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Preface

The approximate solution of Maxwell’s equations exploiting Numerical Tech-
niques is known as Computational ElectroMagnetics (CEM). CEM techniques
have been available for close on four decades now, and they currently form an in-
valuable part of current RF, antenna and microwave engineering practice. CEM
is a multi-disciplinary field: its core disciplines are electromagnetic theory and
numerical methods, but for its practical implementations, geometric modelling,
computer science and algorithms are important. The applications of CEM are
many, and include antennas, biological EM effects, medical diagnosis and treat-
ment, electronic packing and high-speed circuits, microwave devices, monolithic
microwave integrated circuits, materials, avionics, communications, radars and
imaging, surveillance and many others.

Before the advent of high-speed computers, it was advantageous to expend
considerable effort, recurring to elaborate mathematics, to manipulate solutions
analytically into a form which minimized the subsequent computational effort.
By these methods, the solution of the electromagnetic field inside a complex
device under design can be a very lengthy process. Indeed, it is often the case
that no closed form solution is possible without making drastic simplifying as-
sumptions: as a consequence of these assumptions, the ensuing solution cannot
be completely reliable and defeats the purpose of the analysis, which is to de-
liver an accurate design. It is now often more convenient to use methods that
are analytically simple, but require large amount of computation; furthermore,
many problems of practical interest can be solved only by the use of such meth-
ods. Because of the great speed and storage capabilities of modern computers,
almost any problem of linear analysis can be solved to some degree of accu-
racy. Although these schemes are known as approximation methods, the term
is misleading, since it is possible to increase the accuracy as much as desired, at
some additional computing cost. These digital approximate solutions may be
less accurate than the closed form solutions from classical analysis for simple
problems shapes such as circles and rectangles (which rarely exist in the real
design environment). However, in real world problems, that involve complex ge-
ometries and electromagnetic configurations, numerical schemes yield far more
accurate solutions than those possible by classical analysis, in view of the latter
methods’ above mentioned dependence in simplifying assumptions. However,
the widespread adoption of computational methods to complement the tradi-
tional tools of analysis and measurement has to be considered with caution,
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since in some situations codes are being applied by users unfamiliar with the
basic formulations underlying them, and not infrequently to problems for which
the codes were not designed.
The present work is focused on two different applications of numerical tech-
niques for Computational Electromagnetics: numerical optimization and full-
wave techniques. The thesis structure is the following:

• Part I is focused on the Multi-Objective Taguchi optimization Method
(MO-TM) for electromagnetics. In Chap. 1 foundations of numerical op-
timization will be presented, while Taguchi’s Optimization Method, in its
single- and multi-objective implementation, will be illustrated in Chap. 2.
Finally in Chap. 3 the algorithm will be applied to a series of test problems
and real world engineering design situations.

• Part II is focused on a Method of Moments (MoM) acceleration via ASM-
MBF for antenna arrays. Chap. 4 presents the Method of Moments, and
the proposed implementation is in Chap. 5. Array Scanning Method-
Macro Basis Function acceleration will be presented in Chap. 6 . Finally
in Chap. 7 the code and its accelerated version will be applied to a series
of computational benchmarks.
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Chapter 1

Numerical Optimization

Designing an electronic system is an engineering task which requires the satis-
faction of a given set of specifications, or constraints, over the system behaviour.
For example, in a waveguide bandpass filter, in-band ripple and out-band re-
jection are typical requirements, while the overall length of the device might
be constrained to be smaller than a given length; in antenna design, the ra-
diation pattern is often required to comply to a mask, or to several masks in
multi-beam array design, while keeping the antenna geometry simple. There
is a limited number of analytic synthesis techniques leading from specifications
to design directly, and these are usually limited to very simple and particular
problems, usually with limited applications. When an analytic synthesis tech-
nique is not available, the experience of the designer is fundamental in driving
the whole process. If it is possible to express the compliance of a given system
to the requirements in a mathematical form giving a measure of how much it is
far from compliance, then it would be possible to reach a satisfactory the design
by seeking for the minimum of such a function, which is usually referred to as
cost or objective function. If it is more natural for a given problem to define a
function to be maximized, rather than minimized, it is then more appropriate
to refer to the function as to a fitness function. A whole branch of mathematics,
optimization, is devoted to seeking for the minimum (or the maximum) of a cost
(or of a fitness) function. One of the advantages of optimization techniques is
that they are completely general methods, unrelated to the real system to be
designed, and which can hence be applied to any design problem.

Optimization is something sought for since long: Fermat and Lagrange pro-
posed calculus-based formulas for finding optimum points, while Newton, Gauss
and Cauchy proposed iterative techniques for moving towards an optimal value.
Being most of the optimization techniques iterative, they were a challenging
task to perform without a computer. Indeed the first applications of optimiza-
tion techniques to real problems are dated back to world war II [1], [2]. It was
only after the advent of digital computers, which enabled at the same time the
implementation of optimization algorithms and the accurate simulation of com-
plex systems for an efficient evaluation of the cost function value associated to
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1. Numerical Optimization

a given design, that optimization began to be widely used in engineering.
The first techniques to be devised were deterministic and local optimizations.

Deterministic implies that, given a starting search point, algorithms always
follow the same path to the same optimal point; they are local, as the path leads
to the closest minimum. The most popular of these deterministic techniques are
gradient and conjugate based methods [3]–[5], where the minimum is sought by
evaluation, or approximation, of the gradient of the function at the test point,
and iteratively moving towards the direction in which the function decreases.
Finding just the local minimum, i.e. the one close to the initial guess, is a poor
strategy; a more interesting approach is finding the global minimum, i.e. the
best possible solution in the search space. Obviously, global optimization is
much harder than local, but its relevance is much greater. Global optimization
techniques can be further divided into deterministic and stochastic techniques:
global deterministic techniques [6], [7] do exist, but stochastic techniques are the
most popular. Among them, evolutionary algorithms (EA) [8], [9], capable of
mimicking nature behavior have proven to be very effective and efficient: a non-
exhaustive, but detailed, list of algorithms includes Genetic Algorithms (GA)
[10], Particle Swarm Optimization (PSO) [11], [12], simulated annealing [13],
[14], tabu search [15]–[17], random search [18], [19], ant colony [20], invasive
weed [21], [22], bacteria foraging [23] and others. Stochastic techniques, as
opposed to deterministic ones, presents some sort of randomness somewhere in
the algorithm: this brings the advantage of being able to have a relatively simple
technique, yet able to perform an efficient search throughout the whole design
variables’ domain. An important point of stochastic technique is that, due to
randomness, two consecutive runs of the algorithm over the same function to
be optimized generally lead to a different optimal point; moreover, a possible
drawback in stochastic algorithms is that they usually require a higher number
of cost function evaluations with respect to deterministic ones.

A second broad division does not involve the optimization technique, but
the problem at hand, that is the kind of cost function, either scalar or vecto-
rial, which is appropriate to model it: in the scalar problem there is just one
function, or objective, to be handled, and hence relative techniques are called
single-objective (SO) optimizations. On the other hand, dealing with real life
optimization problems, it is rather common to have to handle problems that
intrinsically present more than one cost function. This is the case when several
constraints are defined, and for each of them a cost function can be assigned,
leading to a multi-objective (MO) optimization. Objectives to be optimized are
typically conflicting with respect to each other. Indeed three cases can be recog-
nized: objectives are totally conflicting, non-conflicting, or partially conflicting
[24]. In the first case, the conflicting nature of the objectives implies that no
global improvement can be made without violating any constraint, hence no op-
timization is even possible. On the other hand, in non-conflicting problems the
various objectives are related so that any change leading to a better performance
in one objective leads also to the improvement, or at least not to the worsening,
of the other objectives. This class of multi-objective problems can be con-
veniently reduced to single-objective problem via scalarization (Section 1.1.1),
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1. Numerical Optimization

since a single optimal solution do exists for such a multi-objective problem. The
most interesting, and indeed the most appropriate to model real-world engineer-
ing designs, is the class of problems with partially-conflicting objectives. In this
class there is no single optimal solution, and indeed an optimum solution must
be carefully defined (Section 1.1.2). It is always possible to define a single cost
function as a weighted sum of the various cost functions also in this case, but
this is a poor strategy since optimal weights values, that deeply affect the opti-
mization process, are unknown a-priori. Furthermore, it is often more appealing
to have a set of possible optimal solutions, among which the designer can se-
lect a good trade-off solution to represent the best possible compromise among
all the objectives [25]–[27]. This latter option is the essence of multi-objective
optimization, presented with details in [P1] together with a number of multi-
optimization algorithms. MO basics will be given in Section 1.1, describing the
two main approaches to this problem: scalarization and Pareto techniques, the
latter being a true Multi-Objective optimization approach. Fig. 1.1 shows a
possible classification of methods.

Figure 1.1: Classification of some of the most popular optimization methods. On the
left the class of true single objective optimization, on the right true multi-objective
optimization, in the middle scalarized multi-objective. On top deterministic method,
on the bottom stochastic methods. Of course since the same method can be applied
either to SO or to MO, methods can span several areas.

1.1 Multi-Objective Optimization

Multi-objective optimization (MOO) may be defined as a strategy to address
multiple design constraints in practical engineering problems. A MOO design
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Figure 1.2: Basic MOO: find the global minimum of c : RN → RQ

may be formulated as:

min c(x,p) with


x ∈ S
x

(LB)
n ≤ xn ≤ x(UB)

n , n = 1, . . . , N

g(x,p) ≤ 0; h(x,p) = 0

(1.1)

being c the multi-valued cost function c(x,p) = [c1(x,p), c2(x,p), . . . , cQ(x,p)]>,
a vector of Q ≥ 2 real-valued cost functions, each dependent on the vector of
N design variables x = [x1, x2, . . . , xN ]> and on a constant vector of P de-
sign parameters p = [p1, p2, . . . , pP ]> (Fig. 1.2). S is the domain of possible
feasible designs. The individual design variables xn are assumed continuous

and can be changed independently within lower and upper bounds, x
(LB)
n and

x
(UB)
n , respectively. These bounds are themselves arranged in vectors x(LB) and

x(UB). If S does not allow for full independence for the xn, both a vector of
Ki inequality constraints, g(x,p) = [g1(x,p), g2(x,p), . . . , gKi(x,p)]>, and Ke

equality constraints, h(x,p) = [h1(x,p), h2(x,p), . . . , hKe(x,p)]>, have to be
satisfied. As stated before, the minimum of the function is sought for. If the
problem at hand naturally requires a maximum to be searched for, that is it is
a fitness function rather than a cost one, the fitness function can be converted
into a cost function by simply multiplying it by −1. The definition of optimum
in a MOO case is in itself tricky; one of the first who tried to define it is Edge-
worth [28] who defined an optimum for multi-criteria economic decision making
by stating, for N = Q = 2, that the optimum point [x1, x2] is such that, in
whatever direction we take an infinitely small step, c1 and c2 do not increase
together but that, while one increases, the other decreases. Pareto, contempo-
rary of Edgeworth, defined what it is known as Pareto Optimum stating that
“The optimum allocation of the resources of a society is not attained so long
as it is possible to make at least one individual better off in his own estimation
while keeping others as well off as before in their own estimation” [29].

Several approaches have been proposed to address this kind of optimization
problems [27], [30]: they can be broadly divided in the two categories of scalar-
ization methods and Pareto methods [31], [32]. These two categories will be
analyzed in the following two sub-Sections.
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1.1.1 Scalarization

Scalarization Methods approach the MO problem by reducing the vector cost
function in (1.1) to a scalar one. The most common of these techniques is
the weighted sum method (WSM); it projects the MO problem in a suitably
defined equivalent SO one, whose fitness function is the dot product of the
vector cost function c(x,p) with a suitable real vector of positive weights w =
[w1, w2, . . . , wQ]. The resulting overall scalar cost is hence:

cs(x,p) = w · c(x,p) =

Q∑
q=1

wqcq(x,p) (1.2)

Usually positive (wq > 0) weighting coefficients are chosen in order to satisfy
the normalization relationship

Q∑
q=1

wq = 1 (1.3)

and by changing their values it is possible to control the relative importance
of each design constraint, obtaining consequently different overall cost/fitness
functions and sets of solutions. The key issue of the WSM approach is therefore
to find out the best trade-off among weighting coefficients, and this requires a
good knowledge of the relative importance of each of them with respect to the
others. For this reason WSM often requires an extensive tuning of the weight-
ing coefficients wq, particularly for problems where objectives are unrelated.
Another issue related to this approach is the inability to find Pareto-optimal so-
lutions in non-convex regions, although a solution obtained with this approach
is always Pareto-optimal. This approach however is a mere extension of the
single-objective oriented strategy to multi-objective problems: therefore, in or-
der to make the optimization process effective, it is necessary to have an in-deep
knowledge of the problem to be optimized, so that the weighting coefficients are
suitably chosen, and to run the single-objective optimizer a large number of
times, to explore the different solutions: even then, good distribution of the
results is not guaranteed.

1.1.2 The Pareto Front concept

A completely different approach is that provided by the so-called Pareto meth-
ods. These are techniques that do not offer a single optimal solution, but rather
a set of optimal solutions, that is a set of non-dominated solutions (in the Pareto
sense) capable of providing an approximation of the Pareto Front. A solution
x̄ is non dominated, according to Pareto [29], if there is no other solution that
has better values in all cost functions, i.e.:

cq(x̄) < cq(x) for at least one q ∈ 0, 1, . . . , Q (1.4)
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1. Numerical Optimization

Figure 1.3: Cost function space and a finite set of solution, of which most are domi-
nated (crossed circles) and some non-dominated (empty circles). Non-dominated so-
lutions form the Pareto Set, which is an approximation of the true Pareto Front (note
that solutions in the Pareto Set are not necessarily on the Pareto Front.)

It is possible to build, from all possible x in the design variables set, the set of
non-dominated solutions, to determine the so-called Pareto Front. Of course an
exhaustive search for the Pareto Front, which is often a continuous or piecewise-
continuous subset of the cost function co-domain, is not feasible, so MO opti-
mization rather consists on searching for a finite set of solutions which are as
close as possible to the Pareto Front. Such a set is called a Pareto Set (Fig. 1.3).

A MO algorithm’s job is to find a set of solutions, extract the non-dominated
ones, and iteratively refine the search so as to have a Pareto Set which is at every
step a better approximation of the true Pareto Front. Evolutionary Algorithms
are well established as the best method at hand to seek for such an approxima-
tion of the Pareto Front; this is true both for the lack of true alternatives, and
for their inherent parallelism and capability to exploit a recombination of known
solutions to further explore the solution space. Since EA operate iteratively on
a population of solutions, a selection operator is often necessary to reduce the
current iteration population from its current number R to a smaller number S
to which new individuals are added while exploring the cost function domain.
While in a single objective optimization such operator is straightforward since
the solution are ranked in terms of their cost function value and taking the best
S ones is trivial, deciding which S out of R solutions, that are all on the Pareto
Set, are to keep is a trickier matter, since they are all equally optimal in the
Pareto sense. In this case a crowding distance selection is operated [33]. The
crowding distance is a criterion based on comparison of the congestion around
a solution and is bound to the dimensions of the largest cuboid which does not
contain any other solution of the set (a rectangle in the two-costs case depicted
in Fig. 1.4); the crowding distance is the average of the sides’ length of that
cuboid. It is apparent how, in Fig. 1.4, the crowding distance for solution A1 is
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1. Numerical Optimization

Figure 1.4: Crowding distance definition, and two examples.

much smaller than the crowding distance for solution A2. A greater crowding
distance is preferred in order to maintain the diversity of the solutions and a
good distribution of the Pareto Set along the Pareto Front. Indeed terminal
solutions, for which the cuboid is bounded by only one solution of the front,
are assigned a very large crowding distance since they must be maintained in
the selection process to ensure that the Pareto Front is spanned as much as
possible. As a possible strategy, in [34] the MaxiMin procedure was proposed,
in which the reduced set is built by first selecting the extreme points, i.e. those
with the minimum (or maximum) value in each single cost, then adding points
to the set one by one. Each new point is selected to maximize the distance
from points that are already in the set; it works with distances over the selected
individuals, in order to get a good spreading, while other approaches, like the
crowding distance above, consider all individuals, without considering if they
will be selected or not; in this way the search should have a better coverage of
the cost space, leading to a more uniform front.

In summary, when solving a multi-objective problem, there are three main
goals to achieve [35]:

1. Maximize the number of elements on the Pareto Set;

2. Minimize the distance of the Pareto Set produced by the algorithm with
respect to the true Pareto Front;

3. Maximize the spread of solutions.

Knowledge of a good approximation of the Pareto Front allows the designer for
a trade-off among a set of optimal solution at design time. This is much better
than the previous scalar approach; mathematically, every Pareto optimal point
is an equally acceptable solution of the multi-objective optimization problem,
but from a practical point of view the designer needs only one solution, no matter
whether the associated optimization problem is single or multi-objective, and
so, a choice among these optimal solutions must be performed. Selecting one
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out of the set of Pareto optimal solutions involves higher-level information which
is often qualitative and experience-driven, hence it cannot be embedded in any
objective function.

15



Chapter 2

Taguchi’s Optimization
Method

Taguchi’s method (TM) is a statistical technique originally designed for quality
control of manufactured goods [36], that has later become widespread in many
different fields of engineering. The essential concept of Taguchi’s quality method
is the definition of a loss function for a particular production process, calculated
by evaluating equivalent signal-to-noise-ratios (SNRs), defined as ratios between
the magnitude of the mean of a process to its variation; this allows to define
the best solutions of a problem as those leading to maximum values of SNRs,
hence minimum values of the loss function.

Recently some efforts have been done to exploit TM capabilities in electro-
magnetics optimization [37]–[40]; some report a comparison between Taguchi’s
algorithm and well-known optimization techniques, like PSO [41]. Some oth-
ers [42], [43] have hybridized TM with other optimization techniques (mainly
PSO and GA), finding improvements in convergence speed and accuracy. In
any case, while GA [44]–[46] and PSO [47]–[49] are well established, Taguchi
method is still to be deeply investigated in electromagnetics. In particular ex-
isting articles in open literature have been focused on single-objective (SO)
implementation of Taguchi’s method; the proposed implementation is instead
aimed at multi-objective (MO) optimization. Section 2.1 will introduce or-
thogonal arrays (OAs), a mathematical tool Taguchi’s method is based on. In
Section 2.2 Taguchi’s method will be presented, in its classical single-objective
version, to introduce basic notation and for the sake of completeness. In Sec-
tion 2.3 the novel multi-objective algorithm derived from Taguchi’s method will
be described.

2.1 Orthogonal Arrays

TM relies on the concept of orthogonal arrays (OAs) [50]. OAs are a statis-
tical tool proven to be useful in designing an optimization process with fewer
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experimental runs with respect to a full factorial strategy. The definition of
an OA is the following: let S be a set of s symbols; an orthogonal array on
S with s levels and strength t is a matrix with N rows and k columns (where
t ≤ k) - usually referred to as OA(N, k, s, t) - where in every N × t sub-matrix,
each t-uple appears the same number of times as a row [50]. Table 2.1 contains
several examples of OA; for example, an OA(25, 6, 5, 2) on S = {0, 1, 2, 3, 4}.
It has N = 25 rows (corresponding to 25 experiments) and k = 6 columns (6
parameters to optimize). Each parameter can assume one of the s = 5 different
values in S. If a choice of any t = 2 columns is made, each pair (each t-uple)
appears the same number of times as a row. In this OA, every combination of
two columns appears exactly once as a row in each 25 × 2 sub-matrix, while
every parameter appears exactly 5 times in every column. This characteristic
of the OAs ensures a balanced and fair selection of parameters. The t parame-
ter therefore indicates the maximum number of columns that lead to an equal
number of occurrences as a row; e.g. with an OA with strength t = 3 every
combination of one, two, or three input parameters has the same number of oc-
currences and hence is tested an equal number of times. In general, the strength
t of the OA can be increased to consider interactions between more parameters;
however, the larger the strength t is, the more rows (experiments) the OA has.

Table 2.1: Some examples of orthogonal arrays

Experiments Parameters Experiments Parameters
p1 p2 p3 p1 p2 p3 p4 p5 p6

O
A
(4
, 3
, 2
, 2
) 1 0 0 0

O
A

(2
5
,
6
,
5
,
2
)

1 0 0 0 0 0 0
2 0 1 1 2 0 1 1 2 3 4
3 1 0 1 3 0 2 2 3 4 1
4 1 1 0 4 0 3 3 4 1 2

Experiments Parameters 5 0 4 4 1 2 3
p1 p2 p3 p4 p5 6 1 0 1 1 1 1

O
A

(8
,5
,2
,2

) 1 0 0 0 0 0 7 1 1 2 4 0 3
2 1 0 0 1 1 8 1 2 4 0 3 2
3 0 1 0 1 0 9 1 3 0 3 2 4
4 0 0 1 0 1 10 1 4 3 2 4 0
5 1 1 0 0 1 11 2 0 2 2 2 2
6 1 0 1 1 0 12 2 1 4 3 1 0
7 0 1 1 1 1 13 2 2 3 1 0 4
8 1 1 1 0 0 14 2 3 1 0 4 3

Experiments Parameters 15 2 4 0 4 3 1
p1 p2 p3 p4 16 3 0 3 3 3 3

O
A

(9
,4
,3
,2

)

1 0 0 0 0 17 3 1 0 1 4 2
2 0 1 1 2 18 3 2 1 4 2 0
3 0 2 2 1 19 3 3 4 2 0 1
4 1 0 1 1 20 3 4 2 0 1 4
5 1 1 2 0 21 4 0 4 4 4 4
6 1 2 0 2 22 4 1 3 0 2 1
7 2 0 2 2 23 4 2 0 2 1 3
8 2 1 0 1 24 4 3 2 1 3 0
9 2 2 1 0 25 4 4 1 3 0 2

Hence, every row represents a particular configuration of the k input pa-
rameters (the equivalent of an individual in a GA approach). By using OAs, a
fractional factorial research is performed, in opposition to the full factorial strat-
egy, which requires a complete search over the parameters space. In the present
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2. Taguchi’s Optimization Method

example, with 5 possible levels for the 6 parameters, a full factorial strategy
would require 56 = 15625 experiments, while the fractional design here outlined
only involves the evaluation of 25 configurations. It is possible to demonstrate
that optimum results obtained from the fractional design are statistically close
to that of the full one [50].

An interesting property of OAs is that if a sub-array N × k′ (k′ < k) is
extracted from the N × k array OA(N, k, s, t), the result is still an OA, indi-
cated as OA(N, k′, s, t′), where t′ = min{k′, t}. This property is very important
from a practical point of view, because OAs databases are available [51], and
it is simpler to select an array from an existing database and to adapt it than
building an ad-hoc one. As a final remark, numerous techniques are known
for constructing OAs: Galois fields [50] turn out to be a powerful tool for the
construction of OAs, and several methods are proposed using such fields and
finite geometries. In addition, since there is a close relation between OAs and
coding theory, many construction techniques for OAs are proposed based on
error-correcting codes.

2.2 Single-Objective Taguchi’s Method

In this Section Taguchi’s iterative method is briefly presented. Single-objective
Taguchi’s method (SO-TM) is illustrated in Fig. 2.1 and comprises the following
steps:

2.2.1 Initialization

The optimization procedure starts with the problem initialization, where a suit-
able cost function is defined and a proper OA is selected from [51]: the number
of columns k must be greater or equal to the number of parameters to optimize;
if it is greater some columns will be discarded. The number of levels s that
a parameter can assume is crucial, because a larger value will lead to better
results, but also to a larger number of experiments. Typical values are 3 for
simpler problems and 5 for more sophisticated ones [38]. The strength of the
OA t indicates the interaction among different parameters, and is usually 2 or
3 [38]. Increasing the strength of the OA increases the number of experiments
too.

2.2.2 Mapping

Next, the input parameters need to be selected. Input parameters can assume
values within specified optimization ranges [Li : Ui], with i = 1, . . . , k, possibly
different for each of them. OA’s levels need hence to be mapped to the corre-
sponding parameters’ values. This is done by first assigning the centre of the
optimization range (Li+Ui)/2 to the central level (in the case S = {0, 1, 2, 3, 4}
the central level is 2); other values are computed by adding and subtracting to
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2. Taguchi’s Optimization Method

SO-TM Core

Initialization:
- OA selection
- Cost function definition
- Parameters ranges

Mapping between levels
and OA’s values

- Cost function evaluation
- Response table construction

- Optimal values detection
- Optimal cost calculation

Range
reduction

End

- Termination

Y

N

SO-TM

Figure 2.1: Flow chart illustrating single objective Taguchi’s method (SO-TM) steps.
The entire procedure, enclosed in the dashed box, represents the core of the proposed
MO-TM optimization (Fig. 2.2 and Section 2.3).

the central value a quantity ∆i named level difference, defined as follows:

∆i =
Ui − Li
s+ 1

(2.1)

In this way a uniform distribution of levels across the optimization range is
achieved.

2.2.3 Cost Function Evaluation and Response Table

After determining the input parameters, and after mapping, the cost function
is evaluated for every row of the OA, leading to n = 1, . . . , N cost values cn.
Costs are converted to equivalent signal-to-noise ratios (SNR) via:

SNRn = −20 log10(cn) (2.2)

In this way, a small cost value results in a large SNR ratio. A response table is
then created by averaging SNRs for each parameter h = 1, . . . , k and for each
level m = 1, . . . , s:

SNR(m,h) =
s

N

∑
over z

such that
OA(z,h)=m

SNRz. (2.3)

Practically, for each parameter, SNRs values deriving from equal values of the
same parameter are averaged together, thus leading to a s× k table.
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2. Taguchi’s Optimization Method

2.2.4 Optimal Values Detection

Optimal values for the current iteration are extracted from the response table:
in the minimization case, for each column (each parameter) the largest SNR is
selected. The corresponding level, and the relative value, is the optimal for that
parameter. The combination of optimal values for each parameter identifies
a point P (j) in the parameter space which is considered the optimum of the
current j-th iteration.

Since the OA analysis is a fractional factorial search over the parameter
space, the optimal combination just found has a high chance of not having been
included in the iteration’s mapping table. Therefore the cost function needs to
be evaluated for the parameters’ optimal combination; the corresponding cost
value c(j) is the optimum cost of the current iteration.

2.2.5 Range Reduction

At the first iteration (j = 1), each parameter’s central levels are mapped to
central values of the optimization range and level difference is given by (2.1).
For the (j + 1) iteration, central levels are mapped to previous iteration’s op-
timal values P (j), and level differences are reduced, to refine search and ensure
convergence. The level difference reduction takes place as:

∆
(j+1)
i = r∆

(j)
i = rj∆i (2.4)

where subscripts indicates the parameter and superscripts the iteration, ∆i

being the original level difference computed when mapping was performed the
first time, and r ∈ (0, 1) being a constant. The larger r is, the slower the

convergence rate. If ∆
(j)
i is a large value, the corresponding values of extreme

levels may reside outside the optimization range: therefore, a boundary check is
necessary to guarantee that all level values are located within the optimization
range. In that case, boundary values are assigned as extreme levels.

2.2.6 Termination

The iterative procedure repeats points from 2.2.2 to 2.2.5 and stops when one
of the following criteria is met:

• Stop on level difference - if the level difference ∆
(j)
i becomes too small,

levels tend to overlap, hence returning very similar cost values. The ter-
mination criterion is:

∆
(j)
i

∆i
≤ ε∆ (2.5)

for a predefined small value ε∆;

• Stop on stall - if the difference between successive iterations’ cost becomes
very small, and this is maintained over a predefined number Js of itera-
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2. Taguchi’s Optimization Method

tions, the procedure stops. The termination criterion is:∣∣∣∣c(j+g) − c(j)c(j)

∣∣∣∣ ≤ εs ∀g ∈ {1, 2, 3, . . . , Js} (2.6)

for a predefined small value εs;

• Stop on maximum number of iterations - the algorithm stops if, after a
predefined number Jmax of iterations, none of the other criteria has been
verified.

2.2.7 Random and Semi-Random variants

Taguchi’s procedure as described here is fully deterministic. It is well known
that deterministic methods are likely to fall in local minima, and that their
effectiveness can depend on the search starting point.

Stochastic methods on the other hand have very good global search capa-
bilities, hence a random variant of the original TM has been first proposed in
[38]. A semi-random variant too, which is described in the following, is proposed
here. Both variants still rely on the previous iteration’s optimal point P (j) as
the search area central point for the (j+ 1)-th iteration. The random algorithm

exploits stochastic functions to map the OA levels, without the use of ∆
(j)
i nor

of r. This is done first by assigning the central level to the previous iteration’s
optimal point P (j), and then by dividing the optimization range in (s− 1) sub-
intervals. Each level is then mapped with a random point located in one of these
sub-intervals, hence leading to s non-overlapping mappings. The semi-random

method instead maps levels as in the deterministic TM (using ∆
(j)
i and r), but

a random shift, proportional to the magnitude of the level difference, is added
to each value. With the introduction of randomness, the algorithm increases his
capability of avoiding local minima, the trade-off being the increased number of
iterations generally needed for convergence [38].

2.3 Multi-Objective Taguchi’s Method

Taguchi’s method described in the previous Section and presented in literature
is a single objective technique; in many practical engineering design problems
such as planar arrays, horn antennas, frequency selective surfaces and many
others, more than one objective may be present [46], [52]. In these situations,
either scalarization (Section 1.1.1) is used, or a multi-objective optimization al-
gorithm needs to be implemented, as pointed out in Section 1.1. As anticipated,
the former technique is usually very critical in the choice of cost combination,
while the latter has the advantage of leading to a pool of optimal solutions from
which the designer can choose. At each iteration, only non-dominated solu-
tions are selected to form the optimal Pareto set, as described in Section 1.1.2.
The non-dominance sorting involves an implicit comparison among solutions at

21



2. Taguchi’s Optimization Method

each iteration. Taguchi method, in all of its variants, produces only one opti-
mal solution at each iteration, so an extension of this algorithm to a multiple
optimization problem is not straightforward. On the other hand evolutionary
techniques like GA and PSO, operating on populations, provide natively a large
set of possible solutions at each iteration. Taking inspiration from this charac-
teristics, a multi-objective Taguchi’s method (MO-TM) is here proposed. The
core of the optimization procedure is the single-objective procedure (SO-TM)
described in the previous Section 2.2, but a strategy to preserve a set of possi-
ble solutions at each iteration, hence constructing a Pareto set, has been added.
The MO-TM flow chart is presented in Fig. 2.2, while a step by step description
follows.

MO Taguchi
Initialization:
- OA selection
- Definition of cost functions
- Parameter ranges

Q

- Pareto set construction
- Selection for restart

Range
reduction

End

-Termination

Yes

No

...

Q

Interpolation

...

MO-TM

Core

T optimization steps

SO-TM
Core

SO-TM
Core

MO-TM

Core

Q

M
Q

MO-TM

Core

MO-TM

Core

T

SO-TM
Core

Q M+

Figure 2.2: Flow chart illustrating multi-objective Taguchi’s method (MO-TM) steps.
SO-TM cores correspond to the dashed box of Fig. 2.1, and together they constitute
MO-TM cores (hatched boxes).
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2.3.1 Initialization

The initialization phase involves, like for the single-objective one, the selection
of a proper OA, based on the number of parameters to optimize and on the
complexity of the problem. As a rule of thumb, for a given parameter space,
more complex OAs are generally needed for multi-objective optimization with
respect to the single-objective one. Then the definition of Q ≥ 2 cost functions
to be minimized at the same time is performed. Levels are then mapped to their
initial corresponding parameters’ values for the first iteration, and initial level
difference ∆i is defined.

2.3.2 Separate Optimization

A SO-TM core step is executed for each design objective separately, hence lead-
ing to Q distinct solutions, one for each cost. These solutions are shown in
Fig. 2.3 - in a simple Q = 2 case used for the sake of clarity - as filled squares.
The Q SO-TM are conceptually grouped together and will be the MO-TM Core
(reported as hatched boxes in Fig. 2.2)

2.3.3 Interpolation

An interpolation is then performed among the Q solutions found by the SO-
TM algorithms, to find M new points (crosses in Fig. 2.3), which hopefully
will be near the Pareto front. These interpolated points will be considered,
together with the original Q ones, as starting points to continue the iteration.
The interpolation is executed only once, at the very beginning of the procedure.
The value of M doesn’t strongly affect the outcome of the algorithm for what
concerns bi-objective optimizations. A value of M greater then 8 helps to have
a sufficient number of points to start the procedure from, hence M = 10 has
been chosen for the Q = 2 problem.

2.3.4 Main Optimization

Steps from 2.3.1 to 2.3.3 are executed only at startup, producing Q+M starting
points for the iterative procedure.

On the first iteration the algorithm executes a step starting from these so-
lutions and performs a MO-TM Core optimization on each of them, producing
(Q+M)×Q solutions. Fig. 2.3 reports these additional first-step solutions as
empty boxes; arrows shows, for a limited number of original points, which new
ones derive.

2.3.5 Pareto Front Construction

The new, large, set of possible optimal solutions is ranked via a non-dominated
sorting. The non-dominated solutions are kept as starting points for next iter-
ations, while the dominated ones are discarded.
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Figure 2.3: Multi-objective Taguchi’s method - example of parameter space, obtained
with two Gaussian functions as costs, on the first iteration. Filled boxes and crosses
correspond to points found from steps 2.3.1 to 2.3.3, while empty boxes correspond
to points found in 2.3.4. Contour levels are also shown.

2.3.6 Selection for Restart

If at each iteration the algorithm should run a MO-TM Core for every solution
in the Pareto set, the problem complexity would dramatically increase. To avoid
that, at every iteration, the algorithm restart its search procedure only on a re-
duced set of the Pareto set, comprising at most T solutions. Restart solutions
are selected as the farthest among each other, implementing the previously cited
MaxiMin selection [34]. In this way the search should have a better coverage of
the cost space, leading to a more uniform front. The algorithm restarts from
these reduced set for the next iterations, while the remaining non dominated
solutions are kept in memory for further comparisons, until they will be even-
tually discarded if dominated. This strategy is necessary because, as a matter
of fact, the search procedure is far more time/memory consuming with respect
to a simple comparison made during the construction of a Pareto front. In this
way the complexity of the problem is kept under control because, at each iter-
ation, at most T MO-TM Cores are executed. Different experiments have been
conducted, showing that T < 10 leads to poor results. With T = 10, results
were quite good in terms of convergence, but in some cases they were not good
for what concerns spread over the front: for some complicated problems, Pareto
sets appeared clustered. By choosing T ∈ (10, 20] this issue has been resolved
and Taguchi algorithm has been able to achieve a correct spreading. Obviously
if the number of Pareto set solutions is less than T , all solutions are considered
as new starting points.
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Chapter 3

Results and Benchmark
Comparison

The proposed multi-objective Taguchi’s method (MO-TM) algorithm has been
applied first to a well-known set of test functions, and then to some practical
array synthesis problems ([P2], [P3]). Array synthesis problems will be the
synthesis of a concentric circular antenna array for satellite applications and a
multi-beam array complying to different radiation pattern masks. To try out
the proposed MO-TM capabilities, a comparison is made with a well established
MO-GA algorithm, the NSGA-II [33]. In all cases performances of the proposed
algorithm over the MO-GA benchmark will be better or equal. Without any
loss of generality bi-objective (Q = 2) and tri-objective problems (Q = 3) will
be considered: this will lead to easily comprehensible 2D and 3D Pareto fronts.
To ensure a fair comparison, the total number of cost functions evaluations
has been kept equal among TM variants and GA. The number of cost function
evaluations in MO-TM depends on the OA choice: since the first iterations
might occur on less than T points, the three variants of MO-TM are hence run
on a predetermined number of iterations and the total number of cost functions
evaluations averaged together; this number is finally used, together with the
number of iterations, to determine the size of the GA population. An equal
number of generations for GA and MO-TM is chosen, and the number of cost
function evaluations in MO-TM has been divided by the number of iterations,
giving the NSGA-II population size.

NSGA-II parameters are the following. GA’s crossover function is Scattered :
a random binary vector is created and the genes where the vector is a 1 are
selected from the first parent, while the genes where the vector is a 0 are selected
from the second parent. Crossover fraction is set to 0.8. Mutation is Adaptive
Feasible, which randomly generates directions to be adaptive with respect to
the last generation. The feasible region is bounded by the constraints.

Selection of the most performing algorithm has been made by running MO-
TM, exploiting SO-TM in its three variants (deterministic (D), random (R)
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and semi-random (S)), and NSGA-II. For each algorithm A, and for each vari-

ant V , the output consists of a Pareto set H
[V ]
A containing the non-dominated

solutions, whose size will be indicated as |H [V ]
A |. Once all algorithms are ex-

ecuted a new set H = {HGA, H
[D]
MO−TM , H

[R]
MO−TM , H

[S]
MO−TM} can be con-

structed. H is not in general a Pareto set. A non-dominated sorting over
H generates a new, smaller, set H̄ which is a Pareto set. If track is kept
of the algorithm which generated the members of H̄ it is possible to write

H̄ = {H̄GA, H̄
[D]
MO−TM , H̄

[R]
MO−TM , H̄

[S]
MO−TM}. Performances of each algorithm

are hence assessed on the basis of different metrics, described in the next Sec-
tion 3.1. The comparison, as previously mentioned, has taken place over two
set of problems:

1. test functions, mainly deriving from well known test toolboxes have been
used as MO-TM benchmark. Functions deriving from the Zitler - Deb
- Thiele’s (ZDT) [35], MOP [53] and Tanaka [54] test suites have been
chosen.

2. practical planar antenna array synthesis problems, dependent on an high
number of parameters. Problems like this offer the algorithm a chance to
prove its capabilities over real design situations.

3.1 Metrics

Some of the metrics used to assess the algorithms’ performances are original
(d%, D%), while the remaining (GD, SS, SP ) can be found in [55]–[57]. The
first set of metrics is intended to measure the algorithms’ ability to produce
solutions close to the global Pareto front.

1. d%, percentage of non-dominated solutions produced by an algorithm with
respect to all the solutions produced by the algorithm itself.

d% = |H̄ [V ]
A | / |H

[V ]
A | × 100; (3.1)

2. D%, percentage of non-dominated solutions produced by an algorithm
with respect to the total number of non-dominated solutions produced by
all algorithms.

D% = |H̄ [V ]
A | / |H̄| × 100; (3.2)

3. Generational Distance (GD) [55]–[57], which measures the distance be-
tween the algorithm Pareto set and the true Pareto front G, whose size is
|G|. This metric has been evaluated only for test functions, which have
an analytically known Pareto front.

GD =

( |H[V ]
A |∑
i=1

Ed2
i

)1/2/
|H [V ]

A |, (3.3)
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where Edi is the Euclidean distance between an algorithm’s solution and
its nearest member in G:

Edi = min
k∈G

√√√√ Q∑
q=1

(
Hc(i)q − Gc(k)

q

)2

, (3.4)

and Hc
(i)
q ,Gc

(k)
q are the q-th cost function value of the i-th and k-th mem-

ber of H
[V ]
A and G. A small GD value indicates that the Pareto set is close

to the Pareto front.

The second set of metrics is instead intended to measure the spread of the
solutions; an uniform spreading over the front is desirable.

4. Schott Spacing (SS) [55], which measures the standard deviation of dis-
tances between neighbouring solutions:

SS =

√√√√√ 1

|H [V ]
A |

|H[V ]
A |∑
i=1

(
sdi − d̄

)2
, (3.5)

where sdi is the city block distance between neighbouring elements and d̄
is its mean value

sdi = min
k 6=i

Q∑
q=1

|Hc(i)q − Hc(k)
q | , d̄ =

|H[V ]
A |∑
i=1

sdi

|H [V ]
A |

. (3.6)

A small SS value indicates that distances between consecutive solutions
are similar, hence the distribution on the Pareto set tends to be uniform.

5. Spread D∆ [55], given by

D∆ =

[ Q∑
q=1

deq +

|H[V ]
A |∑
i=1

|di − d̄|
]/[ Q∑

q=1

deq + |H [V ]
A |d̄

]
, (3.7)

where di can be sdi or Edi, and d̄ represents its mean. Instead deq is the
distance between the extreme solutions (i.e. the ones corresponding to
extreme values of one of the cost) of HA[V ] and G. In the case of an
analytically unknown Pareto front, deq = 0. This metric approaches 0 as
the distribution on the front approaches a uniform one.

3.2 Test functions

The first performances assessment is conducted over functions deriving from the
ZDT [35] and MOP [53] test toolboxes, plus the Tanaka function [54]. These
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functions include unimodal, multimodal and separable functions leading to con-
vex, concave and discontinuous fronts. To clearly explain the analysis, test
parameters are expressed introducing the same terminology as in [56]. Given

x = {x1, . . . xn} = {x1, . . . , xj , xj+1, . . . xn},

a bi-objective optimization is intended to minimize/maximize{
f1(y)

f2(y, z) = g(z)h(f1(y), g(z))

where y = {y1, . . . , yj} = {x1, . . . , xj} are j position parameters and z =
{z1, . . . , zk} = {xj+1, . . . , xn} are k distance parameters, where n = j + k.
Position parameters are responsible for the position of solutions over a same
front, whereas distance parameters determine solutions belonging to different
fronts, hence with different distances from the optimal front. f1(y) is a dis-
tribution function, which tests an algorithm’s capability of diversification of
elements along the local Pareto front, g(z) is a distance function, intended to
determine an algorithm’s solution set’s distance from the global Pareto front,
and h(f1, g) is a shape function, which determines the shape of the local Pareto
front. Test functions analyzed in this text are the following:

1. ZDT1 [35], characterized by a convex front, f1 unimodal and separable,
f2 unimodal and separable

f1 = y1; g = 1 + 9

k∑
i

zi/k; h = 1−
√
f1/g (3.8)

where n = 30, j = 1, k = 29 and xi ∈ [0, 1].

2. ZDT2 [35], characterized by a concave front, f1 unimodal and separable,
f2 unimodal and separable

f1 = y1; g = 1 + 9

k∑
i

zi/k; h = 1− (f1/g)2 (3.9)

where n = 30, j = 1, k = 29 and xi ∈ [0, 1];

3. ZDT3 [35], characterized by a disconnected convex front, f1 unimodal
and separable, f2 multimodal and separable

f1 = y1; g = 1 + 9

k∑
i

zi/k;

h = 1−
√
f1/g − (f1/g) sin(10πf1) (3.10)

where n = 30, j = 1, k = 29 and xi ∈ [0, 1];
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4. ZDT6 [35], characterized by a concave and non uniform front, f1 multi-
modal and separable, f2 multimodal and separable

f1 = exp(−4y1)sin6(6πy1); g = 1 + 9(

k∑
i

zi/k)0.25

h = 1− (f1/g)2 (3.11)

where n = 10, j = 1, k = 9 and xi ∈ [0, 1];

5. MOP3 [53], characterized by a disconnected front, f1 multimodal and
non-separable, f2 multimodal and separable.

f1 = −1− (A1 −B1)2 − (A2 −B2)2

f2 = −(y + 3)2 − (z + 1)2, (3.12)

where
A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 0.5 cos 2

B1 = 0.5 sin y − 2 cos y + sin z − 1.5 cos z

B2 = 1.5 sin y − cos y + 2 sin z − 0.5 cos z

and n = 2, j = 1, k = 1 and xi ∈ [−π, π]. This function has been maxi-
mized.

6. TNK [54], characterized by a disconnected front, c1 unimodal and sepa-
rable, c2 unimodal and separable, This function does not come from [35]
and hence does not follow the same structure, but rather c1 and c2 are
defined independently:

c1(x) = x1

c2(x) = x2

(3.13)

with

x2
1 + x2

2 − 1− 1

10
cos

[
16 tan− 1

(
x1

x2

)]
≥ 0

(x1 − 0.5)
2

+ (x2 − 0.5)
2 ≤ 0.5

(3.14)

and N = 2 and xi ∈ [0, 1].

The test strategy is the following: first a test over 500 iterations is set for
both GA and TM, in all of its variants. Variable parameters are T ∈ [10, 20]
and r ∈ [0.8, 0.95]. On the basis of the results of this preliminary analysis,
values for T and r are chosen as the ones leading to better results in terms of
convergence to the true front and spread over the algorithm’s set. With these
parameters, a Nt = 10 number of independent runs of each algorithm is con-
ducted over Ni = 200 iterations (i.e. generations for GA), to ensure consistency;
mean and standard deviation of each performance metric over these repeated
runs are finally reported. MO-TM algorithms are generally capable of finding
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Table 3.1: Optimization parameters for test functions.

T r Nv OA Ni f GAp Nt

ZDT1 20 0.95 30 (81, 40, 3, 2) 200 328071 1640 10

ZDT2 15 0.9 30 (81, 40, 3, 2) 200 246454 1232 10

ZDT3 20 0.9 30 (81, 40, 3, 2) 200 324613 1623 10

ZDT6 15 0.9 10 (50, 11, 5, 2) 200 152412 762 10

MOP3 20 0.9 2 (9, 4, 3, 2) 200 42958 214 10

a larger number of solutions with respect to MO-GA. This is a plus, because
it allows the designer to choose among a larger number of possibilities; because
of that, however, a solution to provide a fair comparison for what concerns
spreading over the front needs to be provided: TM solutions are decimated
(and labeled with a subscript d), choosing the farthest among each other, so

that |HGAd | = |H [D]
MO−TMd

| = |H [R]
MO−TMd

| = |H [S]
MO−TMd

|. SS and D∆ are
then calculated only on decimated fronts. Table 3.1 reports, for each test func-
tion, the parameters’ values used in the optimization process, deriving from the
preliminary run. The proper OA is chosen accordingly to the number of param-
eters to optimize Nv. GA’s population size GAp is determined by dividing the
cost function evaluations number f by the number of iteration Ni.

Table 3.2 reports the results of the optimization process. It is clear how
Taguchi’s algorithms are capable of finding a greater percentage of non-dominated
solutions (d% and D%) with respect to GA in all cases; only in one case (MOP3)
the percentage of GA solutions is close to one of Taguchi’s values. MO-TM
outperforms GA also for what concerns the distance from the Pareto front:
Taguchi’s GD values are often several orders of magnitude smaller than GA’s
ones, confirming that TM is capable of providing a better approximation of the
true front. To confront spread metrics, as previously stated, MO-TM resulting
populations need to be decimated, to ensure a fair comparison with GA. A com-
parison among GA’s SS and SP and TM’s SSd and SPd confirms that both
sets of algorithms reach good spreading values; TM performs better in all cases
except MOP3, where performances are similar to those of GA. Results hence
indicate a generally better behavior of Taguchi’s algorithms with respect to GA.
Table 3.2 results are confirmed by Fig. 3.2, where Pareto set and fronts only
for ZDT test problems are depicted; MO-TM algorithms are always capable of
finding the Pareto front, whereas GA is sometimes unable to reach it. In MOP3
optimization (not reported in Fig. 3.2), GA and TM solutions are overlapping
over the front, as confirmed by Table 3.2 results.
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Figure 3.1: Comparison among optimization algorithms over test functions. Figures
show true Pareto fronts (continuous lines) and Pareto sets (markers). Solutions have
been further decimated to provide a clearer visualization.
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Table 3.2: Comparison among optimization algorithms over test functions. Average
values and, in parenthesis, standard deviations over Nt = 10 runs.

NSGA-II MO-TM[D] MO-TM[R] MO-TM[S]

ZDT1

d% 0.0% (0.0%) 79.8% (4.9%) 23.4% (7.7%) 77.1% (4.1%)

D% 0.0% (0.0%) 48.6% (2.9%) 5.3% (2.0%) 46.1% (2.8%)

GD
4.8·10−2 7.5·10−5 1.8·10−2 8.4·10−5

(2.0·10−2) (2.8·10−5) (3.3·10−3) (1.9·10−5)

SSd
1.2·10−2 1.4·10−3 9.5·10−2 1.5·10−3

(7.3·10−3) (1.8·10−4) (6.1·10−2) (3.1·10−4)

SPd
8.9·10−1 3.3·10−1 1.1 3.4·10−1

(4.5·10−2) (2.9·10−1) (8.5·10−2) (2.7·10−1)

ZDT2

d% 0.0%(0.0%) 78.2%(9.7%) 6.9%(2.5%) 85.2%(5.1%)

D% 0.0%(0.0%) 46.7%(4.2%) 2.8%(1.1%) 50.5%(4.3%)

GD
1.7·10−1 4.7·10−4 1.0·10−2 3.1·10−4

(7.5·10−2) (3.2·10−4) (2.3·10−3) (2.5·10−4)

SSd
1.4·10−2 5.6·10−3 1.3·10−2 5.6·10−3

(9.4·10−3) (9.5·10−4) (7.9·10−3) (2.1·10−3)

SPd
9.7·10−1 3.8·10−1 6.8·10−1 4.0·10−1

(3.6·10−2) (2.1·10−1) (2.1·10−1) (2.4·10−1)

ZDT3

d% 0.0%(0.0%) 57.8%(16.9%) 5.1%(4.8%) 67.5%(14.4%)

D% 0.0%(0.0%) 44.2%(12.6%) 2.2%(2.4%) 53.6%(12.5%)

GD
5.9·10−2 2.4·10−4 6.2·10−3 2.9·10−4

(1.2·10−2) (2.3·10−5) (2.7·10−3) (1.8·10−4)

SSd
1.2·10−2 3.8·10−3 1.1·10−1 2.7·10−3

(1.9·10−3) (8.7·10−4) (6.6·10−2) (7.9·10−4)

SPd
9.0·10−1 3.8·10−1 1.2 4.5·10−1

(1.6·10−2) (5.4·10−2) (1.6·10−1) (6.9·10−2)

ZDT6

d% 0.2%(0.6%) 99.3%(0.7%) 15.5%(13.8%) 98.6%(1.3%)

D% 0.0%(0.0%) 48.6%(1.6%) 2.2%(2.6%) 49.2%(1.6%)

GD
5.2·10−1 6.2·10−4 1.3·10−1 5.6·10−4

(1.3·10−1) (4.0·10−4) (3.4·10−2) (2.7·10−4)

SSd
3.1·10−2 1.7·10−2 5.0·10−2 1.2·10−2

(3.2·10−2) (1.1·10−2) (2.6·10−2) (8.9·10−3)

SPd
9.8·10−1 3.7·10−1 8.9·10−1 3.2·10−1

(9.8·10−3) (9.4·10−2) (6.0·10−2) (7.4·10−2)

MOP3

d% 42.1%(3.0%) 39.2%(6.0%) 55.9%(13.7%) 43.9%(9.5%)

D% 7.7%(1.2%) 31.6%(5.8%) 29.5%(7.4%) 31.2%(6.7%)

GD
2.1·10−5 3.9·10−4 1.9·10−4 3.7·10−4

(2.1·10−6) (4.0·10−5) (2.1·10−4) (4.9·10−5)

SSd
6.4·10−4 9.9·10−4 9.0·10−4 1.0·10−3

(5.9·10−5) (6.2·10−5) (1.6·10−4) (8.5·10−5)

SPd
6.5·10−1 7.7·10−1 7.3·10−1 8.4·10−1

(5.4·10−2) (5.8·10−2) (1.1·10−1) (6.6·10−2)
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3.3 Scalarization Method

To provide a set of easily comparable results with the MO techniques described
above, tests have been performed on the previously introduced test functions
ZDT3 and the TNK. Both are particularly difficult having disconnected Pareto
Fronts, the former having only convex segments in the front, the latter having
also a non-convex front.

Benchmarks used here in a scalarized SO optimization produce unsatisfac-
tory results, as foretold in earlier, but are reported so as to get a better insight
on the importance of MO techniques: algorithms are tuned to perform nearly
the same number of cost function evaluations. This will ensure a fair com-
parison among the different techniques, regardless of different implementations
or different machine architectures. For the sake of simplicity, the SO GA im-
plementation in Matlab Optimization toolbox is here exploited. The variable
space dimension is 2 in both cases, and the domain is xi ∈ [0, 1] for i = 1, 2;
no constraints are present, besides those intrinsically present in the functions’
definitions. Population size is set to 20, maximum generations number to 1000,
but the algorithms never performed so many runs, stopping on the stall criteria
much before, usually at about generation 50. All other parameters are set to
default.

In the first case, ZDT3, the front is not connected but is convex. A series of
standard SO GA runs as described earlier are performed, varying weight values
of the single-objective function cs(x) defined by:

cs(x) = w1c1(x) + w2c2(x) (3.15)

with w1 ∈ (0, 1) and w2 = 1 − w1. Ten runs for each weight value in the finite
set
w1 ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] are performed, for a total of 90 inde-
pendent runs. Due to the stochastic nature of GA, runs with the same weight
values do not fall exactly on the same point, as a deterministic SO optimization
would, but lead to a cluster of optimal solutions (Fig. 3.2a). These clusters are
clearly separated for high w1 values, and partially superimposed otherwise, so
that it would be hard to identify them on the figure; for w1 < 0.6 in this test
case the optimal point is located at a random position at the bottom of one of
the three valleys. As a general rule results with small values of w1 are clustered
in the bottom right corner of the figure, while those with an high value of w1

are clustered on the top left corner. A solution which is not on the Pareto Front
(gray bullet) is also found. Please note how these 90 independent runs lead to
very clustered solutions, and a very poor approximation of the Pareto Front.
True MO techniques, as those described above, explore the whole front with
greater efficiency in a single run.

In the second case, TNK, the front is not connected and non-convex. A
series of standard single-objective GA runs with the same parameters as before
are performed, varying the weight values as in the previous example and with
ten independent runs for each set of weights. Again, solutions are clustered
according to the chosen w1 value and, furthermore, as expected (Section 1.1.1),
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(a) ZDT3

(b) TNK

Figure 3.2: Scalarized MO problem: hatched area, cost function co-domain; thick lines
on the contour, Pareto Front; empty circles, solution found by the SO technique on or
close to the Pareto Front; grey filled bullets, solutions which are not Pareto-optimal.

no solutions are found in the concave part of the Pareto Front (Fig. 3.2b).
Moreover, two solutions are found (gray bullets in Fig. 3.2b) which are not on,
nor close to, the Pareto Front.

34
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3.4 Array synthesis problem

A real problem is now analyzed: the design of a concentric circular antenna
array (CCAA) [58], [59]. This problem has been addressed in the past using
GA [60], PSO [61] and other techniques [62]. The array synthesis problem here
tested is the design of a sector beam pattern. The problem’s specifications are
those for a geostationary satellite antenna in the Ka-band (19.7 − 20.2 GHz)
designed to provide a multibeam coverage of Europe [63], [64]. The broadside
beam should be 0.56◦ wide, with a maximum ripple equal to 3dB, and side
lobe level level equal to −30dB, to be checked only in [−10◦,−0.9◦]∪ [0.9◦, 10◦].
The single elements composing the CCAA are chosen to have characteristics
comparable to horns in [64]; in particular circular horns with a 4λ diameter

are exploited. For what concerns the element field pattern, a [cos(θ)]
35

is used,
which is a good approximation for angles closer than π/5 to broadside [64]. The
optimization will focus on a sparsified array of equi-amplitude elements with the
dual objective of satisfying the masks and minimizing the number of elements.

The CCAA comprisesM concentric rings plus a central element [65] (Fig. 3.3).
For ring m, Nm and rm are the number of elements and the radius, respectively;

element n = 0, . . . , Nm − 1 is at angular position φmn = 2πn/Nm + φ
(0)
m , being

φ
(0)
m the angular offset of the first element. Consequently the spacing between

neighbouring elements is uniform and equal to dm = 2πrm/Nm [59], [62].

P

Rm

z

x

y

Nm

NM

θ

f

fm2

N1

fm

(0)

Figure 3.3: Geometry of a concentric circular antenna array (CCAA) with a central
element.

The array factor for a CCAA is:

AF (θ, φ) = 1 +

M∑
m=1

Nm−1∑
n=0

ej2πrm sin θ cos(φ−φmn), (3.16)

Masks fitting is the first objective of this test. This is done by first defining
an upper and a lower masks (Fig. 3.6); differences between the array’s total
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pattern and masks for every θ are calculated, and then the out-of-masks ones
are minimized, leading to a value of cmask; namely an array with a 0 value for
this cost is perfectly fitted between masks. A CCAA has a rather symmetrical
pattern; however the cost evaluation optimization is conducted for φ = 0◦ and

φ = 90◦, and c
(0)
mask + c

(90)
mask is the first objective of the optimization.

The second objective of the optimization is the minimization of the total
number of elements the CCAA is composed of, Ntot =

∑M
m=1Nm. Arrays with

a smaller number of elements are easier to realize, more lightweight and cheaper,
especially if they have uniform feeding. Being the second objective a discrete
parameter, the Pareto set is going to be discontinuous.

The optimization is conducted over a CCAA composed of M = 9 rings;
arrays with a smaller number of rings are unable to achieve similar perfor-
mances as the structures developed in [63], [64]. Input parameters are ideally,

(Rm, Nm, φ
(0)
m ), but since constraints on spacing to guarantee that horns 4λ in

diameter are physically placeable on the designed array, a constraint to provide
a correct spacing of at least 4λ between consecutive elements on the same ring

and between consecutive rings is enforced. This is easier if (∆Rm, Nm, φ
(0)
m ) is

chosen as parameter set, with Rm = Rm−1 + ∆Rm and R0 = 0.
MO-TM parameters are T = 20 and r = 0.95 (Table 3.3), and Nt = 10 in-
dependent runs of each algorithm are conducted over Ni = 200 iterations (i.e.
generations for GA), to generate statistics. GA’s population size GAp is de-
termined by dividing the cost function evaluations number f by the number
of iteration Ni. Mean and standard deviation of each performance metric over
these repeated runs are finally reported in Table 3.4, and Pareto sets are de-
picted in Fig. 3.4; MO-TM solutions have been decimated in this case too to
match GA’s population size. Obviously metrics like GD cannot be computed,
being the Pareto front unknown. The best results are obtained with MO-

Table 3.3: Optimization parameters for the CCAA synthesis problem.

T r Nv OA Ni f GAp Nt

CCAA 20 0.95 20 (81, 40, 3, 2) 200 320463 1602 10

TM[R], as confirmed by values of d% and D% in Table 3.4: indeed in Fig. 3.4
MO-TM[R] solutions (circles) dominate the others, especially GA’s (triangles).
SS and SP values indicate a similar behavior among different algorithms for
what concerns spreading over the Pareto set. What really matters is that only
MO-TM algorithms (Random and Deterministic in this case) have been capable
of finding some sets of input parameters leading to radiation patterns comprised
between masks, as pointed out in Table 3.5, whereas MO-GA designs are inca-
pable of fulfilling this goal. Parameters composing the best synthesized CCAA
are in Table 3.6: MO-TM[R] has led to a 196 elements design with a 48.2λ
radius (Fig. 3.5), which is perfectly fitted between masks. The antenna pattern
deriving from it is reported in Fig. 3.6. By increasing the tolerance to 5%, MO-

36



3. Results and Benchmark Comparison

NSGA-II
MO-TM D
MO-TM R
MO-TM S

c + c
(0) (90)

mask mask

Ntot

0 5 10 15 20 25
0

50

100

150

200

Figure 3.4: Comparison among optimization algorithms over the CCAA synthesis
problems. Different markers correspond to different Pareto sets.

TM[R] is capable of significantly further decreasing the number of elements,
reaching a 148 elements design, with a 47.4λ radius, as shown in Table 3.6.
That allows the designer to choose between a larger array, but perfectly fitted
between masks, and a more compact one, characterized by only a small fitting
error. A comparison with the sunflower array in [63] is straightforward: in

Table 3.4: Comparison among optimization algorithms over the CCAA synthesis prob-
lem. Average values and, in parenthesis, standard deviations over Nt = 10 runs.

NSGA-II MO-TM[D]

d% 20.2% (12.2%) 11.8% (8.4%)

D% 20.3% (10.6%) 12.0% (8.0%)

SSd 6 · 10−2 (2 · 10−2) 7.8 · 10−2 (2.5 · 10−2)

SPd 5.5 · 10−1 (1.3 · 10−1) 6 · 10−1 (1.7 · 10−1)

MO-TM[R] MO-TM[S]

d% 57.2% (19.0%) 28.6% (17.5%)

D% 44.7% (15.3%) 23.1% (12.5%)

SSd 9.2 · 10−2 (3.8 · 10−2) 9.3 · 10−2 (3.1 · 10−2)

SPd 6 · 10−1 (2 · 10−1) 7.4 · 10−1 (1.8 · 10−1)

that work masks are satisfied with a RN = 56λ radius array composed of 250
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Table 3.5: Optimizations results for a M = 9 CCAA.

NSGA-II MO-TM[D] MO-TM[R] MO-TM[S]

Ntot [RN ] Ntot [RN ] Ntot [RN ] Ntot [RN ]

100% fitting − 199 [49.9λ] 196 [48.2λ] −
95% fitting − 180 [47λ] 148 [47.4λ] −

Table 3.6: Design parameters deriving from the optimization for a M = 9 CCAA.

0 1 2 3 4 5 6 7 8 9

MO-TM[R] 196 elements, RN = 48.2λ, 0% masks fitting error

Nm 1 8 14 18 23 26 30 20 28 28

Rm/λ − 6.5 10.8 15.0 19.3 23.4 28.2 33.5 38.3 48.2

φ
(0)
m (deg) − 283.2 178.6 304.7 164.0 269.0 117.5 131.6 79.9 2.6

MO-TM[R] 148 elements, RN = 47.4λ, 5% masks fitting error

Nm 1 6 8 17 14 22 24 24 12 20

Rm/λ − 6.4 10.7 14.8 20.5 24.8 30.2 37.1 42.2 47.4

φ
(0)
m (deg) − 192.5 345.8 260.0 263.8 103.3 257.2 272.7 338.0 95.4

elements. Hence the proposed CCAA optimizations has led to a set of struc-
tures capable of achieving the same performances as in [63] with a lower number
of elements and a smaller diameter, confirming that MO-TM algorithms are a
viable and convenient solution also in practical design problems.
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Figure 3.5: The 196 elements, RN = 48.2λ CCAA obtained with MO-TM[R], com-
posed of M = 9 rings.
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Figure 3.6: Pattern deriving from the 196 elements CCAA obtained with MO-TM[R].
The array is perfectly fitted between masks for φ = 0◦ (solid line) and for φ = 90◦ (dot-
ted line). The pattern is practically symmetrical. Masks to be satisfied are reported
as non-hatched regions.
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Figure 3.7: Symmetric array made of 2N − 1 elements, where the central element
is the combination of two identical elements. The optimization process involves N
amplitudes, N phases and N − 1 spacings.

3.5 Array beam shaping

A seond real world ptoblem is that of multiple beam shaping. Beam shaping for
single- and multi- beam antenna arrays is an interesting possibility for telecom-
munication devices, yet a full control over amplitudes and phases of every single
element in the array leads to costly and complex feeding networks; some con-
straints, especially on amplitudes, would lead to much more convenient designs.
In particular for multi-beam arrays, a phase-only control, where different beams
are generated varying only the phase of the single array elements, would be a
much cheaper solution with respect to those where also the element amplitude
are changed when switching from beam to beam [66]–[68]. Being the problem
non linear, a direct synthesis is impossible and optimization techniques are often
exploited, yet, when several beams are to be synthesized, a single cost function
encompassing all of them can be inadequate, especially if, besides beams, there
are other constrains to be satisfied, for example on the maximum difference
between element amplitudes. Indeed, if an array has very different excitation
amplitudes among its elements, the proper design of an efficient feeding network
can be tricky, while if element amplitudes are more uniformly distributed, the
feeding network is easier to realize [69].

The array factor (AF) of linear symmetric array with 2N−1 elements aligned
along the z-axis (Fig. 3.7)is [68]

AF = 2

N/2∑
n=0

an cos(2π
zn
λ

cos θ + φn) (3.17)

where an are the excitation amplitudes, φn are the excitation phases and zn are
the element positions.

Arrays will be optimized with MO-TM to comply to different radiation pat-
tern masks, while at the same time keeping low the difference in element am-
plitudes. Different patterns will be synthesized on phase-only variations, while
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Table 3.7: Masks parameters for the Q = 2 and Q = 3 problems

Centre(s) Width (Lower) Width (Upper) Ripple SLL

75◦ and 120◦ 6◦ 20◦ 3dB −23dB

maintaining the same element amplitudes. In the proposed optimization scheme,
excitation amplitudes will be allowed to vary within [0, 1], excitation phases
within [−π, π] range and element spacings dn = zn − zn−1 within [0.3λ, 0.9λ].

Two different multi-objective array design problems are investigated: first,
a bi-objective (Q = 2), and then a tri-objective linear array synthesis problem
(Q = 3). MO-TM results will be compared to those generated by the NSGA-II
[33]. Comparison will be based on the metrics in Section 3.1. To ensure a fair
comparison, the total number of cost functions evaluations shall be kept equal
among MO-TM and MO-GA. Also here, an equal number of generations for GA
and MO-TM has been chosen, and the number of cost function evaluations in
MO-TM has been divided by the number of iterations, giving the corresponding
NSGA-II population size.

3.5.1 Dual-beam shaping (Q = 2)

In this first problem two identical masks centered on different angular directions
will be considered: they are reported as dashed lines in Fig. 3.8a and 3.8b and
have their characteristics reported in Table 3.7. The cost function value is
obtained by calculating differences between the AF and masks on a discrete set
of angles (181 θ values ∈ [−90, 90]), and then summing up the absolute values
of all differences. First and second masks fitting are the two objectives of this
optimization.

Results are relative to a symmetric array made of 13 elements, hence the
optimization algorithms work on 27 parameters (7 amplitudes, 7+7 phases,
6 spacings). The selected OA has been an OA(81, 40, 3, 2), and it has been
reduced to an OA(81, 27, 3, 2). MO-TM number of iterations and GA number
of generations and population size are in Table 3.8. The Pareto set is reported
in Fig. 3.9a, while numerical comparison is in Table 3.9. In this case Random
Taguchi’s method has been the most performing algorithm, finding the largest
part of the non-dominated solutions. Its set is in fact the best among other
algorithms’ ones in Fig. 3.9a. Its spreading is by far the smallest, hence the best.
Obtained optimized amplitudes, spacings and phases are reported in Table 3.10
for one of these synthesized arrays. The excitation dynamic is 3.4. Fig. 3.8a
shows the array factors obtained with each phases’ set.

3.5.2 Dual-beam shaping and amplitudes spread (Q = 3)

In addition to first and second masks fitting, the minimization of the excitation
amplitudes spread as in (3.18) has been added. The optimization has been
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carried out on the same structure as in the Q = 2 case, hence a symmetric array
made of 13 elements. MO-TM and GA parameters are the same than in the
previous case (Table 3.8).

max(an)−min(an)

min(an)
(3.18)

Results show that both GA and TM perform well, but only Random Taguchi’s
method has been capable of finding amplitude and phases capable of fitting the
AF under the selected masks (Table 3.10), while maintaining a low excitation
dynamic (2.4 in this case). Different views of the 3-D Pareto front are reported in
Fig. 3.9b, while a numerical comparison is in Table 3.9. Random TM spreading
is the smallest in this case too. In Fig. 3.8b array factors obtained with each
phases’ set are shown to be comprised between their relative masks.

Table 3.8: Optimization settings

TM iter./GA gen. Fcount r T GA popsize

Q = 2 200 167000 0.95 10 835

Q = 3 200 235151 0.95 15 1175

Table 3.9: Comparison among optimization algorithms

Algorithm Non-dominated solutions Spreading

d% D% SS

Q = 2

NSGA-II 0% 0% 15.1·10−3

MO-TM deterministic 18.88% 23.95% 3.7·10−3

MO-TM random 100% 76.04% 2.7·10−3

MO-TM semi-random 0% 0% 3.2·10−3

Q = 3

NSGA-II 93.55% 30.90% 12·10−3

MO-TM deterministic 47.06% 24.60% 10.5·10−3

MO-TM random 76.60% 33.40% 8.6·10−3

MO-TM semi-random 35.60% 11.10% 6.4·10−3
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(a) Dual beam shaping (Q = 2) (b) Dual beam shaping + ampl. spread (Q =
3)

Figure 3.8: Array factor satisfying masks. Masks are reported as dashed lines.

Table 3.10: Optimized array characteristics; phases are in radiants, distances in free-
space wavelengths

elements

0 1 2 3 4 5 6

Q = 2

an 0.888 0.806 0.775 0.592 0.565 0.382 0.200

φ1n −0.371 −0.996 −1.740 −2.667 2.584 1.980 0.650

φ2n 0.915 1.723 −2.494 −0.897 1.088 2.835 −1.693

dn 0.605 0.596 0.610 0.585 0.616 0.574

Q = 3

an 0.784 0.740 0.662 0.529 0.433 0.321 0.231

φ1n 1.020 −1.014 −1.836 −2.848 2.555 1.642 1.018

φ2n 0.985 1.750 −2.821 −1.134 0.446 2.279 3.141

dn 0.573 0.592 0.558 0.543 0.517 0.480
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(a) Dual beam shaping (Q = 2)

(b) Dual beam shaping (Q = 3)

Figure 3.9: Cost spaces for Q = 2 and Q = 3 problems. Costs are first and second
masks fitting for both problems, plus amplitudes spread minimization for the tri-
objective case. Pareto sets are reported for each algorithm.
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[3] A. Cauchy. “Méthode Générale pour la Résolution des Systèms dEqua-
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Chapter 4

Method of Moments

The Method of Moments (MoM) is probably the most widely used numerical
technique in RF and antenna CEM, and has a long history in the field [1], [2] as
the most popular Integral Equation method. Central to the MoM, as to other
full-wave techniques, is the idea of discretizing some unknown electromagnetic
property, typically surface currents or fields. This process of discretization is also
known as meshing. It entails subdividing the geometry into a (large) number of
small elements, that may be one-dimensional segments, two-dimensional surface
patches (often triangles), three-dimensional tetrahedral elements, or a regular
three-dimensional grid, depending on the problem at hand and the method used.
Within each element, a simple functional dependence is assumed for the spatial
variation of the unknown, but the amplitude (and possibly phase) of the un-
known is determined by application of the method to the elements’ mesh which
approximates the original geometry. This functional dependence is also known
as a basis (or expansion) function. Generally, the accuracy of the methods is re-
lated to the discretization (i.e. to the mesh size): the finer the mesh, the better
is the accuracy of the methods. The largest mesh size (alternatively, the finest
geometrical resolution) is limited by the available computational resources; for
electromagnetic applications, the mesh fineness is usually determined by the
requirement to sample the phase adequately.

Real numerical modelling techniques may be broadly classified into integral
methods [3], [4], differential methods [5], and variational methods [6]. Varia-
tional methods are really based on the differential or integral form of the equa-
tion to be solved. Integral schemes for materially homogeneous problems have
long been known and used: simple concepts, derived from an understanding of
the physics of the fields, fall under the more general boundary elements schemes
that are derived mathematically from the governing equations [7]. Integral
equation methods have now been around for several decades, and their intro-
duction to electromagnetics has been due to the seminal works of Richmond and
Harrington in the 1960s, after that phase, integral methods assumed a sophis-
ticated form under the boundary integral method [4], [8]. There was a surge
in the interest in this topic in the 1980s, mainly due to the work of Wilton,
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due to the increased power of computers. The interest in this area decreased
when it was demonstrated that differential equation methods, with their sparse
matrices, could solve many problems more efficiently than integral equations.
However, in recent decades, due to the advent of fast algorithms, there was a
revival in integral equation methods in electromagnetics. Traditional integral
equation solvers were inefficient, but with the advent of fast solvers and smart
acceleration techniques, they are more efficient than before, and have become
even more efficient than differential equation solvers in many applications.

In the method of moments, the radiating/scattering structure is replaced by
surface or volumetric equivalent currents [4], [9]–[11]. These surface currents
are discretized into wire segments and/or surface patches. A matrix equation is
then derived, representing the effect of every mesh element on every other one.
This interaction is computed using the Green function for the problem. Most
MoM codes use the free-space Green function; the relevant boundary condition
is then applied to all the interactions, yielding a set of linear equations. The
solution of this linear system yields the (approximate) current on each element.
The resulting matrix which must be factored (or used in an iterative solution
scheme) is dense, with complex valued entries. The merits of the method are few
equations per solution with respect to a volumetric approach, since a reduction
in dimensionality from a volume to a surface is performed, and ease in treating
open boundary problems such as are posed by a radiating antenna propagating
in space. Traditionally, the MoM has been applied in the frequency domain
(FDIE), i.e. single frequency, or monochromatic, sinusoidal excitation, with an
ejωt convention assumed. The working variables (unknowns) are thus complex
valued, with a magnitude and phase, as for any phasor analysis. Time domain
integral equation (TDIE) formulations have been used on occasions, but stability
and other issues have proven difficult, and TDIE codes are rare. The use of the
MoM for antenna analysis was given a major boost by the US government’s de
facto decision during the late 1980s to release the Numerical Electromagnetic
Code Method of Moments (widely known as NEC-2) into the public domain.
NEC-2 was a powerful, general-purpose antenna modelling program, but with
no graphical abilities whatsoever and very limited meshing abilities. At present,
there are some excellent commercial codes which offer all the functionality of
NEC-2, but with proper graphical user tools and frequently greatly enhanced
abilities, like FEKO [12].

The strong points of the MoM are the following [13]:

• Efficient treatment of perfectly or highly conducting surfaces. Only the
surface is meshed; no air box around the antenna needs to be meshed.

• The MoM automatically incorporates the radiation condition, i.e. the
correct behaviour of the field far from the source (proportional to 1/r in
free space).

• The working variables are current densities, from which many important
antenna parameters (impedance, gain, radiation patterns etc.) may be
derived, some directly and some via straightforward numerical integration.
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The weak points of the MoM may be summarized as follows [13]:

• The MoM does not handle electromagnetically penetrable materials as well
as differential equation formulations. If the materials are homogeneous a
fictitious, equivalent surface current formulation may be used, but inho-
mogeneous materials require fictitious equivalent volumetric currents, and
become very expensive computationally.

• The MoM does not scale gracefully with frequency - for typical applica-
tions requiring a surface mesh, the scaling is O((kd)6) where kd is the
electromagnetic size of the structure. Note that this implies an O(f6)
scaling - doubling the frequency can result in a run-time 64 times as long.
This is a major problem with all the computational methods, although the
details do vary slightly from method to method. For a MoM volumetric
mesh, required by an inhomogeneous structure, the scaling is O((kd)9);
this is so large that such methods are usually very limited in application.

In conclusion, the MoM is the preferred method for frequency domain radiation
and scattering problems involving perfectly or highly conducting surfaces, and
is well suited for problems with homogeneous dielectric material. If the prob-
lem involves inhomogeneous dielectric materials, it is unlikely to be the best
formulation.

In this context, a general purpose Method of Moments (MoM) has been
developed, focused on the efficient treatment of finite arrays, composed of per-
fectly conducting materials or homogeneous dielectrics. The main purpose of
the proposed code is to provide a fast and reliable tool to analyze large, yet
finite arrays. Conventional MoM codes [10], [14] usually require a fine mesh
to obtain a good accuracy: this can result in a large dense MoM impedance
matrix, especially for finite array problems, where the mesh of a single element
is replicated. Memory requirements and solution time for such a problem are
[O(N2)] and [O(N3)] respectively for a direct solution. To address this issue,
an approach based on the exploitation of Characteristics/Macro Basis Func-
tions (CBF/MBF) [15]–[19] deriving from the Array Scanning Method (ASM)
[20] is going to be exploited to shrink the size of the impedance matrix and
accelerate the solution by several orders of magnitude. In this way, even large
system of equations, usually solved by iterative techniques, could be reduced
and efficiently solved by direct methods. Section 4.1.1 will present some useful
method of moments definitions, including Rao Wilton Glisson basis functions,a
fundamental building block exploited in the code’s implementation for their
useful properties; Section 4.2 will present the MoM problem derivation for per-
fectly conducting structures, while Section 4.3 will introduce the derivation for
composite structures. In Section 4.4 Green Function calculation for periodic
structures and their acceleration techniques will be presented.
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4.1 MoM Definitions

In the following, the surface of a Perfect Electric Conductor (PEC) object σ =∞
will be called a metallic surface, while the interface between two homogeneous
penetrable domains with σ <∞ will be called a dielectric interface. Note that
the interfaces of homogeneous non-metallic domains are called dielectric sur-
faces although the domains may be magnetic, i.e. µr > 1. Metallic surfaces
are further classified as closed and open surfaces, where a surface is said to be
closed if it’s compact and without boundary, and open if it’s not closed. Bound-
ary conditions of the electromagnetic fields directly determine how the surface
currents behave on the metallic and dielectric surfaces. Boundary conditions
are:

1. n̂×E and n̂ ·H vanish on metallic surfaces,

2. n̂×E and n̂×H are continuous across dielectric surfaces.

The first boundary condition immediately yields the important result: the mag-
netic current M = E× n̂ vanishes on metallic surfaces.

4.1.1 Rao Wilton Glisson basis functions

Rao Wilton Glisson (RWG) basis functions [21] are a set of basis functions suit-
able for use with EFIE/MFIE and triangular patch modeling. This formulation
assumes that a suitable triangulation, defined in terms of an appropriate set of
faces, edges and vertices has been found to approximate the surface S under in-
vestigation. Each basis function is associated with an interior (i.e non-boundary
edge) edge of the patch model and is to vanish everywhere on S except in the
two triangles attached to that edge. Fig. 4.1 shows two such triangles, T+

n and
T−n , corresponding to the n-th edge of a triangulated surface model. Points
in T+

n and T−n may be designated either by the position vector r defined with
respect to the origin O, or by the position vectors ρ+

n and ρ−n , defined with
respect to the free vertex of T+

n and T−n respectively. ρ−n is directed toward the
free vertex of T−n . The plus or minus designation of the triangles is determined
by the choice of a positive current reference direction for the n-th edge, the
reference for which is assumed to be from T+

n to T−n . The RWG vector basis
function associated with the n-th edge is:

fn(r) =


ln

2A+
n
ρ+
n if r in T+

n

ln

2A−n
ρ−n if r in T+

n

0 otherwise

(4.1)

where ln is the length of the edge and A±n is the area of triangle T±n .

Fundamental properties of RWGs are:
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(a) Triangle pair and geometrical
parameters

(b) Geometry for construction of compo-
nent normal to edge.

Figure 4.1: Rao Wilton Glisson geometry and definition

1. The current has no component normal to the boundary (which excludes
the common edge) of the surface formed by the triangle pair T+

n and T−n ,
and hence no line charges exist along this boundary.

2. The component of current normal to the n-th edge is constant and con-
tinuous across the edge. The normal component of ρ±n along edge n is
just the height of the triangle T±n with edge n as the base and the height
expressed as (2A±n )/ln. This latter factor normalizes fn such that its flux
density normal to edge n is 1, ensuring continuity of current normal to
the edge. This result, together with point 1., implies that all edges of T+

n

and T−n are free of line charges.

3. The surface divergence of fn, which is proportional to the surface charge
density associated with the basis element, is

∇s · fn(r) =


ln

A+
n

if r in T+
n

ln

A−n
if r in T+

n

0 otherwise

(4.2)

The charge density is thus constant in each triangle, and the total charge
associated with the triangle pair T+

n and T−n is zero.

4. The moment of fn is given by (A+
n +A−n )favgn , where

favgn =
1

(A+
n +A−n )

∫∫
T+
n +T−n

fn dS =
ln
2

(ρc+n +ρc−n ) = ln(rc+n −rc−n ) (4.3)
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and ρc±n is the vector between the free vertex and the centroid of T±n with
ρc−n directed toward and ρc+n directed away from the vertex, as shown in
Fig. 4.1b, and rc±n is the vector from O to the centroid of T±n .

4.1.2 Excitation

In the following, two excitation models are presented; the first is the plane
wave excitation, that will be exploited in scattering problems; the second is the
delta-gap excitation, that will be instead exploited for transmission problems.

Plane Wave

A plane wave is a constant-frequency wave whose wavefronts are infinite parallel
planes of constant amplitudes, orthogonal to the direction of propagation of the
wave (hence to the Poynting vector). The plane wave is a useful representa-
tion for many types of waves in the far field region. A plane wave in complex
exponential form is

Ei = E0e
jk·r (4.4)

where E0 is the complex amplitude, k is the wave vector and r is the position
vector. Consequently,

Hi =
1

ζ
k×Ei (4.5)

where ζ is the complex impedance of the medium.

Delta Gap Voltage

The Delta-gap generator model is a model that exploits a gap of negligible
thickness h to provide excitation to an antenna. By the application of a voltage
V (from positive to negative terminal) to the gap, the electric field E is

E = −∇φ =
V

h
n̂ (4.6)

where φ is the electric potential and n̂ is the normal to the edge. When the gap
thickness h tends to zero, the electric field has an infinite values, hence

E = V δ(h)n̂ (4.7)

If the gap is associated with an internal edge of the structure, hence the driving
electric field will be non-zero only on that RWG element. So, integrating on
T+
m + T−m leads to

Vm=n =

∫∫
E · fn dS =

∫∫
δ(h)n̂ · fn dS = lnV (4.8)

for edge element m = n, and 0 otherwise. This exploiting the fact that an RWG
has a component normal to the edge equal to 1, as pointed out above. The
feeding voltage V will be defined by the application: for isolated elements it
will have a conventional value of 1, while for arrays its values will depend on
the desired amplitude taper.
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4.2 MoM problem derivation for Conducting struc-
tures

Consider a perfectly conducting body, surrounded by an homogeneous media
with electrical permittivity ε and permeability µ, as in Fig. 4.2a. Ei,Hi are
the incident electric and magnetic fields. Let Sc denote the surface enclosing
the conducting body, with unit normal n̂. Fields outside the body can be

(a) Conductor (b) Equivalent surface

Figure 4.2: Equivalence principle for Conducting structures

represented with the help of equivalent sources [22], distributed over the surface
Sc (Fig. 4.2b). The field generated by this equivalent (electric-only, as the
surface is metallic) current J = n̂ ×H is such that the superposition with the
incident field produces the original field outside, and zero field in the region
inside Sc. Hence, the presence of any arbitrary material can be considered
inside the surface, because of the absence of the field: the region inside Sc
can be replaced by a region whose characteristics are the same as the medium
surrounding the body. The Electric Field Integral Equation (EFIE) can be
derived by enforcing the boundary condition on Sc [21]:

n̂× [Ei + Es(J)] = 0 on Sc (4.9)

The scattered electric field Es can be computed from the surface current by

Es(J) = −jwA−∇φe (4.10)

where A, φ are respectively the electric vector and electric scalar potential:

A(r) =
µ

4π

∫∫
Sc

J(r′)
e−jkR

R
dS (4.11)
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φe(r) =
1

4πε

∫∫
Sc

ρe(r
′)
e−jkR

R
dS (4.12)

and the continuity equation is:

∇s · J = −jwρe, (4.13)

where ρe is the electric charge density. Finally, R = |r − r′| is the distance
between an arbitrarily located observation point r and a source r′ point on Sc.

Inserting (4.10) into (4.9) leads to

−Ei,tan = (−jwA−∇φe)tan on Sc (4.14)

The current on Sc can be expanded in terms of RWG basis function fn as

J(r′) =
∑
n

Infn(r′) (4.15)

Boundary conditions are imposed in weak form, i.e., the integral equation is
weighted with a set of testing functions. The same expansion functions fm are
chosen as test basis function, hence exploiting a Galerkin testing procedure.
It is interesting to notice that, besides leading to generally better posed sys-
tems of equations, this methodology also exactly ensures reciprocity in antenna
problems. The testing procedure continues with the definition of a symmetric
product as

< f ,g >=

∫∫
S

f · g dS (4.16)

Testing (4.14) with fm yields

< Ei, fm >= jw < A, fm > + < ∇φe, fm > (4.17)

Subscripts m,n indicates source and test edges, lm and ln are the m-th and n-th
element edge lengths, while ρc±m are the RWG position vectors.

ρc+m = rc+m − v+
m , ρc−m = −rc−m − v−m. (4.18)

After some manipulation [21], exploiting RWG properties described in Sec-
tion 4.1.1 and the surface vector calculus identity ∇ · ψA = A ·∇ψ + ψ ∇ ·A
[22], terms in (4.17) can be expressed as

< Ei, fm > ' lm
2

(
Ei(r

c+
m ) · ρc+m + Ei(r

c−
m ) · ρc−m

)
(4.19)

< A, fm > ' lm
2

(
A(rc+m ) · ρc+m + A(rc−m ) · ρc−m

)
(4.20)

< ∇φe, fm > ' lm
(
φe(r

c+
m )− φe(rc−m )

)
(4.21)
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The inclusion of (4.19), (4.20) and (4.21) in (4.17) leads to the complete system
of equations (4.22)  Zmn

 In

 =

 Vm

 (4.22)

where the impedance term is

Zmn = lm

[
jω

2

(
A+
mn · ρc+m + A−mn · ρc−m

)
+ φ+

e,mn − φ−e,mn
]
, (4.23)

and Amn, φe,mn are respectively the discretized electric vector and electric scalar
potential:

A±mn =
µ

4π

[
ln

2A+
n

∫
T+
n

ρc+n g±mdS +
ln

2A−n

∫
T−n

ρc−n g±mdS

]
, (4.24)

φ±e,mn =
1

j4πωε

[
ln

A+
n

∫
T+
n

g±mdS −
ln

A−n

∫
T−n

g±mdS

]
, (4.25)

considering A±n as the area of the corresponding positive or negative RWG sub-
triangle. In is the current solution on the n-th edge.

The free space Green’s function is

g±m(rc±m , r′) =
e−jk|r

c±
m −r

′|

|rc±m − r′|
, (4.26)

where rc±m is the centroid of the m-th triangle. The ± sign in A±mn and φ±e,mn
depends on the sign of the Green’s function g±m.

Finally, each term of the RHS Vm is

Vm =
lm
2

(
Ei(r

c+
m )·ρc+m + Ei(r

c−
m )·ρc−m

)
for scattering

Vm =

{
lnV if feeding edge

0 otherwise
for edges feeding (4.8)

(4.27)

where V is the excitation assigned to edge m.
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4.3 MoM problem derivation for Composite struc-
tures

The surface integral equation (SIE) approach ([23], [24] and [25]–[28]) is very
well suited to the analysis of homogeneous dielectric objects or to objects made
up of homogeneous layers. A possible approach is to exploit the Green’s function
of the layered media; however, this solution assumes that the layered media is
infinite in both directions. The procedure exploited here is to set up coupled
integral equations in terms of equivalent electric and magnetic currents on the
surfaces of the homogeneous regions. For an object made up of a large number
of layers, fields induced in any region are expressed in terms of the equivalent
currents on the adjacent interfaces. The following formulations of the MoM
have been found to be generally suited for certain scattering problems based
upon their geometry and material characteristics:

1. Conducting Scatterers (homogeneous, isotropic)

(a) Electric field integral equation formulation (EFIE) for closed and
open bodies

(b) Magnetic field integral equation formulation (MFIE) for closed bodies

2. Dielectric Scatterers (homogeneous, isotropic)
Combined field integral equation formulation (CFIE)

3. Anisotropic Scatterers (homogeneous)

(a) Combined field integral equation formulation (CFIE) modified for
material characteristics.

It is well known that the usage of the EFIE at internal resonant frequencies of
the PEC can result in spurious solutions. This problem is not considered here.

With the help of the equivalence principle [22], starting from Fig. 4.3a, the
following two problems are formulated, each valid for regions external and inter-
nal to the dielectric body, in terms of equivalent electric conductor current Jc,
and equivalent electric and magnetic currents Jd and Md, respectively. Equiv-
alent currents are J = n̂×H and M = E× n̂.

For the problem valid external to the dielectric region, Region 1, shown in
Fig. 4.3b, the conductor and dielectric bodies are replaced by fictitious mathe-
matical surfaces and the entire region is filled with the homogeneous material
(εe, µe) of Region 1. The current Jc is allowed to flow on the mathematical
surface Sc. In addition, two equivalent currents, Jd and Md, are introduced
on the mathematical surface Sd. Finally, fields inside the surfaces Sc and Sd
are set to zero. By enforcing the continuity of the tangential fields at Sc and
Sd,the following equations corresponding to the Electric Field Integral Equation
(EFIE) and the Magnetic Field Integral Equation (MFIE) are derived:
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(a) Conductor+Dielectric

(b) Equivalent external problem (c) Equivalent internal problem

Figure 4.3: Equivalence principle for Composite structures

{
n̂× [Ei + Es(Jc) + Es(Jd) + Es(Md)] = 0 on Sc

n̂× [Ei + Es(Jc) + Es(Jd) + Es(Md)] = 0 on Sd
EFIE (4.28){

n̂× [Hi + Hs(Jc) + Hs(Jd) + Hs(Md)] = 0 on Sc

n̂× [Hi + Hs(Jc) + Hs(Jd) + Hs(Md)] = 0 on Sd
MFIE (4.29)

For the problem valid for the interior region to the dielectric body, as shown
Fig. 4.3c, the entire space is filled with the material of the dielectric medium
(εi, µi). On the mathematical surface Sd, the equivalent currents Jd and Md

are introduced. Fields are zero outside Sd. By enforcing the continuity of the
tangential fields on Sd, the following integral equations are derived:
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n̂× [Es(−Jd) + Es(−Md)] = 0 on Sd EFIE (4.30)

n̂× [Hs(−Jd) + Hs(−Md)] = 0 on Sd MFIE (4.31)

The scattered electric and magnetic field Es and Hs due to the electric
currents J and the magnetic currents M are given by

Es(J,M) = −jwA(J)−∇φe(J)− 1

ε
∇× F(M) (4.32)

Hs(J,M) = −jwF(M)−∇φm(M) +
1

µ
∇×A(J) (4.33)

Testing is conducted via the symmetric product defined in (4.16); testing of the
EFIEs (4.28) leads to

< Ei, fm >= jw < A, fm > + < ∇φe, fm > +
1

ε
< ∇× F, fm > (4.34)

and for the MFIEs (4.29) to

< Hi, fm >= jw < F, fm > + < ∇φm, fm > − 1

µ
< ∇×A, fm > (4.35)

while EFIE (4.30) is

0 = jw < A, fm > + < ∇φe, fm > +
1

ε
< ∇× F, fm > (4.36)

and MFIEs (4.31)

0 = jw < F, fm > + < ∇φm, fm > − 1

µ
< ∇×A, fm > (4.37)

where A, F, φe, φm are respectively the electric vector, magnetic vector, electric
scalar and magnetic scalar potential:

A(r) =
µ

4π

∫∫
S

J(r′)
e−jkR

R
dS (4.38)

F(r) =
ε

4π

∫∫
S

M(r′)
e−jkR

R
dS (4.39)

φe(r) =
1

4πε

∫∫
S

ρe(r
′)
e−jkR

R
dS (4.40)

φm(r) =
1

4πµ

∫∫
S

ρm(r′)
e−jkR

R
dS (4.41)
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and the continuity equations hold:

∇s · J = −jwρe, (4.42)

∇s ·M = −jwρm, (4.43)

where ρe and ρm are the electric and magnetic charge density.
Electric and magnetic currents on Sc and Sd can be expanded in terms of

basis function fn as

J(r′) =

Nc+Nd∑
n=1

Infn(r′) (4.44)

M(r′) =

Nd∑
n=1

Mnfn(r′) (4.45)

Exploiting RWG as source and test basis functions, quantities in (4.34), (4.35),
(4.36) and (4.37) can be expressed in a convenient form: < Ei, fm >, < A, fm >
and < φe, fm > take advantage of (4.19), (4.20) and (4.21). More,

< Hi, fm > ' lm
2

(
Hi(r

c+
m ) · ρc+m + Hi(r

c−
m ) · ρc−m

)
(4.46)

< F, fm > ' lm
2

(
F(rc+m ) · ρc+m + F(rc−m ) · ρc−m

)
(4.47)

< ∇φm, fm > ' lm
(
φm(rc+m )− φm(rc−m )

)
(4.48)

and

< ∇× F, fm >=
lm
2

(
(∇× F(rc+m )·ρc+m +(∇× F(rc−m )·ρc−m

)
(4.49)

< ∇×A, fm >=
lm
2

(
(∇×A(rc+m )·ρc+m +(∇×A(rc−m )·ρc−m

)
(4.50)

The inclusion of (4.19), (4.20), (4.21), (4.46), (4.47), (4.48), (4.49), (4.50) in
(4.34), (4.35), (4.36) and (4.37) leads to the complete system of equations :

Zmn Cmn

Dmn Ymn




Imn

Mmn

 =


Vmn

Hmn

 (4.51)

where the impedance block, analogous to that of (4.23), is

Zmn = lm

[
jω

2

(
A+
mn · ρc+m + A−mn · ρc−m

)
+ φ+

e,mn − φ−e,mn
]
, (4.52)
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while the first off-diagonal block is

Cmn = lm

[
1

2ε

(
(∇× F+

mn)·ρc+m +(∇× F−mn)·ρc−m
)]
, (4.53)

the admittance block is

Ymn = lm

[
jω

2

(
F+
mn · ρc+m + F−mn · ρc−m

)
+ φ+

m,mn − φ−m,mn
]

(4.54)

and the last off-diagonal block is

Dmn = lm

[
− 1

2µ

(
(∇×A+

mn)·ρc+m +(∇×A−mn)·ρc−m
)]

; (4.55)

Amn, Fmn, φe,mn, φm,mn are respectively the discretized electric vector,
magnetic vector, electric scalar and magnetic scalar potential:

A±mn =
µ

4π

[
ln

2A+
n

∫
T+
n

ρc+n g±mdS +
ln

2A−n

∫
T−n

ρc−n g±mdS

]
, (4.56)

F±mn =
ε

4π

[
ln

2A+
n

∫
T+
n

ρc+n g±mdS +
ln

2A−n

∫
T−n

ρc−n g±mdS

]
, (4.57)

φ±e,mn =
1

j4πωε

[
ln

A+
n

∫
T+
n

g±mdS −
ln

A−n

∫
T−n

g±mdS

]
, (4.58)

φ±m,mn =
1

j4πωµ

[
ln

A+
n

∫
T+
n

g±mdS −
ln

A−n

∫
T−n

g±mdS

]
, (4.59)

and with some manipulation and the exploitation of the vector calculus identity
∇× ψA = ψ ∇×A + ∇ψ ×A [22]:

∇× F±mn =
ε

4π

[
ln

2A+
n

∫
T+
n

ρc+n ×∇′g±mdS +
ln

2A−n

∫
T−n

ρc−n ×∇′g±mdS
]
, (4.60)

∇×A±mn =
µ

4π

[
ln

2A+
n

∫
T+
n

ρc+n ×∇′g±mdS +
ln

2A−n

∫
T−n

ρc−n ×∇′g±mdS
]

(4.61)

Also in this case, the free space Green’s function is

g±m(rc±m , r′) =
e−jk|r

c±
m −r

′|

|rc±m − r′|
, (4.62)

and the free space Green’s function gradient in prime coordinates ∇′g = −∇g
is

∇′g±m(rc±m , r′) = (rc±m − r′)(1 + jk|rc±m − r′|)e
−jk|rc±m −r

′|

|rc±m − r′|3
, (4.63)

65



4. Method of Moments

where rc±m is the centroid of the m-th triangle.
Each term of the RHS is

Vm =


lm
2

(
Ei(r

c+
m )·ρc+m + Ei(r

c−
m )·ρc−m

)
Region 1

0 Region 2

for scattering

Vm =

{
lnV if feeding edge

0 otherwise
for edges feeding (4.8)

(4.64)

and

Hm =


lm
2

(
Hi(r

c+
m )·ρc+m + Hi(r

c−
m )·ρc−m

)
Region 1

0 Region 2

for scattering (4.65)

where V is the excitation assigned to edge m.

4.3.1 Dielectric and Metallic Junctions

The MoM derivation explained in the previous Section is relative to a prob-
lem where the conductor and dielectric are separate one from each other. The
treatment of junctions among different dielectrics, metallic and mixed bodies
is of paramount importance to solve real-world design problems, where such
situations are common [11], [29]–[31].

Let en be an edge on the triangular mesh. It is called a junction, if more
than two domains or surfaces meet at en. Otherwise, en is a single edge. Edges
and junctions en are classified as:

1. Dielectric edges or junctions, if en lies at an intersection of two or more
dielectric surfaces but does not meet any metallic surfaces.

2. Metallic edges or junctions, if en lies on the intersection of open or closed
metallic surfaces but does not meet any dielectric surfaces.

3. Composite metal-dielectric junctions, if en lies at an intersection of at least
one open or closed metallic surface and at least one dielectric surface.

Dielectric Edges or Junctions

Considering the surface currents and their basis functions expansions on a di-
electric interface en = S1,2 between two dielectric domains D1 and D2. Surface
currents are related to the fields by J = n̂ × H and M = E × n̂; boundary
conditions imply that the tangential components of the fields are continuous
across a dielectric interface, and since the normal vectors n̂ point into opposite
directions

J1 = −J2 and M1 = −M2. (4.66)
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This implies that the components of the surface currents Ji and Mj ,normal
to the edge,are continuous across the edge at the interface. Because the two
basis functions assigned to an edge on S1,2 and on the opposite sides of it flow
into opposite directions, in the surface current representations they must have
equal coefficients. This is illustrated in Fig. 4.4. Hence, the unknown coefficients
of the oriented basis functions assigned to the same dielectric edge or junction
must have the same value and must be combined into a single unknown. Thus,
at an edge or a junction of a number of dielectric surfaces, there are only two
independent unknowns, one for J and another for M [29].

Figure 4.4: Unknowns associated to the electric and magnetic basis functions assigned
at an edge on the interface of two dielectric domains. Dashed lines denote dielectric
surfaces, numbers indicate domains. Colored boxes indicate basis functions with the
same unknown coefficient.

Metallic Edges or Junctions

Here, surface currents and their expansions at a junction of a number of metallic
surfaces are considered. The surfaces may be open or closed. Since boundary
conditions, as pointed out in Section 4.1, imply that M vanishes on metallic
surfaces, the magnetic basis functions associated to en will be removed. In
addition,since the magnetic field is not necessarily continuous across metallic
surfaces, J has independent values on the opposite sides of the metallic surfaces,
hence the unknown coefficients associated to the electric basis functions assigned
on a metallic junction or edge can not be combined. This is illustrated in
Fig. 4.5a. Naturally the electric basis functions inside closed metallic objects
are removed and such basis functions should not ever be created.

However, if all metallic surfaces associated to en are open and en is com-
pletely in the interior of one homogeneous dielectric domain, the following ap-
plies: as already is mentioned, J must have independent values on the opposite
sides of S, denoted by J1 and J2, and let f1 and f2 be the basis functions assigned
to en with unknown coefficients α1 and α2. These two basis functions produce
the same fields with opposite signs due to the orientation of the basis functions.
Therefore,in order to avoid linear dependence of the columns of the system ma-
trix, the fields of the basis functions must be presented by only one of them,
and α1 − α2 can be considered as a new single unknown. This is illustrated in
Fig. 4.5b.

Hence, at a metallic edge or junction meeting no dielectric surfaces,all the
magnetic basis functions in the expansion of M, with their unknowns, must be
removed. In addition,if all surfaces assigned to en are open metallic surfaces
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and en lies completely in the interior of a homogeneous dielectric domain,one of
the electric basis functions in the expansion of J must be removed [29].

(a) Metal interface between dif-
ferent domains

(b) Metal interface in a homoge-
neous domain

Figure 4.5: Unknowns associated to the electric basis functions assigned at metallic
junctions. Solid lines denote open metallic surfaces, numbers indicate domains. The
unknowns associated to the electric basis functions denoted with crosses are removed.

Metal-Dielectric Junction

Finally, let en a general metal-dielectric junction. Since M vanishes on metallic
surfaces, then the component of M, normal to the edge, also vanishes,and so
the magnetic basis functions assigned at en and the unknowns associated with
them. Again, due to the fact that the magnetic field is not continuous across
open metallic surfaces, J must have two independent values on the opposite
sides of an open metallic surface. This implies that in the expansion of J the
unknown coefficients of the basis functions assigned to en on the opposite sides
of metallic surfaces should be considered as independent unknowns, too. This
is illustrated in Fig. 4.6.

Hence, the unknown coefficients pertaining to the expansions of J assigned
to a general metal-dielectric junction between two metallic surfaces must have
the same value and the corresponding unknowns must be combined to a single
unknown. In the expansions of M the magnetic basis functions, with their
unknowns, assigned to a general metal-dielectric junction must be removed [29].

Figure 4.6: Unknowns associated to the electric basis functions assigned at an edge at a
composite metal-dielectric interface. Solid lines denote open metallic surfaces, dashed
lines denote dielectric surfaces, numbers indicate domains. Colored boxes indicate
basis functions with the same unknown coefficient.
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PMCHWT at Dielectric Edges or Junctions

Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation [29], [30],
[32] is applied on dielectric interfaces For a single edge on an interface of two
dielectric domains the PMCHWT formulation is a summation of the EFIEs and
MFIEs, respectively, defined on the opposite sides of the interface. If en is a
dielectric edge or a junction, the adjacent EFIEs and MFIEs are summed as

D∑
m=1

EFIEmn

D∑
m=1

MFIEmn (4.67)

where D is the number of domains meeting at en, and subscript m indicates the
discretized EFIEs and MFIEs in those domains tested with the oriented RWG
functions assigned to en.

4.4 Green Function Calculation for periodic struc-
tures

Infinite array simulations are used here as a starting point to improve the so-
lution of finite array simulations; hence they must be conducted in a fast and
reliable way. Infinite array analysis are reduced to single cell analysis, via the
enforcement of periodic Floquet boundary conditions: in this way the geometri-
cal periodicity is embedded in the Green’s Function (now GF). This provides a
great numerical advantage as compared to direct simulations of very large (and
possibly truncated) structures. MoM techniques described in the previous Sec-
tions hence can be applied, provided that a periodic GF is exploited in place of
the free-space one. Assuming that the periodic structure is made of scatterers
that are not electrically connected with those in contiguous cells, for perfectly
conducting scatterers, the use of the periodic GF is sufficient to obtain correct
results. When the scattering body is composite, then the periodic GF must be
considered only for the exterior problem, while the interior problem one remains
the homogeneous free-space one.

Considering a periodic array along skew axes y = 0 (index n) and y = x tanφ
(index m), with periods dx and dy and phase shifts kx,0 and ky,0 in the x and
y direction, the following parameters are defined, with reference to Fig. 4.7, to
accurately analyze the problem [33]:

• A = dxdy cosφ is the area of the unit cell;

• β0 = kx,0x̂ + ky,0ŷ is the phase shifts vector, containing phase shift be-
tween consecutive elements;

• ρnm = (ndx +mdy/ tanφ)x̂ +mdyŷ is the array lattice vector, describing
array element positions;

• Rnm = |r− ρnm| is the array position distance.
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Propagation vectors are:

• kt,nm =

(
kx,0+

2πn

dx

)
x̂+

(
ky,0+

2πm

dy
− 2πn

dx tanφ

)
ŷ transverse;

• kz,nm =
√
k2 − kt,nm · kt,nm longitudinal.

Figure 4.7: Array parameters for a skewed grid array geometry. The array lattice
vector ρ21 is depicted.

4.4.1 Free space periodic GF

The spatial representation of the periodic GF is

g∞(r) =
1

4π

+∞∑
n=−∞

+∞∑
m=−∞

e−jkRnm

Rnm
e−jβ0·ρnm (4.68)

This expression has a poor [O(1/n)] convergence, usually requiring thousands of
terms to be summed up to attain an acceptable accuracy. Moreover, the spatial
series (4.68) does not converge for a complex wavenumbers vector β0. Hence
some acceleration techniques must be exploited to ensure a proper convergence
[34]–[37]. Two different periodic GF accelerations have been analyzed.

4.4.2 Acceleration via Poisson formula

A first attempt to improve convergence of the periodic GF is to transform it into
the spectral domain utilizing an infinite discrete spectrum of plane waves, via
Fourier transformation [34], [38]; the result is the Poisson Summation Formula

g∞,P (r) =
1

2jA

+∞∑
n=−∞

+∞∑
m=−∞

e−jkz,nm|z|

kz,nm
e−jkt,nm·r (4.69)
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The branch of kz,nm is chosen so that Im{kz,nm} < 0. The drawback of series
(4.69) is that it converges slowly for observation points close to the array plane,
i.e. |z| → 0. In this way a better convergence with respect to (4.68) is achieved,
but a significant number of terms must be calculated anyway.

4.4.3 Acceleration via Ewald formula

A more relevant acceleration in convergence can be achieved via the exploitation
of Ewald’s Method [34], [39], [40]. This technique has been recognized as one
of the most efficient techniques for the computation of periodic GFs. This
technique transforms the periodic GF into a sum of a spatial and a spectral
series:

g∞,E(r) = Gspectral(r) +Gspatial(r) (4.70)

where

Gspectral(r) =

+∞∑
n=−∞

+∞∑
m=−∞

1

j4A

e−jkt,nm·r

kz,nm
·(

e−j|z|kz,nmerfc

(
jkz,mn

2Eopt
− |z|Eopt

)
+

ej|z|kz,nmerfc

(
jkz,mn

2Eopt
+ |z|Eopt

)) (4.71)

and

Gspatial(r) =

+∞∑
n=−∞

+∞∑
m=−∞

1

8π

e−jβ0·ρnm

Rnm
·(

e−jkRnmerfc

(
RnmEopt −

jk

2Eopt

)
+

ejkRnmerfc

(
RnmEopt +

jk

2Eopt

)) (4.72)

erfc is the complementary error function, and Eopt =
√
π/A is the optimal split

parameter. The use of this optimal splitting parameter ensures that the same
number of terms in the spatial and spectral series is used to achieve a certain
rate of convergence [41]. With the exploitation of this acceleration technique a
dramatical improvement in convergence of the periodic GF is achieved: the two
series exhibit Gaussian convergence, and only 3 terms (m,n = −1, 0, 1) must be
calculated to achieve an accuracy equal to that of (4.68) calculated on thousands
of terms. It is important to point out that the Ewald representation can be
used for complex wavenumbers (complex β0). Ewald’s method has then been
chosen as the most suitable technique for an efficient periodic GF evaluation.
In the implementation, the Faddeeva function is exploited instead of the error
function erfc in (4.71) and (4.72); this has proven to lead to an high speed-up
in the calculation of the GF [42].
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Chapter 5

Method of Moments code

This Section presents the proposed Method of Moments implementation. The
code structure has been described in [P4], and is depicted in Fig. 5.1. All the
code is written in a standard C++ implementation [43], exploiting open-source
libraries. This framework is capable of analyzing isolated structures, infinite
arrays via periodic boundary conditions and finite arrays, on rectangular and
skewed grids (Fig. 5.2).

Section 5.1 will present the details of the code’s implementation from a
numerical point of view, describing libraries exploited and providing a brief
background on dense linear system solving. Sections 5.2, 5.3, 5.4, 5.5 and 5.6
will describe the code main capabilities;.

Figure 5.1: MoM code flow chart.

5.1 Numerical Treatment

5.1.1 Open Source Libraries

The code is entirely implemented using some open-source libraries:

• PETSc 3.3.6 (C++) [44], [45]
Portable Extensible Toolkit for Scientific Computation, a suite of data
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5. Method of Moments code

structures and routines for the parallel solution of scientific applications
modeled by integral / differential equations;

• Armadillo 4.450.0 (C++) [46]
Provides MATLAB-style syntax to C++, used to manipulate vectors and
matrices;

• Lapack 3.5.0 (Fortran) [47], [48]
Linear Algebra Package, based on BLAS [49];

• OpenBLAS 0.2.11 (Fortran) [50]
High Speed Replacement for reference BLAS;

• MPIch2 1.4.1 (C++) [51]
Message Passing Interface, for parallel execution;

• Matplotlib 1.4.2 (Python) [52] 2D Data visualizer;

• Mayavi2 1.5 (Python) [53]
3D Data visualizer, based on VTK.

Libraries are installed and linked under Ubuntu 12.10. Code documentation is
generated via Doxygen 1.8.8

MoM matrix, Voltage and Current vectors are implemented as PETSc con-
tainers; in this way parallel calculations can be performed exploiting MPI with-
out any increase in code complexity. Auxiliary structures are instead imple-
mented via Armadillo containers, to improve code readability.

5.1.2 Dense Linear System Solving

The problem in solving linear systems is: given a matrix A and a vector b, find a
vector x such that Ax = b. The simplest method of solving a matrix system is to
use Gaussian elimination or LUD (lower-upper triangular decomposition) [54].
These solvers are also known as direct inversion solvers. One reason for their
convenience is that there are many known routines for such methods. However,
their complexity is bad: if the matrix system has N unknowns, the CPU time
grows as N3. One advantage of such a method is that when the LU factorization
is performed, the CPU cost of solving for a new right-hand side is proportional
to N2. However, the matrix system has to be available, and hence, all the
matrix elements have to be stored in the computer memory, requiring storage
proportional to N2.

Another way of solving a matrix system is to use an iterative method [55].
This method allows one to solve a matrix system by performing a small number
of matrix-vector multiplies at each iteration. As one can produce the matrix-
vector product without generating or storing the matrix, the method can be
made matrix free, greatly reducing the storage requirements. In this case, only
the unknowns need to be stored, and the memory requirement is proportional
to N instead of N2. For sparse matrices, and fast algorithms for dense matrices,
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such matrix-vector product can be effected in O(N) or O(NlogN) operations,
instead of O(N2) operations. So if the number of iterations can be kept small in
these methods, one can greatly improve the solution time of the equation when
N is large.

Distributed Dense System Solving

On a single processor, the algorithm for dense linear system solving is fairly
obvious, although a good deal of optimization is needed for high performance
In a distributed context, achieving high performance -especially performance
that scales up with increasing processor numbers - requires radical rethinking
about the basic data structures. ScaLAPACK and PLAPACK , are the two
most popular packages for solving a linear system with a distributed dense co-
efficient matrix.

ScaLAPACK [56]
ScaLAPACK is a parallel version of LAPACK, both in function and in software
design. Like the earlier package, ScaLAPACK targets linear system solution
and eigenvalue calculation for dense and banded matrices. Note that, while
sparse matrices are often of banded form, use of the band storage is usually
not an efficient way of dealing with dense systems. In a way, ScaLAPACK is
the culmination of a line of linear algebra packages that started with LINPACK
and EISPACK. The coding of those packages was fairly straightforward, using
at most Basic Linear Algebra Subprograms (BLAS) Level-1 operations as an
abstraction level. LAPACK attains high efficiency on a single processor (or a
small number of shared-memory processors) through the introduction of blocked
algorithms and the concomitant use of BLAS Level-3 operations. ScaLAPACK
uses these blocked algorithms in a parallel context to attain scalably high per-
formance on parallel computers. In ScaLAPACK the relevant parts of the code
are confined to two subroutine libraries: the BLAS for the computational ker-
nels and the BLACS (Basic Linear Algebra Communication Subprograms) [57]
for communication kernels, which offers an abstraction layer over MPI. ScaLA-
PACK are exploited in FEKO.

PLAPACK [58]
PLAPACK is a package with functionality similar to that of ScaLAPACK but
with a different calling style. It also relies on optimized BLAS routines and
is therefore able to achieve a high performance. Whereas ScaLAPACK uses
a calling style that is similar to Fortran, to stay close to its LAPACK roots,
PLAPACK uses a more object-oriented style. PLAPACK are exploited in the
PETSc package.

5.2 MoM Setup and Mesh

The implemented procedure starts by selecting the geometry to be analyzed,
via the CAD interface provided by GMSH [59]. With that tool, a custom ge-
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ometry can be drawn, or a pre-existent model can be imported; for each object,
discretization accuracy can be specified, so that the subsequent mesh operation
can be customized.

The code is tailored to treat three different arrangement situations: single el-
ement structures, where the geometry is analyzed “as is”, infinite arrays, where
the geometry is considered as a unit cell and replicated via periodic bound-
ary conditions exploiting Floquet theorem, and finite arrays, which are formed
by brute-force mesh replication of the analyzed geometry. Acceleration tech-
niques will decrease the computational complexity of the finite array problem,
by exploiting results obtained from infinite array solutions [18].

(a) Rectangular Grid (b) Skewed Grid

Figure 5.2: Array arrangements

Then, options are read from an options file, and mesh accuracy is specified
in a GMSH .dat file. Feeding edges, if present, are labeled differently, so that
they can be recognized by the program in the feed assignment phase. The input
of the procedure is a .geo file, deriving from a GMSH scipted drawing, or an
import of a step file. According to discretization accuracy, the structure is then
meshed automatically, calling the GMSH mesher via a system call. An output
.msh file, containing the mesh, is produced. The exported mesh .msh file is
parsed and transformed in a tuple of 3 files:

• a Points file, containing a list of all mesh points’ coordinates as triplets
(X,Y, Z)

• a Triangles file, containing a list of all mesh triangles. Each triangle is
identified by its 3 vertices (P1, P2, P3), each vertex corresponding to a
point in the Points file, hence forming a connectivity list

• a Feeding edges file, containing, if the problem is not a scattering one, a
list of all edges labeled as feeding ones
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Table 5.1: MoM code parameters

Parameter Array mode
Single el. Infinite Finite

Elements feeding /Plane wave mode
√ √ √

Direct/Iterative solution
√ √ √

Preconditioner/Iterative method
√ √ √

Far field 3D & 2D cuts
√ √ √

Feeding edges loading
√ √ √

No. of array elements, magnitudes
√

Elements spacing, skew and phase shift
√ √

Periodic Green function method
√

In the case of finite array, the mesh is replicated accoding to spacings and skew
in the options file. Points and feeding edges are replicated, and the connectivity
list is extended to include the new triangles. In this way, only the single element
is actively meshed, while the other elements’ mesh is just replicated. Then, the
index of the array element to which the entity belongs is added as a fourth term
in all three files.

Once the geometry realization step is completed, the focus shifts to the defi-
nition of the analysis parameters: Table 5.1 presents a list of some customizable
settings. Once all variables are defined, the surface meshing phase can begin,
exploiting the built-in GMSH mesh generator, whose accuracy has been previ-
ously specified. A Python routine reads the parameters’ configuration file and
calls the Delaunay 2D GMSH mesher. The output mesh file is then parsed and
mesh points are extracted, together with mesh triangles (each identified by its
three vertices), and feeding edges.

5.3 MoM Pre-Process

The Pre-Process phase’s purpose is that of building the impedance matrix and
the RHS of the MoM linear system of equations, using the techniques described
in Section 4.2 and 4.3. This routine reads points, triangles and feeding edges
previously extracted from the mesh file, then identifies every inner edge of the
structure and assigns a RWG basis function to each of them. Then, each mesh
triangle is divided in 9 sub-triangles via barycentric subdivision [60], to ease
numerical evaluation of integral quantities; RWG position vectors for triangles
and sub-triangles are created.
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Figure 5.3: Integration strategy

5.3.1 Integration Strategy

A 9-point quadrature is used for all integrals in Section 5.3: since the integrand
can be assumed constant within each sub-triangle, the integral over triangle Tm,
whose area is Am, can be calculated as a sum over 9 integration points [14]:

1

Am

∫
Tm

g(r)dS =
1

9

9∑
k=1

g(rck). (5.1)

In this way the quadrature points will not coincide with the triangle’s midpoint,
hence no singularity will occur, so no singularity extraction should be performed.

5.4 MoM Solver

In this phase the impedance matrix and RHS of the MoM linear system of
equations created in the Pre-Process Section are read, and the current solution
vector is allocated. Finally the MoM system of equations is solved

[Zmn] [In] = [Vm] (5.2)

Since all data structures are allocated as PETSc containers, a vast range of pre-
conditioners and solvers is available. Moreover, an arbitrary number of concur-
rent processes can contribute to the calculation of the solution. If the Z matrix’s
size is smaller than the available memory, direct solution can be exploited via
LU factorization; this is generally the faster and more accurate method. If, on
the other hand, the matrix size is larger, several iterative Krylov methods [61]
can be exploited. A good combination for dense matrices arising from MoM
problems is GMRES, using Jacobi factorization as a preconditioner.
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5.5 MoM Post Process

In this phase the Voltage and Current vectors created in the previous Sections
are read. Then, the current density on each triangle is determined as a sum of
all RWG currents: the surface current on the n-th triangle due to the m-th edge
is

Imn =
∑
m

lmIm
(
ρc+nm/2A

+
n + ρc−nm/2A

−
n

)
(5.3)

where lm and Im are the m-th edge’s length and current. Moreover, for trans-
mission problem the feeding currents, voltages, impedances and power are cal-
culated.

Finally, 3D and 2D field calculations are performed, exploiting a dipole
model: given a couple of triangles corresponding to a RWG, the correspond-
ing dipole is built, to evaluate the field generated: considering the centre of the
dipole as

c =
1

2
(rc+m + rc−m ) (5.4)

and its moment as
m = lmIm(rc−m − rc+m ) (5.5)

3D and 2D field calculations are performed by superposition of fields from each
dipole, via the exact formulation provided in [14]. valid in near and far field:

Hm =
jk

4π
m× r Ce−jkr (5.6)

and

Em =
η

4π

(
(M−m)

[
jk

r
+ C

]
+ 2MC

)
e−jkr (5.7)

where C = 1
r2

[
1 + 1

jkr

]
and M =

(r ·m)r

r2
.

Moreover, far field quantities, like Poynting vector, radiation density, radia-
tion intensity and radiated power are calculated:
Poynting vector [W/m2]

S =
1

2
Re{E×H∗} (5.8)

Radiation density [W/m2]
Wm = ||S|| (5.9)

Radiation intensity [W/unit solid angle]

Um = r2Wm (5.10)

Radiated power [W ]

Prad =
∑
m

Wm (5.11)

Gain (dB)
G = 10 log10(4πUm/Prad) (5.12)
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For the transmission problem, the radiation resistance [Ω] is

RR = 2Prad/I
2
feed (5.13)

5.6 Output

Output quantities like mesh, surface currents and gain are calculated from data
exported from the entire MoM procedure, exploiting Matplotlib [52] and Mayavi
[53] Python routines. These quantities will be presented during results’ com-
parison in Chapter 7.

5.6.1 Mesh view

This routine reads the Points file and the Triangles file, and visualizes the
meshed structure in a Mayavi frame.

5.6.2 Surface current plot

This routine reads the Surface Current exported file, the Points file and the
Triangles file, and visualizes the surface current on each mesh triangle in a
Mayavi frame.

5.6.3 Gain plot

This routine reads the Radiated Power exported file, and the meshed far-field
sphere; then, the far field sphere is deformed: for each triangle, the spherical
coordinates of its vertices are calculated, and their radius replaced by the value
of the calculated Gain at that point. The gain on each triangle of the deformed
sphere is finally visualized in a Mayavi frame, producing a conventional 3D-gain
plot. 2D cuts are calculated on the following cuts:

XY

{
θ = 90◦

φ ∈ [0◦, 360◦)
XZ

{
θ ∈ [−180◦, 180◦)

φ = 0◦
YZ

{
θ ∈ [−180◦, 180◦)

φ = 90◦

(5.14)
The calculated far-field plot 2D cuts are then visualized in polar and cartesian
plots in classical Matplotlib frames.
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Chapter 6

Array Scanning Method-
Macro Basis Function

A class of methods consisting in aggregating basis functions of finite arrays into
relatively small sets, each defined over every unit cell of the array, is becoming
popular. The aggregated basis functions are sometimes named Macro Basis
Functions (MBFs) or Characteristic Basis Functions (CBFs).

A possible implementation of these techniques is focused on the exploitation
of the Array Scanning Method. The Array Scanning Method (ASM) [20] allows
the determination of the behavior of an active antenna (or any single-source
excitation) in an infinite passively terminated array from results obtained for
fully periodic array excitations, while accounting for all the effects of mutual
coupling [17]. The main idea is to be able to recuperate most of the side prod-
ucts of infinite-array analysis to efficiently analyze finite arrays [18]. Indeed,
what is looked for is the current distribution over the array for excitation at
any element of the array. When only one element is excited, the main differ-
ence between infinite and finite arrays is that, in the latter, currents may be
reflected or scattered from the array edges. It is expected that, when the cur-
rent wave propagates back toward the inside of the array (and may bounce on
other edges of the array), the new current distributions created in the array are
similar to those obtained in the forward wave case. The latter correspond to
the distributions provided by the ASM.

For arrays of complex elements, it is difficult to track the multiple reflections
on the edges of the array and to find the corresponding reflection coefficients.
However, the above reasoning allows to think that the current distributions
obtained on successive elements with the ASM will form a good basis for current
distributions in finite arrays. In practice, the ASM integral will be discretized,
which leads to an aliasing phenomenon (implicit repetition of the source; see
dashed lines in Fig. 6.5). Nevertheless, the ASM discretized with very few
samples forms a very good basis for currents in infinite arrays. Those current
distributions, obtained from infinite and finite arrays, will form a set of Macro
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Basis Functions. This method is known under the name ASM-MBF technique
[62]. Validations carried out with the ASM-MBF for arrays of tapered-slot
antennas showed that very high accuracy can be achieved with the application
of the ASM with a very low order, i.e., with the ASM integral computed from
typically 2 to 4 points in both directions. Hence, the ASM-MBF will allow for
the reduction of the effective number of unknowns per antenna by typically 1-2
orders of magnitude when complex elements are considered. This means that
relatively large arrays can now be treated in direct form, i.e., by direct solution
of a reduced system of equations, whose matrix of coefficients can be inverted (or
LU-decomposed) once and for all, such that solutions for all possible excitations
are readily obtained. An open-source code for the ASM-MBF applied to the
simple case of linear arrays of dipoles has been described in [17]. A previous
attempt focused on the application of the ASM-MBF method to 2D planar
arrays, sharing some common aspects with the present work, is in [63].

Sections 6.1 will sketch the basics differences between finite and infinite array
simulations; Sections 6.2 will introduce the Array Scanning Method, while the
exploitation of ASM solutions as Macro Basis Functions will be described in
Sections 6.3.

6.1 Finite and Infinite Array Solutions

The starting point for the analysis of both finite and infinite arrays will be
the current distributions on an infinite array when only one element is excited.
When a single element is excited, different current distributions are found on
successive elements, with magnitudes which, most of the time, decay away from
the excited element. This is schematically represented in Fig. 6.1. By simple
superposition, currents in infinite arrays with constant magnitudes and interele-
ment phase shift ψ are obtained (Fig. 6.2). In a finite array, fields have a distri-
bution similar to that of the infinite array, except for edge elements, due to the
contributions reflected by the array ends (Fig. 6.3). These considerations will
be important in the analysis of the ASM.

Figure 6.1: Infinite array: one element excited.
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Figure 6.2: Infinite array: all elements excited, with constant amplitude and linear
phase progression.

Figure 6.3: Finite array: one element excited (red curve). Fields have a distribution
similar to that of the infinite array, except for edge elements, due to the contribution
reflected by the array ends (green curve).

6.1.1 Array Nomenclature

The following is a list of conventions used throughout the description of the
techniques exploited for the analysis of infinite and finite arrays:

• Na = number of basis functions for each single array element;

• Nx, Ny = number of array elements in X and Y direction;

• Nel = Nx ×Ny = total number of array elements;

• N = Na×Nel = total number of basis functions for the entire finite array;

• Nψ = number of points in discretized ASM;

• Nmbf = number of Macro Basis Functions for each single array element,
after SVD;

• P = Nmbf ×Nel = total number of Macro Basis Functions for the entire
finite array.
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6.2 Array Scanning Method

Consider an array with periodicity dx and dy along the x and y direction with pe-
riodic excitation at the feed-points level; the inter-element phase shift are given
by ψx and ψy. Denoting a given field in the reference unit cell by I∞(ψx, ψy),
then the field obtained in cell (ix, iy) when only the source in the reference unit
cell is excited is given by:

I(ix, iy) =
1

(2π)2

∫ 2π

0

∫ 2π

0

I∞(ψx, ψy) e−j(ixψx+iyψy)dψxdψy, (6.1)

In this way, current on element ix, iy is calculated via superposition of infinite
array simulations, in which only the unit reference cell is excited. A discretized
version of this integral, calculated over Nψ for each direction, hence a total N2

ψ

points for each array element, is:

I(ix, iy) =
1

(Nψ)2

Nψ∑
0

Nψ∑
0

I∞(ψx, ψy) e−j(ixψx+iyψy), (6.2)

where
ψx = 2πp/Nψ , ψy = 2πq/Nψ , p, q = 1, . . . Nψ. (6.3)

The summation (6.2) has the same form as the FFT: the result of the discretiza-
tion of integral (6.1) is that the obtained fields actually correspond to those
excited by sources located every Npsi cells along the array. In other words,
I(ix, iy) becomes periodic along both directions with period Npsi, as illustrated
in Fig. 6.5. To avoid this aliasing problem, a possible solution may consist of ar-
tificially increasing the number of sampling points by increasing Npsi. It may be
expected that the aliasing that characterizes the discretized ASM may severely
degrade the ability to represent current distributions in the finite array excited
by one element only. However, it is important to recall that, in a first instance,
what is looked for is just a representative basis for current distributions. In
this respect, the overlapping between aliased solutions is not a major difficulty,
since the different superimposed solutions are all physical. Of course, for larger
values of Npsi in the ASM, more current distributions are produced and a higher
accuracy can be achieved. Finally, since the ASM solutions are themselves su-
perpositions of infinite-array solutions with constant-amplitude excitation with
linear phase progression, the latter may equally well serve as MBFs. Hence, the
ASM does not need to be explicitly calculated to form the MBFs, but for each
array element the term

Ip,q(ix, iy) =
1

N2
ψ

I∞p,q e
−j(ixψx+iyψy), (6.4)

shall be computed, where ix = 1, . . . Nx , iy = 1, . . . Ny.
A key point is that, upon forming MBFs, it is good to have the phase

shifts ψx and ψy of the infinite-array solution uniformly distributed in [0, 2π) or
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Figure 6.4: Uniform sampling in ψ space for phase shifts in infinite array solutions

Figure 6.5: Finite array, Array Scanning Method: one element excited (red curve).
Fields is reflected by the array ends (green curve). Discretized ASM leads to periodic
source aliasing (blue curve).

[−π, π) (Fig. 6.4). This means that, as soon as the element spacing is smaller
than half a wavelength, solutions from outside the visible space (i.e., with ac-
tive impedances that are purely reactive) will be necessary to form a good set of
MBFs. Finally, for each array element, a threshold Singular Value Decompo-
sition (SVD) decomposition is performed, to remove linearly dependent values
and improve condition number.

Considering Am×n as the ASM matrix, SVD decomposition consists of A

 =

 U

 S

 V H

 (6.5)

m× n m×m m× n n× n

where Um×m, Vn×n are unitary matrices, and Sm×n is a diagonal matrix con-
taining the singular values of A. By choosing a convenient threshold, only the
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first r singular values are retained, hence transforming the matrix to Ar

 =

 Ur

 Sr

 V Hr

 (6.6)

m× n m× r r × r r × n

The r columns of Ur or the r rows of V Hr are an orthonormal basis. By the
application of this procedure to the ASM matrix, the number of MBF is reduced
from N2

ψ to Nmbf .

6.3 ASM as Macro Basis Functions

Once ASM solutions have been calculated, they can be concatenated in matrix
form, in a three-dimensional Q matrix. Each slice of Q corresponds to the list
of coefficients of a given MBF in terms of elementary basis functions. On each
block i, j, the solution xi,j is approximated by:

xi,j ' Qi,jyi,j (6.7)

where each slice of Q corresponds to a MBF, i.e. to a solution, in terms of
elementary basis functions, of one of the smaller problems referred to above.
The main expectation is that the number of slices of Q, i.e., the number of
MBFs, be much smaller than the number of unknowns on the unit cell, which
is often the case by 1-2 orders of magnitude. In the same way as macro basis
functions are defined, macro testing functions are determined, hence exploiting
a Galerkin approach. Reductions takes place block by block: each block of the
finite array impedance matrix is extracted and reduced via QHi ∗Zij ∗Qj (6.8),
where the H suffix denotes transposed conjugate. Block size is reduced from
Na ×Na to Nmbf ×Nmbf . Zredij

 =

 QHi

 Zij

 Qj

 (6.8)

Nmbf ×Nmbf Nmbf ×Na Na ×Na Na ×Nmbf

Each block of the finite array voltage vector is extracted and reduced via QHi ∗Vi
(6.9). Block size is reduced from N1 to Nmbf unknowns V redi

 =

 QHi

 Vi

 (6.9)

Nmbf Nmbf ×Na Na
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In this way, the original large N ×N system of equations (6.10) Z


 I

 =

 V

 (6.10)

N ×N N N

is reduced to a P × P system of equations (6.11). Zred

 Ired

 =

 V red

 (6.11)

P × P P P

and V is reduced from N to P . The reduced system of equation is then solved,
a reduced finite P array current vector being the solution. Each block of the
finite array current vector is finally remapped to the initial number of variables:
Qi ∗ Ii (6.12): block size is remapped from Nmbf to Na unknowns. Ii

 =

 Qi

 Iredi

 (6.12)

Na Na ×Nmbf Nmbf

In this way, I is remapped from P to the original N unknowns.
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Chapter 7

Results and Benchmark
Comparison

A comparison between the proposed code and the commercial code FEKO [12],
used as reference, is presented in this Chapter. For a fair comparison, mesh is
the same for both GMSH and for FEKO. This has been accomplished by speci-
fying mesh accuracy via the GMSH Delaunay mesher, and then exporting that
mesh in ASCII format. The mesh is then imported in FEKO, without the need
for model re-creation. Excitations are then defined in FEKO as Mesh Ports. In
Section 7.1 simulations pertaining to bowtie antennas will be presented, while
Section 7.2 is focused on Tapered Slot Antennas. For each problem under in-
vestigation, the meshed geometry will be presented. Results comparison will be
conducted over surface currents (5.3), 3D patterns and 2D pattern cuts (5.12),
illustrated via the routines described in Section 5.6.
For arrays, brute-force solutions generated via mesh replication will be com-
pared with the solution obtained with the help of the ASM-MBF method. All
tests have been conducted at 10 GHz. Testing architecture is a Quadcore Xeon
5472 @ 3GHz, 32 GB RAM. For what concerns linear algebra packages, the pre-
sented MoM Code uses LAPACK for single process and PLAPACK for parallel
excutions, while FEKO uses LAPACK for single process and SCALAPACK for
parallel execution.
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7. Results and Benchmark Comparison

7.1 Bowtie simulations

7.1.1 PEC Bowtie, Coarse Mesh

A resonant λ0/2 × λ0/2 bowtie antenna, with a λ0/200 feed gap, is shown in
Fig. 7.1. Mesh is finer in regions where currents are supposed to be stronger,
hence where better accuracy is needed.

Figure 7.1: PEC Bowtie, Coarse Mesh.

Surface currents calculated after the solution of the MoM system of equations
are in Fig. 7.2. Fig. 7.2a is relative to the MoM code, while Fig. 7.2b to FEKO:
surface currents plots indicates a very good matching between the two solutions.
3D gain and pattern for the proposed MoM code is illustrated in Fig. 7.3. 2D
cuts comparison in Fig. 7.4 shows an excellent agreement between the proposed
solution and the commercial one. Finally, results in Table 7.1 show that compu-
tational burden and execution time are very similar between the two solutions.
For this coarsely meshed geometry, MPI solution with 4 process is slower than
the single process one: this is due to the slight computational overhead intro-
duced by a parallel solution, which in this case is comparable to the execution
time itself.
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(a) MoM code

(b) FEKO

Figure 7.2: PEC Bowtie, Coarse Mesh: Surface Currents.
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7. Results and Benchmark Comparison

Figure 7.3: PEC Bowtie, Coarse Mesh: 3D pattern and gain.

(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.4: PEC Bowtie, Coarse Mesh: 2D pattern cuts.
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Table 7.1: PEC Bowtie, Coarse Mesh: execution time comparison

MoM Code FEKO

Triangles 256

Edges 349

Matrix Size 349× 349

Solution time
1 process 0.023 s 0.022 s

4 process 0.085 s 0.078 s

7.1.2 PEC Bowtie, Fine Mesh

The same resonant bowtie antenna of Fig. 7.1 is in Fig. 7.5: a finer mesh is
exploited in this case, to achieve better accuracy.

Figure 7.5: PEC Bowtie, Fine Mesh.

Surface currents calculated after the solution of the MoM system of equations
are in Fig. 7.6. Fig. 7.6a is relative to the MoM code, while Fig. 7.6b to FEKO:
surface currents plots indicates a very good matching between the two solutions
also in this case. 3D gain and pattern for the proposed MoM code is illustrated in
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7. Results and Benchmark Comparison

(a) MoM code

(b) FEKO

Figure 7.6: PEC Bowtie, Fine Mesh: Surface Currents.

Fig. 7.7. 2D cuts comparison in Fig. 7.8 shows an excellent agreement between
the proposed solution and the commercial one. Finally, results in Table 7.2
show that for single process, MoM code’s execution time is faster than FEKO’s.
For parallel execution, FEKO’s computation is sped up, while for the MoM
code computational overhead is still significant, hence speed-up is modest, and
execution time is comparable to FEKO’s.

92



7. Results and Benchmark Comparison

Figure 7.7: PEC Bowtie, Fine Mesh: 3D pattern and gain.

(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.8: PEC Bowtie, Fine Mesh: 2D pattern cuts.
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7. Results and Benchmark Comparison

Table 7.2: PEC Bowtie, Fine Mesh: execution time comparison

MoM Code FEKO

Triangles 1030

Edges 1471

Matrix Size 1471× 1471

Solution time
1 process 0.58 s 0.98 s

4 process 0.54 s 0.53 s

7.1.3 PEC Bowtie, Finite Array

The resonant bowtie antenna meshed as in Fig. 7.1 is replicated in an Nx =
3, Ny = 4 elements array, placed on a 60◦ skewed grid. Spacings are dx = 0.7λ0

and dy = 0.7λ0 (Fig. 7.9), and elements are fed with constant amplitude and
phase.

Figure 7.9: PEC Bowtie, Finite Array: Mesh.

Surface currents calculated after the solution of the MoM system of equations
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are in Fig. 7.10. Fig. 7.10a is relative to the MoM code, while Fig. 7.10b to
FEKO: surface currents plots indicates a very good matching between the two
solutions also in the array case. 3D gain and pattern for the proposed MoM code

(a) MoM code

(b) FEKO

Figure 7.10: PEC Bowtie, Finite Array: Surface Currents.
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is illustrated in Fig. 7.11. 2D cuts comparison in Fig. 7.12 shows an excellent

Figure 7.11: PEC Bowtie, Finite Array: 3D pattern and gain.

agreement between the proposed solution and the commercial one.
Results in Table 7.3 show that for single process, MoM code’s execution time
is way faster than FEKO’s. For parallel execution, both computations are sped
up, and performances are equivalent.

Table 7.3: PEC Bowtie, Finite Array: execution time comparison

MoM Code FEKO

Elements Nel 12

Triangles per el. 256

Edges per el. Na 349

Triangles tot. 3072

Edges tot. N 4188

Matrix Size 4188× 4188

Solution time
1 process 7.8 s 18.9 s

4 process 6.7 s 6.7 s

Finally, results in Table 7.4 are relative to ASM-MBF acceleration. At first, a
Nψ = 4 solution has been exploited: SVD decomposition has not reduced the
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(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.12: PEC Bowtie, Finite Array: 2D pattern cuts.

number of MBF, hence Nmbf = Nψ = 4. In this way the original 4188 × 4188
system of equations has been reduced to a 48×48 size, hence a 87 times reduction
in problem complexity. Total solution time is then the sum of the solution of
4 ASM problems, plus the solution of the reduced system of equations, hence
4× 0.023 + 0.0007 = 0.0927 s, for an 84 times reduction in computational time.
The Nmbf = 4 solution is depicted in Fig. 7.13 as a yellow curve: it is shown that
this solution is not accurate with respect to the non-accelerated MoM approach
or to FEKO.
Hence a more suitable a Nψ = 9 solution has been exploited; after a reduction to
Nmbf = 7 via SVD decomposition, the original 4188× 4188 system of equations
has been reduced to a 84 × 84 size, hence a 50 times reduction in problem
complexity. Total solution time is then the sum of the solution of 9 ASM
problems, plus the solution of the reduced system of equations, hence 9×0.023+
0.0018 = 0.2088 s, for a 37 times reduction in computational time. The Nmbf =
7 solution is depicted in Fig. 7.13 as a green curve: accuracy is improved, and
this solution is shown to have an excellent agreement with the non-accelerated
MoM approach and FEKO.
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(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.13: PEC Bowtie, Finite Array accelerated via ASM-MBF: 2D pattern cuts.

Table 7.4: PEC Bowtie, Finite Array accelerated via ASM-MBF: execution time com-
parison

ASM-MBF 4 ASM-MBF 7

Elements Nel 12

ASM sampling pts. N2
ψ 4 9

MBF per el. Nmbf 4 7

MBF tot. P 48 84

Reduced Matrix Size 48× 48 84× 84

ASM Sol. time

1 process

4× 0.023 s 9× 0.023 s

Reduced Matrix Sol. time 0.0007 s 0.0018 s

Total Solution time 0.0927 s 0.2088 s
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7.2 Tapered Slot Antenna (TSA) simulations

7.2.1 PEC TSA, Coarse Mesh

A Tapered Slot antenna, whose dimensions are have been chosen to deliver a
good feed matching and radiation performances, is shown in Fig. 7.14. Mesh is
finer in regions where currents are supposed to be stronger, hence where better
accuracy is needed.

Figure 7.14: PEC TSA, Coarse Mesh.

Surface currents calculated after the solution of the MoM system of equations are
in Fig. 7.15. Fig. 7.15a is relative to the MoM code, while Fig. 7.15b to FEKO:
surface currents plots indicates a very good matching between the two solutions.
3D gain and pattern for the proposed MoM code is illustrated in Fig. 7.16. 2D
cuts comparison in Fig. 7.17 shows an excellent agreement between the proposed
solution and the commercial one.
Finally, results in Table 7.5 show that computational burden and execution
time are very similar between the two solutions. Also for the TSA case, for this
coarsely meshed geometry, MPI solution with 4 process is slower than the single
process one: this is due to the slight computational overhead introduced by a
parallel solution, which in this case is comparable to the execution time itself.
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(a) MoM code

(b) FEKO

Figure 7.15: PEC TSA, Coarse Mesh: Surface Currents.
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7. Results and Benchmark Comparison

Figure 7.16: PEC TSA, Coarse Mesh: 3D pattern and gain.

(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.17: PEC TSA, Coarse Mesh: 2D pattern cuts.
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Table 7.5: PEC TSA, Coarse Mesh: execution time comparison

MoM Code FEKO

Triangles 338

Edges 471

Matrix Size 471× 471

Solution time
1 process 0.047 s 0.060 s

4 process 0.128 s 0.235 s

7.2.2 PEC TSA, Fine Mesh

The same TSA antenna of Fig. 7.14 is in Fig. 7.18: a finer mesh is exploited in
this case, to achieve better accuracy is needed.

Figure 7.18: PEC TSA, Fine Mesh.

Surface currents calculated after the solution of the MoM system of equations
are in Fig. 7.19. Fig. 7.19a is relative to the MoM code, while Fig. 7.19b to
FEKO: surface currents plots indicates a very good matching between the two
solutions also in this case. 3D gain and pattern for the proposed MoM code
is illustrated in Fig. 7.20. 2D cuts comparison in Fig. 7.21 shows an excellent
agreement between the proposed solution and the commercial one.
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(a) MoM code

(b) FEKO

Figure 7.19: PEC TSA, Fine Mesh: Surface Currents.

Finally, results in Table 7.6 show that for single process, MoM code’s execution
time is faster than FEKO’s. For parallel execution, MoM code and FEKO have
similar execution time; for both solutions computational overhead is significant,
hence MPI solution with 4 process is slower than the single process one.
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7. Results and Benchmark Comparison

Figure 7.20: PEC TSA, Fine Mesh: 3D pattern and gain.

(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.21: PEC TSA, Fine Mesh: 2D pattern cuts.
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Table 7.6: PEC TSA, Fine Mesh: execution time comparison

MoM Code FEKO

Triangles 920

Edges 1321

Matrix Size 1321× 1321

Solution time
1 process 0.46 s 0.83 s

4 process 1.17 s 1.16 s

7.2.3 PEC TSA, Finite Array

The TSA antenna meshed as in Fig. 7.14 is replicated in an Nx = 3, Ny = 4
elements array, placed on a rectangular grid. Spacings are dx = 1.3λ0 and
dy = 0.5λ0 (Fig. 7.22), and elements are fed with constant amplitude and phase.

Figure 7.22: PEC TSA, Finite Array: Mesh.

Surface currents calculated after the solution of the MoM system of equations

105
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are in Fig. 7.23. Fig. 7.23a is relative to the MoM code, while Fig. 7.23b to
FEKO: surface currents plots indicates a very good matching between the two
solutions also in the array case. 3D gain and pattern for the proposed MoM code
is illustrated in Fig. 7.24. 2D cuts comparison in Fig. 7.25 shows an excellent
agreement between the proposed solution and the commercial one.
Results in Table 7.7 show that for single process, MoM code’s execution time
is way faster than FEKO’s. For parallel execution, both computations are sped
up, and performances are almost equivalent, with MoM code still faster than
FEKO.

Table 7.7: PEC TSA, Finite Array: execution time comparison

MoM Code FEKO

Elements Nel 12

Triangles per el. 338

Edges per el. Na 471

Triangles tot. 4056

Edges tot. N 5652

Matrix Size 5652× 5652

Solution time
1 process 17.4 s 45.5 s

4 process 14.8 s 17.2 s

Finally, results in Table 7.8 are relative to ASM-MBF acceleration. At first, a
Nψ = 4 solution has been exploited: SVD decomposition has not reduced the
number of MBF, hence Nmbf = Nψ = 4. In this way the original 5652 × 5652
system of equations has been reduced to a 48×48 size, hence a 118 times reduc-
tion in problem complexity. Total solution time is then the sum of the solution
of 4 ASM problems, plus the solution of the reduced system of equations, hence
4× 0.047 + 0.0008 = 0.1888 s, for an 92 times reduction in computational time.
The Nmbf = 4 solution is depicted in Fig. 7.26 as a yellow curve: it is shown
that this solution is not accurate with respect to the non-accelerated MoM ap-
proach or to FEKO.
Hence a more suitable a Nψ = 9 solution has been exploited; after a reduc-
tion to Nmbf = 5 via SVD decomposition, the original 5652 × 5652 system of
equations has been reduced to a 60 × 60 size, hence a 94 times reduction in
problem complexity. Total solution time is then the sum of the solution of 9
ASM problems, plus the solution of the reduced system of equations, hence
9× 0.047 + 0.0011 = 0.4241 s, for a 41 times reduction in computational time.
The Nmbf = 5 solution is depicted in Fig. 7.26 as a green curve: accuracy is
improved, and this solution is shown to have an excellent agreement with the
non-accelerated MoM approach and FEKO.
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(a) MoM code

(b) FEKO

Figure 7.23: PEC TSA, Finite Array: Surface Currents.
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Figure 7.24: PEC TSA, Finite Array: 3D pattern and gain.

(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.25: PEC TSA, Finite Array: 2D pattern cuts.
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(a) XY plane cut (b) XZ plane cut

(c) YZ plane cut

Figure 7.26: PEC TSA, Finite Array accelerated via ASM-MBF: 2D pattern cuts.

Table 7.8: PEC TSA, Finite Array accelerated via ASM-MBF: execution time com-
parison

ASM-MBF 4 ASM-MBF 5

Elements Nel 12

ASM sampling pts. N2
ψ 4 9

MBF per el. Nmbf 4 5

MBF tot. P 48 60

Reduced Matrix Size 48× 48 60× 60

ASM Sol. time

1 process

4× 0.047 s 9× 0.047 s

Reduced Matrix Sol. time 0.0008 s 0.0011 s

Total Solution time 0.1888 s 0.4241 s
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[P9] Niccoló Breda, Giuseppe Pelosi, Stefano Selleri, and Ruggero Taddei.
“Finite Element Analysis of Wideband Nanostructures for Photovoltaic
Applications”. In: 11th International Workshop on Finite Elements for
Microwave Engineering-FEM2012. Estes Park, Colorado, USA. 2012.

[P10] Ugo d’Elia, Giuseppe Pelosi, Stefano Selleri, and Ruggero Taddei. “A
Carbon Nanotube Based Frequency-Selective Absorber”. In: Interna-
tional Journal of Microwave and Wireless Technologies, Cambridge Uni-
versity Press 2.5 (2010), pp. 479–485. doi: 10.1017/S1759078710000693.

[P11] Ugo d’Elia, Giuseppe Pelosi, Stefano Selleri, and Ruggero Taddei. “A
Carbon Nanotubes-Based Material for High Absorption FSS Layers”. In:
10th International Workshop on Finite Elements for Microwave Engineering-
FEM2010. Meredith (NH). 2010.

[P12] Ugo d’Elia, Giuseppe Pelosi, Stefano Selleri, and Ruggero Taddei. “Fi-
nite Element Design of CNT-based Multilayer Absorbers”. In: IV Italian
Workshop The Finite Element Method Applied to Electrical and Infor-
mation Engineering. Roma Tre, Rome. 2010.

116

http://dx.doi.org/10.1017/S1759078710000693

	I Multi-Objective Taguchi Optimization Method  for Electromagnetics
	Numerical Optimization
	Multi-Objective Optimization
	Scalarization
	The Pareto Front concept


	Taguchi's Optimization Method
	Orthogonal Arrays
	Single-Objective Taguchi's Method
	Initialization
	Mapping
	Cost Function Evaluation and Response Table
	Optimal Values Detection
	Range Reduction
	Termination
	Random and Semi-Random variants

	Multi-Objective Taguchi's Method
	Initialization
	Separate Optimization
	Interpolation
	Main Optimization
	Pareto Front Construction
	Selection for Restart


	Results and Benchmark Comparison
	Metrics
	Test functions
	Scalarization Method
	Array synthesis problem
	Array beam shaping
	Dual-beam shaping (Q=2)
	Dual-beam shaping and amplitudes spread (Q=3)


	Bibliography for Multi Objective Optimization

	II Method of Moments acceleration via ASM-MBF  for Antenna Arrays
	Method of Moments
	MoM Definitions
	Rao Wilton Glisson basis functions
	Excitation

	MoM problem derivation for Conducting structures
	MoM problem derivation for Composite structures
	Dielectric and Metallic Junctions

	Green Function Calculation for periodic structures
	Free space periodic GF
	Acceleration via Poisson formula
	Acceleration via Ewald formula


	Method of Moments code
	Numerical Treatment
	Open Source Libraries
	Dense Linear System Solving

	MoM Setup and Mesh
	MoM Pre-Process
	Integration Strategy

	MoM Solver
	MoM Post Process
	Output
	Mesh view
	Surface current plot
	Gain plot


	Array Scanning Method-Macro Basis Function
	Finite and Infinite Array Solutions
	Array Nomenclature

	Array Scanning Method
	ASM as Macro Basis Functions

	Results and Benchmark Comparison
	Bowtie simulations
	PEC Bowtie, Coarse Mesh
	PEC Bowtie, Fine Mesh
	PEC Bowtie, Finite Array

	Tapered Slot Antenna (TSA) simulations
	PEC TSA, Coarse Mesh
	PEC TSA, Fine Mesh
	PEC TSA, Finite Array


	Bibliography for Method of Moments
	Publications


