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Abstract
We prove the upper and lower estimates of the area of an unknown elastic
inclusion in a thin plate by one boundary measurement. The plate is made
of non-homogeneous linearly elastic material belonging to a general class of
anisotropy and the domain of the inclusion is a measurable subset of the plate.
The size estimates are expressed in terms of the work exerted by a couple
field applied at the boundary and of the induced transversal displacement
and its normal derivative taken at the boundary of the plate. The main new
mathematical tool is a doubling inequality for solutions to fourth-order elliptic
equations whose principal part P(x, D) is the product of two second-order
elliptic operators P1(x, D), P2(x, D) such that P1(0, D) = P2(0, D). The proof
of the doubling inequality is based on the Carleman method, a sharp three-
spheres inequality and a bootstrapping argument.

1. Introduction

This paper deals with the inverse problem of detecting, inside a thin elastic plate, an unknown
inclusion of a different elastic material, in terms of measurements taken at the boundary of the
plate. Concerning the basic issue of uniqueness, let us recall that, even for the analogous
inverse problem in conductivity, which involves a second-order elliptic equation instead
of the fourth-order elliptic equation governing the static equilibrium of a plate, a general
result under a finite number of boundary measurements has not yet been proved. In the
electrostatic context, Isakov [Is] proved that the inclusion is uniquely determined when all
possible measurements are at disposal, but, unfortunately, the inverse problem shows a weak
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rate of convergence (logarithmic) (see [A-DiC] and [DiC-Ron]), which represents a strong
obstruction for reconstruction techniques. For these reasons, it is of interest for applications
to find constructive stable estimates of some relevant geometrical parameters of the unknown
inclusion, such as its measure.

Following a line of research on ‘size estimates’ initiated in [Ka-S-S, Al-Ro, Al-Ro-Se] in
the electrostatic context and developed in [Ik] and [Al-Mo-Ro02] in linear elasticity (see also
the review paper [Al-Mo-Ro03]), in this paper we derive constructive upper and lower bounds
for the area of the inclusion in terms of the difference between the work exerted in deforming
the defective plate and a reference plate (i.e., a plate without inclusion) by applying the same
couple field at the boundary.

Size estimates of this type for general inclusions, that is, measurable subsets of the
plate, have been proved in [Mo-Ro-Ve09] when the material of the reference plate is
isotropic. Analogous results for the case of inclusions in shells have been recently obtained in
[DiC-Li-Ve-Wa, DiC-Li-Wa]. The assumption of an isotropic material for the reference plate
is rather restrictive, since in an increasing number of practical applications the use of materials
with various degrees of anisotropy is required to achieve better structural performance. In
[Mo-Ro-Ve13], the isotropy condition on the reference plate was removed and size estimates
were obtained for a large class of anisotropic materials satisfying an algebraic condition
including our condition (2.17). We refer to [Mo-Ro-Ve11, remark 3.3] for concrete examples
of anisotropic materials satisfying condition (2.17) which are significant for engineering
applications. Finally, for the sake of completeness, we mention an interesting approach to
size estimates recently developed in [Ka-Ki-Mi, Ka-Mi] and in [Mi-Ng] where the translation
method and the splitting method were introduced, respectively.

The bounds in [Mo-Ro-Ve13] were derived under the so-called a priori fatness condition
on the unknown inclusion E, namely that, for a given h1 > 0,

area ({x ∈ E| dist{x, ∂E} > h1}) � 1
2 area(E ).

In this paper (see theorem 2.2, section 2) we remove this geometrical assumption and we prove
the size estimates for an inclusion which is a measurable subset of the plate, under condition
(2.17) on the background material.

Under various perspectives, a single unifying theme has been used in order to deal with
the class of inverse boundary value problems posed by the ‘size estimates’ approach, namely
quantitative estimates of unique continuation. In this paper we study the so-called doubling
inequality property of solutions. A connection between this property and the strong unique
continuation principle for elliptic partial differential equations was originally investigated in
[Ga-Li86, Ga-Li87]. Subsequently, the doubling inequality property has been widely used in
inverse boundary value problems to obtain volume bounds of unknown cavities and inclusions.

More generally, we consider a class of fourth-order differential equations, which includes
the plate equation under condition (2.17). Precisely, let u be a solution of the differential
equation

P(x, D)u = Qu in B1 := B1(0), (1.1)

where for x ∈ R
n and r > 0, Br(x) = {y ∈ R

n : |x − y| < r} and

P(x, D)u = (P1(x, D)P2(x, D))u, (1.2)

with

Pk(x, D)u = gi j
k (x)D2

i ju, k = 1, 2, (1.3)

2
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with gi j
k being a tensor such that

gi j
1 (0) = gi j

2 (0), (1.4)

λ|ξ |2 � gi j
k (x)ξiξ j � λ−1|ξ |2, ∀ ξ ∈ R

2, ∀ x ∈ B1 (1.5)

and ∑
|α|�2

2∑
i, j=1

∥∥Dαgi j
k

∥∥
L∞(B1 )

� C0, (1.6)

for a given positive constant C0 > 0 and λ ∈ (0, 1). Here Q is a third-order differential operator
such that there exists a positive constant M such that

|Qu| � M
∑
|α|�3

|Dαu|, ∀ u ∈ H4(B1). (1.7)

We want to study the doubling property of solutions u of (1.1) which says that for any compact
subset G of B1 and any concentric balls Br, B2r ⊂ G, the following inequality holds∫

B2r

u2 � K
∫

Br

u2, (1.8)

where K depends on G, the ellipticity, the regularity bounds and also, necessarily, on the
solution u.

Under the above assumptions, we prove the following theorem.

Theorem 1.1. Let P(x, D) be defined as (1.2) satisfying (1.3)–(1.6). Let u ∈ H4(B1) be such
that

|P(x, D)u| � M
∑
|α|�3

|Dαu|, in B1.

Then there exists a constant R ∈ (0, 1), only depending on λ, M1 and C0, and there exist
constants θ ∈ (0, 1/2) and K > 0, only depending on λ, M, C0 and

Floc = ‖u‖L2(BR )

‖u‖L2(B
λ2R2 )

, (1.9)

such that ∫
B2r

|u|2 � K
∫

Br

|u|2, ∀ r, 0 < r < θ. (1.10)

In order to apply the doubling inequality (1.10) to our inverse problem, it is crucial to
estimate the constant K in terms of the available boundary data instead of the interior values
of the solution u, which may not be known.

The paper is organized as follows. In section 2 we derive doubling inequalities for a class
of anisotropic plate equations and we apply them to the size estimate problem. In section 3 we
provide a detailed proof of theorem 1.1.

2. Doubling inequalities and size estimates of inclusions in plates

Let us state some notation and definitions.
For P = (x1(P), x2(P)), a point in R

2, we denote by Ra,b(P) the rectangle of center P and
sides parallel to the coordinate axes of length 2a and 2b, namely Ra,b(P) = {x = (x1, x2) :
|x1 − x1(P)| < a, |x2 − x2(P)| < b}. We set also Ra,b(0) = Ra,b.

3
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Definition 2.1 (Ck,α regularity). Let � be a bounded domain in R
2. Given k, α with k ∈ N,

0 < α � 1, we say that a portion S of ∂� is of class Ck,α with constants ρ0, M0 > 0 if for any
P ∈ S there exists a rigid transformation of coordinates under which we have P = 0 and

� ∩ R ρ0
M0

,ρ0
= {

x = (x1, x2) ∈ R ρ0
M0

,ρ0
: x2 > ψ(x1)

}
,

where ψ is a Ck,α function on
(− ρ0

M0
,

ρ0

M0

)
satisfying

ψ(0) = 0, ψ(k)(0) = 0, when k � 1,

‖ψ‖Ck,α (−ρ0/M0,ρ0/M0 ) � M0ρ0.

When k = 0, α = 1 we say that S is of the Lipschitz class with constants ρ0, M0.

Hereafter, we shall consider a bounded domain � satisfying

|�| � M1ρ
2
0 , (2.11)

where |�| denotes the area of �.
Working in the framework of the Kirchhoff–Love theory, the transversal displacement u

of the middle plane � of the plate � × [− h
2 , h

2

]
satisfies the following fourth-order equation

div(div(PD2u)) = 0, in �, (2.12)

with

P = h3

12
C, (2.13)

where h is the uniform thickness of the plate and C = {Ci jkl}, C ∈ L∞(�), is the elastic tensor
of the material. On C we shall assume

Ci jkl = Ckli j = Ckl ji, i, j, k, l = 1, 2, a.e. in �, (2.14)

γ |A|2 � CA · A � γ −1|A|2, a.e. in �, (2.15)

2∑
i, j,k,l=1

∑
|α|�2

ρ
|α|
0 ‖DαCi jkl‖L∞(�) � M2, (2.16)

where γ ∈ (0, 1) and M2 > 0 are given constants. Note that condition (2.14) implies that
instead of 16 coefficients we actually deal with 6 coefficients. Denoting by a0 = C1111,
a1 = 4C1112, a2 = 2C1122 + 4C1212, a3 = 4C2212, a4 = C2222 and by S(x) the following 7 × 7
matrix

S(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 0 0
0 a0 a1 a2 a3 a4 0
0 0 a0 a1 a2 a3 a4

4a0 3a1 2a2 a3 0 0 0
0 4a0 3a1 2a2 a3 0 0
0 0 4a0 3a1 2a2 a3 0
0 0 0 4a0 3a1 2a2 a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we define

D(x) = 1

a0
|detS(x)|

and we assume that

D(x) = 0, ∀ x ∈ R
2. (2.17)

Under the above conditions on the plate tensor P, we can state the following doubling inequality.

4
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Proposition 2.1 (Doubling inequality for the plate equation). Let � be a bounded domain in
R

2 with boundary of the Lipschitz class with constants ρ0, M0, and let u ∈ H4
loc(�) be a non

trivial solution of the equation (2.12). Then, there exists a constant θ ∈ (0, 1), depending on
γ and M2 only, such that for every r > 0 and x0 ∈ �rρ0 we have∫

B2r (x0)

u2 � K
∫

Br (x0)

u2, ∀ r, 0 < r � θ

2
rρ0, (2.18)

where K only depends on γ , M0, M1, M2, r and ‖u‖H1/2(�)/‖u‖L2(�).

Proof. Without loss of generality, we consider the case ρ0 = 1. In [Mo-Ro-Ve11, section 6] it
was shown that, under condition (2.17), there exists a matrix {gi j((x)}2

i, j=1 such that

λ|ξ |2 � gi j(x)ξiξ j � λ−1|ξ |2, ∀ x ∈ �,∀ ξ ∈ R
2,

2∑
i, j=1

∑
|α|�2

‖Dαgi j‖L∞(�) � C,

where λ, 0 < λ � 1, C depend on γ and M2, and

div(div(PD2·)) = P(x, D·) + Q(·),
with P(x, D) = (gi j(x)D2

i j)(g
lk(x)D2

lk), and Q is a third-order operator such that

|Q(v)| � cM2

∑
2�|α|�3

|Dαv|, ∀v ∈ H4(�),

where c is an absolute constant. Now, since u is solution to (2.12), u satisfies the doubling
inequality (1.10) of theorem 1.1. In order to prove the proposition, it suffices to estimate the
local frequency (1.9).

To this aim, note that under our assumptions the solution u satisfies the following the
Lipschitz propagation of smallness property∫

Bρ (x)

u2 � Cρ

∫
�

u2, ∀ ρ > 0 and ∀ x ∈ �sρ, (2.19)

where s > 1 only depends on γ , M2 and Cρ > 0 only depends on ρ0, M0, M1, γ , M2,
‖u‖H1/2 (�)

‖u‖L2 (�)

and ρ. The proof of (2.19) is essentially based on a three-spheres inequality for the
solution u, which has been derived in [Mo-Ro-Ve11, section 6]; for details see the arguments
in [Al-Mo-Ro-Ve, theorem 3.2]. �

Next, we consider the problem of the detection of an unknown inclusion E in �. Let E
be a measurable, possible disconnected subset of � satisfying

dist(E, ∂�) � d0ρ0, (2.20)

for some positive constant d0. Let us assume that the plate tensor P̃ = h3

12 C̃ in the inclusion
belongs to L∞(�), where C̃ satisfies symmetry conditions analogous to (2.14). Moreover, we
assume the following jump conditions on the elastic tensors P and P̃: either there exist η > 0
and δ > 1 such that

ηP � P̃ − P � (δ − 1)P, a.e. in � (hard inclusion), (2.21)

or there exist η > 0 and 0 < δ < 1 such that

− (1 − δ)P � P̃ − P � −ηP, a.e. in � (soft inclusion). (2.22)

Let us apply a couple field M̂ = M̂2e1 + M̂1e2 on the boundary of � such that:

M̂ ∈ L2(∂�, R
2), (2.23)

5
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supp(M̂) ⊂ , (2.24)

where  is an open subarc of ∂� such that its length || satisfies

|| � (1 − δ0)|∂�|, (2.25)

for some positive constant δ0. Moreover, the couple field M̂ is assumed to satisfy the obvious
compatibility conditions∫

∂�

M̂α = 0, α = 1, 2. (2.26)

When the inclusion E is absent, the transversal displacement w0 ∈ H2(�), normalized by∫
�

w0 = 0 and
∫
�

∇w0 = 0, satisfies the Neumann boundary value problem⎧⎪⎪⎨⎪⎪⎩
div(div(PD2w0)) = 0, in �,

(PD2w0)n · n = −M̂n, on ∂�,

div(PD2w0) · n + ((PD2w0)n · τ ),s = (M̂τ ),s on ∂�.

(2.27)

In the above equations, M̂τ = M̂ · n is the twisting moment and M̂n = M̂ · τ is the bending
moment, where τ and n are respectively the tangent and the normal vector to the boundary
∂�, with n × τ = e3. Moreover, (·),s stands for the derivative with respect to the arc length s.

The equilibrium problem for the defective plate is governed by the boundary value problem⎧⎪⎪⎨⎪⎪⎩
div(div((χ�\EP + χE P̃)∇2w)) = 0, in �,

(PD2w)n · n = −M̂n, on ∂�,

div(PD2w) · n + ((PD2w)n · τ ),s = (M̂τ ),s on ∂�,

(2.28)

where w is normalized by
∫
�

w = 0 and
∫
�

∇w = 0.
Our size estimates of |E| are given in terms of works W , W0 exerted by the boundary

couple field M̂ when E is present or absent, respectively, namely

W = −
∫

∂�

(M̂τ,sw + M̂nw,n), (2.29)

W0 = −
∫

∂�

(M̂τ,sw0 + M̂nw0,n). (2.30)

Theorem 2.2 (Size estimates of |E|). Under the above hypotheses, and assuming in addition
that ∂� is of class C4,1 with constants ρ0, M0, if (2.21) holds then

1

δ − 1
C+

1 ρ2
0

W0 − W

W0
� |E| �

(
δ

η

) 1
p

C+
2 ρ2

0

(
W0 − W

W0

) 1
p

. (2.31)

Conversely, if (2.22) holds then

δ

1 − δ
C−

1 ρ2
0

W − W0

W0
� |E| �

(
1

η

) 1
p

C−
2 ρ2

0

(
W − W0

W0

) 1
p

, (2.32)

where C+
1 , C−

1 depend only on M0, M1, M2, d0, γ , whereas C+
2 , C−

2 , p > 1 only depend on the
same quantities and also on δ0 and on

‖M̂‖L2(∂�,R2)

‖M̂‖
H− 1

2 (∂�,R2)

. (2.33)

6
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Sketch of the proof. As a first step, the variational formulation for the reference and defective
plate problems, both for hard and soft inclusions, leads to the following double inequality

Cl

∫
E

|D2w0|2 � |W − W0| � Cu

∫
E

|D2w0|2, (2.34)

where Cl , Cu are positive constants only depending on η, δ, h and γ . The above inequalities
mean that the strain energy of the reference plate, stored in the set E, is comparable with the
work gap |W − W0|.

The lower bounds in (2.31) and (2.32) follow from the right-hand side (RHS) of (2.34)
and from the regularity estimates for the solution to the unperturbed plate problem (2.27).

The derivation of the upper bounds for |E| requires a lower estimate of
∫

E |D2w0|2 in
(2.34). It is exactly at this point that the doubling inequality (2.18) plays a crucial role. In fact,
arguing similarly to [Mo-Ro-Ve09, section 4], one can derive from (2.18) that there exists a
constant θ̃ ∈ (0, 1), depending on γ and M2 only, such that for every r > 0 and x0 ∈ �rρ0 we
have ∫

B2r (x0)

|D2w0|2 � K
∫

Br (x0)

|D2w0|2, ∀ r, 0 < r � θ̃

2
rρ0, (2.35)

where K only depends on M0, M1, δ0, M2, γ , r and ‖M̂‖L2(∂�)/‖M̂‖H−1/2(∂�).
By the general theory of Garofalo and Lin [Ga-Li86, Ga-Li87], inequality (2.35) ensures

that |D2w0|2 is an Ap-weight for some p > 1 only depending on M0, M1, δ0, M2, γ and
‖M̂‖L2(∂�)/‖M̂‖H−1/2(∂�), that is |D2w0|−

2
p−1 is locally integrable. Such an integrability property

enables, through Hölder’s inequality, to get the upper bounds in (2.31) and (2.32), see for details
[Mo-Ro-Ve09]. �

3. Proof of theorem 1.1

In order to prove theorem 1.1, we will first prove a doubling type inequality (proposition 3.1)
where (1.4) will be replaced by the slightly stronger assumption

gi j
1 (0) = gi j

2 (0) = δi j. (3.36)

Afterwards, we derive theorem 1.1 by a suitable change of variables.

Proposition 3.1. Let P(x, D) be as in (1.2) satisfying (1.3), (1.5), (1.6) and (3.36). Let
u ∈ H4(B1) be such that

|P(x, D)u| � M
∑
|α|�3

|Dαu| in B1, (3.37)

where M is a given positive constant. There exists a constant R1 ∈ (0, 1), only depending on
λ, M, C0, and there exist constants θ1 ∈ (0, 1/2) and K1 > 0, only depending on λ, M, C0 and

F (1)

loc =
‖u‖L2(BR2

1
)

‖u‖L2(BR4
1
)

, (3.38)

such that ∫
B2r

|u|2 � K1

∫
Br

|u|2 ∀ r, 0 < r < θ1. (3.39)

7
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We shall prove proposition 3.1 by a bootstrapping argument based on the three-spheres
inequalities developed in [Li-Nak-Wa] and [Li-Nag-Wa]. It may be possible to derive a
doubling inequality like (3.39) using a Carleman estimate with more sophisticated weight
functions, which have been obtained in [Co-Ko]. However, we would like to emphasize again
that our ultimate goal is to apply doubling inequalities to the inverse problems described
above. Therefore, it is crucial to know precisely how the constant K1 of (3.39) depends on
u. The quantity F (1)

loc of (3.38) is important in the investigation of inverse problems. In the
bootstrapping argument, we use a simple Carleman estimate (see (3.42)) and the derivation of
doubling inequalities is rather elementary.

We begin by stating two results that will be used later. The first ones are two Caccioppoli
type inequalities which are simple consequences of [Ho, theorem 17.1.13]. Let u ∈ H4(B1)

such that

|P(x, D)u| � L
∑
|α|�3

|Dαu|, in B1,

where P(x, ∂ ) is defined in (1.2)–(1.4), then∑
|α|�4

∫
a1r<|x|<a2r

||x|αDαu|2 � C′
∫

a3r<|x|<a4r
|u|2, (3.40)

with 0 < a3 < a1 < a2 < a4 < 1, r < 1, where C′ > 1 depends on L, λ, C0, a1 − a3 and
a4 − a2 only. Let us stress here that the smaller the differences a1 − a3 and a4 − a2, the larger
is the constant C′;∑

|α|�3

∫
Br/2

|Dαu|2 � C′′
(

2

r

)2|α| ∫
Br

u2, (3.41)

where C′′ > 1 depends on L, λ and C0 only.
Moreover we recall the following Carlemann type estimate derived in [LeB] and

[Li-Nag-Wa]. For any v ∈ C∞
0 (B1 \ {0}) and m = j + 1/2 � j∗ + 1/2 =: m∗, j ∈ N,

there exists a constant C1 > 1 such that∑
|α|�4

m4−2|α|
∫

|x|−2m+2|α|−n|Dαv|2 � C1

∫
|x|−2m+8−n|�2v|2. (3.42)

Let R0 and R̄, R0, R̄ ∈ (0, 1), be numbers that will be chosen later and assume 0 < R̄ � R0.
Setting r4 = R0(R0+1)

4 (which implies r4 < R0/2) and picking an arbitrary δ such that

0 < δ � 1
4 R2

0R̄, (3.43)

we define a function χ ∈ C∞
0 (Rn) such that

0 � χ � 1, χ = 1 on Br4R̃ \ Bδ/2,

χ = 0, for |x| � δ

3
and |x| � 2r4R̄,

|Dαχ(x)| � C3

δ|α| , for
δ

3
� |x| � δ

2
,

|Dαχ(x)| � C3

(r4R̃)|α| , for r4R̄ � |x| � 2r4R̄,

where C3 is an absolute constant. After a possible regularization, we insert in (3.42) the
function v = uχ , where u ∈ H4(B1) satisfies (1.1). We have∑
|α|�4

m4−2|α|
∫

δ
2 <|x|<r4R̄

|x|−2m+2|α|−n|Dαu|2 � C1

∫
|x|−2m+8−n|�2(χu)|2, (3.44)

8
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for every m � m∗. Now splitting the integral on the RHS∫
|x|−2m+8−n|�2(χu)|2 =

∫
δ
3 <|x|< δ

2

|x|−2m+8−n|�2(χu)|2

+
∫

δ
2 <|x|<r4R̄

|x|−2m+8−n|�2u|2 +
∫

r4R̄<|x|<2r4R̄
|x|−2m+8−n|�2(χu)|2

and using the following chain of inequalities

|�2u| � |P(0, D)u − P(x, D)u| + |P(x, D)u|
� cC2

0 |x|
∑
|α|=4

|Dαu| + (cC2
0 + M)

∑
|α|�3

|Dαu|

� cC2
0r4

∑
|α|=4

|Dαu| + (cC2
0 + M)

∑
|α|�3

|Dαu|,

which follows, for |x| � r4R̄, by the Lipschitz continuity of coefficients and by (1.7), we obtain∫
|x|−2m+8−n|�2(χu)|2 �

∫
δ
3 <|x|< δ

2

|x|−2m+8−n|�2(χu)|2

+C4

[
(r4R̃)2

∫
δ
2 <|x|<r4R̄

|x|−2m+8−n
∑
|α|=4

|Dαu|2

+
∫

δ
2 <|x|<r4R̄

|x|−2m+8−n
∑
|α|�3

|Dαu|2
]

+
∫

r4R̄<|x|<2r4R̄
|x|−2m+8−n|�2(χu)|2,

where C4 = c(C2
0 + M2). Now by properties of χ we have∫

δ
3 <|x|< δ

2

|x|−2m+8−n|�2(χu)|2 � cC2
3

∑
|α|�4

δ2(|α|−4)

∫
δ
3 <|x|< δ

2

|x|−2m+8−n|Dαu|2 := I(δ)

and∫
r4R̄<|x|<2r4R̄

|x|−2m+8−n|�2(χu)|2

� cC3

∑
|α|�4

(r4R̄)2(|α|−4)

∫
r4R̄<|x|<2r4R̄

|x|−2m+8−n|Dαu|2 =: I(R̄).

Inserting everything in (3.44) we get∑
|α|�4

m4−2|α|
∫

δ
2 <|x|<r4R̄

|x|−2m+2|α|−n|Dαu|2

� I(δ) + I(R̄) + C4(r4R̄)2
∫

δ
2 <|x|<r4R̄

|x|−2m+8−n
∑
|α|=4

|Dαu|2

+C4

∫
δ
2 <|x|<r4R̄

|x|−2m+8−n
∑
|α|�3

|Dαu|2, ∀ m � m∗, (3.45)

that we write in the form

S1 � I(δ) + I(R), ∀ m � m∗, (3.46)

9
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where by S1 we denote the left-hand side (LHS) integral of (3.45) minus the two remaining
integrals of RHS. Our aim now is to estimate the five orders of derivatives of S1, starting
from the fourth-order one (i.e. α = 4), which decays to zero faster than the others, up to the
zero-order integral (α = 0), which like the first-order term (α = 1), can be estimated easily
taking R̄ small enough and m large enough.

Let μ � 1 (to be chosen later) and set R̄ = 1
μm2 , we have∑

|α|=4

(
1

m4
− C4(r4R̄)2

)∫
δ
2 <|x|<r4R̄

|x|−2m+8−n|Dαu|2

=
∑
|α|=4

1

m4

(
1 − C4r2

4

μ2

)∫
δ
2 <|x|<r4R̄

|x|−2m+8−n|Dαu|2.

In order to have this quantity greater or equal to zero it suffices to take

μ �
√

C4r4. (3.47)

Let us consider now the third-order term. By (3.42) and (3.47), we have by the choice of R̄,∑
|α|=3

∫
δ
2 <|x|<r4R̄

(
1

m2
− C4|x|2

)
|x|−2m+6−n|Dαu|2

�
∑
|α|=3

∫
δ
2 <|x|<r4R̄

(
1

m2
− C4(r4R̄)2

)
|x|−2m+6−n|Dαu|2 � 0.

To estimate the second-order term we can proceed as follows:∑
|α|=2

∫
δ
2 <|x|<r4R̄

(1 − C4|x|4)|x|−2m+4−n|Dαu|2

�
∑
|α|=2

∫
δ
2 <|x|<r4R̄

(
1 − C4

m8

)
|x|−2m+4−n|Dαu|2.

To have this term positive, we take m � C1/8
4 . The first-order term can be estimated similarly,

whereas for the zero-order term we have∫
δ
2 <|x|<r4R̄

(m4 − C4|x|8)|x|−2m−n|u|2 � m4

2

∫
δ
2 <|x|<r4R̄

|x|−2m−n|u|2,

as long as m � (2C4)
1/4. Summarizing, picking m1 := max{(2C4)

n/2 + 1, m∗}, if μ �
√

C4r4,

S1 � m4

2

∫
δ
2 <|x|<r4R̄

|x|−2m−n|u|2,
which, recalling (3.46), leads to

m4

2

∫
δ
2 <|x|<r4R̄

|x|−2m−n|u|2 � I(δ) + I(R̄), ∀ m � m1, (3.48)

with

R̄ = 1

μm2
and μ =

√
C4. (3.49)

We now use (3.40) to get rid of terms of zero derivatives in I(δ) and I(R̄) appearing in the
inequality (3.48). Let us consider I(δ) first; we have

I(δ) = cC2
3

∑
|α|�4

δ2(|α|−4)

∫
δ
3 <|x|< δ

2

|x|−2m+8−n−2|α|||x||α||Dαu||2

� c′C2
3C2

(
δ

3

)−2m−n ∫
δ
6 <|x|<δ

|u|2. (3.50)

10
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Similarly, choosing in (3.40) a1 = 1, a2 = 2, a3 = 1/2 and a4 = 4
R0+1 with the further

restriction that R0 � 1/2, entailing a4 − a2 � 2/3,

I(R̄) � c′′C2C
2
3 (r4R̄)−2m−n

∫
r4 R̄

2 <|x|<R̄R0

|u|2. (3.51)

Inserting (3.50) and (3.51) into (3.48) we get

m4
∫

δ
2 <|x|<r4R̄

|x|−2m−n|u|2

� C5

(
δ

3

)−2m−n ∫
|x|<δ

|u|2 + C5(r4R̄)−2m−n
∫

|x|<R0R̄
|u|2, (3.52)

for every m � m1, R̄ and μ satisfying (3.49) and R0 � 1/2, where C5 =
max{C2, c′C2

3, c′′C2,C2
3}. Now, observing that for R0 � 1/3 we get R2

0 � R0(R0+1)

4 = r4,
we have that the LHS of (3.52) can be trivially bounded from below by an integral over the
set { δ

2 < |x| < R2
0R̄}, which yields to the following inequality:

m4
∫

δ
2 <|x|<2δ

|x|−2m−n|u|2 + m4
∫

2δ<|x|<R0R̄
R2

0|x|−2m−n|u|2

� C5

(
δ

3

)−2m−n ∫
|x|<δ

|u|2 + C5(r4R̄)−2m−n
∫

|x|<R0R̄
|u|2,

for every m � m1. Let us consider now the LHS of the above inequality. Observing that
|x| � 2δ in the first integral and |x| � R2

0R̄ in the second one and adding to both sides the term
m4(2δ)−2m−n

∫
|x|<δ/2 |u|2, we have

m4(2δ)−2m−n
∫

|x|<2δ

|u|2 + m4(R2
0R̄)−2m−n

∫
2δ<|x|<R2

0R̄
|u|2

�
[(

C5
δ

3

)−2m−n

+ m4(2δ)−2m−n

]∫
|x|<δ

|u|2 + C5(r4R̄)−2m−n
∫

|x|<R0R̄
|u|2,

(3.53)

for every m � m1, with R0 � 1/3, and R, μ as in (3.49). Now by (3.43) we have

(2δ)−2m−n �
(R2

0R̃
2

)−2m−n
, which allows us to estimate from below the LHS of (3.53) by

LHS � m4 1

2
(2δ)−2m−n

∫
|x|<2δ

|u|2 + m4(R2
0R̄)−2m−n

∫
|x|<R2

0R̄
|u|2,

whereas to estimate from above the second integral of the RHS let us note that

C5m−4

(
R2

0

r4

)2m+n

� (4R0)
2m � e−2m,

with R0 � 1
4e and m � m2 := max{m1, [ 4

√
C5] + 1}. Now inserting all previous inequalities in

(3.53) we get

1

2
m4(2δ)−2m−n

∫
|x|<2δ

|u|2 + m4(R2
0R̄)−2m−n

∫
|x|<R2

0R̄
|u|2

�
(

C5

(
δ

3

)−2m−n

+ m4(2δ−2m−n)

)∫
|x|<δ

|u|2

+ m4(R2
0R̄)−2m−ne−2m

∫
|x|<R0R̄

|u|2. (3.54)

11
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We use now (5.36) of [Mo-Ro-Ve11, theorem 5.3]. Let us point out that, according to their
notation, by (1.4) we have ν∗ = ν∗ = μ∗ = μ∗ = 1, which means that for every β > 0, there
exists s1 ∈ (0, 1) and C � 1, depending on λ,C0, M and β such that for every ρ1 ∈ (0, s1)

and r, ρ such that r < ρ < ρ1λ
2/2 we have∑

|α|�3

ρ2|α|
∫

Bρ

|Dαu|2 � C max{1, ρ−(5β−2)}eC
(
(λ−1ρ)−β−

(
ρ1λ

2

)−β)

×
⎛⎝r5β−2

∑
|α|�3

r2|α|
∫

Br

|Dαu|2
⎞⎠θ0

⎛⎝ρ
5β−2
1

∑
|α|�3

ρ
2|α|
1

∫
Bρ1

|Dαu|2
⎞⎠1−θ0

, (3.55)

where

θ0 = (λ−1ρ)−β − (
λρ1

2

)−β(
λr
2

)−β − (
λρ1

2

)−β
.

Now, assuming r < ρ <
ρ1λ

2

4 , using the Caccioppoli inequality (3.41) and taking β � 2/5,
we can write (3.55) as follows. There exists a constant C6 depending on λ,C0, M and β only
such that if r1 < r2 < r3

C6
, with r3 � 1

C6
, then∫

Br2

u2 � eC6r−β

2

(∫
Br1

u2

)θ (∫
Br3

u2

)1−θ

(3.56)

where

θ = (λ−1r2)
−β − (

λr3
4

)−β(
λr1
4

)−β − (
λr3
4

)−β
. (3.57)

Proposition 3.2. Let R j = 1
μ( j+1/2)2 , j ∈ N. We have

Rj+1 < Rj < 2Rj+1, for j � 3. (3.58)

Furthermore, for every Rj+1 < R < Rj, j � 3, we have

e
− 2√

μR j

∫
|x|<R0Rj

u2 � e−
√

2√
μR

∫
|x|<R

u2. (3.59)

Proof. Inequality (3.58) is easy to check. Let us prove (3.59). We first observe that, since
R0 � 1

4e , we have

R0Rj � 1

4e
Rj <

1

2e
Rj+1,

thus if Rj+1 < R < Rj, we get the thesis. �
We can write (3.54) with R̄ = Rj and, recalling that m = 1√

μRj
, by replacing the term

e−2m with e
− 2√

μR j . By (3.59) for every R ∈ (Rj+1, Rj], with j � j3, where j3 = max{ j2, 3},
we have
1

2
m4(2δ)−2m−n

∫
|x|<2δ

u2 + m4
(
R2

0Rj
)−2m−n

∫
|x|<R2

0R
u2

�
(

C5

(
δ

3

)−2m−n

+ m4(2δ)−2m−n

)∫
|x|<δ

u2

+m4
(
R2

0Rj
)−2m−n

e−
√

2√
μR

∫
|x|<R

u2, (3.60)

12
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for every m � m3 := j3 + 1/2. Now by (3.60), if there exist s ∈ N and ĵ � j3 such that

Rĵ+1 � R2s
0 � Rĵ, (3.61)

then, setting m̂ = ĵ + 1
2 , we have

1

2
m̂4(2δ)−2m̂−n

∫
|x|<2δ

u2 + m̂4
(
R2

0Rĵ

)−2m̂−n
∫

|x|<R2s+2
0

u2

�
(

C5

(
δ

3

)−2m̂−n

+ m̂4(2δ)−2m̂−n

)∫
|x|<δ

u2

+m̂4
(
R2

0Rĵ

)−2m̂−n
e
−

√
2√

μR2s
0

∫
|x|<R2s

0

u2. (3.62)

Proposition 3.3. Let R̄0 = λ8

218C5
6 (2μ)5/2 and

s0 = 1 + �max{log[(λ/2)4/5
√

2μ log(eN)], 2},
where �· stands for the integer part, then

e
−

√
2

(μR2k
0 )1/2

( ∫
|x|<R2k

0
u2∫

|x|<R2(k+1)

0
u2

)
� 1, (3.63)

for every k � s0 and R0 � R̄0.

Proof. We begin by using the three-sphere inequality (3.56) with r1 = R2k+2
0 , r2 = R2k

0 ,
r3 = R2k−2

0 , k ∈ N, k > 1. Thus we require R0 � min
{

1
4e ,

1√
C6

}
. Our goal is to estimate the

exponent θ . By (3.57) we have

1 − θ

θ
= (R4

0)
−β − (4λ−2R2

0)
−β

(4λ−2R2
0)

−β − 1
.

Setting

αk+1 =
∫
|x|<R2k

0
u2∫

|x|<R2(k+1)

0
u2

,

by (3.56) we have

αk+1 � (eC6(R2k
0 )−β

)
1
θ α

1−θ
θ

k . (3.64)

Now if R0 �
[

1
4λ−2

(
1
2

)1/β]1/2
, we have

1 − θ

θ
� 2

(
λ2R2

0

4

)−β

=: ω.

Setting Ek = eC6(R2k
0 )−β

, (3.64) can be written as

αk+1 � Eω
k αω

k , k � 2,

that, iterating, leads to

αk+1 � Gkα
ωk−1

2 , k � 2, (3.65)

where

Gk := exp

(
C62k−1k

(
R0λ

2

)−2β(k+1))
αωk−1

2 , k � 2.

13
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Defining

N := N
(
R4

0

)
:=

∫
|x|<R2

0
u2∫

|x|<R4
0

u2
,

inequality (3.65) can be written as∫
|x|<R2k

0
u2∫

|x|<R2(k+1)

0
u2

� GkNωk−1
, k � 2.

Now by the previous inequality we have

e
−

√
2√

μR2k
0

( ∫
|x|<R2k

0
u2∫

|x|<R2(k+1)

0
u2

)
� Gke

− 1√
2μR2k

0 Nωk−1
e
− 1√

2μR2k
0 . (3.66)

Now taking β = 2
5 < 1

2 and requiring 44/5λR0 � 1 and 44/5λR0 � 1
2 (2μ)−1/2C−1

6 , it is simple
to check that

Gke−(2μR2k
0 )−1/2 � 1, ∀k � 2.

Let us consider now the other part of the RHS side of (3.66). Recalling that, by our choice of
R̃0

2R1/2
0(

λ
2

)4/5 � 1

e
,

taking

k � max

{
log

[(
λ

2

)4/5√
2μ log(eN)

]
, 2

}
,

we easily get

e
− 1

(2μR2k
0 )1/2 Nωk−1 � 1,

which gives us the thesis. �
To complete the proof of the theorem, we have to check (3.61), that is we have to determine

ĵ � j3 and s � s0, where s0 has been defined in proposition 3.3, such that

Rĵ+1 < R̄2s
0 � Rĵ. (3.67)

Now, let

s1 = 2 +
⌊

max

{
s0,

log
√

μ( j3 + 1/2)

| log R̄0|

}⌋
,

we have

R̄2s1
0 � 1

μ( j3 + 1/2)2
.

Let

J =
{

j ∈ N, j � j3 : R̄2s1
0 � 1

μ( j + 1/2)2

}
,

clearly J �= ∅. Setting j4 = max J, (3.67) holds for s = s1 and ĵ = j4. We can now conclude
the proof of theorem 3.1. Namely, defining m̂4 = j4 + 1/2 and k = s1, by (3.61), (3.62) and
(3.63) with R0 = R̄0 we obtain

1

2
m̂4

4(2δ)−2m̂4−n
∫

|x|<2δ

u2 �
[
C5

(
δ

3

)−2m̂4−n

+ m̂4
4(2δ)−2m̂4−n

] ∫
|x|<δ

u2,

14
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for every δ such that 0 < δ � 1
4 R̄2

0Rj4 . Now (3.39) follows dividing the previous inequality by
1
2 m̂4

4(2δ)−2m̂4−n, with

R1 = R̄0, K1 = 6n(2C5 + 1)62m̂4

m̂4
4

and θ1 = 1

4
R̄2

0Rj4 .

We can now prove theorem 1.1.

Proof of theorem 1.1. Let J =
√

g−1
1 (0), where

g−1
1 (0) = {

gi j
1 (0)

}n

i, j=1 = {
gi j

2 (0)
}n

i, j=1 = g−1
2 (0)

and

ψ : R
n → R

n, ψ(x) = Jx.

Setting g̃−1
k such that g̃−1

k (ψ(x)) = Jg−1
k (x)JT , k = 1, 2, we have g̃−1

1 (0) = g̃−1
2 (0) = Id. Let

u ∈ H4(B1) be a solution to (3.37). We define

U (y) := u(ψ−1(y)),

P̃(y, D) := P̃2(y, D)P̃1(y, D),

P̃k(y, D) := ∑n
i, j=1 g̃i j

k (y)D2
i j, k = 1, 2

and for any r > 0,

Er := {
x ∈ R

n : g−1
1 (0)x · x < r2

}
.

We have that Er = ψ−1(Br) (see [Al-Ro-Ro-Ve, page 16]),

B√
λr ⊂ Er ⊂ Br/

√
λ for every r > 0 (3.68)

and (see [Mo-Ro-Ve11, page 1523])

|P̃(y, D)U (y)| � cM
∑
|α|�3

|DαU |, in E1 ⊃ B√
λ,

where c depends on λ only. By theorem 3.1, performing the variable change y → √
λy, we

have that there exist constants R̃1 and θ̃1, R̃1 ∈ (0, 1), θ̃1 ∈ (0, 1/2), such that∫
B2l r

|U (y)|2dy � K̃l
1

∫
Br

|U (y)|2dy, ∀ r, 0 < r < θ̃1/2l, (3.69)

where l will be chosen later on, R̃1 depends on λ, M and C0 only and θ̃1 and K̃1 depend on
λ, M,C0 and

F̃ (1)

loc =
‖U‖L2(BR̃1

)

‖U‖L2(BR̃2
1
)

(3.70)

only. By (3.68) and (3.69) we have∫
B2l r

|u|2dx =
∫

B 2l r√
λ

|u(ψ−1(y))|2
∣∣∣∣det

∂ψ−1

∂y
(y)

∣∣∣∣ dy

� λ−1
∫

B2l r/
√

λ

|U (y)|2dy � λ−1K̃l
1

∫
Br/

√
λ

|U (y)|2dy

= λ−1K̃l
1

∫
Er/

√
λ

|U (ψ(x))|2
∣∣∣∣det

∂ψ

∂x
(x)

∣∣∣∣ dx � λ−2K̃l
1

∫
Br/λ

|u(x)|2dx. (3.71)
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Let l = [log2 λ−1] + 2, which implies 2lr � 2rλ−1 and by (3.71)∫
B2r/λ

|u|2dx � λ−2(K̃1)
[log2 λ−1]+2

∫
Br/λ

|u|2dx,

that can be written as∫
B2s

|u|2dx � λ−2(K̃1)
[log2 λ−1]+2

∫
Bs

|u|2dx, for 0 < s <
θ̃1√

λ2[log2 λ−1]+2
.

Now by the inequalities∫
BR̃1

|U (y)|2dy � λ−1
∫

BR̃1/
√

λ

|u(x)|2dx,

∫
BR̃2

1

|U (y)|2dy � λ

∫
B

(R̃1
√

λ)2

|u(x)|2dx,

we get the thesis with R = R̃1/
√

λ. �
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