

Ph.D. in
Informatics, Systems and Telecommunications

CYCLE XXVII

Curriculum: Telematics and Information Society

Architecture and Knowledge Modelling for Smart City

ING-INF/05

Ph.D. Student: Nadia Rauch

Tutor: Prof. Paolo Nesi

Coordinator: Prof. Luigi Chisci

Years 2012 / 2014

Architecture and Knowledge Modelling for Smart City pag. 2

Acknowledgment

I would like to sincerely thank my tutor Prof. Paolo Nesi, for his guidance and support during these three

years, for his expertise and enthusiasm: most of all, thanks for believing in me and for encouraging my
research and for allowing me to grow professionally and personally.

I would also like to thank my colleague Pierfrancesco Bellini, always available to clarify my doubts and

give me a hand with my research.

I am very grateful to my colleagues Mariano Di Claudio, Giacomo Martelli, Giovanni Ortolani, Marco
Serena e Riccardo Billero working intensively with them in recent months has been a pleasure to me;

A special thanks to my best friend, my sister, my soulmate Lara, always by my side since the beginning

of this university career… so many times I could have lose myself without her.

Finally, thanks to Andrea for having put up with my ups and downs, for his support and for sharing with
me his life.

Architecture and Knowledge Modelling for Smart City p. 3

Architecture and Knowledge Modelling for Smart City p. 4

Abstract

This thesis presents and details a smart-city ontology, called KM4City that is a
knowledge model for the city and its data.
The knowledge model pursues the objective of interconnect data gathered in the city, to
transform it into semantically interoperable information.
In fact, a variety of Open/Closed Data information sources are available from public
administrations ranging from structural, statistical to real-time information. In most
cases, this information has different formats, presents inconsistencies, incompleteness,
and their semantic description is not sufficient to automatically compose them to have
integrated global information of the area.
Smart City ontology is not yet standardized, and a lot of research work is needed to
identify models that can easily support the data reconciliation (essential in order to
effectively interconnected data to each other), the management of the complexity, to
allow the data reasoning. In this thesis, a system for data ingestion and reconciliation of
smart cities related aspects as road graph, services available on the roads, traffic sensors
etc., is also proposed. The system allows managing a big data volume of data coming
from a variety of sources considering both static and dynamic data. These data are
mapped to the presented KM4City ontology, and stored into an RDF-Store where they
are available for applications via SPARQL queries, to provide new services to the
citizens via specific applications of public administration and enterprises.
In this thesis, the results that could be obtained by applying the ontology created, are
also shown, which allowed to combine all data provided by the city of Florence and the
Tuscany region including: maps, traffic status, weather conditions and forecast, parking
status, real time sensors on public and private vehicles, point of interests in the city as
museums, monuments, restaurants, hotels, hospitals, etc. but also statistical data like
travel accidents, per street per year. Finally, an application that take advantage of the
created repository and ontology, will be shown, which implement new integrated
services related to mobility.
The dissertation also presented the work performed about reconciliation algorithms and
their comparative assessment and selection.
The KM4City ontology realized in this thesis, has also been involved in the activity of
DISIT lab mainly related to a number of smart city projects, especially among them Sii-
Mobility which aims at collecting and exploiting data by solving the above mentioned
problems and providing integrated data to be used for implementing smart city services
for citizens mobility, public administrations, and SMEs.

Architecture and Knowledge Modelling for Smart City p. 5

Index

Acronyms and Abbreviations .. 8

List of Figures ..11

List of Tables ..14

List of Diagrams ...16

1. Introduction ..17

2. Enabling Technology ...23

2.1 Big Data ... 23

2.2 Open Data .. 29

2.3 Linked Data ... 32

3. Private & Public Data available ...41

3.1 Street Guide ... 41

3.2 Railway Graph ... 44

3.3 Bus network ... 46

3.4 Open Data .. 48

3.4.1 Services dataset ... 48

3.4.2 Weather Forecast Dataset ... 51

3.4.3 Tram Line Dataset .. 54

3.4.4 Statistics Dataset ... 56

3.5 Real Time Data .. 58

3.5.1 MIIC Client Pull Service .. 58

3.5.2 AVM client pull service ... 64

4. Km4city Ontology ..68

4.1 What is an ontology? .. 68

4.2 State of the Art of Smart City Ontology ... 70

4.2.1 SCRIBE ... 70

4.2.2 OTN ... 71

4.2.3 SSN ontology ... 72

4.2.4 STAR CITY ontology .. 73

4.2.5 SEMANCO .. 74

Architecture and Knowledge Modelling for Smart City p. 6

4.2.6 BONSAI ... 74

4.3 The ISO/IEC JTC 1/SG 1 Standard ... 75

4.4 Km4city, the Knowledge Model for the City ... 78

4.4.1 Administration Macroclass ... 80

4.4.2 Street Guide and Rail Network Macroclass ... 81

4.4.3 Points of Interest Macroclass ... 85

4.4.4 Local Public Transport Macroclass ... 87

4.4.5 Sensors Macroclass ... 89

4.4.6 Temporal Macroclass .. 92

4.4.7 Context Macroclass ... 94

4.4.8 DataProperties of the main classes ... 94

5. The Architecture .. 108

5.1 Phase I: Ingestion .. 110

5.1.1 Street Guide Ingestion... 111

5.1.2 Weather Forecasts Ingestion .. 123

5.1.3 Tuscany Region Open Data Ingestion .. 128

5.1.4 Tram Line Ingestion ... 130

5.1.5 Sensors ingestion ... 132

5.2 Phase II: Data Quality Improvment .. 135

5.2.1 Phone and Fax QI ... 138

5.2.2 Address QI ... 140

5.2.3 Service Category QI .. 142

5.2.4 City QI ... 144

5.2.5 PostalCode QI ... 144

5.2.6 Province QI ... 145

5.2.7 Email QI .. 146

5.2.8 WebSite QI .. 148

5.3 Phase III: RDF Mapping ... 150

5.4 Phase IV: RDF Indexing.. 156

5.5 Phase V: Data Reconciliation .. 164

5.5.1 SPARQL Reconciliation ... 165

5.5.2 Silk Reconciliation .. 170

5.6 Phase VI: Data Validation ... 176

5.7 Phase VII: Applications ... 180

5.7.1 Service Map ... 181

5.7.2 Linked Open Graph .. 198

6. System Evaluation ... 207

6.1 Qualitative Evaluation ... 208

6.2 Quality Improvement metrics ... 209

Architecture and Knowledge Modelling for Smart City p. 7

6.3 Quality metrics .. 212

6.4 Reconciliation evaluation .. 220

6.5 Triples loading assessment .. 224

6.6 Validation results .. 226

6.7 Interconnection evaluation .. 230

6.8 Volume measure .. 232

6.9 Time response evaluation .. 234

7. Conclusions ... 236

7.1 Future works ... 239

A.1 Pentaho Kettle ... 240

A.1.1 Error Handling Kettle ... 241

A.2 QGIS ... 242

A.3 KARMA Data Integration ... 242

A.4 OpenRDF Sesame ... 243

A.5 OWLIM .. 243

A.6 Hadoop .. 243

A.7 HBASE .. 244

A.8 Silk .. 244

Bibliography ... 248

Architecture and Knowledge Modelling for Smart City p. 8

Acronyms and
Abbreviations

AmI Ambient Intelligence
API Application Programming Interface
AVM Automatic Vehicle Monitoring
CAP Common Alerting Protocol
CC Creative Common
CC0 Creative Commons 0
CC - By Creative Common Attribution
CC - By SA Creative Common by Share Alike
CSV A comma-separated values file stores tabular data (numbers and text) in plain-text
form.
DBF dBASE Table File Format. File format used to store tables of data
DBMS Database Management System
DC Dublin Core Ontology, a light weight RDFS vocabulary for describing generic
metadata
DISIT Distributed Systems and Internet Tech lab & Distributed Data Intelligence Lab
of UNIFI
DPA Data Pack Accessory
DPR Data Protection Rights
DRM Digital Rights Management
DUL DOLCE Ultra Lite
EPR Electronic Patient Record
ETL Extraction, Transformation, and Loading
ESRI Environmental Systems Research Institute
FOAF Friend of a friend
FTS Full Type Search
GDF Geographic Data Files
GIS Geographic Information System
GPS Global Positioning System
GT Groundtruth
GUI Graphical User Interface
HBP Human Brain Project
HTML Hypertext Markup Language
HTS High throughput sequencing
HTTP Hypertext Transfer Protocol

Architecture and Knowledge Modelling for Smart City p. 9

ICT Information and Communication Technology
IEC International Electrotechnical Commission
IMS IP Multimedia Systems
IODL Italian Open Data License, equivalent to CC-BY-SA (>3.0), and to ODC-ODbL.
IoT Internet of Things
ISO International Standard Organization
ISR Intelligence, Surveillance, and Reconnaissance
IT information technology
ITS Intelligent Transport Systems
JS JavaScript
JSON JavaScript Object Notation, a lightweight data-interchange format easy for
humans to read and write and, for machines, to parse and generate
KB Knowledge Base
KLM Keyhole Markup Language, XML notation, expressing geographic annotation
and visualization, two-dimensional maps and three-dimensional Earth browsers
KPI Key Performance Indicators
LD Linked Data
LOD Linked open Data
LOG Linked Open Graph, a service and tool of UNIFI DISIT for accessing graphically
to SPARQL entry point of LOD
LPT Local Public Transport (in Italian Trasporto Pubblico Locale, TPL)
LSL Link Specification Language
LTE Long Term Evolution
MIIC Mobility Information Integration Center of the Tuscany region
NIEM National Information Exchange Model
N3 Notation3 language, a compact and readable alternative to RDF's XML syntax.
NL Natural Language
NLP Natural Language Processing
NoSQL No Structured Query Language,
OD Open Data
ODbL Open Database License
ODP Ontology Design Pattern
OSIM Open Space Innovative Mind, tools of UNIFI DISIT
OTN Ontology on Transportation Network
OWL Web Ontology Language
PA Public Administration, such as municipality, city administration
PDF Portable Document Format is a file format used to present documents in a manner
independent of application software, hardware, and operating system
POS predicate-object-subject index
PSO predicate-subject-object
RDF Resource Description Framework
RDFS Resource Description Framework Schema

Architecture and Knowledge Modelling for Smart City p. 10

RFC Request for Comments
RTZ Restricted Traffic Zone (in Italian Zona Traffico Limitato,ZTL)
SHP The Esri shapefile, or simply a shapefile, is a popular geospatial vector data
format
SKOS Simple Knowledge Organisation System
SME Small or Medium Enterprise
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query SQL Structured Query Language
SSN SemanticSensorNetwork Ontology
SSO Stimulate-Sensor-Observation Pattern
TTL Filename extension of a Turtle (Terse RDF Triple Language) file
UI User Interface
UN United Nations
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTC Urban Traffic Control
VM Virtual Machine on cloud
W3C World Wide Web Consortium
Wod Web of Documents
WOD Web of Data
WS Web Service
WSDL Web Services Description Language
WSN Wireless Sensors Network
XML Extensible Markup Language

Architecture and Knowledge Modelling for Smart City p. 11

List of Figures

Figure 1 - Legal tool for Open Data ..30
Figure 2 - Linked Data Cloud ...34
Figure 3 - Street Guide logical model ...43
Figure 4 - Railway Graph logical model ...45
Figure 5 - RT_DTORA and RT_HDORA content ...46
Figure 6 - Web service response for weather forecast ..52
Figure 7 - Tram line KML file ..54
Figure 8 - Exchange tag content ...60
Figure 9 - Sensors position map..60
Figure 10 - Parking sensors map ...62
Figure 11 - SituationRecord example ...64
Figure 12 - OTN Ontology portion ...71
Figure 13 - SSN Ontology concept ...73
Figure 14 - BOnSAI Ontology ..75
Figure 15 - Administration Macroclass of Km4City Ontology ..80
Figure 16 - Street Guide Macroclass of Km4City Ontology ..81
Figure 17 - Rail Network Macroclass of Km4City Ontology ...84
Figure 18 - Point of Interest Macroclass of Km4City Ontology ...87
Figure 19 - Local Public Transport Macroclass of Km4City Ontology ..88
Figure 20 - Sensors Macroclass of Km4City Ontology (from the top left corner, parking sensors, weather
sensors, Road sensors) ..90
Figure 21 - Sensors Macroclass of Km4City Ontology (AVM sensors)...91
Figure 22 - Temporal Macroclass of Km4City Ontology ...93
Figure 23 - Context Macroclass of Km4City Ontology ..94
Figure 24 - Schematic representation of implemented architecture ..108
Figure 25 - Processing phases of implemented architecture ...110
Figure 26 - Wrapper.kjb ..111
Figure 27 - Ogr2ogr script ..112
Figure 28 - Street Guide main_job.kjb..113
Figure 29 - Ingestion transformation for provinces ..113
Figure 30 - Ingestion transformation for Road Elements ..114
Figure 31 - Mapping attributes ...114
Figure 32 - Ingestion transformation for Toponyms ...115
Figure 33 - Ingestion transformation for Administrative Roads ...116
Figure 34 - Ingestion transformation for House numbers ...117
Figure 35 - Ingestion transformation for Maneuvers ..117
Figure 36 - Ingestion transformation for Entry rules ..118
Figure 37 - How to correct a small Kettle bug ..119
Figure 38 - Ingestion transformation for Municipalities ...119
Figure 39 - Splitting fields ..120
Figure 40 - Ingestion transformation for Entries ...121
Figure 41 - RoadLInk transformation for Road Elements ..121
Figure 42 - Ingestion transformation for RouteLinks ...122
Figure 43 - RowFlattener explenation ..123
Figure 44 - Ingestion transformation for Weather Forecasts ..124

Architecture and Knowledge Modelling for Smart City p. 12

Figure 45 - The ProcessManager MySQL table ...125
Figure 46 - Database.ktr transformation ...125
Figure 47 - The Download.kjb Job ...126
Figure 48 - Ingestion transformation for Weather Forecasts ..127
Figure 49 - XPath Loop ..127
Figure 50 - JavaScript to split aggiornamento ..128
Figure 51- Ingestion transformation for Open Data of Tuscany region ..129
Figure 52 - Files_Modification.ktr transformation ...130
Figure 53 - Ingestion transformation for the unique Tram Line ...131
Figure 54 - How to set Analytic Functions step ..131
Figure 55 - Ingestion transformation for Road Sensors ..133
Figure 56 - Transformation to download data...133
Figure 57 - The CallSensori transformation ...134
Figure 58 - XPath Loop for sensors ..134
Figure 59 - Quality Improvement schematization ..138
Figure 60 - Telephone Quality Improvement Process ..139
Figure 61 - House number cheking process ..142
Figure 62 - Service Category Quality Improvement process ..143
Figure 63 - City Quality Improvement process...144
Figure 64 - Postal Code Quality Improvement process ..145
Figure 65 - Province Quality Improvement process ...146
Figure 66 - Email Quality Improvement process ..147
Figure 67 - Website field Quality Improvement process ..148
Figure 68 - Karma Data Integration interface ...151
Figure 69 - How to set a semantic type with Karma ...152
Figure 70 - How to specify a key for a class with Karma ...153
Figure 71 - Maneuver mapping example ..154
Figure 72 - How to modify in/out links with Karma ..154
Figure 73 - Script to run Karma Offline ...155
Figure 74 - Indexing Tool, Ontologies step ..158
Figure 75 - Indexing Tool, Static Data step ..159
Figure 76 - Indexing Tool, dataset inforation tab ...160
Figure 77 - Indexing Tool, Real Time Data step ..161
Figure 78 - Indexing Tool, Reconciliation step ..162
Figure 79 - Indexing Tool, Summary step ..163
Figure 80 - Script generated with the Indexing Tool ..164
Figure 81 - SPARQL reconciliation query ...168
Figure 82 - SPARQL query to find a specific Road in a specified Municipality169
Figure 83 - Connection rule for Address-City couples ...172
Figure 84 - Triples counting results ..179
Figure 85 - Query to verify connection beetween Point of Interest and the Street Guide and Rail Network
Macroclasses ...180
Figure 86 - A crucial query for the LOG ..180
Figure 87 - ServiceMap interface ...182
Figure 88 - Schematization of how ServiceMap works ..183
Figure 89 - Use cases menu ..183
Figure 90 - Real Time data possible views ...185
Figure 91- SPARQL query to find a pharmacy in Empoli ..186
Figure 92- Results on the map ..187
Figure 93 - SPARQL query for weather predictions ..188
Figure 94 - Results of the previous SPARQL query on the map ..189

Architecture and Knowledge Modelling for Smart City p. 13

Figure 95 - How to search a Bus Stop ..189
Figure 96 - Services near a Bus Stop ..190
Figure 97 - SPARQL query to find services near a Bus Stop ...190
Figure 98 - Results on the map ...191
Figure 99 - SPARQL query for AVM ..192
Figure 100 – Second SPARQL query for AVM ...194
Figure 101 - Results of the second AVM SPARQL query on the map ...195
Figure 102 - Parking Real Time information on the map ...196
Figure 103 - SPARQL query for parking occupancy ..197
Figure 104 - Use Case of approximate address ...197
Figure 105 - SPARQL query to find the approximate address ...198
Figure 106 - LOG button on ServiceMap ...199
Figure 107 - LOG interface...200
Figure 108 - Relationships filtering, i.e. Hide/show types of relations to reduce the graph complexity ..201
Figure 109 - Info Tab for an entity ...204
Figure 110 - Search preferred entities tab ...204
Figure 111 - Embed code for the LOG ...205
Figure 112 - A portion of the Road Graph views with LOG ..206
Figure 113 - Kettle error handling ..241
Figure 114 - Execution flow of Silk Workbench ..245
Figure 115 - Connection rule example ..247

Architecture and Knowledge Modelling for Smart City p. 14

List of Tables

Table 1 - DOM_TIP_GNZ content ...44
Table 2 - Information provided per day inside weather forecast ..52
Table 3 - Coordinates transposition ..122
Table 4 - Results of Tram Line Ingestion Process ..132
Table 5 - Sensor details Table ...135
Table 6 - Telephone field most frequently errors..139
Table 7 - Address field most frequently errors ...141
Table 8 - Some association examples for Service Category field ...144
Table 9 - Province most frequently contents...146
Table 10 - Email field most frequently errors ...147
Table 11 - Website field most frequently patterns ..149
Table 12 - dct:alternative starting table ...166
Table 13 - Results of the previus SPARQL query ..168
Table 14 - Query reconciliation results ...169
Table 15 - Groundtruth for datasets Mobilità auto and Salute e sanità ...171
Table 16 - Precision, Recall, F1 of the rule with Leveinsthein distance variation [20-70] and an aggregate
function threshold equal to 50...175
Table 17 - Results of the previous SPARQL query ..186
Table 18 - Results of the previous SPARQL query ..191
Table 19 - Results of AVM SPARQL query ..193
Table 20 - Results of the Quality Improvement process ...209
Table 21- Triples counting before and after the Quality Improvement processing212
Table 22 - Descriptive statistics of triples increase (%) ..212
Table 23 - Ideal composition of a Km4city:Service instance ...213
Table 24 - Average, standard deviation, variance, minimum and maximum of the Completeness for each
dataset ...215
Table 25 - Descriptive statistics of Completeness distribution for data below to Tempo Libero and
Georeferenced Service datasets ..215
Table 26 - Average, standard deviation, variance, minimum and maximum of the Accuracy for each
dataset ...217
Table 27 - Descriptive statistics of Accuracy distribution for data below to New Musei and New
Accommodation datasets ..218
Table 28 - Consistency values before and after QI ...219
Table 29 - Open Data already ingested ...221
Table 30 - Results of all SPARQL reconciliation steps applied ...222
Table 31 - Reconciliation comparison results ...223
Table 32 - Precision, Recall and F1 comparison with and without QI ...223
Table 33 - Triples counting (Validation Phase) ..225
Table 34 - Counting of loaded instances (Validation Phase) ..229
Table 35 - Results of a Validation query ..232
Table 36 - Tiple counting for each macroclasses ..233
Table 37 - Monthly growth for Real Time triples ...233
Table 38 - Ingestion and Mapping execution time (in seconds) ...235

Architecture and Knowledge Modelling for Smart City p. 15

Architecture and Knowledge Modelling for Smart City p. 16

List of Diagrams

Diagram 1 - Precision, Recall, F1 of the aggregate function with a threshold of 10 to 100, Levenisthein
distance of 2, rule cl20_l00_ [10-100] ..173
Diagram 2 - Precision, Recall, F1 varying the threshold aggregation function [10-100], Levensthein
distance equal to 3; rule cl30_l00_ [10-100] ..174
Diagram 3 - Precision, Recall, F1 varying the threshold of the aggregate function [10-100], distance
Levensthein equal to 8, rule cl80_l00_ [10-100] ..175
Diagram 4 - UseCase 1 sequence diagram ..187
Diagram 5 -Use Case 2 sequence diagram ..192
Diagram 6 - Completeness distribution for dataProperties of the "Tempo Libero" dataset216
Diagram 7 - Completeness distribution for dataProperties of the "Georeferenziati" dataset216
Diagram 8 - Accuracy for each dataProperty of the "Accommodation" dataset218
Diagram 9 - Accuracy for each dataProperty of the "Musei" dataset ...219
Diagram 10 - Consistency distribution for dataProperties of "Formazione", before and after QI220
Diagram 11 - Consistency distribution for dataProperties of "Mobilità Aerea", before and after QI220
Diagram 12 - How Precision, Recall, F1 change when the comparison function changing; rules
[cl50_l00_50, ctd03_l00_20, cth20_l00_50, k_cl20_l00_50] ..222

Architecture and Knowledge Modelling for Smart City p. 17

Chapter 1

1. Introduction

In recent years we have witnessed a revolution of "data". From the point of view of the
government, in fact, these years were marked by the opening of data, a topic that is still
the focus of debate between leading experts in innovation. This theme, nowadays, is
emerging in public opinion: journalism, information visualization, territory mapping,
see an opportunity in the public data recovery, quality and savings.

The Open Government can be considered as the natural evolution of e-government, a
process that has characterized the late 90s and has allowed the introduction of
Information and Communication Technology (ICT) in Public Administrations (PA).
One of the most characteristic aspects of Open Government, is the Open Data, i.e. the
publication on the Internet, in an open format, of the government agencies data, which
can then be reused by citizens, businesses and other Public Administrations.
Thanks to the Open Data and their creative reuse for the development of applications,
an acceleration of the economic development can be obtained: this process allows to see
the Public Administrations also as facilitators of the innovation process.

A further contribution to this revolution there was due to enabling technologies such as
pervasive networks, which have radically changed the human life, the acquisition of
knowledge, the way in which works are performed and people learn. The availability of
newer technology reflect on how the relevant processes should be performed in the
current fast changing digital era. This leads to the need of adoption of a variety of smart
solutions in large part of environments to enhance the quality of life and improve the
performance of the citizens.

Due to these facts modern world is indeed full of devices, including sensors, actuators,
and processors of data [Zaslavsky et al, 2013]: such concentration of computational
resources allows sensing, capturing, collecting and process real-time data from billions
of connected devices, serving many different applications including environmental
monitoring, industrial applications, business applications, and pervasive applications
human-centric.

Architecture and Knowledge Modelling for Smart City p. 18

Furthermore, the advancement of sciences, engineering and technologies, and the social
and economic activities have collectively created a torrent of data in digital form.

In 2010, the total amount of data on earth exceeded one zettabyte (ZB) [Zikopoulos,
2012]; by end of 2011, this number grew up to 1.8 ZB [Reed et al, 2012]. Further, it is
expected that it will reach 35 ZB in 2020.

So, this enormous volumes of data created every day, placed a great interest on the
theoretical and practical aspects of extracting knowledge from this data sets [Dean and
Ghemawat 2008], and, how to turn this big data phenomenon into a positive force for
good, has drawn tremendous and intensified interest from an ever increasing set of big
data stakeholders.

No coincidence that in recent years Big Data has become a popular buzzword, thanks
also to the fact that research issues behind big data and big data analysis are embedded
in multi-dimensional scientific and technological spaces.
In fact the issues related to this new concept has been also widely discussed, especially
those relating to the management of this huge volume of data and what benefits they can
provide in various application fields. For instance data streams, coming from ubiquitous
sensors introduced above, can be collected and aggregated in existing/newly social
networks creating a new generation of networked media. This information can be used
to take decisions based on the data itself, rather than based on artificially constructed
models of reality.

In addition, the recent availability of datasets on transportation networks, with high
spatial and temporal resolution, is enabling new research activities in the fields of
Territorial Intelligence and Smart Cities, which aim to improving mobility, a paramount
issue due to the big environmental and social impact of vehicular traffic, and to billions
of dollars that traffic congestions cost to the society every year [Manyika et al, 2011].
As a result, to the recent availability of high quality spatiotemporal datasets, coming
from Floating Car Data and other data sources, thanks to the advances in sensor
technologies (like Smartphones, GPS handhelds, etc.), new research opportunities are
arising in the direction of smarter solutions for mobility.
Moreover, the local transport system has high social costs connected to the
inconvenience of citizens towards mobility solutions, because the low and/or absent
interoperability among transport management and monitoring systems; mobility
services; services and systems for the transport of goods; ordinances and services
(works, hospitals, shopping centers, museums, ..); private transport, rail transport,
parking lots, and the people that move, and due to the limited capacity of the system to
receive and respond to changes in the city and citizens.
Urban data, in fact, represent a large portion of the data collected daily in the city, and
they can be seen as data for cities, that are invariably tagged to space and time.

Architecture and Knowledge Modelling for Smart City p. 19

The concept of Big Data and Smart City are in fact closely related: a report of the
United Nations (UN) has in fact shown that, by 2050, 70% of the global population will
live in urban areas; in spite of occupying only 2% of the Earth, these cities are
responsible for 70% of global energy consumption and greenhouse gas emissions
[Liguria, 2014].
Therefore it is important that cities embark on a path that will lead them to increase their
"intelligence" or Smartness. A city is "intelligence" or smart, if it intelligently manages
economic activities, mobility, environmental resources, relationships between people,
policies of housing and method of administration.
For the Spanish economist Gildo Seisdedos Domínguez, the concept of Smart City is
based essentially on the efficiency which in turn is based on business management, ICT
integration and active participation of citizens [Caragliu et al, 2009], [Komninos, 2002].
This implies a new kind of governance with the involvement of citizens in authentic
public policy.
Historically, the Smart City project was born in the world over 5 years ago, with the city
of Rio de Janeiro, which acted as a pioneer of the first examples of “smart”
implementation of technology in order to improve community life and reduce waste in
many different areas, ranging from the energy sector to that of waste management
[Jenny, 2014].
Europe, instead, started in 2009 to talk about "smart" and to devote the first investments
in projects to "smart" implementations. Projects mainly concern the eco-sustainability,
the reduction of environmental waste and improvement of public transport planning; the
European Union provides for a total expenditure that is between 10 and 12 billion euros
over a period of time that extends until 2020.
Cities must therefore take charge of the great problem of managing scarce resources and
providing critical public services such as security, transportation, energy and water.
Here are a few examples of how Big Data technology could improve our cities:

� Public Safety: the efficiency of police and fire services could improve, by
capturing and correlating all the data coming from different systems installed in
the city including surveillance cameras, emergency vehicle GPS tracking and
fire and smoke sensors.

� Urban transportation: through real time data capture and the management of
signals from video cameras and magnetic sensors installed in the road network,
GPS systems could be used to track the location of public buses. Equally, social
media monitoring systems could enable us to flag a protest organized on social
networks and therefore, facilitate the management of potential traffic jams by
changing bus routes, modifying traffic light sequences and delivering
information to drivers via mobile apps indicating approximate driving times and
giving alternative routes.

� Water management: by analyzing the data coming from metering systems,
pressure or PH sensors installed in water supply networks and video cameras
situated in water treatment plants, it would be possible to optimize water

Architecture and Knowledge Modelling for Smart City p. 20

management detecting leaks, reducing water consumption and mitigating sewer
overflow.

� Energy management: with all data coming from smart electric meters installed
in customer’s homes, as well as meteorological open data platforms, it would be
possible to optimize energy production, depending on demand, which would
help us to maximize the integration of renewable energy resources like wind and
solar energy.

� Urban waste management: by gathering data in real time from sensors, that
detect the container filling level and comparing it to the historical data and usage
trends, it would be possible to forecast the ideal time for emptying each
individual container and optimize waste collection routes.

� Public Sentiment Analysis: by analyzing social media networks and blogs and
then using Big Data technologies, cities would be able to measure public opinion
on key issues and services, such as public transportation, waste management or
public safety allowing them to priorities and shape policy.

But the results that can be achieved with a widespread use of Big Data analysis, are
varied and more extensive than those presented above: these can translate into creating
values in healthcare, improving the productivity in manufacturing, accelerating the pace
of scientific discoveries for life and physical sciences, developing a competitive edge
for business, retail, or service industries, and innovating in education, media,
transportation, or government.
To reduce the social costs and to make cities smarter, services must be optimized, for
example using integrated information, greater interoperability and integration among
systems, and establishing a dialogue with the communities and individual citizens.
In fact, most of the public and private data sets, from which a city can take advantage,
are not semantically interoperable: this means that even if they are ingested within a
single Knowledge base, identical concepts may be not connected, and thus leading to
the impossibility of making global inference and deductions on the knowledge base.
To better clarify, the ingestion of multiple open data to obtain a semantically
interoperable model grounded on a common ontological model is a well-known
complexity. In fact, differences in semantics can be due to differences in formats,
coding elements (different ID formats), naming, languages and concepts. Concepts may
come from different context, sectors and languages as: PA, mobility and transport,
commercial, cultural heritage, social media. This problem has to be addressed at the first
ingestion and update: during data linking the access and exploitation of well-known
data/references (e.g., dpPedia, Europeana, Geonames, etc.) can be of help in
disambiguating, but also unified thesaurus and models can be of help, such as Babelnet
[BABELNET], OSIM [OSIM] and EuroVoc [EUROVOC].
It is clear that, if data collected are not made semantically interconnected, the "city"
ecosystem will not be able to begin its "smarteness" process, and therefore will not
become a real Smart City.

Architecture and Knowledge Modelling for Smart City p. 21

The purpose of this thesis is therefore to provide a contribution to the resolution of the
problems just seen, through the implementation of an architecture that allows to
integrate and especially interconnect within a single repository, all the information
coming mainly from the various sensors installed in cities, from public administrations,
and from the public transport companies.

The research project is conducted in the context of the “Telematics and Information
Society” PhD programme at the University of Florence.

The thesis is divided into two parts, state of the art and discussion of the work.
The first part of this report describes the technologies relevant to the topics discussed,
that is Big Data, Open Data and Linked Data.
In Chapter 2, in fact, the work done in the Big Data field is presented, along with a
review of existing solutions. In the same chapter, Open Data and Linked Data are
discussed, because they allow the definition of a well-defined model for the data on the
Web, such as RDF. RDF is in fact the framework on which is based the storage
component of the presented architecture.
In Chapter 3 will present the most important datasets that have been analyzed and
processed during the research period and in Chapter 4, the concept of ontology is
explained, along with the state of the art of the existing ontologies and knowledge
models relating to Smart City. After that, in the same chapter, the Km4City ontology
[Bellini et al., 2014] is presented in detail: it represent the focus of work and research
carried out for over a year. In the same chapter is also provided a hint to the ISO
standard on Smart City, which is still being finalized.
Chapter 5 is the heart of the second part of the thesis: it is the chapter where the whole
architecture built, is presented; at each stage of its life cycle a section of the chapter is
dedicated, in order to clarify for each, what is its purpose and why it was developed.
In Chapter 6 are then presented the experiments conducted on the architecture
developed, and it is also explained how the Km4City ontology will be used in the project
SiiMobility, a project cofounded by Italian Ministry of Instruction, University and
Research. The consequent results are presented and evaluated with regard to their
significance and quality, also in Chapter 6.
Finally, Chapter 7 presents some future projects made possible by the exploitation of the
interconnected triplestore that was created.

Architecture and Knowledge Modelling for Smart City p. 22

Part I
State of the Art

Architecture and Knowledge Modelling for Smart City p. 23

Chapter 2

2. Enabling Technology

In the previous chapter some concepts have been introduced, which are fundamental for
the research carried out in these years, and which are therefore key argoments to the
proper understanding of the work performed.
This chapter is then dedicated to these arguments, and it has the purpose of providing a
sufficient description to facilitate understanding of the remaining part of this thesis.
Initially, issues related to Big Data will be discussed as well as issues related thereto;
subsequently current issues as Open Government and Open Data will be introduced, up
to reach a wider concept as Linked Data.

2.1 Big Data

The management of huge and growing volumes of data is a challenge since many years,
whereas nowadays no long term solutions have been found [Bellini et al., 2013A]. The
term “Big Data” initially referred to huge volumes of data that have size beyond the
capabilities of current database technologies, successively for “Big Data” problems one
referred to the problems that present a combination of large volume of data to be treated
in short time. When one establish that data have to be collected and stored at an
impressive rate, it is clear that the biggest challenge is not only about the storage and
management; their analysis and the extraction of meaningful values, deductions and
actions is in reality the main challenge. Big data problems were mostly related to the
presence of unstructured data, i.e. information that either do not have a default
schema/template or do not adapt well to relational tables; it is therefore necessary to
turn to analysis techniques for unstructured data, to address these problems.
Recently the big data problems are characterized by a combination of the so called
3V’s: volume, velocity, variety; and then a forth V has been added: variability. In
substance, every day a large volume of information is produced and this data need a
sustainable access, process and preservation according to the velocity of their arrival,
therefore the management of large volume of data is not the only problem. Moreover,
the variety of data, metadata, access rights and associating computing, formats,
semantics and software tools for visualization, and the variability in structure and data
models, significantly increase the level of complexity of these problems. The first V,

Architecture and Knowledge Modelling for Smart City p. 24

volume, describes the large amount of data generated by individuals, groups and
organizations. The volume of data being stored today is exploding. For example in the
year 2000 were generated and stored about 800.000 Petabytes of data in the world
[Eaton et al., 2012] and experts estimated that in the year 2020, about 35 ZettaByte of
data will be produced. The second V, velocity, refers to speed at which Big data are
collected, processed and elaborated, may be handle constant flow of massive data that
are impossible to be processed with traditional solutions. For this reason, it not
important only to consider “where” the data are stored, but also “how” they are stored.
The third V, variety, is concerned to the proliferation of data types from social, mobile
sources, machine-to-machine and traditional data that are part of it. With the explosion
of Social Networks, smart devices, sensors, data has become complex, because it
includes raw, semi-structured and unstructured data from log files, web pages, search
indexes, cross media, emails, documents, forums and so on. Variety represents all type
of data and usually the enterprises must be able to analyze all them, if they want to gain
advantages. Finally, Variability, the last V, refers to data unpredictability and to how
these may change in the years, following the implementation of the architecture.
Moreover, the concept of variability can be connected to assigning a variable
interpretation to the data and to the confusions created in big data Analysis, referring for
example, to different meanings in Natural Language that some data may have. These
four properties can be considered orthogonal aspects of data storage, processing and
analysis and it is also interesting that increasing variety and variability, also increases
the attractiveness of data and their potentiality in providing hidden and unexpected
information/meanings.
Especially in science, the need of new "infrastructures for global research data" that
can achieve interoperability, and to overcome the limitations related to language,
methodology and guidelines (policy), would be needed in short time. To cope with these
types of complexities, several different techniques and tools may be needed, they have
to be composed and new specific algorithms and solutions defined and implemented.
The wide range of problems and the specifics needs make almost impossible to identify
unique architectures and solutions adaptable to all possible applicative areas. Moreover,
not only the number of application areas, so different from each other, but also the
different channels through which data are daily collected, increases the difficulties of
companies and developers to identify which is the right way to achieve relevant results
from the accessible data. Therefore, this chapter can be a useful tool for supporting the
researchers and technicians in making decisions about setting up some big data
infrastructure and solutions. To this end, it can be very helpful to have an overview
about big data techniques; it can be used as a sort of guideline to better understand
possible differences and relevant best features among the many needed and proposed by
the product as the key aspects of big data solutions. These can be regarded as
requirements and needs according of which the different solutions can be compared and
assessed, in accordance with the case study and/or application domain.

Architecture and Knowledge Modelling for Smart City p. 25

To this end, and to better understand the impact of big data science and solutions, in the
following, a number of examples describing major applicative domains taking
advantage from the big data technologies and solutions are reported: education and
training, cultural heritage, social media and social networking, health care, research
on brain, financial and business, marketing and social marketing, security, smart cities
and mobility, etc.

Big data technologies have the potential to revolutionize education. Educational data
like students' performance, mechanics of learning and answers to different pedagogical
strategies, can provide an improved understanding of students' knowledge and accurate
assessments of their progress. These data can also help identify clusters of students with
similar learning style or difficulties, thus defining a new form of customized education
based on sharing resources and supported by computational models. The proposed new
models of teaching in [Woolf, Baker and Gianchandani, 2010] are trying to take into
account, student profile and performance, pedagogical and psychological and learning
mechanisms, to define personalized instruction courses and activities that meets the
different needs of different individual students and/or groups. In fact, in recent years, it
has been affirmed in the educational the approach to collect, mine and analyze large
datasets, in order to provide new tools and information to the key stakeholders in
education. This data analysis can provide an increasing understanding of students'
knowledge, improve the assessments of their progress, and can help focus questions in
education and psychology; such as the method of learning, or how different students
respond to different pedagogical strategies. The collected data can also be used to define
models to understand what students actually know and understand how to enrich this
knowledge, and assess which of the adopted techniques can be effective in whose cases,
and finally produce a case by case action plan. In terms of big data, a large variety and
variability of data is present to take into account all events in the students’ career; the
data volume is also an additional factor. Another sector of interest, in this field, is the e-
learning domain, where are defined two mainly kinds of users: the learners and the
learning providers [Hanna, 2004]. All personal details of learners and the online
learning providers' information are stored in specific database, so applying data mining
with e-learning can be able to realize teaching programs targeted to particular interests
and needs through an efficient decision making.

For the management of large amounts of cultural heritage information data, Europeana
has been created with over then 20 millions of content indexed which can be retrieve in
real time. Each of them was early modelled with a simple metadata model, ESE, while a
new and more complete models called EDM (Europeana Data Model) with a set of
semantic relationships is going to be adopted in the 2013 [Europeana]. A number of
projects and activities are connected to Europeana network to aggregate content and
tools. Among them ECLAP [Belllini, Nesi, 2014] is a best practice network, that
collected not only content metadata for Europeana but real content files from over then
35 different institutions having different metadata sets and over than 500 file formats. A

Architecture and Knowledge Modelling for Smart City p. 26

total of more than 1 million of cross media items is going to be collected with an
average of some hundreds of metadata each, thus resulting in billions of information
elements and multiple relationships among them to be queried, navigated and accessed
in real time by a large community of users [ECLAP], [Bellini, Cenni and Nesi, 2012].

The volume of data generated by social network is great and with a highly variability in
the data flow over time and space, due to human factor; e.g., Facebook receives 3
billion uploads per month, which corresponds to approximately 3600TB/year. Search
engines companies like Google and Yahoo! collect every day trillions of bytes of data,
around which real new business is developed, offering useful services to its users and
companies in real time [Mislove, Gummandi and Druschel, 2006]. From these large
amounts of data collected through social networks (e.g., Facebook, Twitter, MySpace),
social media and big data solutions may estimate the user collective profiles and
behavior, analyze product acceptance, evaluate the market trend, keep trace of user
movements, extract unexpected correlations, evaluate the models of influence, and
perform different kinds of predictions [Domingos, 2005]. Social media data can be
exploited by considering geo-referenced information and Natural Language Processing
for analyzing and interpreting urban living: massive folk movements, activities of the
different communities in the city, movements due to large public events, assessment of
the city infrastructures, etc. [Iaconesi and Persico, 2012]. In a broader sense by this
information is possible to extract knowledge and data relationships, by improving the
activity of query answering.
For example in Healthcare/Medical field large amount of information about patients’
medical histories, symptomatology, diagnoses and responses to treatments and therapies
is collected. Data mining techniques might be implemented to derive knowledge from
this data in order to either identify new interesting patterns in infection control data or to
examine reporting practices [Obenshain, 2004]. Moreover, predictive models can be
used as detection tools exploiting Electronic Patient Record (EPR) accumulated for
each person of the area, and taking into account the statistical data. Similar solutions can
be adopted as decision support for specific triage and diagnosis or to produce effective
plans for chronic disease management, enhancing the quality of healthcare and lower its
cost. This activity may allow detecting the inception of critical conditions for the
observed people over the whole population. In [Mans et al., 2009], techniques to the fast
access and extraction of information from event’s log from medical processes, to
produce easily interpretable models, using partitioning, clustering and pre-processing
techniques have been investigated. In medical field, especially hospital, run time data
are used to support the analysis of existing processes. Moreover, to take into account
genomic aspects and EPR for millions of patients leads to cope with big data problems.
For genome sequencing activities (HTS, high throughput sequencing) that produce
several hundreds of millions of small sequences, a new data structure for indexing
called Gkarrays [Rivals et al., 2012], has been proposed, with the aim of improving
classical indexing system such as hash table. The adoption of sparse hash tables is not
enough to index huge collections of k-mer (sub-word of a given length k in a DNA

Architecture and Knowledge Modelling for Smart City p. 27

sequence, which represent the minimum unit accessed). Therefore, new data structure
have been proposed, that based on three arrays: the first for storing the start position of
each k-mer, the second as an inverted array allows finding any k-mer from a position in
a read, and the last records the interval of position of each distinct k-mer, in sorted
order. This structure allowed obtaining in constant time, the number of reads that
contain a k-mer. A project of the University of Salzburg with the National Institute of
sick of Salzburg studies how to apply machine learning techniques to the evaluation of
large amounts of tomographic images generated by computer [Zinterhof, 2012]. The
idea is to apply proven techniques of machine learning for image segmentation, in the
field of computer tomography.
In several areas of science and research such as astronomy (automated sky survey),
sociology (web log analysis of behavioural data) and neuroscience (genetic and neuro-
imaging data analysis) the aim of big data analysis is to extract meaning from data and
determine what actions take. To cope with the large amount of experimental data
produced by research experiments, the University Montpellier started the ZENITH
project [Zenith], that adopts a hybrid architecture p2p/cloud [Valduriez, Pacitti, 2005].
The idea of Zenith is to exploit p2p to facilitate the collaborative nature of scientific
data, centralized control, and use the potentialities of computing, storage and network
resources in the Cloud model, to manage and analyse this large amount of data. The
storage infrastructure used in [De Witt et al., 2012] is called CASTOR, and allows the
management of metadata related to scientific files of experiments at CERN. For
example, the database of RAL (Rutherford Appleton Laboratory) uses a single table for
storing 20GB (which reproduces the hierarchical structure of the file), that runs about
500 transactions per second on 6 clusters. With the increasing number of digital
scientific data, one of the most important challenges is the digital preservation and for
this purpose is in progress the SCAPE (SCAlable Preservation Environment) project
[SCAPE Project]. The platform provides an extensible infrastructure to achieve the
conservation of workflow information of large volume of data. The AzureBrain project
[Antoniu et al., 2010] aims to explore cloud computing techniques for the analysis of
data from genetic and neuroimaging domains, both characterized by a large number of
variables. The Projectome project, connected with the Human Brain Project, HBP,
aims to set up a high performance infrastructure for processing and visualizing neuro-
anatomical information obtained by using co focal ultra-microscopy techniques
[Silvestri et al., 2012], the solution is connected with the modelling of knowledge of and
information related to rat brains. Here, the single image scan of a mouse is more than
1Tbyte and it is 1000 smaller than a human brain.
The task of finding patterns in business data in not new, today is getting a larger
relevance because enterprises are collecting and producing huge amount of data
including massive contextual information, thus taking into account a larger number of
variables. Using data to understand and improve business operations, profitability and
growth is a great opportunity and a challenge in evolving. The continuous collection of
large amounts of data(business transaction, sales transaction, user behaviour),

Architecture and Knowledge Modelling for Smart City p. 28

widespread use of networking technologies and computers, and design of big data
warehouse and data mart have created enormously valuable assets. An interesting
possibility to extract from these data meaningful information, could be the use of
machine learning techniques in the context of mining business data [Bose et al., 2001],
or also to use an alternative approach of structured data mining to model classes of
customers in client databases using fuzzy clustering and fuzzy decision making [Setnes
et al., 2001]. These data can be analyzed in order to define prediction about the
behaviour of users, to identify buying pattern of individual/group customers and to
provide new custom services [Bose et al., 2001]. Moreover, in recent years, the major
market analysts conduct their business investigations with data that are not stored within
the classic RDBMS (Relational DataBase Management System), due to the increase of
various and new types of information. Analysis of web users behaviour, customer
loyalty programs, the technology of remote sensors, comments into blogs and opinions
shared on the network are contributing to create a new business model called social
media marketing and the companies must properly manage these information, with the
corresponding potential for new understanding, to maximize the business value of the
data [Domingos, 2005]. In financial field, instead, investment and business plans may
be created thanks to predictive models derived using techniques of reasoning and used
to discover meaningful and interesting patterns in business data.
Big data technologies have been adopted to find solutions to logistic and mobility
management and optimization of multimodal transport networks in the context of
Smart Cities. A data-centric approach can also help for enhancing the efficiency and the
dependability of a transportation system. In fact, through the analysis and visualization
of detailed road network data and the use of a predictive model it is possible to achieve
an intelligent transportation environment. Furthermore, through the merging of high-
fidelity geographical stored data and real-time sensor networks scattered data, it can be
made an efficient urban planning system that mix public and private transportation,
offering people more flexible solutions. This new way of travelling has interesting
implications for energy and environment. The analysis of the huge amount of data
collected from the metropolitan multimodal transportation infrastructure, augmented
with data coming from sensors, GPS positions, etc., can be used to facilitate the
movements of people via local public transportation solutions and private vehicles [Liu,
Biderman and Ratti, 2009]. The idea is to provide intelligent real time information to
improve traveller experience and operational efficiencies (see for example the solutions
for the cities of Amsterdam, Berlin, Copenhagen, and Ghent). In this way, in fact, is
possible in order to use the big-data both as historical and real-time data for the
applications of machine learning algorithms aimed to traffic state estimation/planning
and also to detect unpredicted phenomena in a sufficiently accurate way to support near
real-time decisions.
In security field, Intelligence, Surveillance, and Reconnaissance (ISR) define topics
that are well suited for data-centric computational analyses. Using analysis tools for
video and image retrieval, it is possible to establish alert for activity and event of

Architecture and Knowledge Modelling for Smart City p. 29

interest. Moreover, intelligence services can use these data to detect and combine
special patterns and trends, in order to recognize threats and to assess the capabilities
and vulnerabilities with the aim to increase the security level of a nation [Bryant et al.,
2010].
In the field of energy resources optimization and environmental monitoring, very
important are the data related to the consumption of electricity. The analysis of a set of
load profiles and geo-referenced information, with appropriate data mining techniques
[Figueireido, Rodrigues and Vale, 2005], and the construction of predictive models
from that data, could define intelligent distribution strategies in order to lower costs and
improve the quality of life in this field, another possible solution is an approach that
provides for the adoption of a conceptual model for a smart grid data management based
on the main features of a cloud computing platform, such as collection and real-time
management of distributed data, parallel processing for research and interpretation of
information, multiple and ubiquitous access [Rusitschka, Eger and Gerdes, 2010].
In the above overview about some of the application domains for big data technologies,
it is evident that to cope with those problems several different kinds of solutions and
specific products have been developed. Moreover, the complexity and the variability of
the problems have been addressed with a combination of different open source or
proprietary solutions, since presently there is not an ultimate solution to the big data
problem that includes in an integrated manner data gathering, mining, analysis,
processing, accessing, publication and rendering. It would be therefore extremely useful
a “map” of the hot spots to be taken into account, during the design process and the
creation of these architectures, that helps the technical staff to orient themselves in the
wide range of products accessible on internet and/or offered by the market. To this aim,
we have tried to identify the main features that can characterize architectures for solving
a big data problem, depending on the source of data, on the type of processing required,
and on the application context in which should be to operate.

2.2 Open Data

A term that often goes hand in hand with Big Data is Open Data, in fact, looking around
is now clear that the data published daily on the web, with the goal of interoperability
are growing increasingly; often however the commitment to openness remains implicit.
In fact, despite the strong effort, the data are rarely available in such a way as to
facilitate its use by third parties.
Within small groups of data, the exchange can be regulated by existing social norms,
but in a much larger scale like the web, licenses are required which make explicit the
basic conditions for the use of these data.

In the figure below, the possible licenses attributable to Open Data are listed. One thing
to remember is that there is a substantial difference between "public" data and "open"

Architecture and Knowledge Modelling for Smart City p. 30

data, so it is always good practice to check the type of license associated with the single
dataset, before using them.

Figure 1 - Legal tool for Open Data

The data are public when there is an actual public domain waivers, that is a waiver that
can be precisely indicated by the specification lack of copyright or the Creative
Commons 0 (CC0) [CC0] exactly where it is specified that:

…“the person who associated a work with this deed has dedicated the
work to the public domain by waiving all of his or her rights to the work
worldwide under copyright law, including all related and neighboring
rights, to the extent allowed by law.”

With regard to licensing, the most frequently used for the Open Data can be divided into
two groups:

• Licenses that require the attribution of the work to the author and sharing as it is
• Licenses that require only the attribution of the work to the author.

Among the most commonly used licenses belonging to the first group, there is the
Creative Common by Share Alike (CC - By SA), with its latest version, i.e. 4.0 [CCSA]
that allows to share, that is copy and redistribute the material in any medium or format,
and to adapt, to be precise, remix, transform, and build upon the material, per any
purpose, even commercially. The most important thing is that appropriate credit must be
given, providing a link to the license, and indicated if some changes were made.
The ODbL (Open Database License) is instead a rather complex license but well done,
and can effectively implement the copyleft model in the field of databases. It contains a
number of contract terms reflecting the model of the licenses Attribution Share Alike
proposed by Creative Common. It only license the rights to the database; therefore, in
the case of a database containing creative works, in order to ensure a free use of the
entire work, it is appropriate to apply another license on the works contained in the
database itself.

Architecture and Knowledge Modelling for Smart City p. 31

Finally, one of the most interesting Italian pilot projects in the field of licensing, is the
one initiated by the Piedmont Region, which has licensed the IODL - Italian Open Data
License, which is also inspired by the model Attribution - Share Alike [ShareAlike].
The most frequently used license among those belonging to the second group, is
certainly the Creative Common Attribution (CC By) [CCA] with which the data sharing
is permitted, that is copy and redistribute the material in any medium or format and
Adapt it through operations such as remix, transform, and build upon the material for
any purpose, even commercially; in any case it give appropriate credit is mandatory as
well as to provide a link to the license, and indicate if changes were made.

Open Data is a concept that is taking field in various sectors. Certainly in the area of
Government is a hot topic, in fact, in recent years, nearly all nations of the world have
developed their own "Open Data" strategy in order to increase the transparency and
efficiency of the governments themselves,
but above all to have the opportunity to define a new relationship between citizens and
public administration.
In addition, the Open Data is a central element in the strategies of e-Government, which
is essential to encourage greater transparency in administrative act (thanks to which
liability is promoted by providing citizens with information about the activities of
public administration),the active participation of citizens in decision-making processes
of government to make available online public data, to stakeholders (citizens,
organizations, businesses), with a steady increase of datasets exposed to the end of
promotion and economic development.
Even though the expected impact is still limited, it is clear that the strategy to publish
public data in reusable format, can produce new innovative enterprises.

The Helsinki Region Infoshare is the metropolitan area in the Finnish capital and it is a
perfect example of how government can support local innovation through Open Data.
The datasets released in the last four years by fourteen governments in the region of
Helsinki, are in total 1100 which provide data to researchers and developers across a
large number of urban phenomena, from the labor force to transport, up to public and
private housing. Making transparent and open part of the daily work of the
administrations involved, is a priority of the project, which is gradually changing the
way the different departments and municipal services work, by acting as a true "Google
Data Helsinki", as stated by the director Asta Manninen.
The Helsinki Region Infoshare allowed through his actions, the birth of a number of
applications related primarily to public transport and land management, such as that
made by HSY [HSY] that has crossed date related to buildings construction and age of
residents to structure policies most effective in environmental terms of energy saving
and especially in the suburbs or where there are lower average incomers.
The action of local governments in favor to inclusion and quality of urban life, however,
is not confined to encourage the use of new technologies, but to integrate them into its

Architecture and Knowledge Modelling for Smart City p. 32

administrative activities in an innovative way, combining it with an approach to dealing
with citizens tense to facilitate the participation of the latter in public life [D’Antonio
and Tanskanen, 2014].

Also in the definition process of how scientific data can be published and reused freely,
the term Open Data is making strong field. In the area of scientific research there was a
great effort to get to define Open data more accurately and certainly this effort will be
intensified in the coming years. In this context, the Open Data are essential especially
for reuse, that is, the ability to reuse data from other searches, without explicit
authorization, in order to aggregate them in other databases, use them during
simulations, or for so-called "mashups", i.e. the combination of data from different
sources to derive new insights.

Undoubtedly Open Data lead to many benefits. One of the most important is related to
interoperability and to maximize efficiency in data usege. Assuming, in fact, a cost
associated with the collection of data, this will potentially divided for each application
that use it. Especially in the public sector these costs are covered by taxes that citizens
pay, and it is therefore proper to give them evidence of the work done by contributions
but also give them the opportunity to know and use their data.
The open data also generate innovation, because they are the first step towards the
realization of applications not foreseen; innovative ideas are unexpected and open data
can unleash their proliferation.
The control over data quality and data correctness is another advantage very attractive:
more eyes and more users can locate errors and correct data, even after years of their
functional testing.
It is evident that especially in scientific field, where the data contained in articles are
considered facts and therefore they are not copyrightable, and where the most important
research involving in most cases "Date That belong to the human race", such as, for
example, genomes, data on organisms, medical science, environmental data, the
definition of Open Data and their use assumes a greater significance. The scientific data
are a good of the community and as such should be freely available to those who want
to contribute to their improvement. Also in the scientific research, the rate of discovery
is accelerated by better access to data [Kauppinen et al., 2011].

2.3 Linked Data

The large publication of Open Data has opened the way of the information sharing. As
seen above, most of the Open data are published by governmental organizations, in file
formats such as: html, xml, csv, shp, etc., and typically provide information that may
present links to web resources. These links are typically coded as un-typed hyperlinks,
URLs (Uniform Resource Locators).

Architecture and Knowledge Modelling for Smart City p. 33

Interoperability is one of the most important advantages of open data model, but the
data, if isolated, have little value; vice versa, their value increases significantly when
different data set, independently produced and published by various parties, can be
crossed by third parties. To enable reuse of data, datasets must be able to combine and
mix freely. Data must then be linked together, establishing a direct link when the data
refer to identical objects (but they come from different sources) or otherwise related to
each other.

The World Wide Web has dramatically changed the way we share knowledge,
eliminating the barriers to publishing and providing access to documents as part of a
global information space.
Despite the indisputable benefits that the web offers, until recently the same principles
that have enabled the Web of documents to flourish, have not been applied to the data.
Traditionally, data published on the Web are made available as dumps in formats such
as CSV or XML, or marked as HTML tables, sacrificing much of its structure and
semantics. In traditional Web, the nature of the relationship between two linked
documents is implicit, and the data format, or HTML is not expressive enough to allow
individual entities described in a paper to be connected via links to related entities.
However, in recent years the web has evolved from a global information space of linked
documents to one in which both documents and data are connected. At the base of this
evolution, there is a set of best practices for publishing and connecting structured data
on the Web known as Linked Data.

In 2006, Tim Berners-Lee published the Linked Data principles [Berners-Lee, 2006], as
a model to stimulate the process of making accessible and sharing data as digital
resources on the web and from them establishing links with semantically connected
sources via URI (Uniform Resource Identifiers) [Bizer et al., 2009]. In other words,
Linked Data expresses a method of exposing, sharing, connecting data, via
dereferentiable URI, where the term dereferentiable indicates that they provide access to
a resource, exactly identified by the URI. The Linked Data are basically data published
on the web that machines are able to read and interpret, and the meaning of which is
explicitly defined by a string consisting of words and markers.

On this wave, the data publication moved towards the diffusion of Linked Data, opening
to the construction of Linked Data repositories and thus for creating a globally
connected and distributed data space with integrated semantics. The result of this
process is then a network of linked data, exactly, that belong to a domain or initial
context, which is in turn connected to other set of external data, of a different domain,
within a context of relations more and more extended.

To give you an idea of how this network has evolved over the recent years, an
interesting project was realized: the LOD cloud diagram. The image in Figure 2 shows

Architecture and Knowledge Modelling for Smart City p. 34

the diagram of the data sets that have been published in Linked Data format, by
employees of the Linking Open Data community project and other individuals and
organizations. It is based on metadata collected and edited by employees of the Data
Hub, as well as on the metadata extracted from a network scan data Linked conducted in
April 2014 [DataHub].

During this last inventory, the Linked Data Cloud contained 570 datasets which are
connected by 2909 link-sets; the count of the triple has not been updated since 2012,
when there were over 52 Billion of Triples. To make a comparison, in 2011 the Linked
Data Cloud was formed by 295 data sources that containing over 31 Billion RDF triples,
among which 504 million of these triples were links connecting entity described by
different data sources [LODCloud]. Thanks to this numbers, it is easy to understand
how in the last 3 years, the interest in the Linked Data has grown.

Figure 2 - Linked Data Cloud

Linked Data are based on documents formalized in RDF (Resource Description
Framework) [Klyne and Carrol, 2006].
The RDF format is a relative simple but powerful formalism for representing
information in triple statements consisting of a subject, predicate and object, where
again each of them can be a URI (or an atomic value). As result, the World Wide Web
of documents (and Intranets) is complemented with a Web of Linked Data, where

Architecture and Knowledge Modelling for Smart City p. 35

everybody can publish, interlink and enrich data. The more interesting characteristic of
this Linked Data Web are the following:

• URIs serve two purpose: identifying “things” ad serving as locators and access
paths for information about these things;

• Web of Linked Data is as distributed and democratic as the Web itself;
• Identifiers defined by different people or organizations can be mixed and

meshed;
• Linked Data published in various locations can be easily integrated by merging

the sets of RDF triple statements , simplifying the data integration;
• The same triple statement formalism is used for defining structure and data.

The adoption of linked data best practices, led to the extension of the Web towards a
global data space connecting data from different sectors such as scientific publications,
film, music, television and radio, genes, proteins, drugs and clinical trials, online
communities, statistical and scientific data.

According to what said so far, it is easy to understand that a concept very close to that
of Linked Data, is the Semantic Web, although it cannot be solved with the application
of best practices but, for its construction, it requires compliance with relevant rules for
the creation of content accessible to automated processes.
Adding semantics to the web involves two things: allowing documents which have
information in machine readable formats and allowing links to be created with
relationship values. Only when we have this extra level of semantics will we be able to
use computer power to help us exploit the information to a greater extent than our own
reading.

Semantic Web technologies can be used in various application fields; for example, in
data integration thanks to which data in different locations and different formats can be
integrated into a single application; in cataloging for describing the content and content
relationships available at a particular Web site, page, or digital library; in describing
collections of pages that represent a single logical “document”; in resource discovery
and classification to provide better, domain specific search engine capabilities; by
intelligent software agents to facilitate knowledge sharing and exchange and in many
others.
A further contribution of the Semantic Web is having allowed to open the web of data to
artificial intelligence processes , to encourage companies, organizations and individuals
to publish their data freely, in an open standard format and to encourage businesses to
use data already available on the web.

The successful of Linked Data initiative has driven the publication of big,
heterogeneous semantic datasets. Data from the governments, social networks, and
relating to bioinformatics, are public exposed and interlinking within the web of data.

Architecture and Knowledge Modelling for Smart City p. 36

This can be seen as part of the more general trend of Big Data, addressed in the
Paragraph 2.1, where the actual value of data deepens on the knowledge which can be
inferred from it, in order to support the decision making process.

Linked Data is the next step for the web. There are multiple benefits over traditional
approaches and methodologies of science, such as Business Intelligence, a field in
which the topic discussed in this chapter is gaining importance because it is cheaper and
faster to implement.
If knowledge is power, with Linked Data’s capability, there is the potential to pull
information to provide unrivalled context on Business Strategy and not only.

Furthermore, Linked Data will become an integral part of the development of Data
Driven Systems architectures that will revolutionize the way we build and maintain
information management systems over the next few years.

For example, in the context of Linked Data driven Question Answering systems
[Cimiano et al.,2013], which have captured most attention recently, these systems allow
users, even with a limited familiarity of technical systems databases, to pose questions
in a natural way and gain knowledge of the available data. In addition, there has been a
renewed interest from industry in having computer systems not only to analyze the vast
amounts of information [Ferrucci et al., 2010] but also in providing intuitive user
interface to pose questions in natural language (NL) [Waltinger et al 2013] in an
interactive dialog manner [Sonntag 2009, Waltinger et al 2011]: this is only one of the
possible applications of semantic web.

An examination of the reference context, both in terms of regulation, as the level of the
state of the art and trends at the international level, the LOD represent a necessary and
effective tool to enable the development of a concrete semantic interoperability between
PA, both nationally and internationally level.
Below a general methodology for the opening of interoperable public data through the
LOD is proposed. The proposed methodology takes into account the information
obtained during the experience of the PhD, and the "best practices" at the international
level.
The proposed approach seeks to maintain a sufficient level of flexibility in order to be
adapted to the specific needs of any data "producer". The proposed objective is to
generate datasets usable as Linked Data, or dataset in the RDF format containing
connections between data themselves and with external dataset. This methodology can
be divided into 7 phases:

• Data Identification and selection
• Data Quality Improvement
• Data analysis and data modeling
• Data enrichment

Architecture and Knowledge Modelling for Smart City p. 37

• external linking (interlinking)
• Data validation
• Data publication

The data identification process is definitely the starting point of the process to opening
up and linking data. The information assets available can be very large (as in case of
PA) or more limited (as in case of scientific research, where often data is only related to
a single topic) and then a massive publication of the data in an open format may not be
feasible. In this case, select a subset of data becomes necessary, provided that open and
transform into Linked Data only selected data, makes sense. These data should be
selected taking into account the demand by third parties, any license to which the data
relates, and the constraints of privacy.
Data within information systems or archives by an Institution are often "dirty"
(sometimes have been designed to be functional, through computer applications, to an
internal business processes) and not immediately ready for publication or for the
appropriate processing. Therefore, the quality of the data is particularly important
because a dirty dataset can make some operations by comparison, similarity and
aggregation on the data inefficient or even impractical. Most likely a phase of Quality
Improvement must be made which allows the data to acquire the required quality. Some
of the most common problems that can be addressed with this process are:
incompleteness of the data, different formats, ambiguous meanings, inconsistent data
type, lack of correspondence between the names used in the physical patterns and actual
data.
The objectives of the third phase, i.e. data analysis and modeling , are precisely the
formalization of the conceptual model and the coherent representation of the reference
dataset, on the formalized model. This phase represents a logical and conceptual
restructuring of the data; in analogy with the methods of software analysis and design, it
is clear that a process of re-engineering and refactoring of the base information is
triggered.
Both the conceptual model that the dataset at the end of this phase will be represented in
RDF.

During the enrichment phase the data, previously reclaimed and molded, are enriched
through explicating boundary information (metadata) that simplify reuse and also
through the derivation of additional content information, thanks to techniques for
automatic information extraction or automated reasoning (inference).
The critical step in the process is the Linking phase, where the information content is
linked to other information, which may be other datasets produced by the same source,
or data sets already in the Web of Data (WoD). This helps ensure an easier navigation
and access to a broader set of data, and provide data at a good level according to the
classification of the quality of LOD. [Linked Data Stars].

Architecture and Knowledge Modelling for Smart City p. 38

The next phase is validation: there are different types of validation applicable, but inside
the work related to this thesis, the conceptual validation was mainly used, which allows
to verify the adequacy of the ontology to the initial and domain requirements.
The last phase is then publication: the fundamental point of this phase is the choice of
the publication platform to use, which must be able to integrate themselves, in a flexible
way, with any information and organizational system, but above all it must allow
punctual access to data with standards such as SPARQL.

SPARQL (Simple Protocol and RDF Query Language) is a RDF query language made
standard by the Data Access Working Group, part of the W3C consortium, which has
made it an official recommendation on January 2008.
SPARQL is a key element of the semantic web, and it allows to extract information
from distributed knowledge bases on the web; practically it search for sub-graphs
corresponding to the user's requests, which are made through a query.
A SPARQL query consists of the following parts:

• Prefix declarations, for abbreviating URIs;

• A result clause, identifying what information to return from the query;
• Dataset definition, stating what RDF graph(s) are being queried;
• The query pattern, specifying what to query for in the underlying dataset;

• Query modifiers, slicing, ordering, and otherwise rearranging query results.

The prefix declarations are identified by the PREFIX statement, the result clause is
instead identified by the SELECT statement, the dataset definition is identified by the
FROM statement, the query pattern is identified by the WHERE statement and finally,
at the bottom, there are the query modifiers.
SPARQL queries are based on the "pattern matching" mechanism and in particular on
the "triple pattern" construct. Most SPARQL query forms contain a series of triple
patterns called basic graph pattern. A basic graph pattern corresponds to a sub-graph
of RDF data where the terms of this RDF sub-graph, can be replaced with variables.
The SPARQL query output, instead, can be of several types: usually their results are
results sets or RDF graphs, which mainly come from queries of existential type ("exists
or not, the researched sub-graph?"), or tabular ("lists the possible results"); the results
can be of various formats and the most common are XML, JSON, CSV, HTML and
RDF.
SPARQL adopts the syntax Turtle, an extension of N-Triple, a very concise and
intuitive alternative to traditional RDF / XML.
In the following exemple the realized RDF triplestore is queried asking to find all
subjects (?roadEle) and objects (?length) put in relation through the km4c:length
predicate.

Select ?roadEle ?length WHERE {

Architecture and Knowledge Modelling for Smart City p. 39

GRAPH
 <http://www.disit.org/km4city/resource/GrafoStrada le/Grafo_strad
ale_Firenze> {
 ?roadEle a km4c:RoadElement .
}
 ?roadEle km4c:length ?length .
}
ORDER BY ASC (?length)

SPARQL variables start with a ? and can match any node (resource or literal) in the
RDF dataset. The WHERE clause define the triple pattern to which the variables must
match. The GRAPH clause, instead, restricts the search to the specified node graph and
the SELECT clause returns a table of variables and values that satisfy the query. Finally,
the ORDER BY clause allows to display the results sorted according to the specified
variables. To retrieve multiple properties about a particular resource is possible to use
multiple triple patterns.

Architecture and Knowledge Modelling for Smart City p. 40

Part II
Discussion of the Work

Architecture and Knowledge Modelling for Smart City p. 41

Chapter 3

3. Private & Public Data available

In this chapter some of the available datasets will be analyzed, in order to make very
clear what is the data heterogeneity on which the research project is based, and the
problems that each one presents.
With regard to Open Data, the description will be limited to only a dataset per type,
given the high number of available data sets, but it will be shown a list of all used
datasets, from each different source.

3.1 Street Guide

Through the portal Osservatorio dei Trasporti of Tuscany, the data belonging to the
Tuscany road graph were downloaded. These data constitute the backbone of the entire
project and provide a representation of the entire regional road network, which is
organized as a graph, i.e., formed by arcs (the so called road elements) and nodes (or
junctions). To this basic structure a variety of information is then associated such as
street names (which are nothing more than set of road elements grouped within
individual municipalities), addresses (using information related to access and house
numbers), etc.
Since data on transport infrastructure (roads, railways, house numbers) do not change
frequently, the Osservatorio dei Trasporti does not provide the ability to download the
data via web services, but only via a web interface, after authentication using a
certificate issued by the same office. The downloading process of these data will
therefore not be automated within the structure that will be built.
The data contained into the archives recovered from the portal of the Osservatorio dei
Trasporti are manifold; in particular, in the vision released during the development of
the project, there are two main categories of data: the Data Pack Address Book (DPI)
and the Data Pack Accessory (DPA). The DPI contains all the information necessary to
constitute the road graph; among these are:

• Road elements: linear entities bounded by two junctions. Road Elements are the
basic component of the entire Road Graph, and consist of an ordered set of
points.

Architecture and Knowledge Modelling for Smart City p. 42

• Junctions: points of intersection between the axes of two Road Elements. From
the geometric point of view, a junction is a punctual entities (also called Node)
represented by a pair of coordinates.

• Toponyms: from the definition recovered in the manual provided by the
Tuscany Region, a Toponym corresponds to a portion of the mobility road
network, to which a name is assigned from a municipality, i.e. the name of the
street that is part of the municipality. In practice, the Toponym entity is defined
as a set of Road Elements of the same city, aggregated according to the name
assigned by the municipality.

• Administrative Roads: like a toponym, an Administrative Road is a set of road
elements. However, in the specific case of Administrative Road, the grouping is
performed based on administrative criteria. For more details on the difference
between the Toponyms and the Administrative Roads, see Section 4.4.1.

• Street numbers: as easy to understand, the element Street Number is used to
define a specific address, within a given street. In fact, contrary to what one
might imagine, the Street Number entity is not directly associated with any
geolocating component; in fact, to this aim, at least an Entry element is
connected to a single Street Address, with a pair of coordinates associated.

• Entry : punctual elements (i.e. with geographic coordinates) that identify access
to a specific place of residence or business located in a certain number Civico.

• Milestone: point element that contains the value of the mileage of an
Administrative Road, calculated from a starting point.

The DPA contains instead the following information:
• Limitations of Access to Elements Road;
• Forbidden (or allowed) turns .

Inside archives provided by Osservatorio dei Trasporti, files containing geographical
information are encoded in ESRI Shapefile or file with the extension .shp, which are in
turn necessarily linked to file .shr and .dbf. The shapefiles are vector files containing
information mainly used for geographic information systems: the.shp file preserves the
geometry, the .shx file instead stores the geometry index, while inside the .dbf file, the
list of objects, together with all their attributes, is present.
Data types that can be stored within a Shapefile are Points (used for example for the
class Junction), Poly-lines (set of connected and ordered broken lines, such as the Road
Elements) and Polygons (used for example to representing the extension of a
municipality or a Province).
All other data, i.e. those who do not have geographic information shall be issued only
with .dbf extension, a format via which xBase databases are saved. These files are easily
readable by spreadsheet software such as Microsoft Excel or OpenOffice Calc.
With regard to the data composition, there are two distinct types of tables: tables with
the actual data that are indicated by the initials GIA (e.g. GIA_ACCESSO.dbf,

Architecture and Knowledge Modelling for Smart City p. 43

GIA_EL_STRADALE.shp, etc.), while files whose initials are DOM contain domain
tables, within which all the possible values that can have a particular attribute, are
stored. For example, in the table GIA_GIUNZIONE.dbf, the attribute TIP_GNZ is in
each record, and indicates the type of junction in numeric format.

Figure 3 - Street Guide logical model

Inside the corresponding file DOM_TIP_GNZ.dbf, there are all the values that can take
this field, with the its text description. Below in Table 1 the content of the latter table is
shown.

Architecture and Knowledge Modelling for Smart City p. 44

VALUE DESCRIPTION
0100 intersezione a raso / biforcazione
0200 casello autostradale
0300 minirotatoria (raggio di curvatura < 10m)
0400 variazione di sede/sottopasso (SOT_PAS, COD_SED)
0900 passaggio a livello
0500 terminale (inizio o fine elemento stradale)
0600 cambio toponimo / titolaritÓ / gestore
0700 variazione classe di larghezza (CLS_LRG)
0800 area di traffico non strutturato
5106 variazione composizione
5201 nodo intermodale per ferrovia
5203 nodo intermodale per aeroporto
5202 nodo intermodale per porto
5301 limite di regione

99 nodo fittizio (limite di ArcInfo)
1000 nodo di supporto(loop)
1100 variazione classifica tecnico-funzionale
1200 variazione stato di esercizio (COD_STA)

Table 1 - DOM_TIP_GNZ content

In Figure 3 is possible to see part of the Street Guide composition.

3.2 Railway Graph

The Tuscany Region provides details of the rail network that extends throughout its
territory, through the portal of the Osservatorio dei Trasporti. The rail graph has the
following basic entities:

• Rail element: a linear entity delimited by two nodes, identified by an ordered set
of points. Generally represents the axis of the railway line which takes place on
the movement of trains. Contains the structural characteristics of railway
infrastructure such as the power type, gauge, number of tracks, etc.

• Railway junction: it represents a point of intersection of two or more elements
rail. A junction is always a punctual entity (node), represented in geometric
terms by a pair of coordinates. The junction can be described as well as a fork
(fork/confluence), as the presence of a station/good yard/stop/rail toll, the
beginning/end of a line and the variation of the characteristics of the railway
infrastructure.

Architecture and Knowledge Modelling for Smart City p. 45

Figure 4 - Railway Graph logical model

In addition to the basic entities there are also:

• Railway Direction: a railway line is obtained as a set of rail elements through
the association Ass_Direttrice_ElFerr.

• Railway line: even a railway line is obtained as a set of rail elements, but thanks
to the association Ass_Linea_ElFerr.

• Railway Section: as the previous ones, a railway section corresponds to a set of
rail elements through the association Ass_Tratta_ElFerr.

• Train station : this entity contains all information about a train station. The
railway stations refer to a railway junction.

• Good yard: it corresponds to a cargo terminal. The good yard refer also to a
railway junction.

• Ass_Direttrice_ElFerr: it represents the relationship table (n:m) between the
Railway element and the Railway direction.

• Ass_Linea_ElFerr: it is the relationship table (n:m) between the Railway
element and the Railway Line.

• Ass_Tratta_ElFerr: it is the relationship table (n:m) between the Railway
element and the Railway section.

Architecture and Knowledge Modelling for Smart City p. 46

In Figure 4 is possible to observe the logical model of the Railway Graph.

3.3 Bus network

Through the portal of the Osservatorio dei Trasporti, data relating to the entire bus
network are available, which interconnect all of Tuscany. Through this portal it is
possible to get a list of all bus routes and all stops that make them, the paths followed
for each line, as CSV files. In addition to these files, thanks to the ATAF contribution,
data related to the scheduled rides that including departure and arrivals times, re also
available, of course, limited to the part of the network managed by ATAF itself; this
data can be downloaded in .rar format, always within the portal of the Osservatorio dei
Trasporti. Within the rar package there are many files, among which the most
intreresting are the following:

• RT_DTORA.txt
• RT_HDORA.txt
• RT_NODI.shp

• RT_ITIN.shp

The two shape files contain information relating respectively to the nodes, i.e. ATAF
bus stops, which also include the coordinates that allow to geolocalize each stop, and
paths information, which instead including a set of coordinates that identifies the whole
path. Particularly interesting are the other two TXT file that is RT_DTORA and
RT_HDORA, within which are encoded data about ATAF scheduled time, along with all
stops made by each individual ride. Since these files all active race codes, can then be
recovered, which will then be used to query the MIIC web server, which provides real-
time information on bus transits.
All this information is encoded in the two TXT files, as is possible to observe from
Figure 5, where a portion of data extracted from each file, is shown.

Figure 5 - RT_DTORA and RT_HDORA content

Analyzing the first part of the figure, relative to RT_HDORA.txt file, the following
information can be retrieved (the numbers at the beginning of each line indicate the
starting and ending position of each fields inside the file):

Architecture and Knowledge Modelling for Smart City p. 47

• 000-003: It contains the company code (regional coding);

• 004-009: It represents the ride unique progressive, within the flow;
• 010-029: Ride company code;

• 030-039: Not used; must contain blank space;
• 040-043: It is the managing body code (regional coding);
• 044-047: Not used; must contain “0000”;

• 048-055: It is the Length of the entire path (expressed in meters);
• 056-059: It corresponds to the total ride duration (in minutes);

• 060-067: Accounting length (in meters);
• 068-071: Ride accounting duration (in minutes);

• 072-081: It is the line holding code;

• 082-082: A=Outbound R=Return;
• 083-102: It is the company unique code of the path;

• 103-108: Not used; must contain “000000”;
• 109-228: it defines the brief path description.

From the second file corresponding to the second part of the above figure, extracted
from RT_DTORA.txt file, the following information can be retrieved:
• 000-003: It contains the holding code (regional coding);
• 004-009: It represents the ride unique progressive, within the flow; the

COMPANY and PROG_CORSA fields establish a join with the RT_HDORA
flow;

• 010-013: It is the stop progressive number within the path;

• 014-023: It represent the stop company code;
• 024-029: Not used; must contain “000000”;
• 030-035: Not used; must contain “000000”;

• 036-039: Not used; must contain “0000”;
• 040-079: It contains the stop name;

• 080-119: It specifies the stop location;
• 120-127: It corresponds to the progressive distnace from the ride start terminus

in meters;
• 128-131: It is the arrival time at the bus stop; for starting terminal it is "9999"
• 132-135: It is the departure time from the bus stop; for arrival terminal it is

"9999";
• 136: It indicates the main stops of the path;
• 137: It indicates the optional stops of the path;

Architecture and Knowledge Modelling for Smart City p. 48

• 138: It indicatesthe bus stops from where the bus passes without stopping.

It is evident that the information relating to the bus network managed by ATAF, need to
be handled differently, compared to information from other public transport companies,
through the use of two different ingestion processes [Bellini, Nesi, Rauch, 2014B], that
will map information on the same macroclass of the ontology designed for this thesis.

3.4 Open Data

The available data during the design phase of the architecture, come from different
sources, and this implies different formats and different methods of access to this data.
Below, the main datasets and their fundamental characteristics will be analyzed.
All the Open Data set coming from two different sources, the Tuscany Region's Open
Data Portal (http://dati.toscana.it/), which provides over 160 open data set, and the
Municipality of Florence's Open Data Portal (http://opendata.comune.fi.it/) through
which is possible to access to over 650 open data set.
The resources accessible through these two portals belong to different categories, and in
particular there are files that contain information related to public administration,
infrastructure and transport, environmental data, weather, city planning, statistical data,
data regarding social life and so on, and the formats, in which these elements are
provided, are various, in particular, there are file of type CSV, XML, KMZ, JSON,
PDF, RDF and SHP.
Given the high number of datasets available as Open Data, only part of them were
selected, in the initial stage: from the Tuscany Region Portal, 24 files in CSV format
were examined, containing information about various places of interest (POI) like
public offices, pharmacies, restaurants, schools, hotels, universities, each of them
provided with an address formed by street name and house number. A further set of
examined files, always coming from the portal of the Tuscany Region, includes 286
XML files relating to the weather forecast for each municipality in Tuscany, provided
by the consortium LaMMA (http://www.lamma.rete.toscana.it/); in addition to
forecasts, these files contain some physical nature's information such as temperature,
intensity of UV rays and humidity.
From the City of Florence Portal, 6 CSV files were initially analyzed, containing
different statistics on the area, which contain purely static information. These datasets
are in fact related to a specific year, and then most likely in the future they will not be
updated, but they will only expanded with the data for the new year. Moreover, from the
portal of the city of Florence, an additional resource, provided in KMZ format, has been
analyzed, covering the only tram line currently on the territory of Florence.

3.4.1 Services dataset

Architecture and Knowledge Modelling for Smart City p. 49

The Tuscany region offers a number of files in CSV format, that contain information to
geographically locate a range of services (public offices, businesses and other services)
through the use of the address. The delimiter used in the CSV file is a comma, while the
addresses are enclosed in quotation marks in order to maintain together street name and
street number. As mentioned previously, for reasons of priority, at the time only 24
dataset have been analyzed:

• Art and culture : this dataset contains information about museums, galleries,
monuments, theaters and libraries;

• Banks: it contains information about banks in the Tuscan area;
• Express Couriers: the dataset contains information about offices of courier

services;
• Emergencies: it contains information on police stations, carabinieri, fire

brigade, civil protection, police and financial police;
• Food and Wine: this dataset contains information on a selection of restaurants,

pizzerias, pubs, bars and catering companies;
• Pharmacies: it contains information relating to pharmacies located in the

Tuscan territory;
• Companies Trade: a dataset that contains information on shopping centers,

large non-food distributions, clothing outlets and hypermarkets;
• Airlines Infrastructure : it contains information on civil airports, airfields and

helipads;
• Kindergarten : the dataset contains information about private preschools,

private and public infant schools;
• Elementary School: it contains information on public and private elementary

schools;
• Middle School: the dataset contains information on public and private junior

high schools;
• High School: it contains information on public and private high schools;
• Language courses and training schools: a dataset that contains information

about language courses and training schools;
• Sport in Tuscany: it contains information on sports facilities, gyms, racetracks,

sports schools, sailing schools, ski schools, equipment for the golf, climbing
associations;

• Health and Healthcare: the dataset contains information about hospitals,
emergency room, medical guards, public assistance, private clinics, local health
authority offices, health reservation centers, and dentists;

• Road transport services: it contains information on rest stops, camper service,
vehicle rental and repair shops;

• Various services: a dataset that contains information about income revenue
authority, youth information centers, employment centers, social security service
offices and department of motor vehicles;

Architecture and Knowledge Modelling for Smart City p. 50

• Accommodations: it contains information about cottages, bed and breakfast,
camping, guest houses, hotels and residences;

• Accommodations with geolocation: it contains very similar information to the
previous dataset with the addition of coordinates for geolocalize each structure;

• Leisure: the dataset contains information about cinema, nightclubs, parks
natural, game rooms and recreation rooms;

• Various offices: it contains information about consulates, civil registry,
prefectures and other public offices;

• Universities and conservatories: the dataset contains information about
universities and conservatories;

• Guided Tours: it contains information on associations that organize guided
tours, tour operators and private tour guides;

• Welfare: this dataset contains information on social workers, nursing homes,
senior centers, rehabilitation centers, dining hall and community.

The structure of all these datasets is very similar, in fact, only 2 of the 24 datasets have
additional fields in addition to the 12 listed below:

• Id: is an integer of 6 digits which uniquely identifies each row of the file, and
then each object of interest. A peculiarity of this field is in the fact that it is
unique, and it is not possible to find 2 equal id also on different files, so it could
be used as a key, for a database table.

• Url : contains a web url that points to an information page on the site
http://www.intoscana.it, related to the each object.

• Name: contains the legal name of the place of interest. Unfortunately there is no
standard syntax, so the name can be uppercase, lowercase, enclosed in single
quotes and any other combination of styles.

• Category: at regional level, all services were classified into different categories;
this field specifies the category of each service.

• Phone and fax: these 2 fields contain respectively the telephone number and the
fax number; unfortunately also in this case, there is a lack of writing convention:
often the prefix is missing, sometimes, if there are two similar telephone
numbers, only the last different digit are reported (especially when referring to
an office).

• Address: the field contains the address of the referred service. Unfortunately also
this field presents a high number of imperfections: almost in all services, the
postal code is missing, or the dug associated to the street name is written in a lot
of different ways like "Piazza", "piazza", "p.za" or "p.zza". As we shall see in
later chapters, to overcome these lacks of uniformity in writing, a reconciliation
phase will be carried out.

• City: this field indicates the city, or the municipality in which the service is
located.

Architecture and Knowledge Modelling for Smart City p. 51

• Provinces: string formed by 2 uppercase letters that indicate the abbreviation of
the province.

• Website and email: this 2 fields contain respectively, the website url and the
email address of each services. They are often empty.

• Notes: a field that contains various type of information; it is a text field variable
in format and length, which is often empty.

In addition to these fields, the Enogastronomia.csv file, contains an additional field
(closing days) that, as the name suggests, indicates the restaurant's day of closing, and
the file Turismo-accoglienza-georeferenziazione.csv contains the pair of coordinates
that identify the location of each property:

• Closing days: this field indicates the service weekly day of closure. To express
this information a unique notation is used: 3 capital letters to indicate each day,
enclosed by brackets, eg. (LUN).

• Latitude and longitude: this field contains the geographical coordinates in
WGS84format.

3.4.2 Weather Forecast Dataset

The Tuscany region provides information about the weather forecast throughout the
region. In particular provides one XML file, for each of the 286 municipalities which
shows information of various nature, updated twice a day.
Each file is structured in two sections, a first section containing a variety of information
related to the today's date and the main section containing instead a series of predictions
regarding also the next four days.
In particular, for the current date there are some fields that describe the characteristics
relative to the sun and the moon as the time of sunrise, the time of sunset, the maximum
height of the sun and the time of its achievement.
The forecasts section contains different information for each day, based on the
proximity with today's date
In the following table is possible to observe which information are provided for each
days of the five interested by forecast.

Timing Involved Days Fields
Day Day 0, Day 1, Day 2, Day

3, Day 4
• Minimum Temperature
• Maximum Temperature
• Humidity
• UV rays
• Rain
• Wind direction

Night Day 1, Day 2 • Average Temperature
• Perceived Temperature
• Humidity
• Rain

Architecture and Knowledge Modelling for Smart City p. 52

• Wind direction
• Snow level

Morning Day 0, Day 1, Day 2 • Average Temperature
• Perceived Temperature
• Humidity
• Rain
• Wind direction
• Snow level

Afternoon Day 0, Day 1, Day 2 • Average Temperature
• Perceived Temperature
• Humidity
• Rain
• Wind direction
• Snow level

Evening Day 0, Day 1, Day 2 • Average Temperature
• Perceived Temperature
• Humidity
• Rain
• Wind direction
• Snow level

Table 2 - Information provided per day inside weather forecast

Note: The fourth and fifth day from the present one, only contain rain and winds
forecasts. The forecast for each days of the week are provided in two ways: first each
day is divided into two section, night and day, and for the day most closet to taday, is
used also the division in Morning Evening and Night.

Figure 6 - Web service response for weather forecast

Architecture and Knowledge Modelling for Smart City p. 53

Inside the starting section of each XML file, the following XML tag can be find:
• Comune: this tag indicates the municipality to which the forecast refers;
• Aggiornamento: this tag saves the creation time of the XML file;
• time_ms: this tag contains a timestamp, i.e. the number of milliseconds from

1970 to the time contained into the tag Aggiornamento;
• Almanacco:

o sole_sorge: this tag contains the sunrise time;
o sole_tramonta: it contains the sunset time;
o sole_altezza: the tag indicates the maximum height of the sun in degrees;
o ora_altezza: this tag provides time when the sun is at its greatest height;
o luna_sorge: it corresponds to the time when the moon rises;
o luna_tramonta: the tag indicates the time when the moon sets;
o fase: the tag specifies whether the moon is in ascending or descending

phase;
• Previsione:

o idday: the contents of the tag is a number from 1 to 5 that represents the
day of the week to which the forecast refers (1 and 5 is to present the
fifth starting today);

o ora: the contents of the tag indicates one of the 5 times of the day
provided (day, morning, afternoon, evening or night);

o datadescr: this tag contains the name of the weekday (Monday -
Sunday);

o simbolo-descr: this tag contains the description of the symbol used for
the prediction of rain and winds.;

o simbolo-image-type: the tag indicates the type of information expressed
in the previous tag. If equal to "C", the information concerning the rain
forecast, and if it is equal to "W" it refers to the wind.;

o uv: the tag contains an integer that indicates the power of ultraviolet rays;
o temp_type="min": the tag contains information about the minimum

temperature in Celsius;
o temp_type="max": the tag contains information about the maximum

temperature in Celsius;
o temp_type="": this tag contains information about the average

temperature in Celsius;
o temp_type="perc": the tag contains information about the perceived

temperature in Celsius;
o quota_neve: the content of the tag is the height above the sea level (in

meters) at which it is possible to find snow.;
o um: the content of the tag is an integer that indicates the percentage of

humidity in the air.

Architecture and Knowledge Modelling for Smart City

3.4.3 Tram Line Dataset

The City of Florence’s Open Data Portal provides a resource that describes the path
covered by the unique tram line in Florence. The
is a compressed version of a KML (keyhole markup language) file. KML (
Markup Language) is a lightweight XML
and Google Maps. KML specifies only a basic set of feature
with the possibility to call data from network resources or to point to network resources.
In addiction it can call geometry described by a COLLADA (.dae) file and offers ways
to specify custom schema features. The KML file specif
(geographical bookmarks, images, polygons, 3D models, textual descriptions and
labels) to be displayed in
longitude and a latitude. The coordinates provided in these files compl
standard WGS84 (World Geodetic System of 1984)

The files in KMZ format always begin with a series of information used by Google
Earth to determine the location of the initial
LookAt tag.
Further this first section, is possible to find, into the file, the section containing the
geographical reference of the element concerned. This section changes with the type of
element that represents, among the 4 possible:

• Punctual element, i.e. each resource is identified by a point;
• Linear element, i.e. element composed by a set of coordinates;
• Areal element, i.e. a string of coordinates where the first and the last position

coincide, and it can al
• Mixed element, that may contain a variable number of positions of any previous

types.

Following is the list of top tags contained in the KMZ file and their meaning:
• Name: this tag contains an identifier of the

name and it does not have a standard form;

Architecture and Knowledge Modelling for Smart City

Tram Line Dataset

The City of Florence’s Open Data Portal provides a resource that describes the path
covered by the unique tram line in Florence. The file is provided in KMZ format, which
is a compressed version of a KML (keyhole markup language) file. KML (

) is a lightweight XML-based language schema used by
. KML specifies only a basic set of features commonly used in 3D GIS

with the possibility to call data from network resources or to point to network resources.
In addiction it can call geometry described by a COLLADA (.dae) file and offers ways
to specify custom schema features. The KML file specifies a set of elements
(geographical bookmarks, images, polygons, 3D models, textual descriptions and
labels) to be displayed in Google Earth, Maps and mobile. Each location must have a
longitude and a latitude. The coordinates provided in these files compl
standard WGS84 (World Geodetic System of 1984) [W3C geo].

Figure 7 - Tram line KML file

The files in KMZ format always begin with a series of information used by Google
Earth to determine the location of the initial view; this information are closed into the

Further this first section, is possible to find, into the file, the section containing the
geographical reference of the element concerned. This section changes with the type of

, among the 4 possible:
Punctual element, i.e. each resource is identified by a point;
Linear element, i.e. element composed by a set of coordinates;
Areal element, i.e. a string of coordinates where the first and the last position
coincide, and it can also be formed starting from disjoint areas.
Mixed element, that may contain a variable number of positions of any previous

Following is the list of top tags contained in the KMZ file and their meaning:
Name: this tag contains an identifier of the file. Usually corresponds to the file
name and it does not have a standard form;

 p. 54

The City of Florence’s Open Data Portal provides a resource that describes the path
file is provided in KMZ format, which

is a compressed version of a KML (keyhole markup language) file. KML (Keyhole
based language schema used by Google Earth

s commonly used in 3D GIS
with the possibility to call data from network resources or to point to network resources.
In addiction it can call geometry described by a COLLADA (.dae) file and offers ways

ies a set of elements
(geographical bookmarks, images, polygons, 3D models, textual descriptions and

obile. Each location must have a
longitude and a latitude. The coordinates provided in these files comply with the

The files in KMZ format always begin with a series of information used by Google
view; this information are closed into the

Further this first section, is possible to find, into the file, the section containing the
geographical reference of the element concerned. This section changes with the type of

Linear element, i.e. element composed by a set of coordinates;
Areal element, i.e. a string of coordinates where the first and the last position

so be formed starting from disjoint areas.
Mixed element, that may contain a variable number of positions of any previous

Following is the list of top tags contained in the KMZ file and their meaning:
file. Usually corresponds to the file

Architecture and Knowledge Modelling for Smart City p. 55

• Placemark: it is the tag that contains fields that indicate information about the
placeholder that will be drawn on the map;

• Description: this tag is inside the Placemark tag and it contains a number of
variable information. This information is written in HTML, and to avoid
interference with XML, the CDATA command is used, which allows to write a
text in any format, without the XML parser try to interpret it.

• LookAt: the LookAt tag contains a number of fields that inform Google Earth on
what is the position to be taken; these parameters indicate the user's position
relative to the object.

o Longitude and latitude: this 2 tags indicate latitude and longitude
expressed according to the WGS84 notation;

o Altitude: height in meters. The reference point for this measurement
depends on altitudeMode tag described below;

o Range: a tag that contains the distance between the point specified by
latitude, longitude, altitude and the position of the observer (in meters,
Figure 7);

o Tilt: it contains the angle between the direction of the viewpoint
(LookAt) and the normal to the Earth's surface (see Figure 7). This field
can take values from 0 to 90 degrees and it cannot have negative values;

o Heading: this tag identifies the direction of the point of view expressed in
degrees (default value is equal to zero, which corresponds to the north)
and its values ranging from 0 to 360 degrees;

o AltitudeMode: a tag that specifies how the altitude must be interpreted: it
can assume 3 values, i.e. clampToGround that specifies to not consider
the altitude value contained in LookAt, relativeToGround that interprets
the altitude as a value in meters above ground level and, finally, absolute
that interprets the altitude value in meters from sea level.

• IconStyle:
o ColorMode: can take only two values, random thank to which the color

of the placemark is randomly assigned or normal that has no effect on
the indicator;

o Icon/href: this tag includes an HTTP address or a local path used to load
an icon;

• LabelStyle: the value contains in this tag specifies how the name of a feature is
drawn on the 3D viewer. It can indicate the color, the colorMode or the scale of
use;

• Point: it indicates a geographic location defined by latitude, longitude and
altitude (optional);

• MultiGeometry:
o LineStrings: this tag defines a set of segments connected with one

another. The set is formed by two or more coordinate separated by space;

Architecture and Knowledge Modelling for Smart City p. 56

o Polygon: a tag to defines an exterior boundary and zero or more interior
boundaries. Each border is composed in turn of a LinearRing. All
coordinates are expressed in a clockwise direction;

o LinearRing: with this tag is possible to represents a closed line; it is
represented by a set of coordinates where the first corresponds with the
last.

3.4.4 Statistics Dataset

The city of Florence offers a long series of files in CSV format, through its Open Data
Portal, among which 6 files with different content from each other, were selected and
analyzed during the initial phase of this research project. Below, a brief description of
each file, is provided:

• Public door access and taxi: a dataset that contains the number of access to
public door and taxi from 2009 to 2011, split per month;

• Resolutions: this dataset contains all the Resolution of the Regional Council;
• Tourist arrivals: a dataset that contains the number of tourist arrivals to the city

of Florence’s accommodation, by year and nationality of origin, from the year
2006 to 2010;

• Afaf: it contains the number of tickets sold, season tickets sold, number of
passengers and the ATAF network length in Km inherent to the public transport
service, per year; this dataset contains data from 2001 to 2010;

• Car accidents: this dataset contains, for each streets of the city of Florence, the
number of car accidents happens on these streets, and the comparison with
previous years. The data shall include: car accidents on the observation date and
total car accidents of the previous two years.

• Circulating vehicles: the dataset contains the number of vehicles registered in
the municipal area, by ACI (Italian automobile club) per year. Data is related to
years from 2001 to 2010.

For each dataset analyzed, the main fields and their meanings are listed below:
• Public door access and taxi:

o Year: this field contains the year to which the statistics refer;
o January to December: it contains an integer that indicates the number of

accesses in the specified month;
• Resolutions:

o Year: fields that contains the year of the decision;
o Date: it contains the issue date of the resolution in year/month/day

hour:minute:seconds.milliseconds format;
o Note: this field contains an integer that uniquely identifies each acting

within the file;
o Subject: a text field to give a brief description of each resolution;

Architecture and Knowledge Modelling for Smart City p. 57

o Link_Delibera: it contains an URL that allows to access to the resolution
file online, in PDF format.

• Tourist Arrivals:
o Year: it contains the reference year of the statistics;
o Arrivi_italiani: this field contains an integer that indicates the total

number of Italian tourists who visited the city in the specific year;
o Arrivi_stranieri: an integer field that indicates the total number of foreign

tourists who visited the city in the specific year.
• Afaf:

o Year: fields that contains the year to which the statistics refer;
o Numero_biglietti_venduti: an integer field containing the number of

tickets sold in a specific year;
o Numero_abbonamenti_venduti: an integer field containing the number of

seasonal tickets sold in a specific year;
o Numero_passeggeri: this field contains an integer indicating the total

number of passengers in the specified year; L
o Lunghezza_della_rete_in_km: it contains the length of the entire road

network covered by all lines ATAF, in kilometers.
• Car accidents per road:

o Address: it contains the street name to which the statistics refer;
o Sinistri2009: this field contains the total number of car accidents incurred

in 2009 on the specified road;
o Sinistri2010: this field contains the total number of car accidents incurred

in 2010 on the specified road;
o Sinistri2011: this field contains the total number of car accidents incurred

in 2011 on the specified road;
o Deaths: it contains the total number of deaths that occurred in the last 3

years on the indicated street;
o Injuries: the field contains the total number of injuries occurred in the

last three years on the indicated street;
o Bruised: a field that indicates the total number of bruised in the last 3

years on the indicated street;
o Damage: this field contains the total number of accidents that have

occurred in the last 3 years on the indicated street.
• Vehicles circulating:

o Year: fields that contains the year to which the statistics refer;
o Autovetture_registrate_circolanti: integer field that contains the number

of cars recorded and circulating in the Florence area in the specific year;
o Motocicli_e_ciclomotori_circolanti: integer field that indicates the

number of motorcycles and mopeds registered and circulating in the
Florence area, in the specific year;

Architecture and Knowledge Modelling for Smart City p. 58

o altre_tipologie_di_veicoli_circolanti: integer field that contains the
number of vehicles that not belong to the previous categories, circulating
Florentine area, in the specific year;

o totale_veicoli_circolanti: this field contains an integer indicating the total
number of vehicles circulating in the Florence area in the specific year.

3.5 Real Time Data

In the initial phase of the project, thanks to the Tuscany Region, it was possible to
access real-time data provided by the Mobility Information Integration Center (MIIC)
that is defined in [MIIC-DateX] as a project of the Tuscany Region that deals with the
real-time collection of information relating to public transport, traffic, emergency
services and general services, provided by federated entities to MIIC, and their
distribution by web service. In particular, the data produced by sensors on the traffic of
Tuscany, by car park operators of the major cities of Tuscany and devices AVM
(Automatic Vehicle Monitoring) installed on part of public transportation in the
metropolitan area of Florence, were analyzed.

3.5.1 MIIC Client Pull Service

Measurements of traffic sensors and data relating to the state of the parking are exposed
through the MIIC web service that provide the clientPullService that have only the
getDatex2Data method. This method returns an object of D2LogicalModel type that
contains structured data in XML format according to the standard DATEXII, that is a
standard supported by the European Commission for the exchange of information
between centers of road traffic management, traffic information centers and service
providers and that has become the standard reference for all applications that access
dynamic traffic information in Europe [DateX].
The web service is available in two different forms, the "open" one also called
"Standard Catalog" that exposes a limited amount of data, and the "authenticated" one,
also called "catalog in Publish/Subscribe", that performs an authentication checks. The
authentication process consists of a credentials check provided by the MIIC during a
registration phase and that has resulted in the creation of a new MIIC's Users, which can
be identified by a Username and a Password. Users are then assigned to one or more
entity catalog; the latter is a logical container that groups together one or more entities
(i.e. D2LogicalModel) subjected to extraction of data according to a given criterion for
classification [MIIC-DateX]. For example, in a catalog of the various Parking entities,
each Parking can be grouped according to the criterion of geographic identity (the same
City), proximity (the same geographical area), of importance (the main car parks, or the
largest car parks, etc.).
According to what has been seen so far, for each type of data, two types of web service
are made available; below the list of web service endPoint, and the corresponding link

Architecture and Knowledge Modelling for Smart City p. 59

to get the WSDL files (Web Services Description Language), analyzed during the initial
phase of the project:

• Parking Standard Catalog:
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientPullService
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientPullService
?wsdl

• Parking catalog in Publish/Subscribe:
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientSecurePull
Service
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientSecurePull
Service?wsdl

• Sensors Standard Catalog:
http://www501.regione.toscana.it/MIICWebServices/sensoriClientSecurePullSer
vice
http://www501.regione.toscana.it/MIICWebServices/sensoriClientSecurePullSer
vice?wsdl

• Sensors Catalog in Publish/Subscribe:
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientSecurePull
Service
http://www501.regione.toscana.it/MIICWebServices/parcheggiClientSecurePull
Service?wsdl

The information exchange with the web services is realized thanks to the SOAP (Simple
Object Access Protocol) protocol. The invocation occurs through the request method
HTTP Post which addressing the service endpoint and the following HTTP headers:
Username and Password (i.e. the credentials provided by the MIIC), RequestCatalog (a
number, also provided by the MIIC, that identifies the Catalog from which the data will
be received) and SOAPAction. The last header is instead enhanced with the URI
identifying the method to invoke, in this case it is as follows:
http://datex2.eu/wsdl/clientPull/1_0/getDatex2Data where the reference to the
getDatex2Data method is explicit. WSDL does not require the setting of parameters, in
fact the body of the HTTP message consists of the opening and closing tag of a SOAP
message, as shown in Figure 8.
The MIIC provides data also through the portal's graphical interface of the Osservatorio
Regionale per la Mobilità ed i Trasporti [Osservatorio Trasporti] accessible by a
certificate provided during a registration process. This portal has been used to integrate
the data downloaded as previous description, with information that is not available in
messages of D2LogicalModel type.

Architecture and Knowledge Modelling for Smart City p. 60

The result of a call to one of the web service previously indicated is formed by two
elements: Exchange and PayloadPublication. The first element is the same for both
variants, while the second contains the actual data of the measurements and so its
internal structure varies according to the type of data, with exception for
publicationTime and publicationCreator fields, that contain respectively the creation
time of the given and the name of the institution that providing the data. In Exchange
there are mainly generic information about the data exchange such as the data provider
and the Client identity and the result of the transfer.

Figure 8 - Exchange tag content

In Figure 9 a map of Tuscany, generated by the Osservatorio Regionale is shown, where
the position of the sensors, which produce the measurements transmitted from the web
service, can be seen.

Figure 9 - Sensors position map

Architecture and Knowledge Modelling for Smart City p. 61

All sensors are located in the biggest city of the provinces of Florence, Grosseto,
Livorno, Massa and Pisa; there are also active sensors in the municipality of Arezzo, not
visible on the map. There are 158 catalogs, of which only 71 are currently active. A
catalog or siteTable corresponds to a set of sensors usually located on the same street,
and it is identified with a code such as FI055ZTL001. Each sensor of the group has a
unique code which consists of the siteTable identifier with an extension of two-digit
progressively numbers, for example FI055ZTL00101, FI055ZTL00102, etc.
The element PayloadPublication of each sensors contains the
measurementSiteTableReference field that provides the siteTable identifier and for each
sensor of the examined siteTable, there are one or more siteMeasurements elements.
This tag contains the fields measurementSiteReference that identifies the sensor,
measurementTimeDefault that contains date and time of the measurements according to
the DateTime W3C format [DateTime] and a series of elements, which implement the
TrafficValue interface. Below the field list of this interface, is provided, for a more in-
depth description, see [MIIC-DateX]:

• AverageDistanceHeadway: this tag contains the average distance between
vehicles transiting, expressed in meters;

• AverageTimeHeadway: a tag that contains the average time interval between
two transits, in seconds;

• VehicleFlow: this tag indicates the number of transits per hour;
• AverageVehicleSpeed: it contains the average speed of transiting vehicles in

km/h;
• Concentration: a tag that contains the number of vehicles per kilometer;
• Occupancy: in this tag, the percentage of occupation of the road is saved;
• Threshold: this tag contains the percentage of vehicles whose speed is less than

the value defined in value;
• Value: tag that indicates the reference value for the previous tag Threshold;
• Period: a tag contains the value of the measurement intervals, in seconds;
• Time: it contains the measurement time, it is equivalent to

measurementTimeDefault.

Each sensors, according to the catalog, making measurements every 5 or 10 minutes and
a call to the web service returns the latest measurements of each sensor, up to a
maximum of 6.
For example, sensors of catalog 15, measure the traffic every 10 minutes (period of 600
seconds) and each sensor contributes to payload with its last 2 siteMeasurements.

Architecture and Knowledge Modelling for Smart City p. 62

In Catalog 48, instead, sensors make a measurement every 5 minutes and the Payload
are shown the last 6 siteMeasurements of each sensor.
The main problem of this data is the lack of information to geo-localize the sensors; in
fact there is no information on their position, however, on the portal of Osservatorio dei
Trasporti, the road name in which each sensor is installed, can be recovered to manually
associate it to each sensor.
Among the 71 functioning catalogs, only 64 produce at least one of the data described
above. Specifically, only 14 catalogs measure the averageDistanceHeadway,
averageTimeHeadway is measured by all sensors (but half of them have the
measurement fixed to “-1”) as vehicleFlow, that appears in all the payload (but in 7
sensorTable the detected value is fixed to - 1) and averageVehicleSpeed; The value of
concentration is measured only by 26 sensors groups; occupancy is present in the
payload of only 15 catalogs; threshold and value appear in all measurements. In
summary, only 15 catalogs correctly produce the complete set of measurements
described above, and they are all located in Empoli and Grosseto areas.

Figure 10 - Parking sensors map

Architecture and Knowledge Modelling for Smart City p. 63

Figure 10 is generated through the portal of Osservatorio dei Trasporti, and it shows the
car parking for which the MIIC provides information on its status of employment, in the
main centers city of Tuscany: Arezzo, Empoli, Livorno, Florence, Grosseto, Massa and
Lucca.
Each city corresponds to a different catalog; the main element of the parking payload is
SituationRecord, and there is one for each car parking belonging to the catalog. This
interface can be implemented by different web services, and also it has a group of fields
devoted to general information, common to all the possible specializations, and another
group that changes depending on the data type.
The standard DATEX provides a more complex structure for the SituationRecord
interface, compared to that actually realized by the MIIC. Below is a description of the
individual fields, for which in [MIIC-DateX] are added more details:

• situationRecordCreationTime: The tag contains date and time of message
creation, in DateTime format W3C. Equivalent to publicationTime;

• situationRecordObservationTime: it contains date and time of the survey, in
DateTime format W3C;

• situationRecordVersion: tag set to '1' to parking payload;
• situationRecordVersionTime: tag equivalent to situationRecordCreationTime for

the parking payload;

There is also a Validity class consisting of:
• validityStatus: tag sets to 'active' for the parking payload;
• overallStartTime: tag with content equivalent to situationRecordCreationTime to

the parking payload.

Finally, the groupOfLocations class consists only by the predefinedLocationReference
tag, enhanced with the identification code of the parking.

As regards the second part of situationRecord, the one specializes in description of the
parking state, in Figure 11 is shown an example of situationRecord element that
represents the fields returned by the web service during the testing phase. The following
describes tags that make up this class:

• carParkIdentity: tag that identifies the car parking, equivalent to the content of
groupOfLocations;

• carParkOccupancy: tag containing the percentage of occupied lots;
• carParkStatus: tag that contains a string that describes the parking state;
• exitRate: tag that indicates the number of output vehicles per hour;
• fillrate: it contains the number of inbound vehicles per hour;
• numberOfVacantParkingSpaces: tag containing the number of free lots;
• occupiedSpaces: tag indicating the number of occupied lots;

Architecture and Knowledge Modelling for Smart City p. 64

• totalCapacity: tag for the total number of lots.

Figure 11 - SituationRecord example

The data described above were integrated with the name and code of the street where
each parking is located; these information are in fact only available on the Osservatorio
dei Trasporti portal, but they cannot be downloaded with a static link. So, a MySQL
table is been created, which contains correspondence between carParkIdentity and
additional data related to its position. In conclusion, data obtained from the web service
parcheggiClientSecurePullService are in almost cases complete, in fact almost the
surveys relating to parking census return valid data for the fields described above. At
the moment only exitRate and fillrate are exceptions, that are measured by only a few
parking in the Florence area.

3.5.2 AVM client pull service

The web service avmClientPullService differs from the web services previously
described, mainly for the structure of data and for the methods to invoke it. The related
RFC [MIIC-AVM] provided by MIIC, provides a complete description also for some
features that have not yet been implemented. So, the work done, took advantage of a
web service version that has limitations, which will be underlined when encountered.
The endpoint of the web service is:
http://www501.regione.toscana.it:80/MIICWebServices/avmClientPullService
the communication protocol is SOAP and, also in this case, there is only one defined
method: getAvmMessage. In contrast to what was seen previously not access credentials
are required, while the body of the SOAP request requires parameters setting.

Architecture and Knowledge Modelling for Smart City p. 65

The structure of information exchanged during the communication can be ideally
divided into two parts, exchange and listaCorse; this latter contains the AVM detections
provided by MIIC following a well-formed request. The exchange item is used by the
client to fill out the request and, during the response of the server, to provide
information on the outcome of the communication. In detail, fields involved are the
follows:

• idConsumer: tag that contains the client identifier, i.e. the user of data;
• serverID: this tag instead contains the server identifier, that corresponds to the

string "SO_MIIC";
• oraInvioMessaggio: it contains date and time of the request, in format W3C

dateTime;
• Keepalive: tag to be set to "True" if you just want to check the status of the web

service, without having to set other request parameters;
• pullType: tag that specifies the manner in which data are required to the server.

It can be "catalog" or "filter"; differences between the two values will be
specified below;

• pushType: tag not significant for the service avmClientPullService;
• catalogueReference: tag that takes value in case pullType = "catalog";
• filterReference: tag significant in case pullType = "filter"; it contains a series of

sub-elements, like codiceLinea, codiceCorsa and codiceCorsaLogico, with
decreasing priority;

• response: tag where the server indicates the outcome of the communication; it
may be "ok" if successful, "notOk" in case of error or "Stillalive" which indicates
that the service is active, in case of a "keepalive" request;

• notOkInfo: tag that provides the details of any error, if response = “notOk”.

As anticipated, the MIIC has not completed the development of the web service, and in
particular is not currently active the pullType = "catalog" mode, and filterReference
refers only to codiceCorsaLogico, valued as codiceCorsa, so for simplicity will be
referred to the latter value.
So in summary, to obtain data via the getAvmMessage method, it is necessary to set
pullType = "filter" and to assign a value to the field codiceCorsaLogico.
In order to assign a valid value to codiceCorsa, so it is recognized by the server, the
RFC in [MIIC-AVM] refers to a "Ride DataBase", which should be created by the MIIC
in collaboration with local data providers and subsequently made available to web
service users. At the moment, however, this database has not been created and, on the
website of Osservatorio dei Trasporti, there are no links that allow to download a list of
asset rides and related codes. Looking forward official data, a temporary solution has
been developed based on data coming from the avmClientPullService web service,
through the web interface mentioned above.
We clarify the concept of race: it is the path that a public transport perform from a start
terminus to an end terminus, that is each time a vehicle leaves a terminus, a new ride is

Architecture and Knowledge Modelling for Smart City p. 66

enabled, associated with a specific code, which ends on arrival to the end terminus. This
ride is usually repeated the next day with the same code and the same departure time,
arrival time, line, stops, etc. These ride codes consist of 7 digits, they range from
4500000 to 4800000 and then, based on this information, a temporary database has been
created, populated thanks to calls to the web service, which prove one by one each
integer in that range and store into the database, only the codes correctly interpreted by
the server.
The tags contained into each ride element are:

• codiceCorsa: tag valued at inquiry phase;
• codiceCorsaLogico: this tag contains the same value of codiceCorsa;
• codiceLinea: it contains the identification code of the line related to

codiceCorsa;
• codicePercorso: the tag contains the identification code of the path;
• enteErogante: tag that identifies the company that provides the Local Public

Transport (LPT) service;
• enteGestore: tag that identifies the LPT service manager;
• Message type: tag that can assumes the following values: "synchronous" to

indicate a programmed transmission of data at regular intervals, "event" for
sending important data or unplanned data, "modification" to report a change in
the service;

• variation: tag present in case of Message type = “modification", which contains
the description of the change;

• info: tag present in case of "synchronous" or "Event" Message type.

The info element contains key information about the state of race in detail:
• statoCorsa: this tag contains an integer set to 0 if the ride is in advance, 1 if it is

late and 2 if it is in time;
• minutes: tag that indicates the minutes of delay or advance;
• oraInvio: tag containing the date and time when the message was sent, in format

W3C DateTime;
• latMezzo: tag indicating the latitude of the vehicle in format WGS84 Datum;
• longMezzo: tag indicating the longitude of the vehicle in format WGS84 Datum;
• idMezzo: it contains the identification number of the vehicle;
• tipoEvento: in case of Message type = "evento", this tag can be "partito" means

the vehicle is departed from terminal, "intermedio" that is, the vehicle is at an
intermediate stop, "arrivato" i.e. it is arrived to the terminus, "interrotto" i.e. the
service has been interrupted, "riabilitato" means the service is restarted after an
interruption;

• ultimaFermata: tag forming by the couple idFermata and orarioFermata,
indicating the identifier and the time of the last stop made by the vehicle;

Architecture and Knowledge Modelling for Smart City p. 67

• listaProssimeFermate: this tag contains an ordered list of pairs idFermata and
orarioFermata, indicating the next stop forecast for the ride;

• warning: this tag provide a description of the interruption reason when
tipoEvento = "interruption";

• carico: tag indicating the maximum number of passengers on the vehicle;

Thanks to the tests carried out on this web service, it was found that
listaProssimeFermate is associated with the vehicle rather than to the race, in fact
initially this tag contains some of the planned stops of the route, listed in an orderly
way, but when the vehicle approaches the terminus of the ride in progress, in the tag are
also added the scheduled stops for the next ride that correspond to the return path, which
will start after the same vehicle reaches the terminus, which marks the end of the race.
So the message of synchronous type sending before a message of type "arrivato"
contains the list of the upcoming stops that will do the same vehicle, under a new ride
code.
A limitation of this web service is that currently monitors a small number of lines (lines
2, 4, 6, 13, 17, 23, 31, 36) compared to the total amount of those operating on the
Florence area, but the procedure for access to all the lines is already in progress.

Architecture and Knowledge Modelling for Smart City p. 68

Chapter 4

4. Km4city Ontology

With the availability of the data presented in the previous chapter, the development of a
unified and integrated ontology for smart city including transport, info-mobility and
large set of other open data, has become necessary.
In fact, as seen in the introduction, the presence of an ontology allows guiding and
automate the ingestion process, exploiting a range of algorithms for: data cleaning,
verification and validation, reconciliation, enrichment with VIP names on dbPedia,
enrichment with geonames, enrichment of digital location and point of interests
descriptions, etc. see [DICCOF].
For these reasons, an ontology capable of mapping the different available data, has been
created, trying to give it a certain abstraction degree, that allows to use it even in
different scenarios compared to that in which it was developed.
In this chapter the concept of ontology will be initially clarified and then, the state of the
art of ontologies in the field of Smart City, will be analyzed. Finally, the Km4city
ontology, that is the ontology developed during the research carried out in the PhD, will
be presented.

4.1 What is an ontology?

An ontology is actually one of the most efficient methods to formally represent a set of
concepts.
Ontology is a term that derives from philosophy: it appears for the first time in the
writings of Parmenides (about 504 BC) and then derives from the greek "eon logos",
meaning "speech ENTITY": ontology is concerned, in fact, the study of being, or of
what it is and its basic categories.[Gruber, 1993]
In computer science, ontologies are most used in the field of Artificial Intelligence, for
the classification of the data; T.R. Gruber in fact, defines an ontology as a “specification
of a conceptualization” [Gruber, 1993]. He states that a formal representation of a set of

Architecture and Knowledge Modelling for Smart City p. 69

knowledge is a conceptualization, i.e. a set of objects, concepts and relationships,
between them that exist in a particular area of interest. A conceptualization is, therefore,
a simplified and abstract representation of the particular field of knowledge to be
represented, for any purpose.
An ontology is thus an attempt to formulate a exhaustive and rigorous conceptual
scheme of a given domain, and this pattern can take several forms, in fact, there are
different types of ontologies, and below, a classification based on the language
expressivity and formality, is explained [Roussey et al., 2011]:

• Information Ontology : it is composed of diagrams and sketches used to clarify
and organize the idea of collaborators during the development of a project. This
type of ontologies are only used by humans and among their characteristics,
there are the ease of modification, scalability, conciseness, schematization.
Information ontologies focus on concepts, instances and their relationship, and
they are main described by means of visual languages.

• Linguistic Ontology: dictionaries, vocabularies, dictionaries, taxonomies,
folksonomies, thesaurii and lexical database, are some examples of this type of
ontologies, that mainly focus on terms and their relationships. Their aim is to
present and define the used vocabulary, which is the results of a terminology
agreement between the interested users' community. SKOS (Simple Knowledge
Organization System) [SKOS] is the preferred language to describe Linguistic
ontology.

• Software Ontology: this type of ontologies provide conceptual schemata whose
main focus is normally on data storage and data manipulation, and they are used
during software development activities, with the aim to guaranteeing data
consistency. Software ontologies are normally defined with conceptual modeling
language used in software and database engineering like Entity-Relationship
Model Language or Unified Model Language (UML) [Cranefild, 2001].

• Formal Ontology: they require a clear semantics for the used language in
defining concept, and strict rules about how to define concepts and relationships.
All this can be obtained by using first order logic [Smullyan, 1968] or
Description Logic [descLogic] where the meaning of each concept is guaranteed
by formal semantics [Borgo, 2004]. An example of this type of ontologies, is a
Knowledge Base (KB), that is formal system to capture the meaning of an
adopted vocabulary via logical definitions. The main purpose of formal ontology
is reasoning. OWL [OWL] is the standard recommended by W3C to define this
type of ontologies.

The interaction between people and software systems leads to the search of a common
and shared system to communicate and understand information, so the idea is to use a
shared vocabulary to describe the content of the resources, the semantics of which is
described in a reasonably unambiguous format and processable by a machine.

Architecture and Knowledge Modelling for Smart City p. 70

Any information will be mapped by its own ontology and inserted in a context that
creates relationships with other ontologies, in order to create logical relationships that
allow, for example, to distinguish the meaning of the word "root" in the context of a
"natural environment" than to "root" in a context of "arithmetic", that is understandably
be different for any program semantics.
Thanks to this type of structure, all information will have a complete meaning in a
certain context, according to the mechanism of information association of the human
brain. So an ontology allows a conceptualization of explicit semantics of the data, with a
more syntactically and semantically richer language, and with an agreed terminology so
that the ontology can be reused.

4.2 State of the Art of Smart City Ontology

Before starting to develop the Km4city Ontology [Bellini, Nesi, Rauch, 2014], a study
on the state of art of ontologies related to smart cities, was completed. From this
preliminary analysis the following ontologies has resulting as the most interesting:

• The SCRIBE Ontology, realized by IBM in 2011;

• The Ontology of Transportation Network (OTN), realized by the Department of
Computer Science, University of Munich, in 2005;

• The Semantic Sensor Network Ontology (SSN), realized by the W3C Semantic
Sensor Network Incubator Group, in 2009;

• The StarCity Ontology, realized by the IBM Research (Dublin, Ireland) in 2013;
• The SEMANCO Ontology, realized in the homonymous European project, co-

funded by the European Commission within the 7th Framework Programme;
• The BOnSAI Ontology, realized as part of the Smart IHU project of the

International Hellenic University.

In the following paragraphs these ontologies will be briefly described.

4.2.1 SCRIBE

The only ontology that can be found on the web, created especially for smart city and
presented as a "help to transform cities into Smart Cities" is SCRIBE [SCRIBE], made
by IBM, on which not much information is available online free of charge.
SCRIBE is a semantic model and tools for "smarter" cities, based on data gathered from
cities around the world, which try to solve some challenges like integration of multiple
tools and modeling technologies, such as RDFS, OWL and UML. The aim of the
SCRIBE team is to realize an authoritative information model that captures dynamic
aspects of as much as possible service in the city.
The ontology is realized keeping in mind that the organizations of each city is very
specific; furthermore, to model a Smarter City operation, corresponds to model the flow

Architecture and Knowledge Modelling for Smart City p. 71

of events and messages through the system, so the ontology is compatible with both
standards CAP (Common Alerting Protocol) [CAP] e NIEM (National Information
Exchange Model) [NIEM].
The first version of SCRIBE includes the following main sub-taxonomies:

• CityPhysicalBase, which includes the physical objects (geospatially and
temporally based) in the city landmarks, roads, etc.;

• EntityRoleBase, to describe organizations, people, items (i.e. entities as in
NIEM) and their roles;

• EventAndMessageBase, is based on CAP, and include event organized
temporally and causally, such as ExternalEvents (like storms, road work),
Message (a Road Work Advisory), WorkItem (Road Work Work Item) and a
SystemEvent (application alert).;

• MeasurementBase, for measurements (height, length) and measurement units
(inches, cm);

• OrganizationBase, which captures the city’ organization and the set of service
areas;

• ProtocolBase, to describe the city protocols as a set of protocol steps;
• SCGeo, that is the geospatial core sub-ontology;
• TimeBase, an extension of Time ontology [TimeBase].

In essence, the SCRIBE is not closed, in fact it consists of a Core Model that includes all
common classes views above, which can be expanded with the extensions of the domain
and the customization of individual cities: all building blocks (service types, city
departments, KPI taxonomies, CAP messages) can be customized to define the overall
operations of a city.

4.2.2 OTN

Among other ontologies that may be related to Smart Cities, we mention the OTN, that
is the Ontology of Transportation Networks, which corresponds to a direct encoding of
the Graphic Data Files [GDF] in OWL.
This ontology defines the entire transport system, from the single road/rail, to the type
of maneuvering, that can be performed on a segment of road, or public transport routes.

Figure 12 - OTN Ontology portion

As shown in Figure 12, the OTN includes, as in GDF standards, five main concepts
expressed in the following five main macro classes:

Architecture and Knowledge Modelling for Smart City p. 72

• Composite_attributes: it represents classes consisting of composed attributes,
and includes classes like TimeTable, Accident, House_Number_Range,
Validity_Period, Maximum_Height_Allowed;

• Features: it contains all GDF features as OTN classes, such as Railways,
Service, Road_and_Ferry_Feature, Public_Transport ;

• Geometry: this macroclass defines the geometric forms of features, i.e. Edge,
Node and Face classes;

• Transfer points: it is a class which describes how to get from one object to
another (e.g. train stations), which includes classes such as Road,
Road_Element, Building, and others;

• Relationships: this macroclass describes the non-geometric relationships
between features, such as the Maneuvre;

This ontology defines many concepts that can be easily identified in the data set used in
this research. Therefore this ontology was also used as a reference vocabulary for the
definition of the Knowledge Model created.

4.2.3 SSN ontology

On the Web there are also many ontologies related to sensor networks, such as the
SemanticSensorNetwork Ontology, which provides elements for the description of
sensors and their observations [SSN].
This ontology has been defined using OWL 2 ontology language and it has been created
starting from the review of standard and existing ontology.
The SSN ontology is organized, conceptually but not physically, into ten modules; the
full ontology consists of 41 concepts and 39 object properties, directly inheriting from
11 DUL (DOLCE Ultra Light) concepts and 14 DUL object properties. The ontology is
able to describe sensors, the accuracy and capabilities of such sensors, observations and
methods used for sensing. Also concepts for operating and survival ranges can be easily
represented, as these are often part of a given specification for a sensor, along with its
performance within those ranges.
The SSN ontology is built around a central Ontology Design Pattern (ODP), shown in
Figure 13 [Gangemi, 2005] which describe the relationships between sensors, stimulus,
and observations, the Stimulus–Sensor–Observation (SSO) pattern. The ontology allows
to observe the represented domain from four different perspectives:

• A sensor perspective, focused on what senses, how it senses, and what is sensed;
• An observation perspective, focused instead on observation data and related

metadata;
• A system perspective, focusing on systems of sensors and deployments;
• A feature and property perspective, focusing on what senses a particular

property.

Architecture and Knowledge Modelling for Smart City p. 73

Figure 13 - SSN Ontology concept

However, there is a shortage in the ontology presented: locations of platforms, systems
or sensors and temporal properties of deployments are areas where other ontologies are
required to fill in the details.

Currently, inside the ontology Km4City, sensors are not represented, because detailed
data on such devices are not available; in case there is the need to represent the sensors
with greater detail, the ontology SSN will definitely be taken into account.

4.2.4 STAR CITY ontology

STAR-CITY is a system supporting semantic traffic analytics and reasoning for city,
which integrates human and machine-based sensor data. Normally data are provided
with a variety of formats, velocities and volumes, in fact STAR-CITY can handle
structured and unstructured data, static data, stream data and large amount of historical
data.
This ontology has been mainly designed to provide insight on real time traffic
conditions; in fact STAR-CITY relies the semantic interpretation of the contextual
information to derive insights like as analysis and diagnosis, contextual explorations and
predictions of traffic conditions thanks to high accurate research in semantic predictive
reasoning.
The novelty of STAR-CITY lies in the system ability to ingest highly heterogeneous real-
time data and perform various types of inference, that is, analysis, diagnosis and
prediction. These inferences are processed through a combination of various types of
reasoning as Description Logic, machine learning based, rules-based, stream based
[Starcity].
Currently this ontology has been applied to the context of the city of Bologna and
Dublin but can be applied in other cities that expose all types of sensors data.

Architecture and Knowledge Modelling for Smart City p. 74

4.2.5 SEMANCO

SEMANCO [Semanco] is the reference ontology developed within the context of
SEMANCO project (http://www.semanco-project.eu), which seeks to develop tools to
provide data integration, required by Smart City cluster.
The SEMANCO ontology born as a mediator for the integration of technical and
statistical data relating to buildings, which are normally measured and distributed
through a set of heterogeneous data structures. Similar ideas of ontology-driven data
integration can be found in [Calvanese et al., 1998] and [Wang et al.,2009].
The ontology is one of the semantic tools that the project provide to stakeholders
involved in urban planning, to help them to make informed decisions about how to
reduce carbon emission in cities; precisely the ontology is used as a tool for semantic
data analysis and interconnection of various data sources (cadaster, census, building
types, GIS). This ontology should help to interconnect all these data, according to their
semantics, facilitating federated query for the entire data set and enabling semantic
interoperability of tools operating on data.
The ontology building process includes six basic steps: capture of basic terminology
taking into account the user perspective; construction of the initial vocabulary, based
also on official classifications and standards; data source mapping on vocabulary;
encoding the specific ontology using the appropriate tools developed in the project; data
integration based on a model R2RML; ontology evaluation mainly based on its
computation efficiency.
The most recently published SEMANCO ontology consists of 1042 classes, 849
properties and 7192 axioms.

4.2.6 BONSAI

BOnSAI is an ontology for enabling Ambient Intelligence (AmI) in a Smart Building,
which, thanks to its domain-dependent characteristic, specializes the already existing
domain-independent ontologies in order to model a domain-specific concepts of an AmI
application. However, BOnSAI sets off to model many more concepts required in a
Smart environment.
The BOnSAI ontology is designed to enable automation and energy savings at the
International Hellenic University (IHU) where a Smart ambient has been setting, i.e. an
environment equipped with smart devices (actuators and sensors) in large scale. The
interaction with the rest of the system is provided through a web service interface. In
this ontology is possible to find context-related, service-related, hardware-related and
functionality-related classes.
Hardware-related concepts support both energy-awareness, capabilities and services in
the system. All hardware is mainly divided into appliances and devices, which differ in
their ability to provide services; the only thing in common is that they both have a
location so they can be placed according to where they work.

Architecture and Knowledge Modelling for Smart City p. 75

Figure 14 - BOnSAI Ontology

Appliances correspond to non-service-enabled appliances in the building such as
radiator, printer, lighting, air conditioning, etc. The devices, instead correspond to
enabled services smart devices, i.e. sensors and actuators. BOnSAI also includes the
classes of MultiSensor and SensorActuator, which is destined for the devices of dual
purposes.

4.3 The ISO/IEC JTC 1/SG 1 Standard

The definition of a standard relating to Smart Cities is currently underway, by the
ISO/IEC. The analysis of this topic was requested by China, which has also submitted
its contribution for the Smart City Reference Model. The Smart City Reference Model
is the abstract, comprehensive, macroscopical description of Smart City. It provides
guidance for Smart City construction, which will bring the city to a higher, more mature
level, in other words, to provide the city with the ability to put together all its resources
effectively taking advantage of opportunity, but without address challenges. Meanwhile,
Smart City Reference Model also contributes to the analysis of the standardization need
of Smart Cities and the formation of the Smart City standardization roadmap.

The second Plenary Meeting of ISO/IEC JTC1/SG 1 on Smart Cities, was held in
London, in September 2014.
The key message of the report drawn up during the Plenary Meeting, is that the
intelligence of a city refers to its ability to function as a single organism, in which all its
resources are managed and distributed in an efficient way, to help the city and its
citizens to "flourish".

Architecture and Knowledge Modelling for Smart City p. 76

So, for this purpose, a set of intelligent features of the city have been identified. these
characteristics include smart city standard needed, but also enabling technologies that
make smart city applications possible.
In the document four concepts are clarified: the need, described as the expression of
something desired or considered necessary, which is often expressed as a general
concern; a requirement instead is a formal statement of some functionality whose output
contributes to a desired outcome that will satisfy a need. The output is unambiguous, but
not necessarily produce the outcome that leads to the desired result.

The aim of the ISO/IEC JTC 1 is to identify the specific requirements of ITC
standardization, on the basis of an understanding of the special needs of smart cities.

Within the standard there is already a chapter, in which the Enabling Technologies for
Smart Cities are listed, because the future Internet domain landscape, comprises a great
diversity of research streams and related topics for designing alternatives for Smart
Cities. However, the following technology streams are the most connected to Smart
Cities:

• Ubiquitous Computing: a concept in software engineering and computer
science where computing is made to appear everywhere and anywhere. In
contrast to desktop computing, ubiquitous computing can occur using any
device, in any location, and in any format.

• Networking: it increases broadband capacity with 4G LTE and IP Multimedia
Systems (IMS) as well as future networking technologies. Networking
technologies provide the infrastructure of the smart cities to make all the
devices, computers and people can have convenient, reliable and secretive
communication with each other.

• Open Data: Open data, especially open government data, is a incredible
resource that is as yet largely untapped. Open data plays an important role in the
construction and operation of the smart cities. When the smart city is
constructed, open data can provide large amount of data to assist the city
planners and constructors. The citizens and city managers can make right
decisions in city lives and managements.

• GIS (Geographic Information System): it is used to provide location based
services. GIS and location intelligence applications can be the foundation for
many location-enabled services based on analysis, visualization and
dissemination of results for collaborative decision making.

• Big Data: a smart city can be seen as a "system of systems", and several systems
offer large amounts of information. Using model smart city technologies, the
amount of data increases rapidly. This allows to do many things that previously
could not be done: spot business trends, prevent diseases, combat crime and so
on.

Architecture and Knowledge Modelling for Smart City p. 77

• Cloud Computing: it is still helping private sector to reduce costs, increase
efficiency, and work better. From a commercial point of view, cloud computing
is a key concept to enable a global ecosystem, where organizations are able to be
more competitive.

• IOT : Internet of Things (IoT) refers to the interconnection of uniquely
identifiable embedded devices, within the existing Internet infrastructure. The
interconnection of these embedded devices (including smart objects), is expected
to usher in automation in many fields, while also allowing advanced applications
such as Smart Grid.

• E-Government: the development of effective and efficient e-government is a
key prerequisite for the development of Smart Cities. The lack of integration
among various e-government and urban initiatives, and the relatively low level
interest shown by many national authorities, limit the efforts for the
development of local e-government.

• Service Oriented Architecture (SOA): Service-Oriented Architecture (SOA) is
a software architecture design pattern based on different pieces of software that
provide application functionality as services to other applications; it is also
independent of any vendor, product or technology. Adopting a SOA approach
for local government organizations requires a new way of thinking about IT
infrastructure, not only technically, but also organizationally.

• Embedded Network: Embedded networks of sensors and devices into physical
space of the city are expected advancing the ability create by Web 2.0
applications, social media and crowdsourcing. A real time spatial intelligence is
emerging to have a direct impact on city services. Smart Cities with
instrumentation and interconnection of mobile devices and sensors can collect
and analyze data and improve the ability to manage and predict urban streams.

Within the document, there is a section dedicated to the knowledge model: the
heterogeneous data from different sources must be aggregated, so a unified set of
concepts and terminologies became essential. Furthermore, the development of new
applications requires a common knowledge base on smart city. In order to support a
cross-domain and cross-city interoperable knowledge, a core model that collects
concepts from different stakeholders, is necessary, to support a more standardized
knowledge expression. This model should include a taxonomy of different types of
smart devices (mobile device, sensors, etc), the main Smart City areas (mobility, health,
etc.), and the most important components of each sector (for example buses and trams
for mobility).

As shown in the next chapter, the knowledge model made during these three years of
research, can be considered in large part a specialization of the core model proposed
within the standard. In addition, in this thesis is possible to identify references to most
of the enabling technologies, identified as fundamental to a Smart City, in the document

Architecture and Knowledge Modelling for Smart City p. 78

issued by ISO/IEC. The evidence found in official documents, even if not yet in an
official version, incite to continue the search in the direction taken in order to improve
the results obtained to date.

4.4 Km4city, the Knowledge Model for the City

In order to create a knowledge model for Smart City services, following the study
carried out on existing ontologies in the field of smart city and the large number of data
sets that have been analyzed, a new knowledge model has been developed, with the aim
of modeling and establishing the needed relationships among element, thus making a
general data set semantically interoperable (e.g., associating the street names with
toponimous coding, resolving ambiguities), maximizing the compatibility with existing
solutions. The results of this deep analysis phase is the km4City Ontology, a knowledge
model for the city and its service, an ontology formed by 78 classes and 93
ObjectProperties.

Km4City is in fact designed to be the knowledge model for a generic Smart City and its
services, and it allows to interconnect all data sets provided from several PA and mobile
operators, with the aim of creating a single data store useful, for the same PA or third
parties, to develop new innovative applications that improve and simplify the citizens
life.

The work performed started from the data sets available in the Florence and Tuscany
area, presented in previous chapter.

To avoid ambiguity and to increase the understanding of the concepts defined in the
knowledge model and to make the ontology made more adaptable to other urban
realities, a number of reference vocabularies were chosen and used during the
development phase.

Following the analysis of available data relating to the Street Guide provided by the
Osservatorio dei Trasporti, many similarities between the data and part of OTN
Ontology, presented in Section 4.2.2, have been identified.

In order to associate a more precise semantics to the various entities of Km4City
Ontology, an explicit reference to the corresponding entity into the OTN ontology, has
been defined inside the created knowledge model, with the aim to facilitate connection
with other datasets, also to follow the guidelines for the for the implementation of
Linked Open Data (http://www.w3.org/DesignIssues/LinkedData.html) (see Chapter
2.3).

So, the OTN ontology has become one of the reference vocabulary used during the
development of the Km4city model [Bellini et al., 2014B]. Among reference
vocabularies used in the definition of the Knowledge Model is possible to find the

Architecture and Knowledge Modelling for Smart City p. 79

dcterms, i.e. a set of properties and classes maintained by the Dublin Core Metadata
Initiative, the foaf vocabulary, an ontology dedicated to the description of the relations
between people or groups, schema.org a reference model used to provide description of
people and organizations, and the wgs84_pos vocabulary, representing latitude and
longitude, with the WGS84 Datum, of geo-objects.

Another interesting knowledge model is the GoodRelation Ontology [GoodRelation] a
standardized vocabulary that allows to describe data related to products, prices, stores
and businesses, so that they can be included into already existing web pages and they
can be understood by other computers; moreover, products and services offered can
increase their visibility into latest generation search engines, or recommendations
systems and similar applications.

GoodRelation is clearly the reference model for the description of e-commerce and their
products; with a view to future expansion, an interconnection between Km4city
ontology and GoodRelation has been created.

The Km4city knowledge model allow to interconnect, store and then query, a collection
of data coming from many different sources, specifically various portals of the Tuscany
Region (MIIC, Muoversi in Toscana, Osservatorio dei Trasporti) and Open Data
provided by individual Tuscany municipalities (mainly Florence), as shown in Section
3.4. Taking into account the different types of data that he Knowledge Model has to
map, it is clear that its size will be relevant, and therefore, to facilitate its construction
and its understanding, it has been divided into the following macroclasses:

• Administration Macroclass: it is structured in order to represent the Italian
public administration hierarchy: each region is divided into several provinces,
within which the territory is divided into municipalities. Moreover each PA,
during its mandate, can produce resolutions and publish statistics.

• Street Guide and Rail Network Macroclass: it represents the entire roads
system and railway system in Tuscany; the first one, from an administrative
point of view, is seen as a set of administrative extensions or administrative
roads, while from the citizen' point of view, it is composed by a set of roads. The
second one, from an administrative point of view is seen as a set of railway
directions, railway lines, railway sections, while from the citizen’ point of view,
it is composed by a set of train stations interconnected together.

• Points of Interest Macroclass: this macroclass allows to represent services to
the citizens, points of interest, businesses activities, tourist attractions, and
anything else can be located thanks to a pair of coordinates on a map.

• Local Public Transport Macroclass: it includes information relating to public
transport by road and rail; currently we have access to data relating to scheduled
times of the leading LPT, the graph rail, and real-time data relating to ATAF
services.

Architecture and Knowledge Modelling for Smart City p. 80

• Sensors Macroclass: is the macroclass created to host data collected by various
sensors installed along some roads, in major car parks of Florence and in that
neighborhood. In addition in this macroclass data related to Lamma's weather
forecast were included.

• Temporal Macroclass: it pointing to include concepts related to time (time
instants and time intervals) in the ontology, so that you can associate a timeline
to the recorded events and can be able to make predictions.

• Metadata Macroclass: it is used to keep track of the status and descriptors
associated with the various ingested dataset.

4.4.1 Administration Macroclass

The first macroclass, i.e. Administration, is composed as shown in the following Figure
15.

Figure 15 - Administration Macroclass of Km4City Ontology

The main class of Administration Macroclass is PA, which has been defined as a
subclass of foaf:Organization, link that helps to assign a more clear meaning to this
class. The three subclasses of PA are automatically defined according to restriction
defined on ObjectProperties (represented in the figure by solid lines). For example, the
Region class is defined as a restriction of the class PA on ObjectProperty "hasProvince",
so that only the PA that possess provinces, can be classified as a region. Another
example: to define the PA elements that make up the Municipality class has been

Architecture and Knowledge Modelling for Smart City p. 81

instead used a restriction on ObjectProperty "isPartOfProvince," so if a PA is not
assigned to a province, it cannot be considered a municipality.

To establish the hierarchy within the class PA, a pairs of inverse ObjectProperties were
defined, for each step: "hasProvince" and "isPartOfRegion", "hasMunicipality" and
"isPartOfProvince."

Connected to the class PA, through the ObjectProperty "hasResolution", is possible to
find the Resolution class, whose instances are represented by the resolutions passed by
the various PA note. The "hasResolution" ObjectProperty has an inverse property, that
is, "approvedByPa".

The last class of this macroclass is StatisticalData: given the large amount of statistical
data related both to the various municipalities in the region and to each street, that class
is shared by Administration and Street Guide and Rail Network macroclass. As we will
see in the next macroclass description, the class StatisticalData is connected to both Pa
at Road through the ObjectProperty "hasStatistic".

4.4.2 Street Guide and Rail Network Macroclass

The Street Guide and Rail Network macroclass consist of two separated parts, that is the
Street Guide and the Railway Graph, which will be analyzed below, respectively.

Figure 16 - Street Guide Macroclass of Km4City Ontology

Architecture and Knowledge Modelling for Smart City p. 82

In Figure 16 the Street Guide part is shown; its main class, in the middle of the figure, is
RoadElement, which is defined as a subclass of the corresponding element in the
ontology OTN, i.e. Road_Element. Each RoadElement is delimited by a start node and
an end node, detectable by the ObjectProperties "startsAtNode" and "endsAtNode",
which connect the RoadElement class to the class Node. Some restrictions have been
specified in the RoadElement class definition, related to the Node class: a road element
must have both "startsAtNode" and "endsAtNode" ObjectProperty, both with a
cardinality exactly equal to 1. One or more road elements forming a road: the class
Road is in fact defined as a subclass of the corresponding class in the OTN, i.e. the
homonymous class Road, with a cardinality restriction on the "containsElement"
ObjectProperty, which must be minimum equal to 1, in other words, a road that does not
contain at least one road element, cannot exist. Also the AdministrativeRoad class,
which represents the administrative division of the roads, is connected to the class
RoadElement through two inverse ObjectProperty "hasRoadElement" and
"formAdminRoad", while it is connected with only one ObjectProperty to the Road class
(that is "coincideWith"). To better clarify the relationship existing among the classes
Road, AdministrativeRoad and RoadElement it can be stated that an instance of the
Road class can be connected to multiple instances of AdministrativeRoad class (e.g. if a
road crosses the border between two provinces), but the opposite is also true (e.g. when
a road crosses a provincial town center and assumes different names), i.e. there is a N:M
relationship between this two classes. On each road element is possible to define access
restrictions identified by the class EntryRule, which is connected to the RoadElement
class through two inverse ObjectProperties, i.e. "hasRule" and "accessToElement". The
EntryRule class is defined with a restriction on the minimum cardinality of
ObjectProperty "accessToElement" (set equal to zero), because in most cases, each rule
is associated to one road element, but in some exceptional cases, there is no association.
Access rules allow to define uniquely a permit or limitation access, both on road
elements (for example due to the presence of a RTZ), but also on maneuvers; for this
reason, the class Maneuver has been defined and connected to the class EntryRule by
the "hasManeuver" ObjectProperty. The term maneuver refers primarily to mandatory
turning maneuvers, priority or forbidden, which are described by indicating the order of
road elements involving. Thanks to a deeper analysis of Street Guide data, it has been
verified that only in rare cases maneuvers involving three different road elements and
then to represent the relationship between the Maneuvre and RoadElement classes in the
simplest way, three ObjectProperties were defined: "hasFirstElem", "hasSecondElem"
and "hasThirdElem", in addition to the ObjectProperty that binds a maneuver to the
junction that is interested, that is, "concerningNode" (because a maneuver takes place
always in the proximity of a node). Defining the Maneuvre class, cardinality restrictions
have been specified: "hasFirstElem" and "hasSecondElem" ObjectProperty have a
cardinality restriction set equal to 1 while the maximum cardinality associated to the

Architecture and Knowledge Modelling for Smart City p. 83

ObjectProperty "hasThirdElem", is set to 1, in fact, for the maneuvers that affect only
two road elements, this last ObjectProperty is not defined.

As previously mentioned, each road element is delimited by two nodes (or junctions),
the starting one and the ending one, and therefore also a Node class has been defined, as
a subclass of the same name class belonging to ontology OTN. The Node class presents
restrictions on DataProperties geo:lat and geo:long, two properties inherited from the
definition of the Node class as subclass of geo:SpatialThing, a class belonging to the
Wgs84 ontology: in fact, each node can be associated only with one pair of coordinates
in space, and cannot exist a node without these values, then the cardinality of these
DataProperties is equal to one.

The Milestone class represents the kilometer stones that are placed along the
administrative roads, that is, the elements that identify the precise value of the mileage
at that point, i.e. the advanced of the route from the starting point. A milestone may be
associated with a single instance of AdministrativeRoad class, and it is therefore defined
a cardinality restriction equal to 1, associated to the ObjectProperty "placedInElement".
Like the Node class, also the Milestone class is defined as subclass of geo:SpatialThing,
but in this case the presence of a couple of coordinates, is not mandatory (a restriction
on maximum cardinality is set to be equal to one, but this not exclude a possible lack of
value).

A street number is used to define an address, more accurately, and it is always logically
related to at least one access: in fact every street number always corresponds to a single
external access, which can be direct or indirect, but sometimes, it can also correspond to
an internal access. Looking at this relationship from the access point of view, instead, it
is possible to say that each access is logically connected to at least one street number.
According to what is stated, the classes StreetNumber and Entry were defined.

With the owned data the class StreetNumber can be connected to the class RoadElement
and to the class Road, respectively through the ObjectProperties "placedInElement" and
"belongToRoad". Furthermore, for the ObjectProperty "belongToRoad" an inverse
property "hasStreetNumber", has been also defined.

Within the ontology therefore, for the StreetNumber class a cardinality restriction on the
ObjectProperty "belongToRoad", which must be equal to 1, has been defined.

The Entry class can be also connected to both the street number and road element where
it is located. The relationship between classes Entry and StreetNumber, is identified
thanks two ObjectProperties, that is "hasInternalAccess" and "hasExternalAccess", on
which cardinality restrictions have been defined, because, as mentioned earlier, a street
number will always have only one external access, but in some cases, could also have
an internal access (this latter restriction is in fact defined by setting its maximum
cardinality equal to 1, i.e. only values 0 and 1 are allowed). Like Node and Milestone

Architecture and Knowledge Modelling for Smart City p. 84

classes, also the Entry class is defined as a subclass of geo:SpatialThing class, so it is
possible to associate a maximum of one pair of coordinates, geo:lat and geo:long, to
each its instance: this can be translated with a restriction on the maximum cardinality of
this two DataProperty of the Geo ontology, set to one (each DataProperty may take one
value, or none).

The Street Guide and Rail Network macroclass is connected to the Administration one,
through two different ObjectProperties "ownerAuthority" and "managingAuthority",
which as the name suggests, they represent respectively the public administration to
which the administrative road belongs, or the public administration that manages the
road element. In this representation, only private roads remain out, because information
contained into datasets, related to private property, are limited.

From a cartographic point of view, however, each road element is not a straight line, but
a broken line, which follows the actual course of the road. To represent this situation,
the classes RoadLink and Junction have been defined: thanks to the interpretation of the
KMZ file, the set of coordinates that define each RoadElement, is recovered and each of
these points is then added to the ontology as an instance of the class Junction, defined as
a subclass of geo:SpatialThing, with therefore a pair of coordinates. Each small segment
between two junctions, represents, instead, an instance of the class RoadLink, which is
defined through a restriction on the cardinality of ObjectProperty "endJunction" and
"startJunction" (setting equal to 1) that connect this two classes.

Connect to Road class there is also the TrafficGate class, whose instances represent the
access gates to the RTZ (Restricted Traffic Zone) or to lanes only for bus.

Figure 17 - Rail Network Macroclass of Km4City Ontology

Architecture and Knowledge Modelling for Smart City p. 85

The second part of this macroclass corresponds to the Railway Graph, that is shown in
Figure 17. It is mainly formed by class RailwayElement which is defined as a subclass
of the OTN:Edge class. The railway elements can be assembled to form the following
railway components:

• Railway direction: a railway line having particular characteristics of importance
for traffic volume and transport relations on which it takes place, and that links
the main nodes or centers of the entire rail network;

• Railway section: a section of the line in which is possible to find only one train
at the time, that is usually preceded by a "protective" or "block".

• Railway line: i.e. the infrastructure that allows trains or other railway convoys to
travel between two places of service.

For each of this components, a class inside the Knowledge Model, have been defined,
that is the classes RailwayDirection, RailwaySection and RailwayLine. The first one can
be connected to the RailwayElement class thanks to two inverse ObjectProperties
"consistOfElement" and "composeDirection"; the second one is instead connected to the
RailwayElement class, through two other inverse ObjectProperties, i.e.
"isComposedByElement" and "composeSection"; finally the last class, the class
RailwayLine, is connected to railway elements using the ObjectProperty "hasElement"
and its inverse "isPartOfLine".

Each instance of class RailwayElement is connected to two instances of class
RailwayJunction (defined as a subclass of the OTN:Node), by the ObjectProperties
"startAtJunction" and "endAtJunction".

Classes TrainStation and GoodsYard represent respectively a train station and a freight
station, and both correspond only to one instance of the RailwayJunction class, both
through the ObjectProperty "correspondToJunction".

4.4.3 Points of Interest Macroclass

For the third macro class, that is, Points of Interest, a generic class Service has been
defined, which can represent, as mentioned before, all services or activities, which may
be useful to the citizen and who may have the need to “search-for” and to “arrive-at”.
This macroclass allows to represent services to the citizens, points of interest,
businesses activities, tourist attractions, and anything else can be located thanks to a pair
of coordinates on a map.

The classification of individual services and activities is based on main and secondary
categories planned at regional level: for this purpose the "hasServiceCategory"
ObjectProperty and the corresponding class ServiceCategory, have been created. This
last class can only take the exactly values, represented by individuals defined inside the
Knowledge Model, that have been found on the data provided by the Tuscany Region.

Architecture and Knowledge Modelling for Smart City p. 86

The categories of the Tuscany Region are expressed in Italian, therefore a process of
translation was necessary, which resulted in creating a dictionary, to which translations
into other languages can easily be added. A better classification of services and
activities could be implemented thanks to the ATECO code, i.e. a code representing the
ISTAT classification of economic activities, but unfortunately into the data provided, a
high percentage of ATECO code is missing.

Analyzing the available data and taking into account the services classification available
within the OTN ontology, the following subclasses have been identified:
Accommodation, GovernmentOffice, TourismService, TransferService, CulturalActivity,
FinancialService, Shopping, Healthcare, Education, Entertainment, Emergency and
WineAndFood. The Accommodation subclass for example, is defined as a restriction on
the ObjectProperty "hasServiceCategory", that must take one of the following
individual values: holiday_village, hotel, summer_residence, rest_home,
religiuos_guest_house, bed_and_breakfast, hostel, farm_house, agritourism,
vacation_resort, day_care_center, camping, historic_residence, mountain_dew,
boarding_house. Similarly, all other subclasses listed above, have been defined,
including among the possible values of the ObjectProperty "hasServiceCategory", those
corresponding to that type of service.

Some classes, to identify particular services that citizens may have need to reach, but
that may be offered by different types of activities, were also defined: for example, there
are some POI that also offer a wireless internet connection, for which the HotSpotWifi
class was defined, which is connected to the Service class via the ObjectProperty
"isInstalledOnService"; that class is also connected to the Street Guide because some
hot spot wi-fi in the city of Florence are installed along roads and not in correspondence
to an activity. Another additional service is the ticket sales, for which, in fact, the class
BusTicketsRetail has been added, connected to the Service class thanks to the
ObjectProperty "isATicketsRetail".

Architecture and Knowledge Modelling for Smart City p. 87

Figure 18 - Point of Interest Macroclass of Km4City Ontology

The city of Florence has also a list of cool places where citizens can stay in the summer
to freshen up a bit; so, the FreshPlace class has been also included into the ontology,
which is connected to the class Service using the ObjectProperty "isAFreshPlace".

In Figure 18 is represented a possible integration between our knowledgemodel
Km4City and the GoodRelations ontology, achieved at class level: the classes
km4c:Service and GoodRelations:Locality can be identifying as equivalents from a
definition point of view and, for example, the service "Ristorante il Pozzo" can be
connected to the respective locality, defined in the GoodRelations ontology, through the
ObjectProperty km4c:hasGRLocality.

4.4.4 Local Public Transport Macroclass

The fourth macroclass, called Local Public Transport macroclass, includes the data
related to major LPT (Local Public Transport) companies scheduled times, the rail
graph, and data relating to real time passage at bus stops. This macroclass is not
complete yet, it contains data related to routes and bus stops of all Tuscany Region, but
it contains at the moment, only bus timetable data related to the metropolitan area of
Florence, but the data model proposed can be used for all data of the rest of Tuscany.

Architecture and Knowledge Modelling for Smart City p. 88

Figure 19 - Local Public Transport Macroclass of Km4City Ontology

The public transport by road is organized in public transport lots, represented by Lot
class, each of which is in turn composed of a number of bus and tram lines, i.e. the class
PublicTransportLine. The relationship between this two classes corresponds to the
ObjectProperty "isPartOfLot", which connects each instance of PublicTransportLine
class to the corresponding instance of Lot class. The PublicTransportLine class is
defined as a subclass of OTN:Line.

Each line includes at least two ride per day (the first in ascendant direction, and the
second one in descendant direction), identified through a code provided by the Local
Public Transport company and each ride is scheduled to drive along a specific path,
called route. Accordingly, the classes Ride and Route have been created, together with
the ObjectProperty "scheduledOnLine", connecting the Ride class with the
PublicTransportLine class, which is defined as a limitation of cardinality exactly equal
to one, because each ride code may be associated to a single line. The case in which
there are more than two rides for the same line occurs when, for example, some shortest
paths are scheduled, in certain hours of the day.

A route can be seen as a series of road segments delimited by subsequent bus stops, but
wishing then to represent to a cartographic point of view the path of a bus, we need to
represent the broken line that composes each stretch of road crossed by the means of
transport itself, and to do so, the previously used modeling on road elements, has been
reused: we can see each path as a set of small segments, each of which delimited by two
junctions. According to what is stated two ObjectProperty linking the classes Route and
RouteSection, has been defined, named "hasFirstSection" and "hasSection" and also two

Architecture and Knowledge Modelling for Smart City p. 89

other ObjectProperty "endsAtStop" and "startsAtStop", connecting each instance of the
RouteSection class to two instances of the BusStop class. This last class is defined as a
subclass of OTN:StopPoint class.

Thanks to the defined model, knowing the starting bus stop and the first segment, the
entire route taken by each means of transport can be reconstructed. For this purpose the
ObjectProperty "hasFirstStop" has been also defined, which connects the Route and
BusStop classes. Each stop is also connected to the class Lot, through the
ObjectProperty "isPartOfLot", with a relation 1:N because there are stops shared by
urban and suburban lines so they belong to two different lots.

Although the class BusStop is a subclass of geo:SpatialThing, since the data provided
by the Local Public Transport companies contain a pair of coordinates that allows to
locate them; inside the Km4city knowledge model the BusStop class is defined thanks to
a cardinality restriction, set exactly equal to 1, on the DataProperty geo:lat and
geo:long.

Wishing then to represent to a cartographic point of view the path of a bus, i.e. an
instance of the Route class, a broken line must be represented, which composes each
stretch of road crossed by the means of transport itself and to do so, the previously used
modeling with the road elements, has been reused: each small segment composing the
path, is delimited by two junctions: therefore the RouteLink and RouteJunction classes
were then defined, together with the ObjectProperty "beginsAtJunction" and
"finischesAtJunction". The RouteLink class was defined with a cardinality restriction on
both just mentioned ObjectProperty, imposing that it is always equal to 1. The Route
class is instead connected to the RouteLink class through the "hasRouteLink"
ObjectProperty.

4.4.5 Sensors Macroclass

The Sensors Macroclass has not yet been completed, and actually it consists of the four
parts shown in Figure 20, respectively relating to the car parks sensors, to the weather
sensors, to the sensors installed along roads and rails, and to the AVM (Automatic
Vehicle Monitoring) systems installed on buses, cars and/or bikes.

Architecture and Knowledge Modelling for Smart City p. 90

Figure 20 - Sensors Macroclass of Km4City Ontology (from the top left corner, parking sensors,
weather sensors, Road sensors)

Architecture and Knowledge Modelling for Smart City p. 91

Figure 21 - Sensors Macroclass of Km4City Ontology (AVM sensors)

The first part is focused on the real-time data related to parking: for each sensors
installed into different car parking areas, a status record is received every 5minutes.
This scenario has been translated into ontological model, defining CarParkSensor class,
which represents the sensor installed in a given parking and the SituationRecord class,
which instead represents the state of a certain parking at a certain instant. The
connection between the two classes just mentioned, is performed via the reverse
ObjectProperties, "relatedToSensor" and "hasRecord". In each status report, there are
information about the number of free and occupied parking spaces, for the main car
parks in Tuscany Region. The CarParkSensor class is also connected to the
TransferService class, belonging to the Point Of Interest macroclass, connection
between different macroclasses is realized through two inverse ObjectProperties, i.e.
"observeCarPark" and "hasCarParkSensor".

The weather sensors produce real-time data concerns the weather forecast, thanks to
LAMMA. This consortium updates the municipality forecast report twice per day and
every report contains forecast for five days divided into range, which have a greater
precision (and a higher number) for the nearest days until you get only a single daily
forecast for the 4th and 5th day. This situation is in fact represented by the
WeatherReport class connected to the WeatherPrediction class via the ObjectProperty
"hasPrediction". Municipality class is instead connected to a report by two inverse
ObjectProperties: "refersTounicipality" and "hasWeatherPrediction".

The traffic sensors, represented by instance of SensorSite class, produce real-time data
concerning the sensors placed along the roads of the region, which allow making
different measures and assessment related to traffic situation. Unfortunately, the

Architecture and Knowledge Modelling for Smart City p. 92

location of these sensors is not very precise, it is not possible to place them in a unique
point thanks to coordinate, but only to place them within a toponym, which for long-
distance roads such as FI-PI-LI road (the highway that connect Florence-Pisa-Livorno),
it represents a range of many miles. Each sensor, is part of a group, represented by the
SensorSiteTable class, and produces observations, represented by instance of
Observation class, which can belong to four types, i.e. they can be related to the average
velocity (TrafficSpeed subclass), car flow passing in front of the sensor (TrafficFlow
subclass), traffic concentration (TrafficConcentration subclass), or to the traffic density
(TrafficHeadway subclass). On this regards, Bluetooth sensors could be installed to
trace the number of people passing by on car and bikes from a given point.

The connection between SensorSite and SensorSiteTable classes corresponds to the
ObjectProperty "formsTable" and, as mentioned earlier, each instance of SensorSite
class can be connected only to the Road class, thanks to the ObjectProperty
"placedOnRoad". The classes Observation and SensorSite are instead connected via a
pair of inverse ObjectProeprty, "hasObservation" and "measuredBySensor".

The AVM (Automatic Vehicle Monitoring) systems part concerns the sensors systems
installed on most of buses, which, at intervals of few minutes, send a report to the
management center. They provide information about: the last stop performed, current
GPS coordinates of the vehicle, the identifiers of vehicle and of the line, a list of
upcoming stops with the planned passage time. The described situation is mainly
represented by two classes, AVMRecord and BusStopForecast: the first class mentioned
represents the report sent by the AVM system, which contain a list of upcoming stops
with the planned passage time, represented by instances of BusStopForecast class, and
other information like the last stop done, GPS coordinates of the vehicle position, and
the identifiers of vehicle and line. To keep track of the last stop carried out, the
"lastStop" ObjectProperty has been defined, and it create a connection between the
classes AVMrecord to BusStop; also the BusStopForecast class is connected to the
BusStop class, through the "atBusStop" ObjectProperty instead, the AVMRecord class is
linked to the Line class via the ObjectProperty "concernLine".

4.4.6 Temporal Macroclass

The Temporal Macroclass, is now only sketchy within the ontology, that is, its
definition is complete inside the ontology but actually its potential has not been fully
exploited. It is based on the Time ontology (http://www.w3.org/TR/owl-time/) but also
on experience gained in other previous projects such as OSIM [Bellandi et al., 2012].
The integration of temporal concepts within Km4city Ontology is required because it
allows to calculate differences between time instants and to be able to order them, and
thanks to the Time Ontology, the definition of these concepts is greatly simplified.

Architecture and Knowledge Modelling for Smart City p. 93

Figure 22 - Temporal Macroclass of Km4City Ontology

In fact the fictitious URI #instantForecast, #instantAVM, #instantParking,
#instantWreport, #instantObserv are defined to following associate them to each URI
which identifier a resource referred to the time parameter, i.e. respectively
BusStopForecast, AVMRecord, SituationRecord, WheatherReport and finally
Observation.

The fictitious URI #instantXXXX (in real cases, the X's will be replaced with a time
stamp), is formed as concatenation of two strings: for example, in the case of
BusStopForecast instances the stop code string (which allows us to uniquely identify
each stops) and the time instant to which the forecast is referred (in the most appropriate
time format), are concatenate. To create a fictitious URI that links a time instant to each
resource is a necessary action to not create ambiguity, because identical time instants
associated with different resources may be present (although the format in which a time
instant is expressed has a fine scale) .

The Time ontology helps define time instants as temporal information punctual and then
allows to use them as extreme in the definition of intervals, a feature very useful to
increase the expressiveness.

Pairs of ObjectProperties have also been defined for each class that needs to be
connected to the class Instant: between classes Instant and SituationRecord the inverse
ObjectProperties “instantParking” and “observationTime” have been defined, between
classes WeatherReport and Instant, there are instead “instantWReport” and
“updateTime” ObjectProperties, between classes Observation and Time the inverse

Architecture and Knowledge Modelling for Smart City p. 94

ObjectProperties “measuredTime” and “instantObserv” have been defined, between
BusStopForecast and Time the ObjectProperties “hasExpectedTime” and
“ instantForecast” have been created, and finally, between classes AVMRecord and
Time, there are the inverse ObjectProperties “hasLastStopTime” and “instantAVM”.

The domain of all ObjectProperties with name like instantXXXX is defined by elements
of class Time:temporalEntity, so that these properties can be extended not only to
instants, but also at time intervals.

4.4.7 Context Macroclass

Figure 23 - Context Macroclass of Km4City Ontology

The seventh macroclass, as already mentioned above, relates to the metadata associated
with each dataset. Sesame [Sesame] allows to define, in the ontology, the Named Graph,
that correspond to the graphs to which is associated a name, also called the context. The
context is in practice an additional field that allows to expand the triple model into a
quadruple model defined as follow: subject-predicate-object-context.

OWLIM (http://owlim.ontotext.com/) during the triple loading phase, allows to associate
different contexts to different sets of triples. In this macroclass were then defined all
DataProperties that allow to store relevant information, related to a certain dataset, for
example: date of creation, data source, original file format, description of the dataset,
type of license bound to the dataset, kind of ingestion process, and how much automated
is the entire ingestion process, type of access to the dataset, overtime, period, associated
parameters, update date, triples creation date.

4.4.8 DataProperties of the main classes

Inside the ontology many DataProperties were defined, i.e. all those for which there was
no possibility of using the values already defined within the reused vocabularies.

This paragraph analyze the main ontology classes and the corresponding DataProperties
defined, and it also lists the possible values for all DataProperty that can take on only a
specific set of values.

Architecture and Knowledge Modelling for Smart City p. 95

Within the class PA only three DataProperties were used, all previously defined in the
vocabulary reused: foaf:name that represents the name of the public administration
represented by the considered instance, its unique identifier present in the regional
system i.e. dct:Identified, from DublinCore ontology
(http://dublincore.org/specifications/) and finally dct:alternative where the municipal
code present in the tax code, is stored. More information about PA can be found through
the link to the corresponding instance of the Service class, where in fact there are more
details that would otherwise be redundant. The Resolution class, whose instance as seen
above are the municipality resolutions, has some DataProperties that allows to identified
each instance, dct:Identified, the year of resolution approval, km4c:year, and some other
property coming from the DC ontology like dct:subject (the resolution object),
dct:created (the date on which the PA has resolved) and foaf:page that represents the
URL to which the resolution is available online.

Each instance of the Route class is uniquely identified using the DataProperty
dct:Identified where the toponym identifier for the entire regional network is stored, that
consist of 15 characters and it is defined according to the following rule: RT letters
followed by ISTAT code of the municipality to which the toponym belongs (6
characters), followed by 5 characters representing the sequential from the character
value of the ISTAT code, and finally the letters TO. The km4c:roadType instead,
represents the type of toponym, for example:

• Locality
• Square
• Plaza
• Road
• Boulevard
• Alley
• Lane, etc.

Inside the Street Guide there are also two name fields for each toponym: the name and
the extended name, which also includes the toponym’s type. The name without type, is
a string associated with the DataProperty km4c:roadName, while the long name, is store
in another DataProperty i.e. km4c:extendexName; the name of each road can be written
in different ways, that is there are alias, for example: for Via S. Marta a possible
alternative could be Via Santa Marta, Via di S. Marta, Via di Santa Marta, etc. The
Kmc4city ontology therefore provides the possibility to store them within a variable
number of dct:alternative DataProperty, so that the later process of reconciliation can be
facilitated.

Concerning the AdministrativeRoad class, in addition to the DataProperties
dct:alternative and km4c:adRoadName, that respectively contain the possible alias
names of the administrative road and its official name, the DataProperty

Architecture and Knowledge Modelling for Smart City p. 96

km4c:adminClass is defined to represent the administrative classification, that is if a
road is:

• a highway
• a regional road
• a road
• a municipal road
• a military Road
• a driveway

Finally the field dct:identifier stores an identifier, which complies with the following
rule, defined at the regional level: 15 characters, starting with the letters RT followed by
ISTAT code of the municipality that owns the administrative road (6 characters),
followed by 5 characters representing the sequential number of all road that have the
same ISTAT code, and finally the letters PA.

RoadElement instances are uniquely identified by the DataProperty dct:Identified, a
field always formed by 15 characters as follows: RT letters followed by 6 characters for
the ISTAT code of the belonging municipality, followed by 5 characters that represent
the progressive from the ISTAT code, and finally the ES characters. Even the
km4c:elementType DataProperty has been defined for the class RoadElement, and it can
take the following values:

• roadway trunk
• structured traffic area
• toll booth
• level crossing
• square
• roundabout
• crossing
• structured car park
• unstructured traffic area
• car park
• competence area
• pedestrian
• connection, motorway link road, interchange
• controviale
• ferry boat (dummy element)

In the Street Guide of the Tuscany Region, the functional classification is also
associated to the RoadElement class, that is defined within the ontology as the
km4c:elementClass DataProperty, whose possible values are:

• highway

Architecture and Knowledge Modelling for Smart City p. 97

• main suburban
• secondary suburban
• thoroughfare
• district urban
• local/to private use

The km4c:composition DataProperty instead has been defined to indicate the
composition of the road to which the road element belongs to and the values that can
assume are "single track" or "separate roadways". The DataProperty km4c:elemLocation
represents the location of the element, and it can take the following values:

• street level
• bridge
• ramp
• tunnel
• bridge and tunnel
• bridge and ramp
• tunnel and ramp
• tunnel, bridge and ramp

Concerning the width of each road element, a reference to DataProperty km4c:width is
made, which allows to detect the width band of belonging: "less than 3.5m", "between
3.5 and 7.0m," "greater than 7.0 meters" or "not detected"; for the length of each road
element instead, the reference DataProperty is km4c:length, a freely insertable value
that does not refer to any band.

Among other data available in Street Guide there is the direction of travel, essential to
define the maneuvers permitted, corresponding to the km4c:trafficDir DataProperty,
which may take one of the following four values:

• road section open in both directions (default)
• road section opened in the positive direction (from initial node to final node)
• road section closed in both directions
• road section opened in the negative direction (from final node to initial node)

The DataProperty km4c:operatingStatus instead, is used to track the operating status of
the different road elements and it can take only the values "in use", "under construction"
or "abandoned". Finally the last DataProperty of the RoadElement class is a
DataProperty that takes into account the speed limits on each road element, called
km4c:speedLim.

Into the class StatisticalData the following DataProperties were defined: a DataProperty
km4c:value to store the actual value of the statistic, and dct:description, dct:created and
dct:subject where data necessary to maintain intact the statistic meaning, are stored.

Architecture and Knowledge Modelling for Smart City p. 98

A node or junction is a point of intersection of the axes of two road elements, and is
always a punctual entity, represented in geometric terms, by a coordinates pair; so each
instances of the Node class can be uniquely identified thanks to the DataProperty
dct:Identified, made, like the previous identifier code, of 15 characters, according to the
following rules: the first two letters are RT, followed by the 6-character ISTAT code of
municipality where the node is located, followed by 5 characters of progressive starting
from the value of ISTAT code, and finally letters GZ. Each node is also characterized
by a type, represented by the DataProperty km4c:nodeType, which can assume the
following values:

• street level intersection/fork
• toll booth
• mini roundabout (radius of curvature< 10m)
• change seat
• end (beginning or end RoadElement)
• change place name/ownership/manager
• change width class
• unstructured traffic area
• level crossing
• support node (to define loop)
• change in technical/functional classification
• change in operating status
• change in composition
• intermodal hub for rail
• intermodal hub for airport
• intermodal hub for port
• region boundary
• dummy node

However the fundamentals DataProperty are geo:lat and geo:long, thanks to which a
node can be localized with precision on a map.

The access rules, as mentioned in previous section, are described by instances of the
EntryRule class, uniquely identifiable through a dct:identified of 15 characters thus
formed: the RT letters followed by 6 characters representing the ISTAT code of the
municipality, 5 other characters that represent the progressive starting from that ISTAT
code, and finally the letters PL. The access rules are then characterized by a type,
represented by DataProperty km4c:restrictionType, which can assume one of the
following values:

• Blank (only in case of maneuver)
• Traffic flow direction
• Blocked way

Architecture and Knowledge Modelling for Smart City p. 99

• Special restrictions
• Under construction
• Information about tolls
• Fork
• Forbidden manoeuvres
• Vehicles restrictions

In addition to the type, access rules have also a description, also called restriction value
and represented by DataProperty km4c:restrictionValue, which can assume different
range of values, depending on the type of restriction concerned:

• Blank possible values:
o Default Value = “-1”

• possible values for Traffic flow direction & Vehicles restrictions:
o Closed in the positive direction
o Closed in the negative direction
o Closed in both directions

• Blocked way possible values:
o Accessible only for emergency vehicles
o Accessible via key
o Accessible via Guardian

• Special restrictions possible values:
o No restrictions (Default)
o Generic Restriction
o Residents only
o Employees only
o Authorized personnel only
o Staff only

• Under construction possible values:
o Under construction in both directions
o Under construction in the travel direction of the lane
o Under construction in the travel opposite direction of the lane

• Information about tolls possible values:
o Toll road in both directions
o Toll road in the negative direction
o Toll road in the positive direction

• Fork possible values:
o multi lane bifurcation
o simple bifurcation
o exit bifurcation

• Forbidden manoeuvres possible values:
o prohibited maneuver

Architecture and Knowledge Modelling for Smart City p. 100

o turn implicit

The class Maneuver presents a substantial difference from other classes seen so far:
each maneuver is indeed uniquely identified by an id consisting of 17 digits. Within the
Streets Guide, there are other information associated to maneuvers such as the operation
type, bifurcation type and maneuver type prohibited, but since the last two types are
almost always "undefined", only a DataProperty has been defined, associated with the
information of maneuver type, precisely named km4c:maneuvreType, which can take
the following values:

• Fork
• Calculated forbidden maneuver
• Mandatory maneuver
• Forbidden maneuver
• Priority maneuver

The StreetNumber class, also presents a code dct:Identified, to uniquely identify each
instance of the class, in the same format of those seen previously: the RT letters
followed by 6 characters for the ISTAT code of the municipality, 5 other characters for
the progressive from the ISTAT code and finally the letters CV. In Florence there are
two different numberings, associated to a different color, i.e. red and black; so a street
may have, for example, 4/Black and 4/Red, where red is the color for the numbering
system for shops.

Therefore defined a DataProperty, called km4c:classCode, has been defined, in which
the information just seen can be stored and that can take the following values: red,
black, or no color. Each number can also be formed, besides the numerical part always
present, by a literal part, represented respectively by km4c:number and km4c:exponent
DataProperties of the ontology. An additional value, the DataProeprty
km4c:extendNumber, is also been defined, in which is stored the number together with
its exponent in order to ensure greater compatibility with the different formats in which
instances of this class could be written/researched.

The Milestone class, as seen in Section 4.4.2, identifies the value of the mileage
progressively, with respect to its starting point. Even this class has a unique
identification code consists of 15 characters, represented by the DataProperty
dct:Identified and formed as follow: letters RT, followed by 6 characters for the ISTAT
code of the municipality, other 5 characters for the progressive from ISTAT code, and
finally, the letters CC.

Inside the DataProperty km4c:text, the mileage, which corresponds to that point, is
written; thanks to the information contained into the Street Guide, the name of the
street, highway, etc. where the milestone is located, can be retrieved, by passing from

Architecture and Knowledge Modelling for Smart City p. 101

the class RoadElement, to which the class Milestone is directly connected. Also in this
case DataProperties geo:lat and geo:long, for localization, are defined.

The Entry class contains the point element that identifies, directly or indirectly external
access to a specific place of residence/business on the territory; each entry in practice
materialized the "plate" of the street number. As previously mentioned, each entry is
logically connected to at least one number. Each instance of the Entry class is uniquely
identified by DataProperty dct:identified, consisting of a code of 15 characters, like all
other codes seen: letters RT followed by 6 characters of municipality ISTAT code, then
another 5 character of the progressive from ISTAT code and finally the AC letters.
There are only three types of accesses, and this value is stored into the DataProperty
km4c:entryType: "direct external access", "indirect external access" and "internal
access", as well as the type of access for this class can be useful to know if there is an
access road to property or not (DataProperty km4c:porteCochere). Also in this case, the
DataProperties to store coordinates geo:lat and geo:long, are present.

The class RailwayLine has only three DataProperties, dct:identifier that contains the
unique identifier of the railway line, foaf:name in which the convention naming is
saved, and dct:alternative in which is instead saved the official name of the Railway
Line. The unique identifier is a 12 characters code starting with the letters RT, followed
by 3 characters to identify the region - T09 for Tuscany – 5 characters of sequential
number and finally the letters PF.

The RailwayDirection class, instead, has only the first two DataProperty specified for
RailwayLine, with the same use: dct:identifier, where the code is stored, consisting of
12 characters, starting with the letters RT, followed by 3 characters that identify the
region - T09 for Tuscany - 5 characters to the sequential number and finally the letters
ED, and DataProperty foaf:name, where is stored in the convention naming.

The class RailwayElement, has the same field dct:identifier of the previous two classes
examined, consisting of 12 characters that follow this rules: RT characters followed by 3
characters of region code (T09 for Tuscany), followed by the 5 numbers of the
sequential number, and finally the letters EF. In addition to this property, the
km4c:elementType has been defined, which can take only three values:

• ordinary railroad
• railroad AC/AV
• other

Another DataProperty of the class RailwayElement is km4c:operatingStatus, which can
take only tone of the following values:

• railway construction
• railroad in operation
• disused railway

Architecture and Knowledge Modelling for Smart City p. 102

The DataProperty km4c:elemLocation indicates, instead, the rail element location and
its possible values are:

• grade-level
• on bridge/viaduct
• in tunnel

Continuing to analyze the DataProperties defined for the RailwayElement class, there
are the km4c:supply DataProperty that specifies whether there is an "electrified line" or
a "non-electrified line”, the DataProperty km4c:gauge, i.e. a field that specified if the
gauge is "reduced" or "standard", and the km4c:underpass which can take the following
values:

• the item is not in underpass of any other object
• the element is in underpass of another object
• the element is simultaneously in overpass and underpass of other objects

Other DataProperty, that have been defined for the RailwayElement class, are
km4c:length that is the item length expressed in meters, km4c:numTrack i.e. the number
of tracks of the element (0 if the line is under construction or abandoned), and finally
km4c:tracktype, which specifies if the element consists of "single track" or "double
track".

The class RailwaySection requires the definition of km4c:axialMass DataProperty, i.e.
the classification of the line with respect to the axial mass, which may take the
following values:

• D4 - corresponding to a mass per axle equal to 22.5 t
• C3 - corresponding to a mass per axle equal to 20.0 t
• B2 - corresponding to a mass per axle equal to 18.0 t
• A - corresponding to a mass per axle equal to 16.0 t
• undefined

Were then defined DataProeprties dct:identifier, i.e. the usual code 12 characters that
begins with RT letters, followed by the regional code T09, 5 number for the sequential
number and that ends with letters TR), the foaf:name containing the naming convention
of line and km4c:combinedTraffic, which can assume the values:

• PC80
• PC60
• PC50
• PC45
• PC32
• PC30

Architecture and Knowledge Modelling for Smart City p. 103

• PC25
• PC22
• lines with the loading gauge FS
• undefined

For the RailwayJunction class, only three DataProperties has been defined:
dct:identifier, that is the identification code of 12 characters format as in previous cases,
but ending with the letters GK, foaf:name, containing the official name of the junction,
stations or rail yard, and finally the DataProperty km4c:juncType, which can take one of
the following values:

• rail crossing
• terminal (beginning or end)
• junction (junction or branch)
• station / stop / rail toll
• freight
• interporto
• change of state (COD_STA)
• change of venue (COD_SED)
• variation in the number of tracks (Num_bin)
• power variation (COD_ALI)
• administrative boundary

The class TrainStation presents the usual 12 characters DataProperty dct:identifier,
consisting of RT letters followed by 3 characters for the regional identification - T09 for
Tuscany - 5 characters of progressive number and finally the letters SF; for this class
also the DataProperty foaf:name has been defined, in which the official name of the
train station is stored; the address retrieved from the list posted on the RFI's website is
instead stored into the fields schema:streetAddress, schema:postalCode,
schema:addressLocality, schema:addressRegion, and the managing body always found
on RFI's website, is stored into the DataProperty km4c:managingAuth; the km4c:state
DataProperty, contains the state of the station which can take only the values

• Active
• not Active
• optional stops on demand.

Finally, the DataProperty km4c:category contains the category to which the station
belongs: the idea of the stations classification arises because they are open to the public
and, through the analysis of some parameters, it is possible to distinguish the potential
of a plant in terms of functionality, comfort and safety. The parameters used in the
evaluation are the size of the plant, its attendance, the ability to interchange and the

Architecture and Knowledge Modelling for Smart City p. 104

level of commercial offer, so 4 possible values for the DataProperty km4c:category are
obtained, which in order of importance are:

• Platinum
• Gold
• Silver
• Bronze

The Goodyard class, in addition to the 12 characters code, format as all of the above but
ending with the letters SM stored in dct:identifier, has the DataProperty foaf:name in
which the name of freight facility is saved; continuing the km4c:railDepartment
DataProperty keeps the name of the railway compartment, whereas km4c:railwaySiding
is the definition of the physical characteristic of the number of railway junctions; also
the DataProperty km4c:yardType has been defined that indicates whether the yards are
public (value "public yard") or if the junctions are for private use (value "junction in
line"); the last DataProperty defied for the Goodyard class, is the km4c:state which
indicates if the yard is "active" or "under construction."

The Service class has been equipped with the contact card provided by the Schema.org
ontology (https://schema.org), with the aim to make the description of the various
companies more standardized. The contact card is composed by the following
DataProperties, and it is easy to understand the information each of which contains:

• schema:name;
• schema:telephone;
• schema:email;
• schema:faxNumber;
• schema:url (to store the Company's WebSite address);
• schema:streetAddress;
• schema:addressLocality;
• schema:postalCode;
• schema:addressRegion;
• skos:note (to store any additions such as the opening hours of an activity

sometimes present in the data).

Besides DataProperties inherited from Schema.org, other DataProperties were defined
for the Service class: km4c:housenumber to isolate the street number from street
address, the km4c:atecoCode, for storing the corresponding Ateco code of each service,
and, when possible, the DataProperties geo:lat and geo:long for localization.

The class CarParkSensor has a unique identifier stored into dct:identified DataProperty,
always defined at the regional level through a 15 characters code beginning with letters
RT and ending with the initials of the belonging province, for example, FI for the city of

Architecture and Knowledge Modelling for Smart City p. 105

Florence; this class also has km4c:capacity DataProperty, i.e. the total number of
parking places of the examined car park.

The SituationRecord class, instead, contains properties closely related to car parks, that
are km4c:fillrate and km4c:exitrate, respectively the number of vehicles
entering/leaving the parking; km4c:carParkStatus, i.e. a string that describes the current
state of the car park which possible values are:

• "enoughSpacesAvailable"
• "carParkFull"
• "noParkingInformationAvailable"

Other DataProperties belonging to the same class are dct:identified, i.e. a unique
identifier for the report, the km4c:validityStatus DataProperty that represent a validity
status of the record, which can only have the value "active" for parking, the
km4c:parkOccupancy, i.e. the number of occupied space, or the corresponding
percentage that is instead called km4c:occupied, and last the free places numbers stored
into the DataProperty km4c:free.

The class WeatherReport is characterized by DataProperty dct:identified containing the
unique id which identifies the different reports, timestamp that indicates the time when
the report has been created in milliseconds. Other DataProperties have also been added,
relative to the phase of the moon, and the hour when the sun and moon, rise and set
which are km4c:lunarphase, km4c:sunrise and km4c:sunset and km4c:moonrise and
km4c:moonset. The last two DataProperties defined for WeatherReport class, are
km4c:heightHour and km4c:sunHeight, which represent the time when the sun reaches
its maximum height and at which height.

Each instance of WeatherPrediction class is instead characterized by DataProperties like
km4c:day, which is the day referred in prediction, the minimum and maximum
temperature values stored into the DataProperties km4c:minTemp , km4c:maxTemp, the
real and perceived temperature values that correspond to km4c:recTemp and
km4c:perTemp DataProperties. The day, together with the WeatherReport identifier,
form a new unique way to identify each forecast and this new value is stored into the
DataProperty dct:identifier. Into the class WeatherPrediction there are also some
DataProperties related to atmospheric parameters, such as km4c:wind that store the wind
direction, km4c:humidity containing the percentage of humidity, km4c:snow describing
the snow bulletin, km4c:hour representing the part of the day that is referenced by each
individual forecast, and finally the UV index of the day, stored into the km4c:UV
DataProperty.

The SensorSite and Sensor classes have only the DataProperty concerning their id,
represented by dct:identified. The connected class Observation instead, is completed by
DataProperties dct:identified, dct:date, both from DC ontology, respectively the

Architecture and Knowledge Modelling for Smart City p. 106

identifier of each sensors observation and the day to which it refers; other
DataProperties of this class are km4c:averageDistance and km4c:averageTime,
representing average distance and average time between passage of two cars, occupancy
and concentration, concerning the percentage of occupation of road the first one, and
referred to the car concentration, Finally vehicleFlow is the DataProperty referring the
flow of vehicles detected by the sensors and data related to the average velocity and the
calculated speed percentile, are stored into three DataProperties km4c:averageSpeed,
km4c:thresholdPerc and km4c:speedPercentile.

The PublicTransportLine class and Lot class have both DataProperties as dct:identifier
and dct:description from DublinCore ontology, representing respectively the number of
the line/lot and the description of the path/lot.

The Route class rather than dct:identifier and dct:description DataProperties, presents
the field km4c:routeLenght, that is the route length in meters, and km4c:direction, i.e.
the route direction.

The class BusStop has, in addition to DataProperty dct:identifier, the datProperty
foaf:name containing the name of the bus stop, and a pair of coordinates geo:lat and
geo:long, belonging to Geo Ontology (http://www.w3.org/2003/01/geo/). These last two
DataProperties, together with dct:identifier, are the only ones in the RouteJunction
class.

For the class BusStopForecast only DataProperties for the time of arrival and the
identification, respectively named km4c:expectedTime and dct:identifier, have been
defined.

The AVMRecord class requires instead DataProperties to identify the means to which
the record refers, that is km4c:vehicle, the arrival time to last stop, i.e.
km4c:lastStopTime, the ride state, that is, km4c:rideStatus which can only take one of
the following values: "early", "late" or "in time". Inside DataProperties
km4c:managingBy and km4c:owner, information about the managing company and the
company that own the AVM system are stored; each instance of this class is uniquely
identified by the dct:identifier DataProperty, and geo:lat and geo:long, indicated the
exact vehicle position at the report time.
Continuing with the macroclass on the public transport, the class Ride has only the
dct:identifier DataProperty, like the RouteLink class.
The RouteSection class, instead, has only the DataProperty km4c:distance, where the
distance between two successive stops within a route, is saved.

The TrafficGate class, which as mentioned above represents the gates of the restricted
traffic zone (RTZ) present in Florence, has as DataProperties dct:identifier and
dct:description, inherited from DublinCore Ontology, the passage type dataProperty
namely km4c:typeOfGate and the DataProperty for localization geo:lat and geo:long.

Architecture and Knowledge Modelling for Smart City p. 107

The classes HotSpotWiFi, BusTicketsRetail and FreshPlace, have DataProperties
dct:identifier, geo:lat and geo:long, useful to identify and locate each instance of all
class named; moreover the HotSpotWiFi class presents the property dct:description,
while in BusTicketRetail class is also defined the dataProperty km4c:typeOfRetail, that
indicates the type of store that sells tickets, so to ensure a more rapid detection of the
retail.

The Context class has a large number of information retrieved from tables that describe
the individual ETL transformations, which process different public/private data; for
each process, in fact, a source type has been defined, stored within the field dct:source;
the date of ingestion into the ontology, is instead containing into dct:created
DataProperty; the original data format (CSV, DBF, etc.) is instead stored into
dct:format and a brief description of the dataset is saved into dct:description
DataProperty.
Other DataProperties of the Context class are the DataProperty dct:right, where the
dataset license bound is saved; the type of process to which the context refers, is instead
stored into the km4c:processType DataProperty; the DataProperty km4c:automaticity
says if the process is completely automated or not: for example, the Street Guide
datasets cannot be fully automated because the process to obtaining data, needs a
physical person to send and receive emails.
The DataProperty km4c:accessType has been also defined for the Context which refers
to how the data are recovered (HTTP calls, Rest, etc..); the DataProperty km4c:period
contains the time (in seconds) between two calls of the same process, it is one of the
main parameters of the Process Scheduler, together with km4c:Overtime DataProperty,
that indicates the time after which a process must be killed.
Finally, the DataProperty km4c:param contains the resource link, if the resource in
question is an OpenData set retrievable via HTTP, km4c:lastUpdate represents the date
of the last update of the data set, while the DataProperty km4c:lastTriples contains the
data of the last triple generation.

Architecture and Knowledge Modelling for Smart City p. 108

Chapter 5

5. The Architecture

In this chapter, the description of the data engineering architecture is proposed; the built
architecture is parallel and distributed, and it is formed by a Master machine and,
currently four Nodes machine but, thanks to Hadoop, which is installed on all the
computer, the number of nodes is easily and quickly incrementable. All three machines
mentioned above, are equipped with Ubuntu 14.04 and, thanks to Hadoop and its
HDFS, and thanks to the Process Scheduler, Nodes are able to perform operations on
the unique storage system, located on the Master machine.

Figure 24 - Schematic representation of implemented architecture

Architecture and Knowledge Modelling for Smart City p. 109

Another machine, shown in Figure 24 as Indexing machine, deals with the indices
regeneration and with the creation of new updated versions of the triplestore, which can
then be made available to third parties via the Frontend machine, that is instead
equipped with Windows Server 2008. Each node has 12GB of RAM, 200GB of storage
space and they can harness the power of a Intel Xeon X5690@3.47Gz CPU; the Master
machine and the Indexing machine are instead equipped with 12 GB of RAM, 500 GB
of storage space and the same CPU.
The management of the distributed occurs thanks to Hadoop, which is a key component
in the architecture because it allows the execution of multiple ingestion operations, with
no effect on the single storage system located on the Master machine; in fact, the main
limitation of a single machine solution, is the RDF tripestore based on OWLIM, which
allows to run simultaneously maximum one read operation and one write operation,
otherwise the system performance degrades very quickly, until make the machine
unusable. Thanks to Hadoop and mutiple nodes, this problem can be solved and the
triplestore can still be based on OWLIM.
All processes are managed by a Process Scheduler that allocates them on the parallel
and distributed architecture, in which nodes can devote to the ingestion of new data,
which will then be stored on the master machine, again thanks to the Process Scheduler
that manages the order of all operations.
The Indexing machine takes care of generating a new triplestore containing the updated
data ingested by nodes on the master machine, a task that can take several hours; when
this operation is finished, the new triplestore, will replace that present on the Frontend
machine, by avoiding to degrade the system performance, but especially avoiding to
interfere with the availability of the system.
Regarding HBase [Aiyer et al., 2012], this type of NoSQL datastore has been chosen
because it is a large-scale distributed database build on top of the HDFS, which deals
with the management of the distributed part; furthermore both HBase and HDFS
systems have been developed by considering elasticity as fundamental principle, and the
use of low cost disks has been one of the main goals of HBase. Therefore, to scale the
system results is easy and cheap, even if it has to maintain a certain fault tolerance
capability in the individual nodes. In addition, another fundamental reason is that HBase
is well integrated with Pentaho Kettle, i.e. the ETL tool used.
Within HBase ingested data is stored before being converted into triples; any updated
versions of the static data are managed in such a way as to create a historical archive, in
fact, each update data, even if only slightly changed, is saved again on HBase in a new
row. This solution requires more storage space, but leaves open the possibility of
performing statistical analysis on Static data and their changes over time.
The whole operation of the realized architecture can be regarded as divided into the
following seven phases of:

• Data Ingestions
• Quality Improvement

Architecture and Knowledge Modelling for Smart City p. 110

• knowledge Mapping
• knowledge Reconciliation to make the model semantic interoperable
• Indexing regeneration
• Verification and Validation
• Access/exploitation from services.

In Figure 25 is possible to observe a schematic structure of the entire architecture,
where each phases is highlighted.

Figure 25 - Processing phases of implemented architecture

The whole phases of the ingestion processes are managed by a Process Scheduler that
allocates processes on the parallel and distributed architecture. To allow the regular
update of ingested data, the scheduler regularly retrieves data and check for updates.
The ingested data are then subjected to a Quality Improvement process trying to correct
the errors most frequently found, that is also managed by the Process Scheduler.
Following data is transcoded and then mapped in the Km4City Ontology. After that,
they are made available to applications on an RDF Store (OWLIM-SE) using a
SPARQL Endpoint.
The next sections are dedicated to the operation of each phases identified in the
architecture realized.

5.1 Phase I: Ingestion

The design of the ingestion process, i.e. the data acquisition phase, represented in the
Figure 25 as Phase I, required much effort. The process takes as input, data from
different data source, such as the Osservatorio dei Trasporti of the Tuscany region, the

Architecture and Knowledge Modelling for Smart City p. 111

Open Data portal of the Tuscany region and other Open Data portals of its main
municipalities (Florence, first of all for its large production of Open Dataset) and the
MIIC web services.
As seen in Chapter 3, there are both static and real time data to be integrated therefore,
it is clear that due to the high heterogeneity of data and sources, the ingestion process
will have to be made up of individual branches, that making possible to cover the
totality of data type/source combinations, such as just represented in Figure 25.
In most cases, each branch is responsible for periodically download the dataset from the
respective source, and, if the dataset had already been ingested, for check if it is
updated, and then to ensure its management via the correspondent ETL (Extract,
Transform, Load) transformation, which ends with the insertion of gathered data within
a NoSQL database, more specifically an HBase (http://hbase.apache.org/) datastore.
The management of the periodic update check, is assigned to the Process Scheduler,
which allows to set a different updates interval for each resource; for datasets currently
managed, the update period varies from a few minutes for Real Time datasets, up to 1
time per month or even more, for static datasets.
For the development of ETL processes, the software Pentaho Kettle [Appendix A.1] is
used; each branch, before being connected to the system architecture, is individually
verified and validated.
In the next few pages the most significant branches, that lead to the ingestion of at least
one different data/source type pair treated, will be analyzed.

5.1.1 Street Guide Ingestion

The Street Guide ingestion process is not fully automated, because the Osservatorio dei
Trasporti, in order to download the entire dataset, requires that a request form is
completed, after which the applicant will receive an email containing the link to
download the requested resource. So, it was therefore necessary to modify, for this
dataset, the standard "checking for updates" process used for the other dataset: in fact
the Process Scheduler has been programmed to send a remainder to the administrator of
this resource, who manually checks for data updates. Fortunately, Street Guide is a
Static resource, which is really rarely updated (only two update in more than the past
two years).
The downloaded dataset consists of 78 files for each province, each of which contains
information about one of the main entities that make up the Street Guide (further details
are provided in the Section 3.1).
The main job of Street Guide ingestion transformation, is Wrapper.kjb, shown in Figure
26.

Figure 26 - Wrapper.kjb

Architecture and Knowledge Modelling for Smart City p. 112

This Job initially realizes a format conversion, from ShapeFile to KML, thanks to the
script coordinates conversion; such conversion is necessary mainly because the
Osservatorio dei Trasporti uses a particular map projection, different than the one used
in all the other geo-referenced file. The geo-coordinates of the points are in fact
supplied as Gauss-Boaga [reference], a standard adopted in Italy in past years, while
now the standard for geo-referenced data, is the WGS84 projection [reference].
To solve this problem, the QGIS software [Appendix A.2] was used: its ogr2ogr
command invokes a script that can convert geographic coordinates in different formats
through different map projections. In Figure 27 the batch associated with the block
coordinates conversion, is shows.

Figure 27 - Ogr2ogr script

The for loop extracts all files with extension .shp, contained into the folder, where the
data downloaded from the web site of the Osservatorio dei Trasporti, are stored. The
ogr2ogr command is executed on each shape file, using the parameter -f to select the
file output format, i.e. KML, -overwrite to allow overwriting generated files when the
script is run again, "%% f. kml" imposes that the generated file is saved with same name
but extension .kml, and finally the parameters -s_srs and -t_srs, map the unique geodetic
reference codes, respectively relating to Gauss-Boaga (also called Monte Mario) and
WGS84.
When the conversion of the shape files in KML files is completed, the real processing of
Street Guide files, can begin. The downloaded data are originally divided into sub-
folders, one for each province of the Tuscany region; the Get_Folders.ktr
transformation pulls all the folders names contained in the root directory, in which data
related to the Street Guide, are stored, and provides them as input data for the next
block, i.e. the Job Main_Job.kjb. This Job will be automatically repeated for each input
folder, simply by selecting the "Execute for every input row?" check box, within the
Advanced tab in the settings window of the Job.
In Figure 28 is shown the structure of the Job Main_Job.kjb.
The data concerning each entity in the graph are all processed in very similar ways: data
are taken from the corresponding files, they are then processed by specific Kettle’s
transformation, and the rows obtained are finally stored in the NoSQL datastore built
with HBase.

Architecture and Knowledge Modelling for Smart City p. 113

Figure 28 - Street Guide main_job.kjb

The first Job step, reads the name of the processing folder from the native resultset of
Kettle and stores it in a variable named FOLDER; Pentaho Kettle allows to store
information such as variables and later to reuse it, thanks to the special character $.
The next transformation of the main Job deals with general data relating to provinces, as
it is shown in the following Figure 29.

Figure 29 - Ingestion transformation for provinces

Initially data is read from the file GIA_PROVINCE.dbf, while the next steps have the
task of picking the current date and convert it to the xsd:dateTime format, as suggested
by the W3C.
In detail, current date is fetched from operating system, then a field containing the
timezone used in Italy, i.e. "+1: 00" is created; the string initially taken is transformed to
the desired format, thanks also to the addition of the timezone to the final string.

Architecture and Knowledge Modelling for Smart City p. 114

Finally, before saving data to HBase, the data source value, that is the string
Osservatorio dei Trasporti, is properly stored in a separate column.
The next transformation, i.e. Road_Element.ktr, that processes the data relating to road
elements and its structure, is shown in Figure 30.

Figure 30 - Ingestion transformation for Road Elements

The first operation performed, is responsible for reading the data contained inside the
GIA_EL_STRADALE.dbf file, earlier downloaded.
After that, a series of string replacement operations are performed to map with their
extended meaning, each code used by the Tuscany region, to represent some features,
which lie precisely into some domain tables. To better clarify the described procedure,
see Figure 31.

Figure 31 - Mapping attributes

Architecture and Knowledge Modelling for Smart City p. 115

The subsequent operations, as in the previous transformation, leading to the creation of
the current date in the suggested format by the W3C. So, the last step of this
transformation, can insert obtained data into HBase.
The next transformation processes data related to roads, that is Road.ktr. Due to
relationships that link roads, road elements and administrative road (see Section 4.4.2),
this transformation is more complex.

Figure 32 - Ingestion transformation for Toponyms

As shown in Figure 32, data contained in files GIA_TOPONIMO_STRADALE.dbf,
GIA_EL_STRADALE.dbf and ESTESA_AMMINISTRATIVA.dbf are read, together with
tbl_elenco_comuni contents, a support MySQL table containing information regarding
all Tuscany municipality, their postal code and their ISTAT code.
Inside the toponyms table, derived from the first file read, a new field, named
EXT_NAME, is created, concatenating DUG and NAME of each toponym; then the
current date is retrieved and stored into update_date field and finally, the table rows are
ordered by toponym code value.
To the table obtained from the second file, i.e. GIA_EL_STRADALE.dbf, a sort order
based on to two keys, is initially applied: the first key is the toponym code, to which the
element belongs, and the second key, is the administrative road code. The rows
containing a unique pair of the two keys, are then selected, and ordered by the toponym
code (which is also contained in the table of road elements); thanks to a Merge Join
step, the two modified tables, are merged.

Architecture and Knowledge Modelling for Smart City p. 116

The third table, containing the same data of ESTESA_AMMINISTRATIVA.dbf file, is
first ordered by COD_REG key, and then the administrative class codes are replaced by
the corresponding descriptions, contained in the domain table dom_cls_amm.dbf. A new
Merge join step is then applied to the table just processed, and to the table obtained with
the previous merge operation: the result is a single table containing all data needed to
define the relationships between toponyms, road elements and administrative road.
Finally, the update_date field is formatted, as in the previous transformations, in the
W3C desired format. Before saving the processed data on HBase, a further step of
Merge join is performed, to transform the municipality identifiers to which the road
belongs to, with the corresponding ISTAT (reference) code.
The next analyzed transformation is Administrative_Road.ktr, shown in the following
figure.

Figure 33 - Ingestion transformation for Administrative Roads

Similarly to the first two transformations described, this one first loads data from the
source file ESTESA_AMMINISTRATIVA.dbf, then a domain tables mapping is applied
to replace the feature codes with their descriptions, and, after that, the current date value
and data source value are created creating, in the correct format, and finally the
transformation saves all data into HBase.
Also the Street_Number.ktr transformation, which deals with data relating to street
numbers, has the same structure of the previous transformation, therefore, it will only be
reported in Figure 34.
The transformation Maneuver.ktr, however, differs from the previous ones, due to the
semantic of the data relating to maneuvers: in fact, data released by Osservatorio dei
Trasporti, are contained in two main files, GIA_MANOVRE.dbf and
GIA_MANOVRE_ELSTR.dbf containing the individual maneuvers permitted or
forbidden and their type, in the first file, and the list of road elements involved in each
maneuver, in the second file.

Architecture and Knowledge Modelling for Smart City p. 117

Figure 34 - Ingestion transformation for House numbers

In order to map data into the ontology described in Section 4.4, information contained in
each files, must be joined together; for this reason initially these two files are reading,
and then the transformation sorts the data contained in the file GIA_MANOVRE.dbf file,
according to maneuvers identifier; as in previous transformations, codes contained into
the files, are mapped respectively with the correspondent description, contained in the
domain tables.

Figure 35 - Ingestion transformation for Maneuvers

The second file requires a deeper processing: in fact more rows in the table refer to a
same maneuver and, according to what seen in Section 4.4.2, a maximum of three road

Architecture and Knowledge Modelling for Smart City p. 118

elements can be connected to the same maneuver; so data are divided according to the
sequential number of elements involve. The three obtained flows, respectively relating
to road elements with sequential numbering equal to 1, 2 and 3, are then merged into a
single table, and then they are sorted according to the maneuver identifier.
Data thus obtained, is merged again with data coming from the first transformation
branch. As in previous transformations, information about the current date and the data
source, are also created, before the final HBase step, that save data.
Transformation in Figure 36 processes data on entry rules, i.e. restrictions or
permissions access to defined road elements or maneuvers; the files, that collect this
type of information, are GIA_REGOLA_ACCESSO.dbf,
GIA_ACCESSO_ELSTRADALE.dbf and GIA_ACCESSO_MANOVRE.dbf.

Figure 36 - Ingestion transformation for Entry rules

To facilitate the next phase of data mapping on the knowledge model, data contained in
these three files, are together; after that, incomplete rows are removed together with
rows for which no correspondence between the entry rules indices, has been identified.
Based on the value of two attributes, RSTTYP and RESTRVAL, the entry rule type is
defined; the latter attribute is a numeric code that can take the same value for different
values of the first attribute, that is RSTTYP. To simplify this situation, the two attribute
values are unified in a single field, which is then converted to string. Finally, RSTTYP
values are mapped with their descriptions, taken from the correspondent domain table.

Architecture and Knowledge Modelling for Smart City p. 119

Also in this transformation, the current date in the xsd:dateTime format is created and
finally, all obtained information is stored in a temporary CSV file, which is the input of
the next transformation, that is Entry_Rule2.ktr.
Such transformation is necessary to avoid a small Kettle bug, which does not allow to
apply the mapping operation more than once for transformation, and consists of steps
represented in Figure 37.

Figure 37 - How to correct a small Kettle bug

This transformation simply performs RESTRVAL values mapping (not allowed
otherwise) and also defines field that contains data source information; finally, data is
saved on HBase.
The next transformation is the Municipality.ktr, whose structure is shown in Figure 38.

Figure 38 - Ingestion transformation for Municipalities

As is easy to observe, this transformation is very similar to transformation concerning
provinces, previous described.
First of all, data is reading from GIA_COMUNE.dbf file, while the next steps create the
current date field and convert it to the xsd:dateTime format, as suggested by the W3C.

Architecture and Knowledge Modelling for Smart City p. 120

Thanks to a MySQL support table, containing ISTAT codes of all Tuscany provinces,
called tbl_elenco_province, a new column is created, containing just the province code
to which each municipality belongs.
Finally, data is saved to HBase, after the data source information has been saved into a
new column.
The next five transformations of the main job, pull data from a different file type, that is
KML files, converted from the downloaded Shape files. Unfortunately, the KML files
size is 5-6 times greater than the Shape files size, a factor that slows down the ingestion
process; fortunately, the processed data are static and therefore, these transformations
are performed infrequently, so, despite the increase of the execution time ,there is a
small effect on the final architecture performance.
The Keyhole Markup Language is directly derived from XML, i.e., eXtensible Markup
Language, a language more difficult to manage through Pentaho Kettle, whose
functionalities are better suited to data in tabular form. For this reason, the next step,
that is Open_KML_File.ktr, is responsible for the transcription of the data contained into
the files GIA_ACCESSO.kml, GIA_GIUNIONE.kml and GIA_CIPPO.kml in CSV
format.
The subsequent transformation of the main job, uses the created CSV file as input,
within which there are two columns, ExtendedData containing all founded attributes,
and Point, containing all founded geo-referenced information. Data contained in the two
columns, are then spread across multiple columns, as shown in Figure 39.

Figure 39 - Splitting fields

Again because the Kettle bug concerning data mapping, previously seen, some
temporary CSV files are created, with names GIA_GIUNZIONE2.csv,
GIA_ACCESSO2.csv and GIA_CIPPO2.csv.

Architecture and Knowledge Modelling for Smart City p. 121

The next three transformations of the main job, take care of each one of the CSV files
and, after importing data, the attributes mapping with values contained in the respective
domain tables, is performing, together with the generation of the current date in W3C
recommended format and the creation of the data source field (that containing the value
Osservatorio dei Trasporti). Finally, each transformations save data into HBase.
Given that the three transformations are very similar, in Figure 40 only that relating to
the Entry class is reported.

Figure 40 - Ingestion transformation for Entries

The next three transformations of the main job, are used to ingest data on road element
composition (see Section 4.4.2). The first transformation, called Open_Coordinates.ktr,
transforms the KML file in CSV file, thus creating the file GIA_EL_STRADALE.csv; the
second transformation, being more complex than the previous one, is then shown in
Figure 41.

Figure 41 - RoadLInk transformation for Road Elements

Process_Coordinates.ktr takes as input the CSV file created by Open_Coordinates.ktr
transformation and, extracts the fields ExtendedData and LineStrings (present in place
of Point field seen previously, since in this case a series of coordinates are processed
and not only a couple) together with the road elements identified. After this operation,
ExtendedData is divided into multiple columns; the LineStrings field, instead, contains
a series of pairs of coordinates that correspond to all junctions composing each
individual road element.

Architecture and Knowledge Modelling for Smart City p. 122

So, for each pair of coordinates contained in LineStrings field, a new row in the table is
created, which also contains a new column with the order number of each coordinate. In
Table 3 is possible to observe an example of this processing.

Table 3 - Coordinates transposition

An additional column in the data table, which contains the sequence number of the
coordinate minus one; this procedure has the aim to simplify the creation of the correct
identifier for Junctions of each RoadLink, for which, instead, the identifier is created
concatenating the road element identifier and the identifiers of the coordinates pair that
delimit it.
The created data are then duplicated and finally saved in a temporary CSV file called
GIA_EL_STRADALE2.csv.

Figure 42 - Ingestion transformation for RouteLinks

The last of three transformations that deal with RoadLink, is Save_Coordinates.ktr
(Figure 42) that mainly performs an operation of row flattener: this operation

Architecture and Knowledge Modelling for Smart City p. 123

sequentially fetches data from a column and transposes them in other columns, specified
by the user; Figure 43 tries to explain the applied procedure.

Figure 43 - RowFlattener explenation

Thanks to the Clone rows operation previously applied, this transposition can be done:
in absence of doubled values, it would not be possible to use two times the same
coordinate to represent the ending junction of a RoadLink and the starting junction of
the next RoadLink.
Finally, the transformation generates the date field in xsd:dateTime format, and the field
related to the data source.
The last step of the main Job, delete all temporary files that were generated and used
within the Job and all transformations it recalled.
The ingestion process of the Railway Graph is very similar to that just seen, so for this
reasons, it will not be deeply described in this thesis.

5.1.2 Weather Forecasts Ingestion

The transformation responsible for the ingestion of data provided by Lamma, through
the Open Data portal of the Tuscany Region (http://dati.toscana.it) related to weather
prediction, consists of a main job, a kind of skeleton, which allows to define the order in
which each individual steps must be performed.
In Figure 44 the structure of the main Job, named Previsioni_main.kjb, can be observe.
The first transformation that makes up the Job, that is Database.ktr, extracts all the
information needed to complete the operations, from the ProcessManager table.

Architecture and Knowledge Modelling for Smart City p. 124

Figure 44 - Ingestion transformation for Weather Forecasts

The processManager table, is a MySQL table used mainly by the Process Scheduler,
which can recover from this table all information concerning the processes associated
with each single dataset, to be treated. As is possible to see from Figure 45, the
execution of the process steps that must be performed for each dataset, can be activate
directly from the processManager table, simply press the buttons indicated in the figure
by letters A, B and C, and which respectively correspond to phases of Ingestion, Quality
Improvment and Triple Mapping of the dataset referred by the row.
In this table the main information about each dataset is collected, and it is used by at
least one of the seven phases that comprise the functioning of the architecture presented
in this thesis. Such information includes, for example, the path of the processes that the
Process Scheduler will use to start each single stage of Ingestion, Quality Improvment,
Mapping or Indexing, but also information such as the number of RDF triples in which
each dataset has been transformed and the number of RDF triples that were actually
loaded into the repository, that are useful values for the dataset validation process.
This table also collected the final state and any errors resulting from the execution of
each processing phase, in addition to the last execution date and the process scheduling
time (i.e. how often the job should run again, a field especially used with Real Time
datasets).
So each process interacts with the processManager table by writing or only by taking
the required values to perform its tasks.
Getting back to the Ingestion process, the next steps, retrieve the creation date of the last
downloaded file, perform a check to see if the file already exists, and they also check
hour, minute and second to verify if they correspond to the last download file. Just in

Architecture and Knowledge Modelling for Smart City

case the file is actually
understand, thanks to Job
processing. This job takes the
the running process, a value recoverable inside the

Figure

In the following pages, transformations and jobs, that make up the main job, will be
more deeply analyzed.

Figure 46 shows the Database
the required variables
operation is necessary be
need such values, so they must be stored within well
on the processMananger
performed to retrieve rows in

Architecture and Knowledge Modelling for Smart City

case the file is actually the most recent available, it will be downloaded, as is easy to
understand, thanks to Job Download.kjb, which also ensure the resource storage and

This job takes the processName variable as input, containing the name of
alue recoverable inside the ProcessManager table.

Figure 45 - The ProcessManager MySQL table

In the following pages, transformations and jobs, that make up the main job, will be

Figure 46 - Database.ktr transformation

Database.ktr transformation, which initially retrieves the value of
 and then turns it into an usable format for next steps; this

operation is necessary because not all steps are able to read parameters, but they might
need such values, so they must be stored within well-defined fields. Afterward a query

processMananger table, contained into the MySQL support database, is
performed to retrieve rows in which the process field corresponds to processName

 p. 125

downloaded, as is easy to
, which also ensure the resource storage and

variable as input, containing the name of
table.

In the following pages, transformations and jobs, that make up the main job, will be

transformation, which initially retrieves the value of
and then turns it into an usable format for next steps; this
cause not all steps are able to read parameters, but they might

defined fields. Afterward a query
table, contained into the MySQL support database, is

field corresponds to processName.

Architecture and Knowledge Modelling for Smart City p. 126

Furthermore a number of fields need to be created: for example, the target_file field
containing the path of the file that will be downloaded, date, a field in ISO format, that
contains the execution date and time, the field error, that will contain any error message
if some errors will occurs.
Finally, the last step, copies the previously generated lines in a Kettle internal table
calling result, which is useful for passing information between transformations/jobs.
The download.kjb job, as seen above, deals with data retrieval, and it is shown in Figure
47.

Figure 47 - The Download.kjb Job

Thanks to the result table, this job is able to use all information retrieved in the previous
processing; initially an HTTP calls GET method [RFC2616] is implemented by
specifying parameters as the download URL of the resource, the path where it must be
saved and the date of the last download, useful for setting an header type like "IF-
modified-since" inside the HTTP call. The specification of this header type allows to
download the dataset only if it has been updated since the specified date. If the resource
has been updated, it will be downloaded and the last update field will be updated with a
new date.
The next step is the downloaded data preparation, for their HBase insertion, performed
by the transformation shown in Figure 48.

Architecture and Knowledge Modelling for Smart City p. 127

Figure 48 - Ingestion transformation for Weather Forecasts

This transformation initially retrieves the current date can then be saved into
ProcessManager table, as last_update value.
Information contained into the downloaded file, is then extracted by using XPath
[XPATH] expressions: this language, as previously seen, allows to see an XML file as a
tree graph whose nodes, i.e. the values, are accessible through a path.
In order to clarify the concept, as it is possible to see from Figure 49, wanting to
perform a loop on the content of previsione tag, in turn contained into the dati tag, it is
sufficient to set the path as "/dati/previsione ".

Figure 49 - XPath Loop

The just set loop, is necessary to retrieve information from the 16 different forecasts,
contained in the file provided by the Lamma consortium, as seen previously in Section
3.4.2.
Moreover, to extract not repeated information, such as almanac information, the "@"
clause is used, which allows to directly extract the contents of a specific XML tag. Any
information relating to wind and cloudiness, are located at a more lower level than those
seen so far: thanks to a loop on path "/previsione/simbolo", these features are recovered.

Architecture and Knowledge Modelling for Smart City p. 128

With a dedicated step, the data retrieved from the XML file are transposed from rows to
columns, and then all join on a unique row.
After this, the data contained in aggiornamento, is spitted into five different fields
containing year, month, day, hour and minute values, useful for the construction of a
new fields date, in xsd:dateTime format and the HBase keys is also created, thanks to
the Java script, shown in Figure 50.

Figure 50 - JavaScript to split aggiornamento

The keys for the two forecasts classes, WeatherPrediction and WeatherReport, were
formed through the concatenation of common fields like Time_ms, id_day and hour, for
the first class key called predictionKey, and comune (containing the Municipality name
to which the forecast is referred) and timestamp, for the second class key, called
reportKey.
Thanks to setHours() function, the timezone is taken into account for calculating the
update date; this feature also comes in handy to add the missing second parameter to
some fields like sunRise, sunSet, moonRise, moonSet, heightHour, without which they
could not be reported in xsd:dateTime format; it was decided to set all missing second
parameters to zero.
The transformation continues creating the source field and setting its value to "Lamma",
and then some accented characters (such as inside the Italian days of the week) are
replaced because they can cause display problems later, as well as the degree symbol
“°” which is instead simply deleted.
Thanks to the special Kettle step that allows to create a connection to a MySQL
database, an access to the ISTAT code support table, is guaranteed, that is a MySQL
table containing, for each municipality in Tuscany, the correspondent ISTAT code,
useful for defining the class Pa identifiers.
The splitting of the transformation execution flow, finally, allows to save on HBase,
data relating to individual forecasts, and also the so called "Almanacco" data, avoiding
the redundancy of the latter on multiple row.

5.1.3 Tuscany Region Open Data Ingestion

Architecture and Knowledge Modelling for Smart City p. 129

The initial part of the main job (Figure 51) that deals with the CSV file ingestion,
downloaded from the Open Data portal of Tuscany Region, has a similar structure as
the main job that instead ingests weather forecasts.

Figure 51- Ingestion transformation for Open Data of Tuscany region

In fact, the Database.ktr transformation is exactly the same, but the transformation
continues with a series of controls, that allows to descend the folders’ tree created
within the directory, in which the downloaded datasets are saved, that verify also if the
file has been updated. Only after this test, if the resource has been updated, it is
downloaded.

Figure 52 shows the heart of the entire ingestion process, the Files_Modification.ktr
transformation.
Initially a check to verify if the resource has been updated, since the last download, is
performed, and if so, the last_update column of the ProcessManager table, will be
updated with today's date, in order to track the latest update/download of each dataset.
Afterwards the downloaded file has to be read and such operation requires to set some
CSV file properties, as the delimiter (set to comma in most of the examined dataset), so
that the reading takes place correctly.

Architecture and Knowledge Modelling for Smart City p. 130

Figure 52 - Files_Modification.ktr transformation

To adapt a unique transformation for different types of CSV files, all coming from the
portal of the Tuscany Region, the mapping of the fields to be taken, consists of all
possible fields that can be found on these different files; in this way fields that are not
present in the opened file, remain empty, and they will not picked up by next steps;
therefore they will also not be saved on HBase.
The transformation continues recovering the processName parameter, and eliminating
blank spaces in fields such as email and address and the comma in address field,
because these two fields are used to create the HBase keys, an operation that does not
accept special characters, such as punctuation. In addition to the key used on HBase,
also the insert date must be formed, and this process takes place thanks to some lines of
Java code.
Data is then filtered according to the value of isService, and only the values that make
true this control, continuing execution, while the other rows are discarded. FInally, the
step writing to HBase must be preceded by a selecting data step, defining which fields
are actually stored on the NoSQL data store within the table called regione.csv.

5.1.4 Tram Line Ingestion

Data relating to the only Tram line in Florence, belong to the category of static data,
since a few updates to the dataset are provided, probably only if new lines are built; so,
the automatic download process has been set to a very long period, and it is probably
more convenient a manual control to start the download process.
The following figure shows the transformation that takes care of the ingestion of Tram
dataset.

Architecture and Knowledge Modelling for Smart City p. 131

Figure 53 - Ingestion transformation for the unique Tram Line

The transformation begins opening the tram_tracciato.kml file, without interpreting its
contents, exactly as it was a single string of text.
The next steps delete the opening and closing tags of the CDATA field, contained in the
KML file, i.e. "<![CDATA[" and "]]> ", thus making possible the interpretation of the
file by an XML parser.
The execution flow is then divided, in order to carry out the extraction and processing of
data from the file, as parallel operations: each of the two processing branches, start with
a step that extracts data from the XML file, respectively, the description and the general
information at the beginning of the file, for the first branch, and the coordinates, for the
second one.
Information extracted from the first branch of execution, does not require further
processing (only the insert date is added) and it can be sent directly to the merge step.
The second branch, instead, presents a far more complex structure: once the content of
the field coordinates has been extracted, the string containing the set of coordinates is
divided, and each pair of coordinates obtained, is inserted into a table.
The unique string that contains all of the coordinates is then eliminated, while an order
number is associated to each pair of coordinates.
The calculator step, calculates two necessary integers to create identifiers for
RouteJunction and RouteLink classes of the Km4City ontology. The line feed and
carriage return characters, which would otherwise appear in triples as "\n" and "\r", are
then eliminated from the various fields generated until now; the transformation
continues with the creation of a field that contains the next coordinate pair to that found
in each table row, to obtain new rows containing two successive coordinate pairs, which
represent the starting and the ending point of each element, of the RouteLink class.
In Figure 54 is possible to observe settings for this crucial step.

Figure 54 - How to set Analytic Functions step

Architecture and Knowledge Modelling for Smart City p. 132

The last line in which there is only one coordinate pair, is deleted; the two fields
containing coordinate pairs are splitted based on the comma position, thus creating four
separate fields representing latitude and longitude of the starting point, and latitude and
longitude of the ending point, respectively.

Table 4 - Results of Tram Line Ingestion Process

When also the execution of this second branch is finished, the Merge join step is
performed: the result is the creation of a brief description associated with the tram line,
and of keys, created as shown in Table 4.
Finally, the transformation ends with the selection of data that will be saved to HBase.

5.1.5 Sensors ingestion

The Kettle job shown in Figure 55, performs the ingestion of road sensors data.

Architecture and Knowledge Modelling for Smart City p. 133

Figure 55 - Ingestion transformation for Road Sensors

This transformation has a structure similar to some already seen that allows to check
whether the available data have been updated, and eventually create the correct folder
path where they will be saved. The transformation shown in the following figure, is in
charge of data download.

Figure 56 - Transformation to download data

This transformation uses a file request.xml, saved in the same location of the
transformation, to make a SOAP request to the web service, which will provide the data
detected by road sensors, in real time.
The transformation is also involved in the current date creation process, that must match
the xsd:dateTime format (recommended by the W3C), and then it will enhance the
variable dataInserimento.
Then the variables that contain the parameters of the SOAP request, are defined. A key
parameter for querying the web service, as also seen in Section 3.5.1, is the catalog
number, represented, in the transformation execution flow, by the catalog variable.
Thanks to an HTTP post, the web service of sensors can be invoked, using the URL
provided by the MIIC and the catalog variable properly valued: the result is an XML
file that contains information about the sensors of the indicated catalog.
The fundamental part of the main job, is represented by the callSensori transformation,
that is shown in Figure 57.

Architecture and Knowledge Modelling for Smart City p. 134

Figure 57 - The CallSensori transformation

The transformation sarts with data extraction from XML file, thanks to XPath
[XPATH].
The last measurement date, contained in the received XML file, is properly stored in the
ProcessManager MySQL table, within the column last_update, so as to keep track of
when the latest information from the Sensors Web Service, have been received.
The payloadPublication tag has been set as a loop node, because the most important
information is contained within more tags measurementTimeDefault, located inside the
payloadPublication tag; if some communication problems, with the server, occur, the
latter tag will be empty and then, in the transformation, a control step to verify if
payloadPublication is null, is also set; therefore, only if the tag is not null, the execution
flow continues upgrading the correspondent field, in the ProcessManager table.

Figure 58 - XPath Loop for sensors

A further Xpath loop is then set on another payload tag, that is siteMeasurement, thanks
to which the following data internal to the tag, can be recovered:
measurementSiteReference, measurementTimeDefault, concentration, occupancy,
vehicleFlow, averageDistanceHeadway, averageVehicleSpeed, threshold and value.
In addition to these fields, even fields "external" to the loop node are selected:
measurementSiteTableReference, supplierIdentification and publicationTime.
For each elements within the siteMeasurement tag, a new line, containing all
information retrieved, is stored on HBase. The new obtained data is also used to update

Architecture and Knowledge Modelling for Smart City p. 135

the MySQL table sensors_details, where static information of each sensor, are written
and where later, thanks to the additional information retrieved from the website of
Osservatorio dei Trasporti, other information such as the toponym name and the
toponym code, will be added.
For each measurementSiteReference element, the table field siteTable is updated with
the measurementSiteTableReference value, where the condition
codiceSito=measurementSiteReference is verified; in case the correspondence with the
identifier is not found, the new identifier will be added into the sensors_details table,
thanks to a SQL insert.
In Table 5 an extract of the table sensors_details is shown, when the toponym name and
its code have already been added.

Site Code Site Table Toponym Toponym Code

GR0100801 GR01008 Via sidney sonnino RT05301104290TO

GR0100802 GR01008 Via sidney sonnino RT05301104290TO

GR0101001 GR01010 Via nepal RT05301101153TO

GR0101002 GR01010 Via nepal RT05301101153TO

GR0101003 GR01010 Via nepal RT05301101153TO

Table 5 - Sensor details Table

The sensor data are real time data, and key associated with HBase rows must be created
carefully, so as not to create duplicates, given the large number of elements, that will be
created daily. For this purpose, an MD5 checksum transformation is used to creates
keys.
Even in this transformation, some concatenation steps are used, which produce, as seen
above, the addition of special characters such as line feed and carriage return, that must
be eliminated.
Regarding the Real Time data storage on HBase, Kettle requires some information to
establish a connection with the master machine, i.e. where the repository is located.
Moreover the exact mapping, that defines the correspondence between fields, of the
transformation flow, and columns created on HBase, must be created. Also a key field
must be defined, represented in this case by the unique identifier previously seen.

5.2 Phase II: Data Quality Improvment

As a result of a detailed analysis of ingested data, a long series of inconsistencies were
found, especially related to the content of the services dataset, most likely derived from
an export operation not carried out perfectly: clearly, it has a negative effect on the
information amount that this data, suffering from problems, are able to provide. It was
therefore decided to implement a data quality improvement process in order to recover
the greatest amount of information as possible; this process, as it is possible to see from
Figure 25 (Phase II), will be executed before the triples transformation phase (called

Architecture and Knowledge Modelling for Smart City p. 136

Phase III in the same figure) and it involves data extraction from HBase and storing
them at the end of improvement, always on HBase, but on other table.
Such a process was carried out using the ETL tool Kettle, in order to ensure continuity
to the ingestion processes already made.
From the analysis of ingested data, the following errors were detected and classified as
correctable:

• Multiple telephone numbers;
• Typos in web site address;
• Some services have in place of the province, the final part of the address string,

or an empty cell;
• Some services have problems with the municipality name: wrong name, typo,

empty cell, number instead letters, location name instead of municipality name;
• Some service have charset encoding problems in various fields;
• Almost all phone and fax numbers are devoid of the initial 0;
• Instead of a phone number, some services show "Call municipality";
• Instead of email address, some services show the "email" string;
• Instead of web site address, some services show the "no" string;
• Syntax problems on the web site address;
• In some record, the service name is missing;
• There is no unique format for phone numbers and fax; in addition there are a

number of errors on telephone numbers: in the case of multiple numbers, the
prefix is often written only the first time, or in other records in the first number
is written correctly and the others have only the last different digit;

• Many telephone number are written in exponential form (i.e. 3,90585E+11): this
is clearly a conversion error from string to number;

• Some services only have the string "39" as the phone number, that is part of the
international dialing code for Italy;

• The most frequently errors on web site address are double "http", several typos
on the "www" string such as "ww", "wwww", "www:." etc.

• Domain missing in the web site address
• All CAP are missing;

In summary, the main problems are all related to the fields containing the service
address, the service name, its email, its website, its telephone and fax numbers.
The following are the actions that will be carried out on each fields covered by the QI
process; for each of them, the performed steps allow to eliminate most of the errors
encountered.

• Phone e Fax: To delete blank space after prefix (all possible prefixes must be
defined); To add 0 to landline telephone or green number (187), if missing; To
check the number's length (for eliminating partial numbers); To divide numbers
with multiple digits at the end (both in the presence of “/” that of “-“).

Architecture and Knowledge Modelling for Smart City p. 137

• Address: To separate house number (or “SNC”, a string that means “without
house number”) after the comma.

• CAP: Need to be inserted.
• Province: To clear fields where more than two characters appear; Fill all empty

cells based on the Municipality field
• Website: To check that field starting with http:// or www; To check that in field

there are at least two full stops and, after the second one, there is at least one
character.

• Email: To check that there is a @; To check that there is a full stop after the @,
and a character after the full stop; To check that text before the @ has at least
one character.

Of course, not all problems afflicting all datasets and then a job Kettle quite dynamic,
which is appropriate for the different cases, need to be created. In addition, individual
transformations are created, each of which manage a single field and its main problems,
and they will be discussed in next sections.
Unfortunately, Kettle does not allow to create fully dynamic transformations, which are
able to adapt themselves to the data content supplied as input. However, it is possible to
create a mapping system, using a MySQL support table and the ProcessManager table,
where all useful information about ingested datasets are stored: by performing the QI
process, that is the same for all data sets, the execution will follow a precisely path in
the entire execution flow defined, which is chosen according to the data that must be
processed, to the contents of the ProcessManager table for that dataset, and to the
corresponding value in the mapping table. Data related to services has some regularity,
so it was enough to realize six different QI branches, which correspond to different
sequences of issues to be deleted, and to map them in the mapping table. It is obvious
that, for each new dataset ingested that presents a different structure of fields, a new
branch in the QI transformation, must be realized and introduced in the mapping table.
To make more flexible the job acting on services, each processing branch has been
realized as a separate sub-transformation, so that, for each type of file processed, thanks
to an additional information which identifies the type-transformation correspondence,
the right sub-transformation can be performed. This information is stored in a parameter
initially provided as input to the job, and which is then transformed into a variable, so to
make it visible during the whole execution.
In addition, the fields within the files on which the QI acts, may have different names
(for example the "telephone" field can also be called "phone"), then the sub-
transformations realized must take into account this additional factor of variation.
The structure of the realized Quality Improvement process, consists of a main job
Data_QI.kjb, that calls the appropriate sub-transformations, depending on the class
value, that identifies order and name of the resources, on which the QI have to act.
In particular, each class includes all the resource with the same structure; this class is
stored inside Resource_Class column of the MySQL table, ProcessManager. When

Architecture and Knowledge Modelling for Smart City p. 138

calling for a Quality Improvement process on a particular file, a query to the
ProcessManager table is performed, to retrieve the Resource_Class of the file. Based on
the result of the query, the main job, runs the appropriate sub-transformations, which
name is composed by the class name with a suffix referring to the process type, that is,
"class + _QI.ktr".

Figure 59 - Quality Improvement schematization

The Kettle's Job representing the backbone of Quality Improvement phase, initially
recovered from the MySQL database, the last update date; this value is then used to
recover, from HBase, only records relating to the last entered data, which will be used
by the next steps.
Afterwards, a cascade series of transformations are executed, each of which deals with a
specific field of the dataset, which will carry out a first QI phase (only relating to the
data format).

Below, for each field subjected to QI, the relative transformation, that makes
corrections, will be analyzed.

5.2.1 Phone and Fax QI

The phone field should be a numerical value, but in various files analyzed, the presence
of non-numeric characters has been found in this field, and especially of different
format and configurations.
In particular, some specific patterns were found, which are collected in Table 6:

Pattern Example

Architecture and Knowledge Modelling for Smart City p. 139

Presence of alphabetic characters O55 9162635
Presence of special characters such as / - . 0572/67352-3-4

Only a few fields have the international prefix 0039 or +39
+39 0577 300020

3,9E+11
Numbers written in accordance with the exponential notation #######
Presence of blank spaces 0564 858111
Lack of 0 before the regional/provincial prefix 5,5E+07
Presence of multiple telephone numbers (2-3) 057161744 - 057161199
Presence of multiple numbers (suffixes extension number) 0572/67352-3-4
Partial/incomplete numbers 39

Table 6 - Telephone field most frequently errors

Figure 60 - Telephone Quality Improvement Process

The Quality Improvement process, shown in Figure 60, has the aim to recover part of
the content information of the phone field, and it is based on the following assumptions:

• Prefix (for both landline and mobile numbers) is composed by 2-4 digits.
• The phone number is composed by 6-8 digits.
• Suffix for internal numbers, is composed of maximum 3 digits.

Furthermore, the blank space will be the only delimiter used, between prefix and
number and between several numbers, then to proceed to the recovery of the main
telephone number and any additional numbers, that will be reported in the note field.
Once the value of the phone field was recovered, some preliminary transformations are
performed (using Javascript code), so as to bring the data into a suitable format for
further processing. In particular, the following operations are performed, in the same
order shown in the list:

� The national prefix, in format 0039, +39 e 39, is removed.
� The international prefix +44 is replaced with 0044.
� Any blank space before the number is removed.
� All slash (/) and em dash (-) characters present inside the field, are replaced

with a blank space.

Architecture and Knowledge Modelling for Smart City p. 140

� All special and alphabetical characters are removed.
� All multiple blank spaces are replaces with a single blank space.
� If at the beginning of the number, the zero digit is missing, it will be added.

After that a filtering step is performed, to check whether any spaces appear into the
number: fields which do not contain blank space are routed directly to the Append
Streams step, whereas those in which some blank spaces are instead detected, they are
sent in input to a further Javascript step.
This step aims to extract the main phone number from the input string, and it is based on
the assumption that blank space is the separator between prefix and telephone number;
after the extraction, the phone number will be saved in the appropriate MySQL field,
while the remaining string, possibly containing any additional information or any other
secondary phone numbers, will be saved inside the Note field, with the label "Additional
Phone:". This processing is necessary because, during the triples creation phase, each
service will be associated with a triple to only one phone number, in the required
format; other numbers, however, can be moved to the skos:note triple, which contains
all additional details on the service, avoiding the loss of any information.
Finally, the result of these operations is again merge with the other rows initially
separated that did not contain spaces.

The Fax field transformation, is very similar to this just seen, its main action is relating
to the mobile phone numbers elimination, since this information cannot be real.

5.2.2 Address QI

The Address Quality Improvement process is more complex than the previous ones,
mainly because it was decided to split the house number from the street name.
In most cases, this field has the following form: "street name, house number", but
sometimes, this standard is not observed, and in particular it can be written without the
comma, that is "address number", or in the worst case, one of the two parts may be
missing.
Furthermore, the address, with or without house number, can be followed by an
additional text, containing variable information such as fraction, locality, mileage
position, or also the text that preceded the house number can correspond just to the
town, the locality or to a more generally indication.
The Quality Improvement process, is split in two execution branches: the first part deals
with the house number extraction (possibly followed by additional text), from the entire
field; the second one, instead, deals with the extraction of additional information that
can follow the house number.
Given the large number of records to be analyzed (more than 30,000), to speed up data
analysis, a "data profiling" tool has been used, which quickly allows to extract all
observed patterns inside the address field, within the over 30,000 records; this open
source software is DataCleaner (http://datacleaner.org/).

Architecture and Knowledge Modelling for Smart City p. 141

In Table 7 the main patterns found, thanks to the data profiler, are described.

Pattern Esempio
Address, house number Viale dei Mille, 11
Address house number Via Del Belvedere 26
Address, house number additional text (1) Via delle Torri, 20 - Cisanello
Address, house number additional text (2) Via Oppilo, 00 - Oppilo, 00
Address, house number additional text (3) Via Pino Gorgognano, 451 (Pino)
Address, house number additional text (4) Strada Pianacce, 131 - - ALBERESE
Generic text (1) - Selvaccia - Pietraviva
Generic text (2) LOC. REALE
Generic text (3) Loc. Contra - Fraz. Nicciano
Generic text (4) Via Iano (Iano)
Address, double house number Via Ferrucci, 11-13
Address, house number (terminating with a character) Via Bartolini 1175/a
Address, house number, house number Via delle Pinete, 3, 3
Address double house number (without a comma) Via Nardini 11/13
Address house number additional text Via Piave 9 (Pontassieve)

Table 7 - Address field most frequently errors

Regarding to the house number extraction, the first operation performed divides the
address field, where the comma is located (if it exists); the two new fields, addressOnly
and civicNumber, contain respectively the string preceding the comma and the string
following the comma.
After this operation, some Javascript code is applied to addressOnly field: thanks to a
regular expressions, the first occurrence of a number, inside this string, can be located
and, if it exists, the addressOnly text is again divided into two sub-string. The first sub-
string certainly contains only text, while the second one will contain the identified
number, followed by any additional text. If the text contained in the first sub-string is
shorter than six characters (which statically happens when the string contains the dug of
the address, that is "street", "avenue", "square", etc.), then the two sub-string previously
separate, are merged again: this is the case of street names contain a number, such as
"Via 1 Maggio", "Via 2 Giugno".
Otherwise, a second check is then performed on the first sub-string derived by the
addressOnly division, to verify if it ends with "KM" , "CS", "SS" or "SP": in fact, in
these cases, the number at the beginning of the second sub-string, need to be recovered,
and merge with the first part, because for example, "KM" is usually followed by the
mileage value, while "CS", "SS" or "SP" are usually followed by the road number.
A further text division of the second sub-string, is performed if it contains an em dash "-
": for example, the second sub string can be “Loc. Contra - Fraz. Nicciano”, so, in this
case, the text following the special character is append to the field civicNumber.
The final part of the Javascript code, eliminates some special characters that can be
found in the two fields created from addressOnly.

Architecture and Knowledge Modelling for Smart City p. 142

The output fields of this transformation are called address1 and civic1, names that make
clear which is the content of each field.

Figure 61 - House number cheking process

The second transformation, shown in Figure 61, checks if the civicNumber field, start
with a character, instead of a number, because it is not able to recognize if any number
is an house number, but it is expected to found the house number at the beginning of the
civicNumber field. The execution flow is divided into two branches: on the vertical
branch civicNumber fields that do not begin with a number are processed, while on the
horizontal branch continuing those that begin with a number, which are again separated
into two fields civicNum and civicText. This division takes place where an arbitrary
number of dashes and blank spaces are founded (for example "6 - - SCARLINO
AIRPORT KM.222").
civicNum will contain the number above special characters, while civicText will contain
the text following the number. With a regular expression, also civic numbers like
“91BIS” or "91A" can be extracted. The field civicText previously created, is then split
into two parts, where an arbitrary number of blank spaces and dashes were detected,
creating the fields civicNum2 and civicText2; the special character slash at the beginning
of the string, is also removed, if it exists.
The step “Clean primary civicNum” takes as input the fields civicNum, civicNum2 and
civicText2 and tries to enhance their readability: its output is composed of two fields,
that is firstCivic, containing the primary house number (the first number appears) and a
string with additional information.
As in previous transformations, the main value identified, that is the house number and
the street name, are respectively saved on civic number and street name fields, while the
other additional information are append to the Note field.

5.2.3 Service Category QI

Architecture and Knowledge Modelling for Smart City p. 143

Each service coming from the Tuscany region datasets, is associated with a
ServiceCategory in Italian. Inside the Km4city ontology, actually, service categories are
defined in English, in order to make the ontology more usable. It is therefore necessary
to associate to each service, an English service categories, thanks to the dictionary
specially created, that is a MySQL mapping table, containing all the Italian-English
matches. The dictionary and the correspondent Kettle transformation, are easily
adaptable to other languages, just put the new translations in the dictionary and
associate them with the categories defined in the ontology.

Figure 62 - Service Category Quality Improvement process

Initially, the category field of each record, is selected and cleaned from special
characters (often there is, in fact, an underscore in place of blank space), because it is
also used to make a query on the MySQL table ServiceCategory. This query has the
purpose of extracting the English translation of the category, only if this is actually
present in the dictionary; if the query is successful, the English recovered category is
included in the new field CategoryEng, otherwise the field is left blank.
In case the category field contains the simple string "services", a special management is
provided: these lines are subjected to a series of modifications, and then to a Javascript
code, that search some keywords in the Name field modified to determine the English
category, according to the default mapping (see Table 8).

Keyword English Category
Associazioni/associazione other_office
Comune other_office
CGIL/CISL/UIL/CAF other_office
Consultorio family_counselling
Biblioteca Library
ASL/azienda sanitaria locale local_health_authority
Ambulatorio doctor_office
Arci/circolo ricreativo social_center
Ufficio other_office

Architecture and Knowledge Modelling for Smart City p. 144

Sportello other_office
Centro/centri community_centers
Presidio socio sanitario group_practice

Table 8 - Some association examples for Service Category field

The English category identified is finally included in field CategoryEng and each record
is then processed by the following steps, that join together the other information with
the new category.

5.2.4 City QI

The field containing the name of the city has, in most cases, a correct value, and the few
errors detected are limited to the following:

• Empty field;
• Fields contain Municipality name/fraction name /locality name with typos.

To eliminate also these types of error, a Kettle transformation (shown in Figure 63) has
been realized, which is able to perform a series of field evaluations on field province of
the analyzed record.

Figure 63 - City Quality Improvement process

Firstly, thanks to a Regex Evaluation the City field is analyzed to determine whether the
value of the municipality name/locality name/and fraction name, is correct or not; lines
containing the correct value are submitted to an operation that removes special
characters such as the em dash “-“, the other lines, however, are processed by a
Javascript code, specially created, which eliminates spelling errors by the name of the
city. The results of both processing branches, are then merge. If the city field is instead
empty, unfortunately the available information does not allow to recover the correct
value, and then it is leave blank.

5.2.5 PostalCode QI

Architecture and Knowledge Modelling for Smart City p. 145

Within the service datasets, most of record have an empty PostalCode field, so, using
the other address information, such code can be recovered.
The transformation made to place the cap in its column, is very simple, and it first
performs a series of assessments on the field PostalCode value, in order to separate
empty fields from those that already contain a value, which is assumed to be correct.

Figure 64 - Postal Code Quality Improvement process

Thanks to Province and City information, a query can be performed on the MySQL
support table, containing all PostalCode of the Tuscany region, in which the conditions
"District like CityMod" e "Province like province" need to be checked. If the query is
successful, the recovered PostalCode is entered in the correspondent cap field,
otherwise the field is left empty.
Finally, data from the two streams come together again, ready to be forward to further
transformation.

5.2.6 Province QI

In most records, the province field contains the corresponding code to the belonging
province of each service (e.g. "FI", "AR", "PI" etc.), however there are some cases
where the field contains other types of misinformation. As can be seen from Table 9, the
wrong information contained in the cap field, can be locality names, fraction names or
partial addresses (with or without the street number).

Example Province field content Pattern

e, 18 - Loc. Arsenale - Fraz. S.Piero in Campo Locality + Fraction

Architecture and Knowledge Modelling for Smart City p. 146

22 - loc. Crespiano, 22 LOC. POGGIO Locality

e di Mercatale, 25 Address

e di Pescaiola, 83/G - Viciomaggio - Locality + Address

Table 9 - Province most frequently contents

Figure 65 - Province Quality Improvement process

The transformation that takes care of the province QI phase, initially converts all
content in "upper case" format, because in Italy the province, is usually expressed with
capital letters. Then the values already made up of only two letters are divided from the
others, which will instead be subjected to further evaluation.
Thanks to a query on MySQL table MappingCity, which trying to extract the correct
province abbreviation, by testing the condition District like CityUpper (where District is
a MappingCity field and CityUpper correspond to the City field modified to "upper
case"), the province code can be retrieved, if the query is successful. The identified
value is then copied inside the province field, replacing all the original content; if the
query does not identify any correspondence, the contents of province field remains
unchanged. The records from the two execution branches of the transformation, are
finally gathered.

5.2.7 Email QI

The transformation that handle the email QI phase, i.e. Modify_email.ktr, is shown in
Figure 66.

Architecture and Knowledge Modelling for Smart City p. 147

Figure 66 - Email Quality Improvement process

This transformation performs a series of assessments on email field, in fact, mainly
thanks to a special regular expression, it is possible to identify those fields that meet the
name@domain.xxx format, that represent the email correct syntax. On fields that meet
this regular expression, no other transformation is carried out, while on the others, the
evaluation proceed. In some cases the format previously indicated, is not met because of
the lack of the “@” character, or the lack of the domain suffix at the end of the address,
or for the presence of a double “@”, or for the presence of special characters, not
allowed in an email address. Table 10 shows some examples of error types just
described.

Case Example
Lack of suffix (it,com,...) after dot agricolacheli@libero.
Lack of @ infochiantiandrelax.com
Lack of suffix (it,com,...) and the dot preceding it info@lapievedipoggioallemura
Lack of dot before suffix (it,com,...) rappuoli@valdorcia:it
Double @ info@bbacquacotta@yahoo.it
Illegal Characters (blank space included) meloniluciano.))@tiscali.it

ale.latini.alex.@tiscali.it
albergolacasetta@abetone. com

Lack of dot before suffix (it,com,...) albergo-italia@libero-it
Incomplate suffix (it,com,...) osteriailpozzo@interfree.i

Table 10 - Email field most frequently errors

Initially, the fields containing two e-mail addresses in a valid format, but separated by
one or more special character ("-", "/", ";", "-", blank space) are identified and separated
from the other containing a single email address with incorrect syntax. This operation is
performed thanks to a Javascript code that still uses regular expressions. The malformed
email, are added to the note field, preceded by the string "Invalid email :" so as not to
create a triple with wrong information, but leaving the information visible to a human,
who could imagine the corrections to be made, to make it usable; double emails that
were divided, are instead stored in the email field, the first one, by replacing the entire
original contents, and in the note field, the second one, preceded by the string

Architecture and Knowledge Modelling for Smart City p. 148

"Secondary email: ". Even in this case, the results of the two processing flows, are
gathered, before being forwarded to the next transformation.

5.2.8 WebSite QI

Figure 67 - Website field Quality Improvement process

The Kettle transformation that checking web addresses, i.e. Modify_website.ktr, initially
controls, thanks to the support of regular expressions, if the website field is well-formed
with respect to the standard pattern of a website URL, specifically:

• Website URL starts with a prefix like "www.", "http://", "https://",
"http://www.", "https://www.";

• the prefix is followed by a series of alphanumeric characters;
• Website URL finishes with a dot followed by the web domain.

The fields that meet these characteristics are not subject to any change, while others are
again compared with another regular expression, which checks whether the website
field is devoid of the prefix, but still respects the original pattern, that is:

• A series of alphanumeric characters;
• Website URL finishes with a dot followed by the web domain.

If the website URL corresponds to this second case, the transformation adds the missing
prefix, i.e. "http: //" or "www." otherwise, a control to detect the presence of multiple
web addresses, is realized.
Multiple addresses are then divided and the first is saved in the website_output variable,
while the latter is stored in the website_add variable, which will be added to the note
field of the Km4city ontology Service class. The data streams are finally gathered at the
end of the transformation.
By analyzing website address values, which have not exceeded the first control, the
different types of errors reported in the Table 11 were identified:

Architecture and Knowledge Modelling for Smart City p. 149

WEBSITE Pattern
http:///www.agricap.it/ita/agriturismo.htm Triple /
http://bebacquerello Missing the final domain
http://http://albergogualtieri.interfree.it/ Double http://
http://lacasadeilimoni.interfree.it/ False positive
http://t Incomplete
http://web.tiscali.it.valleantica Invalid final domain
http://www il colle-siena.it Blank space
http://www:agriturismo-tegline:com : after www
http://www..tuscanyparkhotel.it Double dot after www
http://www.agriturismo_stigliano.com Underscore
http://www.agriturismocampagnellilit Missing dot before the domain
http://www.borgolacapraia.com. A final dot too many
http://www.campeggiodelforte.t Incomplete domain
http://www.campingoasi.it/ False positive
http://www.casavacanzelibertà.it Presence of accented letters
http://www.fantone@it Presence of @
http://www.hotelcucciolo.com - www.paginegialle.it/hcucciolo Multiple web address
http://www.lafornace..weebly.com Double dot in the text middle
http://www.locandadell'agresto.it Presence of an apostrophe
http://www.poggioaimonti/gabi.it / before domain
http://www.santalessandro:com : before domain

Table 11 - Website field most frequently patterns

On the remaining data that does not belong to any typologies previously analyzed, a
number of additional checks are carried out with the objective of correcting many of the
errors that remain. Specifically, the following steps are performed:

• Expressions such as "-com", ".co", "com", ":.com", ".com. " are replaced with
".com";

• Expressions such as "-it", ".i", ".t", "it" and ":.it" are replaced with ".it";
• Double "http://", at the beginning, is removed;
• Blank spaces are removed;
• Expressions such as "www", "www.:", "www..", "www.www" are replaced with

"www.";
• Expressions such as ":org" and ".org." are replaced with ".org";
• Apostrophes are removed;
• Accented letters are replaced with non-accented letters.

After this additional correction phase, the different data streams are gathered at the
initial flow containing websites that have originally corresponded to the correct pattern.

Architecture and Knowledge Modelling for Smart City p. 150

5.3 Phase III: RDF Mapping

The Mapping Phase deals with the transport of information, previously saved into
HBase database, into an RDF datastore, in our case managed by OWLIM-SE [Bishop et
al., 2011]. The first part of this procedure retrieves information from HBase to put them
on a temporary MySQL database (required to use the Data Integration tool chosen),
while in the second part data is translated into triples. A transformation is needed to map
the traditional structured data into RDF triples, based on information contained in a
well-defined ontology, that is the Km4City ontology, defined in Section 4.4 and all
ontologies reused (dcterms, foaf, schema.org, Wgs84, GoodRelations, Skos). This
process may be performed by ad-hoc programs, that have to take into account the
mapping from linear model to RDF structures. This two steps process allowed to test
and validate several different solutions for mapping traditional information into RDF
triples and ontology. The ontological model has been several times updated and thus the
full RDF store has been regenerated, from scratch reloading the definition (all the other
vocabularies selecting the testing of several different solutions) and the instance triples
according to the new model under test. Once the model has been generated, triples can
be automatically inserted.
The first essential step is to specify semantic types of the data set, i.e., it is necessary to
establish the relationship between the columns of the MySQL tables and properties of
ontology classes. The second step consists in defining the Object Properties among the
classes, or the relationships between the classes of the Km4City ontology. When dataset
has two columns with the same semantic type but which correspond to different entities,
thus multiple instances, of the same class, have to be defined, associate each column to
the correct one.
The process responsible to perform the mapping transformation, passing from Hbase to
MySQL database, has been produced as a corresponding ETL Kettle transformation
associated with each specific ingestion procedure, for each data set. The second phase,
that performing the mapping from SQL to RDF, has been realized by using a mapping
model: Karma Data Integration tool [Gupta et al., 2012], which generates a R2RML
model, representing the mapping for transport from MySQL to RDF, and then, the
produced RDF data, is uploaded in a OWLIM-SE [Bishop et al., 2011] RDF Store
instance. Karma is an information integration tool that enables users to quickly and
easily integrate data from a variety of data sources including spreadsheets, delimited
text files, XML, JSON and MySQL tables; this latter option has been selected for the
project and then some MySQL support tables, have been also defined, in which the data
to be mapped, will be temporarily stored, for the duration of the process itself.
Karma initialization phase involves loading the primary reference ontology and
connecting dataset containing the data to be mapped.
The mapping process was performed for each dataset previously ingested within HBase.
Due to the high number of datasets, in the following will be detailed examined only a
few mapping processes, among the most significant within the ontology.

Architecture and Knowledge Modelling for Smart City p. 151

Regarding to the Street Guide mapping process, the following approach was used: for
each available dataset, a portion of representative data has been extracted, and used for
the manual definition of R2RML models, thanks to Karma.
To create the model, Karma, in addition to knowing data to which the model will be
applied, must know all the vocabularies and the ontologies used; to this end, initially the
individual upload of used ontologies must be completed, so that the tool can suggest,
through the choice options, the correct classes and DataProperties.
Another thing to do before starting the R2RML model construction, is to set (i) the
initial parameters, such as the default namespace of triples that will be generated, that is,
within the realized project http://www.disit.org/km4city/resource; (ii) the connection
parameters to the MySQL support database, that will be access during the mapping
phase.
Karma is accessible via web browser, and its interface is shown in Figure 68.

Figure 68 - Karma Data Integration interface

To begin the data mapping, for example, of Maneuver elements of the Km4City
ontology, data relating to the maneuvers, that are stored in a MySQL table, must be
imported on Karma: to fulfill this action simply select the button "Import Database
Table" located on the top left menu "Import", and, inside the dialog box appeared, the
login information must be inserted, to access to MySQL database. After the connection
has been created, Karma will display the list of tables that can be imported, including
tbl_manovre that will be selected in this case.
The Data Integration tool will then re-create an HTML table containing the imported
data, within its graphical user interface, that automates much of the mapping process, as
shown in Figure 69.

Architecture and Knowledge Modelling for Smart City p. 152

Figure 69 - How to set a semantic type with Karma

To begin to map columns, the small triangle, located on top of each column, must be
selected; from the menu that will then be displayed, the “Set Semantic Type” option
must be selected (Figure 69).
A semantic type defines the relationship between a column of data and a property or a
class in an ontology. Semantic types can be specified in several different ways and can
combine multiple pieces of information, and the most common way of constructing a
semantic type, is to define it based on a property and a class in the project ontology.
Using the Data Integrations tool on multiple data sources related to the same domain
(e.g., several data sources with data about museums), implies that Karma will learn the
semantic types assigned to data, and it may offer them in future, as a suggestions; in fact
Karma learns to recognize the mapping of data to ontology classes and then uses the
ontology to propose a model that ties together these classes.
Within the displayed dialog box, a Class and the correspondent DataProperty, defined in
one of the imported ontologies must be set, which represent the values inside the
analyzed column (Figure 70).

Architecture and Knowledge Modelling for Smart City p. 153

Figure 70 - How to specify a key for a class with Karma

After clicking on "Save" button, to assign the new semantic type to the selected column,
Karma updates the model to show the new assignment.
To better clarify, for example, the MySQL column ID_MAN contains the unique
regional identifier of each maneuver. Inside the Km4City ontology, this field
corresponds to the DataProperty dct:identifier of the class Maneuver; this value is also
used to create URI of the resource type Maneuver, i.e. the column is key for the class, so
the “Mark as key for the class" option must be selected in the semantic type dialogue
box, as in Figure 70. Inside its interface, Karma highlight with an asterisk, the semantic
types with the “Mark as key for the class" option selected (see Figure 70).
Karma also allows to mark more than one column as key for the same bubble, and when
do that, it will use the combination of all attributes marked as key, to construct the URI
for the entities in the class.
For each columns it is possible to define the types of literals, using the Literal Type
option in the panel for specifying semantic types. Karma offers the standard XSD types
in a menu and also allows to enter an own URIs if that is appropriate for the application.
After defining correspondences between column and ontology, Karma show the created
model, inside its interface as shown in Figure 71.
Often it may happen that there is need to assign multiple semantic types to a column:
the semantic dialogue box allows to define multiple semantic types for a column, by
selecting multiple checkboxes in the list of semantic type suggestions. One of the
chosen semantic types must set as the primary one, by selecting the appropriate radio
button in the Primary column. When more semantic types and relationships has been
added to the model, Karma will connect the primary semantic types to the other parts of
the model; the non-primary semantic types will be used in the publishing phase.

Architecture and Knowledge Modelling for Smart City p. 154

Figure 71 - Maneuver mapping example

The mapping must be done for each column that contains data relevant to the triples
creation. Once the mapping has been carried out on Classes and DataProperties, the
ObjectProperties, inserted in an automatic way by Karma according to ontologies
preloaded, must be checked: unfortunately sometimes the automatic properties inserted
are not correct and, in these cases, the input/output links from each class, must be
changed, clicking on the bubble relative to the class from which the link arrive/start.
Regarding the example of the maneuvers mapping, the MySQL column VIA_GNZ,
contains the identification code of the junction to which the maneuver is applied:
therefore it corresponds to the dct:identifier of the Node class. Assuming that the
ObjectProperty created between classes Node and Maneuver is not the correct one, to
simply change it, open the dialog box relative to the incoming or outgoing connections,
selecting one of the two classes, as shown in Figure 72, from which the ObjectProperty
can be changed.

Figure 72 - How to modify in/out links with Karma

After the manual mapping of all the columns in the imported table, Karma allows
exporting data directly in RDF, or to publish the R2RML model, which can be used for

Architecture and Knowledge Modelling for Smart City p. 155

the triples generation also through the offline version of the Karma tool, that work in
batch mode.
Once published the R2RML model, the triples generation process can be automated
thanks to Karma Offline tool and an ETL job. Karma provides a command line scripts
for the offline generation of RDF triples starting from a relational database, such as the
one shown in Figure 73:

Figure 73 - Script to run Karma Offline

Thanks to this Maven (http://maven.apache.org/) command, and to the specified
parameters after the special word –Dexec.arg, triples are created. Parameters that must
been specified inside the Maven command, are the following:

• sourcetype: used to specified the data source that can be a database table (DB), a
CSV file, JSON file o XML file.

• dbtype: if the sourcetype parameter is equal to DB, this value must be setting
because it specified the database type to which Karma will be connected, that is
MySQL, Oracle, SQLServer, etc.

• hostname: it contains the address to which the database can be accessed;
• dbpot: this field contains the port number used to establish the database

connection.
• username and password: this fields contain login credentials to the database.
• tablename: it is the name of the table in which the data, that must be mapping in

triples, are stored;
• modelfilepath: as the name suggest, this field contains the path to address the

model, previously realized with the data integration tool.
• outputfilepath: this field allows to specify where the triples file, will be created,

and its name.

After invoking the Maven command, Karma begins to generate triples, according to the
rules contained in the R2RML model; the generated triples can be finally saved in
various formats, such as N3, TTL, etc.
Regarding the project presented in this thesis, this procedure must to be repeated for
each in gested dataset.
To use the huge amount of RDF triples produced from the conversion of Road Graph
data, Open Data and Real Time data, a RDF framework that allows continuous saving
data, while maintaining scalability and usability, has been necessary, which also allows
to analyze and query the archived data, quickly and reliably.

Architecture and Knowledge Modelling for Smart City p. 156

As already mentioned earlier, the project relies to OpenRDF Sesame [SESAME] joined
to OWLIM-SE, thanks to which a performing and scalable triplestore can be realized;
OWLIM-SE provides all the tools needed to create, manage and query the triplestore,
either through its web interface, or through the command line console. Sesame, instead,
makes available a set of Java APIs for accessing and manipulating the RDF store, using
Java applications also created by users.

In summary, this mapping process allowed the production of the knowledge base, that
may present a large set of problems because of inconsistencies and incompleteness, that
may be due to lack of relationships among different data sets, etc. These problems may
lead to the impossibility of making deductions and reasoning on the knowledge base,
and thus on reducing the effectiveness of the model constructed. These problems have
to be solved by using a reconciliation phase via specific tools and the support of human
supervisors, as explained in next paragraphs.

This mapping process must be repeated for each treaty dataset, and in some cases, such
as the Street Guide and the Railway Graph, a model for each class defined within the
dataset, must be created.

5.4 Phase IV: RDF Indexing

Storing and querying Resource Description Framework (RDF) data is one of the basic
tasks within any Semantic Web application. A number of storage systems provide
assistance for this task, in fact systems such as Jena2 [Wilkinson et al, 2003], Sesame
[Broekstra et al., 2002], OWLIM [Bishop et al., 2011], Redland [Beckett, 2002] and
others, provide a storage infrastructure for RDF data.
Additionally, each system has its own indexing schema, which can be constituted by a
different number and a different type of indices. For example, OWLIM-SE, the system
used in the project architecture to store and query data, maintains two main indices on
statements for use in inference and query evaluation, i.e. the predicate-object-subject
(POS) index and the predicate-subject-object (PSO) index.
OWLIM-SE also allows to define the so called "predicate list" index, which create a
mapping from entities (subject or object) to their predicates; this type of index
introduces considerable benefits, if used with certain data-sets and certain kinds of
query activities, for example queries that use wild-card patterns for predicates.
Another type of index that can be created with OWLIM-SE is related to Full Text Search
(FTS): this type of search concerns retrieving text documents out of a large collection
by keywords or, more generally, by tokens (i.e. a sequences of characters). Formally,
the query represents an unordered set of tokens and the result is a set of documents,
relevant to the query. OWLIM-SE uses two approaches to this type of research, one
proprietary called Node-Search, and one based on Apache Lucene (lucene.apache.org),
called RDF-Search: these "full-text indexing" enable to perform complex queries against

Architecture and Knowledge Modelling for Smart City p. 157

character data, which significantly speeds up the query process. OWLIM-SE supports
full text search capabilities using Lucene with a variety of indexing options and the
ability to simultaneously use multiple, differently configured indices in the same query.
OWLIM-SE also supports a geo-spatial index applicable to geo-spatial data that is
structured according to the WGS84 ontology (http://www.w3.org/2003/01/geo/); finally,
custom indexes can be defined and used with OWLIM-SE.
However, most of the systems use an index structure which do not completely support
typical query scenarios for data from the Web, which results in poor query answering
performance, in some case.
In recent years, in fact, new types of triplestore have been developed, specifically
created to improve query performance in RDF, i.e. hexastore, such as RDF-3X
(https://code.google.com/p/rdf3x/) and H2RDF+ (https://code.google.com/p/h2rdf/)
[[Papailiou et al., 2013]. This new type of triplestore enhances the vertical partitioning
idea [Weiss et al., 2008], thanks to which the data graph, originally one single giant
table, can be decompose into n two-column tables, where n is the number of properties.
Furthermore, RDF data is indexed in six possible way, one for each possible ordering of
the three RDF elements. Each instance of an RDF element is associated with two
vectors; each vector gathers elements of one of the other types, along with lists of the
third-type resources attached to each vector element. This is why they are called
hexastore.
In addition to the problems of performance, triplestore also suffer from other problems
related to the indices: in fact, they are often created on large amounts of data and then,
notice any corrupted files, or files that contain errors, is a very difficult operation. A
widely used rule to keep indices good and up to date, is to periodically re-create them.
For this purpose, within the project, it was decided to realize a tool that allows to further
automate this re-indexing phase (in Figure 25 represented as Phase IV); the tool is
addressed to system administrator, who, thanks to a wizard that consists of six steps, can
define and run a script that allows to recreate a triplestore, identical to those available on
the frontend machine, but with new indices.
The realized tool is accessible only from local network at the following address:
http://192.168.0.100/indexgenerator.
The tool consists of a server-side, entirely made in PHP (http://php.net/) and a client
side instead made using languages HTML5, JavaScript and features of the jQuery
library (http://jquery.com/); the user interface has been created instead using the
Bootstrap framework (http://getbootstrap.com/css/) which has significantly speeded up
the whole process of development, and finally, tables have been created thanks to a
jQuery plug-in called DataTables (http://www.datatables.net/).

Once logged in, the administrator can press the green button to start a new script
generation process; every time a new generation is requested, a new line that uniquely
identifies this new generation, is created into the MySQL table, located on Master

Architecture and Knowledge Modelling for Smart City

machine, and called Generations
triplestore index regeneration , which will be performed in time
From the user-side instead
dedicated to the ontologies selection: in this step
that will be pre-loaded on the new datastore are chosen, and for each, the version
used must be specified; t
configuration previously used,
special Copy button.
The list of ontologies with the respective versions available, are stored in a
table, called Ontologies, where

After the selection of ontologies there will be used for the new indexing, the choices
made are stored within the
to view the ontologies that have been selected
In practice, the client side of the tool
Ajax call to the server, which provides to storage all
that have been used for the generation of the current script; a historian of the choices is

Architecture and Knowledge Modelling for Smart City

Generations, which has been specially created to store all the
triplestore index regeneration , which will be performed in time.

side instead, the first step of the realized interface
dedicated to the ontologies selection: in this step, shown in Figure

loaded on the new datastore are chosen, and for each, the version
used must be specified; thanks to the tool, is also possible to retrieve an old
configuration previously used, choosing the date of the old generation and

The list of ontologies with the respective versions available, are stored in a
, where also other information displayed by the tool are stored.

Figure 74 - Indexing Tool, Ontologies step

After the selection of ontologies there will be used for the new indexing, the choices
made are stored within the MySQL table Ontologies_Generations, also used to be able
to view the ontologies that have been selected, in each previous generations completed.
In practice, the client side of the tool, with which the administrator interacts, send

er, which provides to storage all information relating to ontologies
have been used for the generation of the current script; a historian of the choices is

 p. 158

, which has been specially created to store all the

 will be displayed,
Figure 74, the ontologies

loaded on the new datastore are chosen, and for each, the version to be
hanks to the tool, is also possible to retrieve an old indexing

choosing the date of the old generation and selecting the

The list of ontologies with the respective versions available, are stored in a MySQL
other information displayed by the tool are stored.

After the selection of ontologies there will be used for the new indexing, the choices
, also used to be able

each previous generations completed.
with which the administrator interacts, sends an

information relating to ontologies
have been used for the generation of the current script; a historian of the choices is

Architecture and Knowledge Modelling for Smart City

thus created, containing
generation.

The second step concerns the choice of static dataset that will
triplestore, as shown in Figure

The information contained in the table shown by the tool, are retrieved from the
table processManager; this table contains all information about
thanks to the realized architecture.

Considering that information collected and stored for each dataset are several, to avoid
that the table becomes unreadable, it was decided to collect
separate pop-up, which can be opened by clicking the green button
beginning of each table row,
the tab for a dataset can be observed.

Similar to the ontologies case
OpenData_Generations
process, the open data sets chosen
repository, thanks to the sc

Architecture and Knowledge Modelling for Smart City

thus created, containing all the ontologies and their versions used in each script indexing

The second step concerns the choice of static dataset that will be part of the new
Figure 75.

Figure 75 - Indexing Tool, Static Data step

The information contained in the table shown by the tool, are retrieved from the
; this table contains all information about each ingested

thanks to the realized architecture.

Considering that information collected and stored for each dataset are several, to avoid
that the table becomes unreadable, it was decided to collect part of information in a

up, which can be opened by clicking the green button
beginning of each table row, shown by the indexing tools (see Figure
the tab for a dataset can be observed.

ontologies case, also this step uses a MySQL
 where, thanks to an Ajax call to the server, for each generation

open data sets chosen can be stored, which will be loaded into the new
thanks to the script that will be created at the end of the indexing process

 p. 159

all the ontologies and their versions used in each script indexing

be part of the new

The information contained in the table shown by the tool, are retrieved from the MySQL
each ingested dataset,

Considering that information collected and stored for each dataset are several, to avoid
of information in a

up, which can be opened by clicking the green button, located at the
Figure 75); in Figure 76

MySQL table called
call to the server, for each generation

which will be loaded into the new
at the end of the indexing process.

Architecture and Knowledge Modelling for Smart City

Figure

Even in this case, the tool allows to copy a configuration previously used or to create a
new one, first selecting t
of the triple, previously generated. In fact, it is possible that datasets are subjected to
different mapping, for example due to the
expanded, so may need to access
ontology.
The next step concerns Real Time data. This interface maintains a structure very similar
to the previous dedicated to static data
of data, should be shown the period of interest to which the triples must belong.
It is clear that every day, triple
during the re-indexing process, is
collected over time, must be loaded, or
of time.

Architecture and Knowledge Modelling for Smart City

Figure 76 - Indexing Tool, dataset inforation tab

Even in this case, the tool allows to copy a configuration previously used or to create a
new one, first selecting the dataset that needs to be inserted and then the desired version
of the triple, previously generated. In fact, it is possible that datasets are subjected to
different mapping, for example due to the Km4City ontology, which is still being
expanded, so may need to access to triples mapped to a specific version of this

The next step concerns Real Time data. This interface maintains a structure very similar
to the previous dedicated to static data (Figure 77), except that in this case
of data, should be shown the period of interest to which the triples must belong.
It is clear that every day, triples of these Real Time datasets are created, and then,

indexing process, is useful to indicate if all triples
must be loaded, or if triples must be limited to a well defined period

 p. 160

Even in this case, the tool allows to copy a configuration previously used or to create a
he dataset that needs to be inserted and then the desired version

of the triple, previously generated. In fact, it is possible that datasets are subjected to
ontology, which is still being

mapped to a specific version of this

The next step concerns Real Time data. This interface maintains a structure very similar
, except that in this case, for each type

of data, should be shown the period of interest to which the triples must belong.
of these Real Time datasets are created, and then,

 of a specific type,
to a well defined period

Architecture and Knowledge Modelling for Smart City

Figure

This possibility of limiting Real T
the number of triple monthly created
currently manages the architecture: it was calculated, simulating an average operation
situation of each sensor
calculated, are given in Chapter
million.
Such a large number of triples monthly added, would lead the repository
time, to a situation of excessive size
addition, Real Time triple
then, the realized indexing tool
example by running a monthly basis reconstruction of the re
Time triples history is reduced to only one week or less,
preparation for the new triples
repository will become the new Front E
Another case in which the use of a tool like this, is of paramount importance, for
example, is closely related to the possible detection of errors within the triples
which are due either to a failure
model, initially not identified, or for incorrect data sending from a sensor that has failed.
Thanks to the Indexing tool, it is
starting from by the scenarios proposed above, are again put back into the datastore.
Coming back to the description of the tool, t
generated during the reconciliation phase: file
in fact, stored in a datastore (called RDF store in
new triplestore.

Architecture and Knowledge Modelling for Smart City

Figure 77 - Indexing Tool, Real Time Data step

limiting Real Time data assumes an important meaning consider
the number of triple monthly created relative to only Real Time dataset
currently manages the architecture: it was calculated, simulating an average operation

each sensors type (more details on how the number of triples
Chapter 6) the monthly amount of Real Time triple

Such a large number of triples monthly added, would lead the repository
tion of excessive size and its management would become too complex
Time triples are mainly used in the early days after

the realized indexing tool, can be exploited to maintain lighter the
example by running a monthly basis reconstruction of the repository,

is reduced to only one week or less, that is the most recent, in
new triples that directly arrive by Real Time sensors

itory will become the new Front End.
Another case in which the use of a tool like this, is of paramount importance, for
example, is closely related to the possible detection of errors within the triples

due either to a failure of the mapping process, or by an error in the mapping
model, initially not identified, or for incorrect data sending from a sensor that has failed.
Thanks to the Indexing tool, it is also possible to prevent that wrong

scenarios proposed above, are again put back into the datastore.
Coming back to the description of the tool, the fourth step concerns
generated during the reconciliation phase: files containing all reconciliating
in fact, stored in a datastore (called RDF store in Figure 78) and can be uploaded to a

 p. 161

ime data assumes an important meaning considering
to only Real Time datasets, which

currently manages the architecture: it was calculated, simulating an average operation
the number of triples has been
of Real Time triples is about 20

Such a large number of triples monthly added, would lead the repository, in a short
and its management would become too complex. In

after their creation and
can be exploited to maintain lighter the triplestore, for

pository, in which the Real
that is the most recent, in

sensors, as soon as the

Another case in which the use of a tool like this, is of paramount importance, for
example, is closely related to the possible detection of errors within the triples files,

of the mapping process, or by an error in the mapping
model, initially not identified, or for incorrect data sending from a sensor that has failed.

that wrong triples, created
scenarios proposed above, are again put back into the datastore.

he fourth step concerns loading triples
reconciliating triples are,

) and can be uploaded to a

Architecture and Knowledge Modelling for Smart City

It is evident, also in this case, the usefulness of choosing
for each type of reconciled data, seen that there may be
example related to an update version of the dataset, or to a new reconciliation technique
applied to the same dataset.

Figure

As in the previous phases, the c
obtained, in order to facilitate the form compilation, by simply
configuration and clicking the button

Similarly to the first step dedicated to Ontologies, this fourth step reads the information
in the MySQL table Reconciliations
which triples to load, are available; to show the history of the choices m
retrieves data within an other
which reconciliation triples files loaded,
(thanks to an Ajax call to the
load.

After all four selection steps have been completed, the tool displays a summary of the
choices made during the creation process; thanks to this summary is possible to check
and get back to the individual steps, to make some
Once verified the correctness of the choices made, after pressing the confirmation
button (Figure 79), the script generation begins, and it will be used to build the new
datastore, according to the choices made.
machine from which the tool is executed

At the end of selections, when the user presses
on various MySQL tables that the tool uses to store the choices of
and, based on the selections
parts, one to set parameters necessary for creating the repository via
then there is a section devoted to
data, one for Real Time, and the last dedicated to the reconciliations.

Architecture and Knowledge Modelling for Smart City

It is evident, also in this case, the usefulness of choosing the version of triples to load,
for each type of reconciled data, seen that there may be multiple file versions, for
example related to an update version of the dataset, or to a new reconciliation technique

dataset.

Figure 78 - Indexing Tool, Reconciliation step

phases, the copy of an old configuration used before, can be
obtained, in order to facilitate the form compilation, by simply

clicking the button Copy (see Figure 78).

Similarly to the first step dedicated to Ontologies, this fourth step reads the information
Reconciliations, to recreate the list of reconciliation

which triples to load, are available; to show the history of the choices m
an other MySQL table, called Reconciliatons_Generations

triples files loaded, for each generation completed,
call to the Server side of the tool), relating to the d

steps have been completed, the tool displays a summary of the
choices made during the creation process; thanks to this summary is possible to check
and get back to the individual steps, to make some changes.
Once verified the correctness of the choices made, after pressing the confirmation

, the script generation begins, and it will be used to build the new
according to the choices made. The script produced is locally stor

machine from which the tool is executed by the administrator.

At the end of selections, when the user presses the Confirm button, a read is performed
tables that the tool uses to store the choices of each

selections, the script is created as follows: the script consists of five
parts, one to set parameters necessary for creating the repository via

a section devoted to each steps, that is one for ontologies
ime, and the last dedicated to the reconciliations.

 p. 162

version of triples to load,
multiple file versions, for

example related to an update version of the dataset, or to a new reconciliation technique

opy of an old configuration used before, can be
obtained, in order to facilitate the form compilation, by simply choosing the old

Similarly to the first step dedicated to Ontologies, this fourth step reads the information
, to recreate the list of reconciliation procedures for

which triples to load, are available; to show the history of the choices made, the tool
Reconciliatons_Generations, in

for each generation completed,were stored,
), relating to the data reconciled to

steps have been completed, the tool displays a summary of the
choices made during the creation process; thanks to this summary is possible to check

Once verified the correctness of the choices made, after pressing the confirmation
, the script generation begins, and it will be used to build the new

The script produced is locally stored, on the

a read is performed
each individual steps,

the script is created as follows: the script consists of five
parts, one to set parameters necessary for creating the repository via OpenRDF, and

for ontologies, one for static
ime, and the last dedicated to the reconciliations.

Architecture and Knowledge Modelling for Smart City p. 163

More in depth, initially some parameters valid throughout the script, are set, followed
by a blank space for any manual changes that the administrator may have the need to
add, before running the script.
The parts devoted to ontologies, to static data and to reconciliations are very similar,
change the things that need to be changed: data is initially declared, specifying name,
category and version choice; then a for loop, for each type of data, is defined, that
invokes a script, example.sh, which provides to loading triples inside the indicated
triplestore.
The only different part is linked to the Real Time data, for which in fact, data is
declared, specifying name, category, start date and end date of the selected period; so,
thanks to a for loop clearly more complex than the previous ones, the directory tree is
navigated and, for each triples file identified, a check on its version is made, to verify if
it is contained into the time interval chosen. If this occurs, the script example.sh is
invoked.

Figure 79 - Indexing Tool, Summary step

The user interface, after the script generation, shows a message that confirms the proper
creation and allows the administrator to run the generated script, for really creating a
new physical datastore.

Architecture and Knowledge Modelling for Smart City p. 164

In Figure 80, a portion of the script generated by the tool, in Bash language, can be
analyzed.

Figure 80 - Script generated with the Indexing Tool

Some limitations to the indexing tool, have also been imposed, to make it more reliable,
such as that related to the execution of the script: in fact, in case a script to re-generating
the triplestore is already running (operation detectable by the presence of lock file), the
indexing tool in its first page informs the administrator such a situation, preventing it
from proceeding to a new generation; only when the script is finished, a new script will
be generated.

5.5 Phase V: Data Reconciliation

After being loading and indexing into the RDF store, a dataset may be connected with
the other, if their entities refer to the same triples; in fact missed connections strongly
limit the usage of the knowledge base, for example, Point of interest macroclass is not
connected with the Street Guide and Rail Network macroclass, inside the realized
project.
The term reconciliation refers, in fact, to the process of verification and link RDF data
that represent the same object on two different dataset, but which are not connected, due
to some inconsistencies in their representation.
To connect services to the Street Guide and Rail Network macroclass in the project
repository, a reconciliation phase in more steps, has been developed, because the
notation used by the Tuscany region in some Open Data, within the Street Guide, does
not always coincide with those used inside Open Data, relating to different points of

Architecture and Knowledge Modelling for Smart City p. 165

interest. In substance, different public administration are publishing Open Data that are
not semantically interoperable.
A relevant process of data improvement for semantic interoperability is related to the
application of reconciliations among the entities associated with locations as streets,
civic numbers and localities. On this regard, there are different types of inconsistencies
within the various integrated dataset, such as:
• typos;
• missing house number, or replacement with "0" or "SNC" (Italian acronym that

means without civic number);
• Municipalities with no official name (e.g. Vicchio/Vicchio del Mugello);
• street names with uncommon characters (-, /, ° ? , Ang., ,);
• house numbers with strange characters (-, /, ° ?, Ang. ,(,);
• road name with words in a different order from the usual (e.g. Via Petrarca

Francesco, exchange of name and surname);
• number wrongly written (e.g. 34/AB, 403D, 36INT.1);
• red street numbers (in some cities, street numbers may have a color. So that a street

may have 4/Black and 4/Red, red is the numbering system for shops);Roman
numerals in the street name (e.g., via Papa Giovanni XXIII).

Thanks to the created ontology, is possible to perform a services reconciliation at street
number level, e.g. connecting an instance of class Service to an external access (Entry
class of Km4city ontology) that uniquely identifies a house number on a road, or at
street-level, with less precision (lack that can be compensated thanks to the services
geolocation).
The reconciliation process can be performed with the aim of finding elements that
identify the same entity, while presenting different URIs. Thus the identified
reconciliations are solved creating an owl:sameAs triple to the selected location
toponym. Reconciliation detection can be performed by using (i) a set of specific
SPARQL queries, (ii) or program tools for RDF link discovering. To this end,
declarative languages for link discovering such as SILK [Isele and Bizer, 2013] and
LIMES [Ngomo and Auer, 2011] have been proposed. As the production of SPARQL
queries, the programming of the link discovering algorithms also implies the knowledge
of the ontological structure of the RDF stores to be compared/linked.
For the project a comparison between this two different reconciliation approaches, has
been performed, applied initially to the services-roads reconciliation, to determine if the
two methods are replaceable.

5.5.1 SPARQL Reconciliation

The methodology used for SPARQL reconciliation tries to connect each service first at
house number-level, and then, at street-level, and it consists of more reconciliation step
performed:

Architecture and Knowledge Modelling for Smart City p. 166

• The first step consists of an exact search of the street name associated with each
service integrated.

• The second reconciliation step is based on the last word research inside the field
schema:streetAddress, of each instance of the km4c:Service class, because,
statistically, for a high percentage of street names, this word is the key to
uniquely identify a match.

• The third reconciliation step involves Google Geocoding tool and
OpenStreetMap tool.

• The above mentioned three steps have been also carried out without taking into
account the house number, and so in order to obtain a reconciliation at street-
level, of each individual service.

Below, the various steps will be described in more detail.
Because of the inhomogeneity in the addresses, writing inside files coming from
different sources, and to help the next reconciliation steps, it was decided to apply an
additional step of reconciliation to the names contained in the Street Guide.
There is a whole literature devoted at address matching that offers multiple solutions
even very complex [Drummond, 1995], however, in this project, since data related to
Street Guide is restricted to the Italian language, a solution that would lead to maximize
the benefits in later reconciliation stages, has been applied. In fact a very frequent
problem for exact search, is the existence of multiple ways to express toponym
qualifiers, that is dug (e.g. "Piazza" and "P.zza") or parts of the proper name of the
street (such as "Santa", or "S." or "S" or "S.ta"); to this end, a MySQL support table has
been realized, in which the most frequent ambiguities are stored, as shown in Table 12.

ID String to replace String1 String2 String3 String4 Type
1 VIA V. V strStarts
2 VIALE V.LE VLE strStarts
3 PIAZZA P.ZZA P.ZA PZZA PZA strStarts
4 PIAZZALE P.ZZALE PZZALE strStarts
5 CORSO C.SO CSO strStarts
6 FRATELLI F.LLI FLLI contains
7 A' À A contains
8 E' È È E contains
9 I' Ì I contains

10 O' Ò O contains
11 U' Ù U contains
12 PRIMO I 1 UNO contains
13 II 2 DUE SECONDO contains
14 III 3 TRE TERZO contains
15 IV 4 QUATTRO QUARTO contains

Table 12 - dct:alternative starting table

After completing the table, all instances of the class Road have been researched, which
contain at least one of the strings in the support table, inside DataProperty

Architecture and Knowledge Modelling for Smart City p. 167

km4c:extendedName. For all identified instances, a number of properties dct:alternative
were created, e.g. starting from "Via di Santa Marta", the alternative name "Via di S.
Marta", "Via S. Marta", "V. Santa Marta "and" V. S. Marta", were created.
So, whenever a query will look for the name of a Road class instance, the research will
be extended to the alternative fields which allows greatly increase the number of
matches found. In the following, the case of services reconciliation will be in fact
analyzed, which uses the fields dct:alternative to search correspondences, that create
reconciliation triple between macroclasses Point of Interest and Street Guide and Rail
Network.
Coming from different sources, addresses of serviceS dataset are often written in a
different way, if compared to the names associated with instances of the Road class.
Moreover, the services have always an address stored into some DataProperty (that is
schema:addressLocality, schema:streetAddress, schema:postalCode, km4c:hause
Number) and sometimes, even a pair of coordinates geo:lat and geo:long. From this
known information, the reconciliation should allow the creation of a triple that connect
each service to a toponym or to an house number.
As previously seen, two types of services reconciliation can be made, at street-level and
at street number level, allowing respectively to create triples km4c:isInRoad and
km4c:hasAccess. Given the huge amount of data it is impossible to implement a system
based on a simple SPARQL query, but the Sesame APIs allow to build simple Java
applications that perform a single query repeatedly, thanks to which all service
addresses are searched one by one, among the instances of the Road class.
The first reconciliation step, that is the exact search, try to find an identical address to
that contained in each Service instance, checking all the fields km4c:extendedName and
dct:alternative for each Road class instance. Starting from information about the city
name and the name of the street, a SPARQL query like the one shown in Figure 81, is
performed for each service.
Lines 8-9 request all road belonging to the municipality extracted from the service
address, while the UNION clause allows to specify, that the searched road may be
contained, in both fields km4c:extendedName or dct:alternative. Line 19 extract all the
?streetNumber belonging to that road.
The following instructions, separated again by a UNION clause, imposing that an
instance of StreetNumber class exists and it corresponds to house number "40" or "42",
with the CodeClass property “Red". Finally, at lines 28 and 29, accesses related to
filtered entities are extracted, that also correspond to the geographic coordinate ?elat
and ?elong.

Architecture and Knowledge Modelling for Smart City p. 168

Figure 81 - SPARQL reconciliation query

Thanks to this query, if it exists, the resource of Entry type, corresponding to the
indicated address, will be recovered; in particular, an example of query results for items
of class Entry is shown in Table 13.

Service Address Entry ID Elat Elong
VIA DELA VIGNA NUOVA 40/R - 42/R, FIRENZE RT048017000746AC 43,7712868 11,2499669
VIA ARETINA 499, FIRENZE RT048017006530AC 43,7663602 11,3147545
VI DI SANTA MARTA 3, FIRENZE RT048017075274AC 43,798784 11,2552288
VIA ROMA 583, BAGNO A RIPOLI RT048001007554AC 43,7305372 11,3613187
VIA TOSELLI 41, SIENA RT052032017708AC 43,3165709 11,3554662
VIA FORLIVESE 64, SAN GODENZO RT048039000281AC 43,9257775 11,6179469
VIA CUNIBERTI 12, MONTE ARGENTARIO RT053016002929AC 42,4353327 11,1202326
VIA DEL CASTELLO 26, ISOLA DEL GIGLIO RT053012000041AC 42,3604749 10,9185241
VIA TALENTI 36, MARRADI RT048026002081AC 44,0753448 11,6124367
VIA STRADELLA 7, FIVIZZANO RT045007024125AC 44,2369531 10,126546

Table 13 - Results of the previus SPARQL query

The next reconciliation step is based on the research of the last word inside the field
schema:streetAddress, for each instance of the Service class, due to the reasons
previously explained. Therefore, for each element contained into the not reconciled

Architecture and Knowledge Modelling for Smart City p. 169

services list, all the road that contain, within its name, the last word searched, have been
extracted; in Figure 82 a query used for this type of research, is shown.

Figure 82 - SPARQL query to find a specific Road in a specified Municipality

The fields extracted thanks to this query are ?Road, which contains the unique URI of
the recovered road, ?name that instead contains the full name of the road. The query is
composed by two sub-queries, both recovering the same fields, but in the first sub-query
in the example, the word “TRENTO" is searched in the field km4c:extendedName, while
in the second sub-query, the word “TRENTO" is searched within the various fields
dct:alternative. In both cases, the results are filtered by municipality name, that in
Figure 82, is "ABBADIA SAN SALVATORE".
Looking at the results it was found that not all the obtained matches are accurate, in fact,
often more than one match is found; for this reason a semi-automatic control of the
results has been applied, in order to avoid the creation of incorrect reconciliation triples.
The process carried out for services, for example, filter the results that get only one or
two matches at most: in case of a single match, the triple is automatically generated,
instead, if two matches are found, results were subjected to a manual control. In Table
14 a small portion of the results obtained, is shown.

Municipality Service Address Street Name URI Toponym
FIRENZE VIA BORGO DEI GRECI VIA GRECIA http://www.disit.org/km4city/resource/RT4801707463TO
FIRENZE VIA BORGO DEI GRECI BORGO DE GRECI http://www.disit.org/km4city/resource/RT4801701830TO

FIRENZE
VIA NUOVA D
CACCINI VIA GIULIO CACCINI http://www.disit.org/km4city/resource/RT4801703143TO

FIRENZE
VIA NUOVA D
CACCINI

V NUOVA DEI
CACCINI http://www.disit.org/km4city/resource/RT4801703400TO

POPPI VIA CASA DAMIANO VIA CASE DAMIANO http://www.disit.org/km4city/resource/RT5103119173TO

POPPPI VIA CASA DAMIANO
PZA DAMIANO
CHIESA http://www.disit.org/km4city/resource/RT5103120951TO

PONTEDERA VIA LOTTI
VIA FELICE
CAVALLOTTI http://www.disit.org/km4city/resource/RT5002901189TO

PONTEDERA VIA LOTTI VIA FELICE LOTTI http://www.disit.org/km4city/resource/RT5002901191TO

Table 14 - Query reconciliation results

Architecture and Knowledge Modelling for Smart City p. 170

In the above table is possible to observe a searching example related to last word
"GRECI", for a service located in "VIA BORGO DEI GRECI" in Florence: the query
returns two toponyms with relative URI, i.e. "VIA GRECIA" and "BORGO DE
'GRECI": the second result has been manually selected, because it is obviously the
correct one. This reconciliation step performed, has also allowed to increase the number
of reconciled services at house number-level, performed immediately after. In fact,
starting from the results filtered above, a search on street number was performed,
limited to km4c:StreetNumber instances.
The next type of reconciliation performed, is based on tools like Google geocoding API
(http://developers.google.com/maps/documentation/geocoding) and OpenStreetMaps
Nominatim (http://wiki.openstreetmap.org/wiki/Nominatim).
The Google geocoding procedure allows to convert addresses (e.g. "Via di Santa Marta
3, Florence") in geographic coordinates (e.g. 43.7976054, 11.253943 in WGS84).
Through APIs provided by both services previously mentioned, many associations can
be made between services that, in the previous reconciliation steps, have not been
matched. In particular, after recovering the spatial coordinates of a service, all Entry
class instances geographically closest, are extracted, limiting the search within a narrow
radius, to reduce possible errors.

5.5.2 Silk Reconciliation

The second approach, defines a semi-automated method for services data reconciliation,
which also allows to evaluate the results obtained from the first approach and to verify
if the two approaches are both applicable, and interchangeable.
The software used to implement this second approach, is Silk presented in [Appendix
A.8], which allows to define rules to identify possible links, between the two data
sources to be compared, and to assign a score to each identified couple.
The choice of Silk for the evaluation of the project, come from an analysis conducted on
some similar tools and on the resulting ability of the tool to carry out supervised
learning. The fundamental idea of active learning in the context of entities
correspondence, is to reduce the number of candidate links that need to be labeled by
the user. Silk, through the use of genetic programming and active learning allows
learning link rule, asking the user to confirm or reject a number of candidate links that
the algorithm has automatically selected.
Link discovering based reconciliation, in fact, consists in writing specific SILK
algorithms, grounded on distances and similarity metrics between patterns and
relationships mainly based on string matching and distance measures (Euclidean,
weighted models, tree distances, patterns distance, string match, taxonomical, Jaro,
Jaro-Winkler, Leveisthein, Dice, Jaccard, etc.) [Isele and Bizer, 2013].
Silk specifies rules through a tree structure, composed of four elements in cascade:

• Path: element that, starting from a RDF path, retrieves entities values;

Architecture and Knowledge Modelling for Smart City p. 171

• Transformation: item that applies transformations for data normalization;
• Comparison: block to evaluate the similarity of two input, based on a user-

specified distance measure;
• Aggregation: element that combines the confidence values.

As in previous section, to make possible the comparison, reconciliation is applied
between services and Street Guide.
To perform reconciliation, both manual and semiautomatic checks, from the command
line, were performed, using Silk 2.6.
To assess the reliability of Silk, in terms of Precision and Recall, two datasets services
were chosen, “Mobilità Auto” and “Salute e Sanità”. Part of these two datasets and the
list of toponyms with respective codes, extracted from the Street Guide, were placed on
an Excel spreadsheet and, through a manual comparison, (that involves the street name
where the service is located and all toponyms name from the Street Guide) for each
service, the correct correspondence was written. In this way a Groundtruth was created,
thanks to which the number of data reconcilable and not reconcilable, were found.
The following table shows the Groundtruth (GT) founded:

Dataset Total Reconciliable Not Reconciliable
Mobilità auto 197 185 12
Salute e sanità 1127 1066 61

Table 15 - Groundtruth for datasets Mobilità auto and Salute e sanità

The main types of inconsistencies in the datasets used, corresponding to only a portion
of those listed above, in Section 5.5, that is:

• Street names with words in a different order from the usual (e.g. Via Petrarca
Francesco, exchange of name and surname);

• Street names with uncommon characters (-, /, ° ? , Ang., ,);
• Municipalities with no official name (e.g. Vicchio/Vicchio del Mugello);
• Typos;

Some tests with Silk were then carried out on selected datasets, and the obtained results
were compared with the GT results. First LSL files were created, each of which contains
a rule with different thresholds. Furthermore a script to automatically run Silk has been
created, which processes files, and for each produces a results file, containing the N-
triple associations.
Thanks to an Excel VBA Macro specially designed, the results were reorganized on
worksheets, and the values of True Positives, False Positives, True Negatives, False
Negatives were calculated, based on GT.
For each Silk elaboration, the calculated values are defined as follows:

• True Positives: services for which a correct association has been made, with the
Road instances, that is Silk has reported a result and the result is correct.

Architecture and Knowledge Modelling for Smart City p. 172

• False Positives: services for which a wrong association has been made, with the
Road instances, that is Silk has reported a wrong result.

• False Negatives: services for which no association has been found, with the
Road instances, despite it was contained in the GT.

• True Negatives: services for which no association has been found, with the Road
instances, and no association was contained into the GT.

Figure 83 - Connection rule for Address-City couples

The basic rule, that Silk uses during processing, is composed of the following
comparisons:

• Address mapped on two datasets using the URI:
<?road/km4city:extendName>
<?service/schema:streetAddress>

• City mapped on two datasets using the URI:
<?road/km4city:inMunicipalityOf>
<?service/schema:addressLocality >

For the address attribute comparison, a lowercase transformation was performed, to
make the data insensitive to the upper and lower case variation, and the following Silk
string comparison functions have been modified: Levenshtein, Jaccard, Dice. In fact,
for each of these, threshold for which the match is classified as correct, has been
modified: Levenshtein threshold changes from 2 to 8 characters, Jaccard threshold
changes from 2 to 7 characters and Dice threshold changes from 2 to 5 characters. These
values were chosen based on the calculation method of each metric, and thanks to the
detected inconsistencies knowledge, acquired during the preliminary analysis.
For the city comparison, the Levenshtein distance measure, with zero threshold, was
chosen, this means that this attribute must be the same in the comparison, i.e. each pair
of city names must match on each character. This very restrictive measure, was chosen

Architecture and Knowledge Modelling for Smart City p. 173

based on the a priori dataset knowledge: during the GT construction in fact, it was
possible to verify that typos on city names, are negligible; errors on this specific
attribute arise primarily from the exchange between the name of the locality/fraction
and the municipality name, a type of error not detectable through comparison functions.
Among the aggregate functions available in Silk, the minimum function was chosen,
changing the threshold from 10% to 100%: this operation also implies that the produced
results, with a measure of a global similarity of 10% (in the worst case) and 100% (in
the best case), are labeled as matching. A special precautions have been reserved to the
house number: in fact, it is not included in all tests.
In order to better recognize tests, a special name has been assigned to each rules,
symptomatic of the change from the basic rule, with the following format:

<KCXTnum_Xnum_ThrasH >
From this format, it is then possible to learn information about first and second
transformation rules, and also on the aggregate function threshold.

• K indicates if the specific knowledge of the dataset has been transferred into the
rule;

• C indicates if the house number has been removed in the rule;
• X is the distance measure (l = Levenshtein, j =Jaro, h =Jaccard);
• T indicates the token transformation;
• Num is the tolerance percentage of the distance measure;
• ThrasH is the percentage of correct results, according to the aggregation

measure.

In the first tests, the basic rule that uses comparisons on attributes pairs, has been used,
together with the Levensthein distance; tolerance of the comparison function and
threshold of the aggregate function, have been changed by steps of 10 percentage points
at a time.

Diagram 1 - Precision, Recall, F1 of the aggregate function with a threshold of 10 to 100,

Levenisthein distance of 2, rule cl20_l00_ [10-100]

0

0,2

0,4

0,6

0,8

1

1,2

10 20 30 40 50 60 70 80 90 100

Precision

Recall

F1

Architecture and Knowledge Modelling for Smart City p. 174

In the above Diagram 1 the evolution of Precision, Recall and F1 (this latter is also
called the F-measure, and it is defined as Harmonic mean of Recall and Precision) is
shown, relating to the rule that uses Levenshtein distance = 2 for address comparison,
and Levenshtein distance = 0 for city comparison. The aggregation function sorts data,
based on the minimum score; there are no significant changes in the scores of Precision
and Recall. The Precision reaches 100%, while the Recall is maintained close to 50%,
that can be translated as half of the data reconcilable were recovered and those
recovered are trusted.
In the following diagram it is easy to see that, with the increasing of Levenshtein
distance, most results are recovered, because also addresses with errors, such as
abbreviation, are recovered.

Diagram 2 - Precision, Recall, F1 varying the threshold aggregation function [10-100], Levensthein

distance equal to 3; rule cl30_l00_ [10-100]

If the Levenshtein distance increases, an improvement in Recall and Precision can be
observed, due to the increased incidence of typos. The optimum combination is the
aggregate function threshold equal to 50%, with a Levenshtein distance equal to 5
characters, and with an aggregate function threshold equal to 70%.

0

0,2

0,4

0,6

0,8

1

1,2

10 20 30 40 50 60 70 80 90 100

Precision

Recall

F1

Architecture and Knowledge Modelling for Smart City p. 175

Diagram 3 - Precision, Recall, F1 varying the threshold of the aggregate function [10-100], distance

Levensthein equal to 8, rule cl80_l00_ [10-100]

From Diagram 3, it is possible to observe that the rule, obtaining the highest score in
terms of F1 measure (0.647), has a threshold of 70%, and it achieves a Precision value
of 0.907 and a Recall value of 0.50. This is related to the Levenshtein distance tolerance
increase, with which also the false positives number increase; so it is necessary to
decrease the aggregate function tolerance, considering the results correct, only beyond a
70% threshold.

In the Table 16, the scores obtained from rules variation with a different aggregate
function threshold set, are shown.

MOBILITA’ AUTO VP FP VN FN Precision Recall F1
Levensthein 20 88 0 12 96 1 0,478261 0,647059
Levensthein 30 88 0 12 96 1 0,478261 0,647059
Levensthein 40 89 8 12 87 0,917526 0,505682 0,652015
Levensthein 50 90 7 12 87 0,927835 0,508475 0,656934
Levensthein 80 65 58 11 62 0,528455 0,511811 0,52

Table 16 - Precision, Recall, F1 of the rule with Leveinsthein distance variation [20-70] and an
aggregate function threshold equal to 50

The rule with Levenshtein distance equal to 5, is the most performing in all tests.
The same tests were then carried out using a different comparison function, that is the
Dice (d inside the special name format seen above) and the Jaccard (h inside the special
name format seen above) distance measures have been tested, to determine the
corresponding best variables combination.

It is possible to assert that to add knowledge on the dataset and write ad-hoc rules,
improves the performance of Silk that achieves a Precision value of 92.59% and a
Recall value of 71.43%.

0

0,2

0,4

0,6

0,8

1

1,2

10 20 30 40 50 60 70 80 90 100

Precision

Recall

F1

Architecture and Knowledge Modelling for Smart City p. 176

It has also been possible to verify that the rule based on Dice distance (distance = 0.3)
with a very low aggregate function threshold (20%), is the optimal combination and
allows to increases performance against the rule based on Levensthein distance (4
percentage points on Precision and 15 percentage points on Recall). For this rule a
further transformation has been applied, i.e. the Tokenization. This normalization
function has allowed to recover errors related to the words order, for example: "Via
Giuseppe Garibaldi" and "Via Garibaldi Giuseppe". This occurs because the Dice
metric calculates a score based on pairs of elements, within the two strings to transform;
this also justifies the low threshold on the aggregation function (results that meet at least
20% are considered correct). Unlike what happens for the rule based on Levensthein
distance, for the rule based on Dice distance, a low threshold does not adversely affect
the Recall value.

The first reconciliation process presented in this chapter, that is the SPARQL
reconciliation, has been also applied to other types of data for which a reconciliation
was necessary, to connect data belonging to different ontology macroclasses; these new
reconciliation phase present less complexity respect to services reconciliation; for this
reason they will not be discussed in depth.
The other reconciliations performed are the following:

• Traffic sensors were connected via the ObjectProperty km4c:placedOnRoad to
the Road instance, representing the road where they are installed;

• Weather forecasts have been linked to the municipality to which they relate;
• Bus stops were connected to the Road instance where they are located thanks to

coordinates that geolocated them precisely;
• Sensors installed inside car parks were associated to the Service instance

representing the same car park;
• Resolutions were connected to the PA instance, which has issued them;
• Train stations were connected to the Road instance, in which they are localized.

5.6 Phase VI: Data Validation

A validation procedure is required at this point of the work, to test whether the ontology
created, allows to model the data correctly, that is to check if data, once inserted inside
the triplestore, after having been molded in accordance with the created R2RML
models, are interpreted as wanted.
The validation of an ontology refers to errors and/or omissions of concepts/instances
that may be contained inside it. There are many ways in which an ontology can be
validated in order to improve and expand it. The most important validation, concerns
the formal semantics, i.e. concerns the meaning of the constructs (classes and
relationships between classes) of an ontology. Some automated tools were built to
determine when there are contradictions in an ontology (such as Protege) and to identify

Architecture and Knowledge Modelling for Smart City p. 177

a better classification of a concept of an ontology in agreement with the other concepts
of the ontology itself.
For this purpose, a first validation phase of the Km4city ontology was carried out at the
end of its creation and, after each its expansion: exploiting the potential of Protege
(http://protege.stanford.edu/) was simulated the inference which could be generated due
to the ontology defined, thanks to the applied reasoner, that is HermiT 1.3.8
(http://hermit-reasoner.com/) to verify that the ontology did not contains contradictions
or constructs poorly formulated.
A more dynamic validation approach provides instead the study and execution of tests,
in order to discover defects, in the absence of which is possible to demonstrate that the
system meets the needs for which it was created; this type of procedure is one of the
most used for the verification and validation of a systems, and is also the one that allows
to obtain more reliable results [Gangemi et al., 2006].

Typical problems that may be encountered are related to: (i) low quality of data, (ii) lack
of data that are supposed to arrive in real time, (iii) changes in the data model of the
data set, (iv) changes and updates into the data sets (this problem could generate a
change into the ontolog,ical model and thus the human intervention is activated for
model review), etc.
For example, the Quality Improvement process has allowed to add new fields to the
ontological model, which in the presence of data clearly not in a correct format, were
not foreseen in the first release of the ontology; if the amount of data added, reaches a
certain size, a new Validation phase should be performed on that data.
To this end, some periodic verification and validation processes are also needed to be
performed by defining a set of SPARQL queries on the knowledge base, with the aim of
detecting inconsistencies and incompleteness, and verifying the correct status of the
model.
For this purpose, a JAVA application was designed and developed to automate some
parts of the verification and validation process, that has been chosen to be performed on
the ontology. The "heart" of this application, is based on some SPARQL queries created
ad hoc, that will be used to periodically query the triplestore, with the aim to verify if
the results obtained are those expected. These periodically executed queries perform a
regression testing, every time a new consistent update of ingested data is performed, and
also when real time data arrive into the final RDF store.
The validation process may lead to identify problems that may be limited to the
instances of classes. To this end, the Context macroclass of the Km4city ontology
assumes a fundamental importance, because has been defined precisely in order to be
used during the verification and validation phase: in fact, the fourth information
associated with each triple allows to identify the problems but especially the processed
datasets to be revised.

Architecture and Knowledge Modelling for Smart City p. 178

The entire process of verification and validation, implemented for the work of this
thesis, can be divided into four phases, i.e. (i) design of test cases, (ii) selection of test
data, (iii) run tests and, finally, (iv) verification and comparison of the results observed
with those expected.

During the first phase, that is the test cases design, an automatic validation process has
been designed, that has been initially limited to verifying how many triples and how
many instances of each class, are actually loaded into the triplestore; later, thanks to a
more detailed analysis of the links that the reasoner should be inferred, according to
what defining inside the Km4city ontology, a manual validation was also carried out,
more targeted to validate the inferred part, for which some ad hoc queries have been
defined.

Initially, a check has been performed, to verify if the number of triples, actually loaded
on triplestore, is equal to the number of triples contained in the corresponding file, and
then, after uploading is complete, a second check is performed, to verify whether the
instances number in the input data, for each most importance classes in the ontology,
corresponds to the instances number, that are contained inside the triplestore, related to
a certain context (that identifies the dataset input).
Information about the context is in fact exploited, to verify that, loading a set of triples
generated from a specific dataset, leading to identify the exact instances number of the
class in question, related to a context, which specifies precisely its origin.

Finally, some ad hoc queries, specifically developed to verify the inferred triples, thanks
to Sesame, were formulated and executed on the triplestore.

The Java application realized to automate the validation and verification process, is able
to perform an analysis on N3 file, which are created during the mapping phase. The tool,
in fact, scans the folders tree in which are stored the N3 files, after their creation,
extracts some useful parameters for each discovered file, such as the file name, the path
to which it is stored, the dataset to which it refers, and the class of input data to which it
belongs and, finally, it writes this information in a MySQL table, created specifically for
the verification and validation process, named obviously Validation.

Once the operation of scanning all created triples files, is completed, the tool performs a
parsing of each N3 file, that have been inserted within the MySQL table Validation,
stored inside the Master machine. The simple parser implemented, identifies each URI
present in the analyzed triples files, that belongs to the Km4city ontology, thanks to the
use of special regex and finally it counts the number of times that each URI is write
inside the file. All Km4city URIs identified by the parser and the respective count are
stored in text files specially created, ordered by appearance rate, starting from the most
frequently up to the less frequent.

Architecture and Knowledge Modelling for Smart City p. 179

This procedure is repeated for each individual file identified during the previous scan:
this means that for each triples file, the validation tool creates the corresponding
counting URI file.
In the next Figure, the file created by the parser N3 is represented, which performs a
triples counting.

Figure 84 - Triples counting results

After an individual triples file analysis, in most cases manually performed, it was
possible to identify, for each file, at least one Km4city URI, which assumes significance
if validated in the context of that single triples file; that URI has been then stored into
the MySQL table Validation, inside the row related to the context in which it will be
validated. This process, allows to select data on which verification and validation tests
must be performed.

The tool then deals with the implementation of verification and validation tests:
automatically, for each row in the Validation table, the count of the selected URI is
extracted, to be verified in its context (i.e. the file to which the row referred), and is
compared with the results of a SPARQL query, performed on the fly, that return the
same count of the same URI but within the triplestore, limited to the context of the
analyzed file.
The two counts must obviously be equal to demonstrate that the data contained in the
triples file in question, is correctly entered into the repository.
A further validation on counting triples currently loaded into the repository, can be
carried out using information provided by Owlim-SE after the uploading of each N3 file,
is complete: Owlim-SE in fact returns the number of statements that have correctly read
and loaded into the repository, a number that can be compared with the total triples
amount of N3 files, performed by the Validation tool, during its parsing phase, and
stored within the MySQL table ProcessManager.
It was decided to move these two information items within the processManager table,
because it is also viewable by non-administrator users, and so there is the possibility to
more quickly detect any conflicting values, between the two columns containing the

Architecture and Knowledge Modelling for Smart City p. 180

total number of statements counted in the file and the number of statements actually
loaded into the repository by Owlim-SE.

Finally, the verification and validation tests on interconnections created thanks to
inferred triples, can be performed executing a couple of query designed and created
specifically to verify most significant test cases of interconnection. In the following
Figure it is possible to observe a query used to verify the connection beetween the Point
of Interest and the Street Guide and Rail Network Macroclasses, realized thanks to the
Service reconciliation at street number level.

Figure 85 - Query to verify connection beetween Point of Interest and the Street Guide and Rail

Network Macroclasses

This query, for example, allows to find services that are located within a radius of 300
meters from the point specified at line 9 by the coordinates.
The query in Figure 86 instead, represent a query crucial to work property with the LOG
(see Section 5.7.2).

Figure 86 - A crucial query for the LOG

This query has been included in the validation because, with previous versions of the
repository, has happened that did not allow to obtain results, and thus limited the use of
the same LOG tool.

The Validation tool performs these queries and the others selected to be validate, and
stores results in some MySQL table, which can then easily checked by an experienced
user, who can establish consistency with what is expected from the execution of each
query.

5.7 Phase VII: Applications

Architecture and Knowledge Modelling for Smart City p. 181

In Figure 25 is possible to observe the last phase, named Phase VII, relating to the use
of RDF triplestore generated during the project.
Data access in a triplestore takes place via an access point for SPARQL query
execution, also called SPARQL endpoint. Thanks to a connection to this endpoint,
custom queries can be performed, obtaining in a fast and reliable way, their results. The
query execution, for example via the Sesame interface, requires knowledge of all
ontologies used to construct the triplestore, otherwise it's necessary to develop
applications that, thanks to the specially developed user interfaces, allow to perform
queries without having to know the basic ontology on which the triplestore is realized.
During the project, two applications have been developed, both accessing data using the
SPARQL endpoint:

• ServiceMap (http://servicemap.disit.org), a map based application
• Linked Open Graph (http://log.disit.org) for browsing the data from

SPARQL/Linked Data sources

The navigation on internet accessible RDF stores is becoming every day more relevant.
They are frequently based on local and commonly accepted ontologies and vocabularies
to set up large knowledge base to solve specific problems of modelling and reasoning.
The growing needs of such structures increased the need of having flexible and
accessible tools for RDF store browsing, taking into account multiple SPARQL entry
points, to create and analyze reticular structure and scenarios of remote stores.
The ServiceMap presented here, provides an example of such innovative services can be
integrated on a simple search application for geographic location, through the use of an
RDF data store, within which the data are fully interconnected to each other. The main
problems encountered with this type of application are related to (i) performance, that
is, the difficulty of achieving an architecture that allows to obtain query results in
acceptable times; (ii) the implementation of an interface simple, intuitive and user-
friendly, to which users can access through both PC (laptop, desktop pc) and mobile
devices (smartphone, tablet, etc.); (iii) the identification of real use cases, representing
users real-life situations.
The LOG tool presented in this paragraph, provides, instead, innovative features solving
a number of problems related to graph computation, to cope with high complexity of
large LOD graphs with a web based tool. The complexity is mainly managed by
providing tools for (i) progressive browsing of the graphs, (ii) allowing graph
composition, (iii) providing support to pose specific queries, (iv) allowing the
progressive discovering/selection of instances.
The next paragraphs are devoted to the description of the two applications made.

5.7.1 Service Map

Due to the high geographic information content of triplestore made in the project, the
first application developed is the ServiceMap, i.e., a map in which users can view the
results of their geo-referenced query, via browser.

Architecture and Knowledge Modelling for Smart City p. 182

Figure 87 shows the ServiceMap interface, an application developed in accordance with
the main use cases identified on the data currently stored, within the triplestore.

Figure 87 - ServiceMap interface

The ServiceMap is a JSP application (Java Server Page) that, thanks to the Java API of
the Sesame framework, allows to retrieve data from a repository.
To create the map, the JavaScript library Leaflet (http://leafletjs.com/), has been used,
which allows, thanks to script with extremely compact size, to create interactive maps
inside a web application. Thanks to the well-documented API and to a long list of third-
party plugins easily installable, Leaflet can construct a high usable map, which makes
use of OpenStreetMap (http://www.openstreetmap.org/), as open-source maps.
In Figure 88 a schematization of the process behind the ServiceMap, can be viewed. The
user connects to the ServiceMap Application via web browser and, through the
interaction with the map, some requests to the server are formed and sent. The server
provides to process requests and convert them to SPARQL query, that will be sent to
the project's RDF store. Once query has been processed, the triplestore sends back the
resulting triples, to the server, which interprets them and turns them into files HTML or
JSON, that can be displayed directly by the browser.

Architecture and Knowledge Modelling for Smart City p. 183

Figure 88 - Schematization of how ServiceMap works

The application has been designed so that the map, that is, its main component, occupy
as much space as possible, while the interaction menus are divided into three parts: (i) in
the upper left corner, the initial filters of the use cases implemented until now, are
located; (ii) in the upper right hand, there are filters that allows to specify the types of
services that must be shown, the maximum number of services to be displayed and the
maximum research distance from the map center point; (iii) finally, in the bottom left
corner there is a context menu that displays additional information, interesting for
different use cases, such as weather forecasts or time arrival predictions at a bus stop, or
data regarding free places in a given parking, shown according to the type of service
selected.

Figure 89 - Use cases menu

Figure 89 shows the two tab menus located in the upper left corner. On the left box side,
some buttons have been included that perform the following functions:

Architecture and Knowledge Modelling for Smart City p. 184

• the first two buttons from the top, are native in Leaflet and allows to control the
map zoom;

• the just below button, instead, allows to activate the user's location research.
Once the location has found, thanks to the local network information that a
browser can share, the map is centered to the founded coordinates, to which a
marker is also placed.

• the fourth button from the top, is a link to the web page that contains information
about the developed service, but very closer to a support pages for the
application.

• The last button instead, allows to select any point on the map, where a marker
will be insert, and to know its coordinates and the corresponding approximate
address.

The functions associated with the third and last button, allow to apply the use cases
introduced in the following pages, starting from a different point on the map, chosen by
the user, or from the user position.

The top right menu (see Figure 87) instead allows, through selecting checkboxes, to
select which service categories must be retrieved from de triplestore. These categories
correspond to subclasses of the Service class (e.g. Entertainment, Education, etc.)
defined within the Km4city ontology, and their respective associated ServiceCategory
(e.g. the Education subclass, has as ServiceCategory "private infant school", "public
high school", etc). An additional checkbox is located under the services menu,
specifically for displaying BusStop objects.
In the geolocalized search, the maximum radius search can be set (up to 500 meters)
together with the maximum number of results to be displayed, to avoid markers
overcrowding on the map, which would became unreadable. The two buttons, in the
bottom of this menu, i.e. "Cerca!" and "Pulisci", respectively actuate research, the first
one, and the second one, bring the application to the initial state.
The last menu, that is the contextual one, allows the user to know information related to
what is displayed/selected on the map; in Figure 90 there is an example of every
possible information, that can be displayed on this type of menu.
The top right button of the context menu, i.e. "Nascondi Menu", as might guess, allows
to hide the entire menu and to display a greater portion of the map.

Architecture and Knowledge Modelling for Smart City p. 185

Figure 90 - Real Time data possible views

Thanks to the high performance RDF engine implemented in OWLIM-SE and through
the use of extremely powerful geospatial indices, is possible to obtain results from
queries with a very short time response, despite the substantial amount of triple
georeferenced inside the project triplestore.
In the next paragraphs, three use cases will be analyzed as an example.

Use Case 1: Search for services belonging to a specified municipality

The first use case concerns search for services belonging to a given Tuscan
municipality. The search type used in this case is not geographical, in fact the results are
simply filtered according to the selected municipality.
To achieve the desired results, initially the province to which the municipality
belonging must be selected and then the municipality name, thanks to the two dropdown
named "Seleziona una provincia" and "Seleziona un comune". If the province to which
the sought municipality belonging is not known, in the first dropdown choice is possible
to select "Tutte le province", which allows to access, via the second dropdown, to the
list of all 285 municipalities of Tuscany region.
Once the municipality has been selected, the service categories to be displayed, must be
selected inside the special filtering menu (see Figure 87); as soon as the search radius
and the maximum number of provided results are selected, just press the search button,

Architecture and Knowledge Modelling for Smart City p. 186

the search begins. In Figure 91 an example of SPARQL query generated from the
application, has shown; it search for "Guardia medica" and "Farmacia" in Empoli,
while the next figure, shows the obtained results.

Figure 91- SPARQL query to find a pharmacy in Empoli

ServiceAddress Elat Elong ServiceName Service Type

PIAZZA SAN ROCCO, 10 43,7193405 10,9393343
NUOVA DOTTOR
VALOROSI farmacia

PIAZZA DELLA VITTORIA, 26 43,7202826 10,9489318 BIZZARRI farmacia
VIA DEI CAPPUCCINI, 18 43,7143452 10,9475482 COMUNALE farmacia

VIA DEL PAPA, 20 43,7192948 10,9480072
CASTELLANI
GIUSEPPE farmacia

VIA VAL D'ORME, 83 43,7004727 10,95287 BOLOGNESI farmacia
Table 17 - Results of the previous SPARQL query

As previously stated, the recovered data in RDF format are then converted in JSON
format, by the ServiceMap; this choice is related to the format compatibility with
Leaflet, which otherwise would not be able to place markers on the map.

Architecture and Knowledge Modelling for Smart City p. 187

Figure 92- Results on the map

The following figure represents a sequence diagram between client side and server side.

Diagram 4 - UseCase 1 sequence diagram

Simultaneously to the query that is seeking the services within the selected
municipality, a second query is launched, to retrieve the latest weather forecast of the
same municipality. The search procedure is composed by two sequential queries: the
first one extracts the most recent WeatherReport (lines 1-14), while the second one
extracts, from the reports obtained as a results of the previous query, the five daily
forecast, following today's date (lines 18-31); queries are shown in Figure 93

Architecture and Knowledge Modelling for Smart City p. 188

Figure 93 - SPARQL query for weather predictions

At line 16, the value of ?WeatherReport, resulting from the first query, is used to
retrieve elements of type ?WeatherPrediction; even from the first query, the
?instantDateTime value is extracted, which corresponds to the report creation time. The
?updateTime value is instead extracted thanks to line 11 and it represents the report
updating date, in xsd:dateTime format; according to this last value extracted, at line 14,
the resulted records are sorted, and then only the first one is selected, that is the most
recent.
In the second query, instead, lines 26-27-29-30 the following prediction attributes are
extract:?Days (representing the day of week), ?Description (the literal description of the
forecast), ?MinTemp and ?MaxTemp (minimum and maximum temperature provided,
respectively). These last two variables are associated with OPTIONAL SPARQL
operator, because sometimes their values are null and without using this operator, the
lines that do not show temperature values would be excluded from the results. Finally,
at line 28, predictions are filtered by choosing only those having ?day equal to "giorno",
which represent the daily forecasts associated to a less granularity, but almost present
for the 5 days following the today's date. The query results are then formatted to create
the menu in Figure 94.

Architecture and Knowledge Modelling for Smart City p. 189

Figure 94 - Results of the previous SPARQL query on the map

Use Case 2: Search for services near a Bus Stop

The second use case concerns research of services nearby a bus stop, within the
metropolitan area of Florence.
To enable this use case a bus line must be selected via the menu "Seleziona una linea"
and then, in the dropdown below, a BusStop must be chosen; similarly to the previous
case, in the first dropdown, the value "tutte le linee" can be selected, that allows to
access the list of all bus stops.
If one bus stop is selected, the map will be center on its coordinates and a small pink
marker, associated with the bus stop, will be displayed; simultaneously the system will
load the context menu containing data providing by AVM systems, installed on
vehicles, related to the bus transit time on that particular stop. In Figure 95 is possible to
observe what has been described so far.

Figure 95 - How to search a Bus Stop

Architecture and Knowledge Modelling for Smart City p. 190

As soon as the stop is selected, all interest services placed within a certain radius from
the marker, can be searched: this is possible thanks to the menu located at the top right,
where the service categories and their subcategories are selected, together with the
search radius and the maximum number of results to display. Finally, clicking the
"Cerca!" button, the requested services are obtained; the system displays a warning
message that informs the user of how many services and many bus stops were recovered
(Figure 96).

Figure 96 - Services near a Bus Stop

The query in Figure 97 is the one made by the system, based on the choices made in this
second use case.

Figure 97 - SPARQL query to find services near a Bus Stop

Architecture and Knowledge Modelling for Smart City p. 191

Line 7 of the query, specifies which information, about the services, that fulfill the
requirements selected, must be contained in the results, that is: the URI of the service
(?Ser), its address (?SerAddress), its coordinates (?Elat and ?Elong), the name of the
service (?sName), its email address (?email) and ?notes that contains all other
information related to the specified service.
At line 10 the selected service categories are specified and, among all the services
found, only those associated with an instance of the class Entry of the Km4City
ontology, will be used later. At line 16, in fact the instruction Omgeo:nearby allows to
filter out the data based on the distance from a central point, in that case the bus station
"Stazione Scalette". The last parameter of Omgeo:nearby command, is the search
radius. Finally, thanks to the LIMIT operator, the maximum number of results can be
set; the results obtained with this query are shown in below in tabular format (Table 18).

ServiceAddress Elat Elong ServiceName Service Type
VIA DEI BANCHI, 18/R 43,773609 11,2505591 DEI BANCHI farmacia
VIA DELLA SCALA, 61 43,7752329 11,2459294 DELLA SCALA farmacia
VIA DELLA VIGNA NUOVA, 54/R 43,77118 11,2492657 SAN GIORGIO farmacia
PIAZZA DEGLI OTTAVINI 43,7726956 11,2494195 CAMILLI farmacia

Table 18 - Results of the previous SPARQL query

The results are then inserted into the map thanks to the Leaflet. The query result is
shown in Figure 98.

Figure 98 - Results on the map

The sequence diagram between the client side and server side of the use case just
described, is the following:

Architecture and Knowledge Modelling for Smart City p. 192

Diagram 5 -Use Case 2 sequence diagram

As mentioned above, when the user selects a bus stop, a query to retrieve the relevant
context information to show in the menu, is performed; that query is quite complex,
since it has to deal with Real-time data relating to the AVM system, and is shown in
Figure 99:

Figure 99 - SPARQL query for AVM

Architecture and Knowledge Modelling for Smart City p. 193

The query returns the latest 10 unique combinations of values ?AvmRecord, ?Line and
?Ride, relative to the selected bus stop. By accessing PublicTransport and RealTime
(only the part devoted to the AVM) macroclasses of the ontology Km4City, and taking
advantage of their interconnections, the correct objects are extracted.
Through the last two lines (14-15) dedicated to data filtering, the temporal information,
relating to the AVMrecord generation date, is also withdrawn. Finally, lines 17-18 are
concerned with the reorganization of the recovered data, timely based. The result of this
query is shown in Table 19.

AVM record Line Ride
2014-03-07t17:58:25.4584782+01:00+4737229 LINE 23 4737229
2014-03-07t17:58:25.4584782+01:00+4764073 LINE 17 4764073
2014-03-07t17:58:25.4584782+01:00+4764311 LINE 17 4764311
2014-03-07t17:58:25.4584782+01:00+4737165 LINE 23 4737165
2014-03-07t17:58:25.4584782+01:00+4764055 LINE 17 4764055
2014-03-07t17:58:25.4574781+01:00+4737239 LINE 23 4737239
2014-03-07t17:58:25.4584782+01:00+4737032 LINE 23 4737032
2014-03-07t17:58:25.4584782+01:00+4764259 LINE 23 4737114
2014-03-07t17:58:25.4574781+01:00+4764259 LINE 17 4764259
2014-03-07t17:50:25.2114583+01:00+4764311 LINE 17 4764311

Table 19 - Results of AVM SPARQL query

A second type of query is then composed, by exploiting the results of the first query, to
detect the transit time of buses, contained in those AVMRecord. As it is possible see
from the Figure 100, the second query is considerably more complicated.

Architecture and Knowledge Modelling for Smart City p. 194

Figure 100 – Second SPARQL query for AVM

The query in the above figure, uses only 2 of the 10 results obtained (shown in lines 11-
15 and 17-21) thanks to the first query, but for demonstration purposes, does not make
much sense to use them all; this is the reason why the second query is made with just
two results. ?forecast elements are extracted using the dinstinct operator which
eliminates the risk of duplicate data relating to the same ride; some cascade data
filtering are then performed: at line 24 forecasts are filtered based on the current date
and time, while the lines 26-27, reorder results and takes only the first four.
The recovered data until this point, can then be used to populate the context menu as
shown in Figure 101.

Architecture and Knowledge Modelling for Smart City

Figure 101 -

The services search, thanks to the special
be generalized to research facilities nearby any point, such as the user GPS position
detected thanks to the appropriate button in the upper left, or any other marker present
on the map, or any other point, after
address (always positioned at the top left).
This services search is very similar to what seen in the previous section, also the queries
that the web service forms and sends to the server, because the o
the central point from which the search begins.

Use Case 3: How to display all the contextual menus

Architecture and Knowledge Modelling for Smart City

- Results of the second AVM SPARQL query on the map

The services search, thanks to the special buttons located below the zoom buttons, can
be generalized to research facilities nearby any point, such as the user GPS position
detected thanks to the appropriate button in the upper left, or any other marker present
on the map, or any other point, after using the button that allows to find the approximate
address (always positioned at the top left).
This services search is very similar to what seen in the previous section, also the queries
that the web service forms and sends to the server, because the only difference lies in
the central point from which the search begins.

How to display all the contextual menus

 p. 195

Results of the second AVM SPARQL query on the map

buttons located below the zoom buttons, can
be generalized to research facilities nearby any point, such as the user GPS position
detected thanks to the appropriate button in the upper left, or any other marker present

using the button that allows to find the approximate

This services search is very similar to what seen in the previous section, also the queries
nly difference lies in

Architecture and Knowledge Modelling for Smart City p. 196

The last use case is devoted to other contextual searches that allow to display different
information in the menu on the bottom left, and that have not been described, yet.
Specifically, the two most important research are the following:

• Control of occupation of a specific car park;
• Associating an approximate address to a generic point, selected on the map,

thanks to procedures of reverse geocoding.

The first type of contextual information can be obtained by simply looking for a car
park in the metropolitan area of Florence and clicking on the marker associated. After
that, the system prompts data to the repository, relating to the most recent status update
of the selected parking, and provide information to the user, as shown in Figure 102.

Figure 102 - Parking Real Time information on the map

Below the query that allows to obtain this information is shown.

Architecture and Knowledge Modelling for Smart City p. 197

Figure 103 - SPARQL query for parking occupancy

The query retrieves the URI of the last ?SituationRecord associated with the selected
parking, the instant in which has been created (?InstantDateTime) and other data on its
status, i.e. ?free, ?occupied and ?capacity, respectively, the number of free places,
occupied places and the total number of places.

Figure 104 - Use Case of approximate address

In relation to the second type of contextual information displayable, i.e. the address
associated with a selected point on the map, the user must first click on the function
button (in the top left corner), and then on the point to which he wants to associate an

Architecture and Knowledge Modelling for Smart City p. 198

address and, only at this point, the operation of reverse geocoding is enabled; in Figure
104 an example of this use case, can be observe.
The SPARQL query, used to associate an approximate address to a pair of coordinates,
is very similar to the query used during the bus stops reconciliation with elements of the
Road class (see Section 5.5.1), and it is shown in Figure 105.

Figure 105 - SPARQL query to find the approximate address

Similarly to what is done during the bus stops reconciliation, even in this query the
nearest neighbor method is used to search within a radius of 100 meters. To obtain the
desired information, the values retrieved are the follow:

• ?ExtendedName of the Road element,
• ?ExtendedNumber that is the house number and
• the town name (?MunicipalityName) is recovered, concatenated and finally it is

displayed in the context menu in the lower left.

5.7.2 Linked Open Graph

From the ServiceMap described in the previous section, by clicking on one of the
markers corresponding to a service or a bus stop, a small dialog box is open as shown in
Figure 106. Furthermore, clicking on the "Linked Open Graph" link, which is located
inside the dialog box, is also possible display information linked to the object of
interest, through a Faceted Graph.

Architecture and Knowledge Modelling for Smart City p. 199

Figure 106 - LOG button on ServiceMap

The Linked Open Graph, LOG [Bellini, Nesi, Venturi, 2014], is a web tool for
collaborative browsing and navigation on multiple SPARQL entry points. The LOG
tool is free to be used, and it has been adopted in multiple projects as ECLAP [Bellini et
al., 2013B] for cultural heritage (http://www.eclap.eu), to create the Social Graph of the
social network, Sii-Mobility for smart city and ICARO for smart cloud ontology
analysis. It has been validated using multiple public accessible RDF stores such as:
dbPedia, Europeana, Getty Vocabulary, Camera and Senato, GeoLocation, etc., putting
in evidence the different cases and usage of LOG tools in the different scenarios, with a
specific stress on the analysis of multiple RDF stores on the same graph.
A tool for browsing LD/LOD selecting relationships among URI elements and their
attributes, can be a solution for developer for data and knowledge engineers. Therefore,
services that allow to insert URI of LOD to navigate on their structure, are very
important and the graph may bring to other connected RDF stores, via their definitions
in terms of LD.
Technically, not all ontologies and RDF models and stores have been developed by
using the same methods, since they have been developed by different teams, using
different styles, in different periods, and exploiting different vocabularies. This implies
that different approaches to model the same entities and patterns may be possible, as
well as different usage of “sameAs”, “equivalent class”, blank nodes, reuse of
vocabulary and concepts.
The access and browse to a RDF store via the SPARQL entry point is a way to
understand the knowledge base and the relationships among the included entities. In
some cases, the entities/URIs (URI(a), URI(b)) of different RDF stores (accessible via
different SPARQL entry points: URL(a) and URL(b)) may be connected each other.
Typically the connection can be via URI representing classes of common ontologies and

Architecture and Knowledge Modelling for Smart City p. 200

definitions. The visualization of graphs associated with URL(a),URI(a) and
URL(b),URI(b) on the same screen may allow to put in evidence the relationships
among these two graphs. They may be the basis for (i) integrating the two ontologies,
for federating RDF storage, (ii) understand differences and relationships, and/or (iii) for
creating additional connections. For example, by creating an owl:sameAs relationship
among two entities that represent the same concept in the two models. In some cases,
they have not been intentionally defined by using the same vocabulary since they are
different for somehow, while in other context they should be the same, otherwise
deductions in the knowledge base would not take into account all needed facts.

Figure 107 - LOG interface

The graph is populated by nodes and edges: nodes can be of two types, which may
represent entities (rectangular shaped nodes) as content, terms, users, etc. or relations
between resources (circular shaped nodes); through directed edges the elements and
their relationships are linked. Examples of relations are shown in Figure.

Architecture and Knowledge Modelling for Smart City p. 201

Figure 108 - Relationships filtering, i.e. Hide/show types of relations to reduce the graph complexity

The LOG.disit.org service is not a simple browsing of related resources; the visual
browsing of SPARQL entry points is not a simple task, especially if this work is
performed by a Web Application. In particular, specific algorithms are needed to cope
with complexity of obtaining and processing complex reticular structures with web
based applications, removing duplications, managing multiple entry points, generating
complex SPARQL queries, etc. Furthermore it has a high number of demanded features
that transform the LOG into a great competitor, if comparing them with representative
state of the art solutions. Here below, a list of its most desirable features is reported:

• Access and rendering of LD: the visual tool should be capable to represent a
LD which is publically accessible as a URI, providing a set of triples.

• Access and rendering URI from SPARQL entry point: a visual tool for
browsing SPARQL entry points extract the results by using a couple {URL(i),
Q}, where Q is the semantic query or an URI.

• Managing Entry Points with different URL in URI : the visual tool has to be
capable to accept to start browsing from the couple URI, URL having different
domains.

• Multiple SPARQL entry points : the visualization of graphs associated with
URL(a),URI(a) and URL(b),URI(b) on the same screen may allow to put in
evidence the relationships among these two graphs.

Architecture and Knowledge Modelling for Smart City p. 202

• Making keyword based query: in order to identify a starting URI for RDF
graph rendering it could be possible to pose a keyword-based query on the RDF
store. This feature is not always available on the RDF store (SPARQL entry
points), and may be implemented in several different manners.

• Inspecting entry point for searching classes: a textual search can be performed
on the instances of one or more of those classes, in order to get back a list of
entities/URI from which the graph visual browsing can start.

• Showing relationships, turning on/off, singularly or globally: once the first
URI and related URIs are shown several relationships may be present in the
graph, maybe hundreds or thousands. In any case, the users should be enabled to
turn on/off some of the relationship categories to make the graph more readable
and focused on the entities and relationships under analysis.

• Representing relationships (managing complexity): in the rendering of the
RDF graph, a large number of entities (URI) and the relationships among them
may be present. The high number of graphical elements can be reduced allowing
closing/opening, expanding/compressing relations, filtering some relationships
from the visualization and may be also graphically representing entities and
relationships by using coded styles.

• Discovering inbound/outbound relationships, URI and queries: in some tool,
the contextualized text of the query declined for a specific entity is accessible. It
can be very useful for training the users in using the SPARQL and for shortening
the data exploitation in external applications accessing to the SPARQL entry
point API.

• Undo actions performed, “back”: in the RDF visual graph manipulation, the
possibly of undoing the actions performed with a back buttons may be very
useful, together with the possibility of saving the reached status.

• Save and Load LOD graphs: a very valuable feature is the possibility of saving
the status of the graph with all its linked URIs, and the relationships exploded
(taking into account their on/off status). This graphical context should be the
starting point for further analysis and not a simple image snapshot.

• Share and collaborative LOD graphs: among the major tools detectable on the
web, only LOG.DISIT provide this collaborative feature on LOD RDF graphs.
LOG.DISIT allows to share the RDF graph as web data on the cloud, in read and
read/write modalities

• URI attributes (showing info or an URI): a number of attributes/values
(literal) may be associated with the URI. These data should be accessible
without involving graph representation.

• URL to resources: an URI may have among its attributes some URL to external
digital resources. These URL should be accessible for opening the digital
resources into the browser or for download.

• Representing entities: in complex LOD graph the fast identification of URI
type is very important. The URI can be represented by using specific icons on

Architecture and Knowledge Modelling for Smart City p. 203

the basis of their: (i) type (problems in the case of multiple types), (ii)
information and attributes, (iii) specific icon associated with the URI (e.g.,
image of the person for dc:author), (iv) specific case, for example to represent
the Blank nodes.

Thanks to this tool the Km4city based triplestore can be browse, starting from a resource
and exploring the entire graph, by following the various related resources.
By analyzing the working environment, in the upper left corner of the main screen, there
is the BACK button, which allows to go back to previous states of the graph (e.g. after a
focus). On the other hand however, all the main buttons are collected, that corresponds
to the user utility: starting from the top is possible to find the EMBED button, which
opens the dialog box in Figure 111 that allows to retrieve the code to integrate the LOG
in any site; the next button is the SAVE button, useful to save the Linked Open Graph
status and share it by providing a valid email address on which, in a short time, a mail
will be receive containing a link that could allow to access at the LOG and share it with
friends. The round button marked with a question mark, instead, allows to access to the
tools Help, while the button just below enables/disables switching to the full screen
mode. The button similar to the four rectangles, allows to re-center the whole graph and
the last three buttons, are the zoom controls, respectively, zoom in button, default zoom
button and zoom out button.
Moreover, clicking the mouse right button on a node, a navigation menu is displayed,
which allows to perform the following functions:

• Expand an entity node with its relations adding them to the graph;
• Focus on an entity, in this case the graph is cleared and only the focused node is

shown with its relations;
• Open, that is the play of the page or content associated with the node (e.g.

associated DataProperties to a specific class of Km4City ontology);
• Zoom/Pan the view;
• A special node is the “More” node that is presented when in a relation are

present many nodes (e.g., the content associated with a group).
• Save and share graphs and share with other colleagues, avoid duplicated

links, explore inbound and outbound relationships, navigating on OD and
LOD in a transparent manner.

• Work on preferred relationships.
• Search, that allows to search the preferred entities and URI into a set of

SPARQL databases;

Architecture and Knowledge Modelling for Smart City p. 204

Figure 109 - Info Tab for an entity

The following figure reports an example of a Search for preferred entities and URI into
a set of SPARQL databases with billions and billions of triples.

Figure 110 - Search preferred entities tab

LOG can also be embedded into a WEB pages. On this regard it is possible customize
the buttons and the actions allowed at users on the embedded version of the
LOG.disit.org tool instance, and on which segment of graph starting.

Architecture and Knowledge Modelling for Smart City p. 205

Figure 111 - Embed code for the LOG

to verify which the type of operation, users operate on LOG tools, a user’s interaction
analysis of the ECLAP [Bellini, Nesi, Serena, 2014] social graph and of the whole
portal, has been carried out. Its results shown that only the 5.8% of the unique users
interacted with the social graph, and the most requested operation are to Open a node
(43%, for example to access at a recommendation, to see the content of other users),
then to Expand a node (29%, mainly a media object 17%) and then to see
the More related content (18%), the Focus operation is at about 10% on the operations
requested since the social graph was activated (2013-01-29) until the mid of September
2013.
Concluding, the LOG can be very useful to understand the differences interactively
studying the RDF store from remote, to learn and to explore the possibility of reusing
and connecting them each other. In fact, the visual browsing of SPARQL entry point
can help to analyze the RDF store reticular structure, that is at the basis of the ontology
and the related instances of predicates contained. The LOG.disit tool, with its additional
features, with respect to the state of the art browsing tools such as LodLive
(http://lodlive.it/) and Gruff (http://franz.com/agraph/gruff/), can be a very useful tool
for: analyzing RDF stores and models, comparing and discovering connections and
relationships among RDF stores and models, discovering eventual problems in
accessible knowledge base for their future reuse and connection.

Architecture and Knowledge Modelling for Smart City p. 206

Figure 112 - A portion of the Road Graph views with LOG

Moreover, despite the first impression, the representation of an RDF reticular structure
and thus its access are not a simple neither superficial task.
The Linked Open Graph allows to display and browse the structure and relations among
the RDF entities, for this reason, within the project presented in this thesis, a tool like
the LOG, can be useful, for example, to (i) discover and understand the model and the
information associated to a given service in the city, (ii) discover connections and
similarities among different open data set of public administration, (iii) study the
integration of open data with geographic information.

Architecture and Knowledge Modelling for Smart City p. 207

Chapter 6

6. System Evaluation

The system evaluation process aims at assessing the efficacy and effectiveness of the
experiment in achieving the objective of offering services and tools for the efficient
ingestion and querying of SmartCity data, in order to allow an easy interconnection of
this large amount of information into an RDF store and its exploitation. The evaluation
is distinguished in nine parts:

• Qualitative Evaluation: initially problems encountered on datasets will be
examined, mainly related to their data quality.

• Quality Improvement metrics: this assessment is to verify the Quality
Improvement phase impact (Phase II), implemented within the architecture
presented in this dissertation, and in trying to measure how much benefit
actually entailed its implementation.

• Quality metrics: in this section will be evaluated some metrics that help to define
the quality of available datasets, before and after the Quality Improvement
phase.

• Reconciliation evaluation: as seen in Section 5.5, two approaches to data
reconciliation at geographical level, have been tested; in this section the results
of both approaches will be compared to determine if the two methods are
interchangeable.

• Triples loading assessment: this section is devoted to verify the number of
triples, properly read by the RDF management system, in order to identify any
problems on data or errors in the mapping process.

• Validation results: the validation process is a means by which it is possible to
check correctness of data and of the chosen ontological model; this section is
dedicated to verify the correct interpretation of data through the ontology
Km4City.

• Interconnection evaluation: one of the research project purposes, is to
semantically interconnect the ingested dataset; so, this section is dedicated to
verify the interconnections, that have been created between datasets, thanks to
the implemented architecture.

• Volume measure: as mentioned earlier, the processed volume of data and their
difference in size and speed, allows us to place the project in the Big Data field;

Architecture and Knowledge Modelling for Smart City p. 208

it is evident, therefore, that an analysis on triplestore size and its growth, have
playing an important part.

• Time response evaluation: the last part of the chapter, is devoted to presentation
of execution times measured for processes related to Ingestion and Mapping
phases (respectively Phase I and III).

6.1 Qualitative Evaluation

The most used tools in the field of qualitative data analysis, are observation and content
analysis. This evaluation section is dedicated to the content analysis of part of the
datasets involved in the research project, presented in this dissertation.
To design processes that realize the quality improvement of various attributes belonging
to services entity, it was necessary to carry out a detailed analysis of datasets to be
treated; below the main problems found inside these datasets, are listed:

• Presence of alphabetic/special characters in number field (such as / - blank
spaces);

• Numbers written in accordance with the exponential notation;

• Lack of 0 before the regional/provincial prefix in telephone/fax numbers, lack of
international prefix 0039 or +39;

• Presence of multiple telephone numbers (entire number or only suffixes
extension number);

• Partial/incomplete numbers;

• Address and house number stored in one field (comma separated or blank space
separated);

• Address and house number stored in one field with additional text;

• Generic text without any information;
• Address with double house number (terminating with a character, or comma

separated);

• Address double house number (without a comma);
• Information regarding Locality or Fraction stored in a wrong field;
• Lack of/incomplete suffix (it,com,...) after dot in website address or email

address;
• Lack of/incomplete suffix (it,com,...) and the dot preceding it;

• Lack of @ or double @ in email address;
• Illegal Characters (blank space included);
• Triple /, double http://, lack of domain, : after www, double dot after www in

website address;

Architecture and Knowledge Modelling for Smart City p. 209

• False positive email address or web site address (correct syntax but not existing);

• Presence of accented letters, @, apostrophe, / or : before domain in website
address.

6.2 Quality Improvement metrics

One of the objectives, defined during the design phase, is to perform the data ingestion
by limiting the amount of lost data; to this purpose, in fact, the Quality Improvement
phase has been also implemented. To verify the efficiency of this phase, that is, to
measure the quantity of data lost, due to errors that can afflict the input data (see Section
5.2), datasets relating to services in Tuscany was selected, because they are evidently
affected by a number of errors.
This dataset was then subjected to a double mapping in triple: the first made with data
previously submitted to the Quality Improvement process (Phase II in Figure 25), and
the second made instead on data as they have been received, without subjecting them to
any correction process, that is, directly at the end of Phase I (Figure 25).
This study had the objective of evaluating the number of errors that the system is able to
identify thanks to Quality Improvement process and the number of additional triples that
such corrections allow to generate.
To complete this first phase of system evaluation, a Kettle transformation was then
made, which takes data directly from the first HBase repository of the architecture, i.e.
the repository where data are inserted at the end of Phase I (see Figure 25), and applied
on them the mapping process, corresponding to Phase III.
This transformation then saves triples created in a different location than where the
architecture saves triples after Phase III, in order to keep well separated the
experiments. The two different N3 triples files created, are then compared to verify if
there are some differences in the total number of triples created.
Both methods were applied to services data set, consisting of 27 different Open Datasets
coming from the Open Data portal of the Tuscany region. Data collected through the
Quality Improvement phase, are collected in the following table.
As it is possible to see from Table 20, in which are counted all actions implemented by
the quality improvement processes on each datasets examined, the data set with the
largest number of empty cells, that is the dataset with the highest number of missing
data, is related to museums. Instead, the data set in which the highest number of
corrections were made, is the dataset related to sports facilities. The most complete data
set, that is, the one with the lowest percentage of missing data, is the georeferenced
accommodation dataset and, finally, the data set on which the step of Quality
Improvement acted a smaller number of times, that is the dataset containing the most
correct data, concerning accommodation.

Table 20 - Results of the Quality Improvement process

Architecture and Knowledge Modelling for Smart City p. 210

Architecture and Knowledge Modelling for Smart City p. 211

Furthermore, in order to make more understandable the numbers reported in the table, it
is necessary to make some observations:

• The number of address fields modified is high because the Quality Improvement
phase involves the separation of the house number from the name of the street,
in order to store these two values in two separate fields, to be able to carry out a
more simply geolocalization process at street number level.

• Website and email fields are the ones that most have no values; only a very low
services percentage presents this information.

• The modified telephone numbers are several, mainly due to the incorrect data
export format chosen by who has prepared data: in fact the digit 0 at the start of
prefix is not present in almost all the phone numbers; same thing happens to fax
numbers.

• The amount of modified cap by the Quality Improvement process, corresponds
to 100% because in no dataset was present such value, and so it was necessary to
include the correct value, to complete the address.

As previously mentioned, after the creation of the two triples sets, a comparison was
made, and in Table 21 the results obtained has been reported.

File
New
Triples

Old
Triples

Unique
Elements

%

Accoglienza 186.217 151.482 13.256 0,187
Agenzie entrate 3.954 3.120 306 0,211
Arte e cultura 41.621 21.979 3.212 0,472
Banche 21.211 17.540 1.768 0,173
Commercio 3.932 3.025 323 0,231
Corrieri 647 520 51 0,196
Elementari 4.022 3.160 335 0,214
Emergenze 8.752 6.889 688 0,213
enogastronomia 77.744 47.609 5.980 0,388
Farmacie 25.648 11.790 2.131 0,540
Formazione 858 700 70 0,184
Georeferenz 33.321 2.287 2.016 0,931
Materne 6.436 3.559 539 0,447
Medie 1.410 1.110 116 0,213
Mobilita' aerea 390 43 29 0,890
Mobilita' auto 2.422 1.979 196 0,183
Prefetture 5.656 4.534 449 0,198
Salute 13.759 10.802 1.127 0,215
Sport 15.252 13.807 1.184 0,095
Superiori 2.214 1.820 183 0,178
Tempo Libero 6.836 6.218 564 0,090
Universita' 532 344 43 0,353

Architecture and Knowledge Modelling for Smart City p. 212

Visite guidate 1.516 1.012 114 0,332
Welfare 7.325 805 593 0,890
Totale 471.675 316.134 35.273 0,330

Table 21- Triples counting before and after the Quality Improvement processing

% triple increase
Media 0,334
Errore standard 0,050
Mediana 0,214
Moda #N/D
Deviazione standard 0,247
Varianza campionaria 0,061
Curtosi 1,562
Asimmetria 1,589
Intervallo 0,841
Minimo 0,090
Massimo 0,931
Somma 8,025
Conteggio 24
Più grande(1) 0,931
Più piccolo(1) 0,090
Livello di confidenza(95,0%) 0,104

Table 22 - Descriptive statistics of triples increase (%)

Analyzing data in Table 21 it is possible to note that, thanks to the Quality Improvement
phase, the triples number increased by 155.541 units, which corresponds to a triples
increase of 33%, a high number considering that services corresponds to only 0.6% of
all triples contained inside the repository.
Furthermore, knowing that the unique elements of all the datasets are 35.273, it is
obtained that, on average, for each individual service, thanks to the Quality
Improvement phase, 4,40 triples were added; in fact, from an average of 8,962 triples
held for each service without QI, an average of 13,372 triples for each service has been
achieve, thanks to Phase II, which means that about 4,40 information has been
recovered from the initial dataset.

In conclusion, the impact of the Quality Improvement phase has an average of 33,4%, a
median of 21,4% and a variance of 0,061%

6.3 Quality metrics

Another evaluation that can be made on available datasets, involves the measurement of
Completeness, Accuracy and Consistency.
Following the method used in [Bellini, Nesi, 2013] for Meta Data assessment, will be
briefly presented and applied to the Open Data used during the project.

Architecture and Knowledge Modelling for Smart City p. 213

Commonly the Completeness is related to the empty field in a dataset and is generically
defined as the degree to which value are present in the attributes that require them
[Piprani and Ernst, 2008]. In [Ochoa and Duval, 2006], instead, the definition for the
Completeness is presented as the degree to which data contains all the information
needed to have an ideal representation of the described object. Following the idea of this
definition, it is therefore necessary to define, for each class of ontology, which is the
information that, ideally, every instance should possess. For example, considering the
km4c:Service class; in the following table there are fields that ideally we would like that
Service each instance own, to make information complete as much as possible.

Service DataProperty Status Weight
Name Mandatory 1
Street addess Mandatory 1
House number Recommended 0,75
Postal code Recommended 0,75
City/Locality Mandatory 1
Province Optional 0,25
Phone Recommended 0,75
Fax Optional 0,25
Email Optional 0,25
Website Optional 0,25

Table 23 - Ideal composition of a Km4city:Service instance

To each row in the table has been also associated a weight, which indicates how the
information is important for the considered class: 1 indicates that the attribute is
Mandatory (because information associated with this DataProperty cannot be retrieved
from other sources, if missing), 0.75 indicates instead that it is Recommended (it is
possible in some way compensate for the lack of this DataProperty) and finally 0.25
indicates that the attribute is Optional (only information little useful to users or that can
be easily retrieved through other sources). In summary, the Completeness dimension
became function of the weight assigned to the field, according to the importance that it
possesses in relation to the realized data interconnection process, and it can be
calculated as shown below:

���� = 	 �0,
�	�ℎ	�
��	
�	����1, ��ℎ��
�																					 �

������� = ∑ �������� ∗ �� !�"#$�%�
�&'

∑ �(!�"#$�%�
(&'

Moreover, as defined by Bruce and Hillman [Bruce and Hilmann, 2004] data should be
accurate in the sense of high quality editing, thus it is possible to consider accurate a
record when: i) there are not typographical errors in the free text fields; ii) the value in

Architecture and Knowledge Modelling for Smart City p. 214

the field are in the format expected. The Accuracy in practical, measures how the
analyzed field, contains what is expected to contain.

)��� = 	 �0,
�	*+	*,,-�*,�	
��-	�*�	��,��1, +�	���.��	��-+�																																 �

/,,���� = 1 − ∑)������� ∗ �� !�"#$�%�
�&'
∑ �(!�"#$123�%�
(&'

The Consistency dimension, instead, has to address the logical error; the results of a
missed consistency control can affect several fields. Examples are:

• Some services present in the City field, the address locality value;
• Inside the website field there are an email address.

Some of the Consistency cases are difficult to be detected automatically or required
notable computing efforts; for this fact, the calculation of this third quality measure, has
been limited to a smaller number of datasets.

ℎ��� = 	 �0,
�	*+	,�+�
��+,�	
��-	�*�	��,��1, +�	���.��	��-+�																																 �

��+���� = ∑ ℎ������� ∗ �� !�"#$�%�
�&'
∑ �(!�"#$123�%�
(&'

After defining the three metrics to be applied, the services dataset were assessed,
considering data in Table 23 as an ideal dataset composition (with the corresponding
weights).

Dataset Average Std Dev Variance Min Max
Accoglienza 0,927 0,111 0,012 0,685 1
Agenzie delle Entrate 0,850 0,276 0,076 0,284 1
Arte e Cultura 0,860 0,213 0,045 0,424 1
Visite Guidate 0,897 0,209 0,044 0,316 1
Commercio 0,792 0,397 0,157 0 1
Banche 0,790 0,396 0,157 0 1
Corrieri 0,814 0,356 0,127 0,020 1
Elementari 0,789 0,396 0,157 0 1
Emergenze 0,858 0,302 0,091 0,001 1
Enogastronomia 0,834 0,316 0,100 0,200 1
Formazione 0,797 0,399 0,159 0 1
Georeferenziati 0,958 0,066 0,004 0,829 1
Materne 0,786 0,395 0,156 0 1

Architecture and Knowledge Modelling for Smart City p. 215

Medie 0,795 0,398 0,158 0 1
Mobilita' Aerea 0,838 0,250 0,063 0,414 1
Mobilita' Auto 0,799 0,334 0,111 0,071 1
Prefetture 0,849 0,249 0,062 0,285 1
Sanita' 0,805 0,361 0,130 0,035 1
Farmacie 0,798 0,399 0,159 0 1
Universita' 0,798 0,399 0,159 0 1
Sport 0,892 0,230 0,053 0,269 1
Superiori 0,795 0,398 0,158 0 1
Tempo Libero 0,740 0,281 0,079 0,324 1
Wellfare 0,782 0,395 0,156 0 1
New Accommodation 0,929 0,112 0,013 0,668 1
New Vetrina in Toscana 0,788 0,314 0,098 0 1
New musei 0,573 0,474 0,225 0 1

Table 24 - Average, standard deviation, variance, minimum and maximum of the Completeness for
each dataset

As can be seen from Table 24, the dataset with the smallest Completeness is the dataset
Tempo Libero with a value of 0.740; the most complete file is instead on georeferenced
services, with a Completeness value equal to 0.958.
In general the fields Name, PostalCode, City and Province are those mostly present in
each analyzed dataset; on the contrary WebSite and Email are those most frequently
empty.
The two graphs below show the Completeness trend of each DataProperty, for both
previously mentioned datasets, which have shown the best results.

Tempo Libero Georeferenced Service

Media 0,740 Media 0,958

Errore standard 0,094 Errore standard 0,022

Mediana 0,871 Mediana 1,000

Moda 1 Moda 1

Deviazione standard 0,296 Deviazione standard 0,070

Varianza campionaria 0,088 Varianza campionaria 0,005

Curtosi -1,896 Curtosi 0,183

Asimmetria -0,419 Asimmetria -1,369

Intervallo 0,676 Intervallo 0,171

Minimo 0,324 Minimo 0,829

Massimo 1 Massimo 1

Somma 7,402 Somma 9,578

Conteggio 10 Conteggio 10

Livello di confidenza(95,0%) 0,212 Livello di confidenza(95,0%) 0,050

Table 25 - Descriptive statistics of Completeness distribution for data below to Tempo Libero and
Georeferenced Service datasets

Architecture and Knowledge Modelling for Smart City p. 216

Diagram 6 - Completeness distribution for dataProperties of the "Tempo Libero" dataset

Diagram 7 - Completeness distribution for dataProperties of the "Georeferenziati" dataset

Table 26 is instead dedicated to the Accuracy analysis.

Dataset Average Std Dev Variance Min Max
Accoglienza 0,167 0,252 0,064 0 0,750
Agenzie delle Entrate 0,162 0,290 0,084 0 0,750
Arte e Cultura 0,225 0,278 0,077 0 0,750
Visite Guidate 0,163 0,253 0,064 0 0,750

0

0,2

0,4

0,6

0,8

1

1,2
Tempo Libero

Tempo

Libero

0

0,2

0,4

0,6

0,8

1

1,2
Georeferenziati

Georefe

renziati

Architecture and Knowledge Modelling for Smart City p. 217

Commercio 0,183 0,290 0,084 0 0,750
Banche 0,191 0,286 0,082 0 0,750
Corrieri 0,175 0,297 0,088 0 0,750
Elementari 0,187 0,291 0,084 0 0,750
Emergenze 0,180 0,288 0,083 0 0,750
Enogastronomia 0,185 0,289 0,084 0 0,750
Formazione 0,175 0,297 0,088 0 0,750
Georeferenziati 0,183 0,281 0,079 0 0,750
Materne 0,192 0,288 0,083 0 0,750
Medie 0,178 0,295 0,087 0 0,750
Mobilita' Aerea 0,187 0,291 0,084 0 0,750
Mobilita' Auto 0,196 0,273 0,075 0 0,750
Prefetture 0,164 0,271 0,073 0 0,750
Sanita' 0,177 0,289 0,084 0 0,750
Farmacie 0,176 0,293 0,086 0 0,750
Universita' 0,175 0,297 0,088 0 0,750
Sport 0,247 0,268 0,072 0 0,750
Superiori 0,178 0,294 0,086 0 0,750
Tempo Libero 0,164 0,227 0,051 0 0,750
Wellfare 0,189 0,286 0,082 0 0,750
New Accommodation 0,094 0,169 0,029 0 0,560
New Vetrina in Toscana 0,109 0,174 0,030 0 0,607
New musei 0,250 0,387 0,150 0 0,999

Table 26 - Average, standard deviation, variance, minimum and maximum of the Accuracy for
each dataset

In relation to Accuracy, dataset that has a lower value of accuracy, that is, presents a
greater number of errors, is that related to the museums with an Accuracy equal to
0.250, while the dataset with fewer errors is the one with the new data relating to
Accomodation, with an average accuracy of 0.094. The most accurate dataProperty are
Name, City and Province, while, on the contrary, the field Phone is the less accurate.

New Musei New Accommodation

Media 0,250 Media 0,094

Errore standard 0,129 Errore standard 0,056

Mediana 0 Mediana 0,002

Moda 0 Moda 0

Deviazione standard 0,408 Deviazione standard 0,178

Varianza campionaria 0,166 Varianza campionaria 0,032

Curtosi -0,659 Curtosi 6,068

Asimmetria 1,148 Asimmetria 2,419

Intervallo 0,999 Intervallo 0,560

Minimo 0 Minimo 0

Massimo 0,999 Massimo 0,560

Architecture and Knowledge Modelling for Smart City p. 218

Somma 2,498 Somma 0,938

Conteggio 10 Conteggio 10

Livello di confidenza(95,0%) 0,292 Livello di confidenza(95,0%) 0,127

Table 27 - Descriptive statistics of Accuracy distribution for data below to New Musei and New
Accommodation datasets

The following graphs shows the Accuracy distributions for each DataProperty of the
two above mentioned datasets.

Diagram 8 - Accuracy for each dataProperty of the "Accommodation" dataset

0

0,1

0,2

0,3

0,4

0,5

0,6
Accommodation

New

Accommo

dation

Architecture and Knowledge Modelling for Smart City p. 219

Diagram 9 - Accuracy for each dataProperty of the "Musei" dataset

The following table, show the Consistency value obtained, only for the four dataset
chosen, calculated both before and after the Quality Improvement phase.

Dataset Average Std dev Variance Min Max
Corrieri 0,200 0,350 0,123 0 1
Formazione 0,203 0,348 0,121 0 1
Università 0,200 0,350 0,123 0 1
Mobilità aerea 0,208 0,346 0,119 0 1
 After QI Phase
Corrieri 0 0 0 0 0
Formazione 0,010 0,022 0 0 0,071
Università 0 0 0 0 0
Mobilità aerea 0,058 0,148 0,022 0 0,500

Table 28 - Consistency values before and after QI

As is possible to see from Table 28, the Quality Improvement Phase help to reduce the
Consistency value in most cases. In the following, descriptive statistics for the datasets
Formazione and Mobilità aerea, are shown.

The following diagram show the consistency values calculated for each attribute, both
before and after the application of the QI, for datasets Formazione and Mobilità aerea.

0

0,2

0,4

0,6

0,8

1

1,2
Musei

New

musei

Architecture and Knowledge Modelling for Smart City p. 220

Diagram 10 - Consistency distribution for dataProperties of "Formazione", before and after QI

Diagram 11 - Consistency distribution for dataProperties of "Mobilità Aerea", before and after QI

6.4 Reconciliation evaluation

In this Section, a comparison between the two reconciliation methods presented in
Section 5.5, is provided, to see which allows to obtain a greater number of better
reconciliated services, both at street level and at street number level.
In fact, after being loading and indexing into the RDF store, a dataset may be connected
with the other, if their entities refer to the same triples; the term reconciliation refers to

0.000

0.000

0.000

0.001

0.001

0.001

0.001

Formazione

Formazione + QI

0

0,2

0,4

0,6

0,8

1

1,2

Mobilità aerea

Mobilità aerea + QI

Architecture and Knowledge Modelling for Smart City p. 221

the process of verification and link RDF data that represent the same object on two
different dataset, but which are not connected, due to some inconsistencies in their
representation.
For the work of this thesis, we particularly focused on interconnecting services to the
Street Guide and Rail Network macroclass of the Km4City Ontology.

Table 29 shows the list of Open Data that were ingested, until the writing time of this
thesis, but new ingestion processes dedicated to other Open Data sets, are under
development (for more details see Section 7.1).

Name Format Name Format
Arte e cultura Csv Strutture ricettive csv
Banche Csv Strutture ricettive georeferenziate csv
Corrieri espresso Csv tempo libero csv
Emergenze Csv uffici vati csv
Enogastronomia Csv ubiversita' e conservatori csv
Farmacie Csv visite guidate csv
Imprese del Commercio Csv welfare csv
Infrastrutture aeree Csv Accessi sportello suolo pubblico e taxi csv
Scuale dell'infanzia Csv Delibere csv
Scuola elementare Csv Arrivi turistici csv
Scuola media Csv Ataf csv
Scuola superiore Csv Linee Tram kmz
Corsi di Lingue e di formazione Csv Sinistri per via csv
Sport Csv Veicoli circolanti csv
Previsioni meteo Csv Vetrina toscana - botteghe csv
Salute e sanita' Csv Strutture ricettive nuovo dataset csv
Servizi epr il trasporto su strada Csv musei xml
Servizi vari Csv POI dell'osservatorio dei trasporti csv
Luoghi Freschi a Firenze Kmz gate ZTL kmz
Punti vendita biglietti ATAF Kmz

Table 29 - Open Data already ingested

In order to compare the two reconciliation methods applied, namely SPARQL
reconciliation and Silk reconciliation, a count of reconciliation triples has been first
made, created thanks to the two methods applied.
In Table 30 the results obtained in the different SPARQL reconciliation steps, are
reported.
For the validation, a total amount of services/points of interest inserted into the
repository has been of 30.182 instances. Among these, 13.185 have been reconciled at
street number-level, while the number of elements reconciled at street-level has been
21.207.

No. Step Method No. hasAccess
Triple created

No. isIn Triple created

Architecture and Knowledge Modelling for Smart City p. 222

1st Reconciliation Step Exact Search 5.639 8.349
2nd Reconciliation Step Exact Search + Support Table 1.743 6.996
3rd Reconciliation Step Last Word Search 5.206 (some duplicates) 5.435
4th Reconciliation Step Google GeoCoding API 597 527
 Total 13.185 (no duplicates) 21.207

Table 30 - Results of all SPARQL reconciliation steps applied

In the collected data sets, an average of about the 15% are automatically connected
entities since they refer to perfectly consistent locations (i.e., perfect match in terms of
location, street and civic number) in the MIIC with respect to the description reported in
the service data set. In the total of location entities ingested, 5,75% of locations are
wrong and not reconcilable due to (i) the presence of wrong values for streets and/or
locations, (ii) the lack of a consistent reference location into the MIIC geographical
model.

Relating instead to the automatic reconciliation with Silk, as a result of the tests, to
verify the best combination of variables for each distance rule that it was decided to test,
in order to compare the results of the two reconciliation approaches analyzed, a work of
reverse engineering has been done, to assess how many triples represent the result of a
manual verification and delete them.
An additional test requires that rules, taking into account all the knowledge relating to
possible errors; ad-hoc rules have been created to remove accents, dots, unnecessary
words (i.e. location), and any other type of error detected, thanks to manual checking.
For this special rule, the letter k (representing the word knowledge) has been added in
the format name.

Diagram 12 - How Precision, Recall, F1 change when the comparison function changing; rules

[cl50_l00_50, ctd03_l00_20, cth20_l00_50, k_cl20_l00_50]

0

0,2

0,4

0,6

0,8

1

1,2

Levensthein Dice Jaccard Knowledge

base

RDFStore

Precision

Recall

F1

Architecture and Knowledge Modelling for Smart City p. 223

Method Precision Recall F1
SPARQL –based reconciliation 1,00 0,69 0,820
SPARQL -based reconciliation + manual action 0,985 0,722 0,833
Link discovering – Leveisthein 0,927 0,508 0,656
Link discovering – Dice 0,968 0,674 0,794
Link discovering – Jaccard 1,000 0,472 0,642
Link discovering - Knowledge base + Leveisthein 0,925 0,714 0,806

Table 31 - Reconciliation comparison results

The obtained results are reported in Table 31. The table reports the results assessed in
terms of Precision, Recall and F1 score [Powers, 2011], in identifying the correct
entities to be reconciliated.
The first two lines refer to the SPARQL approach, with and without manual intervention
as described in Section 5.5.1. The manual intervention has strongly improved the
Recall. On the other hand, the SPARQL approach is very time intensive for the
programmers since a set of specific queries have to be produced for each data set, to be
reconciled.
The second part of Table 31 reported the results related to different implementations of
link discovering SILK based solutions, by using different string distances (i.e.,
Leveisthein, Dice, and Jaccard), with the above mentioned (see Chapter 5.5.2) values
for their parameters. Other distance models have been also used without obtaining
significant results. The last link discovering solution has been coded by using an
additional knowledge about all the specific strings coding problems as previously
reported.

These tests were repeated on data to which the Quality Improvement process has been
applied: tests were carried out on a sample composed of two datasets, chosen among the
27 services datasets provided by the Tuscany region. Datasets involved are the same
previously used in other tests, in order to verify, if QI affects rules to be applied for
reconciliation through links discovering approach; in fact it is necessary re-determine
the optimum combination of values for the thresholds associated with different
distances measure.

Method Precision Recall F1
Link discovering – Dice 0,968 0,674 0,794
Link discovering – Jaccard 1,000 0,472 0,642
Link discovering - Knowledge base + Leveisthein 0,925 0,714 0,806
Link discovering + QI – Dice 0,945 0,779 0,854
Link discovering + QI – Jaccard 1,000 0,588 0,740
Link discovering - Knowledge base + QI + Leveisthein 0,892 0,839 0,865

Table 32 - Precision, Recall and F1 comparison with and without QI

Architecture and Knowledge Modelling for Smart City p. 224

Table 32 shows the values obtained in the new test just described, with the data
submitted to Quality Improvement, compared to the previous tests without QI (first
three rows of the table) and with respective distance measurement of Dice, Jaccard and
Levensthein.
These values shown that, for each distance measure applied to the dataset samples,
thanks to QI, an improvement in Recall and F1 is obtained, which means that a higher
number of reconcilable services are reconciled, compared to a situation which uses a
dataset that has not been pre-processed by QI phase. It is therefore clear that the Quality
Improvement phase, assumes a greater importance because positively affects the semi-
automatic reconciliation performed thanks to the used link discovering techniques.

Looking closely at the results obtained in these tests, it is possible to state that an
automated approach to reconciliation, done after a thorough analysis to see which is the
best distance function and the respective applicable threshold values, can replace the
SPARQL method, which instead requires a greater knowledge of the input data, in order
to determine the ad-hoc queries that can be process to obtain a reconciliation triple.

6.5 Triples loading assessment

As we have seen in Section 5.6, a way to check if the process consisting of Phase I, II
and III, i.e. the process from data ingestion to triples mapping, is successful, concerns to
verify if all triples provided to OWLIM-SE, are properly loaded on the triplestore. This
type of verification, also allows to identify use cases not considered in the design phase
of the individual process steps.

In Table 33, it is possible to observe an extract of the processManager table following
the execution of the java validation and verification tool, also designed to perform the
triples counting in each file resulting from the mapping phase (Phase III). The analysis
showed that a percentage of 99,99% of triples are correctly loading.

Process Triples TriplesValidation Difference
Accessi_sportello_suolo_pubblico_e_taxi_csv 246 246 0
Arrivi_turistici_csv 112 112 0
Arte_e_cultura_csv 44.785 44.785 0
Ataf_csv 275 275 0
Banche_csv 22.806 22.806 0
Corrieri_espresso_csv 676 676 0
Corsi_di_lingue_e_Scuole_di_formazione_csv 909 909 0
Delibere_csv 1.026 1.026 0
Emergenze_csv 9.416 9.416 0
Enogastronomia_csv 83.613 83.613 0
Farmacie_csv 27.679 27.679 0
Grafo_stradale_Arezzo 4.911.197 4.911.197 0
Grafo_stradale_Firenze 10.919.228 10.919.228 0

Architecture and Knowledge Modelling for Smart City p. 225

Grafo_stradale_Grosseto 5.871.753 5.871.753 0
Grafo_stradale_Livorno 7.273.891 7.273.891 0
Grafo_stradale_Lucca 9.786.001 9.786.001 0
Grafo_stradale_Massa_e_Carrara 7.175.667 7.175.667 0
Grafo_stradale_Pisa 11.484.307 11.484.307 0
Grafo_stradale_Pistoia 10.648.352 10.648.352 0
Grafo_stradale_Prato 10.784.844 10.784.844 0
Grafo_stradale_Siena 14.363.127 14.363.127 0
Imprese_del_commercio_csv 4.181 4.181 0
Infrastrutture_aeree_csv 403 403 0
Musei_csv 8.930 8.930 0
Salute_e_sanita_csv 14.860 14.860 0
Scuola_dell_infanzia_csv 6.952 6.952 0
Scuola_elementare_csv 4.332 4.332 0
Scuola_media_csv 1.506 1.506 0
Scuola_superiore_csv 2.374 2.374 0
Servizi_per_il_trasporto_su_strada_csv 2.594 2.594 0
Servizi_vari_csv 4.235 4.235 0
Sinistri_per_via_csv 55.027 55.027 0
Sport_in_Toscana_csv 16.420 16.420 0
Strutture_ricettive_con_georeferenziazione_csv 31.288 31.288 0
Strutture_ricettive2_csv 238.913 238.919 -6
Tempo_libero_csv 7.380 7.380 0
Uffici_vari_csv 6.086 6.086 0
Universita_e_conservatori_csv 559 559 0
Veicoli_circolanti_csv 280 280 0
Vetrina_Toscana_ristoranti_e_botteghe_csv 33.878 33.878 0
Visite_guidate_csv 1.614 1.614 0
Welfare_csv 7.897 7.897 0
Grafo Ferroviario 138.017 138.017 0

Table 33 - Triples counting (Validation Phase)

In fact, only triples, belonging to the second dataset of accommodation facilities in all of
Tuscany (Strutture_ricettive2_csv), was not loaded. Following a manual analysis of all
triples, has been possible to identify the reason for failed loading, due in all six cases, to
triple created by Karma with undefined value.
Below are the 6 identified triples, are reported; this fact occurred because Karma does
not create triple if the cell corresponding to data inside the database is NULL, otherwise,
if the cell is only empty, Karma creates a triple using the undefined value.

<http://www.disit.org/km4city/resource/4e0040ce7e1e 45481d03652e19d49771>
<http://www.w3.org/2003/01/geo/wgs84_pos#lat>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .
<http://www.disit.org/km4city/resource/4e0040ce7e1e 45481d03652e19d49771>
<http://www.w3.org/2003/01/geo/wgs84_pos#long>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .

Architecture and Knowledge Modelling for Smart City p. 226

<http://www.disit.org/km4city/resource/8913e143e1a0 f7acfb46937c59148eaf>
<http://www.w3.org/2003/01/geo/wgs84_pos#lat>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .
<http://www.disit.org/km4city/resource/8913e143e1a0 f7acfb46937c59148eaf>
<http://www.w3.org/2003/01/geo/wgs84_pos#long>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .

<http://www.disit.org/km4city/resource/fd6dc8e2ff1a f3f7279ea7617f2bd38d>
<http://www.w3.org/2003/01/geo/wgs84_pos#long>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .
<http://www.disit.org/km4city/resource/fd6dc8e2ff1a f3f7279ea7617f2bd38d>
<http://www.w3.org/2003/01/geo/wgs84_pos#lat>
"undefined"^^<http://www.w3.org/2001/XMLSchema#floa t> .

Thanks to this discovery has been possible to further improve the ingestion phase, by
inserting an additional check on missing values, to ensure that the corresponding value
entered on HBase is always NULL and not a blank cell.

6.6 Validation results

As seen in Section 5.6, a validation procedure is required to check if data, once inserted
inside the triplestore, after having been molded in accordance with the created R2RML
models, are interpreted as wanted.
With regard to the second part of the data validation process presented in Section 5.6, in
the following table, results achieved after the instances number count of each class,
chosen to be validated, are presented, limited to a certain context. As is possible to
verify in Table 34, counting of loaded instances corresponds to the number of instances
resulting from a triplestore interrogation, for all datasets that do not belong to the
Tuscany region Street Graph.

id File tipo1 count1 tipo1count
1 Luoghi_freschi_a_Firenze_kmz.n3 km4c:FreshPlace 25 25
2 Grafo_stradale_Arezzo_cippo.n3 km4c:Milestone 1.248 1.248
3 Grafo_stradale_Arezzo_com.n3 km4c:Municipality 39 39
4 Grafo_stradale_Arezzo_eleroad.n3 km4c:RoadElement 40.643 40.643
5 Grafo_stradale_Arezzo_entry.n3 km4c:Entry 174.597 174.597
6 Grafo_stradale_Arezzo_estesa.n3 km4c:AdministrativeRoad 9.887 9.887
7 Grafo_stradale_Arezzo_giunz.n3 km4c:Node 32.741 32.741
8 Grafo_stradale_Arezzo_manov.n3 km4c:Maneuver 1.445 1.445
9 Grafo_stradale_Arezzo_prov.n3 km4c:Province 1 1
10 Grafo_stradale_Arezzo_reg_acc.n3 km4c:EntryRule 21 21
11 Grafo_stradale_Arezzo_strnum.n3 km4c:StreetNumber 139.898 139.898
12 Grafo_stradale_Arezzo_topon.n3 km4c:Road 10.067 9.956
13 Grafo_stradale_Firenze_cippo.n3 km4c:Milestone 1.287 1.287
14 Grafo_stradale_Firenze_com.n3 km4c:Municipality 44 44
15 Grafo_stradale_Firenze_eleroad.n3 km4c:RoadElement 100.568 101.041
16 Grafo_stradale_Firenze_entry.n3 km4c:Entry 352.827 352.827
17 Grafo_stradale_Firenze_estesa.n3 km4c:AdministrativeRoad 27.584 17.889
18 Grafo_stradale_Firenze_giunz.n3 km4c:Node 81.022 48.759
19 Grafo_stradale_Firenze_manov.n3 km4c:Maneuver 4.611 4.611
20 Grafo_stradale_Firenze_prov.n3 km4c:Province 2 2
21 Grafo_stradale_Firenze_reg_acc.n3 km4c:EntryRule 16.049 17.667

Architecture and Knowledge Modelling for Smart City p. 227

22 Grafo_stradale_Firenze_strnum.n3 km4c:StreetNumber 347.340 347.340
23 Grafo_stradale_Firenze_topon.n3 km4c:Road 27.992 18.889
24 Grafo_stradale_Grosseto_cippo.n3 km4c:Milestone 1.702 1.702
25 Grafo_stradale_Grosseto_com.n3 km4c:Municipality 28 28
26 Grafo_stradale_Grosseto_eleroad.n3 km4c:RoadElement 124.613 125.086
27 Grafo_stradale_Grosseto_entry.n3 km4c:Entry 106.249 106.249
28 Grafo_stradale_Grosseto_estesa.n3 km4c:AdministrativeRoad 36.418 8.834
29 Grafo_stradale_Grosseto_giunz.n3 km4c:Node 100.193 19.171
30 Grafo_stradale_Grosseto_manov.n3 km4c:Maneuver 956 956
31 Grafo_stradale_Grosseto_prov.n3 km4c:Province 3 3
32 Grafo_stradale_Grosseto_reg_acc.n3 km4c:EntryRule 0 0
33 Grafo_stradale_Grosseto_strnum.n3 km4c:StreetNumber 106.351 106.351
34 Grafo_stradale_Grosseto_topon.n3 km4c:Road 37.015 9.217
35 Grafo_stradale_Livorno_cippo.n3 km4c:Milestone 260 260
36 Grafo_stradale_Livorno_com.n3 km4c:Municipality 20 20
37 Grafo_stradale_Livorno_eleroad.n3 km4c:RoadElement 151.406 151.925
38 Grafo_stradale_Livorno_entry.n3 km4c:Entry 141.575 141.575
39 Grafo_stradale_Livorno_estesa.n3 km4c:AdministrativeRoad 43.561 7.167
40 Grafo_stradale_Livorno_giunz.n3 km4c:Node 121.846 21.708
41 Grafo_stradale_Livorno_manov.n3 km4c:Maneuver 2.453 2.453
42 Grafo_stradale_Livorno_prov.n3 km4c:Province 4 4
43 Grafo_stradale_Livorno_reg_acc.n3 km4c:EntryRule 0 0
44 Grafo_stradale_Livorno_strnum.n3 km4c:StreetNumber 134.456 134.456
45 Grafo_stradale_Livorno_topon.n3 km4c:Road 44.182 7.458
46 Grafo_stradale_Lucca_cippo.n3 km4c:Milestone 253 253
47 Grafo_stradale_Lucca_com.n3 km4c:Municipality 35 35
48 Grafo_stradale_Lucca_eleroad.n3 km4c:RoadElement 198.517 199.207
49 Grafo_stradale_Lucca_entry.n3 km4c:Entry 190.461 190.461
50 Grafo_stradale_Lucca_estesa.n3 km4c:AdministrativeRoad 55.572 12.110
51 Grafo_stradale_Lucca_giunz.n3 km4c:Node 160.940 39.261
52 Grafo_stradale_Lucca_manov.n3 km4c:Maneuver 1.628 1.628
53 Grafo_stradale_Lucca_prov.n3 km4c:Province 5 5
54 Grafo_stradale_Lucca_reg_acc.n3 km4c:EntryRule 2 2
55 Grafo_stradale_Lucca_strnum.n3 km4c:StreetNumber 188.890 188.890
56 Grafo_stradale_Lucca_topon.n3 km4c:Road 56.317 12.503
57 Grafo_stradale_Massa_e_Carrara_cippo.n3 km4c:Milestone 589 589
58 Grafo_stradale_Massa_e_Carrara_com.n3 km4c:Municipality 17 17
59 Grafo_stradale_Massa_e_Carrara_eleroad.n3 km4c:RoadElement 216.318 217.150
60 Grafo_stradale_Massa_e_Carrara_entry.n3 km4c:Entry 54.381 54.381
61 Grafo_stradale_Massa_e_Carrara_estesa.n3 km4c:AdministrativeRoad 62.294 6.803
62 Grafo_stradale_Massa_e_Carrara_giunz.n3 km4c:Node 175.932 15.162
63 Grafo_stradale_Massa_e_Carrara_manov.n3 km4c:Maneuver 959 959
64 Grafo_stradale_Massa_e_Carrara_prov.n3 km4c:Province 6 6
65 Grafo_stradale_Massa_e_Carrara_reg_acc.n3 km4c:EntryRule 0 0
66 Grafo_stradale_Massa_e_Carrara_strnum.n3 km4c:StreetNumber 54.713 54.713
67 Grafo_stradale_Massa_e_Carrara_topon.n3 km4c:Road 63.068 6.890
68 Grafo_stradale_Pisa_cippo.n3 km4c:Milestone 874 874
69 Grafo_stradale_Pisa_com.n3 km4c:Municipality 39 39
70 Grafo_stradale_Pisa_eleroad.n3 km4c:RoadElement 262.845 264.694
71 Grafo_stradale_Pisa_entry.n3 km4c:Entry 184.428 184.428
72 Grafo_stradale_Pisa_estesa.n3 km4c:AdministrativeRoad 77.666 15.873
73 Grafo_stradale_Pisa_giunz.n3 km4c:Node 213.590 38.821
74 Grafo_stradale_Pisa_manov.n3 km4c:Maneuver 1.734 1.734
75 Grafo_stradale_Pisa_prov.n3 km4c:Province 7 7
76 Grafo_stradale_Pisa_reg_acc.n3 km4c:EntryRule 15 17
77 Grafo_stradale_Pisa_strnum.n3 km4c:StreetNumber 184.319 184.319
78 Grafo_stradale_Pisa_topon.n3 km4c:Road 78.563 16.378
79 Grafo_stradale_Pistoia_cippo.n3 km4c:Milestone 216 216
80 Grafo_stradale_Pistoia_com.n3 km4c:Municipality 22 22
81 Grafo_stradale_Pistoia_eleroad.n3 km4c:RoadElement 291.386 293.828

Architecture and Knowledge Modelling for Smart City p. 228

82 Grafo_stradale_Pistoia_entry.n3 km4c:Entry 121.473 121.473
83 Grafo_stradale_Pistoia_estesa.n3 km4c:AdministrativeRoad 83.520 6.096
84 Grafo_stradale_Pistoia_giunz.n3 km4c:Node 236.929 23.969
85 Grafo_stradale_Pistoia_manov.n3 km4c:Maneuver 936 936
86 Grafo_stradale_Pistoia_prov.n3 km4c:Province 8 8
87 Grafo_stradale_Pistoia_reg_acc.n3 km4c:EntryRule 0 0
88 Grafo_stradale_Pistoia_strnum.n3 km4c:StreetNumber 120.200 120.200
89 Grafo_stradale_Pistoia_topon.n3 km4c:Road 84.449 6.377
90 Grafo_stradale_Prato_cippo.n3 km4c:Milestone 46 46
91 Grafo_stradale_Prato_com.n3 km4c:Municipality 7 7
92 Grafo_stradale_Prato_eleroad.n3 km4c:RoadElement 304.689 307.815
93 Grafo_stradale_Prato_entry.n3 km4c:Entry 113.483 113.483
94 Grafo_stradale_Prato_estesa.n3 km4c:AdministrativeRoad 87.583 4.387
95 Grafo_stradale_Prato_giunz.n3 km4c:Node 247.391 11.193
96 Grafo_stradale_Prato_manov.n3 km4c:Maneuver 793 793
97 Grafo_stradale_Prato_prov.n3 km4c:Province 9 9
98 Grafo_stradale_Prato_reg_acc.n3 km4c:EntryRule 26 26
99 Grafo_stradale_Prato_strnum.n3 km4c:StreetNumber 113.728 113.728
100 Grafo_stradale_Prato_topon.n3 km4c:Road 88.443 4.466
101 Grafo_stradale_Siena_cippo.n3 km4c:Milestone 1.398 1.398
102 Grafo_stradale_Siena_com.n3 km4c:Municipality 36 36
103 Grafo_stradale_Siena_eleroad.n3 km4c:RoadElement 389.711 393.887
104 Grafo_stradale_Siena_entry.n3 km4c:Entry 125.611 125.611
105 Grafo_stradale_Siena_estesa.n3 km4c:AdministrativeRoad 132.979 46.019
106 Grafo_stradale_Siena_giunz.n3 km4c:Node 318.160 71.988
107 Grafo_stradale_Siena_manov.n3 km4c:Maneuver 1.659 1.659
108 Grafo_stradale_Siena_prov.n3 km4c:Province 10 10
109 Grafo_stradale_Siena_reg_acc.n3 km4c:EntryRule 21 21
110 Grafo_stradale_Siena_strnum.n3 km4c:StreetNumber 118.312 118.312
111 Grafo_stradale_Siena_topon.n3 km4c:Road 132.921 46.833
112 Arte_e_cultura_csv.n3 km4c:Service 3.212 3.212
113 Banche_csv.n3 km4c:Service 1.768 1.768
114 Corrieri_espresso_csv.n3 km4c:Service 51 51
115 Corsi_di_lingue_e_Scuole_di_formazione_csv.n3 km4c:Service 70 70
116 Emergenze_csv.n3 km4c:Service 688 688
117 Enogastronomia_csv.n3 km4c:Service 5.980 5.980
118 Farmacie_csv.n3 km4c:Service 2.131 2.131
119 Imprese_del_commercio_csv.n3 km4c:Service 323 323
120 Infrastrutture_aeree_csv.n3 km4c:Service 29 29
121 Musei_csv.n3 km4c:Service 715 715
122 Salute_e_sanita_csv.n3 km4c:Service 1.127 1.127
123 Scuola_dell_infanzia_csv.n3 km4c:Service 539 539
124 Scuola_elementare_csv.n3 km4c:Service 335 335
125 Scuola_media_csv.n3 km4c:Service 116 116
126 Scuola_superiore_csv.n3 km4c:Service 183 183
127 Servizi_per_il_trasporto_su_strada_csv.n3 km4c:Service 196 196
128 Servizi_vari_csv.n3 km4c:Service 306 306
129 Sport_in_Toscana_csv.n3 km4c:Service 1.184 1.184
130 Strutture_ricettive2_csv.n3 km4c:Service 15.143 15.143
131 Strutture_ricettive_con_georeferenziazione_csv.n3 km4c:Service 2.016 2.016
132 Tempo_libero_csv.n3 km4c:Service 564 564
133 Uffici_vari_csv.n3 km4c:Service 449 449
134 Universita_e_conservatori_csv.n3 km4c:Service 43 43
135 Vetrina_Toscana_ristoranti_e_botteghe_csv.n3 km4c:Service 2.260 2.260
136 Visite_guidate_csv.n3 km4c:Service 114 114
137 Welfare_csv.n3 km4c:Service 593 593
138 Accessi_sportello_suolo_pubblico_e_taxi_csv_stat.n3 km4c:StatisticalData 36 36
140 Arrivi_turistici_csv_stat.n3 km4c:StatisticalData 16 16
141 Ataf_csv_stat.n3 km4c:StatisticalData 40 40
142 Delibere_csv_delibere.n3 km4c:Resolution 7.901 7.901

Architecture and Knowledge Modelling for Smart City p. 229

143 Sinistri_per_via_csv_sinistri.n3 km4c:StatisticalData 7.861 7.861
144 Veicoli_circolanti_csv_stat.n3 km4c:StatisticalData 40 40

Table 34 - Counting of loaded instances (Validation Phase)

Concerning to the Street Graph, it is instead necessary to distinguish three cases:

• The counting of loaded instances corresponds to the number of instances
resulting from a triplestore interrogation;

• The counting of loaded instances is lower than the number of instances resulting
from a triplestore interrogation;

• The counting of loaded instances is greater than to the number of instances
resulting from a triplestore interrogation.

An in-depth data analysis was then carried out, in order to understand the reasons for the
differences found in the two counts.
As is possible to see from Table 34, almost all datasets related to Node, Road and
AdministrativeRoad, have a higher count within the triplestore; to explain why this
happens, an example will be used. Consider the Province of Florence and the ranks of
its Node. Within the Node file there are 48.759 different elements belonging to the
Province of Florence, which are correctly loaded into the repository, with context
<http://www.disit.org/km4city/GrafoStradale/Grafo_Stradale_Firenze>. It is easy to
understand that there are RoadElement shared by more than one province, i.e. they have
a starting node and ending node belonging to two different provinces. Then, within the
file relating to RoadElement, there are triples relative to nodes of other provinces, to
which, however, being present in a file related to the province of Florence, OWLIM
also associate the context of the Province of Florence. So, counting Node instances in
triplestore related context
<http://www.disit.org/km4city/GrafoStradale/Grafo_Stradale_Firenze>, in reality, a
greater number of instances will be counted, compared to those belonging to the
province of Florence.

As regards the case of a lower count inside the triplestore, it is possible to observe from
Table 34 that this case is limited to RoadElement and EntryRule instances (this second
option affects only the province of Pisa). Thanks to a further data analysis, it was
possible to verify that RoadElement information are slightly lower number within the
repository, compared to the loaded number due to an error present in triples. In fact, the
missing RoadElement are inferred as instances of the EntryRule class of the KM4City
Ontology, due to an incorrect R2RML model that generate an ObjectProperty triple with
swapped domain and range. Checking on missing EntryRule, instead, has identified a
problem in data source, which was promptly communicated to the data supplier.

However, thanks to the validation phase has been possible to identify and correct the
problem and regenerate a new triplestore devoid of these detected inconsistencies.

Architecture and Knowledge Modelling for Smart City p. 230

6.7 Interconnection evaluation

In Section 5.6 has been also taken into analysis, the verification of interconnections that
could be created between data, belonging to different datasets. In fact, to check whether
the data loaded into triplestore behave as expected, that is, if the applied modeling
allows to interconnect the data as initially planned, some ad-hoc SPARQL queries were
performed.
To better clarify the used methodology, some interest areas in the ontology were chosen
as sample, for design the appropriate queries to be executed, in order to verify which
interconnections has been correctly created.
In Table 35, the results obtained from the following query, are shown:

SELECT distinct ?ser ?serAddress ?elat ?elong ?sTyp e ?sName ?email
?note
WHERE {
 ?ser <http://schema.org/name> ?name .

?ser <http://schema.org/streetAddress> ?serAddress .
?ser km4c:has Access ?entry .
?entry geo:lat ?elat .
?entry geo:long ?elong .
?entry omgeo:nearby (43.7754868 11.2480146 “0.3mm”) .
OPTIONAL {?ser skos:note ?note} .
OPTIONAL {?ser <http://schema.org/email> ?email} .

} LIMIT 200

Ser
SerAddre
ss Elat Elong SName Email Note

<http://www.disit.org/km4cit
y/resource/0f9f2f012684bad7
36e5a84676843753>

"VIA
PANZANI
"^^xsd:stri
ng

"43.773981
688334459"
^^xsd:float

"11.251067
621724776"
^^xsd:float

"Giglio
Rosso"^^xsd:stri
ng

"info@ristorantegi
gliorosso.com"^^xs
d:string

"Phone
additional:
055211795"^
^xsd:string

<http://www.disit.org/km4cit
y/resource/4d2f8a71134d0e1
6d32d9cc71c3efd7f>

"VIA
PANZANI
"^^xsd:stri
ng

"43.773981
688334459"
^^xsd:float

"11.251067
621724776"
^^xsd:float

"Rostorante
Giglio
Rosso"^^xsd:stri
ng

"info@ristorantegi
gliorosso.com"^^xs
d:string

"Phone
additional:
055211795"^
^xsd:string

<http://www.disit.org/km4cit
y/resource/0d993404cb2427c
43230bdd27166c293>

"VIA
FIUME"^
^xsd:strin
g

"43.777097
08015724"^
^xsd:float

"11.250142
322350097"
^^xsd:float

"ALBANI"^^xsd
:string

"info.flo@albaniho
tels.com"^^xsd:stri
ng

<http://www.disit.org/km4cit
y/resource/25d7445b5daf76d
afd7697b0e826fd99>

"VIA
FIUME"^
^xsd:strin
g

"43.776905
611527056"
^^xsd:float

"11.250264
056781193"
^^xsd:float

"JOLY"^^xsd:stri
ng

"info@hoteljoly.it"
^^xsd:string

<http://www.disit.org/km4cit
y/resource/3a54ff1082a4e4c1
7f699873c67e652f>

"VIA
FIUME"^
^xsd:strin
g

"43.776905
611527056"
^^xsd:float

"11.250264
056781193"
^^xsd:float

"LOMBARDI"^^
xsd:string

"hotel.lombardi@d
ada.it"^^xsd:string

<http://www.disit.org/km4cit
y/resource/fb98cd2d2dca58a
c61db740707194d8e>

"VIA
NAZION
ALE"^^xs
d:string

"43.776427
111549665"
^^xsd:float

"11.250788
174287324"
^^xsd:float

"VANESSA"^^x
sd:string

"weidan.zhu@yaho
o.it"^^xsd:string

"general
information:
(FIRENZE)"^
^xsd:string

Architecture and Knowledge Modelling for Smart City p. 231

<http://www.disit.org/km4cit
y/resource/1f12ac7183f600af
e9dfb8716ca6c244>

"VIA
FIUME"^
^xsd:strin
g

"43.777639
62999515"^
^xsd:float

"11.249794
558517685"
^^xsd:float

"CELLINI"^^xsd
:string

<http://www.disit.org/km4cit
y/resource/2286d211298721f
c25969f9aeea58355>

"VIA
FIUME"^
^xsd:strin
g

"43.777639
62999515"^
^xsd:float

"11.249794
558517685"
^^xsd:float

"DESIREE"^^xs
d:string

"info@desireehotel
.com"^^xsd:string

<http://www.disit.org/km4cit
y/resource/4bdb2a00e2eaa54
c3224ece0f14a81e5>

"VIA
FIUME"^
^xsd:strin
g

"43.777639
62999515"^
^xsd:float

"11.249794
558517685"
^^xsd:float

"SERENA"^^xsd
:string

"info@albergosere
na.it"^^xsd:string

<http://www.disit.org/km4cit
y/resource/5492c0ab37dec9c
ab90bc73896a6b5e3>

"VIA
FIUME"^
^xsd:strin
g

"43.777639
62999515"^
^xsd:float

"11.249794
558517685"
^^xsd:float

"FIORITA"^^xsd
:string

"info@hotelfiorita.
com"^^xsd:string

"Phone
additional:
0552654376"
^^xsd:string

<http://www.disit.org/km4cit
y/resource/537e38ed969b402
5f7d33f06dfc280d5>

"VIA
FIUME"^
^xsd:strin
g

"43.777560
768127806"
^^xsd:float

"11.249684
427529154"
^^xsd:float

"ERINA"^^xsd:st
ring

"info@hotelerina.it
"^^xsd:string

<http://www.disit.org/km4cit
y/resource/5d4a001e753d246
9e255024449173b9f>

"VIA
FIUME"^
^xsd:strin
g

"43.777560
768127806"
^^xsd:float

"11.249684
427529154"
^^xsd:float

"SOGGIORNO_I
SABELLA_DE'_
MEDICI"^^xsd:s
tring

"info@isabelladem
edici.com"^^xsd:str
ing

<http://www.disit.org/km4cit
y/resource/66118578e01e1d6
1a1d56b2753e6682f>

"VIA
FIUME"^
^xsd:strin
g

"43.777560
768127806"
^^xsd:float

"11.249684
427529154"
^^xsd:float

"DUCA_D'AOS
TA"^^xsd:string

"info@hotelducada
osta.eu"^^xsd:strin
g

<http://www.disit.org/km4cit
y/resource/cb16944181be95d
5c8a9848f88adbe5f>

"VIA
FIUME"^
^xsd:strin
g

"43.777560
768127806"
^^xsd:float

"11.249684
427529154"
^^xsd:float

"STELLA_MAR
Y"^^xsd:string

"info@hotelstellam
ary.it"^^xsd:string

<http://www.disit.org/km4cit
y/resource/eb438ed6ea3fd1a
74168c10b96898a75>

"VIA
FIUME"^
^xsd:strin
g

"43.777560
768127806"
^^xsd:float

"11.249684
427529154"
^^xsd:float

"STEFANIA_IN
TERNATIONAL
"^^xsd:string

"stefaniarooms@g
mail.com"^^xsd:str
ing

<http://www.disit.org/km4cit
y/resource/76a2a0aee0aed47
31ee79039bca7be66>

"PIAZZA
STAZION
E"^^xsd:st
ring

"43.776904
122144011"
^^xsd:float

"11.249425
264354052"
^^xsd:float

"BENETTON"^^
xsd:string

<http://www.disit.org/km4cit
y/resource/ae05adee17e6db7
bd5a20a0da399f1c5>

"VIA L.
ALAMAN
NI"^^xsd:
string

"43.777098
642136679"
^^xsd:float

"11.245715
701172763"
^^xsd:float

"DELLE_NAZI
ONI"^^xsd:string

"hotel@dellenazion
i.it"^^xsd:string

<http://www.disit.org/km4cit
y/resource/948840eb339c306
a37d03c98003419d0>

"VIA
FIUME"^
^xsd:strin
g

"43.777214
18537643"^
^xsd:float

"11.249910
625277709"
^^xsd:float

"LE_CAMERE_
DEI_CONTI"^^x
sd:string

"info@cameredeic
onti.it"^^xsd:string

<http://www.disit.org/km4cit
y/resource/98af424826a4a39
78af464b7119a0426>

"VIA
FIUME"^
^xsd:strin
g

"43.777214
18537643"^
^xsd:float

"11.249910
625277709"
^^xsd:float

"BERKLEYS"^^
xsd:string

<http://www.disit.org/km4cit
y/resource/b20b67c9f11d6d8
6e740c43bfe9a9626>

"VIA
FIUME"^
^xsd:strin
g

"43.777214
18537643"^
^xsd:float

"11.249910
625277709"
^^xsd:float

"ANGELICA"^^
xsd:string

"info@hotelangelic
afirenze.com"^^xsd
:string

<http://www.disit.org/km4cit
y/resource/c3fef7434a651c47
476b17246051921e>

"VIA
FIUME"^
^xsd:strin
g

"43.777214
18537643"^
^xsd:float

"11.249910
625277709"
^^xsd:float

"BEATRICE"^^x
sd:string

"info@hotelbeatric
e.it"^^xsd:string

Architecture and Knowledge Modelling for Smart City p. 232

<http://www.disit.org/km4cit
y/resource/22387a008b66a4f
7fa7b9fa5e99e3cbd>

"PIAZZA
STAZION
E"^^xsd:st
ring

"43.775493
22296133"^
^xsd:float

"11.247003
758283871"
^^xsd:float

"Ristorante
Lounge Bar
Deanna"^^xsd:str
ing

"operativo@lowcos
tparking.it"^^xsd:st
ring

"Phone
additional:
0552647063"
^^xsd:string

<http://www.disit.org/km4cit
y/resource/87621575f80b535
591bcd74085297b93>

"VIA
NAZION
ALE"^^xs
d:string

"43.776484
340076195"
^^xsd:float

"11.251082
324180519"
^^xsd:float

"SUORE_OBLA
TE_DELLO_SPI
RITO_SANTO"^
^xsd:string

<http://www.disit.org/km4cit
y/resource/fcc15183d8f456aa
54a6fc669d296217>

"VIA
NAZION
ALE"^^xs
d:string

"43.776484
340076195"
^^xsd:float

"11.251082
324180519"
^^xsd:float

"ISTITUTO_SU
ORE_OBLATE_
SPIRITO_SANT
O"^^xsd:string

Table 35 - Results of a Validation query

This results show that the services reconciliation was successful, and the application of
this method on samples taken from ontology areas, mainly affected by the reconciliation
process, allows to find a confirmation that the processes involved have been carried out
properly.

6.8 Volume measure

In the field of Big Data, the data volume is a key issue to be considered, so in this
section, some measurements on triplestore size were performed.
Analyzing the percentage occupied by each macroclass, the results presented in Table
36 can be obtained.

Macro Class
Static
Triples

Reconciliation
Triples

Real Time Triples
Loaded

Total on 1.5
months

Administration 2.431 0 -- 2.431
Metadata of
DataSets 416 0 -- 416
Point of Interest
(35.273 POIs in
Tuscany) 471.657 34.392 -- 506.049
Street-guide (in
Tuscany) 68.985.026 0 -- 68.985.026

Local Public
Transport (<5
lines of FI) 644.405 2.385

135.952 per line per day,
to be filtered, read every
30 s, they respond in
minutes

(static) 646.790

51.111.078

Sensors (<201
road sensors, 63
scheduled every
two hours) -- 4.240

102 per sensor per read,
every 2 hours, they are
very slow in responding

Parking (<44
parkings, 12
scheduled every
30min) -- 1.240

7.920 per park per day, 3
read per hour, they
respond in seconds

Meto (286 -- -- 185 per location per

Architecture and Knowledge Modelling for Smart City p. 233

municipalities,
all scheduled
every 6 hours)

update, 1-2 updates per
day

Temporal
events, time
stamp -- -- 6 for each event

Total 70.103.935 42.257 122.966.893
Table 36 - Tiple counting for each macroclasses

The triplestore currently contains about 123 million triples, the larger part of which
belonging to the Street Guide, which represents the backbone of the entire system.
The monthly growth of the triplestore was also estimate, taking into account the
following assumptions:

• Sometimes road sensors are not working at full capacity, for counting monthly
triples only 8 sensors were considered, each of which producing an average of 7
measurements each day (at full capacity each sensor can produce more than 200
measurements);

• Weather forecast sometimes have been updated only once a day, so to calculate
the monthly triples amount, only 1,5 updating for a day per municipality (285
municipalities in all Tuscany Region), have been taking into account;

• The AVM systems are installed in most of the ATAF bus lines, covering the
metropolitan area of Florence; considering that part of the acquired data by
AVM systems are Private Data of ATAF, and that sometimes the system
responds slowly, the monthly triples calculation has been made only on a single
ATAF line, for which the AVM system provides an average of 15 measurements
per day;

• Car Park data is the most stable among all real-time data acquired from the
system, so, for this reason, 8 car parks operating almost at full capacity have
been considered to calculate the monthly triples amount, each of which
producing an average of 128 measurements per daily (one every 12 minutes).

The triples amount per month obtained, thanks to this assumptions, corresponds to the
values reported in Table 37.

 #items #measurements Triples per
measurement

Daily
Triples

Montly
Triples

Car Park 8 128 84 86.016 2.616.320
Weather Forecast 285 1,5 217 92.767,5 2821.678,125
AVM system 1 15 44.693,5 670.402,5 20.391.409,38
Road Sensor 6 7 120 5040 153.300
 Tot 854.226 25.982.707,5

Table 37 - Monthly growth for Real Time triples

Architecture and Knowledge Modelling for Smart City p. 234

So the triplestore, would have a monthly growth of at least 25 million triples, a very
high value. It is therefore evident that Real Time data require a strategy to avoid that the
repository may grow too quickly and will arrive in a short time to collapse the system.
In fact, a time window of one month was chosen, as a period for which Real Time data
are maintained within the front-end triplestore, and up to 2 times a month, the triplestore
is re-generated by selecting the real-time data of the last few days, thanks to the
appropriate tools presented in Section 5.4, which allows to regenerate triplestore
indices. Then, this strategy allows to keep the triplestore size approximately to 96
million triples, and, if necessary, it is always possible to retrieve historical data of each
Real Time measurement recorded.

6.9 Time response evaluation

The different components of the system architecture were deployed on 11 virtual
machines (VM), each equipped with 12GB RAM and an Intel Xeon X5690@3.47Gz
CPU, running Ubuntu 14.04 distribution or WinServer2008.
During the development of the system, particular attention was paid to identifying the
right scheduling time of the different Real Time processes; in fact, occasionally some
road sensors employ a very long time to provide an answer, and leave process running
to wait for data, is not a good solution, because it occupies system resources
unnecessarily. It was therefore necessary to insert a time-out period for such more
problematic processes, beyond which the problematic process is killed by the process
scheduler and rescheduled after a few minutes. Thanks to this technique, a more
balanced and reliable system has been obtained, in which a part of the resources is
always available (consequently avoiding deadlocks), and in which the following Real
Time processes are always scheduled:

• All parking sensors are scheduled every 30 minutes (12 processes);

• Road sensors, currently limited to Florence, Empoli, Arezzo and Piombino, are
scheduled every 6 hours (catalogs from 25 to 64, from 13 to 23 and catalogs 3
and 4);

• AVM sensors on all 5 lines currently available, are scheduled at intervals of 10
minutes;

• All 286 weather processes are scheduled with an operation interval of 6 hours.

In order to evaluate the performance of Ingestion and Mapping phases (Phase I and
Phase III in Figure 25), in the following table, data relating to execution time of each
process, were collected.

Dataset
Ingestion
Execution Time

Mapping
Execution Time

Previ_Firenze 4 5
Previ_Firenze 6 32

Architecture and Knowledge Modelling for Smart City p. 235

Previ_Buti 7 9
Previ_Buti 2 2
Previ_Bucine 4 4
Previ_Bucine 4 4
AVM_L4 30 4
AVM_L4 25 4
AVM_L4 19 5
AVM_L6 202 22
AVM_L6 256 25
AVM_L6 273 21
Parcheggio161 9 17
Parcheggio161 17 17
Parcheggio162 11 11
Parcheggio162 9 13
Sensori43 1124 3
Sensori43 185 2
Sensori13 25 22
Sensori13 11 9

Table 38 - Ingestion and Mapping execution time (in seconds)

As can be seen from the values in the table above, on average, the processes do not
employ more than ten seconds to run, especially those relating to the Mapping phase.
However, as regards the Ingestion phase, it is possible to observe how a single sensor,
the number 43 for example, during two different time sampled, responded with time
very different, which in the first case exceeding 18 minutes.

Finally, always regarding the Indexing phase, the time needed to create a triplestore,
containing only all static data, with OWLIM-SE, is about 8 hours. These long time is
mainly due to inference that the same OWLIM performs on read data, and to the indices
creation. To use a different RDF database management systems, could be a solution that
can help to save time during this step; but each different triplestore applies a different
type of inference on data, and then a considerable variation on creating time, could
mean a minimized amount of data infers, that limit benefits of data interconnection.

Architecture and Knowledge Modelling for Smart City p. 236

Chapter 7

7. Conclusions

The research and development work, that has allowed to build the entire architecture for
enrichment, interconnection and exploitation of data, presented in this thesis, has
involved more people of the DISIT lab, the Distribute Data Intelligence and
Technologies Lab, of the University of Florence. Within the scenario presented, I have
personally dealt with the Km4City Ontology study and realization, presented in Chapter
4, supported by the experience of Prof. Nesi and Eng. Bellini. I also personally
developed the tool used during the Data Validation phase (Section 5.6), and all R2RML
models, used instead in the Mapping phase (Section 5.3). In relation to the Ingestion
phase, instead, I have personally dealt with the data ingestion of the Street Guide and
Rail Network macroclass, and I provided support during SPARQL reconciliation
(Section 5.5.1).

This dissertation formalizes an ontology which aims to semantically interconnect
information from different sources within a city. The derived ontology has been
obtained by means of an incremental process performed analyzing, integrating and
validating each added data set. Thus the resulting ontology is a strong generalization of
a large set of data modeling problems. Considering the amount of data produced each
day within a city, and more specifically in the analyzed use case, we can place the
research project in the field of Big Data.
In this scenario, the KM4City Ontology has proven to be a powerful modeling language
that has allowed to relate classes, properties and ontological instances, thus creating a
repository exploited for the construction of new advanced services, directed to the
citizen.
Our model is capable of storing information about the city such as data on the
population, accidents, flooding, votes, administrations, location of point of interests
(including museums, tourism attractions, restaurants, shops, hotels), ambient data,
weather status and forecast, data coming from mobility and transport such as those

Architecture and Knowledge Modelling for Smart City p. 237

created by ITS, for bus management, and solutions for managing parking areas, car
flow, accesses on RTZ.

The research project conducted in this context, has also allowed to build a system for
the ingestion of public and private data for smart city with related aspects as road graph,
services available on the roads, traffic sensors etc. This architecture includes both open
data from public administration and private data coming from transport systems
integrated mangers, thus addressing and providing real time data of transport system,
i.e., the busses, parking, traffic flows, etc. So the realized system allows managing large
volumes of data coming from a variety of sources considering both static and dynamic
data. This data is then mapped to the km4City Ontology and stored into an RDF-Store
where this data are available for applications via SPARQL queries to provide new
services to the users. In addition, a thorough verification and validation process
performed, allowed us to identify the set of triples to: (i) improve and enrich the model,
and (ii) perform the corrections. Thus improving and enabling the deductive capabilities
of the final model. Finally, the proposed architecture also provides a visualization and
exploration tool to explore the data available in the RDF-Store.

In particular, this thesis address the problem of detecting how the different data can be
interconnected to maximize the value, which can then be obtained from their
exploitation. A particular effort is dedicated to designing a robust and performing
architecture for the automatic ingestion and mapping of data.
In addition, on Section 5.5, the comparison between two possible reconciliation
approaches has been addressed in detail: the performed assessment and comparison has
produced a clear results demonstrating that the best quality of results are obtained by
using the approach based on SPARQL queries plus some manual actions. Also the
simple usage of SPARQL queries resulted to be better ranked with respect to the SILK
based link discovering. On the other hand, the writing of link discovering algorithms
resulted to be much simpler and faster that performing a set of specific SPARQL
queries. Moreover, the Quality Improvement process has also allowed to further
improve the Silk reconciliation results, thus reducing the difference between the two
approaches.

The experience gained from the study of literature and from the trial conducted in the
city of Florence, has allowed to assess the actual potential of the ontology for the
construction of complex architectures, highlighting their suitability in building systems
with a high degree of interoperability, maintainability and evolvability.
The creation of applications that exploit the repository created, has made evident some
criticalities. In particular, it highlighted the lack of maturity of the ontological
repositories, that today can not compete in terms of stability with the more traditional
platforms for relational databases, which are, however, of little use having to work with
large volumes of data. It's perfectly reasonable to expect, however, that these problems

Architecture and Knowledge Modelling for Smart City p. 238

will be overcome in the near future by the normal evolution of technology and for the
moment can be mitigated through the use of techniques such as the periodic
regeneration of the indices proposed in Section 5.4.

Regarding the Completeness, it seems to be well addressed by all the analyzed datasets.
Moreover we noticed that there is only one case in which this value is less than 79%.
The Accuracy dimension, instead, exceeds 20% only on 2 of the 27 datasets analyzed.
The Consistency values, but also other assessments made on data before and after the
application of quality improvement phase, show that this process allows to obtain
considerable improvements on data, both in terms of quality and quantity of information
that is then possible to exploit.
Thanks to the analysis of ingested datasets, that aims to measure their quality, it was
possible to provide suggestions to data providers, showing them how to intervene on
their Public or Private Data, in order to improve quality; this service can be also
provided by the DISIT Lab, thanks to the Quality Improvement processes realized
within the architecture (Section 5.2).

Furthermore, the architecture built should enable the use of data by PA and SME, to
realize new services to be provided to citizens; it is therefore important to be able to
improve the architecture, where it has showed some minor problems. For this purpose,
the Ingestion phase will be enriched with new datasets, that make it interesting their
interconnection with data already existing inside the triplestore; the Quality
improvement phase, instead , will be improved thanks to the errors that has not been
able to correct, which represent the first new cases to be treated, in order to obtain a
greater number of triples from the ingested data. The Link Discovery Reconciliation
method has shown good results, so we will try to automate this stage, as much as
possible; with regard to data Validation, this phase has demonstrated its importance as it
allowed us to detect errors within the created triplestore, which were easily resolved. On
the other hand, however, relating to validation there is still some work to be done,
because this phase has not been carried out on all ingested datasets, in addition,
according to the findings in Section 6.6, in relation to the counts, a more reliable method
must be developed for the desired verification, for example more context for each
province could have been included inside triplestore, respectively, related to the each
individual classes of the Street Graph.

Concluding this data analysis project, the mission and objectives, as stated in the
introduction chapters of this dissertation, are accomplished, and a more complex
extension of the conducted research could concentrate on the development of new
innovative services, as explained in the following. Furthermore, the methodology
devised in this dissertation provides an adequate basis to extend the research in many
possible directions regarding the various phases of the proposed architecture.

Architecture and Knowledge Modelling for Smart City p. 239

7.1 Future works

Future works comprehend the prosecution of research on the Km4City Ontology: other
OpenData sets will be integrated to the current ontology, which as a result will be
further expanded and enhanced to host the new dataset and the new data
interconnections, that can be created.
The next step, already in development, will be to identify famous names, points of
interest, locality names that can be linked to other data set as DBpedia3 or GeoNames4
according to a Linked Open Data model, thanks to NLP algorithms.

Another interesting topic that shall be addressed soon, concerns the search for a new
RDF management system that allows to handle large quantities of triples effectively
(Big Data oriented RDF), and to solve problems encountered, in this dissertation,
working with OWLIM-SE or at least to make them less influential on the entire realized
system. In fact, thanks to the research work done in these PhD, it was possible to verify
that the triplestore RDF, do not scale very well if they reach an excessive size.

Furthermore, at the moment, the issue of long data loading time on OWLIM-SE has
been bypassed creating a backup triplestore already containing all the static part of
triples generated. If necessary, this backup is used as a base for the indies regeneration
process, allowing to complete this operation in a very short time.
However, once the problems related to triplestore RDF, will be resolved, additional
investments can be done in the direction of designing new innovative services to the
citizens of Florence and Tuscany; in fact, the architecture has been designed to allow
the exploitation of triplestore by third parties.
For example, a new service created could follow the ServiceMap style, improving its
performance and increasing its available functionalities. The new service could be
organized in tabs, each of which allows to identify a specific use case addressed: we
imagine a tab dedicated to mobility, in which it is possible to calculate the interest route,
based on the detected position and the indicated destination; the system will list the
identified solutions based on an increasing travel time. Logged in users can also save
their preferences in relation to the various use cases implemented by the new system.

Finally, this dissertation is intended to be a stimulus for PA and SME to contribute to
the creation of more semantically interoperable data, and to create new innovative
services that improve the citizen quality of life.

Architecture and Knowledge Modelling for Smart City p. 240

Appendix A

To complete the project, many software have been used, most of which are Open
Source. Each software presented in the following sections, has been used in a specific
phase of the work, which will be specified within each description.

A.1 Pentaho Kettle

To processing the input data from the different sources listed in Chapter 3, a software
ETL (Extract Transform and Load) has been used, because the volume of data to be
processed is very high, but the operations to be applied are, for the most part, very
common and of acceptable difficulty (string manipulation, joining tables, file splitting,
filtering rows, format conversions, etc.). In fact, as the name suggests, an ETL software,
mainly extract data from multiple sources, process them through a chain of
transformations, and finally perform the data loading within a data structure selected.
After a thorough anlysis carried out on the main ETL software that is CloverETL,
Pentaho Kettle Data Integration and Talend Open Studio, the choice fell on Pentaho
Kettle.
In detail, some Pentaho Kettle characteristics that have influenced the choice are:

• Its wide spectrum of possible input sources and output formats (CSV, JSON,
Shapefile, KML, relational databases, NoSQL Datatbase, etc.)

• Its ability to export the transformations and execute them in batch mode using a
scheduler.

• Its aility of manipulating transformations injecting native Java (or Javascript)
code directly to them, in order to fully customize the results.

• The high number of users that animate the Kettle’s online community and its
extensive documentation available on the web.

Kettle has two working modes: via its GUI (the process is called Spoon) and through the
terminal, via an executable called Kitchen. Thanks to the graphical interface it is
possible to define the two main Kettle components, that is, Transformations and Jobs. A
transformation is the core element of the software, that allows to define the main
processing operations on data stream. A Job is instead a transformations sequence,
thanks to which is possible to define in detail, the operations flow to be carried out.
Thanks to a Job, is possible to define sequence of operations, parallelism between
operations, loops, exception handling, etc. while with Transformation this can not be
done.

Architecture and Knowledge Modelling for Smart City p. 241

Through the graphical interface both Transformations and Jobs can be performed:
Kettle provides also several tools for analysis and logging, to check in detail the
implementation of operations and to take action in case of errors. Transformations and
Jobs saved in the specific Kettle format, may be performed later also via command line:
it is in fact possible to schedule various processes and to execute them automatically
without a user that interacts with the program.

A.1.1 Error Handling Kettle

Pentaho Kettle has an interesting integrated mode for error handling, within
Transformations. In many figures of Chapter 5.1 is indeed possible to see some red
dashed lines connecting steps: these links are activated only if the step, from which the
red dashed line originates, generates an error. In this case, all steps defined in error
handling branch, will be performed.
It is also possible to generate information about the fields, once embarked on the branch
of error handling. To activate error handling, simply set as in Figure 113, the
corresponding properties.

Figure 113 - Kettle error handling

All Transformations defined for this project, generate the following fields:

• Number of errors: that indicates the number of errors generated during the step
execution;

• Error description : extended description of the error type;
• Error codes: error ID code.

In addition, each Transformation performs two in the branch of error handling, i.e.
output Table and Insert/update. The first step adds a row to the MySQL table errors,
which contains an errors log, which is made up with the following columns:

Architecture and Knowledge Modelling for Smart City p. 242

• Process: it identifies the process name; its possible values are those contained in
the column process of the ProcessManager table;

• Section: it can be A, B or C, depending on which part of the process has
generated the error;

• Time: field that has a default value, that is the timestamp generated by MySQL,
which is added when Kettle generates the error line;

• Code: it is the error code;
• Number: the number of errors occurs;
• Description: a brief error description.

Moreover, the insert/update step updated to yes the error field of the ProcessManager
table, within the row which has the process identifier equal to processName value.
This error handling has proven to be very useful when debugging, because it allows to
keep track of errors occur, with detailed information directly provided from Kettle.

A.2 QGIS

Quantum GIS is an Open Source software Geographical Information Systems (GIS)
which allows to acquire, manipulate and display information on geo-localized data. This
software has a good graphical interface and a very advanced set of executables for its
main functionality, recallable via command line. QGIS, within the project, has been
used to unify the geographic projection system, on input data coming from different
sources. In fact, most of the data belonging to the Street Guide is encoded according to
the standard Gauss-Boaga (code EPSG 3003, also called Monte Mario). To date, the
mainly used coordinate system, e.g. from services such as GPS satellite navigation or
online maps providers such as OpenStreetMap or Google, is the WGS84 (code EPSG
4326). In the specific QGIS has been used for the conversion of data from the system to
the Gauss-Boaga WGS84, but also to convert the multiple Shape files available in
KML, due to the fact that the version of Pentaho Kettle used, does not accept this data
format as input.

A.3 KARMA Data Integration

Karma is a software developed by a team from the University of Southern California,
which allows to map in a semi-automatic way, data from files or relational databases, in
RDF. It is a recently developed software released under the Apache 2.0 license, and it
can be used in two different ways: as a web application run through the platform
Apache Tomcat, or from the command line to generate RDF triples offline.
The typical Karma workflow, includes to define, through web application, a data
mapping on the respective classes and properties belonging to ontologies preloaded.
After the mapping, a model must be exported, and its possible formats are the R2RML
Model or the Service Model. For the project of this dissertation, the R2RML model has

Architecture and Knowledge Modelling for Smart City p. 243

been used, which is defined by the W3C as "a language for expressing customized
mappings from relational databases to RDF datasets". After the R2RML model has been
created, it can be used to generate triple in batch mode, starting from a relational
database; so the intervention of a user becomes obsolete, and the process can be
launched by other software as the just seen Pentaho Kettle.

A.4 OpenRDF Sesame

Sesame is an open source framework for creating and querying RDF repository. It
allows to save persistent RDF database (also called Triplestores) locally in memory, on
disk, or remotely on a server. Sesame can be used in several ways: through the web
interface (implemented as an application running on Tomcat Web Server) through an
application, like a console to be launched through the terminal, or through Java API.
Sesame in fact makes available to developers the API that can be used by any Java
application, which allows to fully customize the use of the framework. In all cases listed
above, is possible to access to another very important feature of sesame: quering
triplestore through SPARQL language.

A.5 OWLIM

OWLIM is a family of management systems for RDF semantic database; it is typically
used as a plugin to add Sesame important characteristics about the knowledge
management. Using OWLIM as semantic repository, in fact, new knowledge about the
data can be generated through the inference process related to the first-order logic. In
addition, OWLIM is developed to achieve maximum scalability even in the presence of
significant amounts of data and therefore allows excellent performance in loading and in
evaluation of the query.
The OWLIM version used in the project, has been released to DISIT Lab under license,
and it presents tools for geo-spatial queries, for creating indexes for full-text research
and many other features that increase the usability and speed-up the software.

A.6 Hadoop

Hadoop [Hadoop Apache Project] is a framework that allows managing distributed
processing of big data across clusters of computers using simple programming models.
It is designed to scale up from single servers to thousands of machines, each of them
offering local computation and storage. The Hadoop library is designed to detect and
handle failures at the application layer, so delivering a highly-available service on top of
a cluster of computers, each of which may be prone to failures. Hadoop was inspired
from Google's Map-Reduce and Google File System, GFS, and in practical it has been
realized to be adopted in a wide range of cases. Hadoop is designed to scan large data
set to produce results through a distributed and highly scalable batch processing

Architecture and Knowledge Modelling for Smart City p. 244

systems. Hadoop is composed of the Hadoop Distribute File System, HDFS, and of the
programming paradigm Map-Reduce [Karloff, Suri and Vassilvitskii, 2010]; thus, it is
capable to exploit the redundancy built into the environment. The programming model
is capable to detect failures and solve them automatically by running specific programs
on various servers in the cluster. In fact, redundancy provides fault tolerance and
capability to self-healing of the Hadoop Cluster. HDFS allows applications to be run
across multiple servers, which have usually a set of inexpensive internal disk drives; the
possibility of the usage of common hardware is another advantage of Hadoop. A similar
and interesting solution is HadoopDB, proposed by a group of researchers at Yale.
HadoopDB was conceived with the idea of creating a hybrid system that combines the
main features of two technological solutions: parallel databases in performance and
efficiency, and Map-Reduce-based system for scalability, fault tolerance, and flexibility.
The basic idea behind HadoopDB is to use Map-Reduce as the communication layer
above multiple nodes running single-node DBMS instances. Queries are expressed in
SQL and then translated into Map-Reduce. In particular, the solution implemented
involves the use of PostgreSQL as database layer, Hadoop as communication layer, and
Hive as the translation layer [Abouzeid et al., 2009].

A.7 HBASE

Hbase [Aiyer et al., 2012] is a large-scale distributed database build on top of the
HDFS, mentioned above. It is a non-relational database developed by means of an open
source project. Many traditional RDBMSs use a single mutating B-tree for each index
stored on-disk. On the other hand, Hbase uses a Log Structured Merge Tree approach:
first collects all updates into a special data structure on memory, and then, periodically,
flush this memory on disk, creating a new index-organized data file, the called also
Hfile. These indexes are immutable over time, while the several indices created on the
disk are periodically merged. Therefore, by using this approach the writing to the disk
are sequentially performed. HBase’s performance is satisfactory in most cases and may
be further improved by using Bloom filters [Borthakur et al., 2011]. Both HBase and
HDFS systems have been developed by considering elasticity as fundamental principle,
and the use of low cost disks has been one of the main goals of HBase. Therefore, to
scale the system results is easy and cheap, even if it has to maintain a certain fault
tolerance capability in the individual nodes.

A.8 Silk

Silk Workbench is a web application that guides the user through the creating process of
a specific interconnection link between two data sources. The workbench consists of:

• Workspace Browser: it provides an interface through which different projects
can be load. Each project can have multiple data sources and multiple
connection tasks.

Architecture and Knowledge Modelling for Smart City p. 245

• Linkage Rule Editor: it is a graphical editor that allows the user to easily create
rules and link specifications. It provides several functions for comparison,
thresholding, and text transformations. The rule is visually expressed through a
tree view and it can be change through drag-and-drop.

• Evaluation: it allows the user to specify connection. Links appear at the time of
their generation and a score of similarity is assigned to each one. Connections
for which correctness has not specified, can be confirmed or rejected by the user.
In addition, the interface provides detailed results on the scores composition
given.

Figure 114 - Execution flow of Silk Workbench

Silk offers three different applications which address different use cases:

• Silk single machine: it is used to generate RDF links on a single machine. The
data sets to be interconnected, can reside on the same machine or on a remote
machine, which can be accessed thanks to the SPARQL query language.

• Silk MapReduce is used to generate RDF links between datasets using a cluster
of multiple machines. Silk MapReduce allows processing large datasets by
distributing the generation of links to multiple machines.

• Silk Server can be used as a component of identity resolution in applications that
consume Linked Data from the Web.

To interact with the Silk core, a declarative language LSL is provided, for specifying
RDF data sources, linking rules and conditions to be met for entity interconnection. The
objective of this pre-processing tool is to produce a structured representation of the data
to be processed. The resulting output is an RDF dump file containing the structured
values extracted. By using this XML-based language, a user can specify which
extraction methods will be used.
The following four sections must be defined within each Silk files:

• Path: every path begins with a variable that can be followed by multiple
elements. If a path cannot be resolved because of a missing property, or a too
restrictive filter, it returns an empty result set. To cross the graph and reach the
various properties, the following operator types can be used:

Architecture and Knowledge Modelling for Smart City p. 246

- Forward Operator "/": <path_segment>/<property> this operator moves
forward from an entity to an object property;

- Backward Operator "\": <path_segment>\<property> this operator moves
backwards from one object property to its subject;

- Filter operator "[]":
<path_segment>[<property><compare_operator><value>
<path_segment>] [@lang<comp operator><value>], this operator
reduces the resources based on filter matching. Examples of the compare
operators are =, <, <=,>, >=, =!.

• Transformation : each dataset using different formats, so Silk, to normalize and
standardize the data, provides operators that transform the values of a properties
set, according to a transformation function. Some of these functions include the
removal of blank spaces, special characters removal, lower case, upper case,
concatenation, tokenization, brackets removal.

• Compare: the comparison is made thanks to comparison operators, i.e.
functions that assess the similarity between two results on the basis of a specific
distance measure, a threshold and a weight. The weight is used to aggregate
functions as a weighted average of the combination; for example, if a rule is
composed of two comparisons, it is possible to assign different weights to each
comparison, to give greater importance to one of each.The threshold is the
maximum distance value between two comparisons; it corresponds to a value
between 0 and 1. The distance measure is the metric used to compare two
results; it returns 0 in case of perfect match and a higher value if a match is not
perfect. Silk provides two types of measures:

- Based on Character
- Based on Token

Measures based on character, compare two strings, character by character. They
are generally used to detect typos. The distance measures available are the
Levenshtein, Jaro, JaroWinkler, equality, inequality. Measures token-based,
instead, work of errors at word level, for example, strings with different words
order, that is "Jhon Doe" or "Doe, John". In this case the distance measures
available are Jaccard, Dice and SoftJaccard.

• Aggregation: the aggregation operators have the task to combine scores
resulting from multiple comparisons in a single score, according to a specific
aggregation function. They can be also nested to create a nonlinear hierarchy.
Among the aggregation operators there are:

- Average: it calculates the weighted average of the comparison functions;
- Maximum: it calculates the highest confidence score in the group;
- Minimum: it calculates the smallest value;
- Euclidean Distance;
- Geometric Distance;

Architecture and Knowledge Modelling for Smart City p. 247

Figure 115 - Connection rule example

Architecture and Knowledge Modelling for Smart City p. 248

Bibliography

[Abouzeid et al., 2009] Abouzeid A.; Bajda-Pawlikowski C.; Abadi D.; Silberschatz A.; Rasin A.,

"HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical
Workloads", Proceedings of the VLDB Endowment, Pages 922-933, Volume 2, Number 1, August
2009.

[Aiyer et al., 2012] Aiyer A.; Bautin M.; Jerry Chen G., Damania P.; Khemani P.; Muthukkaruppan K.;
Ranganathan K.; Spiegelberg N.; Tang L.; Vaidya M., "Storage Infrastructure Behind Facebook
Messages Using HBase at Scale", Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, Pages 4-13, Volume 35, Number 2, June 2012.

[Antoniu et al., 2010] Antoniu G.; Bougè L.; Thirion B.; Poline JB., "AzureBrain: Large-scale Joint
Genetic and Neuroimaging Data Analysis on Azure Clouds ", 30 September 2010.

[BABELNET] http://babelnet.org/.

[Beckett, 2002] Beckett, D. The design and implementation of the Redland RDF application framework.
Computer Networks, 39(5), 577-588. 2002.

[Bellandi et al., 2012] Bellandi A., Bellini P., Cappuccio A., Nesi P., Pantaleo G., Rauch N., "ASSISTED
KNOWLEDGE BASE GENERATION, MANAGEMENT AND COMPETENCE RETRIEVAL",
International Journal of Software Engineering and Knowledge Engineering, World Scientific
Publishing Company press, vol.32, n.8, pp.1007-1038, Dec. 2012, DOI:
10.1142/S021819401240013X

[Bellini et al., 2014] Bellini, P., Benigni, M., Billero, R., Nesi, P., & Rauch, N. (2014). Km4City ontology
building vs data harvesting and cleaning for smart-city services.Journal of Visual Languages &
Computing.

[Bellini et al., 2014B] P Bellini, M Benigni, R Billero, P Nesi, N Rauch, "Ontology Bulding vs Data
Harvesting and Cleaning for Smart-city Services", DMS 2014 Conference.

[Bellini et al., 2013A] Bellini P., Di Claudio M., Nesi P., Rauch N., "Tassonomy and Review of Big Data
Solutions Navigation", Big Data Computing, Edited by Rajendra Akerkar Chapman and Hall/CRC
2013, Pages 57–101, Print ISBN: 978-1-4665-7837-1

[Bellini et al., 2013B] Bellini, P., Nesi, P., Bruno I. & Paolucci M. Institutional Services and Tools for
Content,Metadata and IPR Management, IJSEKE, International Journal of Software Engineering
and Knowledge Engineering, 2013.

[Bellini, Cenni and Nesi, 2012] Bellini P., Cenni D.; Nesi P., "On the Effectiveness and Optimization of
Information Retrieval for Cross Media Content", Proceeding of the KDIR 2012 is part of IC3K
2012, International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, Barcelona, Spain, 4-7 October 2012.

Architecture and Knowledge Modelling for Smart City p. 249

[Bellini, Nesi, 2013] Bellini, E., & Nesi, P. Metadata Quality assessment tool for Open Access Cultural
Heritage institutional repositories. In Information Technologies for Performing Arts, Media
Access, and Entertainment (pp. 90-103). Springer Berlin Heidelberg. 2013.

[Belllini, Nesi, 2014] Pierfrancesco Bellini and Paolo Nesi, Performing Arts LOD of ECLAP Content
Service, LOD2014, Workshop Linked Open Data: where are we?, organized by WRC italy and
CNR, Rome, 2014.

[Bellini, Nesi, Rauch, 2014] P Bellini, P Nesi, N Rauch, "Knowledge Base Contruction Process for
Smart-city Services", ICECCS 2014. 19th International Conference on Engineering of Complex
Computer Systems, 4-7 August,Tianjin, China.

[Bellini, Nesi, Rauch, 2014B] Pierfrancesco Bellini, Paolo Nesi, Nadia Rauch, Ontology Construction
and Knowledge Base Feeding and Cleaning for Smart-city Services, a shorter version has been
presented at the W3C workshop, titled Smart City data via LOD/LOG Service, LOD2014,
Workshop Linked Open Data: where are we?, organized by WRC italy and CNR, Rome, 2014,
http://www.disit.org/5606, http://www.disit.org/6036

[Bellini, Nesi, Serena, 2014] Bellini, P., Nesi, P., & Serena, M. (2014). MyStoryPlayer: experiencing
multiple audiovisual content for education and training. Multimedia Tools and Applications, 1-41.

[Bellini, Nesi, Venturi, 2014]Bellini, P., Nesi, P., & Venturi, A. (2014). Linked Open Graph: browsing
multiple SPARQL entry points to build your own LOD views. Journal of Visual Languages &
Computing.

[Berners-Lee, 2006] T. Berners-Lee, “Linked Data”, http://www.w3.org/DesignIssues/LinkedData.html,
2006.

[Bishop et al., 2011]Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev,
Ruslan Velkov, “OWLIM: A family of scalable semantic repositories”, Semantic Web Journal,
Volume 2, Number 1 / 2011.

[Bizer et al., 2009] C. Bizer, T. Heath and T. Berners-Lee Linked Data - the story so far. Int. Journal on
Semantic Web and Information Systems, 5, (3), 1-22, 2009.

[Borgo, 2004] Borgo, S. "Classifying (medical) ontologies." Laboratory for Applied Ontology (LOA),
Institute for Cognitive Sciences and Technology (ISTC-CNR), 2004.

[Borthakur et al., 2011] Borthakur D.; Muthukkaruppan K.; Ranganathan K.; Rash S.; SenSarma J.;
Spielberg N.; Molkov D.; Schmidt R.; Gray J.; Kuang H.; Menon A.; Aiyer A., "Apache Hadoop
Goes Realtime at Facebook", Proceedings of the 2011 International Conference on Management
of Data, Athens, Greece, June 2011

[Bose et al., 2001] Bose I.; Mahapatra R.K., "Business Data Mining - a Machine Learning Prespective",
Information & Management, Pages 211-225, Volume 39, Number 3, December 2001.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., & Van Harmelen, F. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In The Semantic Web—ISWC 2002 (pp. 54-68).
Springer Berlin Heidelberg. 2002.

[Bruce and Hillmann, 2004] Bruce, T.R., Hillmann, D. Metadata in Practice, chap. The continuum of
metadata quality: defining, expressing, exploiting, pp. 238–256. ALA Editions, Chicago, IL
(2004)

[Bryant et al., 2010] Bryant R.E.; Carbonell J.G.; Mitchell T., “From Data to Knowledge to Action:
Enabling Advanced Intelligence and Decision-Making for America’s Security”, Computing
Community Consortium, Version 6, July 2010.

Architecture and Knowledge Modelling for Smart City p. 250

[Calvanese et al., 1998]Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D. and Rosati, R.
Description Logic Framework for Information Integration. In Proceedings of the 6th International
Conference on the Principles of Knowledge Representation and Reasoning (KR-98). Italy. 1998.

[CAP] CAP - https://www.oasis-open.org/committees/download.php/6334/oasis-200402-cap-core-
1.0.pdf.

[Caragliu et al, 2009] Caragliu, A; Del Bo, C. & Nijkamp, P. "Smart cities in Europe". Serie Research
Memoranda 0048 (VU University Amsterdam, Faculty of Economics, Business Administration
and Econometrics), 2009.

[CC0] Creative Commons 0: http://creativecommons.org/publicdomain/zero/1.0/.

[CCA] Creative Commons Attribution: http://creativecommons.org/licenses/by/2.0/.

[CCSA] Creative Commons by Share Alike: http://creativecommons.org/licenses/by-sa/4.0/.

[Cimiano et al., 2013] Lopez, V., Unger, C., Cimiano, P., & Motta, E. Evaluating question answering
over linked data. Web Semantics: Science, Services and Agents on the World Wide Web, 21, 3-
13, 2013.

[Cranefield, 2001] Cranefield, S. UML and the Semantic Web, 2001.

[D’Antonio and Tanskanen, 2014] S. d’Antonio and E. Tanskanen. “Le app e le tecnologie che rendono
le città più inclusive e sostenibili: Italia e Finlandia a confronto” - http://goo.gl/HB3jx7, 2014.

[DataHub] State of the LOD Cloud 2014: http://linkeddatacatalog.dws.informatik.uni-
mannheim.de/state/.

[DateTime] W3C - Date and Time Formats - http://www.w3.org/TR/NOTE-datetime.

[DateX] DATEX Background http://www.datex2.eu/content/datex-background.

[De Witt et al., 2012] DeWitt S.; Sinclair R.; Sansum A.; Wilson M., "Managing Large Data Volumes
from Scientific Facilities", ERCIM News, Page 15, Number 89, April 2012.

[Dean & Ghemawat, 2008] Dean, J., & Ghemawat, S. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107-113, 2008.

[descLogic] Baader, F. (Ed.). The description logic handbook: theory, implementation, and applications.
Cambridge university press, 2003.

[DICCOF] DICCOF - http://www.disit.org/5531.

[Domingos, 2005] Domingos P.; "Mining Social Networks for Viral Marketing", IEEE Intelligent
Systems, Pages 80-82, Volume 20, Number 1, 2005.

[Domingos, 2005] Domingos P.; "Mining Social Networks for Viral Marketing", IEEE Intelligent
Systems, Pages 80-82, Volume 20, Number 1, 2005.

[Drummond, 1995] Drummond, W. J. Address matching: GIS technology for mapping human activity
patterns. Journal of the American Planning Association, 61(2), 240-251. 1995.

[Eaton et al., 2012] Eaton C.; Deroos D.; Deutsch T.; Lapis G., "Understanding Big Data: Analytics for
enterprise class Hadoop and streaming Data", Mcgraw-HillPubl.Comp., ISBN: 978-0071790536,
March 2012.

[ECLAP] ECLAP: http://www.eclap.eu.

[Europeana] Europeana Portal - http://www.europeana.eu/portal/.

Architecture and Knowledge Modelling for Smart City p. 251

[EUROVOC] http://eurovoc.europa.eu/.

[Ferrucci et al., 2010] Ferrucci D., Brown E., Chu-Carroll J., Fan J., Gondek D., Kalyanpur A. A., Lally
A., Murdock J. W., Nyberg E., Prager J., Schlaefer N., and Welty C. Building Watson: An
overview of the DeepQA project. AI Magazine, 31(3), 2010.

[Figueireido, Rodrigues and Vale, 2005] Figueireido V.; Rodrigues F.; Vale Z., "An Electric Energy
Consumer Characterization Framework Based on Data Mining Techniques", IEEE Transactions
on Power Systems, Pages 596-602, Volume 20, Number 2, May 2005.

[Gangemi et al., 2006] Gangemi, A., Catenacci, C., Ciaramita, M., & Lehmann, J. Modelling ontology
evaluation and validation (pp. 140-154). Springer Berlin Heidelberg. (2006).

[Gangemi, 2005] A. Gangemi, Ontology design patterns for semantic web content, in: Y. Gil, E. Motta,
R. Benjamins, M. Musen (Eds.), 4th International Semantic Web Conference, ISWC 2005, in:
Lecture Notes in Computer Science, vol. 3729, Springer, 2005, pp. 262–276.

[GDF] Graphic Data Files - http://www.iso.org/iso/catalogue_detail.htm?csnumber=54610.

[GoodRelation] Good Relation Ontology http://www.heppnetz.de/projects/goodrelations/.

[Gruber, 1993] T. R. Gruber, A Translation Approach to Portable Ontology Specification, Knowledge
Acquisition, Volume 5 Issue 2, p.199-220, 1993.

[Gupta et al., 2012] S.Gupta, P.Szekely, C.Knoblock, A.Goel, M.Taheriyan, M.Muslea, "Karma: A
System for Mapping Structured Sources into the Semantic Web", 9th Extended Semantic Web
Conference (ESWC2012).

[Hadoop Apache Project] Hadoop Apache Project - http://hadoop.apache.org/.

[Hanna, 2004] Hanna M., "Data Mining in the e-learning domain", Campus-Wide Information Systems,
Pages 29-34, Volume 21, Number 1, 2004.

[HSY] Helsinki Region Environmental Services Authority HSY:
http://www.hsy.fi/en/Pages/Default.aspx.

[Iaconesi and Persico, 2012] Iaconesi S.; Persico O., "The Co-Creation of the City, re-programming cities
using real-time user generated content", 1st Conference on Information Technologies for
Performing Arts, Media Access and Entertainment, May 2012.

[Isele and Bizer, 2013] R. Isele, C. Bizer. Active learning of expressive linkage rules using genetic
programming. Web Semantics: Science, Services and Agents on the World Wide Web 23 (2013):
pp.2-15.

[Jenny, 2014] Thomas Jenny, Smart Cities: Mission Control, http://xlgroup.com/fast-fast-
forward/articles/smart-cities-solve-urban-challenges, Oct. 2014.

[Karloff, Suri and Vassilvitskii, 2010] Karloff H.; Suri S.; Vassilvitskii S., "Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms", Pages 938-948, 2010.

[Kauppinen et al., 2011]Kauppinen, T.; Espindola, G. M. D. "Linked Open Science-Communicating,
Sharing and Evaluating Data, Methods and Results for Executable Papers". Procedia Computer
Science 4: 726. doi:10.1016/j.procs.2011.04.076. edit, 2011.

[Klyne and Carrol, 2006] Klyne, G., & Carroll, J. J. Resource description framework (RDF): Concepts
and abstract syntax, 2006.

[Komninos, 2002]Komninos N. Intelligent Cities: Innovation, knowledge systems and digital spaces,
London and New York, Taylor and Francis, Spon Press, 2002.

Architecture and Knowledge Modelling for Smart City p. 252

[Liguria, 2014] Liguria, Cti. La città digitale. Sistema nervoso della smart city: Sistema nervoso della
smart city. Vol. 44. FrancoAngeli, 2014.

[Linked Data Stars] Linked Open Data 5 Star: http://www.w3.org/DesignIssues/LinkedData.html.

[Liu, Biderman and Ratti, 2009] Liu L.; Biderman A.; Ratti C., "Urban mobility landscape: Real time
monitoring of urban mobility patterns", Proceedings of the 11th International Conference on
Computers in Urban Planning and Urban Management, 2009.

[LODClaud] the LOD cloud: http://lod-cloud.net/state, 2014.

[Mans et al., 2009] Mans R. S.; Schonenberg M. H.; Song M.; Van der Aalst W.M.P.; Bakker P.J.M.,
"Application of Process Mining in Healthcare - A Case Study in a Dutch Hospital", Biomedical
Engineering Systems and Technologies, Communications in Computer and Information Science,
page 425-438, Volume 25, Part 4, 2009.

[Manyika et al, 2011] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers. Big data: The next frontier for innovation, competition, and productivity. Technical report,
McKinsey Global Institute, 2011.

[MIIC-AVM] MIIC - AVM Real-time Services -
http://web.rete.toscana.it/eCompliance/portale/mostraRFC?idRev=758&idRfc=227.

[MIIC-DateX] MIIC - DATEX II Client Pull Service
http://web.rete.toscana.it/eCompliance/portale/mostraRFC?idRev=757&idRfc=226.

[Mislove, Gummandi and Druschel, 2006] Mislove A.; Gummandi K.P.; Druschel P., "Exploiting Social
Networks for Internet Search", Record of the Fifth Workshop on Hot Topics in Networks: HotNets
V, Pages 79-84, August 2006.

[Ngomo and Auer, 2011] A. Ngomo, S. Auer. LIMES: a time-efficient approach for large-scale link
discovery on the web of data. Proc. of the 22nd int. joint conf. on Artificial Intelligence, Vol.3.
AAAI Press, 2011.

[NIEM] NIEM - https://www.niem.gov/Pages/default.aspx.

[Obenshain, 2004] Obenshain M.K., "Application of Data Mining Techniques to Healthcare Data",
Infection Control and Hospital Epidemiology, Pages 690-695,Volume 25, Number 8, 2004.

[Ocha and Duval, 2006] Ochoa, X., & Duval, E. Quality Metrics for learning object Metadata. In
Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2006 (pp. 1004-1011). 2006.

[OSIM] http://www.disit.org/drupal/?q=node/5519.

[Osservatorio Trasporti] http://www501.regione.toscana.it/osservatoriotrasporti.

[OWL] OWL - http://www.w3.org/TR/owl2-overview/.

[Papailiou et al., 2013] Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., & Koziris, N.
H2RDF+: High-performance distributed joins over large-scale RDF graphs. In Big Data, 2013
IEEE International Conference on (pp. 255-263). IEEE. 2013, October.

[Piprani and Ernst, 2008] Piprani B. and Ernst D. A Model for Data Quality Assessment. On the Move to
Meaningful Internet Systems: OTM 2008 Workshops. Lecture Notes in Computer Science Volume
5333, 2008, pp 750-759.

Architecture and Knowledge Modelling for Smart City p. 253

[Powers, 2011] Powers, D.M.W. Evaluation from Precision, Recall and F-Measure to roc informedness,
markedness and correlation. Journal of Machine Learning Technologies 2 (1): 37–63. (February
27, 2011)

[Reed et al, 2012] D.A. Reed, D.B. Gannon, and J.R. Larus, "Imagining the Future: Thoughts on
Computing", Computer, vol. 45, no. 1, pp. 25-30, jan. 2012.

[RFC2616] RFC 2616 - HTTP/1.1 http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

[Rivals et al., 2012] Rivals E.; Philippe N.; Salson M.; Léonard M.; Commes T.; Lecroq T., "A Scalable
Indexing Solution to Mine Huge Genomic Sequence Collections", ERCIM News, Pages 20-21,
Number 89, April 2012.

[Roussey et al., 2011] Roussey, C., Pinet, F., Kang, M. A., & Corcho, O. An Introduction to Ontologies
and Ontology Engineering. In Ontologies in Urban Development Projects (pp. 9-38). Springer
London, 2011.

[Rusitschka, Eger and Gerdes, 2010] Rusitschka S.; Eger K.; Gerdes C., "Smart Grid Data Cloud: A
Model for Utilizing Cloud Computing in the Smart Grid Domain", 1st IEEE International
Conference of Smart Grid Communications, October 2010.

[SCAPE Project] SCAPE Project - http://scape-project.eu/.

[SCRIBE] Scribe - http://researcher.watson.ibm.com/researcher/view_project.php?id=2505.

[Semanco] Nemirovski, G., Nolle, A., Sicilia, Á., Ballarini, I., & Corado, V. Data integration driven
ontology design, case study smart city. In Proceedings of the 3rd International Conference on Web
Intelligence, Mining and Semantics(p. 43). ACM. 2013, June.

[Sesame] Sesame - http://www.openrdf.org/.

[Setnes et al., 2001] Setnes, M., Roubos, H. Compact and transparent fuzzy models and classifiers
through iterative complexity reduction. Fuzzy Systems, IEEE Transactions on, 9(4), 516-524, 2001.

[ShareAlike] Attribution-ShareAlike 3.0: https://creativecommons.org/licenses/by-sa/3.0/us/.

[Silvestri et al., 2012] Silvestri L., A. Bria, L. Sacconi, A. L. A. Mascaro, M. C. Pettenati, S. Bassini, C.
Cavazzoni, G. Erbacci, R. Turra, G. Fiameni, V. Ruggiero, P. Frasconi, S. Marinai, M. Gori, P.
Nesi, Re. Corradetti, G. Iannello, F. S. Pavone, "Projectome: Set up and testing of a High
Performance ComputationalInfrastructure for processing and visualizing neuro-anatomical
information obtainedusingconfocal ultra-microscopytechniques", Neuroinformatics 2012 5th
INCF Congress, September 2012.

[SKOS] SKOS - http://www.w3.org/2004/02/skos/.

[Smullyan, 1968] Smullyan, R. M. First-order logic (Vol. 21968). Heidelberg: Springer, 1968.

[Sonntag, 2009] Sonntag Daniel. Introspection and adaptable model integration for dialogue-based
question answering. In Proceedings of the 21st international jont conference on Artifical
intelligence, pages 1549–1554, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.,
2009.

[SSN] Semantic Sensor Network Ontology - http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.

[Starcity] Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M. L., & Tommasi, P.
STAR-CITY: semantic traffic analytics and reasoning for CITY. In Proceedings of the 19th
international conference on Intelligent User Interfaces (pp. 179-188). ACM. 2014, February.

[TimeBase] Time Base Ontology https://www.niem.gov/Pages/default.aspx.

Architecture and Knowledge Modelling for Smart City p. 254

[Valduriez, Pacitti, 2005] Valduriez P.; Pacitti E., "Data Management in Large-scale P2P Systems", High
Performance Computing for Computational Science Vecpar 2004 - Lecture Notes in Computer
Science, Volume 3402, 2005.

[W3C geo] Basic Geo (WGS84 lat/long) Vocabulary http://www.w3.org/2003/01/geo/.

[Waltinger et al., 2011] Waltinger U., Breuing A. and Wachsmuth I. Interfacing virtual agents with
collaborative knowledge: Open domain question answering using Wikipedia-based topic models.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence - IJCAI 2011,
Barce, 2011.

[Waltinger et al., 2013] Waltinger U., Tecuci D., Olteanu M., Mocanu V. and Sullivan S. Usi answers:
Natural language question answering over (semi-) structured industry data. In Muoz-Avila,
Hector and Stracuzzi, David J., editors, IAAI. AAAI, 2013.

[Wang et al.,2009] Wang, J., Lu, J., Zhang, Y., Miao, Z. and Zhou, B. Integrating Heterogeneous Data
Source Using Ontology. JOURNAL OF SOFTWARE, VOL. 4, NO. 8. 2009.

[Weiss et al., 2008] Weiss, C., Karras, P., & Bernstein, A. Hexastore: sextuple indexing for semantic web
data management. Proceedings of the VLDB Endowment, 1(1), 1008-1019. 2008.

[Wilkinson et al, 2003] Wilkinson, K., Sayers, C., Kuno, H. A., & Reynolds, D. Efficient RDF Storage
and Retrieval in Jena2. In SWDB (Vol. 3, pp. 131-150). 2003, September.

[Woolf, Baker and Gianchandani, 2010] Woolf B.P.; Baker R.; Gianchandani E.P., "Enabling
Personalized Education", Computing Community Consortium, Version 9, September 2010.

[XPATH] W3C - XML Path Language (XPath) http://www.w3.org/TR/xpath.

[Zaslavsky et al, 2013] Zaslavsky, A., Perera, C., & Georgakopoulos, D. Sensing as a service and big
data. arXiv preprint arXiv:1301.0159, 2013.

[Zenith] Zenith - http://www-sop.inria.fr/teams/zenith/.

[Zikopoulos, 2012] Paul Zikopoulos. (2012, March) IBM Big Data: What is Big Data Part 1 and 2.
[Online]. http://www.youtube.com/watch?v=B27SpLOOhWw [Accessed on: 2012-06-08].

[Zinterhof, 2012] Zinterhof P., "Computer-Aided Diagnostics", ERCIM News, Page 46, Number 89,
April 2012.

