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Introduction

The present thesis work has been devoted to the experimental investigation, supported by
the development of theoretical and numerical models, on the propagation of light in atomic
media and diffusive materials.

In the last three decades, an increasing interest in physics of optical signal propagation has
been observed and insights about the light-matter interactions have lead to the development of
different experimental schemes, with the the aim to tailor the properties of material systems in
order to achieve a desired optical response. Large variations in group velocity can be achieved
by exploring the spectral regions where the slope of the dispersion curve abruptly changes,
since the group velocity depends on the derivative of the refractive index with respect to the
frequency. The main part of these schemes are based on coherent effects, like electromagnetic
induced transparency [1], and, besides extremely low group velocities (slow light), also super-
luminal group velocities (fast light) have been reported. Such exotic velocities, whose existence
had been surrounded by misconceptions about their apparent violation of causality and special
relativity [2–4], have been experimentally realized [5, 6]. In this field, concerning the control
of propagation dynamics of optical pulses, is set the framework of the first part of the present
work. The used scheme allow to achieve slow and fast light propagation without involving co-
herent interactions [7]. Therefore, the interaction between the control pumping beam and the
probe occurs with no temporal overlap of the two pulses.

Another property linked to the refractive index comes out from the inhomogeneity that can
characterize an optical medium; for example, in a turbid medium, the light interacts with a
bulk material where there are small scattering particles dispersed. Such heterogeneities, due to
the refractive index mismatch between the particles and the bulk material, at microscopic scale
originate the phenomenon of scattering, that is macroscopically observed as light diffusion.

The scenario becomes more complex and interesting if amplification is added in the disor-
dered medium, in such a way to cause the spontaneously emitted photons to experience gain
during the propagation between consecutive scattering events, before they leave the material.
Such an optical system does not need an optical cavity and light is amplified along random paths,
leading to laser-like emission if the gain overcomes the losses [8]. Then a random laser-type
source shares features with the conventional lasers, but manifests different properties especially
in some spectral characteristics and directionality of the output emission.

In the case of modest energy amount stored in the medium, the emission spectra are broad
and ruled by spontaneous emission, whereas, as the energy increases, the stimulated emission
leads to a spectral narrowing. As a peculiar and interesting feature, the spectra can also show
large fluctuations, whose presence is linked to the disorder level and the available gain, in the
form of random spikes at random frequencies.

Since 1960s, when Letokhov suggested the pioneer idea of a disordered amplified medium
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[9], many different samples, with very different scattering properties, has been proposed [10–
13]. However, despite the extensive investigation, the link between theory and experiment has
not been completely clarified. Therefore, in the second part of this thesis, the experimental
and theoretical work has been devoted to the study of random laser systems, in the aim of
characterize the spectral features in term of statistical regimes of the emission and to find a
clear link between theory and experiment.

In summary, the text in divided in five chapters, that cover the above topics, which also
introduce the necessary basics.

Chap. (I) is devoted to the physical background that underlies the interaction between a
optical signal and an atomic medium. The fundamental concept of group velocity is introduced,
as well as the agreement between possible superluminal speed values, that such a velocity can
assume, with causality and special relativity.

Chap. (II) describes the experimental realization of an incoherent interactions scheme for the
optical control of propagation of a light pulse 3 ns long in passive atomic medium, composed by
hot sodium vapor at very low pressure. The dynamics of the process can be basically described
by the excitation of the medium by a control pulse, whereas the probe pulse, that propagates in
the material when the previous interaction is over, experiences at a successive time the arranged
effects.

Chap. (III) shows the same experimental scheme to induce a fast light propagation, with a
probe pulse that takes advance respect to the vacuum propagation.

Moreover, in this chapter the most important innovation developed during this thesis work
is also described: the realization of a fast light propagation suitable for the recovering of a pre-
viously induced delay. Indeed, the results achieved with the two different configurations cited
above suggested the opportunity to include both the propagation modes in the same experimen-
tal set-up.

Chap. (IV) aims to provide the basis of the scattering process and to introduce the framework
and the history of random laser. Both scattering and random lasers regimes are discussed, as
well as the basic description of the state of the art.

Finally, Chap. (V) describes the part of the thesis work devoted to an original theoretical
and experimental investigation on random laser emission in diffusive scattering regime. In such
a regime, where the scattering mean free path is much larger than the radiation wavelength, the
interference conditions in light propagation can be neglected and the optical energy transport
inside the medium can be described as a diffusion process. A model based on a non-resonant
feedback mechanism and extended modes [14] has provided the groundwork for numerical
simulations, that confirm the presence of the different statistical regimes observed in the exper-
iments. At the end of this last chapter, an experimental and theoretical investigation about the
enhancement of the directionality level of the random laser emission is also shown, as topic
under development.
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Chapter I

Optical Signal Propagation through
Dispersive Media

The propagation of optical signals through a material system involves the knowledge about
the interaction between the wave components of the pulse and the atoms. The macroscopic
manifestation of such an interactions is the refractive index, with its dependence on frequency,
that leads to the dispersive properties.

This chapter is devoted to provide the theoretical framework that is indispensable for the
introduction to the experimental realization of a control of the propagation dynamics of optical
pulses.

In the Sec. (1.1.1) the principal concepts that underlie the light-matter interaction are briefly
reminded, starting with definition of electromagnetic waves Sec. (1.1.1) and then introducing
the fundamental concept of dispersion Sec. (1.1.2) and phase and group velocity Sec. (1.1.3).

In Sec. (1.2) we get in the hearth of the question, by discussing the propagation of a wave
packet through a rarefied vapor Sec. (1.2.1) and through two level atomic system Sec. (1.2.2).

Finally, Sec. (1.3) is dedicated to clarify the puzzling issue about interpretation of exotic
group velocities in the light of the special relativity and causality constrains. The starting point
is the concept of causality in the framework of signal transmission (Sec. (1.3.1)). Then the defi-
nition of velocity of the optical front and the optical forerunner is introduced (Sec. (1.3.2)). The
Sec. (1.3.3) is devoted to reassure about the fact that the experimental realization of superlumi-
nal group velocities does not cause temporal paradoxes.
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1.1 Interaction of electromagnetic radiation with matter
1.1.1 Electromagnetic waves

Any macroscopic electromagnetic phenomena is describable by the equations established
by James Clerk Maxwell in the XIXth century, with the Maxwell equations [1]:

∇ ∧ E = −
∂B
∂t

(I.1a)

∇ ∧H =
∂D
∂t

+ j (I.1b)

∇ · D = ρ (I.1c)
∇ · B = 0 (I.1d)

The Maxwell equations and these relations known as material equations or constitutive equa-
tions establish the connection between the electric E and magnetic field H, the magnetic induc-
tion B, the electric displacement D end the electric density current j. A first demonstration of a
link between light and electricity and magnetism had been found in 1845 by Michael Faraday
by the observation of the alteration of polarization of an optical beam by a strong magnetic
field. If the medium is isotropic and its perturbation response linear, the material equations are
the following:

j = σE (I.2a)
D = εE (I.2b)
B = µH (I.2c)

where σ is the specific conductivity, ε is the dielectric constant and µ is the magnetic perme-
ability. In a region that contains no currents and charges, i.e. where j=0 end charge density ρ=0,
and if the medium is homogeneous, the Maxwell equations for free space can be manipulated
into two equations:

∇2E − εµË = 0 (I.3a)

∇2B − εµB̈ = 0 (I.3b)

Each cartesian componentψ of the electric end magnetic field obeys to the d’Alembert equation,
i.e. the differential wave equation that describes the propagation of a wave with speed v:

∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2 =
1
v2

∂2ψ

∂t2 (I.4)

where the speed v is given by:

v =
1
√
εµ

(I.5)

Therefore Maxwell suggested the existence of an electromagnetic wave that propagates at a
speed whose value has been evaluate by ε and µ[2] With ε0 and µ0 the value corresponding to

[1]Expressed in SI units.
[2]Experiment of Wilhem Weber and Rudolph Kohlrausch (Leipzig - 1856).
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vacuum, the predicted theoretical value of v in vacuum, expressed by the symbol c (≈ 3 × 108

m/s), was in good agreement with the speed of light[3] measured by Fizeau[4].
In general the measurement of the speed v that appears in the equation I.5 is not directly

performed and it is indeed derived by refraction laws:

n = c/v =
√
εrµr (I.6)

where εr = ε/ε0 and µr = µ/µ0 are the relative dielectric constant and magnetic permeability
and n the absolute refractive index.

1.1.2 Dispersion

As mentioned in the previous section, whereas in the theory briefly shown the material
response to the incoming electromagnetic wave is characterized by two macroscopic constants
(ε and µ), in nature such phenomenon is strongly dependent on frequency. Hence the atomic
nature of the medium plays a fundamental role in order to describe phenomena as dispersion,
absorption and emission. No real medium with the exception of the vacuum is dispersionless.

As pictured by H. A. Lorentz in 1878, the interaction between the electric field of the wave
and atoms causes a distortion of their internal charge, with production of electric dipole moment
that in turn contribute to the global field. Such effect is described by the electric polarization
P, i.e. the resultant dipole moment in unit volume, that in first approximation is proportional to
the applied field.

According to the quantum mechanics picture, if N is the number of atoms in unit of volume
and d is electric dipole moment:

P = N〈ψ|d|ψ〉 (I.7)

where |ψ〉 is the wavefunction that is solution of the Schrödinger equation :

i~
∂|ψ〉

∂t
= (H0 + V)|ψ〉 (I.8)

where H0 is the unperturbed Hamiltonian of the atomic system and V describes the matter-
radiation interaction. In general P is a non-linear function of the electric field E and χ is a
tensor. In the linear case:

P = ε0

∫ +∞

−∞

χ(t − t′) · E(r′, t)dt (I.9)

where χ is the linear electric susceptibility. Since the effect can not precede the cause the
susceptibility, that is the medium response to the incoming perturbation, is zero for t < t′. If
the perturbation field is supplied by a monochromatic wave, the field in the frequency domain
is E(k, ω) = E0(k, ω) exp(ik · r − iωt), the convolution theorem implies:

P(k, ω) = ε0χ(k, ω)E · (k, ω) (I.10)

with

χ(k, ω) =

∫ +∞

−∞

χ(r, t)e−ik·r+iωtdr′dt (I.11)

[3]Maxwell died in 1879, eight years before the experimental confirmation of his insights by Hertz, that reported
the production and detection of electromagnetic waves.

[4]Experiment with rotating toothed wheel (1849)



8 Optical Signal Propagation through Dispersive Media

Figure I.1: Qualitative numerical simulation of equation I.17, based to the Drude-Lorentz model. The
blue continuous curve is the real part of the dielectric constant, while the red dashed one is the imaginary
part. The zone where ω is far away or in the wings of the resonance frequency ω0 is called normal
dispersion zone. The spectral region that surrounds the resonance is the absorption band and there is
also located the anomalous dispersion zone, where dn/dω is negative.

In non-magnetic materials, the susceptibility completely characterizes the optical properties of
a medium and it can be calculated by a detailed knowledge of the microscopic structure or
by approximate models, like the Drude-Lorentz model, whereby the atoms are pictured as a
set of classical forced harmonic oscillators driven by an elastic-type force given by the time-
varying electric field of the incoming wave. The electric dipole moment, with a charge e and a
displacement vector x:

d = ex = αE (I.12)

Every atom contributes to the electric polarization with its electric dipole moment:

P = Nd (I.13)

where
P = (ε − ε0)E (I.14)

Under the Drude-Lorentz picture and if m and e denotes the mass and the electric charge of the
electron respectively, the equation of motion is:

mẍ + Γẋ + mω0
2 = eEe−iωt (I.15)

where Γẋ is a damping force that represents the energy dissipation and ω and ω0 are the fre-
quency of the incoming wave and the resonance frequency of the oscillator. The stationary
solution is:

x =
eE

m(ω0
2 − ω2) − iΓω

(I.16)
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If now we consider a gaseous material system (n ∼ 1) with k different oscillator with resonance
frequency ω0k and weighing factors fk

[5]:

ε(ω) = 1 +
Ne2

ε0

∑
k

fk

m(ω0k
2 − ω2) − iΓkω

(I.17)

As shown in Fig. (I.1), near a resonance the imaginary part of dielectric constant has a spike,
while the real part, that describes the dispersive properties, is characterized by rapid variations:
in spectral ranges where (dn/dω > 0) the dispersion is called normal, whereas where (dn/dω <
0) anomalous.

1.1.3 Phase and group velocity

From the most general point of view a wave phenomenon can be consider a some kind
of a recognizable disturbance that is transferred from one part of a medium to another with a
detectable velocity of propagation [1]. A signal may be any clearly recognizable and temporally
and spatially localized feature of the disturbance. In general, such signal undergoes changes in
shape, intensity and traveling speed during propagation through different media.

Before discussing the propagation of an optical signal, let us see the simpler case of a
monochromatic wave of frequency ω. Let be g(r) a scalar function of position and E(r, t)
the electric field of the monochromatic wave whose complex amplitude U(r) is a real solution
of the wave equation (I.3a):

E(r, t) = Re
(
U(r)e−iωt) with U(r) = a(r)eg(r) (I.18)

The surfaces where g(r) is constant are the co-phasal surfaces. Since the phase (ωt − g(r)) is
the same for (r, t) and (r + dr, t + dt):

ωdt − ∇g(r) · dr = 0 (I.19)

Indicating with r̂ the versor such that dr = r̂ds:

ds
dt

=
ω

r̂∇g(r)
(I.20)

Let r̂ normal to the co-phasal surface g(r), the phase velocity:

vp =
ω

|∇g(r)|
(I.21)

In the case of a plane wave since g(r) = k · r − θ, where θ is an initial phase factor, ∇g(r) = k
and the (I.22) gives:

vp =
ω

k(ω)
=

c
n(ω)

(I.22)

The dependence of k on frequency is the dispersion relation determines the speed of a monochro-
matic wave through a dispersive medium, macroscopically described by the refractive index n.

[5] The oscillator strength fk satisfies the requirement
∑

k fk = 1 and it is linked to the transition probability of a
atomic transition. The resonant frequency ω0k is the frequency of such transition at which an atom absorb and emit
radiation.



10 Optical Signal Propagation through Dispersive Media

Figure I.2: An optical wave packet that propagates that propagates into a dispersive medium whose
origin is localized on coordinate z = 0 along the direction of propagation.

A real optical signal with a finite time duration can not be composed by a single monochro-
matic wave. A fundamental property of the (I.4) is the linearity: if a set of functions is solution,
any linear combination of them is a solution too; hence for the principle of superposition such
property implies that a disturbance that propagates in a medium is a algebraic sum of its con-
stituent waves. Therefore an optical pulse is a wave packet and the constructive and destructive
interferences between its monochromatic components determine the localization of the modu-
lation envelope in space and time. In a dispersive medium the refractive index depends on the
frequency of each wave component, leading to a changes on the interference conditions that
causes a different propagation speed of the modulation envelope and, in general, a distortion of
the original shape of the pulse.

Let us consider a wave packet, propagating along a direction labeled with the coordinate z,
composed by monochromatic wave of different frequencies, with the approximation of negli-
gible Fourier amplitudes Lω, except for a narrow spectral window δω centered on the carrier
wave ω̄. The origin of a dispersive medium is located in z = 0, where the functional form of
every Lω is known ( Fig. (I.2)). The electric field of the pulse is:

E =
1

2π

(∫ ∞

0
Lωe−i(ωt−k(ω)z)dω + c.c.

)
with ω̄ −

δω

2
≤ ω ≤ ω̄ +

δω

2
(I.23)

If δω is sufficiently small the linear approximation of the dispersion relation becomes justified
and around the wave number k̄ = n(ω̄)ω̄/c [6]:

k ≈ k̄ +

( dk
dω

)
ω̄

(ω − ω̄) (I.24)

The (I.24) becomes:

E =
1
2

(
E(z, t) exp[−i(ω̄t − k̄z)] + c.c.

)
(I.25)

where E is the pulse modulation envelope, that oscillates at the frequency ω̄. Calculating the
integral only over the frequency window where the Fourier amplitudes are appreciably different
from zero:

E '

∫
δω

Lω exp
[
−i(ω − ω̄)

(
t −

( dk
dω̄

)
ω̄

z
)]

dω (I.26)

[6]Such an assumption is inserted in sake of simplicity in order to define the group velocity. In theoretical picture
and numerical simulation discussed in Chap. (III) all terms of the expansion are included.
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Figure I.3: The black line is the dispersion relation. The phase velocity is the slope of the blue line
drawn from the origin to the point (ω̄, k̄). The group velocity is the slope of the tangent to the curve in
that point (in red).

Then, if the linear approximation (I.24) holds, the pulse propagates without distortions and
the Fourier amplitudes Lω maintain their functional shape after the entrance in the dispersive
medium. Then the equation (I.25) can be rewritten as follow:

E =
1
2

(
E(t − z/vg) exp[−i(ω̄t − z/vp)] + c.c.

)
(I.27)

Hence the field E can be viewed as the product of two factors:

(1) A phase factor propagating at the phase velocity vp = ω̄/k̄ = c/n(ω̄)

(2) A modulation envelope E that travels without distortions at the group velocity defined as
follow:

vg =

(dω
dk

)
k̄

(I.28)

For signals composed by a superposition of harmonic components localized around a narrow
bandwidth in a carrier wave, the group velocity describes the speed of the modulation envelope
through a dispersive medium. Although the group velocity concept is often referred to the speed
of the signal, such definition can be affected by misinterpretations where vg assumes anomalous
value, as observed by Sommerfeld and Brillouin [2]. In Fig. (I.3) a plot of the phase and the
group velocity is shown; the group velocity is the slope of the tangent to the dispersion curve in
the point ω̄, k̄.

Hence, in an undistorted pulse, in correspondence of the peak the contributes of the spectral
components tend to add up in phase for all values of the z-coordinate during the propagation
through the dispersive medium. Such condition can be mathematically expressed by writing the
phase as:

φ =
nωz

c
− ωt (I.29)
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and by imposing that, at the first order in ω:

dφ
dω

=
dn
dω

ωz
c

+
nz
c
− t = 0 (I.30)

Since k = nω/c, it follows:
z
t

=
c

n + ω
(

dn
dω

) =
dω
dk

= vg (I.31)

In analogy with the definition of the phase velocity (I.22), the (I.31) can be written as:

vg =
c
ng

(I.32)

where ng is the group refractive index, that differs from the refractive index by a term that
depends on the dispersion [3]:

ng = n(ω) + ω
( dn
dω

)
(I.33)

As viewed in Fig. (I.1) and in Sec. (1.1.2), different values of dn/dω correspond to spectral
regions where the dispersion is normal or anomalous. Then also ng can span among a large
range of values, determining vg � c in normal dispersion zone or tending to approach more
exotic superluminal velocities > c or also negative.

Although the group velocity can be greater than the speed of light in vacuum, such phe-
nomenon is not in contrast with the theory of special relativity and the principle of causality
and it does not allow a superluminal velocity of the information [2]. Such a puzzling topic is
discussed in Sec. (1.3).

Then, by tuning the dispersive properties of material systems, researchers have been able
to control the propagation dynamics, achieving extremely slow velocities (slow light regime) or
superluminal group velocities (fast light regime).

1.2 Optical pulse propagation in an atomic medium
1.2.1 Wave packet through gaseous medium

If the wave packet described by equation (I.25) propagates through a non-magnetic low-
density gaseous dispersive material system, in which electric free charges and currents are not
present, the approximation of a medium composed by a set of weakly interacting atomic levels
is justified. In such case in the Maxwell equations the polarization act as a source term:

∇ ∧ E = −µo
∂H
∂t
, (I.34a)

∇ ∧H = εo
∂E
∂t

+
∂P
∂t

(I.34b)

From which follows:

∇ ∧ ∇ ∧ E +
1
c2

∂2E
∂t2 = −µo

∂2P
∂t2 (I.35)
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Figure I.4: Diagram of the interaction of a two levels atomic system with quasi-resontant field of fre-
quency ω̄. Ω = d12E/~ is the Rabi frequency, d12 the electric dipole moment of the transition |1〉 − |2〉
and Γ = 1/T , where T is the lifetime of the level |2〉.

By considering an isotropic medium, since ∇ · E = 0 ∇ ∧ ∇ ∧ E = -∇2E. If the propagation
develops along the coordinate ẑ and the linearly polarized electric field lies to the perpendicular
coordinate x̂ E(r,t) = x̂E(z, t)), the equation (I.35) becomes:

∂2E(z, t)
∂z2 −

1
c2

∂2E(z, t)
∂t2 = µo

∂2P(z, t)
∂t2 (I.36)

where the polarization has the same form of the (I.25):

P =
1
2

(
P(z, t)e−i(ω̄t−k̄z) + c.c.

)
(I.37)

By inserting the (I.25) and the (I.37) in the (I.36):

∂2E

∂z2 − 2ik̄
∂E

∂z
−

1
c2

∂2E

∂t2 −
2iω̄
c2

∂E

∂t
= µo

(
∂2P

∂t2 + 2iω̄
∂P

∂t
− ω̄2P

)
(I.38)

If the temporal variation of the electric field is slow on the temporal and the spatial scale pro-
vided by 2πω̄−1 and 2πk̄−1 respectively, the (Slowly Varying Envelope Amplitude approximation
(SVEA) allows to rearrange the (I.38) as a first order differential equation:

∂2

∂z2 � k̄
∂

∂z
∂2

∂t2 � ω̄
∂

∂t
� ω̄2 (I.39)

∂E

∂z
+

1
c
∂E

∂t
= −

iω̄P
2cεo

(I.40)

1.2.2 Two levels atomic system

Let us consider a two levels atomic system (with energy E1 e E2) in Fig. (I.4) that interacts
with a probe field quasi-resonant with the transition |1〉 − |2〉. The equation of the field is:

E(z, t) = [E(z, t)ei(ω̄t−z/c) + c.c.]/2 with ω̄ ≈ (E2 − E1)/~ = ω12 (I.41)

The state wave function can be expanded on the basis given by the unperturbed states:

|Ψ〉 = c1e−iω1t|1〉 + c2e−iω2t|2〉 (I.42)
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where ω1,2 = E1,2/~. The evolution is given by the time-dependent Schrödinger equation

i~
∂|Ψ〉

∂t
= H|Ψ〉 H = Ho + Hint + Hr (I.43)

where Ho is the unperturbed Hamiltonian, Hint is the field-atom interaction and the phenomeno-
logical term Hr is added to take into account the relaxation of the system. d12 is the electric
dipole moment of the transition |1〉− |2〉, Hint = −d12 ·E and with the electric dipole approxima-
tion the spatial variations of E can be neglected on the atomic dimension scale. In the expression
for the temporal evolution of the coefficients c1 and c2 of the equation (I.42) the fast oscillating
term exp[±i(ω̄ + ω12)] becomes negligible respect the quasi-resonant term exp[±i(ω̄ − ω12)],
because in the timescale during which the coefficients change appreciably it is averaged to a
much small value. Then in the resolution of the (I.43) the Rotating Wave Approximation (RWA)
can be applied at optical frequencies:

ċ1 =
iΩ
2

c2ei(ω̄−ω12)t (I.44a)

ċ2 =
−iΩ

2
c1ei(ω̄−ω12)t (I.44b)

where Ω = d12E/~ is the Rabi frequency.
Under the formalism of the density matrix the polarization can be expressed as a function of

the coherence terms. Indicating with N the number of atoms per volume units, it follows:

〈P〉 = Tr(ρP) = N
∑
mn

ρnm〈Ψ|d12|Ψ〉 (I.45)

As the electric field expression, the polarization can be written in the following form:

P(z, t) = P(z, t)eiω̄(t−z/c) + c.c. (I.46)

with, from I.45:
P(z, t) = Nd12ρ12 (I.47)

With the SVEA approximation and the (I.47), the propagation equation is the following:(
∂

∂z
+

1
c
∂

∂t

)
E = i

Nω̄d12

2εoc
ρ12 (I.48)

Let Γ = 1/TL and γ = 1/TT the decaying rates, where TL and TT are the decaying times, and
with ∆ the detuning (ω̄−ω12), the Maxwell-Bloch equation for a two levels system populations
are derived:

˙ρ11 = i
Ω

2
(ρ∗12 − ρ12) + Γρ22 (I.49a)

˙ρ22 = i
Ω

2
(ρ12 − ρ

∗
12) − Γρ22 (I.49b)

˙ρ12 = i
Ω

2
(ρ22 − ρ11) − (i∆ + γ)ρ12 (I.49c)
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Under the assumption that only radiative channels are allowed, 2TT � TL is justified. Now let
the amplitude of the probe electric field be low enough to leave the levels populations unper-
turbed (weak field approximation) and let, for the sake of simplicity, the initial populations be
ρ11 = 1 e ρ22 = 0, in the case of a passive medium, or ρ11 = 0 e ρ22 = 1, if the system is an active
medium. It is worth to note that the relations holds unchanged their validity even if both levels
are populated, i.e. if (ρ11 − ρ22) = ξ, where ξ is a constant that assumes values between 1 and
-1. In this more general case the product N · ξ is identifiable with the definition of population
difference which in turn, if ξ < 0, coincides with the population inversion. In the following the
treatment of the case of a passive medium with ξ = 1, while other cases can be derived by the
substitution N −→ N · ξ.

As in Sec. (1.1.3), the field is expressed as sum of Fourier components, whose functional
form is known at the entrance into the medium (z = 0):

E(z, t) =

∫ ∞

−∞

L(ω, z)e−iωtdω (I.50)

The equation for ρ12(z, t) becomes:

ρ12(z, t) = −
d12

2~

∫ ∞

−∞

L(ω, z)f12e−iωtdω (I.51)

where the function f12 = f12(ω) has ∆ and γ as parameters that depend on the characteristics of
the probe beam and the medium:

f12(ω) =
1

[iγ + (ω + ∆)]
(I.52)

With the (I.48) and the (I.51) the propagation equation of S(ω, z) is the following:

∂

∂z
L = −ik(ω)L (I.53)

with a dispersion relation for k(ω):

k(ω) =
ω

c
+

Nω̄d12
2

4~εoc
f12(ω) (I.54)

As in Sec. (1.1.2), let consider a narrow bandwidth pulse. In particular:

δω �
√

∆2 + γ2 (I.55)

If the above condition is satisfied f12 can be expanded in series:

f12(ω) ≈ f12(0) + f ’12(0)ω with f ’12(0) =
df12(ω)

dω

∣∣∣∣∣∣
ω=0

(I.56)

where

f12(0) = −
∆ + iγ

[∆2 + γ2]
(I.57a)

f ’12(0) = −
∆2 − γ2 + 2i∆γ

[∆2 + γ2]2 (I.57b)
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Hence, with these approximations, the dispersion relation I.54 can be written as follows around
ω̄:

k(ω) =
ω

c
+

Nω̄d12
2

4~εoc
(
f12(0) + f ’12(0)ω

)
(I.58a)

=
Nω̄d12

2

4~εoc

(
Re[f12(0)] + iIm[f12(0)]

)
+

(
1
c

+
(Nω̄d12

2

4~εoc

)(
Re[f ’12(0)] + iIm[f ’12(0)]

))
ω

(I.58b)

From I.55 it follows:
Im[f ’12(0)]δω � Im[f12(0)] (I.59)

Therefore the contribute supplied by the imaginary part of k(ω) given by f ’12(0) can be neglected
in the expression of I.58b. Within the medium (z > 0), the I.50 becomes:

E(z, t) =

∫ ∞

−∞

L(ω, 0)e−i(ωt−k(ω)z)dω (I.60)

As the classic case I.27, the expression for the field of the probe pulse that propagates in a two
levels atomic system is the following:

E(z, t) = E(t − z/vg) exp
[
iω̄(t − z/v f ) − βz

]
(I.61)

where, besides the phase and group velocity, it is also present a term β due to the absorption:

Phase Velocity:
1
v f

=
1
c

+
Nω̄d12

2

4~εoc
Re[f12(0)] =

1
c
−

Nω̄d12
2

4~εoc
∆

[∆2 + γ2]
(I.62a)

Group Velocity:
1
vg

=
1
c

+
Nω̄d12

2

4~εoc
Re[f ’12(0)] =

1
c

+
Nω̄d12

2

4~εoc
∆2 − γ2

[∆2 + γ2]2 (I.62b)

Absorption: β = −
Nω̄d12

2

4~εoc
Im[f12(0)] =

Nω̄d12
2

4~εoc
γ

[∆2 + γ2]
(I.62c)

The zero-order terms Re[f12(0)] and Im[f12(0)]determine the phase velocity and the absorption
coefficient for a wave that propagates within a dispersive medium, whereas the real part of the
first-order term Re[f ’12(0)]ω describes the speed of a non-distorted modulation envelope, i.e.
the group velocity. Now these quantities are expressed as a function of the atomic parame-
ters and the probe field characteristics. Changing the sign of N the β parameter becomes an
amplification factor within an inverted medium.

If the frequency of the field is resonant with the atomic transition (∆ = 0), in a absorbing
medium the probed dispersion zone is anomalous, and the I.62b and I.62c become:

1
vg

=
1
c
−

Nω̄d12
2

4~εocγ2 (I.63a)

β =
Nω̄d12

2

4~εocγ
(I.63b)
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In such case the group velocity assumes “exotic” values, exceeding the speed of light in vacuum
or becoming negative:

vg =
c

1 − Nω̄d12
2

4~εoγ2

> c or < 0 (I.64)

In the matter of the distortion, the narrow bandwidth approximation becomes more critical with
respect the I.55; the second-order term k(2) in the expansion of k(ω) describes the distortion.
Since k(ω) appears as a phase factor in the expression I.60 of the field, in order to neglect its
contribute, k(2) · L, where L is the length of the medium, has to be much smaller than 2π:

Nω̄d2
12

4~εoc
f”12(0) · L � 2π where f”12(0) =

d2f12(ω2)
dω2

∣∣∣∣∣∣
ω=0

(I.65)

1.3 Physical interpretation
1.3.1 Causality

The most intuitive and basic form of causality consists in the requirement that “the effect
can not precede the cause” [4]. Let us consider a inertial reference frame and an event at (x, t)
that causes another event at (x + ∆x, t + ∆t) by means of an optical signal with speed u. In
an another inertial reference frame, with relative velocity v < c, the time interval between the
events becomes:

∆t′ =
∆t − (v/c2)∆x√

1 − v2/c2
=

∆t(1 − uv/c2)√
1 − v2/c2

(I.66)

If the velocity of the signal were superluminal (u > c) there are relative velocities v for the
reference frame for which ∆t and ∆t′ have different sign. In other words, if an Universe where
the superluminal communication is possible, there also always exist some inertial reference
frames in which the temporal sequence of the events of cause and effect is reversed, i.e. a signal
reaches the receiver before it leaves the sender, creating a sort of grandfather paradox [7] [5].
Then, since the causality is considered a fundamental principle of nature, the special relativity
makes the superluminal transfer of information impossible.

So, since the existence of superluminal, infinite or negative group velocities is well experi-
mentally verified, how do these exotic propagations satisfy the causality requirement? The solu-
tion of this apparent paradox lies in the distinction between the values that a certain velocity can
assume and the maximum speed of information transfer, that is limited by the unsurmountable
barrier of the speed of light in vacuum c.

As previously claimed in Sec. (1.1.3), the group velocity has been often confused as the
signal velocity, since in many practical cases these velocities coincide. Despite the pioneer
and extensive work of Sommerfeld and Brillouin [2, 6, 7], the confusion about the concept of
group velocity has lasted. Indeed, there are classic and good text of electromagnetism where it
is incorrectly claimed that superluminal group velocity is a meaningless concept, due to severe
distortion that should affect the pulse [8]. On the contrary, in this work and as in previous works,
superluminal group velocity have been achieved, with a pulse peak that advances in propagation

[7] This famous paradox about time travel has been described for the first time in a science fiction short story
in 1933. The story is about a time traveller that attempts to kill his grandfather before his grandfather meets his
grandmother.
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the vacuum propagation. An infinite group velocity means that the peak instantaneously exits
from the medium as soon as it enters. A negative group velocity means that the peak of pulse
leaves the medium in an earlier time its entrance. The distortion of the pulse in fast light
propagation experimentally verified is not severe and often negligible.

The effect that allows researchers to achieve these group velocities is linked to the optical
response of a medium, arranged in such a way to produce the desired effects. Albeit such an
arrangement can occur before the pulse propagation, the optical response of the medium needs
that the disturbance, that belongs to the pulse, is already present. The Kramers-Kronig relations,
that relate the real part to the imaginary part of a response functions in physical systems (as the
susceptibility is) strictly needs that the causality is satisfied [9].

1.3.2 Optical front and forerunners

As discussed in Sec. (1.1.3), a signal definition involves new information transfer by means
of a recognizable feature or element of discontinuity that could not have been predicted from the
motion of the wave packet, that composes the signal, at an earlier time [10]. Sommerfeld and
Brillouin [2, 6, 7] suggested that the velocity of signal is different from the group velocity, albeit
in many practical cases such velocities coincide. They considered as signal of electromagnetic
nature a wave motion of the form of step-modulated pulse, that is 0 before a time instant and a
series of waves of finite value after a sudden turn-on:

f (t) = θ(t) sinωt (I.67)

where θ(t) is the Heaviside step function. The front of the pulse is the propagated field for time
immediately following the turning on. They predict that the electrons of a material cannot react
instantaneously when the arrives and then the induced polarization must have a finite response
time, before which the wave propagates undisturbed.

Considering again the electric field expressed as sum of Fourier components of equation
(I.50) in entrance (coordinate z = 0) at time t into a dispersive medium of refractive index n(x):

E(0, t) =

∫ ∞

−∞

dωL(ω)e−iωt (I.68)

After a distance z inside the medium, the effect on propagation implies the multiplication of
each Fourier component by a phase factor:

E(z, t) =

∫ ∞

−∞

dωL(ω, z)e−iωteiωn(ω)z/c (I.69)

Using the Fourier transform of the (I.68):

E(z, t) =

∫ ∞

−∞

dωL(ω, z)e−iωteiωn(ω)z/c 1
2π

∫ ∞

−∞

dt′E(0, t′)eiωt′ =

∫ ∞

−∞

dtG(z, t − t′)E(0, t′) (I.70)

where
G(z, t) =

1
2π

∫ ∞

−∞

dωe−iωτeiωn(ω)z/c (I.71)
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Figure I.5: Numerical simulation (see Sec. (3.1.2)) of a step pulse through a slow light medium. The
components with frequency far from resonance remain unaffected.

For very large frequencies, far away from any resonance, one can assume that n(ω) → 1 as
ω→ ∞ and then in such a limit the integrand in (I.71) becomes exp(iω(z/c−τ)). Therefore, for
distances larger than the distance covered at speed c, i.e. for z > cτ, the integral can be replaced
by a closed contour integral in the upper complex ω plane. No effect (polarization of atoms)
can precede the cause (the incoming electric field) and the causality implies that the refractive
index n(ω) be analytic in the upper half of the complex plane [4, 10]. Then, for z > cτ, the (I.71)
becomes 0, i.e. the medium can not respond:

G(z, t) = 0 for τ < z/c (I.72)

It follows that for a signal with a sharp wavefront, as the Sommerfeld and Brillouin-signal (I.67),
the front propagates in any case at a speed that is exactly c (Fig. (I.5)). If the electric field (I.68)
is 0 for all t < 0, then the field E(z, t) is 0 for all t > z/c. The important consequences are:

(1) no component of the pulse can advance the pulse front, whatever the propagation
regime

(2) possible effects induced by the medium, included superluminal propagation, occur
after the front propagation

After the passage of the front, a mathematical prediction on the transformation of the wave
packet shape is more difficult. Sommerfeld and Brillouin [2] found that the front is followed in
propagation by two types of optical forerunners, with a very small and difficult detectability, that
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Figure I.6: In the figure a) the pulse has been emitted by a source and the front does not yet reach the
detector. In the next figure the detector is reached by the front. In b) the pulse propagates in vacuum, in
c) in slow light regime and in d) in fast light regime. Since the front speed is exactly c, in all cases the
front reaches the detector in the same time instant. In d) the pulse peak is in advance respect the vaccum
propagation, but not respect the front (Adapted from Reference [11]).

precedes the main part of the pulse. The first forerunner is associated to the large frequencies
far above resonance, whereas the second forerunner to low ones far below resonances.

The predictions of the two scientists about the front propagation have been then verified in
microwave frequency range [12]. Then in optical ranges, optical forerunners have been observed
[13–17] and theoretically investigated [18].

1.3.3 Relativistic causality of superluminal propagation

In the previous section it has been discussed how the speed of the main part of the pulse is
limited by the propagation velocity of the front and the optical forerunners.

In Sec. (1.1.3) it has been described the optical pulse as wave packet whose components are
in phase in correspondence of the spatial coordinate where, at in a given time instant, the peak
is located, whereas the destructive interference creates the wings of the pulse. It is important to
stress that, whatever position in the pulse tail is considered, they are present the same amount of
wave components of the main bulge. From information transmission point of view, each point
of the pulse carries the same amount of information.

The role of the dispersive medium is connected to the variation of the phase of the com-
ponents and then to a modification of the conditions of interference that create the pulse peak
[19].

Fig. (I.6) gives a pictured and intuitive vision of the process. In the figure a) a pulse is
created by a source; in the time instant when the switch that drives the source is turned-on the
front of the pulse begins its propagation at c-speed. Then, one needs to wait a finite time to
see the pulse grow to the peak value. What happens next depends on the type of medium that
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Figure I.7: Propagation of a light pulse (the front is the border of the cone) in a fast light medium. The
border of the cone remain unaffected, whereas the peak is advanced towards the border. An observer in A
sees the event of the pulse generation, whereas B does not. If the relativistic causality could be violated,
the observer A could observe the pulse and transmit the information through a superluminal channel to
C, that could inhibit the pulse generation (Adapted from Reference [11]).

stands between the source and the detector. The cases b), c), d) and e) concerns to the time
instant when the front reaches the detector. In case b) the pulse propagates in vacuum, in c) in
slow light regime and in d) in fast light regime. In slow light regime the pulse peak has a delay
in propagation respect to the vacuum case. In case d) the superluminal propagation leads to an
advance respect to the vacuum case, but not respect to the optical front [10, 11, 20–22].

In the case of negative group velocity, it occurs the extreme and counterintuitive situation
in which the medium creates a “clone” of the pulse using the wave components that have yet
reached the medium before the entrance of the main part of the “original” pulse, that, once it
penetrates into the medium, vanishes in the material.

The information encoded in the tail of the pulse, that is often below the detectability thresh-
old of the detectors, is the same of the pulse bulge: the detection of the information stored in
the front would it makes possible the transmission of information at c speed. The transmission
of information a c is not possible even for a signal that propagates in vacuum. Indeed, also
in the vacuum propagation there is a finite time among the begin of front propagation and the
growing of the pulse to its peak value. Such a delay can be recover (as discussed in Chap. (III))
by means of a fast light propagation and the aim of the experimental research in this field is not
to realize an impossible information communication channel, but to approach the limit velocity
c for information transmission.

In the space-time diagram showed in Fig. (I.7), the boundary of the light cone coincides with
the front propagation at speed c. The observer in the space-time point A can see the event of
pulse generation, whereas for the observer B the observation is impossible. The presence of the
fast light medium causes a superluminal group velocity that makes the peak advance, whereas
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the front (cone border) remains unaffected. Then the peak advances towards the cone border,
but the approaching of the border is a limit condition. Therefore, with the fast light medium is
not possible to realize a superluminal communication channel, whereby the observer A could
communicate the event information to the observer C, that may change the event, creating a
temporal paradox.

In summary, in pulse propagation theory one can distinguish seven different involved veloc-
ities [10]:

(1) Speed of Light in Vacuum c
the limit velocity of any kind of information transmission

(2) Phase Velocity vp = ω/k
the rate at which the phase of a single wave propagates in space. It can be grater than
c without violate the special relativity

(3) Group Velocity vg = dω/dk
the rate at which an undistorted modulation envelope of the wave packet propagates
and can be greater or smaller then c or even negative without violate the special rela-
tivity

(4) Front Velocity
the velocity of a suddenly discontinuity that begins with the pulse creation. It is
exactly c in any medium.

(5) Optical Forerunners Velocity
the speed of the frequency components of the wave packet that are far away from the
resonances of the material. The forerunner follows the optical front in propagation
and precede the main part of the pulse

(6) Signal Velocity
the speed at which the available and detectable information is transferred by a pulse.
It cannot exceed c

(7) Energy Transport Velocity
It is linked to the signal velocity and is in general equal to the group velocity in the
case of vacuum or slow light propagation, but not in the fast light case

For the energy transport speed, one can argue that, in the fast light case and when a ampli-
fying medium is used, a large amount of energy reaches the detector in a such a way that seems
to violate the special relativity, since a large amount energy of the pulse does not yet reach the
medium. However, the energy “used” by the active medium has been previously stored in the
medium, by means of the population inversion provided by a pumping system.
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Chapter II

Slow-Light with an Incoherent
Interactions Scheme

The control of propagation dynamics of optical pulses has been an important topic and
an experimental challenge in optics. In literature, the larger part of the published works are
based on coherent effects, meanwhile a control beam modulates the desired characteristics of a
medium during the propagation of the probe pulse.

This chapter describes the part of this thesis work devoted to the realization of slow light
propagation by using an interactions scheme that does not involve and request coherent inter-
actions [1].

Sec. (2.1) is devoted to the theoretical topic of the slow light schemes proposed in literature
(Sec. (2.1.1)) and then to in the introduction of the incoherent interaction scheme realized in the
present work Sec. (2.1.2) and to the in a analytic model developed to to explain the experimental
data (Sec. (2.1.3).)

In Sec. (2.2) the experimental part of the work is reported, starting with the description
of the laser sources used (Sec. (2.2.1) and Sec. (2.2.2)) and the hot sodium vapor that acts as
atomic medium (Sec. (2.2.3)). Finally the experimental set-up (Sec. (2.2.4)) and the strategy of
measurement and data analysis is described Sec. (2.2.5)).

In conclusion, the experimental results are reported in Sec. (2.3), showing the experimental
temporal profiles (Sec. (2.3.1)) and the complete characterization of the control of the slow light
propagation (Sec. (2.3.2)). The analytic model and the experimental results discussed in this
chapter has been published as an article on Physical Review A [2].

In the realization of this experiment I worked in the experimental set-up arrangement and
method and I wrote the software of data analysis and fitting. I also contributed to the analytical
model and in writing the scientific paper.
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2.1 Slow-Light Group Velocity
2.1.1 Experimental Methods

One of the first demonstrations of slow light propagation, with vg < c/2.5, has been reported
in 1971 with mode-locked pulses in an amplifying medium in which the high gain and the
narrow resonance lead to a large value of ng [3]. Then, in the wing of a strong absorption
resonance in rubudium vapor vg ∼ c/14 has been achieved [4].

Many published works reported experimental procedures that make use of non-linear inter-
actions between light and matter, in such a way to circumvent the problem of absorption. With
the self induced transparency (SIT) [5, 6] a group velocity of about c/1000 [7] and even smaller
has been achieved. An optical pulse, even though its field is resonantly coupled to atoms of a
medium, can travel, without being absorbed, inside a normally opaque material if it is tailored
so that each atom, once excited by the pulse re-emits photons coherently in forward direction.
Boyd’s group also demonstrated that the dynamics of the SIT can be controlled by an additional
field, leading to very low group velocities [8].

A typical scheme of coherent non-linear interactions for producing slow light is the electro-
magneticly induced transparency (EIT) [9], introduced by Imamoglu and Harris in 1990 [10,
11]. A closely related phenomenon to the EIT is the coherent population trapping (CPT) [12,
13], observed for the first time by Alzetta et al. in 1976, that reported a three levels scheme
where two states were driven into a coherent superposition state such that the emission from the
third state is eliminated (dark state). In EIT, the presence of an intense auxiliary electromag-
netic field modifies the optical response of the material by means of an induced coherence of
atomic states, which leads to quantum interferences between the possible interactions. Such a
technique, besides the creation of a “transparent window”, provides a rapidly variation of the
refractive index near an absorption resonance (Fig. (II.1)). Many works concerning slow light
have been realized by using EIT, controlling various properties of the propagation dynamics,
such as the group velocity [14, 15], temporal shape [16], central frequency [17] and spectral
distribution [18]. The extreme low value of vg = 17 m/s has been achieved in Bose-Einstein
condensate [19, 20].

In room temperature solids an alternative approach is based on coherent population oscilla-
tion (CPO) [21–23], exploiting a saturable absorption [24]. In these materials two optical fields
are present: a strong pump beam, resonant with the transition of the material, and a weak probe
beam, with a detuning from the same resonance. If such a detuning is smaller than the transition
decay rate, the interference of the two beams leads to an oscillation at the beat frequency of the
population, that creates a temporal modulation of the transmission, with a creation of a spectral
hole in the absorption spectrum and then a rapid variation of the refractive index.

In optical fibers, stimulated Brillouin scattering (SBS) provides an alternative way to control
the group velocity [25–28]. According to the typical scheme a pump beam is launched into the
fiber in a counter-propagating way respect to the signal, inducing a dynamic Bragg grating in
the core. If the frequency difference between the two optical wave is resonant with the acoustic
wave, interaction occurs, generating spectral resonances.

Other systems to generate slow light involve Raman scattering [29, 30], photonic crystals
[31, 32], spectral hole burning [33] and double absorbing resonances [34].
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Figure II.1: a) Generic Λ-type three level system driven by a coherent coupling field of frequency ωc

and with a probe field of frequency ωp. ∆1 = ω31 − ωp and ∆2 = ω32 − ωc are the detuning of the field
from atomic resonances and Γ are the radiative decay rates.
b) Real and Imaginary part of the susceptibility as a function of frequency ωp relative to the atomic
resonance frequency ω31 with width γ31 (dashed line) and in EIT system (continuous line), when the
coupled field is turned on [9].

2.1.2 Incoherent Interaction Schemes

In 2010 a new scheme to control the propagation dynamics, i.e. the group velocity and the
temporal compression factor has been proposed [1]. Then, during this thesis work, the model
has been theoretically improved and experimentally realized [2].

Such a scheme is based on the utilization of an incoherent interactions, where the term
“incoherent” means that the interaction between the control light pulse and the probe light
pulse is not direct: the control pulse excites the atoms of a material system and then, once such
an interaction is over, the probe interacts with the medium. The tuning of the characteristics of
the control pulse allow to provide the desired dispersion properties to the medium, in order to
control the propagation dynamics of the probe. As discussed in Sec. (1.2.1) the probe pulse has
to be weak, i.e. with an intensity low enough to leave the excited states unperturbed. If the latter
condition is satisfied, the evolution of the population of excited atoms is solely ruled by the
spontaneous emission process and by radiation absorption-reemission mechanisms (radiation
trapping) [35].

Let us consider the three-level atomic scheme for a very rarefied sodium vapor showed in
Fig. (II.2); the involved atomic levels are |0〉 = 2S 1/2, |1〉 = 2P3/2 and the doublet of closely
spaced resonances |2〉 = 2D ( 2D5/2 and 2D3/2. The control pulse central frequency ωc is res-
onant with the transition |0〉 → |1〉, whereas the probe pulse frequency ωp is detuned of a
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|0〉

|1〉

|2〉
2D

2P3/2

2S 1/2

2D3/2

2D5/2δ

ωc

ωp

Γ

Figure II.2: Schematic diagram of the involved transitions and sodium atomic levels. The control
pulse central frequency ωc is resonant with the transition |0〉 → |1〉, whereas the frequency ωp of the
probe pulse is detuned by a quantity δ from the |2〉 → |1〉 transition frequency. Γ is the decay rate by
spontaneous emission of the level |1〉.

quantity δ =
(
ωD5/2,P3/2 + ωD3/2,P3/2

)
/2 − ωP larger than the doublet fine structure separation

we can consider the 2D as a single state and neglect Doppler broadening. Once the interaction
between the control pulse and the sodium vapor is over and after a temporal delay, the probe
pulse propagates within a medium, that, due to the population of the level |1〉, has absorptive
properties. Then, by varying δ, different dispersive zones are explored, within spectral regions
near to the resonance frequency of the transition. Therefore, besides the frequency ωp, other
tuning parameters arise from the possibility to modulate the medium dispersion curve itself;
indeed these parameters can be easily identified in the control pulse energy Ec, that affects the
number of excited atoms, and the temporal separation ∆t among the entrance time of the two
pulses into the material. The latter involves the capacity of the system in storing energy in the
form of the level |1〉 population, that begins to decay by spontaneous emission once it is estab-
lished, albeit the radiation trapping acts as retarder for the complete depopulation. Meanwhile
the population decreases during the propagation time of the pulse inside the medium, another
effect on the propagation characteristics takes place, besides the lowering of the group velocity:
the temporal compression. Indeed, due to the temporal variation of population, the leading edge
of the pulse encounters a larger population than the trailing one, meaning that the two temporal
wings of the pulses have different speed. In a heuristic picture, one can imagine that the leading
edge is slowed down of a larger amount, the trailing edge recovers its propagation delay and
“clamps” towards the pulse peak.

The final, and obvious, effect of the population in a passive medium concerns the absorption
of the probe pulse photons; hence a too large number of excited atoms is to be avoided, in order
to not destroy the pulse during its propagation or introduce severe distortion.

Finally, it is worth to stress further implications in using an incoherent interactions scheme.
In the theoretical picture, under the matrix density formalism, the scheme implies that the co-
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herence ρ01 of the |0〉 → |1〉 transition is 0 and then it does not play a role in determining the
propagation. From an experimentally point of view, the system lends itself to be more easily
realized in practice, since the control beam is solely used in order to populate the medium.

2.1.3 Analytic model of propagation dynamics

A theoretical model has been studied, in order to theoretically investigate the physical pro-
cess that underlies the experimental proposal and to achieve an analytic expression of the propa-
gation dynamics to compare with the experimental results. Let us start, using the density matrix
formalism, with the propagation equation for the electric field Ep of the probe pulse, by means
of the following coupled Maxwell-Liouville equations:

∂Ep

∂z
+

1
c
∂Ep

∂t
= −i

Nωp

ε0c
d12ρ12 (II.1a)

∂ρ12

∂t
= −iΩpρ11 +

[
iδ − γ12

]
ρ12 (II.1b)

where N is the atomic density, d12 the electric-dipole moment that corresponds to the transition
|1〉 → |2〉 and γ12 represents all kinds of dephasing rate. The Rabi frequency Ωp of the probe
field - atom interaction is:

Ωp =
d12Ep

2~
(II.2)

Notably, as discussed in Sec. (2.1.2), the coherence ρ01 does not appears in the (II.1b) and the
population ρ11 evolution is solely due to incoherent decaying processes.

Considering the following conditions:

δ � γ12 (II.3)

δ · T � 1 (II.4)

where T is the temporal duration of the probe, the approximated solution of the (II.1b) is the
following:

ρ12 =

[
−

i
δ2

d
dt

+
1
δ
−

iγ12

δ2

]
(Ωpρ11) (II.5)

and equation (II.1a) can be written as:

∂Ep

∂z
+

1
c
∂Ep

∂t
= −κ

[ 1
δ2

d
dt

+ i
1
δ

+
γ12

δ2

]
(Epρ11) (II.6)

with

κ =
ωpd 2

12

2~ε0c
N (II.7)

In the medium used in the experiment γ12 can be estimated of the order of 108 Hz and the con-
dition (II.3) and (II.4), for probe pulses a few nanoseconds long, by setting values of detuning
δ at least few tens of GHz.

The spontaneous emission lifetime of the level |1〉 is of the order of 20 ns, whereas the long-
living phenomenon of the radiation trapping cause an effective prolongation of the population
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in such a level. In the limit of pulses short compared to the temporal decay of ρ11 and assuming
a spatiotemporal evolution of the population is given by ρ11(z, t) = ρ11(t − z/c):

ρ11(t − z/c) = ρ0
11[A + (1 − A)e−Γ(∆t+t−z/c)] (II.8)

where z is the coordinate of the medium along the propagation direction, ∆t is the time counted
from the entrance of the probe pulse into the cell, A is the parameter that weighs the effect of
the radiation trapping. More precisely, ∆t is here defined as the time difference from the end of
the control pulse and the beginning of the probe pulse at the cell entrance. The ρ0

11 is the initial
population after the control pulse passage.

The solution of the II.6 is the following:

Ep(z, t) =
ρ11(0, t′)
ρ11(z, t)

e−(iδ+γ12)(t−z/c−t′)Ep(0, t′) (II.9)

with
t′ =

ρ11(0)
ρ11(t0 − z/c)

(t − t0) (II.10)

and where t0 is obtained by the solution of∫ t0−z/c

0

dη
ρ11(η)

−
zκ
δ2 = 0 (II.11)

The equations (II.9) and (II.10) shows clearly that, upon propagation in the cell, the probe
pulse is temporally delayed by the quantity t0 and temporally compressed by the factor

n =
ρ11(0)

ρ11(t0 − z/c)
(II.12)

Then the expression (II.8) allows the analytic integration of the (II.11) to find an expression
for the induced delay τ:

τ = t0 −
L
c

=
1
Γ1

ln
[ (1 − A)

A
[
exp

(
AΓ1

κ

δ2 Lρ0
11
)
−1

]
+ exp

[
Γ1

(
∆t + A

κ

δ2 Lρ0
11
)]]
−∆t (II.13)

From the insertion of (II.8) in the (II.12) it follows:

n =

[
A + (1 − A)e−Γ1∆t]

(1 − A)
{
eAΓ1

κ

δ2
Lρ0

11 + AeΓ1(∆t+A κ

δ2
Lρ0

11)}[1 − A
A

(eAΓ1
κ

δ2
Lρ0

11 − 1) + eΓ1∆t+A κ

δ2
Lρ0

11

]
(II.14)

The peak intensity transmission (PIT ) is the ratio between the square modulus of the field
in entrance in the medium and after the propagation through the passive medium:

PIT = n2 exp[−2γ12τ] (II.15)

In order to control the validity of these above equations, it can be useful to calculate their
limit values in the case of constant population (no radiative decay):

τ′ =
κ

δ2 Lρ0
11 (II.16a)
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n′ = 1 (II.16b)

and in the case of pure radiative decay:

τ′′ =
1
Γ

ln[1 + Γ
κ

δ2 Lρ0
11exp[−Γ∆t] (II.17a)

n′′ = 1 + Γ
κ

δ2 Lρ0
11 exp [−Γ∆t] = eΓτ (II.17b)

Therefore, the induced delay τ and the other characteristics of the pulse depend on the
following tuning parameters:

CONTROL PARAMETERS

(1) the detuning δ of the central frequency of the probe pulse from resonance

(2) the control pulse intensity at the that determines the population of the level ρ11

(3) delay ∆t between the control pulse and the probe pulse at the entrance of the medium

2.2 Experimental set-up
2.2.1 Probe pulse

The probe pulse is obtained from a single-mode cw extended-cavity diode laser (ECDL),
whose model is Toptica DL100. In Fig. (II.4) the photo of the model used in the experiment
and and the picture of the extended cavity are shown.

The laser diode operates in a single longitudinal mode with a bandwidth of the order of 1
MHz and has an external cavity with a Littrow mount grating whose rotation allows a first tun-
ing mechanism of the emission wavelength. The Littrow grating acts as a wavelength-selective
reflector, whereby the incident light is reflected back to the diode at the first order blaze wave-
length [36]. The output beam consists in the 0th-order.

To the laser diode is thermically connected a peltier cell, driven by a control unit (DTC100),
whose function is to keep the temperature fixed around a selected value with a precision of
0.1◦C. The threshold current is about 30 mA and the slope-efficiency about 1 W/A, with an
output power that approaches 90 mW with a supplied current of 140 mA at the temperature of
20◦C. The emission wavelength can range from ∼815 to ∼830 nm and its tuning and stabiliza-
tion are a critical operative issue. Indeed it is very important that, during the measurement, the
wavelength of the beam keeps its selected value within the tolerance of the lambda meter, that
has a resolution of 1 pm. A variation of 1 pm in the wavelength can cause an abrupt change in
the propagation dynamics of the probe pulse, especially if the wavelength close to the atomic
resonances. In addition to the Littrow grating rotation, that act as an initial selector, the fine tun-
ing of the wavelength is performed by tuning the supplied current and the working temperature.
The dependence of the output wavelength on current and temperature is not obvious and rather
unpredictable. A better stability of the system is generally achieved by selecting a working
temperature close to the the room temperature of the laboratory. As an additional instrument



32 Slow-Light with an Incoherent Interactions Scheme

of tuning, a piezoelectric crystal is placed behind the grating and the variation of the applied
voltage (from 0 to 60 V) causes small variations on the length of the cavity and then on the
selected longitudinal mode .

Figure II.3: Photo and internal structure of the extended-cavity laser diode Toptica DL100.

Figure II.4: Dyagram of the electro-optic modulator with Mach-Zehnder interferometer configuration.

The cw laser beam output is sent to a single-mode polarization preserving optical fiber,
whose coupling is optimized by the rotation of a λ/2 plate. In order to create a light pulse of the
desired duration the optical fiber is connected to an electro-optic modulator (EOSPACE AZ-
0K5-10-PFU-SFU-795) with Mach-Zehnder interferometer configuration. In the modulator,
made of LiNbO3 birefringent negative uniaxial crystal, the input light splits up into two different
paths, experiencing different phase shifts. In a path a DC bias voltage is applied in such a way to
induce a refractive index variation, controlling the phase shift of the radiation. The DC voltage
is tuned in order to set a destructive interference for the waves, that recombine at the output.
The advantage of such kind of configuration is that the DC voltage does not exceed few tens of
V. Another electric signal, in the form of a short electric pulse, is applied to the other path to
create a rapid variation of the condition of destructive interference. Hence, a light signal, “cut”
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from the continuous time beam, is then extracted from the output fiber. In optimal condition,
the light pulse has the same temporal features of the applied electric signal. The bandwidth of
the electro-optic modulator is 10 GHz and the rise time less than 100 ps.

The electric pulse generator is a Stanford Digital Delay Generator DG535, that allows to
generate electric pulses after a selectable delay, with a resolution of 5 ps, from the trigger signal
up to few ns long, albeit a temporal jitter about 50 ps is present. The output voltage is selected
with a resolution of 50 mV±3% and can be affected by overshoot up to 100 mV±10%. Both
the undesirable defects of the temporal and intensity uncertain must be reduced by means of
experimental set-up expedients and suitable data acquisition mode and analysis, as discussed
further in the text.

2.2.2 Control Pulse

The control pulse is generated by a frequency tunable dye laser (TDL50 Quantel Dye Laser)
pumped by a frequency-doubled (532 nm) Q-switched Nd:YAG lases at a repetition rate of 10
Hz, whose pulses have about 150 mJ of energy and about 6 ns of temporal duration. A signal
generated by the control unit of the Nd:YAG provides the trigger signal for the electric pulse
generator, in such a way to synchronize the pulses generations and data acquiring process shot-
to-shot. The variability in build-up time of the pulse inside the Nd:YAG causes a temporal jitter
between the trigger signal and the effective arrival time of the pulse of about 1 ns.

The dye laser [37, 38] use as active medium Rhodamine 6G dissolved in methanol and
it is provided of a reflective diffraction grating of 2400 lines per mm and fixed inclination. A
rotating mirror, driven by a DC motor, reflects the first order diffraction of the grating and closes
the optical cavity together with the semi-reflective output mirror. The control pulse operates in
a broadband mode (30 GHz of FWHM), albeit some energy becomes wasted, in order to reduce
the population fluctuations due to possible instabilities of the emission wavelength. Although
the broad band, if not attenuated the control pulse is able to completely saturate the |0〉 → |1〉
transition. After the output mirror a λ/2 plate ensures that the control pulse has the same vertical
polarization of the probe pulse. A small portion of the control beam is extracted, by a reflection
on a glass plate, and sent to a photodiode, to monitor the pulse energy shot-to-shot ( the output
control beam has an average diameter (about 4 mm) grater than the probe beam one ).

2.2.3 The Atomic Medium

The medium is composed by hot sodium vapor at very low pressure, enclosed in a metallic
cell of 1.5 m total length and 1.0 m of effective length. The cell is heated by a resistance
turned around its central part and the temperature is maintained stable around the selected value
by means of a driving current feedback circuit. At a distance of about 20 cm from the quartz
windows, the cell is cooled by water at room temperature; then the cell is produced in a gradient
from the room temperature near the windows to the value detected by the thermocouple placed
in the central part.

The vapor pressure is low enough to consider the probe beam propagation as in vacuum
when the medium is not excited and the radiation wavelength is far from atomic resonances.
The density Nat of sodium atoms inside the cell can be estimated by the vapor pressure, that can
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Figure II.5: The sodium cell.

be calculated as follows [39–41]:

ln[PNa] = a −
b
T
− c ln T (II.18)

where PNa is the vapor pressure in MPa, T the temperature in ◦K and a, b and c component
specific constants (a = 11.9463, b = 12633.73, c = 0.4672 for sodium). Then the number
density Nat in the sodium vapor (atoms/m3) can be estimated by means of the ideal gas law:

Nat =
PNa

kBT
(II.19)

where kB is the Boltzmann constant, T is in ◦K and PNa in Pa.

2.2.4 Experimental set-up description

In Fig. (II.7) the schematic diagram of the experimental set-up is shown. The two laser
beams are co-propagating, along the same path within the cell overlapped by means of a dichroic
mirror and aligned with help of two diaphragms, one before the entrance window of the cell and
one after the the exit window. The larger diameter of the control beam ensures a excited medium
along a path of the probe inside the cell. The monitor of the probe pulse central frequency is
performed by a lambda meter with a precision of 1 pm, that analyzes a reflection of the beam
from a glass plate before the entrance in the electro-optic modulator.

At the exit of the cell the control beam is attenuated by an optical fiber (not showed in the
figure) and separated from the probe beam by a dispersion prism, that prevents this beam from
reaching the photodiode. Such a detector consists in an amplified GaAs (New Focus 1580-B)
in transimpedance mode with a gain of -103 V/A. It is characterized by a bandwidth of 12 GHz,
a rise time of 30 ps and it detects radiation wavelength among 400 and 870 nm. The dimension
of the small sensible area is about few tens of µm2. The resulting signal is then analyzed shot-
to-shot by a 7 GHz-bandwidth oscilloscope (Tektronix TDS7704B) and sent to a PC.
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Figure II.6: Estimation of vapor pressure PNa and number of atoms per volume unit N. The temperature
is reported in ◦C.

Figure II.7: Schematic diagram of the experimental set-up.

The synchronization of the whole system of generation and detection of signals starts (as
anticipated in the Sec. (2.2.2)) with a trigger signal that is sent from the control unit of the
Nd:YAG to the electric pulse generator, that in turn sends a trigger signal to the oscilloscope.
Especially for the instability of the generation times of pulses, the measurement cannot be
performed with a time average of the probe pulse signal, but acquired in shot-to-shot mode and
then later analyzed. The synchronization of the overall process allows to record many hundreds
of consecutive measurements.
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2.2.5 Double-Pulse method

In order to eliminate the effect of fluctuations in probe pulse energy and generation time,
we generated two probe pulses at a fixed delay for each trigger pulse. The first propagates in
the cell before the control pulse and the second (the “true” probe) after. The schematic diagram
of this “double pulse method” is showed in Fig. (II.8) and Fig. (II.9). Fig. (II.8) shows the
temporal steps that lead to the generation of the two pulses:

(A) the trigger signal from the Nd:YAG control unit reaches the electric pulse generator.

(B) after a selectable delay TD (of the order of same ns) an electric pulse is created. Another
trigger signal is sent to the oscilloscope to prepare the next acquisition.

(C) the electric signal propagates through a cable that is split in two different paths of different
lengths.

(D) once recombined, in the cable two different electric signals propagate, with a temporal
separation TR that depends by the difference in length between the two different paths
during the step (C). Considering an electric signal in a coaxial cable about ∼ 2 · 108 m/s,
∼4 m in paths difference lengths are needed in order to achieve TR of order of 20 ns.

(E) the two signals reaches the electro-optic modulator and two light pulses are created

Such a system ensures that eventual intensity variation in electric pulse amplitude in electric
signal does not lead to misinterpretation in absorption of the light probe pulse in the passive
medium. TD is modulated in such a way to enable the condition according which the control
pulse propagates into the cell in the time that elapses between the entrance of the probe pulses
(Fig. (II.9)). Moreover, a tuning of TD also allows tuning of the time ∆t, introduced in the
Sec. (2.1.2) as a control parameter. Since the very low pressure of the sodium vapor, without
excitation by the control pulse, the reference always propagates in vacuum; indeed the temporal
separation between two successive measures (100 ms) is much greater than the spontaneous
emission lifetime and the radiation trapping time. The limitations of TR are that it must be short
enough to avoid temporal superposition between the control pulse and the reference and not
large to cause that the reference does not appear in the acquired trace of the oscilloscope.

Once TD is tuned in order to achieve the desired ∆t and the frequency of the probe beam is
selected for a certain detuning δ, two different sets of measurement are made for each measure-
ment campaign (Fig. (II.10)):

(1) reference measurement
a number of measurements are performed while the control pulse is inhibited

(2) slow light measurement
a control pulse excites the medium (with an energy tuned with a polarizer rotation and
recorded shot-to-shot)

In the former, all the information of the two probe pulses are collected (difference in ampli-
tude due to different resistances experienced by the electric pulse through paths with different
length and temporal separation). The latter is the measurement set in which the probe pulse ex-
perience absorption and slow light propagation, while the reference remains unaffected again.
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Figure II.8: Schematic diagram of the “double pulse method”.

Figure II.9: Schematic diagram of the propagation of the pulses. The control pulse propagates (and then
excites the atoms) after the reference probe pulse entrance and with an advance ∆t respect to the probe
pulse.

Figure II.10: (1) reference measurement and (2) slow light measurement, with the virtual probe pulse.
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Figure II.11: Typical temporal profiles of the probe pulse after traveling through the cell for different
∆t.

Once each set of measurement described in the latter part of the previous section are per-
formed, the data stored to the PC through the oscilloscope are subjected to data analysis.

The data analysis performed by a software written in Matlab® code and, as the measure-
ment procedure, consists of two steps. In the first one, the data collected during the reference
measurement are used to obtain information about the two probe pulses. In the second step, that
analyze the slow light measurement, the collected information allow to a “re-build” all features,
computationally elaborated, that the probe pulse would have in vacuum propagation rather than
in an excited medium. The software takes into account the shot-to-shot variation on intensity of
the pulse. The new probe pulse reference becomes such a virtual pulse and the peak intensity
transmission PIT , the compression n and extra delay τ are measured in reference to it. The
value of τ are calculated as time difference in the time of half-peak value between the reference
virtual pulse and the measured probe pulse. In a similar way PIT and n are measured for each
shot.

The results showed in Sec. (2.3) takes advantage of the large number of temporal profiles
acquired and the data are binned and mediated within small intervals of control pulse energies,
with an improving of the measurement accuracy.
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Figure II.12: Induced extra delay τ as a function of the control pulse energy for two detuning δ (8.7
GHz, in green, and 17.4 GHz, in red) and ∆t=3 ns. The fits of the experimental data are presented as
shaded lines.

2.3 Results
2.3.1 Temporal profiles

The sets of performed measurements can be showed highlighting the possibility of control
with the three selected optical external parameters and showing the comparison with the analytic
model described in Sec. (2.1.3).

Fig. (II.11) shows temporal profiles of probe pulses, with an initial temporal width of 3 ns,
in vacuum propagation (in red) and in slow light for several control-probe time separations ∆t:
a = -3 ns, b = 6 ns, c = 24 ns, d = 54 ns, and e = 86 ns. A negative value of ∆t means a
partial temporal overlapping between the probe pulse and the control pulse. As expected, the
probe pulses undergo to a larger extra induced delay in propagation and a compression as ∆t
becomes smaller. The absorption is not large enough to cause severe distortion of the probe
pulse shape profile. From the results shown in this figure, it is evident that the population of the
|1〉 state is still not negligible even after many times the natural lifetime (about ∼16 ns). In fact
for ∆t greater than 80 ns, τ greater than 5 ns are still measured, whereas the transmission peak,
due to absorption, is still around 40%. This is consistent with the picture of a fast spontaneous
emission of a single atom combined with the long-living phenomenon of radiation trapping, as
discussed in Sec. (2.1.3).

The (II.13), (II.14) and (II.15) can be evaluated with experimental and atomic parameter and
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Figure II.13: Induced extra delay τ as a function of the temporal separation control-probe ∆t for the
detuning δ =8.7 GHz (Fig. (a), in green) and, in Fig. (b), δ of 17.4 GHz (in red) and 28.7 GHz (in blue)
in condition of complete saturation of the medium. The fits of the experimental data are presented as
shaded lines.

used to fit the experimental results.

L =

l Ec
Esat

for Ec < Esat

l for Ec > Esat
(II.20)

Esat becomes a fit parameter to include in the expression (II.8) of the analytic model, in such
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a way to express the population as a function of the energy of the control pulse. Another fit
parameters are A, that weights the effect of the probe pulse into the cell. and N, that are varied
around the value estimated by the (II.18) for the set temperature in the experiment (220◦).

Table (II.1) shows the theoretical and experimental values for the transmission peak intensity
for all the cases in Fig. (II.11), but the −3 ns-case, that can not be calculated in the analytic
model due the temporal superposition between the control pulse and the probe pulse, as the
hypothesis of incoherent interaction scheme requires. Hence, in the case of ∆t=-3 ns, such a
request is only partially satisfied and the equations of the analytic model cannot be rigorously
applied.

Table II.1: Peak Intensity Transmission (PIT )

∆t (ns) Theory (%) Experim. (%)

6 29 30±3
24 38 39±4
54 36 32±3
86 36 39±4

2.3.2 Characterization and optical control

Figure II.14: Compression factor n as a function of the control-probe delay ∆t for detuning δ of 17.4
GHz (in red) and 8.7 GHz (in green). The fits of the experimental data are presented as shaded lines.
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Fig. (II.12) shows the extra induced delay as a function of the control pulse energy, that
is one of the control parameter. The results are also dependent on the detuning δ, another
parameter, whereas the temporal separation control-probe ∆t is set to 3 ns. τ has a monotone
behavior that approaches a constant value in correspondence of control pulse energies that lead
to a complete saturation on the medium. In addition to demonstrate that the control pulse
energy is a suitable control parameter, besides the detuning of the probe pulse frequency from
resonance, these results are also in discrete agreement with the theoretical predictions.

In Fig. (II.13) the extra delay as a function of the control-probe separation is reported for
three different values of the detuning and an energy of the control pulse (0.3 mJ) that ensures
the saturation regime. In Fig. (II.14) the compression factor as a function of ∆t is shown for
two values of detuning. Therefore ∆t is an external optical parameter that can be used to control
the propagation dynamics of the probe pulse, in particular the extra induced delay and the
compression factor. The compression factor n falls rapidly to 1 in a time comparable with the
spontaneous emission lifetime of the atomic transition (∼ 16 ns), because, when the radiation
trapping becomes predominant, the population remains approximately constant during the probe
pulse temporal duration (3 ns).

In conclusion, an experimental realization of a slow light propagation for optical probe
pulse with a temporal duration of 3 ns has been realized and extra induced delays respect to the
vacuum propagation up to ∼13 ns have been achieved, besides a compression factor up to ∼2.
Three external optical parameters have been identified: the control pulse energy, the temporal
separation between control pulse and probe pulse of the probe beam and the detuning from the
transition atomic resonance frequency. Moreover, the originality of this work resides in the
realization of such control on propagation dynamics by using an incoherent interaction scheme,
that requests less critical constrains respect to other methods proposed in literature.
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Chapter III

Fast-Light and Recovering the
Propagation Delay

In this chapter the experimental realization of fast light propagation by using an incoherent
interactions scheme is presented (Sec. (3.1)). Then, in Sec. (3.3) the possibility of recovering a
previously induced delay with a superluminal propagation is described.

Sec. (3.1.1) is devoted to summarize the experimental methods for achieving fast light prop-
agation. In Sec. (3.1.2) and Sec. (3.2) is described how the incoherent interaction scheme can
be arranged in order to induce superluminal group velocities. In Sec. (3.3.2) results, published
in Physical Review A [1], are presented.

Sec. (3.3.1) is devoted to the possibility to include the slow and fast propagation modes in the
same experimental set-up and Sec. (3.3.2) describes as this proposal has been realized. Finally,
Sec. (3.3.3) shows that the recover of a delay is possible and that the “true” c-velocity, i.e. a
traveling speed for a signal that reaches the optical front in propagation, can be approached.
The results have been published in Optics Express [2].

In the realization of this experiment I worked in the experimental set-up arrangement and
method and I wrote the software of data analysis. I also contributed in the numerical model and
in the the scientific papers.
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Figure III.1: Schematic diagram of the involved transitions and sodium atomic levels. The control
pulse central frequency ωc is resonant with the two-photons transition between the level |0〉 and the
D-doublet, whereas the frequency ωp of the probe pulse is detuned by a variable quantity from the
transitions |2〉 → |1〉 and 3〉 → |1〉. The transitions A and B are also shown.

3.1 Fast light group velocity
3.1.1 Experimental methods

As discussed in Sec. (1.3.3), the fast light group velocity has been affected by misunder-
standing, but is completely meaningful as a definition of speed of a modulation envelope of an
optical pulse [3–10].

In 1970, the first analytic estimation of superluminal group velocity, without distortion, in
anomalous dispersion zone of an absorbing medium for Gaussian pulse has been reported [11].
Later, a confirmation of such an analysis has been presented, measuring the phase information
of a laser beam that propagates within an A-exciton line of GaP:N [12].

The possibility of achieve superluminal propagation when the limited-bandwidth wave packet
travels in a gain medium has been proposed in 1990s by R. Y. Chiao[13, 14]. A gain doublet
exhibits larger anomalous dispersion zones, due the closely spaced resonances, that make the
dispersion curve much smoother. A large anomalous dispersion zone allows to reduce the dis-
tortion, due to the derivative with respect to frequency of order higher than one of the dispersion
curve.

Table III.1: Radiative transition between the levels of the doublet (|2〉 =2 D5/2 and |3〉 =2 D3/2) and the
level 2P3/2.

Transition Wavelength (pm) Lifetime (ns)

A |2〉 → |1〉 819707.7 19.5
B |3〉 → |1〉 819704.3 117

The first clear fast light propagation with low distortion and with small change in amplitude
has been reported in 2000 [15] by Wang, Kuzmich and Dogariu. The scheme was based on a
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gain doublet in Cesium vapor excited by two cw Raman pump beams. For a Gaussian pulse of
temporal duration of 3.7 µs an advance respect to the vacuum propagation of 62 ns has been
measured, with a negative group velocity vg = −c/300.

In 2003, Stenner, Gauthier and Neifeld measured an advance of 27.4 ns for a pulse with
temporal duration of 263.4 ns, using a gain doublet in potassium vapor [16].

In this work, as a remarkable difference, in addition to the different proposed interactions
scheme, the optical pulse (3 ns long) is almost of one magnitude shorter than the previous cases
reported in literature.

3.1.2 Interactions scheme and numerical simulation

The interaction scheme used for the realization of fast light propagation is based on inco-
herent interactions [17, 18] discussed in the previous chapter (Sec. (2.1.2)). Hence the desired
dispersive properties in the medium are provided by a control pulse and, once such an interac-
tion is over, a subsequent co-propagating probe pulse experiences modification in propagation.

A schematic diagram of the involved interactions is reported in Fig. (III.1): The control
pulse frequency is tuned in such a way to populate, from the ground level |0〉 = 2P3/2 by a two
photons transition both levels of the D-doublet of sodium |2〉 =2 D5/2 and |3〉 =2 D3/2, thanks
broad band (30-GHz FWHM). A population inversion is then established between the levels of
the doublet and the level |1〉2P3/2 (Table (III.1)).

The probe pulse has an intensity weak enough to leave the population unaffected by its
propagation. The presence of the doublet guaranties two large bandwidth anomalous dispersion
zones, that are localized in the center of the doublet ( ∼ 819706 pm) and around 819710 pm. The
frequency of the control pulse in tuned to explore such spectral zones. The different radiative
lifetimes of the two atomic transitions cause an asymmetry in gain and refractive index curve
respect to the center of the doublet, with a larger weight played by the transition A.

In order to compare the experimental data with the theoretical predictions, a numerical
model based on propagation equation in an inverted medium has been realized.

The numerical simulation, in order to considerably reduce the computational times, works
in the frequency domain; as a consequence the population of the medium during the temporal
width of the pulse is considered as “frozen”, i.e. the decay of the population during this time
(∼ 3 ns) is neglected. Then, the calculation is not able to take into account the eventual temporal
compression or broadening of the pulse. Then the population is considered as constant and
determined by the decay time during the time delay ∆t between the control pulse and the probe
pulse. In the matrix density formalism, the population found by the probe pulse is the following:

ρii = ρ0 exp Γi(∆t − z/c) (III.1)

where the index i assumes value equal to 2 and 3 for the level |2〉 and |3〉 respectively, Γi is the
radiative decay time of the level i and z the coordinate inside the medium.

The field of the probe pulse in correspondence of the entrance in medium (z = 0) is:

E(z = 0, t) = E(z = 0, t) exp (−iωpt) (III.2)

where E is the time dependent functional form of the field amplitude in z = 0. Once propagated
for a length z:

E(z, t) = e−iωpt
∫ +∞

−∞

dω′Ẽ(0, ω′)ei(kz−ω′t) (III.3)
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where Ẽ is the Fourier transform of the field amplitude. The wave vector k in a medium with
atomic density N is the following:

κ(ω = ωp + ω′) =
ωp + ω′

c
+

3∑
j=2

Nω
4~ε0c

〈 d1 j
2ρ j j

iγ j − (ωpv/c + ω′ + δ j)

〉
v

(III.4)

where γi and δi represent, respectively, all kinds of dephasing rates and the detuning of ωp

from the |i〉 → 1 transition, whereas the d1i are the electric dipole moments. The brackets
represent the average over the Doppler velocity distribution, based on experimental parameters.
Fig. (III.2) shows an example of the dispersion and gain profile calculated numerically and after

Figure III.2: Profile of real and imaginary part of k evaluated by equation (III.4). The Doppler effect is
taken into account.

averaging over the Doppler velocity distribution, using experimental parameters. The atomic
density at a given temperature is evaluated using the (II.18) (see Sec. (2.2.3)).

The numerical solution of the (III.3) is based on a Discrete Fourier Transform (DFT) tech-
nique , computed by a Fast Fourier Transform (FFT) algorithm.

Figure III.3: Schematic diagram of the experimental set-up.
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Figure III.4: Typical normalized temporal profiles of the probe pulse (in green) and the reference pulse
(propagation in vacuum) in red. The continuous lines are the experimental pulses and the dashed ones
the numerical simulation. The wavelength of the probe pulse is 819710 pm. The advance respect the
vacuum propagation experimentally is 410±50 ps and the amplification factor 5.4.

The knowledge of ρ0 in the (III.1) and (III.4) is not directly obtainable with a sufficient
accuracy by the knowledge of the experimental parameters. Therefore, an indirect way to esti-
mate such a parameter consists in looking at the advance as a function of amplification: ρ0 as a
function of pulse control energy can be estimated as the value that in the simulations determine
an amplification factor of the signal equal to the measured one for a given energy.

3.2 Experimental set-up and methods
The experimental set-up (Fig. (III.3)) is the same described in Sec. (2.2), with some differ-

ences due to the different atomic involved interactions . The control pulse (Sec. (2.2.2)) of 4 ns
duration is provided by a dye laser pumped by a Q-switched Nd:YAG at a repetition rate of 10
Hz. In order to tune the central frequency at the desired two photons resonance, the used dye is
Blue Nile dissolved in methanol.

The probe pulse is derived by a single-mode extended cavity cw diode laser (Sec. (2.2.1))
tuned at quasi resonance with the transitions A and B described in the previous section. The
electro-optic modulator driven by the electric pulse generator create a pulse of duration of 3 ns.
The path is collinear to that of the control pulse and the systems of generation and acquisition
of signals are the same described in the section Sec. (2.2.4) and Sec. (2.2.5) respectively. The
temporal profiles are acquired shot-to-shot to collect a large number of data is collected for the
same ∆t and detuning δ of the probe pulse frequency from the center of the D-doublet. The
temperature of the sodium cell (Sec. (2.2.3)) is set to 220◦C.
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Figure III.5: Probe pulse advance respect the vacuum propagation as a function of the control pulse
energy for λp=819706 pm.

The double pulse method is used again (Sec. (2.2.5)). Then, the reference pulse (propagation
in vacuum) is the virtual reference pulse re-build via software shot-to-shot.

A remarkable difference respect to the slow light case consists in the impossibility to reach
a large population inversion or a saturation condition. Indeed, in an inverted medium amplified
spontaneous emission (ASE) [1] can occurs if a large population inversion and a preferential
path of emission is provided. When the control pulse excites the medium some photons are
spontaneously emitted near the entrance window of the cell; those emitted along the direc-
tion that coincides with the probe pulse can experience a large amplification. Such laser-like
emission emission cause a depopulation of the medium and an emission that temporally and
spectrally is overlapped to the signal. Then, ASE is a undesired effect that can mask the probe
pulse profile and tends to be much frequent as the energy stored in the medium increases.

The found solution involves a limit in energy of the control pulse and required an a poste-
riori discrimination of the data acquired. Such a discrimination consists in algorithms in the
automatic temporal profiles analysis that are based on the temporal form of the signal and in the
time of arrival to the detector. Indeed the ASE radiation is triggered soon after the propagation
of the control pulse, it is in general more energetic than the probe pulse, it has a larger temporal
duration and it exhibits large oscillation.

3.2.1 Results

Fig. (III.4) shows typical normalized temporal profiles of a probe pulse and the reference
for a central wavelength of λp=819710 pm. The continuous lines are experimental pulses,
whereas the dashed ones are calculated by the numerical simulation by using the experimental
parameters. The advance reported in this case is 410±50 ps respect the vacuum propagation,
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Figure III.6: Probe pulse advance respect the vacuum propagation as a function of the control pulse
energy for λp=819710 pm.

with a factor of amplification of 5.4. The advance measurement is based on the time at which
the signal intensity reaches the half of its peak value and the error comes from the average
within the pulses that correspond to a certain interval in the control pulse energy binning.

In Fig. (III.5) and Fig. (III.6) the advance is reported as a function of control pulse energy
for probe wavelength of 819706 pm and 819710 pm respectively. The discrimination during
data analysis leads to reject a larger number of data as the energy of the control pulse increases,
i.e. when ASE emission becomes more probable, leading to a lower accuracy in measurements
that correspond to these ranges of energies. However, the monotone increment of the advance
as the control pulse increases is evident, as the dependence on the detuning of the probe pulse
frequency from the center of the D-doublet.

In Fig. (III.7) the advance as a function of energy is shown again for λp=819706 pm and
different delay between probe and control pulse in entrance into the sodium cell. The monotone
increment with control pulse energy decreases its slope as ∆t increases. Indeed, as ∆t increases
the population of the D-doublet decays and the level 2P3/2 becomes much populated causing that
the population inversion rapidly decreases. Therefore, in addition to the control pulse energy, ∆t
represents, as in the slow light case, a second optical parameter of control on the group velocity.

Finally Fig. (III.8) shows the comparison between the numerical simulation and experimen-
tal data for λp=819710 pm. The numerical simulation, that are calculated using the experimental
parameters, are in good agreement with data.

In conclusions, fast light propagation has been achieved by means of an incoherent interac-
tions scheme and advances of the 3 ns long probe pulse respect the vacuum propagation up to
400 ps have been measured. The temporal duration used of the probe pulse is at least one order
of magnitude smaller than in the cases previously reported in literature at our knowledge.
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Figure III.7: Probe pulse advance respect to the vacuum propagation as a function of the control pulse
energy for λp=819706 pm and for different values of probe-control temporal separation ∆t.

3.3 Recovering the delay of a optical pulse
3.3.1 Fast and slow light propagation

In Chap. (II) and in Sec. (3.1) d the experimental realization of slow light and fast light
respectively with an incoherent interaction scheme have been described. A first question that
can arise from these results can be to which extent a propagation delay of an optical pulse can
be recovered by means of a fast light stage.

Moreover, an intriguing question arise from experimental results on slow and fast light
propagation: how does the group velocity depend on the propagation history of the pulse? And
what about the limit in advance respect to the vacuum propagation? In Sec. (1.3) it has been
discussed how the causality establishes a limit to the group velocity that a pulse can exhibit,
by means of the optical front propagation speed. As a simplified picture, one can image that
a pulse in superluminal propagation “piles-up” to the front as the modulation envelope speed
increases. Does exist a method that allow to circumvent such a “cruise control” on the group
velocity? Then the answer can be provided if an extra delay is induced to a pulse before its
entrance in the fast light stage. Since the propagation of the optical front does not depend on the
traversed media, one can suggest that in this case the group pulse has a larger delay to recover
before it is limited in speed by causality reasons.

In literature, researchers reported experimental schemes that are able to achieve both fast and
slow light propagation. Slow or fast light propagation in the same medium has been obtained in
a waveguide overcoupled to microring resonators [19, 20], by coherent population oscillations
in chromium ions in an alexandrite crystal at room temperature [21], coherent population oscil-
lation in erbium-doped fibers [22] in a Er3+ /Yb3+ co-doped single-mode phosphate glass fiber
[23] and by optically controlled stimulated Brillouin scattering [24].

Something similar to the inclusion of fast and slow propagation in the same experimental



55

Figure III.8: Comparison between numerical simulation and experimental data for λp=819710 pm.

Figure III.9: Experimental set-up for recovering the delay of a optical pulse. In the upper-left of the
figures the interactions scheme diagram is reported.

setup has been reported since 2012 and concerns a fascinating correlated topic and research
line; nonlinear process of Bragg scattering via four-wave mixing has been used to achieve a
first experimental realization of a temporal cloaking device, consisting in a temporal gap of
50 ps that is able to cancel detectability of a event, consisting in a nonlinear generation of new
frequencies due interaction between a probe beam and a short pump pulse via four-wave mixing
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[25] (see also [26]). Similar effects have been reported in the aim of find applicability in data
transmission and cryptography [27, 28].

3.3.2 Experimental setup and scheme

Concerning the works reported in this thesis, a rearrangement of the experimental set-up,
shown in Fig. (III.9) allowed to achieve both the propagation modes for the same probe pulse.
In the following text, the abbreviations FL and SL are used to label experimental stages for fast
light and slow light propagation respectively. The term “stage” means a part of the experimental
set-up composed by a cell filled by the sodium vapor and a control pulse, whose frequency is
tuned in such a way to realize the desired effect. Hence, an inhibition of a control pulse causes
to switch-off the corresponding stage.

With reference to Fig. (III.9), two sodium cells are used besides two different dye lasers,
Rhodamine 6G for the laser with frequency ωS L

c and Blue Nile for the one of frequency ω f L
c ,

pumped by the same frequency-doublet Q-switched Nd:YAG. The probe pulse path is arranged
in such a way to propagate inside the volume of the media excited by the control pulses. A
dichroic filter is set after the SL stage and before the FL stage, in order to prevent to the remnant
of the control pulse of frequency ωS L

c to reach the next stage, leaving the probe pulse unaffected.
At the output of the FL stage, a prism prevents the control pulse of frequency ωFL

c to reach the
detector. The energy of the control pulse for the SL stage is set to a constant value to maintain
the cell population stable and fixed shot-to-shot. On the contrary, the energy of the other control
pulse is tuned during the measurement and the energy of each shot is collect by means of a
semi-transparent plate and a photo-diode. This photo-diode is connected to the oscilloscope,
that measures the temporal profile to estimate the energy by calculation of the integral and by
the knowledge of the reflection coefficient of the semi-transparent plate.

From temporal point of view, each single shot is started by the control unit of the Nd:YAG,
that sends a trigger signal to the electric pulse generator for the generation of the control pulse,
using the double-pulse method and contemporaneously generate the pump pulse for the dye
laser systems. The path of the control pulses is conveniently extended in order to send them
into each stage with a desired temporal advance respect the entrance in the medium of the probe
pulse. The synchronization of the experiment remains similar to that discussed in Sec. (2.2.4)
and Sec. (3.2). The temperature of the cell of the SL stage is set to 165◦C, whereas in the
FL stage is set to The waveforms were acquired by an Agilent digital storage oscilloscope
(DSO90804A) of 8 GHz of bandwidth and 40 Gsamples/s.

In Fig. (III.12) is reported the logic diagram scheme of two possible modes of propagation:

(a) SL stage OFF - FL stage ON
The control pulse for the SL stage is prevented to enter in the cell. The control pulse
for the FL stage excited the medium, creating the population inversion described in
Sec. (3.1.2). The probe pulse propagates in vacuum in the first cell and in a fast light
medium in the second one.

(b) SL stage ON - FL stage ON
Both control pulses excite the corresponding medium; then a passive medium (Sec. (2.1.2))
in the SL stage and an active medium in the FL stage (Sec. (3.1.2)) are establish. The
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Figure III.10: Logical diagram of the experimental procedure with the corresponding atomic interac-
tions schemes. In the case a) the pulse propagated in vacuum and then is advanced by the fast light (FL)
stage. In b) the pulse is previously delayed in the slow light (SL) stage and then advanced.

Figure III.11: Complementary cases of the ones shown in Fig. (III.10) for reference. In the case c) the
pulse propagated in slow light stage and then in vacuum. In d) the pulse propagates in vacuum in both
stages.

probe pulse experiences a delay in the first stage and in the second one can recover this
delay or also experience an extra advance respect to the vacuum propagation.

The two complementary modes, that acts only for reference and reported in Fig. (III.11) are:

(c) SL stage ON - FL stage OFF
Only the control pulse for the SL stage is sent into the medium. Then pulse is delayed
and then propagates in vacuum.

(d) SL stage OFF - FL stage OFF
Both stages are switched off and the reference probe pulse propagates in vacuum in both
stages.

3.3.3 Results

In Fig. (III.12) typical normalized temporal profiles of the probe pulse in different cases,
with a pump energy of the FL stages (when ON) of 80 mJ are shown. Above, the probe pulse
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Figure III.12: Temporal profiles of the probe pulse after propagation through the SL and the FL stages.
The red and blue curves refer respectively to the case a) and b) in Fig. (III.10). The black curve is
propagation in vacuum (case (c) - averaged over the 10% of the signal peak) when both stages are
switched off (case (d)). The greed dashed curve refers to the pulse that is delayed by the SL stage and
then propagates in vacuum.

that propagates in the case a) is reported in red and the dashed black is the reference (averaged
above the 10% of the peak value) that propagates through both stages in vacuum. The probe
pulse experiences an advance respect to the vacuum propagation of 500 ps. Below, the blue
profile is the probe pulse that propagates when both stages are switched on (case b)); then it is
delayed and then advanced of ∼500 ps. The green profile is the reference pulse in the case c),
when it is solely delayed in the SL stage. Therefore, the FL stage is able to complete recover by
the delay induced by the previous SL stage and then produce an advance respect to the vacuum
propagation of the same mount than in the case a).

These results suggest that, with only the FL stage ON, the trailing edge of the pulse travels
very close to the optical front, thus the causality limits the maximum possible advance. Since
in the case b) the SL stage induces a delay of about 520 ps, the overall advance of about 1 ns is
experienced in this case: the acquired delay with respect the optical front makes the subsequent



59

Figure III.13: Temporal shift δt in propagation as a function of the FL energy. Positive values are delays
and negatives are advances. Red point are the results relative for the case a) in Fig. (III.10) and the blue
ones for the case b).

fast light propagation more efficient. The pulse moves faster if it is previously delayed.
The pump energy of the both FL and SL stages (when are ON) are the same in all cases:

the difference between the pulse in the case a) and b) can be found only in the total final energy
of the pulse (in the case b) the pulse is also affected by absorption due the SL stage, but not in
the arrival time. Thus, after traversing both stages, from the time of arrival to the detector, it is
impossible to distinguish if the probe pulse had been previously delayed or not.

Fig. (III.13) shows the value of the shift δt in arrival time of the probe pulse in the cases
a) (red) and b) (blue) as a function of the control pulse energy of the FL stage. An energy 0
corresponds to switching OFF the FL stage, in order to investigate the cases c) and d). Clearly,
the control by FL energy of the delay recover demonstrated in the case b). As the energy
increases the advance with respect the vacuum propagation approaches the same limit value of
500 ps in both cases. Therefore, for high energy, a complete cancellation of propagation history
of the pulse is approached. In such a limit case, by a temporal measurement an observer is
not able to distinguish if the probe pulse has been delayed in a passive medium or not. In the
experiment only the final intensity of the pulse can give indication about the history of the pulse.
However such a indication can be circumvented by introduction of an additional passive or gain
medium that does not alter the propagation speed.

In conclusions, the possibility of recovering an induced delay with a fast light propagation is
demonstrated and optically controlled by means of the energy of the control pulse. The medium
has been tailored in such a way to achieve an approaching to the limit speed for the propagation
of the optical signal. Finally, these results suggest possible future practical applications; indeed,
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in telecommunication any transmission line is affected by unavoidable losses, that are corrected
by means of amplification stages, to which a fast light stage could be added. Hence this exper-
iment is also a proof of principle demonstration showing this, up to now, uncovered possibility
that can lead to an actual propagation at the maximum reachable velocity for a signal.
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Chapter IV

Light Propagation and Amplification in
Disordered Active Media

This chapter concerns the propagation of light in a diffusive medium where gain is added.
The purpose is to provide the theoretical background that underlies the original work discussed
in the next chapter (Chap. (V)).

The first section (Sec. (4.4)) is devoted to the fundamentals of scattering and turbid media
and to the investigation of the different behavior of light as the mean free path changes.

Then, in the second section (Sec. (4.5)) the propagation in a disordered medium is dis-
cussed. The starting point involves the historic of the development of the random laser systems,
with the introduction of the non-resonant feedback mechanism (Sec. (4.5.1)), that leaded to
the Letokhov’s idea of disordered medium with gain (Sec. (4.5.2)). Then the first experimen-
tal evidences of random laser emission in “powder-lasers” and “laser paints” are presented
in the next section (Sec. (4.5.3)). Finally the modern theoretical and experimental scenario is
discussed in the next sections, paying attentions to the link between the random laser charac-
teristics and the disorder degree of the turbid medium (Sec. (4.5.4)), the conditions of threshold
(Sec. (4.5.5)) and the concept of “mode” (Sec. (4.5.6)).
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4.4 Propagation in a Diffusive Medium
4.4.1 Turbid Media

The scattering process involves the interaction between photons and material elements on
a wavelength scale wich causes a deviation from their initial paths. If the photons that sail off

from the original optical beam preserve their energy, the scattering is elastic, as in the Rayleigh
scattering case , otherwise the process is inelastic, as in the Raman scattering, and the wave-
length of the radiation results greater than before the diffusion event. This diffusive behavior is
observed within a medium characterized by the presence of optical nonuniformities and abrupt
refractive produced by index mismatch. In such a medium, called turbid medium, these hetero-
geneities can be small particles or impurity dispersed in a homogeneous liquid, solid or gaseous
material.

Whereas the absorption properties of a medium mainly depend on the chemical composi-
tion, the diffusive ones are linked to the microphysical characteristics of the particles, in partic-
ular dimension, shape and the relative refractive index nr with respect the background medium.

Typical examples of well characterized turbid media are materials where small particles of
inorganic compounds, like ZnO, TiO2, or fat emulsion droplets, like soy bean oil or egg lipid,
are dispersed. In general the bulk materials consist in transparent liquids, that can be water
or alcoholic solvent like methanol, ethanol and diethylene glycol, or solid dielectric samples
of crystalline or amorphous nature. It is very common to observe in air the light scattered by
impurities, fogs and clouds; both the bluish color of the sky and reddening of sunlight during
dusk or dawn are primarily due to the strong dependence on wavelength of the light scattering by
molecules and small suspended particles in atmosphere. On the contrary, at optical frequencies,
the dimensions of the cloud droplets are large enough to diffuse light whatever the wavelength,
causing the white appearance.

A pure material becomes a turbid medium if local random variations of isotropy or homo-
geneity are induced which causes fluctuations from the mean refractive index [1]

In photonic solids, disorder can be added by means of the introduction of defects or air
holes. Another important turbid medium is the biological tissue; for instance in the human
eye the Rayleigh scattering of light in the stroma of the iris, as well as the concentration of
melanin, determines the color, in particular in the blue or green colorations. In medicine, the
light scattering properties, in addition to the absorptive ones, are particularly studied and applied
for diagnostic purposes.

4.4.2 The Scattering Process

The scattering process is a phenomenon that is strongly dependent upon the size of the
scatterers, the refractive index mismatch from the bulk material and the wavelength λ of the
radiation.

[1] Random modifications in air density, due to the atmospheric turbulence, cause the random refractive-index
fluctuations leading to the twinkling of the stars. Unlike the planets, the stars (with the obvious exception of the
Sun) are far enough to represent a light point sources, whose emitted light is spatially coherent and planar when
it reaches the Earth atmosphere. Hence such optical effect, just described by Aristotle, arises from interference
effects that cause random atmospheric induced speckles in coherent light.



67

The fundamental parameter that characterizes the optical properties of a diffusive medium
is the mean free path `s, i.e. the average of the traveling lengths between two successive scat-
tering events. Such characteristic length scale can be derived from the scattering coefficient µs:
let us consider a medium without absorbing properties and with a concentration of scatterers
sufficiently low to neglect interference effects (independent scattering approximation) and let
the ẑ-axis be the penetration direction of a light beam. After a distance z, the intensity I(z) of
the ballistic beam, i.e. the fraction of the beam that has not yet experienced scattering events, is
given by the Lambert-Beer Law:

I(z) = I(0) exp
[
−

∫ z

0
µs(z′)dz

]
(IV.1)

If the medium is homogeneous µs does not depend on z and the ballistic beam is exponentially
attenuated. Within the independent scattering approximation, the scattered power can be de-
rived by the sum of the contribute due to each particle and expressed in term of the scattering
cross section σs. Considering a volume numerical density ρs of identical spherical scatterers or
identical randomly oriented non-spherical particle, the scattering coefficient can be expressed
as following:

µs = ρsσs (IV.2)

In general experimental case, the diffusive sample consists in a mixture of scatterers of dif-
ferent radius and µs are averaged on the size distribution, since the scattering depends on the
dimensions of the particles [2].

By means of σs and the geometric cross section it is then possible to define the scattering
efficiency Qs of the scattering event:

Qs =
σs

πr2 (IV.3)

where r is the radius of the particle. Then, from (IV.2) and (IV.3) it follows:

µs = ρsπr2Qs (IV.4)

From a statistical point of view, the probability density function can be derived from the Lambert-
Beer law IV.1, since, in a homogeneous medium, µs exp[−µsz]dz represents the probability for
a photon of the ballistic beam to undergo a scattering event within an element length between
the coordinate z and z + dz. Then, inside a purely diffusive infinite medium (or a medium with
depth much larger than the length scale provided by 1/µs ), the scattering mean free path can be
statistically calculated as:

`s =

∫ ∞

0
zµs exp[−µsz]dz =

1
µs

(IV.5)

In order to completely characterize the process, the other important parameter is the scat-
tering phase function p(ŝ, ŝ′), defined as the probability that a photon traveling in direction ŝ
is scattered within the unit solid angle ŝ′. For unpolarized light and spherical or randomly ori-
ented spherical particles as diffusive centers, the scattering phase function depends only on the
azimuthal angle θ, i.e. the angle between ŝ and ŝ′. As for µs, p(θ) depends on the particle size

[2] If r is the particle radius and f (r) is the probability distribution, µs = ρs
∫ ∞

0 σs(r) f (r)dr
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and in the general case is averaged of the distribution over the scatterer radius of the sample.
The asymmetry factor g is defined as the average cosine of the scattering angle:

g = 〈cos θ〉 = 2π
∫ π

0
cos θp(θ) sin θdθ (IV.6)
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Figure IV.1: Numerical calculation of scattering efficiency Qs as a function of the size parameter for
λ =633 nm, water as bulk medium (n=1.33) and monodispersion of identical particles of: soybean oil
(n=1.46), ZnO (n=2.00) and TiO2 (n=2.58).
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Figure IV.2: Numerical calculation of asymmetry factor g as a function of the size parameter for λ =633
nm, water as bulk medium (n=1.33) and monodispersion of identical particles of: soybean oil (n=1.46),
ZnO (n=2.00) and TiO2 (n=2.58).

When the scattering function is anisotropic the scattering phenomenon is better described
by the reduced scattering coefficient µt. It can be shown [2] that after i scattering events the
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average z-coordinate reached by a scattered photon is the following:

〈zi〉 =
1
µs

i−1∑
i=0

gi =
1
µs

1 − gi

1 − g
(IV.7)

If the number of the events becomes large, from the IV.7 follows:

1
µt

= lim
i→∞
〈zi〉 =

1
µs(1 − g)

(IV.8)

Then, as for `s (equation IV.5), it is possible to define statistically the transport mean free path
(or reduced scattering mean free path ) `t:

`t =
1
µt

=
`

1 − g
(IV.9)

It represents the average distance beyond which the propagation direction is completely ran-
domized and it becomes the fundamental parameter in those cases where the scattering is
strongly anisotropic (g→ 1). `t can be expressed as:

`t = (ρsσt)−1 (IV.10)

where the cross section for radiation pressure, that describes the average momentum transfer
between photon and scatter, is defined as σt = σs(1 − g).

The dependence on the wavelength and the diameter d of the scatterers is defined by the
dimensionless size parameter x :

x =
πd
λ

(IV.11)

The condition of small particles typically holds for a scattering center that interacts with a
electromagnetic radiation if x < π/10 [3]. In such a case the process is described by the Rayleigh
scattering and σs decreases with the fourth power of the wavelength:

σs =
2π5

3
d6

λ4

(n2 − 1
n2 + 2

)2

(IV.12)

where d is the diameter of ideally identical spherical particles. The scattering due to small
particle has a low efficiency (Qs ∝ x4) and an angular isotropy g = 0. On the contrary, for x � 1
the scattering becomes independent on the size of the particle (Qs ' 2), while the scattering
function strongly depends on it. General results for each size parameter and refractive index of
spherical scatterers can be numerically calculated by the Mie solution of the Maxwell equations
[4]. In Fig. (IV.1) and Fig. (IV.2) are shown numerical calculations of Qs and g respectively for a
monodispersion of identical spherical particles in water (n=1.33), for a radiation wavelength of
633 nm. The material of the particles are: soybean oil (n=1.46) [5], ZnO (n=2.00) [6] and TiO2

(n=2.58) [7]. The values are generated with a Matlab® code based on the algorithm reported by
Bohren and Huffman [8].

If x becomes large enough to consider the wavelength completely negligible, the propaga-
tion of radiation zones with different refractive index is describable in terms of the light rays of
geometric optics.
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Varying the concentration of the scatterers, three different scattering regimes can be iden-
tified by means of the optical thickness τ = µsZ (where Z is the total depth of the diffusive
medium), the wavelength of the radiation λ and `t:

SCATTERING REGIMES

(1) quasi-ballistic regime (τ . 1)
A weakly scattering material where in average photons undergo at most one scatter-
ing event or none. The medium approaches the condition of transparency from the
scattering point of view.

(2) light diffusion regime (τ � 1 and `t � λ))
With increasing the optical thickness of the sample, the ballistic beam is affected by a
strong attenuation and the direction of the radiation tends to approach a complete ran-
domization. The energy transport is similar to that of a classical particle in Brownian
motion.

(3) localized regime (τ � 1 and `t ∼ λ)
If the scattering strength is large enough to cause that the electric field of the radiation
is not able to realize just one oscillation between to consecutive scattering events.

In light diffusion regime the treatment of the photons as random walkers is justified and the
energy transport can be described by the diffusion equation:

∂Φ(r, t))
∂t

= D∆Φ(r, t)) + S (IV.13)

where Φ(r, t) is the energy density, D the diffusion coefficient and S a source term, as the
incident beam.

In both light diffusion and in localized regime , the regimes are governed by a large number
of scattering events before leaving the medium; the distinction among them arises from the fact
that the light diffusion regime is considered as a simplified picture where the interference terms
can be neglected (single scattering approximation) in order to describe the propagation of the
radiation [9]. Such a regime represents the critical requirement for the Anderson localization,
predicted in 1958 by P.W. Anderson for electron diffusion inside disordered material systems,
like a semiconductor with impurities and defects [10]. In such a case the phenomenon has
been described as a disordered-induced phase transition from the classical diffusion regime,
governed by the Ohm’s law, to a localized state. Under such a condition the wave-interference
effects between multiple scattering events leads to an insulating behavior of the disordered
semiconductor.

The critical parameter that leads to approach the localized state is known as the Ioffe-Regel
Criterion [11, 12] and consists in the product between the wave number of the radiation k and
the scattering mean free path ls

[3] :
k`s ≤ 1 (IV.14)

[3] In the optical case the scattering mean free path `s is substituted by the transport mean free path `t.
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In principle such transition from diffusive transport to localized state should occur in any
material system, once the scattering strength is increased to the critical value, but at the op-
tical frequencies is experimentally difficult because of the very small inter-particles distances
required. Moreover, unlike the electrons case where the Coulomb interaction between parti-
cles occurs, in optics the photon-photon interaction can be neglected. The first experimental
evidence of such phenomenon at optical frequencies has been reported in 1997 using GaAs
powder suspended in methanol [13].

4.5 Random Laser System: Disordered Medium with Gain
4.5.1 Non-resonant feedback

The concept of laser source is founded on two fundamental ingredients: an active medium
and an optical cavity. The first one consists in a material in which a population inversion among
its atoms or molecules is established by a pumping system. Such a condition allows the light
amplification via stimulated emission triggered by prior spontaneously emitted photons. An
optical cavity, generally constituted by at least two reflecting surfaces, provides the necessary
feedback mechanism that can allow the laser-type emission, that appears if the experienced gain
overcomes the losses. Then the output radiation is characterized by a high degree of direction-
ality, mathematically described by Gaussian beam, and high temporal and spatial coherence.
The spectral behavior is dominated by the oscillation modes allowed by the optical cavity.

Since the 1960s, then very early in the history of development of the laser technology, the
material scattering properties have not been considered solely a loss factor causing photons
removal from the modes of the optical cavity. In order to reduce the sensibility of the laser
emission upon small mechanical alteration and to smooth the speckle distribution on the in-
tensity pattern, due to the high coherence properties, a new type of feedback mechanism was
proposed by Ambartsumyan et al. in 1966 [14, 15]. They suggested to replace a mirror of the
optical cavity with a surface or volume light scatterer, providing a non-resonant or intensity
feedback mechanism. They reported, as the most relevant fact, that, unlike a conventional laser,
the line narrowing around the central frequency of the emission is determined, with a much
slower temporal dynamics, by the resonant frequency of the active medium rather than by the
resonator modes. The direction of photons scattered back to the gain medium changed case-by-
case, with light paths that in general do not overlap after round trips inside the cavity. Narrow
emission line around the center of the atomic resonance, regardless the stability of geometric
dimensions of the cavity, was reported in a He-Xe non-resonant feedback laser, using scatterers
and mirror systems [16].

Ambartsumyan et al. also identified in the statistical properties of the emission, in a way
similar to the ones that characterize the black body radiation, an important topic of investigation
[17].

4.5.2 Photonic bomb

In 1960s decade, in order to explain anomalies that had been observed in cosmic microwave
emission of the OH molecule, coherent amplification mechanism in interstellar medium with
population inversion had been proposed and considered [18–20] and Vladilen S. Letokhov sug-
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gested that such amplification could be the result of the feedback provided by the scattering by
free electrons and dust particles in the interstellar medium [21].

Hence in 1967 the scenario was open for the next step towards a medium where the con-
ditions of light generation, amplification and scattering are all satisfied. In his pioneer work
Letokhov claims [22]:

“ The purpose of this letter is to demonstrate the possibility of generating light
by means of of an aggregate of scattering particles with negative absorption in the
case when the mean free path of the photon due to scattering is much smaller than the
dimensions of the system, i.e. when the motion of the photons is diffuse. ”

In analogy with the multiplication of neutrons in a homogeneous nuclear reactor without
a reflector, he intended to find the critical condition for a new optical source, that is spatially
incoherent as thermal or luminescence sources, but with an high monochromaticity, whose
stability only depends on that of the frequency of the atomic resonance:

“ When the threshold condition is satisfied, such a generator emits in all directions
with an exceedingly narrow spectrum.”

Instead of the active and diffusive interstellar medium (essentially optically homogeneous),
where `s is much larger than the dimensions of the generator, Letokhov considered a spatial
region where the diffusive regime holds (see Sec. (4.4.2)) containing a set of identical particles
larger than λ. Since now light moves inside an active medium where scattering properties have
been added, other two characteristic length scales are to be considered. The former is the gain
length `g, that describes the amplification due to the stimulated emission process. Let I0 the
initially spontaneously emitted energy and I(z) the energy after a traveling distance z within an
active medium:

I(z) = I0ez/`g (IV.15)

Then `g is defined as the distance over which the energy is amplified by a factor e. In analogy
with the (IV.2) and (IV.10):

`t = (ρsσω)−1 (IV.16)

where σω is the gain cross section for a radiation of frequency ω.
The latter length scale, the amplification length `A takes account of the diffusion property

of the medium and then of the fact that the light trajectory in general does not follow a straight
line. In the diffusive regime:

`A =

√
D`g

v
(IV.17)

where v is the average velocity of the radiation inside the medium and D the diffusion coefficient.
Indicating as v the energy transport velocity, in a three dimensional system:

D = v`t/3 (IV.18)
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and `A becomes:

` (3D)
A =

√
`t`g

3
(IV.19)

In diffusion equation (IV.13) the amplification within the random active medium can act as
source term. Thus Letokhov considered the change of flux spectral density Φω(r, t) of photons
of frequency ω (near to the gain resonance ω0 of the inverted medium), in the point r and at the
time t as described by the diffusion equation:

∂Φω(r, t)
∂t

= D∆Φω(r, t) +
v
`g

Φω(r, t) (IV.20)

where `g is expressed by the (IV.16).
In contrast with conventional disordered passive medium, where an absorption length `abs in

the place of `g implies the destruction of photons during their random path, in such material the
radiation is amplified by stimulated emission. Moreover Letokhov suggests that the medium
can also acts as generator, with particles that contemporaneously perform both emission and
scattering.

In general σω is not constant in space and time due to the dependence on the photon flux
density that can induce gain saturation [23] and to decaying effects.

At the threshold, when the gain overcomes the losses, the effect of such dependence can be
neglected and a general solution of the (IV.20) is the following:

Φω(r, t) =
∑

n

anφn(r)e−(DΛn
2−`g

−1v)t (IV.21)

where φn(r) are the eigenfunctions and Λ the eigenvalues of the equation:

∆φn(r) + Λn
2φn(r) = 0 (IV.22)

an are arbitrary constants determined by the initial condition Φω(r, 0). Then the general solution
is an eigenfunction expansion of modes with an exponential decay rate that depends on the order
n [24]. The boundary condition implies φn(r) = 0 at a distance de (extrapolation length) [25]
beyond the medium boundaries, since the photon density is small outside the medium, but it
can not be set as zero, because the light can diffuse outside the surface [26]. However de is
smaller than `t and such condition can be applied in good approximation to the surface of the
medium (absorbing boundary condition). The solutions to the spatial part of (IV.21) that satisfy
the absorbing boundary condition are of the form sin(nπr/L), where n is a integer and L is the
thickness of the medium. If the medium is a sphere of radius R, φn(r) and Λn are expressed as
follows [25]:

φn(r) =
1
r

sin
nπr
R

Λn =
nπ
R

(IV.23)

Hence Letokhov found that the critical conditions are bounded to the dimensions of the inverted
medium, its diffusive properties and the energy stored in the population inversion. From IV.21
follows the threshold condition:

DΛ2 = `g
−1v (IV.24)

where Λ is the smallest eigenvalue Λn (π/R in the case of the spherical medium) and σ0 the
larger cross section (at resonance ω0). Because of the exponential decay of the modes, only the
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order n = 1 survives for a long time, experiencing the largest amplification. The presence of
the cross section at the resonance in threshold condition implies that the spectrum of the output
radiation undergoes narrowing around the central frequency of the spontaneous emission.

In absence of absorption or other dissipative channels within the medium, losses are local-
ized on the surface and proportional to the total area. It is obvious that reflecting properties
added at the boundaries of the pumped region decrease the threshold condition.

Reminding the equation (IV.19), the threshold condition predicts a critical volume Vcr for
a three dimensional medium where the diffusive and gain properties are described by `t and `g

respectively:

Vcr ≈

(`t`g

3

) 3
2

= `A
3 (IV.25)

Then fixed `A, if the volume exceeds Vcr the first member in the (IV.24) becomes larger than the
second one and from (IV.21) it follows that the energy flux grows exponentially:

Photonic bomb [DΛn
2 − `g

−1v] < 0 (IV.26)

Such a condition and the exotic term photonic bomb mean that in average each spontaneous
emitted photon generates almost one photon by stimulated emission before escaping the medium,
in such a way to lead the system to become unstable and to trigger a ‘chain reaction’ analogous
to the production of neutrons within an atomic bomb [27]. Of course no real ‘explosion’ occurs
since the stimulated emission rapidly depletes the energy stored in the medium as population
inversion.

Letokhov also predict the narrowing of the output spectrum, as in the non-resonant feedback
mechanism (Sec. (4.5.2)) and a slow temporal dynamics of the emission. For the former effect
he described the system as a ‘stochastic resonator’, where a large number of strongly interacting
modes lead to a complete overlap of their frequency spectrum. For the temporal behavior he
predicted a stationary generation regime approached with relaxation oscillations.

The reference [22] is considered as the first mention about a system composed by a medium
where scattering and amplifying properties are added in order to achieve an emission that share
with the laser the characteristic of monochromaticity and with the thermal radiation the ones
of directionality and spatial incoherence. Hence it is considered as the first prediction of the
optical system called with the modern term ‘random laser’.

4.5.3 Powder laser and laser paint

The experimental realizations of a light generator similar to the one predicted by Letokhov
began to appear in scientific literature in 1970s and 1980s. In 1971 Varsanyi reported the ob-
servation of stimulated emission not supported by any optical cavity [28] in powder particles of
PrCl3 and PrBr3 . He suggested that such powder laser, dispersed in a suitable material (solid,
liquid or gaseous), could have opened up new possibilities in display technology. In 1981 it
was reported that, under not to well understood conditions, stimulated emission can be induced
in ZnO powders by means of N2 laser pumping at a temperature of 80◦K [29]. Five years later
Briskina’s group, during routine spectroscopy measurements, observed interesting effects re-
garding the emission spectra from powder of a Na5La1−xNdx(MoO4)4 composition under the
influence of a strong pump pulse provided by a dye laser [30]. They reported narrowing of the
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emission and shortening of the emitted pulse duration (around four orders of magnitude) and
they considered as noteworthy the threshold nature and the linear dependence on the pumping
intensity, in such a way to demonstrate that the phenomenon was ascribable to a stimulated
emission process. Hence, reminding the ideas of Letokhov and Varsanyi, they proposed the
investigation about the possibility to realize a quasi-monochromatic source with fine-grained
powders of luminescent crystals, ceramics or emulsion solutions of dye. Later on other further
investigations have been reported in generation of spatially incoherent short pulses by grinding
crystals, usually used as laser source, in fine-grained powder [31, 32].

Since 1990s another strategy has been developed in order to achieve laser-like emission in
non-conventional materials. In 1994 Lawandy et al. claimed to have achieved laser action in
liquid sample of rhodamine 640 perchlorate dye as gain medium, where the scatterers (colloidal
suspension of TiO2 rutile particles) concentration can be easily varied. They called such kind of
material laser paint because the suggestion of ‘painting’ the laser material on a surface [33]. In
the scientific correspondences that followed the paper for the first time the term ‘random laser’
was introduced [34, 35].

The Lawandy’s paper [33] is considered a milestone in the random laser history [36], espe-
cially because the dimension of the scattering centers, smaller than the radiation wavelength,
does not allow to invoke the possibility of lasing from internal resonances of single particles.
The phenomenon is not attributable, according to the original Letokhov’s idea, to a single-
particle feature, but to an emerging property of a disordered systems, where the active part is
located outside and among the scatterers. Then the emission of such disordered system with
gain began to be theoretically and experimentally investigated [37–44].

It is worth to stress the fact that the scatterers have to play a decisive role in triggering the
laser-like emission. A process that manifests similar characteristics is the amplified spontaneous
emission (ASE). The ASE phenomenon can appear in the case of large amount of population
inversion established in a medium by a pumping systems [1]. In an active medium with a linear
dimension larger the other ones, if the gain is large enough, the earlier spontaneously emitted
photons near the pumping beam spot are strongly amplified if their initial directions correspond
to ones that guarantee the largest gain. Thus the stored energy in the medium can be rapidly
depleted and emitted into the solid angle subtended by the center of the spot of the pump beam
as seen by the opposite face of the sample. In contrast to the spontaneous emission, ASE is
characterized by laser-like features, as spectrum narrowing and directionality of the output. Of
course an ASE process cannot explain tout court a random laser system; in fact light generator
that solely exploit such process are known as mirror-less lasers [45]. As it will discussed in
Sec. (4.5.6), in a random laser the modes, even if they are not well defined and understood as
in the case of a conventional laser, play a decisive role: a random laser is ‘mirror-less’ but not
‘mode-less’ [9].

4.5.4 Random Laser Regimes

An operative definition of a random laser is: a disordered material system, where population
inversion is established by means of a pump, that is able to generate light and satisfy the two
following criteria:
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Figure IV.3: Simplified picture of a conventional laser system (on the left), provided by an optical cavity
composed by two mirrors and an active medium and a random laser source (on the right), where the light
is amplified along its path in a scattering active medium.

FUNDAMENTAL CRITERIA OF A RANDOM LASER SYSTEM

(1) light is scattered and amplified by stimulated emission

(2) there exists a threshold induced by the scattering

The threshold condition, in a similar way to a conventional laser, is reached when the total
gain becomes greater than the losses, due to photons that leave the active medium or that are
destroyed by dissipative channels. No limit exists on the maximum scattering mean free path,
but its lowest possible value cannot to be larger than the sample; in fact (see Sec. (4.5.2)) the
scattering has to play a critical role in the system.

According to the value of the mean free path, a further sub-classification of random laser
systems is possible. Wiersma and Lagendijk proposed a model based on light diffusion and
gain, considering a powder slab of a four levels system as active material, such as Ti:sapphire
or Rhodamine 6G, a pump pulse and a probe pulse [44]. The pumping rises the system to the
excited level |2〉, from which it rapidly dacays to the metastable level |1〉, in such a way to estab-
lish a population inversion if the level |0′〉 has a fast decay rate to the ground level |0〉. Hence the
dynamics of the process is described by a set of three diffusion equations, for the pulses and the
ASE, and one for the population of the level |1〉. Such system of coupled equations, once numer-
ically solved, predicts an emission dynamics with a spiky structure under pulsed excitation. In
order to characterize a random laser system, for different scattering strengths they distinguished
three regimes, that can be related to the scattering regimes identified in Sec. (4.4.2):
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RANDOM LASER REGIMES

Incoherent Random Laser

(1) quasi-ballistic regime =⇒ weak scattering and gain
the role of the scatterers is not critical and the emission is dominated by ASE
emission. If `t further increases the classification as a random laser becomes no
longer correct.

(2) light diffusion regime =⇒ modest scattering and gain
The presence of scattering increases the time spent by light inside the sample and
the spectral and temporal behavior of the output emission is strongly influenced
by diffusion processes. The interference effects are negligible and the amplifica-
tion is provided by an intensity feedback mechanism.

Coherent Random Laser

(3) localized regime =⇒ strong scattering and gain
The strong scattering forces light to form closed loop paths, along which it can
experience a large gain. Anderson localization can be invoked to explain such
random ring cavities.

In the diffusive regime the pumping system creates an amplifying region from which the
spontaneously emitted photons, because the absence of reflecting surfaces, can easily escape.
However, after a random walk due to the scattering, they can re-enter in the active medium,
experiencing additional amplification. Such energy feedback is non-resonant, because the return
of the light in its starting position is not required. Hence such kind of system is called random
laser with incoherent (or non-resonant or intensity) - feedback.

Although the interference effects are not required for the random laser lasing, they can
become predominant in the multiple scattering regime . Such coherent random laser [46–
49] has been reported in semiconductor nanostructures [50, 51], disordered polymers [43, 52],
organic materials [53]. Closed-loop paths act as a cavity where gain can overcome losses leading
to lasing oscillations at frequencies that satisfy constructive interference requirements [54, 55].

4.5.5 Random Laser Threshold

The dependence of the critical conditions threshold of the random laser emission on the
concentration of active molecules and scatterers and on the pumping system energy and spatial
properties has been investigated by several works [40, 56, 5, 57–68]. Since the feedback mech-
anism requires return of the radiation to the pumped volume, whereas missed photons cause a
large loss source, the threshold is inversely proportional to the dimension of the active region.
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The saturation of the active medium by the pump and its “bleaching” is desirable, because it
assures a depth increment of the pumped zone. However, in order to achieve an efficient pump-
ing, a gain volume larger than the diffusion volume is to be avoided, leading to the importance
to find the optimal conditions.

Experimentally the detection of the threshold of such kind of light generator is not well
defined as in the case of the conventional laser system. Generally the system appears to be
in the threshold condition when the transition between an emission spectrum dominated by
spontaneous emission and one characterized by the narrowing due to stimulated emission begins
to occur. In analogy with the conventional laser, introduction of a β−factor has been proposed
in order to quantitatively describe the response of the system subjected to a pump pulse [68, 69].
The β-factor is defined as the ratio of the rate of spontaneous emission into the lasing mode to
the total rate of spontaneous emission. It ranges from 0 to the limit value β → 1 (thresholdless
laser), where all possible emission modes coincide to the laser mode. Since the typical emission
of a random laser is non-directional the criterion based on the wavevectors is not applicable and
the only possibility is to consider the spectral overlap of the spontaneous emission spectrum and
the narrow spectrum of a random laser above the threshold. Such definition leads to relatively
large β (β ∼ 0.1).

Another definition of random laser threshold that has been proposed consists in detection of
changes in statistical regimes of the spectrum [70], as it is discussed in the next section.

4.5.6 Random laser modes and fluctuations in emission spectra

A typical random laser emission is intrinsically dominated by the interplay between ran-
domness and non-linearity and many works have been devoted to investigate the physical phe-
nomena that underlie that behavior. In particular the debate has involved the description of light
interactions in terms of interactions between ‘modes’, whose definition is not straightforward
as in the case of a conventional laser system.

In the conventional laser the optical cavity, as the Fabry-Perot cavity, determines those
resonator eigenmodes that characterize the spectral behavior of the emission. The resonant
frequencies among the gain curve being able to spend a long time inside the cavity, via the de-
structive interference of the light exiting out, can experience a large amplification. The random
laser emission (as discussed in Sec. (4.5.2)), in spite of its chaotic behavior, can be described in
terms of modes too; instead of individual high-Q modes of a Fabry-Perot cavity, the emission
spectrum can be viewed as a large number of low-Q modes that spectrally overlap around the
central frequency of the active medium. The output spectrum appears as continuous and with no
presence of individual discrete components, except for some relevant cases that will be shortly
discussed.

In 1999 Cao et al. reported the observation of narrow spikes superimposed on the spectrum
of a powder laser and they interpreted such phenomenon as the first evidence of a coherent
random lasing attributable to a transition between incoherent (dominated by ASE and coherent
feedback [71–73]. In such a picture the spikes are caused by the existence of localized modes
which cause such a phase transition, with k`t ∼ 5 ÷ 14. In case of solid matrices, i.e. scatterers
located in fixed position, the spectral position of these spikes should not change.

Successive experiments have reported the presence of fluctuations and narrow spikes in
a large range of scattering strengths, even in scattering regimes where the condition (IV.14)
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is not satisfied [74–80]. Such experimental evidences have promoted investigations about the
theoretical framework and alternative model, in order to understand the physical origin of these
spikes and their link to the interplay between the random laser modes and the experimental
parameters. For instance, mechanisms that have been proposed are based on involving localized
modes due to random resonators that are induced by the correlation radius of the disorder [81]
or large-scale Bragg-like configurations [82, 83].

As an opposite picture, the existence of narrow spikes in random laser spectra is ascribable
to an open model, according which extended or open modes are interpreted as possible paths
within the diffusive medium [75, 6]. In experiments with ZnO powder dispersed in rhodamine
6G-methanol solution narrow peaks in conditions of k`t ∼ 5800 have been reported [75] Modes
in general are mutually coupled by the competition for the available gain, but, in certain con-
dition rare long paths of long lifetime, the so-called lucky photons, are able to experiment a
very large amplification [84, 85]. Such a mode-uncoupling for these rare modes decreases the
available energy for the other modes, giving rise to narrow spikes in the spectrum [79, 80]. Un-
like as predicted for the case of localized modes, the spikes spectral positions have been found
independent on the arrangement of the scatterers [84]. The principal characteristics of such kind
of modes are summarized below:

EXTENDED MODES

(1) large spatial extension within the sample

(2) no phase information are required (light diffusion scattering regime)

(3) photons are modeled as particles in a random walk

(4) they compete for the available gain

Such model provided a theoretical framework and encouraged the investigation about the
intensity fluctuations in random laser spectra in term of statistical regimes of the emission [78,
86–88].
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Chapter V

Random Laser with Non-Resonant
Feedback

A random laser is a disorder system where a strong non-linear effects due to stimulated
emission is added to the stochastic scattering process. In recent literature the Lévy statistics of
the random laser emission has been reported [1–4] and theoretically predicted [5–7].

This chapter is devoted to describe the original theoretical and experimental work that
concerns random laser investigation.

In the first section of this chapter (Sec. (5.1)), the fundamental concepts of statistics needed
for statistical regimes description are reported.

Then the next two sections are devoted to discuss the theoretical (Sec. (5.2)) and experi-
mental investigation (Sec. (5.3)) on the random laser behavior. In particular, with an extensive
characterization of the statistical regimes of the emission, it is highlighted and discussed the
link that emerges between an improved theoretical model based on the incoherent non-resonant
feedback mechanism and the experimental data. The results reported in this work led to publi-
cation of a paper published in Physical Review A (Physical Review Highlighted article) [8].

Finally, the last part of the chapter (Sec. (5.4)) presents the theoretical and experimen-
tal investigation about the possibility of controlling the deviations, from the pure spontaneous
emission case, in directionality of the random laser emission output. Such a topic is under
preparation.

I worked in the experimental set-up arrangement and I wrote the software of data analysis.
I improved the theoretical model and I wrote the software for numerical model and conducted
the simulations. I am also the corresponding author of the scientific paper.
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5.1 Lévy and Gaussian statistical regimes
5.1.1 Lévy Stable Distributions

The Brownian motion (classical diffusion), which concerns the chaotic motion of small par-
ticles within a medium, is a chaotic phenomenon that has been long since extensively studied
for a long time. It was described by Robert Brown in 1827 and explained by Albert Einstein
and Marian Smoluchowski at the beginning of the XXth-century. It is the typical example of a
process that is able to characterize many dynamical system in every different field. For a parti-
cle in Brownian motion that was in the origin x = 0 at time t = 0, the probability P(x, t) for the
displacement in position x at time t is given by the diffusion equation:

∂P(x, t)
∂t

= D
∂2P(x, t)
∂t2 (V.1)

whose solution is the Gaussian:

P(x, t) =
1

√
4πDt

exp [−x2/4Dt] (V.2)

with a second moment (variance) that linearly grows with time, whatever the characteristic of
the particle:

〈x2(t)〉 = 2Dt (V.3)

The existence of many observable quantities that are the result of the sum of a large number
of random events is a very important problem, strictly connected to the probability theory and
the study of stochastic processes. Let us introduce a fundamental theorem in statistics:

Theorem 1 Central Limit Theorem (CTL): the sum XN of N statistically independent and iden-
tically distributed, each with a well-defined expected value and well-defined variance, whatever
the exact form xn of the distribution that individually underlie them, approaches a Gaussian
distribution with variance linearly proportional to N.

Then the requirements on xn are that the first 〈xn〉 and the second moment 〈xn
2〉 do not diverge.

Such a restriction is easily satisfied and many distributions belong to the domain of attraction of
the Gaussian, leading to an efficient description of a large number of phenomena by the CTL.
Let, in sake of simplicity, 〈xn〉 = 0 and 〈xn

2〉 = σ2:

XN =

N∑
n=1

xn with N → ∞ (V.4)

The probability density function of XN is the following:

p(XN) =
1

√
2πσ2

exp [−x2/2σN
2] (V.5)

where σN
2 = Nσn

2.
Such behavior can be altered if N is not so large or the constraint on xn are not satisfied

[9]. For the former case, corrections to the Gaussian behavior can be introduced by higher-
order mode, since the tail of the distribution is strongly slowed down. However if N → ∞, but
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the variance diverges a non-Gaussian behavior is to be expected. The Cauchy distribution is a
relevant example of such class:

p(x) =
a
π

1
x2 + a2 (V.6)

The problem of finding a limit distribution for a sum of random variables whose second
momentum diverges was primarily worked out since 1920s and 1930s by Paul Lévy and Alek-
sandr Y. Khintchine, leading the the introduction of the Lévy-stable-distributions [10, 11]. The
property of stability involves random variables and their sum:

Definition 1 Stable Distribution: A random variable x with real values has a stable distribution
if: let (x1, x2, . . . , xN) a sequence of independent variables with the same distribution of x, then
∃ aN ∈ R

+ and bN ∈ R such that XN =
∑N

n=1 xn has the same distribution of aN x + bN .

A probability density function (pdf) p(x) of a random variable is completely determined by its
characteristic function φ(k). According the Lévy-Khinchine Representation, the possible form
of all possible stable distribution, characterized by the parameters α,β,µ,σ, is specified by the
logarithm of the characteristic function:

φ(k,α,β,µ,σ) =

∫ +∞

−∞

p(x,α,β,µ,σ) exp [ikx]dx (V.7a)

ln φ(k,α,β,µ,σ) =

iµk − σα|k|α
[
1 − iβ k

|k| tan
(πα

2

)]
for α , 1

iµk − σ |k|
[
1 + iβ k

|k| ln |k|
]

for α = 1
(V.7b)

The parameters are:

• α (∈ (0, 2]) the index of stability or tail index,
describes the rate at which the tail of the distribution tapers off

• β (∈ [−1, 1]) the skewness ,
the measure of the asymmetry

• µ (∈ R) the location parameter

• σ (∈ (0,+∞)) the scale parameter

In general no closed form are known (the problem of estimation of parameters is a relevant
numeric practical problem), with the following three exceptions:

(1) α = 2,β = 0 → Gaussian distribution

(2) α = 1,β = 0 → Cauchy distribution

(3) α = 1/2,β = ±1 → Lévy distribution

Although the term ‘Lévy distribution’ is referred only to specific cases of stable distribution,
often (and also in this text) it is essentially used for labeling a general case of stable distribution
that is not Gaussian.
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Figure V.1: Examples of numerical simulation of a random walk composed by 5000 steps, in the clas-
sical Brownian case (A) and in the Lévy flight- case (B). The walker changes its direction with uniform
probability after each step. On the right the corresponding stable fit for the step lengths (normalized to
the median) are shown.

For 0 < α < 2, the index of stability describes the asymptotic behavior of a class fat-tailed
distributions that approach a inverse power-law trend:

p(x) ∼
1

|x|(1+α) for x→ +∞ (V.8)

The works of Lévy and Khintchine led to a reformulation of the CTL:

Theorem 2 Generalized Central Limit Theorem (GCLT): The sum of independent identically
distributed random variables belongs to domain of attraction of a stable distribution

Hence the Gaussian distribution (α = 2) is a special case of stable distribution with finite
variance.

The fat-tail decaying of the distribution (eq. (V.8)) highlights the presence of extremely
intense events, whose magnitude results stronger than their rarity regarding the weight in the
overall statistics. Moreover, the divergence of the variance invokes scale-invariance properties



93

that are associated to the self-similarity and fractals [12]; a particular class of generalized ran-
dom walk, the Lévy flights, describes stochastic processes characterized by extremely long and
rare jumps that are interposes by clusters of short steps. Respect to the Brownian case , Lévy
flights lead to superdiffusion [13–15] :

〈x2(t)〉 = 2Dt (2/α) for 0 < α < 2 (V.9)

while for α = 2 the normal diffusive behavior holds (eq. (V.3)). Fig. (V.1) shows examples of a
Gaussian random walk (α = 2.0) and a Lévy random walk.

Stable distributions have been extensively studied because can be used to successfully fit
empirical data that originate from phenomena characterized by extreme events and that are
poorly or no longer described by a Gaussian statistics. Hence their applicability covers a large
range of different fields :

• displacement patterns [16–20], animal foraging and exploration paths [21–25] highlight
an innate or evolved capacity in nature to utilize Lévy flights to optimize fundamental
behaviors and strategies

• distribution of human travels, mobility and search strategies [26–31] and epidemics and
diseases spreading [32]

• some aspects of earthquake behavior and occurrence [33]

• materials for superdiffusive transport of light (Lévy glass) [34], behavior of spectral lines
[35, 36], dynamics of turbulent fluids [37]

• study of financial data and price variation in markets [9, 38–41]

Because of the divergence of the variance, experimental data that follows a Lévy statistics are
characterized by a lack of self-averaging of the fluctuations, leading to irreproducibility of the
measurements. Many chaotic systems, when some non-linear mechanisms are superimposed to
a stochastic behavior, show induced ‘pathologies’ that completely rule the dynamics of the
system. Hence a random laser show, where both stochastic and non-linear mechanism are
present, appears as a good candidate to manifest such tendency under suitable conditions.

5.1.2 Statistics of the emission

As discussed in Sec. (4.5.6), the peculiar characteristic of the fluctuations in random laser
is the presence of narrow spikes at random frequencies. With a large number of spectra corre-
sponding to the same experimental parameters and once fixed a narrow bandwidth of observa-
tion, one is able to characterize the system by means of the statistics of the emission.

Therefore the reference parameter becomes the α-index of the stable distribution that fits
the spectral intensity histograms. Since a stable distribution has not in general an explicit form,
in the fitting procedure used in this work and implemented in the Matlab software written for
the data analysis, the parameters are estimated via a regression-type fitting [42, 43].

It is worth to note that in practical cases, both in numerical simulations than in the experi-
mental case, the possible number of measures is of course finite and the procedure, utilized to
label a statistical regime by means of the result of the alpha stable fit, needs a word of caution.
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Since the number of available data is large but finite, the accuracy to resolve the tail of distribu-
tions is limited. In order to characterize the spectral behavior, the fundamental guide is provided
by the spectra themselves: despite a Gaussian statistics exactly holds only for the value α = 2.0,
results that approaches such value are to be labeled as Gaussian if at an inspection the spectra
appear smooth and spikes-less. Such situations are to be referred to spectral behavior where the
emission comes back to a Gaussian regime from a fluctuations regime increasing energy. Hence
it is reasonable to use a certain degree in arbitrariness in discrimination between Gaussian dis-
tribution and a Lévy one in such borderline cases, as well as it is to expected that an a further
improvement of the statistics should lead to an accurate resolution of the tail of the distribution.
Then, with the qualitative help provided by the inspection of the spectra, the assumed operative
procedure consists in determining a reasonable threshold value of α, above which the statistical
regime is to be consider Gaussian.

5.2 Theoretical Model
5.2.1 Gaussian-Lévy statistics in random laser emission

Reference [5] describes the probability distribution of the emitted intensity as (see Appendix
A)):

p(I) = ᾱ
1

I (1+ᾱ) (V.10)

where

ᾱ =
`g

〈`〉
(V.11)

Thus the asymptotic behavior of the distribution has the same heavy tail trend of the equation
(V.8), with a coefficient ᾱ that depends on the dimension (L) and on the properties of the sample,
i.e. the available gain (`g) and the scattering strength (D). As discussed in Sec. (5.1.1), for
0 < ᾱ < 2 the variance 〈I2〉 diverges and one can recognize the asymptotic Lévy behavior.
Then the statistics of the emission can provide a parameter to label the emission behavior, in
such a way to quantitatively characterize the fluctuation regimes. The presence of random
spikes at random frequencies discussed in Sec. (4.5.6) proves the existence of rare events with
large energy. In fact the presence in random laser of Lévy statistics has been reported [1–4]
and theoretically predicted [5–7] and the present work reported aims to provide an extensive
investigation of the statistical regimes of random laser emission and a clear link between a
theoretical model and the experimental data.

For this purpose, at this stage it is worth to raise two important points that concern the gain
in a real medium, respect the picture reported in the probability distribution (A.12):

(1) the total gain provided by the active medium is finite

(2) the available gain is shared by a large number of co-propagating mode

The first and inevitable point (gain saturation) fixes a limit to the amplification that a mode can
experience, setting a cut off to the accessible value for I in equation (A.12). The second one
allows to introduce the hearth of the mechanism that ruled the emission properties and behavior,
once fixed the initial conditions and the characteristics of the medium: the modes coupling in
the competition for the available gain.
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Hence, in the real case, `g is not a constant parameter, but a complicate and unpredictable
function of time and spatial coordinates, as well as the initial condition and the scattering
strength. Moreover, also a general initial spatial inhomogeneity of the energy displacement
on the medium can be exists.

In Sec. (4.5.6) the concept of mode in a random laser system has been introduced and de-
scribed, as well as the detection of modes with long lifetime as possible candidates to emergence
of fluctuations and random spikes in the emission spectrum. Then let us focus the attention on
the diffusive case, where the extended modes are interpreted as possible paths of photons in-
side the medium. In such scattering regime light is pictured as particles that carry a certain
amount of identical photons without considering the effect of wave superpositions. Since the
model does not predict the effects due to interference between modes, the solely mechanism
that allows the coupling between modes is indeed the competition for the available gain. Hence
such coupling can prevent the presence of lucky photons, rare modes with large lifetime that
be able to experience a large amplification, in particular in those cases where the available gain
is shared with a large number of modes. Such a forced averaging mechanism can lead, under
particular circumstances, to inhibits the presence of fluctuations and narrow spikes. A detailed
theoretical and experimental investigation is discussed in the further part of the chapter.

In practical cases an estimation of α making a fit of the tail of the probability distribution
can be too demanding in terms of needed data amount. Thus in this work all data are used in
order to estimate α by means of a Lévy stable fit.

5.2.2 Numerical model

In order to simulate the behavior of an incoherent random laser, a numerical model has been
elaborated and implemented by writing a dedicated C++ software. The simulation is based on
Monte Carlo dynamics and consists in a parallel processing of a large number of co-propagating
extended modes, in order to introduce the gain competition mechanism. The execution proceeds
by a cyclic repetition of three steps, that model physical processes, for each temporal unit dt.

The stochastic behavior of the system is inserted by means of spontaneous emission, that,
with a probability that depends on the local population, creates new modes with random fre-
quency and initial direction, and by diffusion, that randomizes the photons trajectory. Then the
intrinsic causality of such phenomenon plays a fundamental role in triggering the final result of
the system dynamics. No non-radiative decaying processes of the population of the medium are
implemented.

The output emission of each complete simulation, performed with varying the parameters
that characterize the medium, as the diffusive properties and the level and the temporal behavior
of the pumping system.

The goal of the Monte Carlo simulation, that aims to qualitatively reproduce the random
laser system in diffusive regime, and the subsequent statistical analysis is the investigation about
the detection of those parameters that determine the dynamics of the real system.

• The Medium The medium is pictured as a two-dimensional square lattice composed by a
grid of square sites with the same length l and with a side of L = q · l, where q is an integer. In
the simulation l is the spatial length unity and in the successive text it will be omitted.
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The active part of the medium is provided by filling each cell of the lattice with a certain
amount of excited atoms. Such gain medium is modeled by a four-level atomic system, where
a pumping system raises the population to the level |3〉, that has a rapid decay to the level |2〉,
establishing a population inversion with the level |1〉, that in turn rapidly decays to the ground
level |0〉. Since these two rapid decays are considered as instantaneous in the timescale of
temporal steps dt of simulation, the levels |3〉 and |1〉 are always considered unpopulated. Hence
the number of excited atoms injected in a site of coordinates (x, y) are counted as population
inversion N(x, y) and once the decay from the |2〉 via spontaneous or stimulated emission occurs,
the involved atom is instantaneously eliminated from the simulation.

The initial excited state population has a two-dimensional Gaussian shape (see Fig. (V.2));
the origin setting in (x0, y0) = (L/2, L/2) , the population is:

N(x, y) = A exp
[
−

(x − x0)2 + (y − y0)2

2σ2
G

]
(V.12)

where σG = σx = σy is the width of the Gaussian and A a constant assigned to have a prescribed
total energy. The code of the software is able to generate other shapes for the density, but the
Gaussian has been chosen because it manifests some similarities with the distribution created
by absorption of a pumping beam.

Finally the diffusive properties are introduced by the assignment of a probability of scat-
teringper unit time Ps. An estimation the `s of the medium is (1/Ps)l. Considering that the
model does not consider the wave interference effects, with the assumption that l � λ, where λ
is the radiation wavelength, it is straightforward that the condition of diffusive regime (`s � λ)
is satisfied for all value of Ps ≤ 1. In theory no lower bound of Ps is fixed, but corresponding
large value of `s should move the system from a diffusive regime to a quasi-ballistic one or
to a complete ballistic behavior too. Whereas in the quasi-ballistic case the properties of the
emission preserves the random laser ones, in the latter case the only possible mechanism for
large energy is the ASE. If such condition occurs the definition of random laser system does not
more hold, as discussed in Sec. (4.5.3).

• The Spectrum The spectral properties are implemented dividing the frequency window
into 1000 arbitrary channels, labeled from -500 to 500 and centered on the resonance frequency
ω0 of the atomic transition |3〉 → |2〉 (channel 0). One channel (chs) becomes the Units of
measurement for the frequency. The probability for a frequency ω in the simulated atomic
transition has a Lorentzian shape of HWHM w and centered in ω0, given by:

f (ω,ω0,w) =
1
π

1
(ω − ω0)2 + w2 (V.13)

• The Modes As the effect of interference is not consider in the diffusive regime, the modes
are represented by random walkers that propagates,in the bidimensional lattice along four pos-
sible directions.. Since, as discussed in Sec. (4.5.6) an extended mode one of possible paths
of light within the medium, a random walker is a good candidate for a simple, but useful and
efficient, representation. After an unit time of the simulation dt, a walker, according its trajec-
tory, can reach one of the four adjacent neighboring squares. Then walkers move at a speed
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Figure V.2: Example of population distribution on the lattice

v = l · dt with trajectories that remain a straight line as long as a scattering event occurs or they
reach a lattice boundary. The scattering process leads to randomization of the walkers propaga-
tion directions. The walker also carries energy in the form of identical photons with the same
frequency.

• The Frequency Generator Each walker also has its own frequency that is randomly as-
signed in the time of creation by spontaneous emission, to reproduce the stochastic behavior
of such process. The spontaneous emission of a large amount of walkers must spectrally re-
produce the lineshape of the atomic transition. Then, considering the Lorentzian shape of such
transition, the frequency of a walker is drawn from a Cauchy distribution of random number.

In order to generate values according to such distribution, the inverse transform sampling
method is implemented in the C++ code of the numerical simulation. The method allows to
generate random numbers from a distribution given its cumulative distribution function (cdf).
The method descends from the following theorem:

Theorem 3 Probability Integral Transformation: if X is a random variable with cdf FX, then
the random variable Y = FX(X) has a uniform distribution in the interval [0,1].

Hence, once the software has generated a pseudo-random real number ξ ∈ [0, 1] with uniform
probability, a new pseudo-random number ω following a Cauchy distribution can be derived.
Therefore, it is necessary to solve the equation:

F(ω) =
w
π

∫ ω

−∞

1
(η − ω0)2 + w2

dη = ξ (V.14)

where F(ω) is the cdf of the Cauchy distribution (V.13). Then the solution is:

1
π

arctan
(
ω − ω0

w

)
+

1
2

= ξ (V.15)
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from which finally one can derive the random number ω as following:

ω = ω0 + w tan
[
π
(
ξ −

1
2

)]
(V.16)

•The Pumping System Once decided the total amount of population inversion, i.e. the pump-
ing level, the excited atoms are distributed on the medium according the spatial density given
by the (V.12). Expressed in term of photon energy, the total energy Et is the following:

Et = ~ω0

∫
N0(x, y)dxdy (V.17)

where the subscript 0 means that N0(x, y) is the maximum value assigned to the site if all pre-
arranged energy is provided and all decaying processes are inhibited. Then ~ω0 represents a
measurement unit of the energy stored in each atom. In sake of simplicity, in this text the
energy will be expressed in term of number of excited atoms.

From temporal point of view, there are two different ways to provide the energy to the
medium:

(1) impulsive pumping
all energy of the medium is provided in a time instant t = 0 of the simulation, i.e. with a
pumping temporal duration Tp � dt

(2) finite time pumping
The whole amount of energy is supplied during a time interval Tp > dt

In the second case, after each temporal step dt, the population of each site of coordinate
(x, y) is updated according the following rule:

N(x, y, t) −→ N(x, y, t) + Rp(x, y, t)dt (V.18)

where the pumping rate Rp(x, y, t) is given by:

Rp(x, y, t) =

N0(x,y)
Tp

if 0 ≤ t ≤ Tp

0 if t > Tp
(V.19)

where t is the simulation time given in units of dt. The finite pumping mode gives the same
result of the instantaneous one if one sets Tp = 1.

• The Simulation Steps The steps that simulates the different involved processes in the ran-
dom laser dynamics are the following:

(1) Spontaneous Emission
In a lattice cell of coordinate (x, y), during each temporal step of the simulation a sponta-
neous emission event can occur (Fig. (V.3)) with a probability Psp that depends the local
population N(x, y):

Psp = γ0N(x, y)dt (V.20)
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Figure V.3: Spontaneous Emission: During each temporal step a generation of a walker (blue sphere)
can occur in a cell site (in green) with a probability that depends on the local population.

Figure V.4: Diffusion: After each temporal step each walker moves to a neighboring site according its
trajectory. If a scattering event occurs (red cell) the direction of propagation is randomized.

where γ0 is the spontaneous emission rate expressed in dt−1. A number ξ ∈ [0, 1] is drawn
and if it is lower than Psp, the spontaneous emission event occurs. In this case the local
population is decreased by one unit:

N(x, y) −→ N(x, y) − 1 (V.21)

and a new walker is created with the following characteristics:

(i) the initial coordinate (x, y) of the generation site

(ii) a initial direction of the trajectory that is uniformly randomly assigned among one
of the four possible directions

(iii) an initial energy represented by a number n = 1 photons

(iv) a frequency assigned by means of the random value ξ ∈ [0, 1] inserted in the equa-
tion (V.16)

(2) Diffusion
Each walker in the lattice can undergo to a scattering event with the probability Ps as-
signed according the desired diffusive property of the medium (Fig. (V.4)). During the
time unit dt, such occurs if a random number ξ, with uniform distribution in the inter-
val [0,1], results greater than Ps. If a walker is scattered a new direction of trajectory is
drawn, among the four available possibilities, with uniform probability.

Then, whether the scattering event is happened or not, the position of each walker is
updated by moving it in a adjacent neighboring cell according its trajectory. If a walker
reaches a boundary of the emission event occurs (Fig. (V.6)): the walker is destroyed
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and eliminate from the simulation and its energy (number of carried photons) with its
frequency is recorded to the output.

(3) Stimulated Emission
During this step the population of each cell of the lattice and the number of photons
carried by each walker are deterministically update according the following rules, devoted
to simulate the stimulate emission process (Fig. (V.5)). Let ni the number of photons
carried by the ith-walker with frequency ωi and located in the cell of coordinates (x, y):

ni −→ [1 + γ(ωi)N(x, y)dt]ni (V.22a)

N(x, y) −→ [1 − γ(ωi)nidt]N(x, y) (V.22b)

where the stimulated emission coefficient γ depend on the detuning of the walker’s fre-
quency from resonance:

γ(ωi) =
γ0

1 + (ωi/w)2 (V.23)

Figure V.5: Stimulated Emission: during each step the energy carried by the walker is deterministically
amplified by stimulated emission, with depletion of population of the sites crossed (in yellow).

• The Output Emission The walkers that overstep the boundaries of lattice are recorded as
output emission in order to provide two different statistical analysis of the emission: in time and
frequency.

At each time step the energy of those walkers that has flowed out during the time interval dt
are summed to create a temporal behavior of the overall emission as a function of time. Such
resulting time series is binned on a time window of duration Tw, with the intent to simulate a
output light pulse measured by an external photon counter with a finite time response. Then
each point of the final time behavior consists in the sum of a large number of events.

From spectral point of view each the energy of each recorded walker in summed in a output
spectral windows of 1000 channels according its frequency. Such sum is continued for the
overall simulation, recording a total spectrum of emission without considering the exit time of
individual walker.

• Simulation Dynamics and Computational Details From computational point of view the
each step of the simulation consists in a sequential updating of every walker and site popula-
tion according the corresponding process. The parallel processing of a large number of walkers
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ωiωiωiωi

Figure V.6: Output Emission: if a walker reaches a lattice boundary it is destroyed and the its carried
photons are recorded, taking account of the frequency ωi.

is of course very computationally expensive, but it is necessary in order to consider the gain
competition. The number of active walker during a temporal step of the simulation has a large
variability and strongly depends on the evolution of the system and on the choice of experimen-
tal parameters. It can range from a few units, at low pump energy, to many thousands, at the first
instants for high pump energy. In the former case, the probability (V.20) is low and the average
time of generation becomes comparable to the lifetime of the walker within the lattice. In the
latter one, the large population density causes a large amount of spontaneous emission events in
the first instants, leading to an accumulation of co-existing walkers due to average generation
time much smaller than the walker lifetime. Although, such trend relaxes to a smaller genera-
tion rate in a time comparable with exiting time of the oldest walkers, because the amplification
by stimulated emission, that depletes the active medium and wherever decreases Psp.

In order to improve the execution speed of the numerical simulation, the code is written
with the attempt to achieve an optimum management of the memory of the calculator. Such a
execution time represents a very critical point, because, in order to achieve a statistical analysis
a large number of simulation with identical initial parameters has to be performed. In fact in
the corresponding experimental results the statistical analysis demand a large set of recorded
data from emission with the same experimental conditions. As discussed in Sec. (5.1), the
knowledge of the statistics can be solely achieved with collecting a very large set of data.

In the C++ code, only the population of the lattice cells and the spectral and temporal emis-
sion are recorded in arrays during the execution. All informations of each random walker are
allocated by concatenate list, whose dimension is not predetermined and from which the occu-
pied memory by data corresponding to destroyed walker are dynamically deallocated.

In order to guarantee the randomness, the seed of the pseudo-number generator is initialized
to the execution time, in order to avoid the generation of identical sequences of random values
in different simulations.

• Parameters Choice In choice the parameters of the simulation, one have to pay attention to
remain among the range of validity of the model, which requests that the spontaneous emission
lifetime is much greater than dt and the cell size of the lattice are small enough to determine less
of one local event of walker generation. A spatial mapping of the medium that does not satisfy
the latter requirement should lead to a complete isotropy of the diffusion mechanism and to a
lack of validity of the theoretical description. Then the parameters involved in (V.20) have to be
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such that Psp < 1, posing a upper limit to the energy density and in the spontaneous emission
rate.

The total dimension of the sample also poses limits in the Ps; in particular a value of `s

greater than the lattice side L leads a system in a complete ballistic regime, whereas the dimen-
sion of the cell determines the lower limit to the accessible mean free path.
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Figure V.7: On the left it is shown the peak value as a function of the total energy instantaneously
provided to the lattice for `s = 4 and `s = 10, whereas on the right the FWHMs are reported.

Nevertheless such intrinsic limitation, such 2D numerical model is able to reproduce the
behavior of a random laser system in diffusive regime, as shown in the next section.

5.2.3 Numerical results

The chosen parameters for the numerical simulation campaign are the following:

• lattice side of 150 cells

• total population N that ranges from 1.125 × 105 to 2.025 × 107, with corresponding
average number of atoms per cell of 5 and 900 respectively.

• active medium of 2D-Gaussian shape with σG = 40

• Ps = 0.25, 0.05, 0.025, 0.01 (`s = 4, 20, 40, 100)

• spontaneous emission rate γ0 = 10−4 (spontaneous emission lifetime τsp = 104) and
bandwidth of the transition of 50 chs

• simulation total duration Tsim = 3τsp, with an output binning time Tw = 10
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Figure V.8: Typical numerical simulation spectra (left column) at different energy for the lattice with
strongest scattering (`s = 4). On the right column the intensity histograms and the α-stable fitting of the
correspondent energy are shown. The spectra manifest a larger narrowing around the central frequency
of the transition as the energy increases. No random narrow spikes are detectable.
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Figure V.9: Typical numerical simulation spectra (left column) at different energy for the lattice with
weakest scattering (`s = 100). On the right column the intensity histograms and the α-stable fitting of the
correspondent energy are shown. The spectra manifest a larger narrowing around the central frequency of
the transition as the energy increases. For the intermediate energy value the presence of random narrow
spikes are evident.
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Figure V.10: Numerical simulation results: α-index as a function of energy for different scattering
strengths, in the case of instantaneous pumping. The crossover to Gaussian-Lévy regime can be arbitrar-
ily fixed to α=1.8.

With observing the numerical spectra, the simulation accurately reproduces the behavior of
a random laser system in diffusive regime: with increasing the energy the spectrum of emis-
sion changes from a typical broadening of the spontaneous emission to the narrowing around
the central frequency of the transition, due to the stimulated emission process (see (V.13) and
(V.23)).

Therefore, a low-energy emission regime, dominated by the spontaneous emission, and a
high-energy emission one, ruled by stimulated emission and with narrow spectra, are identified.
Moreover, in certain range of intermediate energies a threshold condition can be detected, with
observing when the narrowing due to stimulated emission mechanism begins to emerge. In
Fig. (V.7)-(A) the peak value as a function of energy for two scattering strength (`s = 4 and
`s = 10) are shown; a slope change appears localized around 0.2 · 106 excited atoms for `s = 4
and around 0.5 · 106. As expected from the Letokhov threshold condition (eq. (IV.24)), on
equal `g and sample geometry the more diffusive sample has a lower threshold energy, because
the increased lifetime of the walkers inside the lattice promotes their amplification, leading
to the role played by the spontaneous emission to become dominant. In Fig. (V.7)-(B) the
correspondent FWHMs are reported: for low energy values the FWHM approaches the selected
one 2w = 100 chs for the linewidth of the transition, whereas after threshold the bandwidth
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rapidly approaches ∼ 40 chs.
For each variable initial parameters set (N, Ps,Tp) and leaving the other ones fixed, about

104 simulation have been performed in order to achieve a sufficient statistics, that is performed
with using data recorded in a channel of frequency. The data as collected are used to produce
histograms of intensities and the corresponding stable fit.

In Fig. (V.8) and Fig. (V.9) numerical results are shown for a `s of 4 and 100 respectively
for 3 different level of initial energy provided with an instantaneous pumping) given in num-
ber of excited atoms of: 1.15·105, 4.50·106 and 1.35·107. In the first case, the most diffusive
medium, one can find a narrowing of emission with increasing energy, showing in every case
typical smooth spectra with small fluctuation in the form of a small amount of noise. The right
column reports the corresponding statistics of the emission: the crosses represent the point of
the intensity histogram normalized the the median and the red curve the stable fit. In every
case the α-index calculated approaches the value 2.0 that identifies the Gaussian statistics. No
large fluctuations with presence of narrow spikes are detectable in the whole range of pumping
energy. As justified in Sec. (5.1.2), cases with a value of α lower but very near 2.0 can be
considered as Gaussian.

In Fig. (V.9), where `s = 100, a relevant different behavior emerges: for low energy the
output emission regime shows the spectral property of the spontaneous emission, with smooth
broad spectrum and a Gaussian statistical regimes. Further increasing energy, peaks at random
frequencies appear, causing the corresponding intensity histogram to manifest a fat-tail due to
rare large values that appear in the channel selected for the statistics. The α-index calculated by
the fit becomes much smaller than 2 and the emission regime can be labeled as a Lévy regime.
At high energy a overall narrowing of the spectrum occurs, whereas the narrow random spikes
are no longer detectable and the emission statistic re-becomes Gaussian.

The Fig. (V.10) shows the detailed results of the statistics of the emission, with plotting
α-index as a function of energy for different scattering strengths, in the case of instantaneous
pumping. If one fixed the arbitrary value for the crossover between Gaussian to Lévy statistics,
the lattice with the larger level of scattering does not reach such limit and it remains in the
Gaussian regime for the whole range of provided energies. On the contrary, the other lattices
show a crossover to the Lévy regime, an approach to a bottom limit of α and then, with a further
increment of energy, a return to α = 2.

Hence three different statistical regimes are present with varying energy:

(1) First Gaussian Statistical Regime
The value of α approaches 2 and the spectra are as broad as the bandwidth of the
atomic transition, smooth and without the presence of large fluctuations and random
spikes. The dominant process is the spontaneous emission one.

(2) Lévy Statistical Regime
The process that rules the emission behavior is still the spontaneous emission with a
limited spectral narrowing, but instability effects due to amplification by stimulated
emission become strongly present in the form of fluctuations and presence of narrow
random spikes. The values of α typically are much below 2.
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(3) Second Gaussian Statistical Regime
The value of α approaches 2 again, but the stimulated emission becomes the dominant
mechanism. The spectrum is narrow and the presence of random spikes no longer
detectable.

After the statistical investigation and characterization, the emission spectra can be labeled
as ascribable to a statistical regime; in the Fig. (V.11) another example of emission spectra are
shown for a lattice with an intermediate scattering level. Then fixed the diffusive properties, a
tuning of the statistical regime of the emission is possible with varying energy.

Since, as seen in Fig. (V.7), the threshold value increases with the `s, such similar behavior
for the first statistical crossover means that the Lévy regime should linked to an instability
state experienced by the system in such range of energies. In fact the statistical crossover
occurs in those ranges of energy where the spontaneous emission and the stimulated emission
competes for the role of dominant mechanism. Then the second crossover is then linked to a
state where the stimulated emission becomes the dominant process, leading, by means of the
spectral narrowing to another Gaussian regime.

Moreover it is worth to note that the Lévy region appears deeper and broader for lattice with
a large `s, whereas a decrement of such parameter can lead to the total inhibition of the Lévy
behavior. Such results, in the light of the theoretical picture of extended modes, is discussed in
the following section.

5.2.4 Statistical regimes crossover and gain coupling

It has been noted the clear link that emerge between the scattering and the statistical regime
with varying energy; therefore the next step of theoretical discussion concerns the detection
of a parameter that is able to characterize such behavior. This parameter can be find in the
comparison between the active medium dimension, represented by the width σG = 40 of the
two-dimensional Gaussian distribution of the population on the lattice, and the scattering mean
free path `s:

ζ =
`s

2σG
(V.24)

Then ζ spans from 0.05 (diffusive regime) for strong scattering to 1.25 (quasi-ballistic regime)
for the weakest diffusive medium. The choice to consider the dimension of the active medium
and not of the whole sample has two motivation: the first concerns the too large computational
power requested to explore the behavior of lattice whose dimension are much larger than the
active part. The second reason, in the light of the experimental data, the only parameter that
should act as activator of a statistical regime is the above defined ζ.

As discussed in Sec. (5.2.1), in order to describe the fundamental mechanisms that trig-
ger different system behavior, the attention is focused on the gain coupling between modes .
In numerical simulation, walkers are “coupled” if they share their paths in the spatial-temporal
domain, in such a way to exploits, for amplification purposes, the same population. It is straight-
forward that only the uncoupled modes may reach an anomalously large amplification.
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Figure V.11: Typical numerical simulation spectra (left column) at different energy for the lattice for an
intermediate scattering strength (`s = 40). On the right column the intensity histograms and the α-stable
fitting of the correspondent energy are shown. The label of the statistical regime it is also shown.
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Figure V.12: Temporal behavior of the emission as a function of time, expressed in units of the sponta-
neous emission lifetime τsp. The time of energy releasing by the system decreases as the initial energy
increases, because the stimulated emission. Since the presence of the “lucky photons”, in the Lévy
regime narrow temporal spikes are present.

Figure V.13: Within a weakly scattering medium, a random walker (“lucky photon”, in yellow), that
undergoes anomalous large number of scattering events, has a lifetime much longer than the other walkers
(in blue). If their path is overlapped to the active zone of the lattice (in red), it can experience a large
amplification. In addition to the weak scattering condition, the other constrain for the Lévy regime is on
the available energy amount, that should not be too large. If such a constrain is satisfied, the number of
co-propagating walkers is small, making possible the uncoupling of the “lucky photon” from the gain
competition, for example with a negligible superposition of walkers paths.
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When the provided energy to the lattice is low, whichever the scattering strength, the ampli-
fication that a walker can experience during its lifetime is negligible and the system is the first
Gaussian regime, with smooth spectra solely determined by the spontaneous emission. In such
a case the gain competition mechanism between modes has not significance, since the available
population is too low. From temporal point of view the emission duration is long and ruled by
the spontaneous emission lifetime (see Fig. (V.12), left column).

With increasing energy to an intermediate level, the system approaches the threshold con-
dition and the behavior becomes strongly dependent on ζ. For large or intermediate values of
ζ (weak scattering), rare modes (“lucky photons”) with a long lifetime, due to an anomalously
large number of scattering events and direction of randomized trajectories that delayed the exit
time from the medium, can experience a large amplification. Since the rate generation of new
walker is still relatively low, the “lucky photons”, during their lifetime, can exploits a portion
of active medium that has not still explored by other walkers. Since the amplification is a non-
linear mechanism, small variation in path length should lead to huge difference in the number of
carried photons, as it is simply pictured in the Fig. (V.13). Then an anomalously large amplifica-
tion can be experiment and, once the “lucky photon” finally exits from the lattice, its frequency
assumes an important weight in the output spectrum. Then, since the frequency of every walker
is randomly assigned, the output spectrum shows a narrow spike at a random frequency. The
other “not so lucky” walkers experience only a modest amplification, also because a large part
of available energy is took away by the “lucky photons”. Therefore, since the initial population
is not large enough, a walker can undergo low amplification, unless it becomes uncoupled to
the gain competition. The overall spectrum of the emission present a main part ruled by the
spontaneous emission, with only a moderate narrowing due to the modest walkers average am-
plification, that, because the (V.23), is encouraged for a small detuning from the resonance. In
superposition of this spectral shape, high energetic narrow spikes at random frequencies ap-
pears, highlighting a threshold situation where the stimulated emission puts its signature on the
emission dynamics. In determining the statistical regime, when in a simulation run the fre-
quency value of a random spike falls in the monitored channel, a rare event with a large value is
recorded, contributing to increment the tail of the distribution and the determination of a Lévy
statistical regime.

The characteristic time of emission in the Lévy regime is still long and dominated by the
spontaneous emission, with a presence of temporal spikes due in correspondence of the exit
time of the “lucky photons” (see Fig. (V.12), middle column).

With a further increasing of the energy, the rate of walkers generation increases too. The
large available population causes a decrement of the gain length `g, with a sensible amplification
that can occur also for short paths. In this scenario, the mechanism that prevents the appearance
of “lucky photons” is provided by a strong gain coupling; indeed, because the high probability
of walker generation per unit time in each lattice sites, a large number of walkers appears in
the from the first instant of the simulation. Despite the short `g, many walkers find themselves
in the condition to share the available energy that pick up along their paths with the other
walkers. Hence this gain coupling prevents a situation according which a walker bears away an
anomalous large value of energy, leading the system to a more “democratic” scenario where the
first appeared walkers share the energy and reach a similar level of amplification.

In this case the ruled mechanism is played by the stimulated emission, that drives the system
to the new equilibrium state of the Second Gaussian Regime. Therefore the global output
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Figure V.14: In presence of strong scattering, the walkers share the same available gain (in red) along
their path, leading to a strong gain coupling and then to an average mechanism that acts on the possible
amount of carried energy.

spectrum appears smooth, due the average mechanism in the maximum energy that a walker
can carry, and with a large narrowing around the central frequency of the transition. Then the
statistics of the emission does not reveal large fluctuations and the value of α approach 2.

From temporal point of view, the emission is concentrated among the first instant of the
emission; the large number of created walkers as soon as the simulation run is started causes a
rapid depletion of the energy available, because the amplification by stimulated emission and
the small `g. Therefore the main part of the energy stored in the medium is took away when the
first walkers exit from the lattice. After that a small population is survived on the lattice, causing
a abrupt increment of `g and a decrement in the new walkers generation rate. In such very long
fading phase the emission becomes slow and ruled by the spontaneous emission and not able
to introduce modification on the spectral shape, because the large energy emitted in the first
temporal part of the overall emission. In summary the emission temporal trend is characterized
by a peak of emission of duration comparable with the walker lifetime and a following long tail
with modest energy (see Fig. (V.12), right column).

The last issue that remains to analyze is the lacking of a detectable Lévy regime in the
most diffusive case, as shown in Fig. (V.10) for the lattice with `s=4. In this case only a small
decrement of α is present and with values that are in any case grater than 1.8. Moreover the
inspection of emission spectra does not reveal the presence of a fluctuations regime. In order
to clarify such inhibition of the Lévy regime, let us focus the attention of the conditions that
cause and stoke the instability behavior that occurs in the range of energies where the crossovers
between the Gaussian and Lévy regime occurs. Indeed, one can considers the random laser in
diffusive regimes the laser-like source where the threshold condition involves a large range of
energy and large instability condition. With increasing ζ the entrance in the Lévy regime is at
larger energies, because the threshold condition depends on the scattering strength, since the
rapid exit time in weak scattering regime is a large loss factor. However for ζ ∼ 1 the Lévy
regime is “deeper”, i.e. it is characterized by very low value of α, and “broader”, i.e. the return
to values of α ∼ 2 occurs to large value of energy (Fig. (V.10)). The former is due to the fact
that walkers that have a long lifetime are rare, since the small probability of scattering, and then
become the rare energetic events that determine the fat tail of the intensity statistics. The latter
is originated by the large loss factor due to the short average walker lifetime, that causes the
condition “gain that overcomes losses” to occur at very large energy, whereby the stimulated
emission finally prevails on the spontaneous emission in determining the spectrum shape. Then,
as ζ decreases, the value of threshold energy, above which the stimulated emission begins to
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compete with the stimulated emission, shifts towards lower energy, as well as the “closure” of
the Lévy regime band. Hence it is to be expected a gradual fading of the range of energies
involved in the Lévy regime towards a limit condition of total suppression of such statistical
behavior. Therefore, on equal `g, in a strong scattering medium the longer lifetime allows to
easily experience amplification meanwhile the gain coupling becomes promoted (Fig. (V.14)).

Such a scenario can also be described in the temporal domain by means of the comparison of
two characteristic times: the mean scattering time τs = dt/Ps and the gain time, i.e. the ballistic
time span Tg required to cross the active part of the medium (with estimated linear dimension
∼ 2σG ). The former is 100 in the case of the weakest scattering medium and 4 in the strongest
one, whereas the latter is always 80. The Lévy statistics emergence appears favored if τs ≥ Tg.
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Figure V.15: Numerical simulation results: α-index as a function of energy for different scattering
strengths, in the case of finite time pumping (Tp = τsp = 103). For the most diffusive sample (`s = 4, red
triangles)the statistical regime remains Gaussian for the whole range of provided energies. In the weak
scattering medium (`s = 1000, blue crosses) a deep Lévy regime is instead present.

5.2.5 Finite time pumping

A temporal duration of the pumping comparable with the spontaneous emission lifetime
has been proposed as a condition whereby an average mechanism should act between modes,
leading to an inhibition of random spikes in spectrum. Hence the experimental parameters, as
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well the numerical model, that have been used a presence of a pumping system with a very
small temporal duration. A typical example makes use of a pump pulse about ∼25 ps long and
active media whose spontaneous emission lifetime has a temporal duration about some ns. In
such a condition, the pumping time can be approximated as instantaneous, because the whole
amount of energy is provided to the medium in a time much short than the response time of the
system.

Since, as it is shown in the Sec. (5.3), the presence of narrow spikes are detectable also when
the above condition is not satisfied, from theoretical point of view it should be worth to explore
such dynamics by means of numerical simulations where Tp ∼ τsp.

Then another set of simulations was performed in the cases of `s=100 and 4 and Tp = τsp =

103; because the increment on computational time required for the finite time pumping, the
spontaneous emission rate is raised from 10−4 to 10−3. Since, in order to guarantee the recording
of complete spectra, the output emission requests an integration time that is a multiple of τsp.
Therefore such an increment on the spontaneous emission rate allows to reduce of one order the
total time of each simulation run. On the other hand the downside consists in the impossibility
to explore a energy range as large as in the case of instantaneous pumping, because the constrain
given by the (V.20). However, the energy range investigated gives results complete enough to
clarify the possible role of the pumping time on the spectrum characteristics.

The results are showed in Fig. (V.15): in the less diffusive lattice a Lévy regime zone is
present in a large range of energies, whereas in the opposite case the value of α approaches 2
whatever the energy. Therefore the time duration of the pumping mechanism has not an impor-
tant influence in determining the statistical regime of the emission; if the conditions described
by the parameter ζ hold and the total energy stored in the medium has the appropriate value, the
Lévy statistical regime appears.

5.3 Experimental results
5.3.1 Experimental set-up and samples

The experimental sample consists in a solution of 1mM concentration of Rhodamine 6G dye
dissolved in methanol, as active medium, with different concentration of a TiO2 nanopowder,
whose concentration was varied from 0.1 to 3 mg/cm3, to create disorder.

In order to estimate the scattering mean free paths that correspond to the different concentra-
tion, independent sets of measurement of attenuation according the Lambert-Beer law, at very
low scatterers concentrations (0.003 to 0.03 mg/cm3), have been performed. A He-Ne laser has
been used to produce the ballistic beam, since the wavelength (633 nm) is rather near to the
peak of the Rhodamine 6G dye fluorescence. Then an extrapolation at higher concentrations
has been calculated. Of course an estimation of `s and `t can be numerically calculated by the
Mie theory, with the approximation of identical spherical particles. However, since for particles
with a size parameter around the unity, as the TiO2 particles have, the scattering efficiency is
strongly dependent on the particle radius, whose value is difficult to predict and measure. The
transport free paths `t of the sample used in this work are estimate to range among 0.13 to 4
mm. A modification of such values as the wavelength of the emission changes is to expected,
but the measurement described above however give a reasonable estimation of the `s. Since,
considering an emission peak wavelength about 560 nm, the corresponding values of the pa-
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Figure V.16: Numerical calculation of the scattering efficiency Qs and the asymmetry factor g, with
spherical particles with refractive index of 2.58 (TiO2) dispersed in water and for light with wavelength
of 633 nm.

rameter k`s for the used samples do not fall below ∼ 103, the scattering condition of diffusive
regime is always satisfied during this experiment.

In order to prevent inhomogeneity and clustering of TiO2 nanopowder, samples are sub-
jected to ultrasonic bath before and shuffled during the measurement.

The pumping system is provided by a monomode second harmonic Nd:YAG laser (λ= 532
nm) with a 10 Hz repetition rate and a time duration of 4 ns, a time comparable to the spon-
taneous emission decay time of Rhodamine 6G. The pump beam is focused on a spot with
diameter of 30 µm and with an energy up to 360 µJ. The cuvette that contains the liquid sample
is cylindric, but, since the spot diameter is much larger than the curvature radius of the box (0.5
cm), the external side of the active medium can be considered as a flat plane.

The shot-to-shot emission from the sample is collected by an Ocean Optics Spectrometer
with a spectral resolution of 0.3 nm. An optical fiber collects the emitted radiation from a tilted
angle of 15◦ with respect the pump beam direction.

The system of data acquisition is automatic, with the spectrometer that is trigger by a signal
received from the Nd:YAG control unit. The pump beam energy is tuned by means of the rota-
tion of a polarizer. This rotation is performed during the measurement by a stepper motor that
rotates in the two different direction covering the selectable angle at a selectable velocity. The
stepper motor is driven by an electronic circuit connected by the parallel port of a calculator
and controlled by an expressly written C++ software. As a further experimental condition dur-
ing the measurement the conditions of monomode laser pulse excitation are checked, in order to
assure a smooth temporal shape. This issue is also important in order to discriminate the intrin-
sic emission statistics of the random laser emission from strong temporal laser pulse intensity
fluctuations that are present in multimode pump laser.

As shown in Fig. (V.17) typical experimental spectra are shown for three pump energy
level and for two different samples. In the diffusive one (right column), the spectra manifest
a progressive narrowing as the energy increase, without a detectability of large fluctuations
or the presence of random spikes. As the scattering concentration decreases (left column),
near random laser threshold narrow spikes at random frequencies emerges in the spectra. If
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Figure V.17: Experimental spectra at different energies for a sample with different diffusive properties.
Only the sample with weaker scatterers concentration shows a fluctuations regime.
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Figure V.18: Experimental results of statistics of the emission spectra: α-index as a function of energy
for different scattering strengths. The crossover to Gaussian-Lévy regime can be arbitrarily fixed to
α=1.8.

the spikes are isolated from each others, their bandwidth approaches the finite resolution of
the spectrometer (0.3 nm), whereas in general cases the spikes are close in frequency and not
singularly resolved, with appearance of broadening. Then, for high pump energy, the spectrum
appears narrowing and the presence of spikes not more detectable. Therefore the behavior
appears similar to that of the numerical simulation.

A intensive measurement campaign and a successive statistical analysis are needed in order
to achieve a detailed comparison with the numerical simulation and then a theoretical explana-
tion of the phenomenon. The automatic system of pumping and shot-to-shot spectra acquiring
made the former procedure possible, whereas the expressly written Matlab® code for data anal-
ysis performs the statistical analysis.

For each shot 6 values of the emitted spectrum, corresponding to different frequencies
spaced by 0.5 nm within a narrow bandwidth around the peak, are collected for a large num-
ber of consecutive spectra, up to 2000, for each pumping energy interval. Great care has been
used to monitor the shot-by-shot pump pulse energy to measure the emission characteristics as
a function of pump energy limited to a small energy interval with an a posteriori analysis in
order to eliminate the fluctuations of the laser pump pulse as spurious causes of fluctuations in
the random laser emission intensity. The energy interval is variable to 1 to 15 µJ to follow the
critical behavior of the statistical fluctuations characteristics versus pump pulse energy.
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5.3.2 Results and discussion

The Fig. (V.18) shows the experimental results concerning the α as a function of energy for
three scattering strength. In a similar way to the numerical case showed in Fig. (V.10), three
different scattering regimes are detectable.

In Fig. (V.19) different spectra at different statistical regimes are shown for the sample with
intermediate diffusive properties. At low energy, in all cases, the output spectra are smooth and
reproduce the shape of the fluorescence of the Rhodamine 6G (First Gaussian Regime). As
the energy increased, beside a partial narrowing of the spectrum, in the sample with weakest
scattering the presence of fluctuations and random spikes leads the system in a Lévy Regime.
For high energy the spectrum becomes narrow and, in all cases but one of weakest scattering,
the condition of absence of random narrow spikes (Second Gaussian Regime). As it is observed
in the theoretical case, the width of the energy range of the Lévy regime, as well as the its depth,
fades as the scatterer concentration increases. In the sample with strongest scattering (`s =0.4
mm) the Lévy regime is not present. The sample with lowest scatterers concentration (`s=3.9
mm) does not show a return to a Gaussian regime at the range of the highest used pump energy;
however an increment of α as a function of energy is evident after 20 µJ. Then an stabilization
in the Second Gaussian regime is then expected for larger energies, that have not been explored
in order to avoid sample damage.

Moreover, it is worth to note that, since the pump pulse temporal duration is of the same
order to that of the spontaneous emission lifetime, the finite time pumping, also in the exper-
imental case, is not able to trigger average mechanisms that lead to inhibition of the random
narrow spikes.

Therefore the experimental results allow a direct comparison with the numerical simulation,
reproducing the identical behavior, and then a clear link from theory with experiment by means
of an extended modes model.

In the numerical case, the parameter ζ has been used to qualitatively describe and frame the
statistical behavior expected. In the experimental case, respect to the mean free path measure-
ment, the estimation of the active medium dimension is even more difficult. As some works
have reported [44, 45], the geometry of active part of the medium especially depends on two
factors:

(1) the pump photons scattering, that causes an enlargement of the active medium in the
transversal direction respect the direction of the beam, leading of a generation of active
molecules populations also outside the zone crossed by the ballistic beam.

(2) the absorption saturation of the dye, that causes an increment of the penetration depth of
the pump beam

Then the active medium geometry is expected to change both with the scattering strength and
with the pump energy. However, a qualitative estimation of ζexp is possible with considering the
ratio between `s and the focus beam diameter (∼ 30µm). Again the Lévy regime tends to be
promoted for ζexp � 1 and inhibited as ζexp decreases.

As regards the role of the dimension of the whole sample of the system behavior, whereas
in the numerical simulations such a parameter has not been investigated because computational
difficulties, in the experiment it seems to not interpret a critical role. Moreover, in our experi-
ment the output emission is directly collected from the excited medium surface and photons that
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Figure V.19: Experimental spectra at different energies for a sample with intermediate diffusive proper-
ties. On the left column typical spectra are shown, whereas in the right column are present the intensity
histogram and the corresponding α-stable fit for the energy range around the reported value.
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propagates far away from such a region to the non-active part of the sample, whose extension is
much larger, can be considered lost or with negligible effects on the overall dynamics.

The results can be summarized as it follows:

(1) Three statistical regime of the random laser spectra have been reported both in nu-
merical simulations, based on extended mode model without considering interference
effects, and in experimental data, in disordered active samples in diffusive regime

(2) In the general case and as the energy increases, the statistical regime passes from a
Gaussian regime, characterized by smooth and broad spectra, to a Lévy regime, with
presence of fluctuations and narrow spikes at random frequencies, to a final Gaussian
regime again, with smooth and narrow spectra. The statistical parameter α is used to
label and describe the spectral behavior.

(3) The first Gaussian regime is dominated by spontaneous emission, whereas the second
one by the stimulated emission. The Lévy regime is detectable in energy range around
the random laser threshold.

(4) The theoretical model, corroborated by the emerged link between the theory and
experiment, describes the system dynamics in terms of extended mode with a non-
resonant feedback mechanism in competition for the available gain. A “mode” is to
be interpreted as a possible path of light inside the sample.

(5) The mode competition acts as an average mechanism on the intensity of the mode.
Such a mechanism prevails for the sample with strong scattering whatever the stored
energy in the active medium and no Lévy regime becomes detectable.

(6) In the energy range around the random laser threshold, in a weak scattering media
few modes can become uncoupled from mode competition and experience a large
amplification. The random assignment of their initial frequency, by means of the
intrinsic causality of the spontaneous emission process, leads to presence of narrow
spikes at random frequency in the spectrum.

(7) In order to qualitatively characterize and predict the system behavior with varying the
energy, the comparison between the dimension of the active part of the medium and
scattering mean free path is used as parameter.

5.4 Controlling Random Laser Directionality
5.4.1 Directionality of the random laser emission

Among characteristics that make the random laser system different from the conventional
laser one, the principal can perhaps be the directionality degree. Whereas in a laser the output
power is concentrated in a very small solid angle, a random laser emission, because the chaotic
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nature of light propagation inside the disordered medium, generally is spatially isotropic, quite
similar to the spontaneous emission from a diffusive surface.

The ideal surface of a disordered material system that emits radiation by spontaneous emis-
sion is the Lambertian surface. Such an emitter was introduced by Lambert in the XVIIth-
century as property of an ideal perfect diffusely reflecting surface [46]. The radiant intensity
of a radiant emitting surface follows the Lambert’s cosine law, which stats that the intensity
observed from an ideal diffusely reflecting or irradiating surface is directly proportional to the
cosine of the angle θ between the observer’s line of sight and the normal to the surface. From
this law it follows that the radiance, i.e. the power emitted per unit solid angle and per unit of
area that falls within a given solid angle around a specified direction, remains the same, what-
ever the angle of sight. Indeed, although the emitted power from a given area element is reduced
by the cosine of the emission angle, the observed cross section area is decreased by the same
amount.

Then, in a general case the emitted light from the surface of a disordered medium approaches
the limit features of the Lambertian surface, unless mechanisms bounded to random laser modes
and stimulated emission process divert such behavior.

In literature, the works that have been reported investigations that concern the directionality
of the random laser emission are few. In 2006 an experimental measurement of variation of
directionality degree associated to different scattering strengths has been reported in a system
of TiO2 nanoparticles in a Rhodamine 640 dye dissolved in diethylene glycol [47]. The mea-
surement of the angular distribution of output emission intensity covers 6° in the backward
direction around the direction of the pump beam and it evidences an increment in directionality
for samples with weaker scattering properties. In 2008 directionality in random laser emission
has also been reported in dye doped organic-inorganic Bragg grating structure with introduced
disorder [48]. More recently, from theoretical point of view, an optimization procedure of the
pump profile to select extended modes with different tuning in weak scattering systems [49].

Concerning the present work and in the light of the theoretical and experimental investiga-
tion presented in the previous sections, the raised question is: does the dynamics of extended
modes within an active medium trigger, under certain conditions, a higher degree of direction-
ality of the output emission? If the answer is affirmative, is it possible to tune the experimental
parameters in order to magnify such an effect?

In the previous part of this chapter it has been discussed the dynamics of the random laser
system behavior in the light of a theoretical model based on extended modes and non-resonant
feedback. As a result, both experimental and theoretical, the Lévy statistical regime appears to
be linked to the presence of rare extended modes with large energy. Such modes reveals their
existence by means of the weight that their energy has in the overall spectrum, that leads to
the detection of narrow random spikes. Then, one can expect that such a large weight is also
present in other characteristics of the emission, as the directionality. Therefore the starting point
of investigation consists in two hypotheses:

(1) a deviation in directionality respect the usual diffusive emitting surface can be de-
tected in the Lévy statistical regime of the random laser emission, because the pres-
ence of few modes with large intensity
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Figure V.20: Example of an asymmetric population distribution on the lattice

Figure V.21: Example of an asymmetric population distribution on a lattice. The maximum of population
density is located near a side of the medium.

(2) the directionality can be tuned within the Lévy regime by means of the spatial con-
striction on the paths of these modes

The work presented in the next sections is devoted to a detailed experimental and theoretical
characterization of the directionality with varying the statistical regime and to bring out the
possibility of control the behavior of the emission by means of an external optical parameter,
recognized in the pump energy, given the optical features of the sample. The followed strategy
involves the arrangement of a samples with spatially asymmetric active medium in order to
provide a mode selector, by forcing the “lucky photons” along a preferential direction.

5.4.2 Numerical simulation and results

The numerical simulation model is based on one discussed in Sec. (5.2.2), with modifica-
tions that concern the profile of the population displaced on the lattice and the output emission
recording. The former consists in an active medium of e 2D Gaussian shape with different
widths and centered in the center of a side of the lattice:

N(x, y) = A exp
[
−

(x − x0)2

2σ2
x
−

(y − y0)2

2σ2
y

]
(V.25)

where the center of the two-dimensional Gaussian, whose only an half part effectively lies in the
square lattice of side L, (x0, y0) = (0, L/2) and with σx � σy. Then the appearance of the active
medium, whose example is reported in Fig. (V.20), shows a distribution that has a maximum in
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Figure V.22: Example of a greyscale image of a total initial population distribution on the lattice with
dimensions 200x200 cells. The number of excited atoms for each cell follows a 2D Gaussian distribution
with σx = 150 and σy = 10. Those walkers that leave the medium from the right edge are collected in
the Y-Emission, while onos from the bottom edge in the X-Emission.

correspondence of a side of the sample and decreases with different trend along the coordinate
x and y. Such a representation aims to qualitatively reproduce the population distribution that
has been created by a pumping beam with a small focal spot, then with a small extension along
the transversal direction, and a large penetration depth.

Concerning the emission recording, with reference of Fig. (V.22), the output emission is
differently recorded from the side near the maximum population density (Y-Emission) and in a
one of the perpendicular sides (X-Emission). The chosen parameters are: L = 200, σx = 150,
σy = 10, x0 = 0, y0 = 100. The Y-Emission represents output emission collected within a small
angle around the backward direction of the pump beam, whereas the X-Emission simulate the
emission collected at large angle.

As for the numerical simulations described in Sec. (5.2), the comparison between the scat-
tering mean free path `s and the dimension of the active medium triggers different dynamics of
the systems with varying energy.

Fixed the variable parameters, i.e. the initial total energy and `s, the directionality Dsim is
estimated as the average of the ratio Y-Emission/X-Emission upon a set of simulation runs, with
identical initial conditions.

In the choice of parameters the constrain are similar to that discussed in the Sec. (5.2.2),
whereas the values of `s are selected in order for describe scenarios where such length is much
smaller or comparable to the dimensions of the active medium.

The chosen parameters for this numerical simulation campaign are the following:

• lattice side length L of 200 cells
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• total population N that ranges from 2 × 105 to 12 × 107, with corresponding average
number of atoms per cell of 5 and 3000 respectively.

• active medium of 2D-Gaussian shape with σx = 150 and σy = 10 and peak located in
(x0, y0)=(0,100)

• Ps = 1, 0.1, 0.02, 0.01 (`s = 1, 10, 50, 100)

• spontaneous emission rate γ0 = 10−5 (spontaneous emission lifetime τsp = 105) and
bandwidth of the transition of 50 chs

• simulation total duration Tsim = 3τsp, with an output binning time Tw = 10

• instantaneous pumping (Tp = 1)

In order to highlight the divergence from the pure spontaneous emission case, as the Lam-
bertian surface in the real case, one needs an ideal isotropic sample as comparison. In the
numerical case such a sample is explicated by the pure spontaneous emission case for various
scattering strength. Then simulation runs have been performed for each `s, with the constrain
of inhibition of the stimulated emission process, leading to different value DS P

sim, calculated as
(Y-Emission)/(X-Emission). The values are reported in Table (V.1). Lacking the stimulated

Table V.1: Pure Spontaneous Emission Case

`s DS P
sim

1 2.37
10 2.06
50 1.40

100 1.19

emission process, the value of DS P
sim does not depend on the energy, but only by the scattering

strength. A much diffusive sample easily leads to a complete randomization of the walkers
direction, giving to each edge of the medium the same probability as exit boundary if the start-
ing point of the propagation should be the center of the lattice. In the medium used for the
simulation the peak of population density, and then the origin of the main part of generated
walker (see the equation (V.20)), is located close a side of the lattice, i.e. the edge from which
the Y-Emission is collected. Therefore, such a side becomes the preferential boundary of exit,
because a small amount of steps are enough for the largest number of the walkers to approach
it. On the contrary, a decrement of DS P

sim is expected for weakly scattering medium. When the
scattering regime becomes quasi-ballistic, many walkers escape from the lattice without un-
dergo scattering event. If this case the side of exit is selected by the initial direction, provided
to the walker, with uniform probability among the four possible directions, by the process of
spontaneous emission. Then, because the structure of the numerical model, DS P

sim → 1 as `s

increases.
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Figure V.23: Numerical simulation results: α-index as a function of energy for different scattering
strengths, in the case of instantaneous pumping. As in the case of symmetric active medium, the Lévy
region tends to fade as the scattering mean free path decreases.

By re-activation of the stimulated emission, the system undergo to the similar dynamics
presented in Sec. (5.2.3). The value of directionality, for each `s, initial energy E and as average
among a set of simulation about ∼ 102 runs, is calculated as normalized to the pure spontaneous
emission case:

Dsim(`s, E) =
(Y-Emission)
(X-Emission)

×
(
DS P

sim(`s)
)−1 (V.26)

In Fig. (V.23) α-index as a function of the pumping energy is shown. Since the particular
geometry of the active part of the medium, a Lévy statistical regime is present whatever the
scattering strength. However, the fading trend as `s decreases is confirmed, insomuch as in the
most diffusive case (`s = 1) the Lévy zone covers a small energy range and with α values much
greater than in other case. Such a case it is also the solely case in which the approaching to the
Second Gaussian regime becomes complete within the energy r35ange explored. The behavior
at high energy of the other values of `s allows to consider a complete approaching of the Second
Gaussian regime at higher unexplored energies.

Fig. (V.24) reports the value of directionality defined by the (V.26) and the behavior of such
parameter can be correlated to the statistical regimes as the energy changes.

Concerning the most diffusive medium (`s = 1), whereas the α is close to 2, but a small
energy range around the threshold, the directionality behavior remains identical to the case of
pure spontaneous emission (Dsim ' 1). In the small range of fluctuations there are many modes
weakly coupled to the gain competition, with a small presence of “lucky photons”. Whatever
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Figure V.24: Smoothing of the collected data.

the energy, whether or not the stimulated emission prevails on the spontaneous emission, the
strong scattering leads to a randomization of the walker propagation, causing the directionality
locked to the pure spontaneous case.

The situation begins to change if `s becomes 10; α falls significantly below 2 for a large
range of energy, whileDsim deviates for a small amount respect 2. Hence in the Lévy region of
this system the spatial asymmetry of the active medium acts as a weak selector for the prefer-
ential direction of the “lucky photons”. competition among other modes. In it is worth to note
the directionality begins to grow starting from energies (∼ 3.5 × 107) larger than the minimum
of α (∼ 1.5× 107), i.e. when the “lucky photons” are not yet completely uncoupled by the gain

The behavior appears more evident in the case of weak scattering media (`s = 50 and `s =

100). For low values of energy (less than 2× 107) Fig. (V.23) shows a Gaussian behavior, while
in Fig. (V.24) the increment of directionality remains modest (below ∼ 1.2). When the energy
further increases (up to ∼ 4 × 107), α rapidly drops to its lowest values and Dsim slowly, but
pointedly grows. This situation marks a break in the spatial emission, due to the amplification
mechanism of the stimulated emission and the asymmetry of the population distribution. Since
the “lucky photons” are still few, in this energy range α significantly deviates from 2, because
these rare events are localized in the tail of the probability distribution, and their contribute have
still a small weight in determining the Dsim, that is averaged upon many emissions. Increasing
further the pump energy, because the spatial asymmetry, the possibility for the “lucky photons”
to escape from the lattice after experiencing a large gain due to preferential path is increased.
The also Dsim reaches its peak, with a large amount of energy carried away by those walkers
that have a direction such that to cross the the largest population density. The statistics of the
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Figure V.25: Typical emission spectra for the lattice with `s = 100 and different energies: 1.4 × 107 (a),
5.0 × 107 (b), 0.9 × 108 (c) and 1.2 × 108 (d). The dashed blue line and the red continuous line are the
spectrum collected from the Y-edge and X-edge respectively.



127

Figure V.26: Diagram of the experimental set-up. The pump beam is focalized onto the sample by a
lens, producing o focal spot diameter about 30 µm. The signal is collected by an optical fiber head that
forms a selectable angle θ centered on the focal spot.

emission still is in the Lévy regime, but α has larger value, because the random spikes in the
spectrum are more numerous. Finally, increasing the energy of the lattice towards the largest
possible values, α increases to 2, whereas the mode coupling causes a decrement of Dsim. A
final approach for the former parameter to 2 and to 1 for the latter is predictable, even if not
investigable because the time needed for computation.

Fig. (V.25) shows typical spectra with varying energy for the sample with `s = 100. The
dashed blue spectra are collected from the Y-edge and the continuous red ones from the X-edge.
The spectra in the Fig. (V.25)-(a) are smooth and the directionality weakly differs from the pure
spontaneous emission case. In (b), the Lévy regime is near its peak and the directionality is
larger. However, the spikes are distributed in both spectra; these “lucky photons” may be the
modes that undergo an anomalously large number of scattering events, leading to trajectory
direction and then the side of exit completely randomized. A prevalence of the Y-emission
is attributable to the spatial asymmetry. In (c), α is lower and the directionality reaches its
peak. The X-emission appears to weaken and the main part of the emission concentrated in
the Y-emission peaks, originated by walkers that have started their propagation deep inside the
medium and have experienced a large gain during a scattering less propagation towards the
Y-edge. Finally, in (d), the gain competition is more important and the emission merges in a
central Y-emission “bulge”, inhibiting the presence of narrow spikes and leading to a decrement
ofDsim.

5.4.3 Experimental investigation

In the experimental setup, the sample have identical characteristic of ones described in
Sec. (5.3.2).

As discussed in Sec. (5.3.2), no detailed experimental image of the gain medium has been
performed, although the attempt to ensure a small as possible focal spot of the pump beam has
been carefully done, in order to induce an asymmetry in the gain medium. A lens provides a
focal spot of the pump beam of diameter of 30 µm on the surface of the random laser medium,
contained in a transparent cylindrical cuvette. The signal is collected by an optical fiber, whose
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Figure V.27: Angular distribution of the random laser emission for various pump energy values. In
the case (a), the strongest diffusive sample is shown, while in (b) the weakest one. For comparison the
angular emission profile for an ideal Lambertian source is also reported (green continuous line), corrected
for Fresnel reflections. The Lambertian emission curve and the experimental data are normalized at the
corresponding 15°emission.

head can rotate to a selectable angle around the direction of the pump beam, and sent to a
photodiode, in order to measure the radiation intensity. The angles have been measured by
means of a red laser diode bounded to the head of the fiber and that creates a luminous spot
in the experimental table, where the angles of measurement (30°, 45°, 60°and 75°) have been
drawn. The resolution of angle of observation is given by the acceptance angle of the fiber and
it is about 2°.

Fig. (V.27) shows measurement of the random laser emission for different observation an-
gles and the angular profile of the ideal Lambertial curve for comparison. Such a profile has
been also corrected for Fresnel reflection losses, due to the interfaces methanol-glasses and
glass-air. Both the measurements and the Lambertian profile has been normalized to the cor-
responding 15°value. In Fig. (V.27)-(a) the results for the most diffusive medium are shown;
the angular profile differs from the ideal Lambertian curve, but in such a way independent on
pump energy. Hence in this medium, despite the contribute of stimulated emission, the emission
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Figure V.28: Experimental results of directionality normalized to the corresponding spontaneous emis-
sion value. Same experimental bars are also reported in order to show the measurement accuracy,
whereas the purple error bars represent DS P

exp (used for Dexp normalization), measured in the pure spon-
taneous emission regime at very low energy. The directionality appreciably differs from 1 only for the
weakly scattering samples.

maintains the same degree of directionality. In the weakly scattering medium (case (b)), when
the pump energy increases (115 µJ and 300 µJ), the fraction of the emission intensity released
at large angles decreases, leading to a larger amount of energy radiated at small angles.

In Fig. (V.28) the directionalityDexp measured as a function of energy for four samples with
different `s are shown. In analogy with the (V.26):

Dexp(`s, E) =
(15°-Emission)
(45°-Emission)

×
(
DS P

exp(`s)
)−1 (V.27)

where DS P
exp are defined as the (15°-Emission) ratio at the lowest measurable pump energies,

i.e. when the dye de-excites only by spontaneous emission. In Fig. (V.29) α as a function of
energy is reported again in order to allow to follow the directionality evolution with one of the
statistical emission regimes.

In the cases of strong scattering, as Fig. (V.27) has suggested, the value of Dexp remains
independent on pump energy and close to 1, whereas α remains close to 2 (Gaussian regime).
For weakly scattering samples, Fig. (V.28) and Fig. (V.29) show thatDexp grows after the onset
of the statistical Lévy regime. The point that strongly deviates from the Lambertian profile in
Fig. (V.27) both lies in the Lévy statistical regime. For the sample with `s = 1.3, the direction-
ality decreases when the system falls in the second Gaussian regime.

5.4.4 Experimental Results and Directionality Regimes

Both experimental data and numerical simulation show a clear link between the direction-
ality and the Lévy statistical regime of the emission. Secondly, in both cases the peak of di-
rectionality appears shifted in energy respect the Lévy one. The enhancement in directionality
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Figure V.29: Experimental results of statistics of the emission spectra: α-index as a function of energy
for different scattering strengths.

Figure V.30: Comparison between the trend of α (dashed blue) and Dexp (red) for the sample with
`s=1.3 mm. Data are smoothed to highlight the results. Above qualitative extensions of the different
regimes are also shown: 1) First Gaussian Regime (α ∼ 2 Dexp ∼ 1), 2) Deep Lévy Regime (α below 2
and growingDexp), 3) Directional Regime (α below 2 and large values ofDexp) and 4) Second Gaussian
Regime (α ∼ 2Dexp ∼ 1).



131

is not straightforwardly triggered by the emergence of the Lévy regime, that can be considered
sub-divided in two Lévy sub-regimes.

In Fig. (V.30) is shown the smoothed trend of α and Dexp for `s = 1.3 mm. The peak of α
is reached for ∼ 50 µJ, whereas the Dexp approaches its maximum value for ∼ 170 µJ. For the
energy range whereDexp reaches its largest values, the Lévy regime is strongly reduced respect
the peak value, but substantially still different from the Gaussian regime value of 2. A return of
α to 2 andDexp to 2 is expected.

In summary by increasing energy the spectral and directional characterization of the emis-
sion for a weakly scattering medium can be described as following regimes:

(1) First Gaussian Regime
Spectra are smooth and emission is dominated by spontaneous emission (α close to
2). Energy is radiated outside the sample with an angular distribution similar to that
of an ideal Lambertian source. This energy range is the narrowest one because a
small amount of energy is needed to trigger a random laser emission in such kind of
material systems.

(2) Deep Lévy Regime
Near above threshold narrow energetic spikes at random frequencies due to rare ex-
tended amplified modes superimpose to the typical spontaneous emission profile. The
α parameter reaches its lower value within this regime because these lucky photons
are statistically located at the tail of the probability distribution. Dexp begins to grow,
suggesting that these modes have a preferential path, but the weight of the lucky pho-
tons is still too weak.

(3) Directional Lévy Regime
Spectra become narrower with numerous random spikes, whose probability increase
causes α-parameter to grow. Dexp raises to its peak value within this regime. As
numerical simulations suggested, the increase of the pump energy causes a larger
extension of the gain volume inside the sample, in such the way to determine, given
the geometric asymmetry, a preferential path for the lucky photons.

(4) Second Gaussian Regime
At high energy the spectra become smooth and narrow and the spikes completely
disappear. As the theoretical model and numerical simulations show, within such
regime modes are coupled by gain competition and the presence of strongly amplified
modes with high directionality is inhibited. Then the directionality value returns to
approach the spontaneous emission one.

Fig. (V.31) show typical spectra that belong to these different regimes. In the case (a) (First
Gaussian Regime), the spectrum dominated by spontaneous emission. In (b) (Deep Lévy Regime)
the spectrum is broad, but with the presence of rare and energetic random spikes. In (c) (Direc-
tional Lévy Regime) the spectrum becomes narrower and random spikes more numerous. The
case (b) and (c) allow to highlight the difference between the two Lévy sub-regimes: in the
Deep Lévy-case the rarity of the energetic narrow spikes does not allow a crucial weight in that
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Figure V.31: Typical examples of spectra for the sample with `s = 1.3 m: (a) First Gaussian, (b) Deep
Lévy, (c) Directional Lévy and (d) Second Gaussian.

of the whole emission, while in the Directional Lévy-case many contemporaneously present
directional spikes cause a large value of Dexp. Finally in (d) (Second Gaussian Regime) the
spectrum is smooth and narrow, with α that approaches 2 and a reduced value ofDexp.

In sample with strong scattering properties, the small scattering mean free path leads to an
increment of gain competition between modes, with a passage between the 2 Gaussian regime
without showing a detectable presence of the two Lévy sub-regimes.

5.4.5 Conclusions

A theoretical and experimental investigation about the directionality of the random laser
output emission in diffusive regime has been performed. The theoretical model, based on a non-
resonant feedback mechanism of extended modes, is corroborated by numerical simulations
based on random walkers propagation in lattice. The starting hypothesis involves a spatially
asymmetric active medium as mode selector, by means of the “lucky photons” paths along a
preferential direction.

Such numerical simulations are qualitative representation of the structure of the real gain
medium and they are not devoted to provide quantitative results. In sake of simplicity, a fixed
asymmetric geometry of the population distribution is assumed, whatever the scattering level
and the pumping energy. Moreover the directionality has been estimated by the recording of the
output emission from only two directions, one near the maximum of the asymmetric population
distribution profile and the other in the perpendicular direction. In the experimental case the
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population distribution spatial profile actually depends on the scattering, because the diffusion
of the pump photons, and by the absorption saturation of the Dye molecules. Although, de-
spite its simplicity, it is able to provide important indications on the physical mechanism of the
emission: the asymmetry of the gain medium is a necessary but not sufficient condition for the
enhancement of directionality respect the pure spontaneous emission case.

Both experimental and numerical data show that the directionality trend not only is bounded
to the Lévy regime, but, more precisely, to the fine structure of such a fluctuations zone as the
initial energy is increased. Where the diffusive property of sample and the pump energy do not
allow a Lévy regime of the output emission, the gain medium profile is not able to act as mode
selector for extended modes with high energy and directionality.

Finally, let talk about the possibility of controlling the behavior of the emission. Fixed the
experimental condition, i.e. the active molecules and scatterers concentrations and the focal
spot diameter of the pump beam, and as a consequence of the detailed characterization and the
theoretical investigation, one is able to use the energy as a tuning parameter in controlling the
directionality. Then, besides different statistical regimes, also a control of directionality of the
output emission can be achieved.
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Conclusions

The work presented in this thesis has as central topic the propagation of light in atomic and
diffusive media. The link between the two experimental frameworks is provided by the response
that a conveniently arranged material exhibits to an optical disturbance.

In the first part of this thesis the original work about the control of the propagation dynamics
of optical pulses has been described.

We have developed an experimental apparatus that is able, by using a control optical pulse,
to convert a rarefied hot sodium vapor in a passive or an active medium, depending on the
atomic resonances involved in the interactions. Then we have studied the effects of the induced
dispersion properties on the propagation of a probe pulse. Such a scheme, that has been used to
produce both slow and fast light propagation, does not require temporal superposition between
the two pulses or the exploitation of coherent effects, making the requirements for the realization
of a propagation control less demanding. In a first experiment the control pulse frequency
was resonant with the transition between the ground level and the 2P3/2 level of sodium. The
frequency of the probe pulse was quasi resonant with the transition between the latter level
and the D-doublet of closely spaced resonances. Therefore, by varying the detuning of the
probe pulse frequency, a large spectral region of a normal dispersive zone could be explored.
In this case we have obtained a slow light regime, with group velocity significantly smaller
than the speed of light in vacuum. We have demonstrated the possibility of controlling the
induced delay and other features of the probe pulse by means of three optical parameters: the
energy of the control pulse, the control-probe separation time at the entrance of the medium
and the detuning of the probe central frequency from the transition resonance. Moreover, the
experimental data are in good agreement with the analytic model that describes the process in
term of the atomic parameters. Extra induced delays up to 13 ns and compression factors up to
3 have been achieved on pulses of 3 ns duration, without severe absorption, and the results has
been reported in an article published in Physical Review A.

The same experimental scheme has been utilized, changing the involved atomic interac-
tions, to achieve fast light propagation. In this case the control pulse excites, by a two photons
transition, the D-doublet of sodium, creating a population inversion with the level 2P3/2. The
sub-sequent co-propagating probe pulse finds an inverted medium and experiences amplifica-
tion and modification of group velocity, in a way dependent on the explored anomalous dis-
persion zones. The experimental results, in good agreement with numerical simulations based
on atomic parameters and published in a paper in Physical Review A, show advances respect
to the vacuum propagation up to 400 ps, without severe distortions. The temporal duration of
the probe pulses is of some order smaller than other cases of fast light propagation reported in
literature.

The two experiments described above suggested the idea to include, in the same experimen-
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tal set-up, both propagation modes. Therefore, the probe pulse was previously delayed in a slow
light stage and then such a delay was recovered in a fast light stage. Besides a complete recover
of the delay, the second stage, by increasing the pump energy, is also able to induce an extra ad-
vance respect to the vacuum propagation. The arrival time of the pulse on the detector has been
measured both when the slow light stage is switched on and when it is switched off: as a result
we have observed that, increasing energy, the overall advance approaches a limit value that is
independent on the history of the pulse before the entrance in the fast light stage. Then, as a
remarkable effect, the probe pulse appears to move faster when it has been previously delayed.
These results, reported in a paper in Optics Express, can open new perspectives in the field of
optical data processing and communication via optical signals.

The topic of the second part of this thesis is the propagation of light through disordered
media when gain is added. Such kind of optical systems, called random laser, exhibits a laser-
like emission without the requirement of an optical cavity. The light is amplified along random
paths inside the disordered active medium and, if the gain overcomes the losses, the output
exhibits a narrowing of the spectrum but not a clear spatial directionality. Also in this case the
work has been both experimental than theoretical.

In the experiment, the sample used to achieve random laser emission was Rhodamine 6G
dye dissolved in methanol with added TiO2 nanoparticles in order to create disorder. We have
studied the spectral properties of the emission, and in particular the transition from the typical
broad shape due to spontaneous emission at low pump energy, to the narrow shape caused by
stimulated emission that becomes the leading process at higher energies, and found under which
circumstances the random laser emission exhibits the peculiar features of fluctuations and pres-
ence of random spikes at random frequencies. The emission spectra have been described in
terms of statistical regimes, labeled by the α-indexes that emerge from a Lévy-stable distri-
bution fit of the spectral intensity histograms, for various experimental parameters and samples
characteristics. The α-index values of the Lévy stable fit allowed the identification of two Gaus-
sian regimes with smooth emission spectra: one at low pump energies, where the spontaneous
emission is the leading process, and one at high energies, where stimulated emission domi-
nates. On the contrary, random spikes occurs at the pumping energy range around the random
laser threshold, i.e. if, for a certain amount of available energy and scattering level, the system
dynamics is in the middle between regimes dominated by spontaneous or stimulated emission
(Lévy regime).

A model based on a non-resonant feedback mechanism, where the extended modes are
treated as possible paths inside the medium, has provided the framework for the interpretation
of experimental data. Assuming a diffusive scattering regime, with a scattering mean free path
much larger than the radiation wavelength, we have neglected wave interference effects and
pictured the system as a medium where random walkers are created by spontaneous emission
events and amplified by stimulated emission. Then, we have performed a numerical simulation
based on such a model by parallel processing a large number of random walkers, that represent
possible extended modes competing for the available gain. These modes share the available
energy in the sample and the output emission spectrum becomes marked by such a gain compe-
tition. The results draw a scenario in which the random spikes are due to rare energetic modes
that, under certain conditions, are uncoupled by the mode competition for the available gain, in
such a way to experience a large amplification and get a large weight in the overall spectrum.
Therefore, the gain uncoupling between modes in competition for the available energy stored
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in the medium, has been detected as the key mechanism that can trigger the presence of random
spikes at random frequencies in the output spectrum. The situation that occurs in samples with
short scattering mean free paths, where the gain coupling leads to a complete inhibition of the
Lévy regime is also discussed and observed both in numerical simulation and in experimental
data. Then, the results, reported in a an article in Physical Review A (Highlighted Article),
reveal a remarkable clear link between theory and experiment.

Moreover, a theoretical and experimental investigation about the possibility of controlling
on certain degree the random laser emission is discussed as topic in preparation. The issue
is how the statistical regime influences the directionality degree of the random laser emission,
respect to the case of pure spontaneous emission. The directionality, both in experiment and in
numerical simulation, shows a maximum when the system is in a Lévy regime, because of the
correlation between the presence of random spikes in the spectrum and rare energetic extended
modes that exhibit preferential paths due to an asymmetric active medium.

In conclusions, during this thesis work two topics concerning the light propagation through
material systems have been investigated. In both cases the experimental data are in good agree-
ment with the theoretical predictions. In the different realized experimental set-ups and mea-
surement methods and strategies, the synchronization of signals generation and data acquisition
have been able, besides an ad-hoc written software, to collect and analyze a large amount of
data. Then the theoretical models have provided the basis for numerical simulations that have
allowed a comparison between theory and experiment.

Finally, besides the topics under development, different intriguing perspectives can be rec-
ognized in both fields of propagation of optical signals and random lasers.

In the former, as a present field of research, an investigation (not discussed in this text) about
the temporal response of the medium by varying the pulse temporal width is under development.
Concerning the recovering of induced delays, fascinating perspectives arise in the framework
of telecommunication; indeed, any transmission line is affected by unavoidable losses and one
can suggest to add a fast light stage to the necessary amplification system in order to recover
delays in propagation.

Concerning the random laser field, very interesting perspectives can be find in development
of devices and optical sensors, useful in real-life purposes; indeed, albeit the random laser
system has been studied since about almost decades, a clear practical application lacks to date.
The principal basic idea is to realize a random laser based sensor, that, exploiting the sensitivity
of an active device, could be able to detect small scale perturbations in intrinsically disordered
systems, like, for instance, biological tissues.
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Appendix A

Probability distribution of random laser
emission

Let us consider an incoherent system in diffusive scattering regime, composed by an active
medium of thickness L, and an extended mode that undergoes amplification due to stimulated
emission during its lifetime [1]. Such an extended mode consists in a scattered path whose total
length ` can be expressed as a random variable with exponential probability distribution:

p(`) =
exp [−`/〈`〉]
〈`〉

(A.1)

where 〈`〉 is the average distance traveled by the mode within the medium during its lifetime.
Considering the mode as a path of a random walker and setting the absorbing condition to the
boundaries 0 and L, in a diffusive process 〈`〉 can be estimated by the mean first-passage time
[2]. The first-passage probability is the probability that a random walker at a specific time first
reaches a site, for example the boundary of the medium. Let c(x, t = 0) be the normalized initial
random walker concentration: ∫ L

0
c(x, 0)dx = 1 (A.2)

In a generic time t, the concentration is solution of the diffusion equation:

∂c(x, t)
∂t

= D
∂2c(x, t)
∂x2 (A.3)

Due to the diffusion process, once c(x, t) spread becomes comparable to the size of the whole
medium a rapid density decay occurs. Then the ‘survival probability’, i.e. the probability that
at a time t the random walker is still inside the medium, is simply the following:

S (t) ≡
∫ L

0
c(x, t)dx (A.4)

Only the trajectories that do not reach the boundaries contribute to S (t). In a similar way to
the case discussed in Sec. (4.5.2), the solution of (A.3) can be written as the eigenfunction
expansion:

c(x, t) =

∞∑
n=1

an sin
(nπx

L

)
e−( nπ

L )2Dt (A.5)
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Hence each eigenmode decays exponentially in time with a characteristic time that depends on
n:

τn =
L2

n2π2D
(A.6)

Because the modes of large order decay more rapidly with time, for longs t only the n = 1-mode
becomes not negligible and determines the asymptotic behavior of the survival probability:

S (t) ∝ e−t/τ1 (A.7)

where

τ1 =
L2

Dπ2 (A.8)

Hence τ1 = L2/Dπ2 characterizes the diffusive dynamics of a mode within a medium with
absorbing boundaries.

Coming back to the estimation of 〈`〉, indicating with v the speed of the photons and with
the help of (A.9):

〈`〉 = vτ1 =
vL2

Dπ2 (A.9)

Since the mode, that carries an initial intensity I0, propagates within an active medium,
during its lifetime it experiences an exponential amplification (see eq. (IV.15)) for each step `:

I(`) = I0e`/`g (A.10)

By combining of the (A.1), (A.9) and (A.10), the probability distribution of the emitted
intensity can be derived:

p(I) = ᾱ
1

I (1+ᾱ) (A.11)

where

ᾱ =
`g

〈`〉
=
`gDπ2

vL2 (A.12)

[1 ] S. Lepri, S. Cavalieri, G. L. Oppo, D. S. Wiersma, “Statistical regimes of random laser
fluctuations ”. In: Phys. Rev. A 75, 063820 (2007), doi10.1103/PhysRevA.75.063820

[2 ] S. Redner, A Guide to First-Passage Processes, Cambridge University Press (2001)
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single scattering approximation, 70
size parameter, 69, 113
skewness β, 91
slow light, 12
Slowly Varying Envelope Amplitude

(SVEA), 13, 14
small particle, 69
Smoluchowski, Marian, 90
Sommerfeld, Arnold J. W., 11, 17–19
special relativity, 12
specific conductivity, 6
speed of light, 7
stable distribution definition, 91
statistical regimes, 79, 106
Stenner, M. D., 49
stimulated Brillouin scattering (SBS), 26
stochastic resonator, 74
superdiffusion, 93
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tail index , see index of stability α
temporal cloaking device, 55
threshold condition, 73
transport mean free path, 69, 73
turbid medium, 66

vapor pressure, 34
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wave
carrier, 10
electromagnetic, 6, 6
equation, 6, 9
monochromatic, 7, 9
packet, 10
plane, 9

weak field approximation, 15
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