embedding a CA inhibitory function onto a nanosized
unit has been proved to enable selective targeting of transmembrane isoforms. We report the preparation
in aqueous media, the characterization and CA inhibition tests of AuNPs coated with a sulfonamide (SA)
derivative, already known for its inhibitory activity toward CAs. The physico-chemical characterization
of SA-coated AuNPs was performed with a combination of scattering and spectroscopic techniques. We
detect a threshold effect of the SA concentration on the final hydrodynamic and core sizes of the capped
nanoparticles and on their stability over aggregation. These modified nanoparticles were assayed for inhi-
bition of some CA transmembrane isoforms (CA IX and XII) as well as of two cytosolic isoforms (CA I
and II), and show interesting inhibitory efficiency in the submicromolar range and some selectivity for
transmembrane isoforms.
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ATR-FTIR: attenuated total reflection Fourier-
transformed infrared spectroscopy
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ICP-AES: inductively coupled plasma-atomic
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TGA: thermogravimetric analysis

SLD: scattering length density
TEM: transmission electron microscopy
SPR: surface plasmon resonance

DLVO: Derjaguin, Landau, Verwey, Overbeek

a e-mail: debora.berti@unifi.it

1 Introduction

Inorganic nanoparticles, such as gold nanoparticles
(AuNPs) [1,2], find widespread application in a variety
of different fields, spanning from chemistry, physics and
electronics to biology, medicine, bioanalytic and materi-
als science [3–5]. Their potential in the biomedical field
has received growing attention over the past years, due to
the unique electronic and optical properties together with
simple available preparation methods, versatility for bio-
conjugation and biocompatibility. In order to obtain useful
systems for biomedical applications, the possibility of en-
gineering nanoparticles with the desired chemical function
is gaining an ever-increasing relevance for targeted drug
delivery or cancer diagnostic and therapy [6–12].

In this work we present the preparation and charac-
terization of novel gold nanoparticles functionalized with
a sulfonamide ligand that acts as inhibitor of carbonic an-
hydrase (CA).

Carbonic anhydrases are ubiquitous zinc enzymes that
catalyze the simple physiological interconversion between
carbon dioxide and bicarbonate ion [13]. Human CA IX
is a transmembrane extracellular isoform, overexpressed
in some cancer tissues, that could constitute a novel tar-
get for the anticancer therapy, being not found in ap-
preciable amounts in healthy tissues [14]. This enzyme is
a multidomain protein [15] with the CA subdomain sit-
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uated outside the cell and possessing a very high CO2

hydrase catalytic activity, making it a key player in the
regulation of tumor pH [14–21]. CA IX expression is
strongly increased in many types of solid tumors, such
as gliomas/ependymomas, mesotheliomas, papillary/fol-
licular carcinomas, as well as carcinomas of the bladder,
uterine cervix, kidneys, esophagus, lungs, head and neck,
breast, brain, vulva, and squamous/basal cell carcinomas,
among others [14,22]. Furthermore, such hypoxic tumors
do not generally respond to the classic chemo- and radio-
therapy [14,22].

For these reasons, CA IX has recently been shown to
be a target for imaging and treatment of hypoxic tumors.
In vivo experiments showed that silencing of CA IX alone
leads to a 40% reduction in xenograft tumor volume [21].
Silencing of both CA IX and CA XII gave an impressive
85% reduction of tumor growth. Thus, hypoxia-induced
CA IX and CA XII are major tumor prosurvival pH-
regulating enzymes, and their targeting (i.e., inhibition)
holds potential for the design of anticancer drugs with a
novel mechanism of action. The in vivo proof of concept
that sulfonamide CA IX inhibitors may indeed show an-
titumor effects, has been published by Neri’s group [20].

The present study was inspired by a previous work by
some of us [23] in which a selective CA IX inhibitor was
developed, consisting of gold nanoparticles coated with
a lipoic acid tailed sulfonamide (SA); sulfonamides were
already tested to be CA-inhibitors (CAI). 3 nm AuNPs
were synthesized [23], which showed excellent inhibitory
activity against CA IX, and were less inhibitory against
CA I and II. We thus decided to investigate in more de-
tails the design of nanoscale CAIs with controllable size
and functionalization as compared to the NPs studied ear-
lier, possibly with simpler and greener synthetic routes.
Our main interest was to correlate the NPs properties
with the enzyme inhibitory activity. In the earlier con-
tribution [23], CAI coated nanoparticles were obtained
by a single step reduction of chloroaurate with sodium
borohydride in DMSO in the presence of the lipoic-acid–
sulfonamide conjugate. The black precipitate formed was
collected and dried to obtain a powdered material. Those
nanoparticles showed excellent CA IX inhibitory proper-
ties and selectivity over the cytosolic isoforms.

Biomedical applications require a good dispersibility
and stability in aqueous media with respect to aggrega-
tion of the particles, so that their chemico-physical char-
acteristics are well defined, reproducible and correlated to
their structural and functional properties.

Some research groups have reported about stable
water re-dispersible AuNPs functionalized by thiolated
poly(ethylene glycol) [24,25] or by thiolalkylated oligo
(ethylene glycol) [26], but more often the redispersion of
dry nanoparticles is a challenging task.

In order to devise alternative routes and prevent pos-
sible drawbacks related to redispersion of the powdered
nanoparticles, we have extended the previous study fo-
cusing our attention towards a one-pot preparation of an
aqueous dispersion of AuNPs coated with the CAI deriva-
tive, with the desired size and functional properties.

Wet synthesis methods for AuNPs [27] (either organic
or water-based), involve nucleation and growth within
confined nanoreactors, such as microemulsions [28], or
in the presence of a stabilizer that can adsorb onto
the nanoparticles [29,30] or covalently bind to their sur-
face [31]. The stabilizer, through its solubility, steric or
charge properties, controls the growth of the nanoparti-
cles, prevents the clusters from aggregation and provides
tailored properties through specific functional groups [32].

In the classic aqueous synthesis proposed by Turkevich
more than fifty years ago (citrate method) [33], the nan-
oclusters are stabilized by a layer of citrate anions, which
is generally exchanged with a suitable ligand for the fi-
nal application of the dispersion; a post-synthetic step is
then usually required. The common procedure to coat the
nanoparticles with the desired functional moiety is called
“ligand exchange” [34], and the original stabilizer shell is
replaced, partially or completely, by another ligand with
an end functional or coupling moiety. Usually, the ligands
are anchored to AuNP through a thiol function, as this
group shows the highest affinity for gold, that results in a
strong Au-S bond [35].

Our synthetic strategy was a modification of the classic
citrate method [33,36]. In the proposed approach, citrate
is simultaneously the reducing agent of the gold salt and
of the lipoic acid dithiolanic ring of the CAI. A similarly
modified citrate method has been reported in order to
obtain mercapto-stabilized gold nanoparticles [37].

We have studied the effect of the variation of the
reagent ratios on the nanoparticles size and then we
have further investigated the stability of the SA-capped
nanoparticles at increasing salt concentrations, proving
that SA initial concentration is directly related to the sta-
bility of the nanoparticles.

The structural characterization has been performed
with a combination of scattering techniques, in order to
analyze the particles in solution rather than in the dry
state. Dynamic Light Scattering (DLS) was used to deter-
mine the hydrodynamic radius of the nanoparticles syn-
thesized at variable SA concentrations, while Small An-
gle X-ray Scattering (SAXS) was used to characterize
the gold core radius. The core size was also studied by
UV-visibile measurements. Attenuated Total Reflection
Fourier Transformed Infrared Spectroscopy (ATR-FTIR)
was employed to confirm the immobilization of SA over
the nanoparticles surface, and the surface charge was in-
vestigated measuring its ζ-potential.

We finally assayed SA-capped gold nanoparticles solu-
tions as CA inhibitor using a Stopped Flow apparatus, and
compared the results for CA I, CA II (cytosolic forms), CA
IX and CA XII (transmembrane forms).

2 Experimental section

2.1 Materials

HAuCl4 · 3H2O, (±)-α–lipoic acid, 4-aminoethylbenzene
sulfonamide, DMA, EDCI HCl, DMAP, DMSO, ethanol,
acetonitrile were purchased from Sigma-Aldrich. Celite
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Scheme 1. Synthesis of colloidal solution of AuNP coated with sulfonamide CAI.

545 R© was supplied from Merk. Trisodium citrate dihy-
drate (Na3Ct · 2H2O) and sodium chloride were provided
from Fluka. All reagents were used as obtained. All glass-
ware was cleaned prior to use with alcoholic potassium
hydroxide. Water was purified with a Millipore system (re-
sistivity 18MΩ · cm).

All reactions involving air- or moisture-sensitive com-
pounds were performed under a nitrogen atmosphere us-
ing dried glassware and syringes techniques to transfer
solutions. Flash chromatography purifications were per-
formed on Merck Silica gel 60 (230-400 mesh ASTM)
as the stationary phase and eluting with 10% MeOH in
DCM.

2.2 Synthesis

2.2.1 Sulfonamide synthesis

The lipoic acid tailed sulfonamide (SA) was synthesized
according to the reported procedure [23]. In brief, to a so-
lution of 300mg of (±)-α–lipoic acid (1.5mmol, 1 eq.) in
2.5ml of anhydrous DMA 300mg of 4-aminoethylbenzene
sulfonamide (1.5mmol, 1 eq.), 287mg of EDCI (1.5mmol,
1 eq.) and 183mg of DMAP (1.5mmol, 1 eq.) were added.
The mixture was stirred under nitrogen atmosphere un-
til the starting materials were consumed and then diluted
with slush water (20ml) and filtered on Celite 545 R© pad.
The filtrate was extracted with ethyl acetate (3 × 20ml)
and the combined organic layers dried over Na2SO4, fil-
tered and concentrated under vacuum to obtain a solid
residue which was purified by silica gel column chromatog-
raphy eluting with 10% MeOH in DCM.

2.2.2 Gold nanoparticles synthesis

Gold nanoparticles were prepared by a modified citrate-
reduction method (Scheme 1).

To a boiling and refluxing solution of 19ml of 0.63mM
tetrachloroauric acid in a 100 cm3 round bottom flask was
added a boiling solution of 0.5ml of either 2.4mM (Sample
0.06 mM SA), 4.8mM (Sample 0.12 mM SA) or 9.6mM
(Sample 0.24 mM SA) sulfonamide in methanol along
with 0.5ml aqueous solution of 91.2mM trisodium cit-
rate (Na3Ct). The citrate-to-gold ratio was kept constant,

while the molar concentration of sulfonamide was varied
in order to understand the role of that parameter on the
structural characteristics of the gold functionalized clus-
ters (table 1). The resulting solutions were kept refluxing
under vigorous stirring for 25min.

These values (reported in table 1) refer to the samples
most intensively characterized from a physico-chemical
point of view and whose inhibitory activity toward the
CA isoforms was tested. However, other reagents concen-
trations or reaction conditions were analyzed (see the Re-
sults and discussion section).

To purify the colloidal solutions from the free citrate
excess, sulfonamide or unreduced chloroaurate ions, the
samples were dialyzed (24 h, molecular weight cutoff of the
dialysis membranes 12 kDa) and then ultrafiltered under
vacuum with a Millipore Amicon apparatus (cell model
8003, Cat. No. 5125, Millipore corporation, membrane of
regenerated cellulose, 10 kDa NMWL, Cat. No. 13612),
halving twice the solution volume and then restoring the
initial concentrations with MilliQ water. After the purifi-
cation procedure, the pH of the solutions was 5.9.

The same procedure was employed to concentrate the
dispersions, this time just halving their volume.

2.3 Techniques

2.3.1 Dynamic light scattering (DLS)

DLS experiments were carried out on a Brookhaven In-
strument apparatus, New York, USA (BI 9000AT correla-
tor card and BI 200 SM goniometer).

The signal was detected by an EMI 9863B/350 pho-
tomultiplier. The light source was the doubled frequency
of a Coherent Innova diode pumped Nd:YAG laser, (λ =
532 nm, 20mW). The laser long-term power stability was
0.5%. Self-beating detection was recorded using decahy-
dronaphthalene (thermostated by a water circulating sys-
tem) as index matching liquid. Measurements have been
performed at 25 ◦C on 0.5mL samples previously trans-
ferred into cylindrical Hellma scattering cells.

The time autocorrelation functions of the intensity of
the scattered light were measured at 90◦; the data are
plotted in terms of β2g1(q, t) related to the normalized
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intensity autocorrelation function through the Siegert re-
lationship

g2(q, t) = 1 + β2 |g1(q, t)|2 , (1)

where β is a spatial coherence factor dependent on the
geometry of the detection system [38].

Data analysis has been performed according to stan-
dard procedures. In order to obtain a distribution w(Γ )
of decay rates, a constrained regularization method, CON-
TIN, developed by Provencher [39], was used to invert the
experimental data. A statistical parameter “probability
to reject”, R, is calculated for each w(Γ ) generated by
CONTIN. The preferred solution is usually the one char-
acterized by the R value closest to 0.5.

The translational diffusion coefficients, Dt, have been
determined from the decay rates, Γ , through the rela-
tion Γ = Dt · q2 which is valid for diffusive modes. The
diffusion coefficients provide access to the hydrodynamic
correlation lengths RH for isotropic particles through the
Stokes-Einstein relationship

Dt =
kBT

6πηSRH
, (2)

where ηS is the solvent viscosity and kB the Boltzmann
constant.

The AuNP dispersions were filtered through a 200 nm
pore-size filter to avoid interference from dust.

2.3.2 Small Angle X-ray Scattering (SAXS)

SAXS measurements were carried out using two differ-
ent instruments. The samples where no NaCl was added
were analyzed with a HECUS SWAX apparatus (Kratky
camera) equipped with a position-sensitive detector (OED
50M) containing 1024 channels of width 54μm. CuKα

radiation of wavelength 1.542 Å was produced by a X-
ray generator (Seifert ID-3003), operating at a maximum
power of 2 kW. A 10 μm thick nickel filter was used to
remove CuKβ . The volume between the sample and the
detector was kept under vacuum (P < 1mBar) during
measurements to minimize scattering from air. Samples
were transferred into 1 mm quartz capillary and then
sealed with an epoxide glue. Measurements were done at
25 ◦C and temperature was controlled by a Peltier ele-
ment, with an accuracy of ±0.1 ◦C. All scattering curves
were acquired between 0.01 and 0.5 Å−1 and the data were
corrected for the solvent contribution and slit desmeared
by a linear method.

SAXS measurements of the samples treated with NaCl
were taken using a S3-MICRO SAXS/WAXS INSTRU-
MENT (HECUS GmbH, Graz, Austria), which consists of
a GeniX microfocus X-ray sealed CuKa source (Xenocs,
Grenoble, France) power 50W, which provides a detec-
tor focused X-ray beam with k = 0.1542 nm CuKa line.
The instrument is equipped with two one-dimensional
(1D) position-sensitive detectors (HECUS 1DPSD- 50M
system); each detector is 50mm long (spatial resolution
54 lm/channel, 1024 channels) and covers the SAXS Q-
range (0.003 < Q < 0.6 Å−1) and the WAXS Q-range

(1.2 < Q < 1.9 Å−1). The temperature was controlled by
means of a Peltier TCCS-3 Hecus [38].

In SAXS experiments, the measured intensity of the
radiation, I(Q), scattered by a collection of uniform par-
ticle is given by [40]

I(Q) = A · φ · P (Q) · S(Q) + Ibkg, (3)

where A is the amplitude accounting for the instrumen-
tal factors, φ is the particle volume fraction, P (Q) is the
particles form factor, S(Q) is the interparticle structure
factor accounting for the interparticle correlations, Ibkg is
the incoherent background and Q is the scattering vec-
tor. Due to the dilution of the system, the influence of the
interparticle structure factor can be neglected (S(Q) ≈ 1).

The fitting model used for the analysis of the SAXS
was based on the assumption of polydisperse spherical
nanoparticles [39] with a core described by a Schultz dis-
tribution of radii and a constant scattering length density
(SLD) [41–43]

f(R) =
[
z + 1
Ravg

]z+1

Rz exp
[
−z + 1

Ravg
R

]
1

Γ (z + 1)
, (4)

with Ravg being the mean sphere radius and z the param-
eter related to the width of the sistribution. In particular,
the polidispersity index ρ = σR

Ravg
is related to z by means

of the equation

ρ =
1

(z + 1)1/2
. (5)

Because of the higher electronic density in the gold core
with respect to the organic layer, no contribution of the
shell has been taken into account in the fitting proce-
dure (Scheme 2). The only variable parameters are the ra-
dius and its polidispersity, along with a pre-multiplicative
factor.

2.3.3 UV-visible spectroscopy

The optical properties of the colloidal solutions were mon-
itored on a Cary 100 Bio Varian. The samples were mea-
sured in a 1 cm Hellma quartz cuvette.

2.3.4 Inductively coupled plasma-optical emission
spectrometry (ICP-OES)

A VARIAN 720 OES inductively coupled plasma optical
emission spectrometer was used for the determination of
gold and sulfur content (ppm) in the solution before and
after purification procedure. The samples were diluted 20
times in nitric acid solution, pH = 1.5. Calibration curves
of standard gold solutions were used. The ICP-AES was
programmed to detect Au (208.207; 242.794; 267.594 nm)
and to give the average value of the obtained results. An
internal standard of Ge 1 ppm (209.426 nm) was used to
correct from matrix effects.
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Scheme 2. Scattering length density (SLD) profiles of the func-
tionalized gold nanoparticle. Au SLD is 1.23·10−4 Å−2, solvent
(water) SLD is 9.46 · 10−6 Å−2, lipoic acid-tailed sulfonamide
SLD is 8.56 · 10−6 Å−2.

2.3.5 ζ-potential

The ζ-potential of the samples was performed on a BI
ZetaPlus, Zeta Potential Analyser (Brookhaven Instru-
ments Corporation, Holtsville, NY). Zeta potentials (ζ)
were obtained from the electrophoretic mobility (u) using
the Helmholtz-Smoluchowski equation

ζ =
η

ε
u, (6)

with η being the viscosity of the medium and ε the di-
electric permittivity of the dispersing medium. This equa-
tion is valid in the limit κ · R � 1, with κ−1 the De-
bye length and Rh the hydrodynamic radius of the parti-
cles. These assumption was validated using Rh from DLS
measurements and κ from the relation κ−1 = (εKBT )1/2

(2e2INA)−1/2, with KB the Boltzmann constant, e the
electron charge, I the ionic strength and NA the Avogadro
constant [38,44].

2.3.6 TGA

Thermogravimetric analysis (TGA) profiles of ∼ 0.5mg
of accurately weighted sulfonamide or citrate-capped gold
nanoparticles powders were recorded on a SDT Q600 ap-
paratus (TA instrument, Milan, Italy) between 25 and
450 ◦C, with a rate of 10 ◦C/min and under nitrogen
flux (100ml/min). Nanoparticle powders were obtained by
freeze-drying the solutions that were first dialyzed for 24
h against MilliQ water and then concentrated by Amicon
Millipore apparatus.

2.3.7 ATR-FTIR

Fourier-transformed infrared spectra were collected oper-
ating in attenuated total reflectance mode with a Nexus

870 spectrophotometer (Thermo Nicolet, Paris) equipped
with a MCT-A detector. Spectra were obtained with 32
scans at 4 cm−1 resolution. Gold nanoparticles solutions
were dialyzed for 24 h against MilliQ water, to eliminate
the excess of reagents, concentrated and then freeze-dried
to obtain a solid residue.

2.3.8 CA inhibition assay

A SX.18MV-R Applied Photophysics stopped-flow instru-
ment was used for assaying the CA catalysed CO2 hy-
dration activity. 0.2mM Phenol Red was used as indica-
tor (pH 6.8–8.4), working at the absorbance maximum
of 557 nm. During the tests, a saturated CO2 solution
(17mM at 20 ◦C) was used.

Stock solutions of the enzyme (1μM for CA I and CA
II, 0.1μM for CA IX and CA XII) were prepared in MilliQ
water. Stock solutions of the inhibitor (gold concentra-
tion in the range 10−4–10−8 M) were prepared in buffer
(HEPES 0.01M, Trizma Hydrochloride 0.01M, Na2SO4

0.1M, pH 7.5). Inhibitor (CAI) and enzyme (E) solutions
were preincubated together for 2 h prior to assay, in or-
der to allow the formation of the E–CAI complex [45].
KI’s were calculated by the Prusoff-Cheng equation as re-
ported earlier [23].

3 Results and discussion

3.1 SA-coated gold nanoparticles

The preparation and characterization of CAI-coated gold
nanoparticles is performed with a one-pot reaction,
adapted from the Turkevich-Frens method [33,36], where
citrate acts as the reducing agent of both the noble cation
and of the precursor of the capping molecule. We also
tested an alternative route consisting in a post-synthetic
ligand exchange on the previously formed citrate gold nan-
oclusters, but, as the agent (SA) was added to the other-
wise stable nanoparticles dispersion, extended aggregation
and precipitation invariably occurred.

Several Au3+/SA ratios have been tested, while the
reducing agent concentration was held constant (table 1).

During the course of the reaction, the solution color
varied differently depending on the amount of SA. The
sample 0.06 mM SA turned dark grey 1min after the
addition of the reducing agent and then turned to dark
red; the sample 0.12 mM SA turned to dark violet (af-
ter ∼ 4min) and ruby red afterwards; the sample 0.24
mM SA turned to a pale pink solution (after ∼ 10min)
that got lightly stronger with time, but never ruby red;
the sample without SA turned immediately grey with a
powder-like appearance, and within 4min it assumed a
ruby red color [46].

After 25min refluxing, the solutions were allowed to
cool at room temperature and purified from excess free
citrate, sulfonamide or unreduced chloroaurate ions (see
the Experimental section). The colloidal dispersions of
nanoparticles were then stable for several months (fig. 1).
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Table 1. Concentration (mM) of the reagents in the reaction
mixture. The molar ratio between citrate and gold cations is
held fixed at 3.8.

Sample [SA] [Au3+] [Na3Ct] [SA] [Au3+]/[SA]

0.06 0.6 2.28 0.06 10

0.12 0.6 2.28 0.12 5

0.24 0.6 2.28 0.24 2.5

Without SA 0.6 2.28 / /

Fig. 1. Photograph of the colloidal dispersions prepared by
adding different mole fractions of sulfonamide capping agent
(SA).

From ICP-OES measurements we detected a loss of
gold around 10% resulting from the purification proce-
dure, while if the reaction mixture was allowed to reach
room temperature just after the color change, the gold
loss ranged between 14 and 25%, depending on the sam-
ple. Therefore, keeping the solutions to reflux for 25 min
after the color change gave a higher and reproducible yield
in nanoparticles.

In order to have a more direct proof of the successful
conjugation of SA to gold nanoparticles, an ATR-FTIR
analysis was conducted (fig. 2).

The bands at 1334 and 1157 cm−1 are respectively
indicative of asymmetric and symmetric S–O stretching
vibrations [13]. The very sharp peaks at 1623 and
1542 cm−1 in the neat sulfonamide spectrum are respec-
tively characteristic of C=O stretching from the amide
group and of the aromatic ring [47]. These same peaks
appear as shoulders in the band centered at 1590 cm−1

in the SA functionalized nanoparticles. The peaks at
1080 and 1035 cm−1 are indicative of the lipoic acid
tailed sulfonamide, being also present in the neat SA
spectrum. The peak at 1590 cm−1, without any shoulder,
is indicative of the C=O vibrations of the citrate. The
band at 1713 cm−1 can be assigned to a C=O stretching
vibration of citric acid [48]. The pH of the nanoparticles
dispersions is in fact 5.9 and the pKa3 for citric acid is
6.4. This means that in these solutions citrate is only
dibasic and that we can thus detect the shifted signal of

Fig. 2. ATR-FTIR spectra of the sulfonamide-capped nano-
particles (0.24 mM SA), of the citrate-stabilized nanoparticles
(SA not present) and of neat SA. Spectra were recorded on
powdered samples.

the residual protonated carboxylic group of the molecule.
Furthermore, these results confirm that the nanoparti-
cles are not completely saturated with the new ligand
molecule, but that some residual citrate co-covers their
surface, helping to stabilize the nanoparticles themselves.

The surface coverage (γ) of the nanoparticles by SA
has been established through a thermogravimetric analy-
sis (TGA). The weight loss has been monitored as a func-
tion of temperature, from room conditions up to 450 ◦C.
The sulfonamide derivative thermally decomposes at high
temperatures; first the amide bond breaks releasing the
molecular portion not anchored to the gold surface, then
the lipoic acid linker decomposes. However, several factors
limit the reliability of such measurements, as a compar-
ison with the behavior of the neat SA highlights: at the
maximum temperature, only 74% (w/w) of SA is decom-
posed. Moreover, the simultaneous decomposition of cit-
rate alters the final weight losses. From an approximate
calculation, the weight loss of adsorbed sulfonamide in
sample 0.24 mM SA is 12.6%. From that weight loss it
was determined γ ∼= 0.1 (eq. (7)), so that the gold surface
atoms-to-SA ratio is in the range 9-10 [49]

χorganic = [4π(Rcore − RAu)2(ρHCP)(MWSA)γ]/

[4π(Rcore − RAu)2(ρHCP)(MWSA)γ

+4/3πR3
core(ρAu)(AWAu)], (7)

where χorganic is the mass fraction of sulfonamide ligand
in the cluster, RAu the crystallographic radius of a gold
atom (0.145 nm), Rcore the core radius of the nanopar-
ticles (from SAXS results), ρHCP the number density of
surface atoms (13.89 atoms/nm2, assuming hexagonal cd-
lose packing), MWSA the sulfonamide ligand molecular
weight, γ the coverage (SA-to-surface Au atoms ratio),
ρAu the atom density of bulk gold (58.01 atoms/nm2) and
AWAu the gold atomic weight. However, the extent of the
approximations does not allow to find a trend in the de-
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gree of functionalization when SA/Au ratio is varied. For
these reasons, the values from TGA should be regarde as
purely indicative.

3.2 Characterization of AuNPs at different SA
concentrations

It is well established that particle size, shape and stabil-
ity display a strong dependence on the concentration of
the precursors, their rate and order of addition as well as
the stirring over the reaction course [36]. In our case, if
the citrate-to-gold ratio is set at 15.0 (instead of 3.8) pre-
cipitation readily occurs. Conversely, when sulfonamide
is present even in modest percentages (citrate-to-SA ra-
tio set at 130) the resulting solution presents extended
aggregation but no precipitation. This is an indication
that SA effectively binds to gold surface even in the pres-
ence of a large citrate excess, and plays a central role in
stabilizing the nanoparticles preventing them from major
aggregation.

All the samples described within this paper are re-
ferred to an initial concentration of 0.6mM gold salt and
to a citrate-to-gold ratio set at 3.8 (table 1), unless other-
wise stated; these conditions result in the lowest particle
size and better stability of citrate stabilized nanoparti-
cles [29,50], in the absence of SA. To assess the effect of
the ligand presence on the size and functional properties of
the nanoparticles, we have varied the initial concentration
of the SA ligand precursor (table 1).

As already mentioned, Na3Ct simultaneously reduces
the gold salt and the ligand precursor. Following the re-
duction step, one can expect a competition between citrate
physisorption and SA binding to the nanoparticle core.
The resulting size and degree of functionalization will be
the result of these events.

Dynamic light scattering (DLS) is the technique of
choice to determine the hydrodynamic radius of the
nanoparticles, that is the radius of the sphere with an
identical diffusion coefficient as the scattering objects. In
our case, assuming a globular metallic core and a radially
isotropic distribution of the coating layer, we detect the
characteristic size of the core plus the ligand shell with
bound ions and the hydration sphere.

Figure 3 shows the autocorrelation function decays of
the scattering intensity of the colloidal solutions for differ-
ent SA concentrations; the decays are directly connected
to the center-of-mass diffusion of the nanoparticles. For
the highest SA mole fraction, the autocorrelation function
is characterized by the slowest decay rate, while faster de-
cay times are detected in presence of lower amounts of SA
(very slight differences are appreciable between 0.06 mM
and 0.12 mM SA). The fastest overall decay is obtained
when SA is not present in the reaction mixture.

The distribution of decay rates obtained from the
Laplace inversion method CONTIN (see the Experimental
Section) yields a hydrodynamic radii distribution centered
at 14 nm for the nanoparticles synthesized without SA, at
20–25 nm for the colloidal solutions 0.06 mM SA and 0.12
mM SA and 31 nm for 0.24 mM SA; these hydrodynamic

Fig. 3. DLS curves obtained for AuNP dispersions as a func-
tion of different initial SA concentrations in the reaction mix-
ture, while keeping constant all the other parameters. The error
bars indicate the variance over five different measurements.

radii are composed of the core radius and the length of
the organic shell.

The resulting size of the citrate-coated nanoparticles,
i.e. the reference sample, is in agreement with the data re-
ported in the literature for similar reaction conditions [29].

The presence of the functional organic ligand generally
increases the hydrodynamic sizes, and among SA contain-
ing samples, we observed a threshold effect for the parti-
cles size that depends on the SA concentration. The trend
in the hydrodynamic radii can imply a higher degree of
functionalization in the presence of increasing amounts of
organic ligand, which is bulkier than citrate anions. More-
over, corresponding to 0.24 mM SA concentration, a closer
packing of the chemisorbed units onto the gold nanopar-
ticles surface can alter the ligand conformation and the
hydrodynamic thickness around the metallic core, the hy-
drodynamic shell being composed not only by SA or cit-
rate but also by the dispersing solvent (water).

Appreciable deviations from the previously determined
hydrodynamic sizes cannot be found with modest varia-
tion of both the initial concentration of citrate and the
Au/SA ratio (fig. 4). This implies that in our experimen-
tal conditions the main structural parameter in determin-
ing the final size of the nanoparticles is the Au/SA ra-
tio. Moreover, this finding points out that the proposed
synthetic procedure is not affected by minor variations of
the initial reagents concentrations up to a threshold value.
This experimental reproducibility and tunability is of out-
most importance for the correlation of the targeting and
inhibition efficiency with structural parameters.

However, DLS is not suited to distinguish between the
contribution of the Au core and of the organic shell and,
based on these data, we cannot exclude that different SA
amounts can determine different growth pathways for gold
nuclei.
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Fig. 4. DLS curves of nanoparticles solutions prepared with
different initial reagent conditions. Sample 0.06 mM SA:
0.6 mM Au3+, 2.28 mM Na3Ct, 0.06 mM SA. Sample 0.08 mM
SA: 0.6 mM Au3+, 1.92 mM Na3Ct, 0.08 mM SA.

In order to determine the size of the metal core of the
nanoparticles, we performed Small Angle X-Ray scatter-
ing (fig. 5). SAXS is a powerful tool to investigate func-
tionalized AuNP core size because, as we indicated in the
Experimental section (Scheme 2), gold nanoparticles have
in fact favourable scattering length density profile, since
all the scattering intensity can be assumed to be due to
the gold core.

SAXS is preferred to Transmission Electron Micros-
copy (TEM) because it provides the dimensions of the
particles in solution and a better statistic over the whole
sample, while TEM gives information on the sizes of the
dried specimens and may therefore introduce artifacts on
the evaluation of real sizes.

The experimental data have been fitted with a model
of polydisperse spheres with a Schultz distribution of the
radii and constant SLDs. The agreement between experi-
mental and calculated curves is good, as shown in fig. 5.
A definite trend emerges from SAXS results: nanoparticles
having citrate physisorbed on their surface have a smaller
core size (radius = 5.7 nm) and a smaller polydispersity
(∼ 16%) than the nanoparticles that have SA adsorbed on
the surface. SAXS data also show that the variation of the
amount of sulfonamide from 0.06 mM to 0.12 mM does
not affect appreciably neither the core size of SA coated
AuNPs (7.5 nm) nor their polydispersity (∼ 20%). Con-
versely, at 0.24 mM SA concentration the coated nanopar-
ticles have smaller radius (6.3 nm) and larger polydisper-
sity (29%).

Comparing SAXS results with the DLS data, it is clear
that for the lowest SA concentrations both the metallic
cores and the shells are identical in size, while in the 0.24
mM sample the higher hydrodynamic size can be entirely
attributed to the ligand shell, as the gold core is smaller.
The presence of SA increases the width of the size dis-
tribution, which might indicate a shift from a diffusion-

Fig. 5. SAXS curves of the AuNPs capped with different
amounts of sulfonamide (0.06, 0.12, 0.24 mM SA) and of
citrate-stabilized AuNPs (SA not present). a) Schultz fit of the
scattering intensity of a functionalized sample (0.06 mM SA)
b) Schultz fit of the scattering intensity of the citrate-stabilized
nanoparticles. The data have been arbitrarily normalized to
100 for the q → 0 limit. The fitting parameters are the NP
mean radius and the polydispersity index while the SLD for
the core and the shell were held constant.

controlled growth to a surface-controlled growth process
for the nanoparticles, which generally results in higher
polydispersity [51,52].

These results are partially unexpected, since one could
suppose that the core radius would be larger in the absence
of the SA capping agent, which should in principle inhibit
particle growth while promoting an enlargement of the
size distribution. The SA precursor, reduced by citrate,
was in fact supposed to chemically bind to the particle
in the early stages of its growth, thus stabilizing and in-
hibiting the cluster from increasing in size [53,54]. In line
with this argument, the highest is the concentration of the
organic ligand in the reaction mixture the smaller is the
core radius of the particles.

The experimental data prove that this hypothesis is in
our case wrong, and that some other mechanisms should
prevail in the synthetic step since the core of the citrate-
stabilized particles is smaller than the sulfonamide-capped
core. However, the sulfonamide amount in the reaction
plays a critical role in the size of the core when it reaches
a specific concentration. At 0.24 mM SA, the core size is
smaller than at 0.06 and 0.12 mM SA and, as seen from
DLS results, the shell thickness around the core is larger.

On the basis of these results we can suppose that, in a
first stage, gold reduction leads to NPs stabilized both by
citrate and SA. When the organic ligand is also present,
gold nanoparticles can grow further up to a SA thresh-
old concentration. This would explain the fact that cit-
rate stabilized nanoparticles are smaller and less polydis-
perse than the sulfonamide stabilized ones; this hypothesis
needs corroboration from a kinetic study aimed at distin-
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Fig. 6. Absorbance spectra of all the samples in the visible
region.

guishing the different stages, possibly performed with a
reducing agent different from citrate, which also acts as
stabilizer.

The SAXS data suggest that in the case of 0.06 mM SA
and 0.12 mM SA the ligand concentration could be below
the threshold concentration, where the core size starts to
be affected in terms of growth inhibition.

In order to have a different and complementary insight
on the metal core, we have performed an UV-Visible spec-
trophotometric analysis. That technique is widely used
since the absorption bands wavelengths are related to the
diameter of the metal cluster. At nanometer length scales,
the conducting electrons (plasma) are characterized by a
collective oscillation frequency known as Surface Plasmon
Resonance frequency (SPR). The nanoparticles absorp-
tion stems from the coherent plasma oscillations induced
by the interaction with a resonating electromagnetic radi-
ation [55,56].

The position of that absorption band is affected by
many different factors, such as size of the metal core, di-
electric properties of the medium, interactions on the par-
ticle surface, surface charge, functionalization, aggregation
degree or interparticle distance [57]. We are therefore not
interested in deriving quantitative values of the core radii
from these kinds of measurements but only to make some
comparative considerations. Figure 6 shows the UV-visible
spectra of the nanoparticles colloidal solutions prepared
with different amounts of sulfonamide. All samples show
an absorption peak around 520-530 nm, which is typical
of gold SPR band [50].

The SPR absorbance peak of the citrate-stabilized
nanoparticles is at 523 nm. When SA is present in the
reaction mixture the plasmon absorption band red-shifts
to 527 nm, regardless of the amount of SA introduced, and
the width of the band increases, due to alteration of the
local dielctric constant around the particle and to the pres-
ence of adsorbate material which can give rise to so-called
chemical interface damping [55].

In this size range, a red-shift of the SPR is a conse-
quence of an increase in the radius size [55]. From these
measurements we do not appreciate the smaller core size of
the 0.24 mM SA sample with respect to the 0.06 and 0.24
mM SA samples because the absorption band is affected
by other factors. Even if no quantitative data about the
size of the NP can be derived form these measurements,
UV spectra support the previous SAXS finding that the
reaction performed without introducing the organic ligand
in the mixture leads to smaller clusters than in presence
of SA.

To obtain some information on the AuNP surface
charge, we have performed ζ-potential measurements. The
particles exhibit largely negative potentials (ζ-potential
−45 and −60mV), as both the ligand [58] and the citrate
are negatively charged at pH 5.9. It is not possible to see a
definite trend in the surface charge when the sulfonamide
concentration is increased, as the differences between the
samples lie in the experimental uncertaintity. Therefore,
these results account for the high stability of the disper-
sions with respect to aggregation; the repulsive Coulom-
bian interaction between the ligand coatings makes them
stable for months.

It is important to stress that an overall negative sur-
face charge is a prerequisite for the nanostructured CA
inhibitor to interact with its enzymatic target [13].

To monitor the extent of such electrostatic stabiliza-
tion, even in connection to the degree of functionalization,
we have gradually increased the solution ionic strength,
to overcome the repulsion barrier that ultimately pre-
vents the approach corresponding to the attractive well
which would cause irreversible agglomeration [59], as the
classical DLVO theory predicts. This stability toward ag-
gregation is a fundamental property of AuNP dispersions
in perspective of their applicative potential. CAI-capped
nanoparticles would in fact be used in physiological con-
ditions, where they would be subject to a relevant saline
concentration for which a structural study in neat water
might underestimate the extent of aggregation.

In order to detect a critical salt molar concentration
above which an alteration in the structural characteris-
tics of the nanoparticles occur, we have added increasing
amounts of sodium chloride to the as-prepared solutions
and monitored the change of their properties by DLS,
SAXS and UV-Visible spectrophotometry.

Figure 7 shows the decay of autocorrelation functions
of the nanoparticle solutions at different NaCl concentra-
tions. From the Laplace inversion of the experimental data
by a CONTIN algorithm, it results that the sample 0.06
mM SA doubles its hydrodynamic radius when salt con-
centration reaches 30–40mM; the sample 0.12 mM SA
doubles its size at 40mM NaCl; the sample 0.24 mM SA
needs 70mM NaCl to halve its diffusion coefficient.

Both 0.06 mM SA and 0.12 mM SA samples present
precipitation at 85mM salt concentration. This is not the
case for the 0.24 mM SA solution (precipitation is evi-
dent at 110mM NaCl). Conversely, adding sodium chlo-
ride to the solution of nanoparticles only stabilized by
citrate results in prompt precipitation already at 10mM
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Fig. 7. Autocorrelation function profiles for samples 0.06 mM SA (a), 0.12 mM SA (b) and 0.24 mM SA (c) as a function of
NaCl concentration in solution.

Fig. 8. UV-visible spectra of the sulfonamide-capped nanoparticles (a: 0.06 mM SA, b: 0.12 mM SA and c: 0.24 mM SA) at
different NaCl concentrations in solution. The cartoons schematically show all the results obtained from the different experi-
ments, also including the hypothesized contact interaction between two primary nanoparticles as a function of their degree of
functionalization.

salt concentration. The onset of precipitation at such low
NaCl concentration in the non-modified nanoparticles is
really informative about the fact that the SA presence re-
sults in a more efficient stabilization of the particles them-
selves. The same conclusion can be indirectly reached from
careful observation of the behavior during the purification
steps after the particles synthesis. The particles stabilized
only by citrate physisorption on their surfaces cannot be
purified with the Amicon Millipore apparatus, as precipi-
tation readily occurs.

These DLS data are very interesting because the cor-
relation with the sulfonamide content is straightforward:
the sample where SA is not present is the most insta-
ble to the increase of the ionic strength, and among the
SA-stabilized nanoparticles, the higher the mole ratio, the
higher the ionic strength required to double the hydrody-
namic size. In other words, the more SA is present, the
more protected are the coated nanoparticles from aggre-
gation and precipitation. Moreover, these results are per-
fectly in agreement with DLS data of the as-prepared so-
lutions, as it is confirmed that sample 0.24 mM SA (whose
hydrodynamic radius is the largest) is the most function-
alized, hence stabilized, sample.

Figure 8 shows the UV-visible spectra recorded at rep-
resentative salt concentration for each sample, i.e. around
the value when the detected hydrodynamic radius is dou-
bled with respect to the as-prepared samples. We do notice
a red shift in the plasmon band of the solutions, indica-
tive of a contact aggregation of the primary particles. This
shift is particularly evident for the sample 0.06 mM SA,
while is difficultly detectable for the 0.24 mM SA sam-
ple. Again, this finding can be a direct consequence of the
samples different degrees of functionalization, which in the
case of 0.24 mM SA might be too high to allow the parti-
cles to approach at the interaction distance (see the inset
cartoons in fig. 8).

SAXS measurements confirm that in presence of NaCl
a contact aggregation occurs, since the scattering inten-
sity profiles differ in the low-q part and superimpose for
high-q values, where the structure of the primary particles
determines the scattering pattern (fig. 9).

To summarize, the ensemble of the experimental re-
sults gathered is consistent with the conclusion that the
functionalized gold nanoparticles have two different core
sizes in dependence on the concentration of the organic
ligand: its presence produces larger particle cores with re-
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Table 2. CA inhibition data (KI values, μM) of the nanoparticles toward different CA isoforms: CA I, CA II (cytosolic isoforms)
and CA IX, CA XII (transmembrane isoforms). The inhibition assay was performed at different concentration of SA without
any addition of NaCl. KI’s were calculated as reported earlier [23].

KI (μM)

Sample [SA] hCA I hCA II hCA IX hCA XII

0.06 0.16 ± 5% 0.17 ± 3% 0.08 ± 4% 0.04 ± 7%

0.12 0.17 ± 8% 0.25 ± 6% 0.04 ± 5% 0.03 ± 4%

0.24 0.24 ± 8% 0.18 ± 8% 0.02 ± 7% 0.13 ± 7%

SA [23] 0.21 0.23 0.04 /

AuNP 3 nm [23] 32 31.6 29.5 /

Table 3. CA inhibition data (KI values, μM) of the nanoparticles toward different CA isoforms: CA I, CA II (cytosolic isoforms)
and CA IX, CA XII (transmembrane isoforms). The inhibition assay was performed at different concentration of SA in presence
of the corresponding subcritical amount of NaCl. KI’s were calculated as reported earlier [23].

KI (μM)

Sample [SA]–[NaCl] hCA I hCA II hCA IX hCA XII

0.06–40 mM 0.16 ± 4% 0.21 ± 6% 0.25 ± 6% 0.04 ± 5%

0.12–40 mM 0.43 ± 5% 0.22 ± 4% 0.07 ± 5% 0.14 ± 6%

0.24–70 mM 0.07 ± 7% 0.14 ± 8% 0.02 ± 5% 0.13 ± 8%

Fig. 9. SAXS curves of sample 0.12 mM SA in the presence
or not of NaCl (40 mM). The inset cartoon schematically rep-
resents the contact aggregation between two primary particles.
The data have been arbitrarily normalized to 100 for the q → 0
limit. The low-q cutoffs of the two curves are different, because
the spectra have been collected with two different instruments
(see Experimental section).

spect to the citrate-only case, but, once above a threshold
amount lying between 0.12 mM and 0.24 mM, the core
size starts to decrease.

Furthermore, these nanoparticles have different hydro-
dynamic sizes in dependence on their degree of functional-
ization. AuNP with the smallest core radii have the largest
hydrodynamic radius (0.24 mM SA) and this is not due

to increased hydration or citrate effects, but is rather as-
cribable to a closer layer of strongly bound ligand on gold
surface.

Finally, the degree of surface modification also corre-
lates with the stability of the nanoparticles over aggrega-
tion, as the sample with the thickest layer of the organic
ligand is the most stable when the ionic strength of the
dispersion is increased.

3.3 Inhibition tests

Stopped-flow measurements were performed in order to
assay the inhibitory activity of the functional nanoparti-
cles toward different CA isoforms, such as CA I, II, IX
and XII, all of which are drug targets or off-targets [13,
14]. The initial rates of the CA-catalyzed interconversion
between CO2 and HCO−

3 were monitored following pH
change, which leads to a variation of the absorption spec-
trum (λmax = 557 nm) of an acid-base indicator (Phenol
red) [45]. The final results are the IC50 values (molar-
ity of inhibitor producing a 50% decrease of the enzyme
activity), expressed as KI (as reported earlier [23]) and
summarized in table 2 and table 3, respectively for the
case in which no NaCl or subcritical amount of NaCl was
added. These data are referred to the overall gold concen-
tration; gold nanoparticles concentration is ∼ 105 times
lower than the gold one, since the aggregation number is
typically around 105, as estimated from the density of gold
(19.3 g cm−3), with the crude assumption that all parti-
cles are spherical with a diameter of 14.8 nm (from SAXS
measurements) and using the gold concentration resulting
from the ICP-AES analysis [60,61].

These results suggest that the proposed one-pot syn-
thetic procedure leads to CAI-capped nanoparticles that
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retain the SA high efficiency toward enzyme inhibition,
in the nanomolar range, even at high ionic strength (ta-
ble 3). In particular, the samples appear to be effective CA
IX and CA XII inhibitors (KI’s ∼ 0.05μM) and moder-
ate CA I and CA II inhibitors (KI’s ∼ 0.20μM), in similar
way to what already assayed in a previous work [23]. Com-
paring these data to the ones obtained from 3nm pristine
nanoparticles [23] we can also asses that the inhibition
observed is due only to the interaction of the sulfonamide
moiety with the enzyme, ruling out any AuNP’s aspecific
effects. We cannot though observe a definite trend of in-
hibition as a function of SA coverage percentage of the
AuNPs.

We do expect these systems to achieve the desired se-
lectivity toward the transmembrane isoforms (CA IX and
CA XII) due to the impermeability of the cell membrane
to such negatively charged and functionalized nanoparti-
cles. Anionic constructs, in fact, bind less efficiently to cell
surfaces than neutral or cationic ones. Furthermore, the
uptake of the gold nanoparticles is commonly mediated by
the absorption of serum proteins on their surfaces [62–65];
it is reasonable to assume that, because of the nanopar-
ticles are capped with strongly bound ligands, both the
absorption of serum proteins on their surfaces and the in-
tracellular uptake would be limited [64].

4 Conclusions

We reported the one-pot preparation and characteriza-
tion of aqueous dispersions of CAI-coated gold nanopar-
ticles by a modified citrate synthesis method. The col-
loidal solutions are stable for months and their chemico-
physical characteristics are reproducible. Introducing dif-
ferent concentrations of the capping organic sulfonamide
ligand (SA) in the reaction mixture, we have detected a
threshold effect and a corresponding variation in the hy-
drodynamic and core radii of the functionalized nanoparti-
cles. Interestingly, a larger amount of SA leads to smaller
core size and larger hydrodynamic size; this could be a
consequence of the supposed core growth inhibition played
by SA and of a closer packing of the capping agent onto
the nanoparticle surface, respectively.

By addition of increasing amounts of NaCl to the so-
lutions, we have detected that to the highest SA concen-
tration corresponds the highest nanoparticles stabilization
over aggregation, and that would account for a different
degree of functionalization of the AuNPs. Even if cit-
rate provides a residual coverage of the gold nanoparti-
cles, sulfonamide plays the major role in the stabilization
versus the ionic strength increase, since citrate-stabilized
nanoparticles precipitate at very low NaCl concentration.

We assayed these systems as CA inhibitors of two cy-
tosolic (CA I, CA II) and two intermembrane (CA IX,
CA XII) isoforms of the enzyme. The KI values are very
promising both in the case of absence or presence of a
critical amount of NaCl, as the SA-modified nanoparti-
cles show high efficiency toward enzyme inhibition and
some selectivity for inhibiting the transmembrane over cy-
tosolic isoforms. These results are encouraging both for in

vitro testing and for in vivo applications. The negative
surface charge density, along with size properties and the
SA modification of the surface would limit the intracellular
receptor-mediated endocytosis, enabling the nanoparticles
to specifically target the transmembrane isoforms.
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