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Detection of chemical signals both in insects and in vertebrates is mediated by soluble
proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate,
with still largely unknown mechanisms, specific chemoreceptors. The same proteins
are often found in structures where pheromones are synthesized and released, where
they likely perform a second role in solubilizing and delivering chemical messengers in
the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins
(OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs
(Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no
structural similarity with those of insects. We observed that in arthropods OBPs are strictly
limited to insects, while a few members of the CSP family have been found in crustacean
and other arthropods, where however, based on their very limited numbers, a function
in chemical communication seems unlikely. The question we address in this review is
whether another class of soluble proteins may have been adopted by other arthropods to
perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins
of the Niemann-Pick type C2 family could represent likely candidates and report the results
of an analysis of their sequences in representative species of different arthropods.

Keywords: odorant-binding proteins, chemosensory proteins, Niemann-Pick type C2 proteins, Insect olfaction,

basal hexapods, arthropod chemoreception

SOLUBLE BINDING PROTEINS IN DETECTION AND
DELIVERY OF SEMIOCHEMICALS
Odor detection is accomplished in vertebrates as in insects
through a complex and sophisticated sensory system making
use of both membrane-bound receptors (Buck and Axel, 1991;
Clyne et al., 1999; Vosshall et al., 1999) and soluble binding pro-
teins (Pelosi et al., 1981, 1982; Vogt and Riddiford, 1981). These
latter are commonly regarded as solubilizers and carriers of odor-
ants and pheromones, generally hydrophobic compounds, but in
recent times evidence has been provided in some insect species
for more specific and important roles. In particular, knock-
out experiments have demonstrated that an OBP of Drosophila
melanogaster, LUSH, is required for olfaction (Xu et al., 2005;
Laughlin et al., 2008), while behavior assays with Drosophila
mutants (Matsuo et al., 2007; Swarup et al., 2011) and with aphids
(Qiao et al., 2009; Sun et al., 2012a) have indicated that OBPs are
involved in semiochemical discrimination.

Odorant-binding proteins (OBPs) is the name designating
two structurally unrelated families of polypeptides abundantly
secreted into the nasal mucus of vertebrates and in the lymph
of chemosensilla in insects. OBPs of vertebrates contain 150-
160 amino acids (Bignetti et al., 1985; Pevsner et al., 1985;
Pelosi, 1994, 1996; Tegoni et al., 2000) and belong to the
superfamily of lipocalins (Flower, 1996, 2000), carrier proteins

folded in the typical β-barrel shape, with eight β-sheets and
one short segment of α-helix close to the C-terminus (Bianchet
et al., 1996; Tegoni et al., 1996). OBPs of insects (around
130–140 residues), instead (Vogt and Riddiford, 1981; Pelosi
et al., 2006; Vieira and Rozas, 2011; Leal, 2013), are made of six
α-helical domains assembled in a compact and stable structure
(Sandler et al., 2000; Tegoni et al., 2004). They are character-
ized by a pattern of six conserved cysteines paired into three
interlocked disulfide bridges (Leal et al., 1999; Scaloni et al.,
1999).

A third class of soluble binding proteins, named
Chemosensory Proteins (CSPs) is also found in olfactory
and gustatory organs of insects (McKenna et al., 1994; Pikielny
et al., 1994; Angeli et al., 1999; Wanner et al., 2004; Pelosi et al.,
2006; Vieira and Rozas, 2011). CSPs are around 100–120 residues
long and present a conserved pattern of four cysteines forming
two independent loops (Angeli et al., 1999). CSPs are also made
of α-helical segments, but assembled in a folding different from
that of insect OBPs (Lartigue et al., 2002; Tomaselli et al., 2006;
Jansen et al., 2007).

All three classes of soluble proteins contain hydrophobic bind-
ing pockets and, despite their structural differences, are believed
to perform similar roles in vertebrates and in insects (Pelosi
and Maida, 1990; Calvello et al., 2003). Figure 1 reports the
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FIGURE 1 | Three-dimensional structures of pig OBP (PDB: 1E06,

Vincent et al., 2000), Bombyx mori PBP1 (PDB: 1DQE, Sandler et al.,

2000), and Mamestra brassicae CSP2 (PDB: 1N8U, Campanacci et al.,

2003), representative examples of a vertebrate OBP, an insect OBP and

an insect CSP, respectively. Proteins of these three classes, despite
marked structural differences, perform similar roles of transport and
solubilization of semiochemicals and are extremely compact and stable.
Structures have been visualized using the Swiss-Model PDB Viewer (Guex
and Peitsch, 1997).

three-dimensional folding of a representative protein from each
of the three classes.

All three families of proteins, although generally associ-
ated with chemodetection, include members expressed outside
chemosensory organs.

In vertebrates this phenomenon appeared clear soon after the
discovery of the first OBP. In fact, it had already been known
for long time that mice and rats excrete small proteins into their
urine at concentrations of few milligrams per milliliter (Dinh
et al., 1965; Finlayson et al., 1965), but a reasonable expla-
nation for this large waste of energy was not proposed until
sequence information was obtained for the bovine OBP, the first
to be discovered, which showed high similarity with urinary pro-
teins (Cavaggioni et al., 1987; Cavaggioni and Mucignat-Caretta,
2000). Some proteins were found both in the nasal mucosa
of the mouse and in the urine, with the only difference that
when secreted into urine they were loaded with species-specific
pheromones (Bacchini et al., 1992; Robertson et al., 1993). More
examples of mammalian OBPs involved in semiochemical deliv-
ery are the boar salivary lipocalins (Marchese et al., 1998; Loebel
et al., 2000; Spinelli et al., 2002), the hamster aphrodisin (Singer
et al., 1986; Vincent et al., 2001) and the horse sweat lipocalin
Equ-c1 (D’Innocenzo et al., 2006). In addition, a lipocalin related
to OBPs, the apolipoprotein D, was reported in human sweat,
complexed with a volatile fatty acid (Zeng et al., 1996). In all
these cases OBPs have been found complexed with pheromones,
strongly supporting a function in semiochemical delivery. While
it is reasonable to assume that the same or similar proteins
might be involved in the dual role of detecting and releasing
chemical signals, functions unrelated to chemical communica-
tion would appear less obvious. However, if we consider the
phenomenon under a wider perspective, we realize that the super-
family of lipocalins, to which vertebrate OBPs belong, includes
many different members endowed with diverse functions. In fact,
all lipocalins, despite major differences in amino acid sequences,
share a conserved architecture (Flower, 1996; Flower et al., 2000).
The reason for such versatility of lipocalins is to be found in
their extremely stable and compact structure, which allowed

adaptation to various uses in different and often challenging
conditions.

In insects, a similar phenomenon has only been described in
recent years, but several pieces of evidence have been rapidly accu-
mulating in different species. Both OBPs and CSPs have been
detected in pheromone glands or in reproductive organs, where
they might assist releasing of semiochemicals into the environ-
ment. Typical examples are the CSPs found in the pheromone
glands of Mamestra brassicae (Jacquin-Joly et al., 2001), Bombyx
mori (Dani et al., 2011) and Agrotis ipsilon (Gu et al., 2013), as well
as the OBP10 of Helicoverpa armigera and H. assulta (Sun et al.,
2012b), the OBP22 of Aedes aegypti (Li et al., 2008) and the CSP91
of Locusta migratoria, produced in the male seminal fluid and
transferred to the female, likely with a bound pheromone, dur-
ing mating (Ban et al., 2013; Zhou et al., 2013). Several OBPs and
CSPs are also expressed in the mandibular glands of the honey
bee (Iovinella et al., 2011). Other members of both classes seem
to be involved in roles completely different from chemical com-
munication. It is noteworthy that the first member of the CSP
family, named p10, was discovered in a context not related to
chemical communication, as a protein involved in limb regener-
ation in the cockroach (Nomura et al., 1992; Kitabayashi et al.,
1998). Other representative examples of CSPs performing roles
unrelated to chemical communication are the CSP5 of the honey-
bee, only found in ovaries and eggs and required for development
of the embryo (Maleszka et al., 2007), and the CSP4 of Helicoverpa
armigera and H. assulta, present in high concentration in the
lumen of the proboscis and likely acting as a surfactant to help
sucking (Liu et al., 2014a). Recently, CSPs have been also indicated
as possible scavengers for insecticides, thus providing insects with
a sort of resistance to their lethal effects (Liu et al., 2014b; Xuan
et al., 2014). Some OBPs have also been related to roles other
than chemoreception: OBP56a is expressed in the oral disk of
the house fly Phormia regina and has been reported as a fatty
acid solubilizer (Ishida et al., 2013). Other examples are two “tan-
dem OBPs” (resulting from two different OBPs joined by a bridge
of few amino acids) of the mosquito Aedes aegypti. The first is
the salivary protein D7r4, which is involved in antiinflammatory
processes (Calvo et al., 2009), the second is the OBP45, reported
in the ovaries and eggs with a putative function in reproductive
mechanisms responsible for oocyte maturation (Costa-da-Silva
et al., 2013; Marinotti et al., 2014).

Figure 2 lists representative cases of OBPs (both in verte-
brates and in insects) and CSPs utilized for tasks other than
chemodetection.

As observed with lipocalins, compact folding and stability are
the characteristics on the basis of such diverse uses of insects
OBPs and CSPs, resulting in extreme refractivity to heat, chemi-
cals and proteolytic enzymes (Paolini et al., 1999; Ban et al., 2002;
Schwaighofer et al., 2014). Besides, they all present hydrophobic
pockets for small and medium size organic chemicals. Therefore,
it is reasonable to think that such stable and efficient binding
proteins have been utilized for different tasks in various organs,
wherever there was need to transport hydrophobic chemicals in
aqueous media or to protect some compounds from degrada-
tion or else to assure a gradual release of semiochemicals in the
environment.
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FIGURE 2 | OBPs and CSPs involved in non-sensory functions.

Mammalian OBPs have been found in secretions involved in the delivery
of semiochemicals. In several cases, when isolated from such biological
fluids, OBPs carry species-specific pheromones. Insect OBPs and CSPs
have been reported both in pheromone glands and in reproductive organs,
where they likely solubilize and bind specific pheromones. Moreover,
members of both classes have been reported in other tissues and shown
to be involved in functions unrelated to chemical communication. (1)

Finlayson et al., 1965; Bacchini et al., 1992; (2) Dinh et al., 1965; (3) Singer
et al., 1986; (4) D’Innocenzo et al., 2006; (5) Mastrogiacomo et al., 2014;
(6) Marchese et al., 1998; (7) Zeng et al., 1996; (8) Nomura et al., 1992;
Kitabayashi et al., 1998; (9) Zhou et al., 2013; (10) Jacquin-Joly et al., 2001;
(11) Gu et al., 2013; (12) Dani et al., 2011; (13) Sun et al., 2012b; Liu et al.,
2014a; (14) Iovinella et al., 2011; Maleszka et al., 2007; (15) Ishida et al.,
2013; (16) Calvo et al., 2009; Costa-da-Silva et al., 2013; Marinotti et al.,
2014; Li et al., 2008.

Although such high versatility is associated with all three
classes of binding proteins, we can suggest that the struc-
ture of insect OBPs is probably the least adaptable to per-
form different functions, based on the low number of insect

OBPs so far reported to perform non-chemosensory func-
tions, with respect to CSPs and vertebrate OBPs. In fact, the
folding of insect OBPs is strongly constrained by its three inter-
locked disulfide bridges, as opposed to more flexible CSPs,
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which possess two separate bridges, and to vertebrate OBPs,
whose β-barrel can swell to a relatively large extent, thus
offering diverse structural solutions within a similar folding
motif.

An important consequence of this phenomenon for dis-
cussing the data that will be presented further on is that
sequence similarity alone or the assignment of a new member
to one of the three families of binding proteins does not nec-
essarily imply an involvement in chemosensing or in chemical
communication.

This review focuses on soluble olfactory proteins of insects
with a broader view across all arthropods, in the attempt to
outline their possible evolution.

OBPs AND CSPs ACROSS EVOLUTION OF INSECTS AND
ARTHROPODS
Given the structural differences between vertebrate OBPs, insects
OBPs and CSPs, it is clear that these three families of pro-
teins followed independent evolutionary paths. In particular,
it would be of interest to trace down the onset of insect

FIGURE 3 | Phylogenetic tree of OBPs from selected species of insects

and basal hexapods. Among arthropods, OBPs were only found in
Hexapoda. Species and color codes are as follows. Red: Zygentoma (Taur:
Thricolepisma aurea); green: Collembola (Fcan: Folsomia candida; Ocin:
Orchesella cincta); magenta: Hemiptera (Apis: Acyrthosiphon pisum); brown:
Coleoptera (Tcas: Tribolium castaneum); blue: Lepidoptera (Bmor: Bombyx
mori); orange: Hymenoptera (Amel: Apis mellifera); black: Diptera (Agam:

Anopheles gambiae). Sequences were aligned with the on-line software
Clustal-W, using the following parameters. For Pairwise alignment: Protein
Weight Matrix: Gonnet; Gap open: 10; Gap extension: 0.1. For Multiple
sequence alignment: Protein Weight Matrix: Gonnet; Gap open: 10; Gap
extension: 0.2; Gap distance: 5; Clustering: NJ. Phylogenetic trees were
visualized with the software Fig Tree (http://tree.bio.ed.ac.uk/software/
figtree/). Accession numbers are taken from Vieira and Rozas, 2011.
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OBPs and CSPs and possibly identify their likely progenitor
genes.

So far, insect OBPs have only been described in insects,
while some CSPs have been reported in other arthropods (Forêt
et al., 2007; Iovinella et al., 2013), although their involvement
in chemical communication in non-insect species has not been
demonstrated.

Therefore, we have searched for members of these two classes
of proteins in basal hexapods (Giribet et al., 2004) and in other
arthropods. For those species whose genome has been sequenced

we are in the condition of stating whether or not OBPs and
CSPs exist and to report the number of their genes. For other
species, our search was performed by blasting the EST database
using as queries the sequences of species phylogenetically (Giribet
and Edgecombe, 2012) as close as possible to those under
investigation.

ODORANT-BINDING PROTEINS IN INSECTS AND ARTHROPODS
OBPs have been reported in a large number and variety of
insect species (Vieira and Rozas, 2011). The number of their

Table 1 | List of species examined in this work with the number of OBPs, CSPs, and NPC2s so far detected in the databases.

Taxon Order Species OBP CSP NPC2

TARDIGRADA

Hypsibius dujardini – – 4
ONYCHOPHORA

Peripatopsis sedgwicki – – 1
Epiperipatus sp. – – 1

EUCHELICERATA

Arachnida Xiphosura Limulus polyphemus – – 2
Tetrapulmonata, Araneae Latrodectus hesperus – – 1

Loxosceles laeta – – 1
Scorpiones Hottentotta judaicus – – 1
Acari Ixodes scapularis – 1 14

MYRIAPODA

Diplopoda Julida sp. – 2 –
Archispirostreptus gigas – 2 –

CRUSTACEA

Branchiopoda Artemia franciscana – 1 4
Daphnia pulex 1 12
Triops cancriformis – 2 3

HEXAPODA

Entognatha Diplura Campodea fragilis – – 3
Protura Acerentomon franzi – – 2
Collembola Folsomia candida 4 1 4

Anurida maritima – 1 6
Onychiurus arcticus – – 11
Cryptopygus antarcticus – 2 –
Orchesella cincta 2 – –

Ectognatha (Insecta) Archeognatha Lepismachilis y-signata – 2 –
Zygentoma Thricolepisma aurea 1 1 –
Orthoptera Locusta migratoria 22 70 2
Hemiptera Acyrthosiphon pisum 16 12 2
Coleoptera Tribolium castaneum 50 19 9
Lepidoptera Bombyx mori 45 16 8
Hymenoptera Apis mellifera 21 6 5

Megachile rotundata 7 7 4
Nasonia vitripennis 90 10 5

Diptera Drosophila melanogaster 52 4 7
Culex quinquefasciatus 109 27 13
Anopheles gambiae 69 8 6

In species where the genome has been published, these figures can be considered as more or less final, in other species their numbers could increase as more

information will become available. We have adopted the classification reported in Figure 5 of Giribet and Edgecombe (2012), who suggest that Mandibulata include

Myriapoda, Crustacea, and Hexapoda.
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genes in species that had their genome sequenced ranges from
a dozen in some ant species (Smith et al., 2011) to more
than hundred in some mosquitoes (Manoharan et al., 2013).
OBPs are extremely divergent in their sequences and identi-
cal amino acids between members of the same species, as well
as between species, may be even lower than 10%. The cor-
rect assignment of a sequence to the family of OBPs is mainly
based on the conserved pattern of six cysteines, determining
with their three interlocked bridges the folding and the stabil-
ity of these proteins. However, OBPs with four cysteines (C-
minus OBPs) or with a larger number of such residues (C-plus
OBPs) have been reported in many species (Zhou et al., 2004).
Based on such criteria and data, the assignment of a new pro-
tein to the class of OBPs can be performed with reasonable
confidence.

Therefore, using BLAST search tools, we have looked
for the presence of OBPs in basal hexapods and in other

arthropods. In particular, we have searched protein databases,
nucleotide collections and EST sequences in the following groups:
Collembola, Diplura, Protura, Archaeognatha, and Zygentoma.

Our search only produced a total of 7 sequences in two species
of Collembola, and a single sequence in a Zygentoma species,
while we could not detect any gene similar to OBPs in the other
groups.

A similar search could not yield any sequence recognizable
as OBP in other arthropods, namely Crustacea, Myriapoda, and
Chelicerata, as well as in the sister groups Onychophora and
Tardigrada. In particular, we used as templates the OBPs of
Locusta migratoria, Acyrthosiphon pisum, Bombyx mori, as well as
those found in basal hexapods as part of this work. As for some of
the species under analysis, such as Daphnia pulex, Ixodes scapu-
laris, and Varroa destructor, partial or complete genome infor-
mation is available, we can reasonably assume that the class of
proteins defined as “insect OBPs” is only found in hexapods. The

FIGURE 4 | Phylogenetic tree of CSPs from selected species of insects

and other arthropods. Apart from Hexapoda, members of the CSP family
have also been found in species of Euchelicerata, Myriapoda, and
Crustacea. Species and color codes are as follows. Violet: Euchelicerata
(Isca: Ixodes scapularis) and Myriapoda (Jul: Julida sp.; Agig:
Archispirostrepsus gigas); red: Crustacea (Afra: Artemia franciscana; Dpul:
Daphnia pulex; Tcan: Triops cancriformis); green: Collembola (Fcan:
Folsomia candida; Amar: Anurida maritima; Cant: Cryptopygus antarcticus;

Ocin: Orchesella cincta), Archaeognatha (Lysi: Lepismachilis y-signata) and
Zygentoma (Taur: Thricolepisma aurea); magenta: Hemiptera (Apis:
Acyrthosiphon pisum); brown: Coleoptera (Tcas: Tribolium castaneum);
blue: Lepidoptera (Bmor: Bombyx mori); orange: Hymenoptera (Amel: Apis
mellifera); black: Diptera (Dmel: Drosophila melanogaster, Agam:
Anopheles gambiae). Sequences were aligned and trees were visualized as
in Figure 2. Accession numbers are taken from Vieira and Rozas (2011) or
are reported in Table S1.
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few OBP genes detected in basal hexapods, such as Collembola
and Zygentoma, indicate that OBPs are present since the very
first differentiation of the Hexapoda. How these more efficient
proteins originated is still unknown, as we were not able to find
sequences that might appear as progenitors in other species of
arthropods.

Figure 3 reports a phylogenetic tree built with all the OBPs
of selected insect species among those whose genome is avail-
able, together with the few members found in Collembola and
Zygentoma. More information on the number of OBPs in each
species can be found in Table 1. Although the sample of sequences
relative to basal hexapods is too small to allow any conclu-
sion, nevertheless we can observe that the five sequences of the
collembolan Folsomia candida exhibit a wide divergence, as is the
case with other insects OBPs, indicating that their differences
can possibly cope with the diversity of semiochemicals in the
environment.

CHEMOSENSORY PROTEINS IN INSECTS AND ARTHROPODS
Chemosensory proteins are better conserved than OBPs across
insect species and can be found in several other arthropods,
including Crustacea, Myriapoda, and Euchelicerata. With respect
to OBPs, CSPs are in general more widely expressed in differ-
ent parts of the body, suggestive often of nonspecific functions.
As already observed for OBPs, also the number of CSP genes
in different species of insects is highly variable, from as few as
four in D. melanogaster (Vieira and Rozas, 2011) to at least 70
in L. migratoria (Zhou et al., 2013). Although proteins of both
classes, owing to their successful folding and stability, are uti-
lized for different tasks besides chemical communication, it is
true that most of the studies on OBPs have been associated with
chemoreception, while often CSPs have been reported in connec-
tion with other physiological events. The exceptional versatility
of CSPs might be related to their high capacity of accepting
ligands of different sizes. At least in one case, X-ray crystallog-
raphy has demonstrated that a CSP can swell to a large extent
and bind three molecules of 12-Br-dodecanol (Campanacci et al.,
2003). The same adaptability is probably the structural rea-
son why CSPs have been adopted in more than one species
as scavengers for insecticides of largely different sizes, such as
avermectin (Xuan et al., 2014) and thiametoxam (Liu et al.,
2014b).

Given such wide repertoire of functions in which CSPs can be
involved, it is more difficult to track the use of these proteins in
chemodetection across arthropods. To provide a comprehensive
picture of CSPs, a phylogenetic tree built on the sequences from
selected insect species and all those found so far in other arthro-
pods is reported in Figure 4. More detailed data are provided in
Table 1.

As a matter of fact, genes encoding CSPs have been found in
arthropods other than insects (Pelosi et al., 2006; Zhou et al.,
2006), but it would be hard to state that these proteins take the
place of OBPs in those species. In fact, no more than one or
two sequences have been detected in each species, even when,
as in the case of Daphnia pulex, full genomic information is
available. It would be more reasonable to link the presence of
these CSPs to other functions, such as development. This view

is also suggested by the fact that all CSPs of basal hexapods
and non-insect arthropods, with the only exception of the sin-
gle sequence of I. scapularis, cluster in the same large group,
together with CSP5 of the honeybee, a protein only found
in ovaries and eggs and shown, using experiments of RNA
interference, to be required for a correct development of the
embryo (Maleszka et al., 2007). Another few insect CSPs, of
so far unknown functions, are found in the same branch of
the tree; it would be tempting to speculate that perhaps they
could also be involved in development or other roles. On the
other hand, the single CSP of I. scapularis, so far identified,
clusters with three members of the mosquito A. gambiae (SAP1-
SAP3) specifically expressed in antennae (Mastrobuoni et al.,
2013) and reported to bind several odorants (Iovinella et al.,
2013).

Taken together, the information available so far suggests that a
role of CSPs in chemodetection, similar to that reported for OBPs,
can only be recognized in insects.

Therefore, while insects make use of both OBPs and CSPs
in chemical communication, we are left with no candidates for
analogous roles in other arthropods.

FIGURE 5 | Phylogenetic tree of NPC2 proteins from selected species

of vertebrates. These proteins are highly conserved in vertebrates and only
a single gene is present in each species. Their role is to bind and transport
cholesterol and other lipids. Species and color codes are as follows. Green:
Reptiles (Acar: Anolis carolinensis; Amis: Alligator mississippiensis); blue:
Fishes (Trub: Takifugu rubripes); red: Birds (Ggal: Gallus gallus); black:
Mammals (Mmus: Mus musculus; Fcat: Felis catus; Clup: Canis lupus;
Btau: Bos taurus; Ecab: Equus caballus; Oari: Ovis aries; Amel: Ailuropoda
melanoleuca; Lafr: Loxodonta africana; Bacu: Balaenoptera acutorostrata;
Tman: Trichechus manatus; Hsap: Homo sapiens). Sequences were aligned
and trees were visualized as in Figure 2. Names of sequences include
accession numbers.
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A NEW PUTATIVE CLASS OF TRANSPORT PROTEINS FOR
SEMIOCHEMICALS
To identify suitable candidate proteins in other arthropods which
might perform the roles of OBPs and CSPS in Hexapoda chemical
communication, we searched among the available databases for
other families of binding proteins using the following criteria and
guidelines:

(a) there should be a sufficient number of genes in the same
species (probably at least a dozen, taking as a reference the 12
OBPs of some ant species), to ensure recognition of complex
chemical stimuli using a “combinatorial code” (Malnic et al.,
1999);

(b) similarly to OBPs and CSPs, these proteins should be small
and soluble;

FIGURE 6 | Similarity tree of Npc2s from selected species of insects and

other arthropods. Phylogenetic tree of NPC2 proteins from selected species
of insects and other arthropods, as well as “sister groups.” Species and color
codes are as follows: magenta: Tardigrada (Hduj: Hypsibius dujardini) and
Onychophora (Psed: Peripatopsis sedgwicki; Epip: Epiperipatus sp.); violet:
Euchelicerata (Lpol: Limulus polyphemus; Lhesp: Latrodectus hesperus; Llae:
Loxosceles laeta; Hjud: Hottentotta judaicus; Isca: Ixodes scapularis); red:
Crustacea (Afra: Artemia franciscana; Dpul: Daphnia pulex; Tcan: Triops
cancriformis); green: Collembola (Acfra: Acerentomon franzi; Fcan: Folsomia

candida; Amar: Anurida maritima; Oarc: Onychiurus arcticus); light green:
Orthoptera (Lmig: Locusta migratoria); light blue: Hemiptera (Apis:
Acyrthosiphon pisum); brown: Coleoptera (Tcas: Tribolium castaneum; Cjap:
Camponotus japonicus; Cflo: Camponotus floridanus); blue: Lepidoptera
(Bmor: Bombyx mori); orange: Hymenoptera (Amel: Apis mellifera; Mrot:
Megachile rotundata; Nvit: Nasonia vitripennis); black: Diptera (Dmel:
Drosophila melanogaster, Cqui: Culex quinquefasciatus; Agam: Anopheles
gambiae). Sequences were aligned and trees were visualized as in Figure 2.
Names of sequences include accession numbers.
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(c) their structure should include a hydrophobic binding pocket;
(d) being in contact with the external environment, they should

be extremely stable to temperature, chemical agents and
proteolysis, as much as OBPs and CSPs are.

This last characteristic brings an important consequence which
greatly helped our search: small stable proteins are often pow-
erful allergens, as they can reach the blood stream unchanged
or slightly affected and trigger immune responses. It is well-
known that most lipocalins are allergens, the best examples
being β-lactoglobulin (Mäntyjärvi et al., 2000) and several mam-
malian OBPs, such as Equ-c1, highly abundant in horse sweat
(D’Innocenzo et al., 2006). In fact, quite a number of proteins,
first reported as allergens, turned out to be members of the
mammalian OBP family.

Based on these considerations, we searched for families of
allergens presenting a small size and compact structure. We first
analyzed the genome of the tick I. scapularis and found 14
sequences classified as Nieman-Pick proteins, type C2 (NPC2),
which could fulfill our criteria.

NPC2 IN VERTEBRATES
This family of proteins has been widely studied in vertebrates,
where they are associated with cholesterol and lipid binding and
trafficking (Storch and Xu, 2009). A search through the databases
has returned only a single sequence per species of mammals
and other vertebrates. Figure 5 reports a phylogenetic tree of
NPC2 from representative vertebrates. Another characteristic of
NPC2 of vertebrates is their high conservation across species,
with identity values higher than 75% between mammalians and

around 55–70% between mammals and other vertebrates. This is
hardly surprising if their function is the same in all species, mainly
to bind cholesterol and lipids.

NPC2 IN ARTHROPODS
During the course of our search, a paper reporting the expres-
sion of a member of the NPC2 family in the antennae of the
ant Camponotus japonicus (Ishida et al., 2014), supported our
hypothesis that such proteins could be involved in chemodetec-
tion.

Our analysis through the databases of arthropod proteins and
genes, using as a template both our previously found 14 sequences
of I. scapularis, as well as that of C. japonicus, returned few genes
for each species. Figure 6 reports a phylogenetic tree of the NPC2
sequences found in representative insect species and all of those
so far found in other arthropods, including the sister groups
Tardigrada and Onychophora. We can observe that the number
of these proteins in each species of insects is variable, between 2
and 13 in the species where genome information is available. To
verify whether these genes were actually expressed at the protein
level, we searched through the results of our previous proteome
projects (Dani et al., 2011; Iovinella et al., 2011; Mastrobuoni
et al., 2013; Zhou et al., 2013), as well as those published by other
groups (Chan et al., 2006, 2011, 2013; Sirot et al., 2008; Baer et al.,
2009; Swarup et al., 2011). We found that four of the five genes of
A. mellifera are expressed at the protein level, but only two in the
antennae (acc. no. XP_624310; XP_001120140). The products of
all these four genes have been detected in several different tissues
and organs from individuals of queens, drones and workers, most
of them not involved in chemical communication. Moreover, we

FIGURE 7 | Three-dimensional structures of bovine (PDB ID: 2HKA) and

Camponotus japonicus NPC2 (PDB ID: 3WEA), and model of Ixodes

scapularis NPC2 (acc. no. EEC00381), built on the bovine NPC2 as a

template. The model was obtained using the on-line software
“Swiss-Model” (Arnold et al., 2006) and visualized using the Swiss-Model
PDB Viewer (Guex and Peitsch, 1997).
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could not find any of the NPC2 proteins in the antennae nor
in other examined tissues of B. mori, A. gambiae, L. migratoria,
A. aegypti, and D. melanogaster, as far as reported in the above
cited papers.

In other arthropods, apart from the 14 sequences of I. scapu-
laris we found 12 genes encoding NPC2 proteins in Daphnia
pulex and 11 in the collembolan Onychiurus arcticus, besides
fewer members in other basal hexapods (Table 1). Orthologs
of these proteins also are present in related species, such as
I. ricinus, D. magna and others, but for better clarity we

prefer to limit the number of sequences reported in Figure 6
and Table 1 to those of selected species. We also identified
4 sequences in the tardigradan species Hypsibius dujardini, 3
in Limulus polyphemus (Xiphosura) and one in each of two
species of Onychophora, Peripatopsis sedgwicki and Epiparipatus
sp. As these data are based on very limited sequence informa-
tion for all these species (except for I. scapularis and D. pulex,
whose genome projects have been published), the actual number
of NPC2 expressed in each of them could reasonably be
higher.

FIGURE 8 | Overview of OBPs, CSPs and NPC2 genes in

arthropods and sister groups. Taxa are reported in capital letters,
Orders in sentence case. Sizes of the dots indicate the maximum

number of genes found in each species of the same group (small:
1–2; medium: 3–10; large: >10). Detailed information is reported in
Table 1.
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THREE-DIMENSIONAL STRUCTURE OF NPC2
The folding of several NPC2 proteins of vertebrate has been
solved. It is a very compact and conserved structure resem-
bling a sort of cylindrical basket made of β-sheets and enclosing
the binding cavity for cholesterol and other lipids (Figure 7).
It reminds in some way of the β-barrel motif of vertebrate
OBPs and more in general of lipocalins. Curiously, NPC2 pro-
teins present a conserved motif of six cysteines paired in three
disulfide bridges, similarly to insect OBPs, although this might
be no more than a coincidence. Figure 7 also reports a model
of one of I. scapularis proteins, built on the structure of the
bovine member (PDB ID: 2HKA), together with the struc-
ture of C. japonicus NPC2 (PDB ID: 3WEA, Ishida et al.,
2014). The entrance to the cavity is gated by a number of
amino acids (V59, V64, F66, Y100, P101, I103) conserved or
replaced by very similar residues in most of the 14 sequences of
I. scapularis. These residues are shown in Figure 7. The bind-
ing pocket in the model of the tick protein, as in the structure
of the bovine one, is lined with a large number of hydrophobic
residues.

CONCLUDING REMARKS
In our analysis of soluble proteins likely to be involved in chemical
communication across evolution, as summarized in Figure 8, we
have found that:

1. OBPs are present in all species of insects so far investigated,
including the most primitive ones, but are completely absent
in non-insect arthropods.

2. CSPs are more widely expressed and seem to have appeared
earlier than OBPs during evolution. In fact, apart from
insects, members of this family have been reported in
Crustacea, Myriapoda, and Euchelicerata. However, in these
groups the small number of genes in each species does not
seem to support a function in chemoreception and other
roles could be performed by CSPs in non-insect arthro-
pods.

3. We propose that in non-insect arthropods proteins of the
NPC2 family might fulfill the role of semiochemical carrier
performed by OBPs and CSPs in insects. These proteins are
small, soluble and secreted. They present a compact fold-
ing resembling under certain aspects the β-barrel of ver-
tebrate OBPs with a binding pocket lined by hydrophobic
residues.

4. The relatively large number of NPC2 proteins found in
some arthropods and their wide differentiation within the
same species suggest that they may have evolved to play
a function in binding and discrimination of a variety of
semiochemicals.

Certainly the account of soluble proteins of chemoreception in
arthropods we have presented in this summary is still fragmentary
and incomplete. The fast developing techniques of genome and
trascriptome sequencing, as well as proteomic tools, will provide
in the near future the necessary information to fill all the gaps and
contribute to complete the complex picture of different soluble
proteins in chemical communication.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/journal/10.3389/fphys.
2014.00320/abstract
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