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Introduction

We are not to tell nature what she’s

gotta be. . . . She’s always got better

imagination than we have.

Richard P. Feynman

Describing Nature using simple and clean model is, since its first time, one of the

main goal of physics. There are many and many examples in which, with the help of the

simplest possible toy model, one can not only describe what he observes but also predict

new features. The simplification of natural processes is mandatory, otherwise we will end

up with plenty of things that we can not manage properly. Classical physics does this

but, of course, also quantum physics follows the same path: it solves some problems and

then tries to extend results to a class of systems similar to the solvable one by applying

the same methods, with little modifications needed by the specific situations. We can

divide problems into two macro-classes: one deals with static (equilibrium, stationary,

nomenclature depends onto the field of research) properties, the other with dynamics

(out of equilibrium, non stationary).

This thesis deals with the second one, with special attention for atomic systems.

The interests onto dynamical properties of microscopic (and mesoscopic) systems was

born long time ago and, as many of others stuff in physics, this interest grew up with

the birth of quantum mechanics: understanding how the small particles behave, inter-

acts, moves and how this can affect the properties at larger scales was, and still is, a

great challenge that cover a lot of branches of physical science. Many things are to

be taken into account when starting to face these problems: first a proper way to de-

scribe underling structures onto which particles moves, then a good model to describe

how they interacts one each other and with the surrounding or other systems. Here I

consider one dimensional disordered potentials, mean field approximation for interactions

xiii



xiv Introduction

and stochastic time-dependent potential, that mimes some noise present in the system.

All problems are studied from theoretical point of view, with numerical techniques and

also analytic approximation when possible. Because of this the results I am going to

present can be applied to all systems described by the same models (i.e. Hamiltonians

and equation of motions), but I will in particular make a comparison with experiments

on ultracold atoms, due to the fact that part of this work was developed in collaboration

with experimental group at LENS.

I start studying non interacting particles in one dimensional disordered chains, then

take into account effects of interactions, noise and both of them. In the first case I review

Anderson localization phenomenon, and give a description of wave packet localization

complementary to the usual ones. Regarding noise and interactions I study the expansion

of a system of particles, giving a characterization for the dynamics by looking to the

properties describing the entire system (i.e. the evolution of its spatial width): with

just noise spreading follows the classical diffusion equation; interactions give rise to

slower dynamics, while the combinations of the two ends up in a set of possible results

going from expansion slower then diffusive (also said subdiffusive) to faster then diffusive

(super-diffusive). I try to find a model that describes all the common properties and then

to give an explanation to the cases in which it can not be applied. Systems in which

this aspects disorder noise and interactions are present in different combinations are still

subject of a lot of studies: going from atomic physics to biology, passing through chaotic

systems, it is possible to find many examples of physical processes that posses at least

one of the ingredients I take into account in the thesis.

Influence of disorder is one of the widely studied problems (e.g. [1]) because it is ubiq-

uitous in nature and it strongly affects the behavior of systems: the most famous works

on it is the one by P.W. Anderson1, in which he introduced the concept of strong localiza-

tion [2]. This opened a new way of looking to the microscopic behavior of insulating and

conducting materials: waves scattered by impurities and defects sums together coher-

ently, rather than with an incoherent process as it was thought to be until that times [3].

This coherent process leads to the suppression of diffusion for an initially localized wave

packet and to an exponential decay of the disordered system’s eigenstates [4]. Plenty of

works have been published about localization ever since, also because it is found that is

a general behavior of waves in the presence of non regular structures. Today localization

of waves has been found for electrons [5], light [6–11], acoustic [12] and ultrasounds

waves [13] and also for seismic waves [14]. For the aim of my thesis the most important

experiments are the one performed with ultracold atoms. Since the first realizations of

Bose-Einstein condensation (BEC) in ultracold dilute atomic gases [15–18] their great

usefulness was clear to all the scientific community. The possibility of tuning many of

the system’s parameters gives to them a special role: in ultracold atoms experiments

the Hamiltonian describing the system plays a central role, i.e. an experiment can be

1For studies on localization he was awarded the Nobel Prize in Physics in the 1977.
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modeled in order to mime a given Hamiltonian. In the case of Anderson localization

interactions between electrons and between electron and phonons can not be canceled in

real electronic systems, thus the exact Anderson model [2] will never be realized. With

ultracold atoms, on the contrary, it is possible to create a disordered potential by the

means of lasers beams and put them onto it without having interactions: studies of pure

Anderson localization become possible. Its direct observation [19–21] is a proof of how

a powerful tool ultracold atoms can be for exploring a number of problems concerning

the theory of localization [22–24].

The presence of interactions or other sources of disturbance for the bare disordered

potential is a problem if one searches for localizations but, on the other hand, is of

extreme importance for transport: everything that could break localization and goes into

the direction of making the system, or part of it, move is important. Of course atom-

atom and atom-surrounding interactions are the most diffuse origins of delocalization and

so they studied with special attention, in particular the case of a surrounding described

as a stochastic time-dependent potential.

The latter is studied since Einstein published its famous work on Brownian motion

[25], and then the interest onto this kind situations has been grown due to the fact that

many time-dependent processes can be modeled as a stochastic bath. In condescend

matter physics a typical example is the interactions between electrons and phonons, when

these are seen as a thermal bath to describe random lattice vibrations [26–30]. Transport

in random time-dependent environment is also discussed in [31–37] and more recently

in [38–43] with a particular attention to the chemical transport, similar arguments can be

found for virus transport in porous media [44]. Interplay with noise and disorder was also

considered for light transport [10], light-harvesting systems [45] or coupled cavities [46].

Interactions between particles are the other delocalizing mechanism we take into

account: they fight against Anderson localization and under their influence systems

spread slower that diffusive. Extensive studies were done regarding this subdiffusion,

especially under the light of chaotic systems [47–60]. In [61] interactions are assimilated

to an intrinsic noise: this point of view create a direct connection between the two

aspect that up to now are always considered separately. I do not find any other papers

in which the contemporary presence of noise and interactions is considered, this in my

opinion makes the problems very interesting because a complete understanding of both

macroscopic and microscopic behavior is still missing.

Finally I want to say that all of the models and simulations presented in this thesis

are developed in the mean field regime. This a good approximations for many physical

situations, and also for ultracold atoms experiments, but does not take into account

quantum fluctuations at all. Those are very interesting and their effect could influence

a lot all the systems. Reconsidering all those results in the light of a fully quantum

system, e.g. those described by Bose Hubbard models, will be a very interesting future

development of this work.
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Outline of the thesis

• Chapter 1: here I review fundamental properties of disordered systems, giving the

definitions of the important quantities which characterize them. Then I present

the three types of disordered potential that are used in all the following chapters:

Anderson disorder, optical speckles an quasi-periodic lattices.

• Chapter 2: basic theory of Bose-Einstein condensates (BEC). Assuming that

systems are at T = 0K and that theory of BEC is already known, we derive the

basic equations for the dynamics of a weakly interacting condensate, i.e. the

Gross-Pitaevkii equation (GPE). At the end of the chapter we consider the case

of periodic optical potentials: the spatial discretization they introduce allows us

to go from the continuous model of GPE to its discrete counterpart, the Discrete

Nonlinear Schrödinger Equation (DNSL).

• Chapter 3: new point of view on Anderson localization is presented. The basic idea

lies onto the quantum interference of eigenstates of a given disordered potential:

it acts in such a way that in the tails of a wave packet macroscopic dynamics

disappears, leaving just a Anderson localized profiles with tails that do not show

any relevant time dependence. We prove it with the two typical discorded potentials

used with cold atoms: quasi-periodic lattices and speckles. Before doing this we

show how our idea works in some simple examples involving quantum harmonic

oscillators. How a wave packet evolves in time is due to this interference which

brings all the informations about time evolution.

• Chapter 4: after having considered localization, in this chapter I study what hap-

pens when onto disordered systems acts sources of delocalization. I focus my

attention onto stochastic time-dependent potentials, which is also called noisy po-

tential, and interactions. About the latter I review some basic results regrading the

subdiffusive expansion of the wave packet they generate and the intriguing phe-

nomenon of self-trapping, which comes from the interplay between the bounded

energy spectrum of the system (due to the presence of a periodic lattice) and the

nonlinearity (due to the interactions). Speaking about noise I introduce a couple of

possible way of generating controllable noise, one of those has been implemented in

experiments with ultracold atoms, characterizing different types of noise obtained

and stressing equivalences and differences. Then I analyze its influence onto dis-

ordered systems, finding that it breaks localization and drive the system into a

diffusive regime. I compare numerical simulations with experimental results with

also a microscopic model for the diffusion coefficient which is in accordance with

the data.

After this I consider combined action of noise and interactions and build up a

model for it. I found that within some intervals for interactions strength and noise
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amplitude the dynamics of a wave packet follows a simple law described by the

linear superposition of the two single effects. Moreover I explore some situations

in which this model is not valid but in which systems shows interesting behavior:

for sufficient strong interactions the interplay between self-trapping and noise lead

to a transient super-diffusive expansion, before normal diffusion is restored.

• Chapter 5: in this chapter I will present a possible proposal for the experiment on

Anderson localization with cold atoms: disordered is not generated by usual optical

potentials but with another condensate. This is not to a new idea, but novelties

lie in the method of creating the disorder with atoms. All the proposal I found

just deals with trapping some atoms onto different sites of a lattices, sites that

are chosen randomly; instead of this we use intrinsic instability of DNLS. Interplay

between periodicity of the lattice and interactions could lead to situations in which

perturbations onto a uniform condensates grows and destroy its flat density profile,

this is analogous to the self-trapping in Chap. 4. I analyze the characteristics of

the disorder obtained for different interactions, finding that one can obtain two

classes of disorder, both uncorrelated in space but with different distributions. I

also discuss the possibility of connecting this different disorders with systems at

positive or negative absolute temperature (strictly speaking it is not possible in

the usual way being the system microcanonical) which is similar to what was done

recently again with ultracold atoms in periodic lattices. Once we characterize the

disorder we study the localization properties of another condensate onto it, applying

the idea of Chap. 3 which again works as expected.
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1
One dimensional disordered systems

In this chapter we will briefly present some basic concepts concerning the theory of

disordered systems, in particular we will focus on purely one dimensional system that will

be the only one we take into account in this thesis. We start by giving a first definition of

disorder and showing some of its fundamental properties, distinguishing strong and weak

disorder. Then we will analyze the effects of this disorder, focusing on the eigenstates

localization and the general behavior of the spectrum. During this, we will introduce

the phenomenon of Anderson localization and spend some words about Lifshits tails an

localization.

1.1 Disordered systems

The main characteristic that a disordered system has is that it shows an irregular

structure. Both "irregular" and "structure" could have a different meaning depending

on the system one has to menage, but of course there are some concepts which are

common to all of them. First of all, when one speaks about disorder, is assuming that

the structure does not change in time, at least on the typical time scale of the evolution

of the system; generally one refers to the parameters which define the disorder as the

slow degrees of freedom, in contrast to the fast degrees of freedom which are linked

to the dynamical variables of the system itself. Another main feature is that disordered

system are not uniquely determined: disordered structure changes a lot between two

different realization; this implies that we are forced to use stochastic Hamiltonians [62]

in which disorder depends onto a set of random parameters which are time independent,

but changes from a realization of the system to the other, in accordance with a given

probability distribution function. Moreover the average properties of a certain system

do not coincide with that of a single realization, so we need to perform averages over

all the possible realizations, each weighted with its probability. Because of this one

can understand how difficult is to treat those kind of problems, and it is evident that

1



2 1. One dimensional disordered systems

numerical simulations become not only a powerful, but also a necessary tool.

Finally we want to recall that the disorder could be classified as compositional or

topological [1,62]. The former category is composed by those systems which disorder is

due to the random position of the elements onto a underlying structure that is regular

(for example we can think about impurities in a lattice); in the case of topological disorder

there is no order at all in the geometry of the system, but there could be other kind of

regularities. Generally a disordered system shows characteristics of both of them.

1.2 Weak and strong disorder

The theory of disordered system was initially developed in solid state physics, in order

to study defects in crystalline structures [2, 63, 64]. Because of this first toy models

created in this field dealt mainly with compositional disorder, describing structures which

are naturally defined onto a lattice. In [64] the author consider a one dimensional crystal

with attractive impurities (i.e. potential wells) randomly distributed along it and, for

the first time, introduces the idea of strong and weak disorder, in average. The original

definitions was that one observe weak disorder if the concentration of impurities is low,

i.e. for every part of the system one consider the distance between two subsequent wells

are of several lattice constant; on the contrary a strong disorder was associated to a

high concentration of defects, separated one another by few lattice sites. The crucial

aspect of the distinction lies on the presence, or absence it depends, of potentials wells

that are quite far apart and have a depth which is much larger than σR =
√
〈v2
R〉. This

definition, with respect to the other, allow an extension of these concepts to a generic

disordered potential (see for example [65]).

1.2.1 Three models for disordered potentials

After having defined disorder we will now present three examples of it which plays

an important role in physics both theoretical (Anderson) and experimental (speckles,

quasi-periodic lattices). The Anderson model, which was used in [2] to demonstrate

the strong eigenstate localization (see next paragraph) that since them has taken his

name, is the prototype of all the disordered potential. Then we will describe speckles,

which are peculiar light pattern generated when a monochromatic beam, i.e. a laser,

passes through a medium in which are present scattering centers at random position, for

example a frosted glass [66]. The last disorder we take into account is the quasi-periodic,

sometimes called bichromatic, lattice; it was studied in a famous paper by Aubry and

André [67] in which they demonstrate that above a certain threshold the eigenstates of

that potential are exponentially localized, while under it they are extended as predicted by

the Bloch’s theorem. This is a very peculiar feature because for purely random system in

one dimension all the eigenstates are localized, in general with a localization length which
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Figure 1.1: An example of Anderson disorder. From left to right: Vi , autocorrelation
function and the probability distribution function, for W = 10. Last panel shows ∆2 as
function of W .

is a function of energy, for any amount, even small, of disorder. The transition between

extended and localized states is a fingerprint of this kind of non periodic system [23,68]

Anderson model

In his famous paper [2] Anderson uses this type of random potential in order to

introduce the concept of exponential localization. Usually Anderson model refers to

discrete system, i.e. systems defined on a lattice (we will see how it can be associated

to a continuous one), and the disorder Vj has to be specified for all sites j = 1, 2 . . .M.

Vj is an uncorrelated chain of random numbers, picked up from a uniform distribution:

Vj ∈ [−W,W ] ,

P(V ) =
1

2W
[Θ(V +W )−Θ(V −W )] ,

〈Vj+iVj〉 = ∆2(W )δi j . (1.1)

Here we have considered a disorder with zero mean, i.e. 〈Vj〉 = 0, and we introduce the

quantities W that measures the amplitude of the disorder distribution and ∆ to which

we refer as the disorder strength. In equations (1.1) we explicit that the ∆ is a function

of W , a plot of it is in Fig. (1.1) together with all the other quantities in (1.1).

Speckle potential

Optical speckles are unique diffraction pattern that have attracted the attention of

scientists long ago [66] and they have been become very useful in atomic physics, in

particular in experiments with ultracold atoms, because they can be used as potentials

which introduce disorder in atomic systems [69–76].

If we shine a rough surface with a laser beam, as a piece of paper or a wall, and

we look at the image reflected onto an other surface, what we can see is a large image

with intense with light spot and dark region mixed together without any apparent rule.

This is a speckle [62, 66, 76], and the origin of that pattern lies on the fact that the

surface which reflects light has random distributed defects on length scale comparable

to the wavelength of the laser. Each of those impurities should be assimilated to a
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Figure 1.2: An image of the speckle pattern obtained with monochromatic light. Image
from http://en.wikipedia.org/wiki/Speckle_pattern

scattering center, which are reasonably randomly distributed in space and uncorrelated.

The same pattern can be obtained by sending the beam through a frosted glass. Very

naively we can explain how the speckle is created by telling that the intensity of the light

in each point of the pattern takes into account all the contributions of the scattering

center that were been illuminated: because they are randomly distributed so it is for

the light intensity. The characteristic granular structure observable in speckles is a finite

size effect: we shine light just onto a finite part of the diffusing medium, this fixes an

upper bound for the intensity variation between to nearest point of the speckle. We

now describe a way to obtain a one dimensional speckle disorder starting from a three

dimensional one [62, 77]. Let us consider a perfectly monochromatic, collimated, laser

beam, and suppose to put a diffusive plate onto a plane orthogonal to the direction of

its propagation. Parallel to the plate, at a distant D is placed the screen onto which we

want to create the speckle pattern. In order to simplify, without loosing generality, it is

possible to assimilate the laser beam to a plane wave of frequency ω and wavelength λ,

moving along the z direction

Ψ(~x, t) = A exp[−i(ωt − kz)] .

Now suppose that the glass has just a region S that let the light passes through, and

for simplicity’s sake take S centered in x = y = 0 and the plate lie on the z = 0

plane. Because of the structure of the plate, e.g. a frosted glass, every light ray follows

an optical path of random length, length that does not have any correlation between

two different points. In order to describe what is going on it is possible to associate a

complex number A(x, y) to every point of S, with the prescription that it unimodular,
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|A| = 1 with a random phase. Moreover we have to take into account that it is spatially

incoherent which allows to write

〈A(x, y)A(x + ∆x, y + ∆y)〉S ∝ δ(∆x)δ(∆y) . (1.2)

From the basic theory of optics, i.e. the Huygens principle [62, 66], the pattern onto a

plane at z = D is proportional to the superposition of each contribution coming from S;
because of (1.2) those contributions are uncorrelated and we can make use of the central

limit theorem [78, 79], from which follows that Ψ(x, y ,D) has a Gaussian distribution.

Now we suppose that bot real and imaginary part of A have a Gaussian distribution and,

recalling classical diffraction theory, one get

Ψ(x, y ,D) ' C
∫
S
dx ′dy ′A(x ′, y ′) exp

[
−ik

xx ′ + yy ′

D

]
. (1.3)

Eq. (1.3) is the light field at z = D, the intensity associated to it is the speckle:

I(x) = |Ψ(x, y ,D)|2 ∝

∣∣∣∣∣
∫ +l/2

−l/2

dx ′Φ(x ′) exp

(
−ik

xx ′

D

)∣∣∣∣∣
2

, (1.4)

where we consider a segment of length l along x and Φ(x ′), which is what result from

(1.3) after integrating over y ′ with y kept fixed, still random Gaussian distributed. This

is our first goal: from a complex three dimensional field we get a one dimensional

function I(x), which is the potential we are going to study, and it is the one used in the

experiments [69–76].

Eq. (1.3) describes a two dimensional field, from which one has to obtain the 1D

potential we are searching for. In the experiments this can be done be employing a system

of lenses that elongates the speckle in one direction; as we see in the following speckles

have a characteristic autocorrelation length ξ in each direction so if one consider a region

of the z = D plane of width y < ξ, in order to avoid any spatial dependence of I in the

y direction, he can suppose to work with a one dimensional disordered potential. The

intensity of the speckle expressed trough Eq. (1.4) has the advantage of being easy to

implement in numerical simulations, indeed we can think about it as the Fourier transform

of the product between Φ(x ′) and a step function of width l . Ideally I(x) is defined for all

x between ±∞, while the step function has a finite domain −l/2 < x < l/2; numerically

we obtain it by generating an array of N of complex random number Gaussian distributed,

i.e. we create Φ(x), then we retain only a certain set of them, lets call this numberM, so

we now have a vector with N entries, M of which are complex numbers, and all the other

are zeros. We then transform this vector using a Fast Fourier Transform algorithm,

and take the modulus squared of the result: we have obtained the one dimensional

speckle potential, as shown in Fig. (1.3). Once we have created the disorder we have

to characterize it and, as described before, this is done by specifying its autocorrelation
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Figure 1.3: An example of a 1D speckle potential, here I(x) recall us that speckles po-
tential are generated by light intensity. Dashed line correspond to the standard deviation
σR of I(x) which characterize the disorder strength. Correlation length ξ is used as unit
for lengths.

function and probability distribution function. This can be done analytically for the

speckle potential, and the results will be used as criterion for comparison with numerical

simulations. For convenience we define ψ(x) ≡ Ψ(x, y0, D) where (x, y0) represent the

line along which we define the one dimensional speckle. Before we have mention the

central limit theorem [78,79], due to it we known that for the probability distribution

P (<[ψ],=[ψ]) =
1

σ22π
exp

[
−
<[ψ]2 + =[ψ]2

2σ2

]
,

σ2 = σ2
<[ψ] = σ2

=[ψ] , (1.5)

σ2
<[ψ] = 〈<[ψ]2〉 =

∫
R
dx <[ψ]2 ;

where we assume that both real and imaginary part of the field ψ(x) are Gaussian

distributed (central limit theorem [78,79]) with zero average

〈<[ψ]〉 = 〈=[ψ]〉 = 0 . (1.6)

Now we introduce a modulus-phase representation of the fields, and this is convenient

due to the fact that we are interested into the study of the intensity rather then the field

itself:

(<[ψ],=[ψ])→ (A,ϕ) ,

A =
√
<[ψ]2=[ψ]2 , (1.7)

ϕ = arctan

(
=[ψ]

<[ψ]

)
;
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substituting those equations in (1.5) we get

P(A) =

∫ 2π

0

dϕP(A,ϕ) =
A

σ2
e−

A2

2σ2 , (1.8)

where we are allowed to perform the integration over the phase ϕ which is uniformly

distributed in the interval [0; 2π]. From Eq. (1.5) it is clear that

2σ2 = 〈I〉 ,

then with the substitution A→ I = A2 Eq. (1.8) becomes

P(I) =
1

〈I〉 exp

[
−
I

〈I〉

]
, (1.9)

which is the probability distribution function of the speckle potential defined in Eq. (1.4).

In Fig. (1.4) we plot an histogram for P(i) calculated over 100 different potential, and

compare it with Eq. (1.9).

At this point we only need to determine the autocorrelation function, derive is not

difficult but requires quite long algebra so we report just the result suggesting the reader

to look [62,66,76] for all the details. Then we have

〈I(y)I(x + y)〉 = ΓI(y) = 1 + sinc2

(
x

ξ

)
, (1.10)

in which the correlation length ξ is defined ad

ξ =
λD

l
, (1.11)

that depends on the laser beam trough the wavelength λ and on the geometry of the

system because of D, i.e. distance between the scattering plate and the plane where the

speckle is collected, and l , the dimension of the scattering plate. Sometimes in literature

one can find that the correlation length is defined as the width at half height of ΓI(x),

which turns out to be 0.88ξ. In Fig. (1.4) we plot ΓI(x) obtained from numerical

simulations and the function defined in Eq. (1.10), that coincide perfectly.

Quasi-periodic potential

Quasi-periodic potential, often called incommensurate, are an interesting family of

the non-periodic Hamiltonians [67, 68, 80] that posses two or more periodic structure

whose period are incommensurate with each other. Incommensurate means that the

ratio between two periods can not be expressed as the ration between to integers number.

The typical, and simplest, example of this is a one dimensional potential generated by
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Figure 1.4: Autocorrelation function and intensity distribution (solid line is a fit with
exp(−I/〈I〉)/〈I〉). Correlation length ξ is used as unit for lengths.

Figure 1.5: Left panel: a possible realization of V (x) in Eq. (1.12). Red lines shows
the secondary lattice ∝ cos(k2x + θ). Ratio between wavelengths is chosen as k2/k1 =

(
√

5− 1)/2, the inverse of the golden mean.
Right panel: Autocorrelation function. V (x) is perfectly correlated, then we cannot say
it is truly random.

the superposition of two lattices of wavelength λ1 = 2π/k1 and λ2 = 2π/k2:

V (x) = V1 cos(k1x) + V2 cos(k2x + θ) , (1.12)

with k1/k2 /∈ Q, we report in Fig. (1.5) a possible realization of Eq. (1.12). Incommen-

surate lattices are quite peculiar because they are neither periodic nor random; of course

they are not periodic due the incommensurate ratio between wavelengths, but also they

cannot be defined as truly random because from Eq. (1.12) one knows how V (x) exactly

behave in each point of the space. More over the lack of pure randomness is evident

looking to the autocorrelation function, that is reported in Fig. (1.5). Because of this

intermediate behavior it is not strictly possible to apply to incommensurate potentials

not only the Bloch’s theorem for pure periodic structures, but also the standard results

found for completely disordered system, in particular those concerning the exponential

localization of eigenstates. We can state naively that quasi-periodic lattices lie between

periodic and random potential, so one expects to find both extended and localized states
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depending on the parameters that define the potential.

Although the quasi-periodic potentials, and the Schrödinger equation associated to

them if thought as external potentials in a quantum system, are interesting by themselves

and the studies on their mathematical properties is a subject of many papers (e.g. [67,

81–85]), the discovery of natural quasi-crystals [86]. Moreover these potentials come to

the fore in the last years due to the fact that they have been used in experiments with

Bose-Einstein condensates in order to study the physics of Anderson localization [19]

and related phenomena [87–89]. Even if these lattices are not purely random both

theory [55, 67, 68, 80, 90] and experiment [19] have shown that the localization which

one observes follows the same mechanism of the Anderson localization for real random

disordered arrays.

1.3 Eigenstate localization

In this section we will present the most important aspect of disordered system: lo-

calization, with more attention put on Anderson localization. We follow the scheme

of [62,77] which seems to us very simple and clear.

Let us first recall that if the Hamiltonian H(x) of the system is periodic, i.e. H(x) =

H(x + X) for some X, also its eigenstates are periodic, as predicted by the Bloch

theorem [91], and then they are extended all over the lattice. A disordered potential,

with no trace of symmetry under translation, is just the opposite of the perfectly periodic

lattice. It then becomes natural to suppose that in this case eigenstates behave in the

opposite way with respect to the extended Bloch states. One in general expect a generic

eigenfunction to be localized, at least in the lower part of the energy spectrum of the

system; by this we mean that it will decay exponentially, or even faster, as we move far

away from the point at which the modulus of the wave function has a maximum. This

peculiar behavior has different origin in the case of weak disorder, where one usually has

Lifshitz localization, or strong disorder, where Anderson localization takes place, and this

localization presents in two different ways depending on the phenomenon from which it

originates.

1.3.1 Weak disorder: Lifshitz states

In the previous paragraph we show how a high concentration of defects leads to An-

derson localization, nevertheless it exists another type of localized states, called Lifshitz

states which localize due to just a single fluctuations of the potential when it is far away

from other fluctuations similar to it. Strictly speaking if we think to the defects as po-

tential wells one of them is enough to localize state, while if one considers barriers at

least two of them are need, and they have to be closer [62].

Let assume to create an one dimensional array of wells such as the separation between
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Figure 1.6: Summary of the three types of disorder presented: from left to right we have
speckles, quasi-periodic and Anderson model, respectively. First rows shows a typical
realization of the disorder, second the autocorrelation function and in the last we put
the Probability Density Function. Looking at the autocorrelation function we can see
that Anderson model is real random (of course, it is by definition) and speckles could
be assimilate to a random one due the fast decay (∝ sinc2(z)) of its autocorrelation.
Finally we note that because of this quasi-periodic potential could not be considered as
real random potential, they are perfectly correlated.
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Figure 1.7: Sketch of a possible realization of a weak disordered chain.

two of them is quite large and also the depth are very different among different wells. A

possible representation of this could be

VR(x) =


∑N

i=1 Ai f (x − xi) if 0 ≤ xi ≤ L ,

0 otherwise ;
(1.13)

with f (x) being an analytical function always negative defined onto a region centered

around 0 of dimension a� L, with its absolute minimum in x = 0.If L/N � a we could

say that system is in the weak disorder regime; so, not only there is no superposition

between wells, but also 〈|xi − xi−1|〉 � a. Now consider the ground state of such a

system, that we will denote by ψgs(x): it is reasonable to think that its maximum will

be centered onto the deepest wells Vk = maxi{Vi}, centered in x = xk . The hypothesis

of analyticity of f ((x) ensure that we can expand it up to the second order around its

minimum, then we approximate the well with an harmonic potential. Higher term in the

expansion of the well, and all the other wells will be treated as stationary perturbation,

and so the standard techniques will be applied. Because of this harmonic approximation

of Vk we intuitively get to

ψgs(x)

∝ e−B(x−xk )2

+ φ(x) x ∈
[
xk − a

2 , xk + a
2

]
,

' 0 otherwise ,
(1.14)

where φ(x) represents corrections to ψgs(x) coming from higher order in the series of

f (x). For sure this approximation becomes better in the limit of small N, i.e. small

number of wells, and for f (x) which naturally approaches a parabola. Eigenstates that

feel mainly the effect of a single well are called Lifshitz states and generally they can not

be associated to a localization length because, despite they live just onto a single well,

they decay faster then an exponential [1, 64].

The idea of Lifshitz states in the case of an array of barriers is quite more complicated,
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and it is not as immediate to define as for the wells. We need at least two barriers quite

close one to the other in such a way that the space between them could be considered

as a single well, and moreover they have to be quit high in order to ensure that a state

can be confined between them.

1.3.2 Strong disorder: Anderson states and localization

An Anderson localized state is characterized by an exponential decay of its modulus,

going from the localization center to the boundaries of the potential, over distances

larger then the average separation between to fluctuation of the disorder.

The vast field of studies about motion in random 1D potentials was initiated by Anderson

[2] and several reviews have been published since then [1,3,4,92,93]. Those systems play

a fundamental role for better understanding the physics of disorder and nowadays there

is quite a good understanding of the localization phenomenon [1,4,63,94–96]. There are

several reasons to justify this importance, the greatest is that in such a low dimension

disorder has the strongest effects: avoiding impurities by turning around them is not

possible. Moreover one can recover some rigorous results both analytical and numerical.

Last but not least those numerical calculation are faster and easier to implement [80].

Mott and Twose in [63] was the first who suggested that eigenstates of random potential

will be exponentially localized no matter how strong is the disorder, but they supported

their thesis only by qualitative arguments. A couple of years later Borland in [97] gives the

first rigorous proof of the statement made by Mott and Twose: even a small amount of

disorder give rise to Anderson localization. To give proof of localization in one dimensional

system it is very useful to take advantage of techniques involving random matrices about

which, in the same years of [97], Borland [97] and Oseledec [98] demonstrate some

important theorems; in the following we will give a first idea of their main results.

One first possible way to visualize localization or, alternatively, absence of diffusion

(as in the title by Anderson [2]) is to think about the disorder as a sequence of bumps

of finite height separated by a flat region and to consider transmission and reflection

through the bumps. In the j-th flat region the wave function can be written as

ψj(x) = Aje
ikx + Bje

−ikx . (1.15)

Coefficients Aj and Bj obey (
Aj+1

Bj+1

)
= Tj

(
Aj

Bj

)
, (1.16)

where the we introduce the transfer matrix

Tj =

(
1/tj −rj/tj
−r ∗j /t∗j 1/tj

)
(1.17)
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Figure 1.8: Sketch of a possible representation for the Anderson model, as described by
Eq. (1.18).

which is a function of the height of each bump. |rj |2 and |tj |2 define the reflection

and transmission coefficients respectively. We assume that the physics is governed by

an Hamiltonian that is symmetric under time-reversal. Since in quantum mechanics

probability amplitude rather then amplitude has to been considered, one finds that av-

erage transmission coefficients through two bumps is smaller then the product of the

transmission coefficients through these bumps. Transmission through the infinite chain

vanishes. Dealing with periodic chains one get that the conditions for complete trans-

mission through a single barrier its the same for all of them and it exists energies that

satisfy those conditions, this is the idea underlying Bloch’s theorem [91]. In random

chains each bumps gives a different contribution to total transmission: for infinite chains

transmission coefficient vanish with probability one. One of the most important feature

is that this remains true even if the energy of ψj(x) is higher than the bump’s one. As

done in [62, 77] we model an Anderson random chain as a series of steps, all width ∆

and height V0, placed at random position (in Fig. (1.8) we plot an example of this):

VR(x) =

V0

∑N
i=1[Θ(x − xi)−Θ(x − xi − ∆)] if 0 ≤ x ≤ L ,

0 otherwise ;
(1.18)

in which V0 > 0 measures the hight of barriers, while xi are random variables coming

from an uniform distribution

P(xi) = C [Θ(xi − xi−1 − ∆′)−Θ(xi − xi−1 − ∆′′)] , (1.19)

with C 6= 0 and ∆′,∆′′ > ∆. Having in mind the potential in Eq. (1.18) one can obtain

the behavior of the eigenstates ψ(x) from very simple hypothesis: the only requests are

the continuity of ψ(x) and of its logarithmic derivative d ln[ψ(x)]/dx at each boundary

of one barrier. We remind the reader to [62,77] and references therein for more details,
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we here just report results. In what follows we consider, as an example, the case of

E < V0.

Let start from the left edge of our array, i.e. x = 0. Moving to the opposite edge x =

L the eigenfunction passes through a lot of barriers. Solving the Schrödinger equation for

just on barrier gives that within the barrier ψ(x) is a superposition of an increasing and

one decreasing exponential functions, but it turns out that former dominates. Coming

back to the behavior of ψ(x) between to barriers it is reasonable that, in the limit of

strong disorder, its shape does not influence the overall envelope of the state. This means

that an eigenstate ψ(x), of energy less the the barrier’s height V0, grows exponentially,

apart local fluctuations which does not play any important role for our purpose, going

from x = 0 to x = L. For symmetry reasons one can follows the same arguments

but starting from x = L and going to x = 0. Again ψ(x) will be characterized by an

exponential increasing form between x = L and 0.

So, we deal with functions ψ(x) exponentially growing both from the left and right

side; this paradox will be overcome by introducing the so-called localization center x0:

by definition it is the point at which the eigenstate has its maximum, i.e. |ψ(x0)|2 =

max[|ψ(x)|2], and where the two exponentials join analytically. This does not happen for

all the energies: the set of E of the states satisfying those request forms the spectrum

of the the disordered potential. In Fig. (1.9) we report a figure from [63] where the

author shows a case in which E does not belong to the spectrum; it does not exists

any localization center, but the behavior of ψ(x) inside a barrier, i.e. its exponentially

behavior is put on evidence. Finally,

|ψ(x)|2 ∝ e−2
|x−x0 |
ξ + φ(x) , (1.20)

|ψ(x0)|2 = max
[
|ψ(x)|2

]
, (1.21)

where φ(x) is responsible for local fluctuations resulting from the effects of the potential,

and we reasonably assume 〈φ(x)〉 = 0 and |φ(x)|/|ψ(x)| � 1. A state which satisfy Eq.

(1.20) is called Anderson state [1, 2, 62, 64, 94, 99], due to the fact that Anderson was

the first who introduces this idea in his seminal paper [2].

Very often the problem of localization is studied within the framework of discrete

system, i.e. system defined on a lattice, for which the tight-binding approximation work

properly. So we have to solve the discrete eigenvalue problem

−K (ψj+1 + ψj−1) + Vj = Eψj , (1.22)

which physically describes a field ψj living on a lattice, the sites of which are labeled by

j . The lattice is characterized by a tunneling energy between two neighboring sites K

and a potential Vj , while E is the energy of the field. For the Anderson model Vj has the

properties showed in Eq. (1.1).

It is possible to rewrite Eq. (1.22) in a very simple matrix form, by the mean of the
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Figure 1.9: An example of a situation in which eigenstates for a certain energy E do not
exist: between point C and D there is no match between to exponentials. Figure take
from [63].

discrete version of transfer matrix Tj [94]:

Tj

(
ψj

ψj−1

)
=

(
ψj+1

ψj

)
, (1.23)

with

Tj =

(
Vj − E −1

1 0

)
, (1.24)

which allows us to determine the value of the wave function at an arbitrary point by

repeated application of it starting from an arbitrary point, namely(
ψj+1

ψj

)
= Tj · Tj−1 · Tj−2 · . . . · T1

(
ψ1

ψ0

)
,

with the appropriate boundary condition ψ0. It is possible to demonstrate that each

matrix Tj belong to SL(2,R), the group formed by the unimodular, i.e. with determinant

equal to 1, matrices of order 2; if we define by GE the smallest subgroup of SL(2,R) for

which {Tj}j ⊆ GE , we can apply a theorem by Fustenberg [100] which states that for a

subgroup of SL(m,R) satisfying certain hypothesis, verified by GE [94] one has

lim
j→∞

1

j
log |Aj . . . A1~x | = γ > 0 , (1.25)

where ~x ∈ Rm is a vector that fixes the initial conditions, in this case (ψ1, ψ0) and {Aj}
is an arbitrary sequence of elements of GE , so we can limit to Aj = Tj . This theorem

together another one by Oseledec [98] state that for almost all realizations of the random

potential Vj , an initial vector ψj will grow o decay exponentially as e±γ(E)j , where γ(E)

is the same of Eq. (1.25) in which we explicit the dependence on the energy E which

comes from the definition of Tj (see Eq. (1.24)); γ(E) is known as the Lyapunov
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Figure 1.10: From left to right: Lloc(E) for a single lattice of M = 210 sites, 〈Lloc(E)〉
averaged over 250 realizations of disorder and Lloc(E) for a single lattice of M = 100×
210 sites. The proof of self-averaging comes form the comparison between second and
third panel: they coincide, so a single realization of large systems describe the properties
of an ensemble of smaller systems.

exponent [1, 62, 80, 94]. As we state previously, a solution for a given E belong to the

spectrum of Vj only if exist a couple of vectors ψ±0 that decay respectively for j → ±∞
and coincede at some site (localization center).

The inverse of the Lyapunov exponent is the localization length of the state with

energy E:

Lloc(E) =
1

γ(E)
. (1.26)

A fundamental property of this quantity is that it is self-averaging [1]. This property plays

an important role in the case of disordered systems when usually the averaged over many

realizations is needed. If a certain physical quantity satisfies certain requirements [1] a

single large system is sufficient to represent the whole ensemble: when this happens

the quantity under study is said to be self-averaging. It has been demonstrated that

both Lyapunov exponent and localization length in Eq. (1.26) are self-averaging. In Fig.

(1.10) we show how self-averaging works: we compare Lloc(E) computed for a single

chain with its average over many disordered realizations 〈Lloc(E)〉, then we plot Lloc(E)

for a single realization of a chain 100 times larger than the previous. The latter coincides

with the disorder-averaged one, this is the proof of self-averaging: one single larger chain

is sufficient to describe an ensemble of smaller systems.

1.4 Anderson localization: numerical examples

In previous sections we have described both different types of disorder and the ef-

fects a generic disordered potential has onto its eigenstates, remarking that the most

important is the appearance of the Anderson localization phenomenon. In 1.3 the idea of

exponential localization is presented in relation with a theoretical method which is useful

in determining the localization Lloc(E). In this section we will give a short summary
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Figure 1.11: Upper row: energy spectrum; dashed lines correspond to perfect periodic
lattice (Vj = 0), solid lines to disordered lattice. Bottom row: density of states; red
bars correspond to the pure periodic lattice (Vj = 0), blue ones to the Anderson disorder.
From left to right we consider increasing disorder W = 0.5, 1 and 2.

of what said, in particular we report some examples that put in evidence how Anderson

localization set in in the case of the Anderson potential while the quasi-periodic lattice

will be taken into account in the next chapter.

Let us take into account the disorder defined in Eq. (1.1). We put in Eq. (1.22)

and then numerically diagonalize in order to find its spectrum (both eigenenergies and

eigenstates). In Fig. (1.11) we report the energy spectra for single realizations of Vj
and density of states ρ(E) for different disorder strength. For each case we also plot

the correspondent quantity in the case of a pure periodic system, in order to stress

the effects of disorder. In [101] Thouless generalizes a formula developed few years

before by Herbert and Jones [102] that shows how the spectral properties of disordered

one dimensional systems could be put into connection with the localization properties

of their eigenstates. The relation between Lyapuonv exponent γ(E) and the DOS is

expressed by

γ(E) =

∫ +∞

−∞
ln (E − ε) ρ(ε) dε . (1.27)

Eq. (1.27) becomes useful in the case of Anderson disorder, in the limit of small disorder

W , together with perturbation theory it gives1 [80]

γ(E) =
(W/K)2

6[4− (E/K)2]
. (1.28)

When Eq. (1.28) is applied to a state in the center of the spectrum, i.e. E ≈ 0, we

recover that the localization length for those states are Lloc(E ≈ 0) = 24(K/W )2: the

1In literature Anderson model is defined with Vi ∈ [−W/2;W/2]. With this definition in Eq. (1.28)
the numerical factor 6 has to be substituted with 24.
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Figure 1.12: Left panel: ground states of Anderson disorder for different W (indicated
in the figure). It is evident that the higher the disorder, the more localization we have.
Right panel: eigenstate corresponding to E ≈ 0 of an Anderson chain with W = 2.
Dashed line correspond to ∝ exp [−|x − x̄ |/Lloc(0)], with Lloc(E = 0) as indicated in
the text.

important results is that states situated at the center of the band, with E = 0, are

localized on longer length scales. It also has been found that the behavior of Lloc for

small W , i.e. the fact that it diverges as W−2 is quite general and does not apply only

to the Anderson model.



2
Ultracold dilute bosonic gases: from GPE to DNLS

In this thesis we will present a long list of numerical simulations and models, which

could be applied to all the system that are describe by equations of motions, or Hamil-

tonian, similar to those we consider. Although this we will consider in Chap. 4 some

specific experiment, the simulations and models were developed for. Those experiments

were done in Florence, at LENS, by the ultracold atoms group [87]. The great versatil-

ity of ultracold atoms and the possibility of building up experiments in which one could

know the Hamiltonian and tune its parameters is the most powerful characteristic of

those systems.

Here we will report some basic properties, that are important in the realizations and

managing of those atoms, and derive the equations which will be used trough all this

thesis. Those results are of course not new and can be find in many textbook and papers

about ultracold atoms, we refer in particular to [103–106]; many thesis are also written

on this subject and in particular [77, 80] were very useful for us.

2.1 Atomic dilute gases: systems with tunable interac-
tions

The use of atomic dilute gases in BEC experiments turns out to be very useful do

to the fact that, because of their low density, they can be conveniently assimilated to

quasi ideal systems. This means that interactions between atoms can be considered

very low, at least in principle. Quantum theory of scattering tells us that in this regime

the only important collisions are the one described by the s-wave approximation. Bose-

Einstein condensation is realized in laboratory at temperature that are fractions of one

Kelvin, then the energies are very low and we are justified in considering the limit of small

momenta. In this case the cross section σ, that a fundamental quantity in scattering,

19
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assumes a very simple form:

lim
k→0

σ(k) = 4πa2
s , (2.1)

where as is the s-wave scattering length and as > 0 or as < 0 for attractive and repulsive

interactions, respectively.

Eq. (2.1) give us a considerable help, allowing us to substitute the two body inter-

action potential V (ri , rj) with a hard-core pseudopotential:

V (ri , rj) ≈
4π~2as
m

δ(3)(ri − rj) ≡ gδ(3)(ri − rj) , (2.2)

which is sometimes called Fermi approximation.

This formula is useful also because it allows to introduce a condition for the density

of a (bosonic) gas at low temperature which defines if its dilute or not, an it is

n(r)|as |3 � 1 . (2.3)

One of the greatest advantage of ultracold atoms is that this scattering length as that

define interactions among particles can be tuned by the mean of a magnetic field. This

is the so-called Fano-Feshbach, usuallu just Feshbach, magnetic resonance. At the

beginning Feshbach resonances were studied in nuclear systems [107–109] and years

later become a fundamental tool in atomic physics [110–112]. The theory of Feshbach

resonance leads to a scattering length as which depends onto the applied magnetic field:

as(B) = a0

(
1−

W

B − B0

)
, (2.4)

where B0 the center of the resonance and W its width. It is possible by the application of

an homogeneous magnetic field to control the atomic interaction from strongly attractive

to strongly repulsive. We notice that, although the resonance phenomenon is general

as derived from quantum mechanical reasoning, the parameter involved in (2.4) depends

on the specif atomic system under study [77].

2.2 Condensates dynamics: Gross Pitaevskii Equation

In this section we will take into account a system of bosons at T = 0K showing that

the condensate could be described by a single wave function, which plays the role of the

order parameter for the system, and to which we refer as the macroscopic wave function

of the condensate. Then we will derive the equation of motion for it, that will be similar

to a standard Schrödinger equation, but due to the interactions among particle it has a

nonlinear term.

In quantum mechanics a system composed by N particles is described by the following
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Hamiltonian:

H =

M∑
i=1

−
~2

2m
∇2
i + U(ri) +

1

2

N∑
i ,j=1

V (ri , rj) ≡
N∑
i=1

hi +
1

2

N∑
i ,j=1

V (ri , rj) , (2.5)

where U(ri) is the external potential which confines the atoms, V (ri , rj) is the interaction
potential between atoms and hi is a single particle Hamiltonian, i.e. an Hamiltonian

acting only onto the i-th particle. Notice that the consider just two body interactions.

Eq. (2.5) acts onto the total wave function of the N-body system, which we indicate by

Ψ(N) (r1, r2, . . . , rN). The total energy of the system is then expressible as a functional

of that wave function:

E[Ψ(N)] = 〈Ψ(N)|H|Ψ(N)〉 . (2.6)

From now on we will consider the ground state of the system, and we will assume that

Ψ(N)(r1, . . . , rN) is normalized to 1,∫
Ψ(N) (r1, . . . , r2) Ψ(N) (r1, . . . , r2) d3r1 . . . d

3rN = 1 , (2.7)

with Ψ(N) being the complex conjugate of Ψ(N).

To find the ground state energy we will use a variational approach [106] in which we

need to take into account that the total number of particle N is fixed. Because of this

prescription one has to recall the method of Lagrange multiplier and, supposed to work

with a canonic ensemble, it will be N that fixes the chemical potential µ. We therefore

obtain the free energy functional

Eµ

[
Ψ(N)

]
= 〈Ψ(N)|H − µN|Ψ(N)〉 . (2.8)

Now we search for a simple form of Ψ(N). By the means of mean field theories (also

known as Hartree method) the N-particle wave function will be factorized into the product

of N single particle wave functions that are not necessarily eigenstates of the respective

hi . We are dealing with bosonic system then this product of single particle functions needs

to be symmetrized in the proper way; in this case Ψ(N) will be a permanent of them. The

fundamental property of bosons is that there is no limitation to the occupation of a single

quantum state, so between the N function there could be ni (i = 0, 1, ldots, N) that

are equals and which describe the state ϕi . The total wave function Ψ(N) is therefore

the sum of all this possible combinations.

From basic theory of statistical mechanics it is possible to demonstrate that for

T < TBEC the ratios ni 6=0/N tends to zero in the limit of large N. On the other hand if

one counts the particles not in the ground state, i.e.
∑

i 6=0 ni , he will find a finite that

is smalled than N. All the remaining particle occupy the state with minimum energy. In

the case of a non interacting gas this behavior will be present also at the absolute zero,
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notice that also at that temperature there is a small non condensed fraction of atoms in

the system. Taking into account an ideal gas for T → 0K and N →∞, not only ni 6=0/N

tends to zero, but also
∑

i 6=0 ni/N → 0, which demonstrate that for an ideal Bose gas

at T = 0K all the particles are condensed in the ground state of the system.

The system we will take into account in all this thesis will be composed by weakly

interacting atomic gases so, having in mind what we have just find, we are allowed in

writing

Ψ(N) (r1, . . . , r2) =

N∏
i=1

ϕ0 (ri) , (2.9)

where each of the ϕ(ri) is normalized to 1,
∫
|ϕ0(ri)|2 d3ri = 1. Substituting (2.9) in

(2.5) we get

E = N

∫
d3r
~2

2m
|∇ϕ(r)|2 + U(r) |ϕ(r)|2 + g

N(N − 1)

2

∫
d3r |ϕ(r)|4 , (2.10)

in which we use the Fermi approximation for V (ri , rj). Because of (2.9), and due to the

fact that N0/N → 1 as T → 0 it is useful to define the system’s order parameter:

Φ(r) =
√
Nϕ0(r) , (2.11)

which is of course normalized to N and directly linked to the gas density

n(r) = |Φ(r)|2 . (2.12)

Inserting (2.11) in (2.10) the energy functional becomes

E[Φ] =

∫
d3r

[
~2

2m
|∇Φ(r)|2 + U(r) |Φ(r)|2 +

g

2
|Φ(r)|4

]
. (2.13)

To obtain the optimal form for Φ(r) we have to minimize the energy (2.13) with respect

to independent variations of Φ(r) and Φ(r), together with the prescription that the total

number of particles has to be kept constant. We will then write δE − µδN = 0, with

arbitrary variations of Φ and Φ∗. Let us impose

δE[Φ]

δΦ∗
− µ

δN

δΦ∗
= 0 , (2.14)

from which readily [
−
~2

2m
∇2 + U(r) + g |Φ(r)|2

]
Φ(r) = µΦ(r) . (2.15)

Eq. (2.15) is known as the stationary Gross-Pitaevskii equation, due to the fact that

both Gross [113, 114] and Piataevskii [115] had independently introduced it. It is a

nonlinear Schrödinger equation in which each atom feels a potential which is the sum of
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the external U(r) and of a term g|Φ(r)|2 which describes the mean field generated by all

the other bosons.

We have now stressed that Eq. (2.15) describe the properties of the condensate at

the equilibrium. Obviously there are an infinite number of cases in which it is important

to study the dynamics of the system, and then follow its evolution during the time. It

therefore necessary to find an equation like (2.15) but that will take into account the

time dependence of the wave function. A clean and rigorous way to do it is to apply the

least action principle

δS = δ

∫ t2

t1

Ldt = 0 , (2.16)

to the Dirac’s functional [103]

S =

∫
dt 〈Ψ(N)(t)|i~

∂

∂t
−H|Ψ(N)(t)〉 , (2.17)

where H is the N-particle Hamiltonian in (2.5), and

〈r|Ψ(N)(t)〉 =

N∏
i=1

ϕ(ri , t) .

Inserting this into (2.17) and applying (2.16) we get

i~
∂Φ(r, t)
∂t

=

[
−
~2

2m
∇2 + U(r) + g |Φ(r, t)|2

]
Φ(r, t) , (2.18)

where again in H we used V (ri , rj) = gδ(|ri − rj |).

2.3 From 3D to 1D systems

The great advantage of using ultracold atoms is not only determined by the possibility

of tuning the interactions, but also because there are very precise experimental technique

based on lasers and magnetic filed which create a series of different traps for the atoms.

Those traps creates not only different shapes and geometry, but the can also generates

system of different dimensionality. The idea is very simple: a cloud of atoms is three

dimensional, if we separate it in a stack planes which do not interact we have created an

ensemble of two dimensional system. Finally if those plans are cut in different slice we

get an array of one dimensional tubes.

Another possibility for generating a one dimensional system is to freeze the dynamics

of the system along two spatial directions, quantum mechanics demonstrate that this is

possible. Let us consider the Eq. (2.18), and define the confining potential U(ri) as the
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sum of three component:

U(r) = U(x) + U(y) + U(z) =
mω2

2

(
y2 + z2

)
+ V1D(x) , (2.19)

in principle along the y and z direction one could have different trapping frequencies

ωx,y , in that case one could recover expression (2.19) using an appropriate average of

the two frequencies, we use the same ω just for simplicity. Having divided the potential

into an harmonic part, in the (y , z) plane, and a radial part, along x allows us to factorize

the wave function as

Φ(x, y , z, t) = ψ(x, t)φ(z)φ(y) . (2.20)

Strictly speaking this is not possible, because the Hamiltonian is written as the sum

of different parts each depending on just one variable, the nonlinear term mixes the

three spatial direction. Although it has been demonstrated by an enormous amount

of theoretical papers but especially experiments, that for a strong enough harmonic

confinement Eq. (2.20) gives the right results. When ω has the proper value system

can populate just the ground state of U(y) and U(z) leading to a simple form

Φ(x, y , z) =
1

a⊥
√
π
e
− y2+z2

2a2
⊥ ψ(x) ,

where a⊥ =
√
~/mω is called oscillator’s length and is the characteristic dimension of the

harmonic confinement. Once we get it we just integrate over dydz and, after discarding

constant terms resulting from the integration, we come to

i~
∂ψ(x, t)

∂t
=

[
−
~2

2m

∂2

∂x2
+ U(x) + g1D |ψ(x, t)|2

]
ψ(x, t) , (2.21)

where in the nonlinear term appears the rescaled interaction strength

g1D =
g

2πa2
⊥
. (2.22)

2.4 Optical lattices and tight-binding approximation

Eq. (2.21) describes an infinite number of systems, depending on the specific form

of U(x). In this section will take into account one of the most used configurations

in experiments with ultracold atoms that is also implemented in experiments presented

in [87] which will be the subject of Chapter 4: optical lattices. Their are generated

by the superposition of two counter propagating laser beams, the electromagnetic fields

of which combine to create a standing wave that is perfectly periodic in space. This

is of great importance because the possibility of having periodic structure without any
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defects opens many and many new branches of research, in particular it allows to create

a link between ultracold atomic systems and condensed matter, in which the presence

of systems defined onto lattices is usual (e.g. the common crystal structure in solids).

Thus we have

U(x) = UOL(x) + V (x)

where V (x) is an arbitrary potential and UOL is the lattice potential

UOL(x) = s1Er1 cos2(k1x) , (2.23)

where we had introduced the following parameters:

• Er1: recoil energy. It is a quantity with the dimensions of an energy, which gives

the right dimensions to all UOL(x): Er1 = ~2k2
1/2m, m being the mass of the

atomic species;

• s1: dimensionless parameter measuring the strength of UOL(x);

• k1: wave vector of the laser beam generating the potential.

The index 1, which has no significance here, will become useful in the following.

As described in Appendix A, in the presence of such a periodic potential one can

implement a formalism based onto the Wannier functions wn,j(x), which we recall are

eigenstate of the periodic potential and they are strongly localized around each lattice

site. For deep lattice, i.e. large s1, one can restrict to the first energy band of the system,

due to the fact that the gap between lowest and first excited band are so large compared

with the energy scale of the problem that transition between them are forbidden. In that

case we will drop out the band-index n and just indicate the functions with wj(x). We

recall that the wj(x)’s form a orthonormal and complete set of functions [68,77,80,91],

so it is possible to decompose any functions over them

ψ(x) =
∑
j

ψjwj(x) , (2.24)

or, with Dirac’s notation

|ψ〉 =
∑
j

ψj |wj 〉 . (2.25)

Using the completeness of |wj〉 we have for the Hamiltonaian of the system

H =
∑
i ,j

|wi 〉〈wi |H|wj〉〈wj | . (2.26)
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Let us now consider in slightly more details the matrix elements 〈wi |H|wj〉, discarding
for a while the non linear term in Eq. (2.21). From Eq. (2.26) we have

〈wi |H|wj 〉 =

∫
dx w ∗i (x)

[
−
~2

2m

d2

dx2
+ UOL(x)

]
wj(x)+

+

∫
dx w ∗j (x)V (x)wj(x) . (2.27)

To go further we need to introduce some other hypothesis, which are common in theory

and moreover well satisfied in the ultracold atoms experiments important for this work:

one is the restriction to the lowest band, also known as tight-binding approximation, the

other is considering hopping only between nearest neighboring sites of the lattice. Both

of them are fulfilled in sufficiently deep lattice, where barriers between sites are so high

that prevent long range tunneling. Within this framework Eq. (2.27) becomes [77]

〈wj |H|wj〉 ≈ ε0δi j − JEr1δi ,j±1 + δi j

∫
dx, V (x)|wi(x)|2 . (2.28)

Here it appears the tunneling matrix element between neighboring sites J1. Numer-

ical calculations gives a good estimation of J in terms of s1 [68, 116]

J ' 1.43 s0.98
1 exp (−2.07

√
s1) , (2.29)

when measured in units of Er1. In Eq. (2.28) the last term corresponds to the discrete

version of the potential energy and is clearly diagonal in the site index: Vi j = δi jVj , and

it varies between system depending onto the V (x) used.

Combining Eq. (2.26) and Eq. (2.28) we get

H = −
∑
j

(|wj 〉〈wj+1|+ |wj+1〉〈wj |) + Vj |wj〉〈wj | , (2.30)

which is the Hamiltonian for the tight-binding model of the standard Schrödinger equa-

tion. Using the usual i∂t |ψ〉 = H|ψ〉 together with Eq. (2.25) and Eq. (2.26) we come

to

i
∂ψj(t)

∂t
= − [ψj+1(t) + ψj−1(t)] + Vjψj(t) (2.31)

that is the Discrete Schrödinger Equation (DSE).

We now come back to the interaction term in (2.13),
∫

(g/2)|Φ(x, t)|4dx . Introduc-
ing in the integral the Wannier decomposition for Φ(x, t) it readily find that [80]

G

2

∑
j

|ψj |4 ,

1Sometimes K is used instead of J (see for example (1.22)). In this thesis we will use both of notation
freely, if there will be misunderstanding we will specify the choice of notation at the right moment.
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with

G = g1D

∫
|wj(x)|4dx .

If one consider a function normalized to N instead of 1 (as Φ(x, t) in (2.21)) and defines

U =
NG

JEr1
, (2.32)

the linear Hamiltionian in Eq. (2.30)) and Eq. (2.31) become

H =
∑
j

−
(
ψ∗j ψj+1 + ψjψ

∗
j+1

)
+ Vj |ψj |2 +

U

2
|ψj |4 , (2.33)

and

i
∂ψj(t)

∂t
= − (ψj+1(t) + ψj−1(t)) + Vjψj(t) + U |ψj(t)|2 ψj(t) , (2.34)

which is known as Discrete Nonlinear Schrödinger Equation (DNLS) [68,77,103,117] and

is the prototype equation for the study of ultracold atomic system loaded onto periodic

optical lattices in the presence of also a potential V (x).

As we just said Eq. (2.34) describes different systems depending on Vj , here we

restrict to just the potential that will be considered in the following, and that we already

described in 1.2.1: the quasi-periodic potential and the Anderson model.

The latter is simple, because it is already defined as a discrete model since is first

appearance [2]:

Vj ∈ [−W,W ] Anderson Model . (2.35)

In the case of the quasi-periodic potential we will derive explicitly the form of Vj . We

have shown in 1.2.1 that a qausi-periodic potential is a superposition of a deep lattice

V1 cos2(k1x), which is the one that defines the spatial discretization and one uses to get

Eq. (2.34), and a secondary lattice

s2Er2 cos2 (k2x + θ) , (2.36)

that plays the role of V (x) in Eq. (2.28). Here we have expressed the secondary lattice

amplitude V2 in (1.12) as the product of an dimensionless strength s2 and a recoil energy

Er2 = ~k2
2/2m. Remembering that cos2(x) = [cos(2x) + 1]/2, and neglecting the

constant terms in (2.28), one gets [68,77]

Vj =
∆

J
cos (2πβj + ϑ) Quasi-periodic model , (2.37)
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where the term ∆ is proportional to the strength of the second lattice, i.e. to the disorder:

∆ =
s2Er2
2Er1

exp

(
−
β2

√
s1

)
, (2.38)

and in (2.37) we have measured energies in units of JEr1. When inserted in Eq. (2.33)

it reads

H =
∑
j

−
(
ψ∗j ψj+1 + ψjψ

∗
j+1

)
+ λ cos (2πβj + ϑ) |ψj |2 +

U

2
|ψj |4 , (2.39)

where we define λ = ∆/J for convenience. Eq. 2.39 is the Hamiltonian describing

interacting particles in quasi-periodic potentials, the correspondent linear problem (U =

0) is known as Aubry-André model [55, 67,68,77,80,90].

2.5 Anderson localization in quasi-periodic lattice

In 1.2.1 we have included in the class of disordered potentials also quasi-periodic

lattices, although they do not show properties typical of purely random systems (see Fig.

(1.6)). The choice of considering them in this way comes from the seminal paper of

Aubry and André [67] in which authors define the model we reported in Eq. (2.39) in

the case of U = 0:

− (ψj−1 + ψj+1) + λ cos (2πβj + ϑ)ψj = Eψj . (2.40)

In that paper they demonstrate that this kind of potential lead to an exponential local-

ization of its eigenstates, i.e. Anderson localization set in also in quasi-periodic lattices,

but with the important remark that it takes place only above a certain value of λ.

In [80] the demonstration given by Aubry and André is reported, and we follow the

same scheme just to give some important results that will be frequently used in all the

rest of the thesis. The key point is that Eq. (2.40) shows a self-duality, it means that

defining a new field ϕl through [80]

ψj = e iθj
+∞∑
l=−∞

ϕl e
i l(2παj+ϑ) ,

ϕl = e−iϑl
+∞∑
j=−∞

ψj e
−i l(2παl+θ) , (2.41)

one get the equation

− (ϕl−1 + ϕl+1) +
4

λ
cos(2παl + θ)ϕl =

2E

λ
ϕl . (2.42)
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Figure 2.1: Energy spectra for periodic potential (red lines) and quasi-periodic lattices
(blue lines). From left to right we consider increasing disorder λ = 3, 7 and 10.
The peculiarity of quasi-periodic lattices is that each band (here just one because we are
in the tight-binding limit) presents an inner structure with bands and gaps as well as the
overall spectrum.

Eq. (2.42) clearly has the same form of Eq. (2.40) provided that one makes the right

substitutions
4

λ
→ λ , ϕl → ψj ,

2E

λ
→ E , θ → ϑ .

One important consequence of this self-duality is that if ψl is localized ϕl is extended, and

vice versa. Because we want to investigate localization properties we now recall Thouless

formula in Eq. (1.27), which implies that we have also to determine the density of states

for the quasi-periodic lattice [101]. The density of states follows from the integrated

density of states by applying the usual formula ρ(E) = ∂N (E)/∂E, where ρ(E) is the

density of states and N (E) the integrated density of states. In [67] authors give a direct

derivation of those quantities form which they get the Lyapunov exponent

γλ,α(E) = γ 4
λ
,α

(
2E

λ

)
+ ln

(
λ

2

)
. (2.43)

In Eq. (2.43) α is assumed to be irrational, and the indexes clearly show the self-duality

of the systems, relating γ for a given disorder strength λ and energy E to the same

in the case of disorder 4/λ and energy 2E/λ. In Fig. (2.1) we report some examples

of energy spectra and in Fig. (2.2) the correspondent densities of states, for some

values of λ. It is important to notice that with quasi-periodic potentials energy spectrum

shoes a peculiar behavior: a single band present an inner structure which recalls the

one of the overall spectrum, i.e. several allowed energies separated by forbidden gaps.

Amplitude and number of those gaps varies with λ. Now, the localization properties

for the Aubry-André model can be derived from Eq. (2.43) with the help of some simple

assumptions. First of all γ(E) is a non-negative number, and it vanishes only in the case

of extended states; then we recall the result of few lines above, i.e. the specular behavior

of eigenstates for the self-dual systems: if for the disorder λ eigenstates of energy E is

localized, the eigenstate relative to 2E/λ in the disorder 4/λ is extended. It means that

if γλ,α(E) has finite value, γ4/λ,α(2E/λ) is zero, and vice versa. We are considering the
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Figure 2.2: Density of states for the same potentials of first row. From left to right we
consider increasing disorder λ = 3, 7 and 10.

Figure 2.3: Density plot for the ground state of Eq. (2.40). It is clear the transition
between extended states for λ < 2 and localized states for λ > 2.

disorder defined by λ, thus we have to assume γ4/λ,α(2E/λ) = 0, from which

γλ,α(E) = ln

(
λ

2

)
,

and the positivity of the Lyapunov exponent require λ > 2. On the contrary, for γλ,α = 0

we get

γ 4
λ

(
2E

λ

)
= ln

(
2

λ

)
,

which implies λ < 2. Following the idea in [68, 77, 80] we report in Fig. (2.3) a density

plot of the ground state of Eq. 2.40 for increasing λ. From there it is clear that λ = 2 is

a threshold dividing extended states, below it, from localized states, above it. These two

results are fundamental for treating quasi-periodic systems. They state that the Aubry-

André model undergoes a transition from extended to localized eigenstates at λ = 2. All

eigenstates are extended for λ < 2 and exponentially localized for λ > 2. Moreover it is

evident that, once localized, eigenstates posses all the same localization length, which

does not depend onto the energy and that is

Lloc =
1

γ
=

1

ln (λ/2)
. (2.44)
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Figure 2.4: Ground state of Eq. (2.40) for increasing disroder. From left to right λ = 3,
7 and 10. Black lines correspond to fit with ρj ∝ exp[−2|j − j0|/Lloc ] with Lloc defined
in (2.44).

In Fig. (2.4) we plot the ground state of Eq. (2.40) for some different λ, together

with a fit of its tails showing that they are proportional to exp[−|j − j0|/Lloc ], with Lloc
defined in Eq. 2.44.

2.6 Experimental observations of Anderson localization

We have explained in the Introduction that direct observation Anderson localization is

quite a difficult problems, due to the fact that in real systems many aspects play a role in

contrasting it or simply there are some other effects that can not be avoided and so the

bare localization is not visible. Despite this localization with classical waves was observed

in many different physical systems: from ultrasound waves to light. Two of the main

problems are the control of the disorder, which is generally not simple to engineer, and

(regarding solid state physics) interactions among particles, that can not be avoided and

can play important roles. In this chapter we have shown how ultracold atomic systems

are very useful exactly because both external potentials and interactions between atoms

are controllable with an high level of confidence. So they became favorite candidates

in searching for Anderson localization, and the researches had lead to successful results.

Anderson localization was finally observed with matter waves by two different groups

in 2008, almost at the same time: the group of Alain Aspect, in Paris, working with

speckles [20] and the group of Massimo Inguscio in Florence, working with quasi-periodic

lattices [19]. Both the experiments creates one dimensional systems in which the atoms

are initially trapped by an harmonic potential; then it is switched-off thus they can expand

in the presence of the disordered potential. The crucial point is that during the expansion

interactions between atoms are driven as close as possible to zero. The appearance of

Anderson localization was searched by looking at the whole expanding clouds: first of all

to its spatial width, which stops its increasing when localization set in, and then to the

density profile of the wave packet. The exponential decay of the tails is the fingerprint

of Anderson localization mechanism. In Fig. (2.5), (2.6) and Fig. (2.7) we report some

figures taken from original articles [19,20] in which experimental results give a clear proof

of Anderson localization.
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Figure 2.5: Left panel: sketches of the experiments on ultracold atoms in the presence
of speckle potentials. An initially harmonic-trapped condensate (a) is let free to expand
along the z direction after a sudden shut-down of the trapping (b). Right panel: semi-
log plot of the atomic cloud density profile. The exponential localization is clear. In
the inset author plot the spatial width of the atomic distribution, the show that in the
presence of the disorder (VR 6= 0) the width stops its increasing and remains constant,
meaning that the whole cloud it is not expanding any more.
Figures taken from [20].

Figure 2.6: Left panel: measured localization length for the expanding atomic distri-
bution in the presence of a speckle potential. The fact the it becomes stationary is a
signature of Anderson localization. Right panel: comparison between measured Lloc
and its theoretical predictions for increasing disorder. The agreement between experi-
mental data and theoretical model are good.
Figures taken from [20].
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Figure 2.7: Left panel: experimental observation of the expansion of an ultracold atomic
cloud in the presence of a quasi-periodic lattice. Each rows correspond to a different
disorder strength, increasing for top to bottom. Right panel: density profile fitting for
two different values of disorder. ∆ = J in the left figure, ∆ = 15J in the right. Again,
the linear behavior in this semi-log scale is the fingerprint of Anderson localization.
Figure taken from [19].
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3
Anderson localization:

eigenstates interference picture

Quantum mechanics is sometimes also called wave-mechanics, stressing the fact that

matter could show behaviors that are peculiar of classical waves. One the most important

phenomena is the interference, which also play a fundamental role in the superposition

principle (one of the axioms of quantum mechanics): it has a very deep influence in the

dynamics of a quantum system, even if one thinks about a single particle.

This will be the subject of this chapter: we put our attention onto one dimensional

systems, showing how much the quantum interference between eigenstates of a system is

important in the evolution of a wave packet. In particular we are interested in the role it

plays in the case of disordered systems, where the phenomenon of Anderson localization

(AL) takes place.

3.1 Generalities

Our approach is based on the standard rules of linear quantum mechanics (QM),

which can be easily find in any textbook (e.g. [118,119]).

Let us consider a quantum system, the dynamics of which is described by the Hamil-

tonian operator Ĥ, and suppose the we are able to diagonalized it (analytically or nu-

merically it does not matter):

Ĥφn(x) = Enφn(x) (3.1)

or, with the Dirac notation,

Ĥ|n〉 = En|n〉 . (3.2)

Now consider a wave packet described by the wave function |ψ(t)〉 (ψ(x, t) in the coor-

dinate representation): we know that it can be always decompose onto a set of states

35
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which forms an orthonormal basis for its Hilbert space, in particular the eigenstates of

Ĥ form such a basis. Then at a generic time t we have

|ψ(t)〉 =
∑
n

cn(t)|n〉 ; (3.3)

notice that all the time dependence is contained in the coefficients

cn(t) = 〈n|ψ(t)〉 =

∫ +∞

−∞
φ∗n(x)ψ(x, t) dx .

To find how those evolves in time one needs to use the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 . (3.4)

Inserting Eq. (3.3) into Eq. (3.4) one obtains

i~
∑
n

ċn(t)|n〉 =
∑
n

cn(t)En|n〉 ,

where we use Eq. (3.1), remembering that Ĥ is a linear operator and acts only on |n〉,
while cn(t) are c-numbers; dot stands for time derivative. Multiplying both sides of the

previous equation by 〈m| one get i~ċm(t) = Emcm(t), the solution of which turns out

to be

cm(t) = cm(0)e−
i
~Emt . (3.5)

The initial condition cm(0) is found from Eq. (3.4) setting t = 0

cm(0) = 〈m|ψ(0)〉 . (3.6)

For our purpose it is convenient to write those coefficient in the modulus-phase repre-

sentation

cm(t) = |cm(t)|e iϕm(t) ;

looking at Eq. (3.5) it becomes

cm(t) = |cm(0)|e iϕm(0)e−iEmt/~ = |cm(0)|e iϕm(t) .

In the last equation we set

ϕm(t) = ϕm(0)−
Em
~
t . (3.7)

Here we get a first important result: the phase of each eigenstate evolves in a de-

terministic way, growing linearly with respect to the time, and each eigenstate evolves

independently from the others, i.e. they are not coupled.
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Putting together all these results

|ψ(t)〉 =
∑
n

|cn(0)|e iϕn(t)|n〉 . (3.8)

Eq. (3.5) gives us the wave function, which brings all the physical information about

the particle, but in real world (e.g. in the experiments) one cannot have direct access to

it, usually one look to something related to it. In our case we will consider the density

distribution

n(x, t) = |ψ(x, t)|2 = |〈x |ψ(t)〉|2 .

By the use of Eq. (3.5) we directly calculate

n(x, t) =
∑
n,m

|cn(0)||cm(0)|e i∆ϕnm(t)φ∗m(x)φn(x)

=
∑
n

|cn(0)|2|φn(x)|2 + 2
∑
m<n

|cn(0)||cm(0)|φ∗m(x)φn(x) cos (∆ϕnm(t))

≡ nD(x) + nof f (x, t) , (3.9)

we have defined

∆ϕnm(t) = ϕn(t)− ϕm(t) . (3.10)

In the last rows we retain only the real part of exp[i∆ϕnm(t)] because so it is n(x, t).

Eq. (3.9) is the second fundamental result we obtain. The density could be divided

into two parts: one (i.e. nD(x)) which is stationary, and that we call diagonal due to

fact the the sum defining it goes over all the eigenstates without mixing them; and one

that we call "off-diagonal", because there is the mixing of different eigenstates in it and

which brings all the informations about the difference in phases between eigenstates.

We thus decompose the density into a part which does not evolve in time. i.e. keep

its shape constant, and a one which evolves due the interference between eigenstates

and so which is responsible of all the changes observed in the density profile.

3.2 Gaussian wave packets in harmonic potential

We here apply our approach to a couple of problems the solutions of which is already

known, trying to make the meaning of Eq. (3.9) clearer for the reader. We will study

the dynamics of a Gaussian wave packet in the presence of an harmonic potential, in

particular we will focus onto dipole oscillations and breathing dynamics. Thus Eq. (3.9)

becomes

n(x, t) =
∑
n

|cn(0)|2|φn(x)|2 + 2
∑
m<n

c∗m(0)cn(0)φ∗m(x)φn(x) cos

(
En − Em
~

t

)
;
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where it is pointed out that the time dependence depends onto the energy difference

between eigenstates. Recalling that Ĥ is a linear Hermitian operator, its eigenstates φn
and eigenvalues En can always chosen to be real; moreover we assume that the initial

wave packet is described by a real wave function: because of this all the cn(0)’s are real,

then

n(x, t) =

+∞∑
n=0

c2
n (0)φ2

n(x) +

+∞∑
n=0

+∞∑
m=0
m<n

Anm(x) cos (ωn,mt) ,

where we have introduced the frequencies ωn,m = (En − Em)/~ and

Anm(x) = 2cn(0)cm(0)φn(x)φm(x) . (3.11)

Because n > m we can write

En − Em = En − En−1 + En−1 + . . .+ En−(n−1)+m − Em ,

then, dividing by ~,

ωnm =

n−1∑
i=m

ωi+1,i . (3.12)

At the end we have:

n(x, t) =

∞∑
n=0

c2
n (0)φ2

n(x) +

∞∑
n=1

∞∑
m=0
m<n

Anm(x) cos

[(
n−1∑
i=m

ωi+1,i

)
t

]
. (3.13)

3.2.1 Harmonic oscillator spectrum

Here we briefly summarize some results about the spectrum of a 1D harmonic oscil-

lator, giving all the useful formulae we need. The Hamiltonian is

Ĥ =
~2

2m

d2

dx2
+
mΩ2

2
x2 , (3.14)

which can be rescaeld by measuring energy in units of ~Ω and lengths in unit of
√
~/mΩ,

so Eq. (3.14) becomes

Ĥ = −
1

2

d2

dx2
+
x2

2
. (3.15)

The spectrum of Eq. (3.15) is known exactly, the eigenfunctions are

φn(x) =

√
1

2nn!

1

π1/4
Hn(x)e−x

2/2 , (3.16)

and the corresponding eigenenergy

En = n +
1

2
, (3.17)
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with n ≥ 0 and Hn(x) being the Hermite’s polynomials.

3.2.2 Formal structure

As first we set 1/Ω as the unit of measurement for the time, and define τ = tΩ.

We want to study how much the quantum interference is important for the dynamics

of n(x, τ) by the means of Eq. (3.13), in which we insert Eq. (3.16), while from Eq.

(3.17) we have

ωnm = n −m . (3.18)

This shows immediately that, in that specific case, there are a lot of frequencies that

are equal.

Defining q = n −m > 0 (n > m), we obtain

n(x, τ) =

∞∑
n=0

|cn(0)|2|φn(x)|2 +

∞∑
n,q=1
n≥q

Anq(x) cos(qτ) ; (3.19)

with

Anq(x) = 2cn(0)cn−q(0)φn(x)φn−q(x) , (3.20)

and n start from 1 because q must be greater then 0 and for n = 0 this condition cannot

be satisfied. If one expand the second summation in (3.19) finds

A11 cos(τ) +A22 cos(2τ) +A21 cos(τ) +A33 cos(3τ) +A32 cos(2τ) +A31 cos(τ) + . . .

so Eq. (3.19) could be rearranged in

n(x, τ) =

∞∑
n=0

|cn(0)|2|φn(x)|2 +

∞∑
q=1

( ∞∑
n=q

Anq(x)

)
cos(qτ) .

Again, we define

Cq(x) =

∞∑
n=q

Anq(x) , (3.21)

and finally:

n(x, τ) =

∞∑
n=0

|cn(0)|2|φn(x)|2 +

∞∑
q=1

Cq(x) cos(qτ) . (3.22)

We stress that, with this convention, Cq(x)’s ensure that at τ = 0 the density is properly

n(x, 0) = |ψ(x, 0)|2.
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3.2.3 Dynamics of the mean values

We have just found a general recipe to determine the density at any time τ > 0.

Now it is useful to calculate how some quantities evolve in time, in particular we look to

the mean position of the wave packet and to its width. It will be easier to work with the

formalism of creation and destruction operators:

a|n〉 =
√
n|n − 1〉 , a+|n〉 =

√
n + 1|n + 1〉 , (3.23)

and they obey the standard bosonic commutation rule

[a, a+] = 1 . (3.24)

Thus Eq. (3.15) becomes

Ĥ = n̂ +
1

2
, (3.25)

where a+a|n〉 ≡ n̂|n〉 = n|n〉 is the number operator. The Schrödinger equation turns

out to be

Ĥ|n〉 = En|n〉 =

(
n +

1

2

)
|n〉 ;

also other operators can be written in function of a and a+, in particular the position

operator x :

x =
a + a+

√
2

. (3.26)

With a little of algebra we will now determine the mean values of x(τ) and x2(τ), and

then we turn to the width σ(τ) =
√
〈x2(τ)〉 − 〈x(τ)〉2.

Starting from x one has

〈x(τ)〉 = 〈ψ(τ)|x |ψ(τ)〉 =

∞∑
m,n=0

cm(0)cn(0) e−i(n−m)τ 〈m|
a + a+

√
2
|n〉 . (3.27)

The mean value in the last expression are readily found by the means of Eq. (3.23),

together with the orthogonality property of |n〉:

〈m|a|n〉 =
√
n〈m|n − 1〉

√
nδm,n−1 , 〈m|a+|n〉 =

√
n + 1〈m|n + 1〉

√
nδm,n+1 .

Inserting these expression in (3.27) we find:

〈x(τ)〉 =

∞∑
n=0

cn−1cn√
2

√
n e−iτ +

cn+1cn√
2

√
n + 1 e iτ .

At this point we retain only the real part of the previous expression because we are dealing
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with a real quantity:

〈x(τ)〉 =

[ ∞∑
n=0

(
cn−1cn√

2

√
n +

cn+1cn√
2

√
n + 1

)]
cos τ .

Because n ≥ 0 the first term of the summation takes sense only for n ≥ 1, while setting

n + 1 = m the second series runs from m = 1 to m =∞, i.e.

∞∑
n=1

cn−1cn√
2

√
n +

∞∑
m=1

cmcm−1√
2

√
m ,

thus, finally

〈x(τ)〉 =

( ∞∑
n=1

√
2ncn−1(0)cn(0)

)
cos τ ≡ 〈x(0)〉 cos τ . (3.28)

Eq. (3.28) give us a first important result: in a harmonic potential the average of the

position oscillates harmonically in time with amplitude fixed by the initial condition.

Similar arguments help us to estimate the mean value of x2(τ). We have to consider

x2 =

(
a + a+

√
2

)2

=
a2 + (a+)2 + aa+ + a+a

2
=
a2 + (a+)2 + 2a+a + 1

2
,

where use Eq. (3.24). Thus

〈x2(τ)〉 =

∞∑
n,m=0

cm(0)cn(0)

2
e−i(n−m)τ 〈m|a2 + (a+)2 + 2a+a + 1|n〉 , (3.29)

applying the properties of a and a+ we obtain

〈x2(τ)〉 =

∞∑
n=0

cn−2cn
2

√
n
√
n − 1 e−2iτ +

cn+2cn
2

√
n + 1

√
n + 2 e2iτ +

|cn|2

2
(2n + 1) .

Taking the real part of it and rearranging the second series in the r.h.s. by using the

same arguments that leads to Eq. (3.28), it becomes

〈x2(τ)〉 =

∞∑
n=0

|cn(0)|2
(
n +

1

2

)
+

( ∞∑
n=2

cn−2(0)cn(0)
√
n(n − 1)

)
cos(2τ) (3.30)

3.2.4 Dipole oscillations

Here we study the dynamics of an initial Gaussian wave packet, centered in α 6= 0.

Under these conditions the system shows the so-called dipole oscillations: the density

profile just oscillates harmonically keeping its shape unchanged.
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Initial wave-function

For simplicity, but without loosing generality, we choose as initial function ψ(x, 0)

the ground state of Eq. (3.15), which is a Gaussian, shifted by α 6= 0:

ψ(x, 0) =
1

π1/4
exp

[
−

(x − α)2

2

]
. (3.31)

Projection

Now we put Eq. (3.31) and Eq. (3.16) in Eq. (3.5), which returns out

cn(0) =

∫ ∞
−∞

φ∗n(x)ψ(x, 0)dx

=

√
1

2nn!

e−α
2/4

√
π

∫ ∞
−∞

e−x
2

exp

[
2
(α

2

)
x −

(α
2

)2
]
Hn(x)dx .

Using the generating function

e2tx−t2

=

∞∑
n=0

Hn(x)tn

n!

together with the previous formulae we come to

cn(0) =

√
1

2nn!

e−α
2/4

√
π

∞∑
m=0

1

m!

(α
2

)m ∫ ∞
−∞

e−x
2

Hn(x)Hm(x) ,

and the integral could be solved recalling Hermite’s polynomials obey a generalized or-

thogonality relation: ∫ ∞
−∞

e−x
2

Hn(x)Hm(x) = 2mm!
√
πδmn .

At the end one obtains:

cn(0) =

√
1

2nn!

e−α
2/4

√
π

∑
m=0

αm

2mm!
2mm!

√
πδmn =

αn√
2nn!

e−
α2

4 . (3.32)

Constructing ψ(x, τ) at any time

Now we are able to determine the wave-function at any time τ > 0. Inserting Eq.

(3.16), Eq. (3.17) and Eq. (3.32) in the series which defines ψ(x, τ) one obtains

ψ(x, τ) =
1

π1/4
e−

α2

4 e−
x2

2 e−i
τ
2

∞∑
n=0

Hn(x)(α/2)n

n!
e−inτ .
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The sum of the last series is quite hard to find, so we evaluate it with the help of

mathematical software which gives

∞∑
n=0

Hn(x)yn

n!
e−inτ = exp

[
e−2iτ (2e iτx − y)y

]
,

that is just our case with y = α/2. Thus we come to

ψ(x, τ) =
1

π1/4
exp

{
−

1

2

[
iτ + x2 +

α2

2

(
1 + e−2iτ

)
− 2e−iταx

]}
,

which, after some simple calculations, takes the following form:

ψ(x, τ) =
1

π1/4
exp

[
−

(x − α cos τ)2

2

]
e i[τ−(α2 cos τ−2αx) sin τ] , (3.33)

where we separate the modulus and the phase of the complex wave function.

Because we are interested in the dynamics of the density we have to consider the

squared modulus of Eq. (3.33)

n(x, τ) = |ψ(x, τ)|2 =
1√
π
e−(x−α cos τ)2

, (3.34)

and then, comparing Eq. (3.34) with the initial density

n(x, 0) = |ψ(x, 0)|2 =
1√
π
e−(x−α)2

, (3.35)

it seems evident that n(x, τ) oscillates back and forth periodically around α, due to

the factor α cos τ , conserving its Gaussian shape. This behavior it just that one of a

classical body subjected to an harmonic force, with initial condition x(τ = 0) = α and

ẋ(τ = 0) = 0. Its motion is exactly the harmonic oscillations we found in (3.34). All

this results are reported in Fig. (3.2).

We want to discuss these result also under the light of Eq. (3.28), to demonstrate

that all our approaches are equivalent. First we evaluate

〈x(0)〉 =

∞∑
n=1

√
2n cn−1(0)cn(0) ,

by the means of Eq. (3.32):

〈x(0)〉 =

∞∑
n=1

√
2n

αn−1√
2n−1(n − 1)!

e−
α2

4
αn√
2nn!

e−
α2

4

= αe−
α2

2

∞∑
m=0

(α2/2)m

m!

= α .
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Figure 3.1: |cn(0)|2 vs. n for different values of α from Eq. (3.32). While α increases,
meaning that ta central peak of n(x, 0) is moved away from the minimum of harmonic
potential (here at x = 0), more and more eigenstates have to be taken into account in the
decomposition of |ψ(0)〉. The number of eigenstates involved is in principle infinite, but
in practical term it is determined by the normalization 〈ψ(0)|ψ(0)〉 =

∑
n |cn(0)|2 = 1.

We truncate the summation at a certain nmax when the normalization is approximately
1.

Figure 3.2: Black line correspond to the initial state (3.35) with α = 2. Red lines
represent (3.34) at different times.
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At the end Eq. (3.28) becomes

〈x(τ)〉 = α cos τ , (3.36)

that is exactly what we found before. The same result can be derived from (3.34) by

〈ψ(τ)|x |ψ(τ)〉 =

∫ ∞
−∞

x |ψ(x, τ)|2 dx = α cos τ ,

which coincides with (3.36).

Moreover we want to demonstrate that, while the density oscillates, its profile is kept

constant. This can be done by calculating the width of the wave packet and checking

that it is constant in time. From Eq. (3.30) we have:

〈x2(τ)〉 =

∞∑
n=0

α2n

2nn!
e−

α2

2

(
n +

1

2

)
+

∞∑
n=2

[
αn−2αne−

α2

2

√
n(n − 1)√

2n−2(n − 2)!
√

2nn!

]
cos(2τ)

=

∞∑
n=0

α2n

2nn!
e−

α2

2

(
n +

1

2

)
+ +e−

α2

2 cos(2τ)

∞∑
n=2

[
(α2/2)n−1

(n − 2)!

]
.

The time independent part leads to

∞∑
n=0

α2n

2nn!
e−

α2

2

(
n +

1

2

)
= e−

α2

2

∞∑
n=0

1

(n − 1)!

(
α2

2

)n
+
e−

α2

2

2

∞∑
n=0

1

n!

(
α2

2

)n
=

α2

2
+

1

2
;

while the second summation gives

e−
α2

2 cos(2τ)

∞∑
n=2

[
(α2/2)n−1

(n − 2)!

]
= e−

α2

2 cos(2τ)
α2

2

∞∑
m=0

[
(α2/2)m

m!

]
= α2 cos2 τ −

α2

2
.

All together, these two results lead to

〈x2(τ)〉 =
α2

2
+

1

2
+ α2 cos2 τ −

α2

2
=

1

2
+ α2 cos2 τ .

As before, we can also find this result by the use of Eq. (3.34):

〈ψ(τ)|x2|ψ(τ)〉 =

∫ ∞
−∞

x2 |ψ(x, τ)|2 dx =
1

2
+ α2 cos2 τ .

Once we have an exact expressions for both 〈x(τ)〉 and 〈x2(τ)〉 is easy to obtain

σ(τ) =
√
〈x2(τ)〉 − 〈x(τ)〉2 =

√
1

2
+ α2 cos2 τ − (α cos τ)2 =

√
2

2
, (3.37)
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that is constant and equal to the initial width of the Gaussian density shape.

Focusing on interference

We now want to obtain the previous results using the formalism of (3.22). Inserting

(3.16) and (3.32) in (3.19) we obtain:

Anq(x) = 2
e
−
(
x2+ α2

2

)
√
π

(α
2

)2n−q Hn(x)Hn−q(x)

n!(n − q)!
. (3.38)

And using (3.38) in (3.21) we found for (3.22)

n(x, t) =

∞∑
n=0

e
−
(
x2+ α2

2

)
√
π

(
αn

2nn!

)2

[Hn(x)]2 +

∞∑
q=1

Cq(x) cos(qτ) ; (3.39)

We determine numerically each term, and report the results in Fig. (3.3). In that

figure we can directly see what happens to the density while it evolves in time: the

diagonal part nD(x) is fixed and does not evolve with time; on the other hand the off-

diagonal part changes and if look at a specific point x it takes both positive or negative

values, meaning that the interference between eigenstates could be either constructive

or destructive. The superposition of these two parts leads at the end to a density profile

n(x, τ) which is exactly the one we derived in Eq. (3.34).

3.2.5 Breathing modes

Here we study how a generic Gaussian wave packet of initial width σ and centered

around x = 0 will evolve once it’s put on an harmonic potential.

3.2.6 Initial wave function

For our proposal we choose the following wave function:

ψ(x, 0) =
1√
σ
√

2π
exp

[
−
( x

2σ

)2
]
, (3.40)

which leads to the initial density profile

n(x, 0) =
1

σ
√

2π
exp

(
−
x2

2σ2

)
, (3.41)

that is normalized to 1.
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Figure 3.3: Blue line: initial density in Eq. (3.35). Black line: n(x, τ) from Eq. (3.34).
Red line: n(x, τ) from Eq. (3.39). Orange line: diagonal part of the density, nD(x).
Green line: off-diagonal (interference) part of (3.39). Notice that black and red lines
are always superimposed, confirming that it is the interference term that determine the
density profile at each steps. From the top left panel: τ = 0, π4 ,

π
2 ,

3π
4 , π, 5π

4 , 3π
2 , 7π

4 ,
2π. In each panel we have α = 2.
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3.2.7 Finding initial coefficients

As before we start by calculating

cn(0) =

∫ ∞
−∞

φn(x)ψ(x, 0) dx =
1

2
1
4

√
σπ

√
1

2nn!

∫ ∞
−∞

e−α
2x2

Hn(x) dx , (3.42)

where we set α2 = (1 + 1/2σ2)/2. To solve the integral we expand the Hermite’s

polynomial in series of x , by using

Hn(x) = n!

b n2c∑
m=0

(−1)m

m!(n − 2m)!
(2x)n−2m ,

where
⌊
n
2

⌋
means n/2 for n even and (n − 1)/2 for n odd. Eq. (3.42) becomes

cn(0) =
1

2
1
4

√
σπ

√
1

2nn!
n!

b n2c∑
m=0

(−1)m

m!(n − 2m)!

∫ ∞
−∞

e−α
2x2

(2x)n−2m dx

Because the Gaussian is an even function and the parity of the Hermite’s polynomials is

(−1)n the integral in Eq. (3.42) is nonzero only for n even. Therefore we are allowed to

consider n = 2k with k ∈ N and in the previous summation m goes from 0 to n/2. The

expression for cn(0) turns out to be

c2k =
1

2
1
4

√
σπ

√
1

22k(2k)!
(2k)!

k∑
m=0

(−1)m

m![2(k −m)]!

∫ ∞
−∞

e−α
2x2

(2x)2(k−m) dx ,

Setting q = k − m = 0, 1, 2, . . . , k , due the fact that m = 0, 1, 2, . . . , k , and defining

t = αx , Eq. (3.42) is rewritten as

c2k =
1

2
1
4

√
σπ

√
1

22k(2k)!
(2k)!

k∑
q=0

(−1)k−q

(k − q)!(2q)!

1

α

(
2

α

)2q ∫ ∞
−∞

e−t
2

t2q dt . (3.43)

Let us focus just on∫ ∞
−∞

e−t
2

t2q dt = 2

∫ ∞
0

e−t
2

t2q dt =

∫ ∞
0

e−uuq−
1
2 du ,

where t2 = u. Moreover it is convenient to set q + 1/2 = l − 1, from which∫ ∞
0

e−uul−1 du = Γ(l) ≡ Γ

(
q +

1

2

)
.
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This result has to be put in Eq. (3.43) which now becomes

c2k =
1

2
1
4

√
σπ

√
(2k)!

22k

k∑
q=0

(−1)k−q

(k − q)!(2q)!

1

α

(
2

α

)2q

Γ

(
q +

1

2

)
.

Again, we compute the summation over q with the help of a software, and substituting

the result in the expression for c2k we have

c2k =
1

2
1
4

√
σπ

√
(2k)!

2k

√
π

k!α

(
1− α2

α2

)k
=

1

2
1
4

√
σ

√
(2k)!

2kk!

(1− α2)k

α2k+1
.

By definition we have that

α =

√
1

2

(
1 +

1

2σ2

)
;

from which 1− α2 = (1− 1/2σ2)/2 and

(1− α2)k

α2k+1
=

2σ√
2σ2 + 1

(
2σ2 − 1

2σ2 + 1

)k
.

Finally we put this in the c2k , and we obtain the exact expression we’re searching for:

c2k = 2
3
4

√
σ

2σ2 + 1

√
(2k)!

2kk!

(
2σ2 − 1

2σ2 + 1

)k
. (3.44)

3.2.8 Density profile at any time

In the previous paragraphs we have found the exact expression for the coefficients in

Eq. (3.19), now we are able to determine n(x, τ) at any time τ by combining (3.44)

and (3.16):

n(x, τ) =

∞∑
n=0

√
8

π

σ

2σ2 + 1

1

(22nn!)2

(
2σ2 − 1

2σ2 + 1

)2n

[H2n(x)]2 e−x
2

+

+

∞∑
n,q=1
n≥q

Anq(x) cos(2qτ) ; (3.45)

Anq =

√
8

π

σ

2σ2 + 1

1

22(2n−q)n!(n − q)!

(
2σ2 − 1

2σ2 + 1

)2n−q

H2n(x)H2(n−q)(x) e−x
2

We ere unable to find an analytical form for Eq. (3.45), so we limit ourselves to re-

construct numerically the density by performing the summation in Eq. (3.45). From a

complete analytical point of view we can determine, as we have done before, the mean

position and the width by the use of Eq. (3.28), Eq. (3.30) and Eq. (3.44).
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We start from 〈x(τ)〉. We can find it by looking at Eq. (3.28): in that formula the

products of the projection’s coefficients appears: cn−1(0)cn(0). In the case of a Gaussian

wave packet centered in x = 0 we have shown that only the coefficient with even index,

i.e. c2k with k ∈ N, are non zero; so if n is even n − 1 are odd, and vice versa: both

cn−1(0)cn(0) is identically 0 for any n. Consequently:

〈x(τ)〉 = 0 .

Now we want to determine the width σ(τ).

We first take into account the time independent part of Eq. (3.30) together to the

fact that only n = 2k are considered:

∞∑
k=0

|c2k |2
(

2k +
1

2

)
=

∞∑
k=0

2
3
2

σ

2σ2 + 1

(2k)!

(2kk!)2

(
2σ2 − 1

2σ2 + 1

)2k (
2k +

1

2

)
.

Defining

β ≡
σ

2σ2 + 1
, γ ≡

2σ2 − 1

2σ2 + 1
,

from the previous formulæwe have

2
5
2β

∞∑
k=0

(2k)!

(2kk!)2
kγ2k + 2

1
2β

∞∑
k=0

(2k)!

(2kk!)2
γ2k =

√
2β(1 + γ2)

(1− γ2)3/2
. (3.46)

Now, for the time dependent part of Eq. (3.30) we obtain:

∞∑
k=0

c2(k−1)c2k

2

√
2k
√

2k − 1 =

∞∑
k=0

√
2k
√

2k − 1

2
2

3
2β γ2k−1

√
(2k)!

√
(2k − 2)!

22k−1k!(k − 1)!

= 2
3
2β

γ

2(1− γ2)3/2
, (3.47)

and, similarly,

∞∑
k=0

c2(k+1)c2k

2

√
2k + 1

√
2(k + 1) = 2

3
2β

γ

2(1− γ2)3/2
. (3.48)

Summing Eq. (3.46), Eq. (3.47) and Eq. (3.48) we obtain for Eq. (3.30):

〈x2(τ)〉 =

√
2β (1− γ)2

(1− γ2)3/2
+

2
5
2β γ

(1− γ2)3/2
cos2 τ .

Now we want to have just the dependence on σ: from previous definitions we obtain

√
2β (1− γ)2

(1− γ2)3/2
=

1

(2σ)2
;

2
5
2 βγ

(1− γ2)3/2
=

4σ4 − 1

(2σ)2
,
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and finally

〈x2(τ)〉 =
1

(2σ)2

[
1 + (4σ4 − 1) cos2 τ

]
.

At the end we get the explicit expression for the width:

σ(τ) =
√
〈x2(τ)〉 − 〈x(τ)〉2 =

1

2σ

√
1 + (4σ4 − 1) cos2 τ . (3.49)

If one is interested in studying the short time dynamics, cos2 τ in Eq. (3.49) should be

expanded up to the second order in τ , i.e. cos2 τ ≈ 1− τ2:

σ(τ) ≈
1

2σ

√
1 + (4σ4 − 1)− (4σ4 − 1) τ2 ≈ σ

√
1−

(
1−

1

4σ4

)
τ2 . (3.50)

This expression for the width can be generalized remembering that σ is nothing but the

initial width, i.e. σ(0),

σ(τ) ≈ σ(0)

√
1−

(
1−

1

4σ4(0)

)
τ2 . (3.51)

3.3 Quantum interference and Anderson Localization

Before entering in the details of this section, let us recall the most important results

of the previous.

• The density distribution n(x, t) could be always divided into a diagonal, static, and

a off-diagonal time-dependent part, i.e.

n(x, t) = nD(x) + nof f (x, t) .

• nD(x) is determined only by the initial condition, i.e. ψ(x, 0) (the wave function

at t = 0), and by the spectrum of eigenstates φn(x) of the Hamiltonian Ĥ which

describes the system we are considering.

• The time dependence of nof f (x, t) is due to the quantum interference between

different eigenstates.

These sentences show that this approach is quite powerful: once we have an initial wave

function ψ(x, 0) and an Hamiltonian Ĥ which we can diagonalized (either analytically or

numerically it does not matter) we can determine the same wave function, and then all

the mean values of physical observables, at any time t > 0 without solving the complete

Schrödinger equation.
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Figure 3.4: Values of |cn(0)|2 vs. n for different values of σ calculate from Eq. (3.44).
Corresponding value of σ are reported in each panel. Clearly for σ approaching 1/

√
2,

i.e. the width of the harmonic oscillator’s ground state, the number of eigenstate over
which we project the initial state decreases and |c0|2 tends to 1.

Figure 3.5: Black line: initial density (3.41). Red line: density from (3.45). Blue
line: time independent part of (3.45) (first summation). Green line: time-dependent
(interference) part of (3.45) (second summation). We can see that, as predicted, n(x, τ)

remains centered around x = 0 and its width oscillates harmonically, as described in
(3.49). From top to bottom and from left to right: τ = 0, π8 ,

π
4 ,

3π
8 , π2 ,

5π
8 , 3π

4 , 7π
8 , π.

We have set the initial width to σ = 1.
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Moreover we notice here that all the calculation we have done up to now refer to

systems with a discrete spectrum, this is evident because in all the formulae we have

always used the sum over eigenstates and not the integral over some variables. The fact

that we are dealing with system with discrete spectrum has a great importance on the

dynamics of the particle described by ψ(x, t): it is known from literature that if a system

presents a point spectrum any initial wave function will not spread indefinitely, but its

motion is limited in a close region of the space [118]. On the other hand we have that

if the system posses a continuous spectrum then the initial state will spread all over the

space.

We underline this because the one dimensional disordered systems described in Chap

possesses a discrete energy spectrum. In those systems we had shown taht not only a

state will not spread to infinite but also it will present Anderson localization (AL), the

signature of which is the exponential decay which can be observed in the tails of the

eigenstates, exponential decay which is then present also in the tails of a generic density

distribution n(x, t) of a particle prepared in some initial state |ψ(0)〉. In this chapter we

focus our attention onto two different type of disordered potential of 1.2.1: speckles and

quasi periodic potential.

The application of this approach to disordered system will be complementary to

the usual description of localization in terms of the localization of single momentum

components (plane waves), as result of multiple scattering from the random potential.

The plane waves are not good state to consider for the system, because they are not

eigenstates and during the evolution waves that carry different momentum will be coupled

due to the presence of the disorder. On the other hand considering the evolution on the

eigenstate basis has the advantage that each evolves independently from the other, as

said before.

3.3.1 Asymptotic regime

We are interested in understanding the role played by nD(x) and nof f (x, t) in the

AL mechanism. We know that a given state |ψ(0)〉 will not suddenly localize, when put

into a disorder potential, but there is an initial interval of time after which one can look

for the signature of AL. Then we will look to the density profile at large times, i.e. to

limt→∞ n(x, t).

When AL occurs we expect the density profile to be stationary, thus we suppose that

lim
t→∞

n(x, t) ≡ n∞(x) , (3.52)

where the right member is defined without any time dependence.

Looking at Eq. (3.9) it is clear that the only way for the density to become stationary

is that only the diagonal part nD(x) plays a role, while the off-diagonal part loose its

importance more and more while t grows. We just say that the main signature of AL
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is an exponential decay of the tails of eigenstates and density distribution, therefore we

pay attention to them and we argue that

ntai ls∞ (x) ≈
∑
n

|cn(0)|2|φn(x)|2 , (3.53)

in which we specify that we are speaking about the tails, and not the bulk, of the

distribution. The approximate equivalence refers to local fluctuations related to the

specific disorder realization. We perform several numerical simulations in order to study

this behavior and at the end we can claim that the off-diagonal term of the density, which

brings the time dependence of the entire distribution, contributes just with fluctuations

around the profile of Eq. (3.53).

We thus have to find a way to explain this, and we come to a ”phase randomization

ansatz”. To better understand this statement we have to consider again Eq. (3.9), which

we report here for simplicity:

n(x, t) =
∑
n

|cn(0)|2|φn(x)|2 + 2
∑
n>m

|cn(0)||cm(0)|φ∗m(x)φn(x) cos ∆ (ϕnm(t)) ;

Because cn(0)’s are fixed by the choice of initial state ψ(x, 0) and φn(x) are determined

once we choose a potential then the only way to drop out nof f (x, t) is to play with

the phases φn(t). Because we want to create a situation in which nof f (x, t) ≈ 0 we

substitute each ψn(t) by a random number within the interval [0, 2π]. By this choice

also the ∆ϕnm (we here drop out the time dependence because they are now just fixed

numbers) become random and this of course lead to an interference which is almost

totally destructive.

To summarize what just said we introduce a quantity which measure the relaxation

of the total density onto the diagonal part while the system evolves:

R(t) =
1

L

∫
L

| ln (nD(x)) |
| ln (n(x, t)) | , (3.54)

that measure the average relative weight of the diagonal term. The use of a logarithmic

scale turns out to be useful especially when the density is exponentially localized, as in the

case of AL. We expect that R(t) in Eq. (3.54) approaches 1 and has small fluctuations

around that values if nD(x) is a good approximation for n(x, t).

3.3.2 Quasi-periodic potential

Let us apply all what we learned up to now to a specific and interesting case: the

quasi-periodic potential. As discussed in 1.2.1 this kind of potential is generated by the

superposition of two periodic potentials, the ratio between their wavelengths being an
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Figure 3.6: Left panel: initial potential, superposition of an harmonic trap and a periodic
lattice. Right panel: density distribution for the ground state of the potential V0(x) on
the left.

irrational number (i.e. it can not be expressed as the ratio between two integers):

V (x) = V1 sin2(k1x) + V2 sin2(k2x + θ) , (3.55)

in which we set V1 � V2, i.e. one of the two lattice (that we will call primary) is much

more deep then the other that just weakly modulate the first one. θ is an arbitrary phase

which define each realization of the disorder. The main point is that when β = k2/k1 is

incommensurate the system shows a phase transition between a superfluid and an insu-

lator phase: it exists a threshold ∆ = 2J under which the system has eigenstate that are

extended (exactly the same of an ordinary periodic lattice obeying Bloch’s theorem), but

when ∆ > 2J eigenstates become Anderson localized. They are characterized by a pro-

file which has tails going as exp(−|x |/lAA) where lAA = d/ log(∆/2J) is the localization

length for the Aubry-André model (d = π/k1 is the primary lattice spacing).

That regime is the one we are interested in, and so we will analyze a potential with

∆/J = 7 that gives lAA ≈ 0.8d

Initial State

As |ψ(0)〉 we choose the ground state of a potential which results form the superpo-

sition of the primary lattice and an harmonic confinement, i.e. V0(x) = V1 sin2(k1x) +

mω2
hox

2/2 = V1(x) + Vho(x). This is a situation that is usually present in experiment

involving ultracold atoms, which are both trapped by a magnetic trap (generating the

harmonic potential) and loaded into a optical lattice. It results in a density profile that

is a Gaussian modulated by the periodic lattice, as shown in Fig. (3.6). The presence

of the extra harmonic trap guarantees that the state |ψ(0)〉 has mainly components in

first Bloch band of the primary lattice, which is a choice that put this system closer to

the discrete one in which, by definition, one deals with just a single band with a number

of state equal to the lattice sites. Once we have found this state then it is implemented

into the bichromatic lattice, without any additional confinement. This corresponds more
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or less to the real case of an experiment in which the atomic cloud is initially in the

harmonic trap which is suddenly turned off, in order to make the atoms free to expand

in the remaining potential (i.e. the quasiperiodic lattice).

Because the wave packet expand in the presence of only the quasiperiodic lattice,

following our method, we have to diagonalize the Hamiltonian corresponding to Eq.

(3.55). The structure of its energy spectrum is known and consists in a series of bands

(as the usual periodic potential) and each of them it is again divided into sub-bands.

While we were describing |ψ(0)〉, we have said that the presence of Vho(x) drives to a

state the energy component of which mainly occupy in the first Bloch band of V1(x)

which means that also when the second lattice is turned on they will remain in the first

band of the resulting potential. This allows us to consider two different situations:

• Full band problem: although the state lays principally in the lowest band it has

also some components in higher energy bands, which have to be taken into account

for a complete description of the system. So in performing the projection of Eq.

(3.6) we consider as many eigenstates |n〉 as we need to reconstruct |ψ(0)〉, and
to be sure of this we look to 〈ψ(0)|ψ(0)〉 =

∑
n |cn(0)|2 which must be 1 because

we fix the normalization of the state to unity.

• Single band problem: on the other hand we can consider the tight binding regime,

reached for deep lattices. If one works under those condition could consider the

discrete model, described by Eq. (2.39) with U = 0, which is intrinsically single

band. In the case of continuous model this is not always true, i.e. a general wave

packet could have energy components in the higher bands of the quasiperiodic

potential even though it was prepared in the lowest band of the primary lattice.

We will start to discuss this problem form the latter.

Single band problem

We consider here the case in which the initial wave packet is menaged in such a

way that it will have only components in the first band of the bichromatic lattice. In

general, because we are considering a continuous system and our initial state is not and

eigenstate of the quasiperiodic Hamiltonian, one has to consider all the bands

|ψ(0)〉 =
∑
n,j

cnj(0)|n〉j ,

where n is the index labeling the state within the j−th band and the sum is performed

over all the bands. Moreover we have prepared ψ(x, 0) in such a way that most of all

its components are in the first band of the primary lattice; due to this also when the

second lattice is present (and the spectrum is of course modified by the appearance of the

minibands) the initial state lye mainly on the lowest energy band. Then the normalization
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turns out to be

1 =
∑
n

|cn1(0)|2 +
∑
n,j
j≥2

|cnj(0)|2 , (3.56)

in which
∑

n |cn1(0)|2 = N ≈ 1. The approach we use here leads to a wave packet

which is written as

|ψ̄(0)〉 =
∑
n,1

c̃n|n〉 , (3.57)

where we have defined

c̃n =
cn1√
N
, (3.58)

from which we have

〈ψ̄(0)|ψ̄(0)〉 = 1 .

The choice of cutting the initial state, which was been already selected in the way we

described, could sound strange, but it will be clarified in the following.

Once we have the initial condition we were searching for, we just have to determine

the density profile. First we look at the density n(x, t) coming from Eq. (3.57) at

t = 0, and then at a time t so large that it can be considered asymptotic in the sense

we described in the previous section. Both of them are obtained from Eq. (3.8), with

the constraint of summing only over state within the first band, setting t = 0 and

t = t∗ � 1, i.e.

n(x, t) =

∣∣∣∣∣∑
n,1

c̃n(0)φn(x)e i
En
~ t

∣∣∣∣∣
2

;

after this we determine the diagonal part of the density nD(x)

nD(x) =
∑
n,1

|c̃n(0)|2|φn(x)|2 .

Once we have those density profiles we construct the one based on our phase random-

ization ansatz, i.e. we take Eq. (3.8) and substitute each ϕn(t) with a random number

rn ∈ [0, 2π]:

nrand(x) =

∣∣∣∣∣∑
n,1

c̃n(0)φn(x)e i rn

∣∣∣∣∣
2

. (3.59)

From Eq. (3.59) one get an expression similar to Eq. (3.8), which is

nrand = nD(x) + 2
∑
n>m

φn(x)φm(x) cos(rn − rm) .

Because of the presence of the second term in the summation on the right hand side we

have that nrand(x) ≈ n∞(x) ≈ nD(x) and R(t) ≈ 1, without being exactly 1.

Moreover all of this formulae are valid for a single realization of the potential Vbc(x),

i.e. for a fixed phase difference θ between the two lattices in Eq. (3.55). Dealing with
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disordered system it is usual to average over different realization of the disorder.

A summary of the results we have obtained in reported in Fig. (3.7). There we show

n(x, 0) (obtained from Eq. (3.57)), n(x, t∗), nD(x) and nrand(x) averaged over 100

realizations of V (x). With this averaging the contribution of local fluctuations due to

the off-diagonal part nof f (x, t) that are important for a single realization drops out, and

we remain with just those density distribution that are clearly similar one to the other.

This is confirmed also by looking to the (averaged over realization) R(t): it starts at

t = 0 from a value far form 1, this because nD(x) is not sufficient to reconstruct the

whole initial density profile and the role of off-diagonal part is fundamental; while the

time goes on n(x) approaches nD(x) and then R(t) tends to 1.

We also compare the tails of the densities with and exponential decaying function

∝ exp[−2|x |/lloc ], fitting them by this function keeping lloc as free parameter. What we

find is that lloc ≈ lAA, i.e. the localization length of the density is the one predicted by the
discrete Aubry-André model, and this tells us that the shape of the asymptotic density

resemble the one of the eigenstates This could be supposed looking at the expression

in Eq. (3.53): it tells us that nD(x) is obtained from a weighted sum of the density

distribution of eigenstates, and because each of them has the same localization length

lAA we were expecting that n∞(x) will show the same behavior.

After this we perform the same calculation for the pure one-band system, the Aubry

André model, i.e. the linear part of Eq. (2.39), and again we find the same results. The

only difference is that, because the diagonalization of such a model is faster then the

continuous one, we perform an average over 500 realization of the disordered potential.

We report the comparison of density distributions in Fig. (3.8)

Full bands problem

After analyzing the situation of a single band problem, i.e. a deep tight binding

regime, we come back to the original idea taking into account the continuous model

with all the bands. This is a situations quite close to experiments in which there is

the possibility that hypothesis for tight-binding regime are not totally satisfied and the

atomic cloud, although it is prepared in the presence of an external harmonic trapping,

should have components that belong to excited energy band.

To analyze such a situation we perform the same simulations of Fig. (3.7) but

with a different initial state, i.e. we do not project |ψ(0)〉 only onto the states of the

lowest band but we also consider higher energy bands. The number of bands we have

to use is found by checking the normalization condition expressed in Eq. (3.56): we

perform the projection with increasing number of bands and we stop when we see that

the normalization does not change any more. In the specific we take into account up

to 10 bands, as we show in Fig. (3.9) From Fig. (3.9) it is evident the role played by

the states in the higher bands: those are no more localized but extended; if just one of

those states is present in the decomposition of |ψ(0)〉 it will introduce a cut-off in the
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Figure 3.7: Asymptotic density distribution in the quasiperiodic potential, in the localized
regime. Top left panel: the full expression in Eq. (3.9) (red line) calculated for t =

107ER1/~ is plotted together with the density n(x, 0) found form Eq. (3.57). Top right
panel: diagonal part nD(x), see Eq. (3.53), of the density. Bottom left panel: density
profile constructed from Eq. (3.9) but with a random choice for the phases ϕn. In each
panel we also put Finally in the bottom right panel we report the time evolution of R(t)

as defined in Eq. (3.54) , it is compared with the value of the same quantity computed
for the case of random phases (dashed line).

exponentially decaying tails of the distribution. The presence of this intrinsic background

should represent a limitation in the experimental research for AL, because if it is too

high it is no possible to perform a fit of the tails form which one can demonstrate their

exponential decreasing, which we recall is the main signature of AL.

Despite this background the lower-right panel of Fig. (3.9) shows that our assump-

tions of the relaxation of the whole distribution onto its diagonal part works also in this

case. R(t) starts again from a value far form 1, and this is because n(x, 0) and nD(x)

are very different due to the extended background, and then it reaches values closer to

unity.

3.3.3 Speckle potential

After the discussion about quasiperiodic potential we now turn to the second type

pf disordered potential which is used in the experiments concerning ultracold atoms, the

optical speckle potential. As described in 1.2.1 those correlated potentials are character-

ized by a negative-exponential distribution of the intensity (here indicated by V0 instead
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Figure 3.8: Comparison between different density profiles obtained for various ∆/J. We
compare n(x, t) with both Eq. (3.53) and Eq. (3.59). They perfectly coincide, giving a
strong support for our suppositions.

of I, because we consider speckles as potentials rather then light patterns):

P (V0) =
e−V/〈V0〉

〈V0〉
(3.60)

and by thier spatial (auto)correlation function

Γ(x) = 1 + sinc2

(
0.88x

ξ

)
, (3.61)

where ξ is the correlation length. Once we know this two fundamental aspects of the

potential it can be write as

V (x) = V0v(x)

with the distribution of intensities v(x) normalized in such a way that it has a unit

standard deviation.

The eigenstate of V (x) are not all Anderson localized, because the speckles are

characterized by the presence of an effective mobility edge: i.e. it exists an energy

threshold which separates the localized states (below it) from the extended one (over

it).

We had seen that the characteristic length of this potential is ξ, so it is natural to

express all the other lengths wit ξ as unit of measurement, moreover by it we can define
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Figure 3.9: Asymptotic density distribution in the quasi-periodic potential, in the localized
regime, when the exited bands are taken into account. Top left panel: the full expression
in Eq. (3.9) (red line) calculated for t = 107ER1/~ is plotted together with the initial
density n(x, 0). Top right panel: diagonal part nD(x), see Eq. (3.53), of the density.
Bottom left panel: density profile constructed from Eq. (3.9) but with a random choice
for the phases ϕn. In each panel we also put Finally in the bottom right panel we report
the time evolution of R(t) as defined in Eq. (3.54) , it is compared with the value,
R ' 0.971, of the same quantity computed for the case of random phases (dashed line).

the energy unit for the system, i.e. Eξ = ~2/2mξ2 where m is the mass of the particle

loaded into V (x).

Initial state

At this point of the discussion we need to choose what |ψ(0)〉 is better to use for

our purpose. We choose to numerically reproduce what is, at least in principle, done

in experiments (in [73] and reference therein it is possible to find the same ideas we

present in what follows). We consider an interacting cloud at T = 0K; let us forget for a

while the time dependence of the wave function and focus on just the spatial coordinate.

Under this conditions we have demonstrated in Chap. 2 that the dynamics of ψ(x) is

driven by the Gross-Pitaevskii Equation (GPE), i.e. the one dimensional version of Eq.

(2.15): [
−
~2

2m

∂2

∂x2
+ V (x) + g|ψ(x)|2

]
ψ(x) = µψ(x) ,
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where µ is the chemical potential which fixes the number of atoms.If the cloud is large

enough it is possible to neglect the kinetic energy term obtaining an accurate expression

for the ground state of the condensate: this is called Thomas-Fermi (TF) approximation.

Concerning the case of ultracold atoms we have that for cloud with large number of

particles and repulsive interaction the ration between kinetic to potential (or interaction)

energy is small, and this justify us to throw away the kinetic part of GPE. Thus one finds

[
V (x) + g|ψ(x)|2

]
ψ(x) = µψ(x) ,

the solution of which directly gives us the density profile

n(x) = |ψ(x)|2 =
µ− V (x)

g
.

Usually V (x) represent the external trapping which often is an harmonic potential V (x) =

mω2x2/2, and because n(x) is the density of atoms it can not be negative. Substituting

the expression for V (x) and imposing that n(x) > 0 one finds

nTF (x) =
mω2

2g

(
R2
TF − x2

)
Θ(RTF − |x |) , (3.62)

where we introduce the Thomas-Fermi radius

RTF =

√
2µ

mω2
, (3.63)

that is defined by n(x) = 0, and Θ(x) is the Heaviside step function. Eq. (3.62) shows

us that in the case of an harmonic trapping the density distribution of the ground state

in the TF regime is an inverted parabola.

The presence of g remind us that at this stage the interactions among atoms still plays

a crucial role. However we are interested in study the appearance of AL, which is a single-

particle phenomena, we thus need to drive the system from nonlinear (GPE) to linear

(ordinary Schrödinger) quantum mechanics. What we simulate here is simple: because

the energy interaction is written g
∫
n2(x)dx (the density being normalized to 1) we let

expand the cloud describe by Eq. (3.62) freely, i.e. we turn off V (x). The atoms then

start to move and the cloud enlarges becoming more and more dilute, and consequently

the interaction energy become less important and form a certain point we can totally

avoid it and consider the condensate as a cloud of non interacting atoms. Following

scaling arguments one finds that after a time tf ree during which the cloud expand, it

still has an inverted-parabola density profile but looking to the wave function, and not

only to the density, one could show that during this interval ψ(x, tf ree) has acquired an

additional phase factor with respect to ψ(x, 0). Once we know this phase factor, we just

have to proceed in the same way developed in previous paragraphs, projecting it onto

the base of energy eigenstates and then finding its time evolution at any t ≥ tf ree .
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In the case of speckles potential we have to stress an important difference with the

case of the quasi-periodic lattice. Here the system does not posses any band structure,

so we cannot truncate the system up to a certain energy level. In principle we can do

something similar, because the Thomas-Fermi function (which we recall is an approxima-

tion, although it is very good) has sharp edges ad x = RTF and this introduce a cut-off

in the momentum distribution, i.e. in the energy of the system. So it should be possible

to truncate the basis up to eigenstates of the speckle potential which posses energy less

then the cut-off.

Numerical results

As first we need to create various speckle potential, and in order to do this we employ

method described in [120, 121]. Here we consider the non-interacting evolution of an

initial Thomas-Fermi (TF) wave packet with momentum components below the effective

mobility edge, and with a dynamical phase resulting from a pre-expansion as discussed

in [20, 73, 122–124]. We choose V0 = 0.19Eξ and an initial TF radius RTF = 340ξ,

that corresponds to an in-trap radius RTF = 7.96ξ. During the pre-expansion stage

most of the interaction energy is transformed into kinetic energy, so that it can be safely

neglected during the subsequent expansion [20,73,122].

The average asymptotic density distribution and the evolution of the quantity R(t)

are shown in Figure Fig. (3.10). Again, we plot the asymptotic density as obtained

from the full expression in Eq. (3.9), that has to be compared with the expression

in Eq. (3.53) containing just the diagonal terms (top right panel in figure), and with

the expression in Eq. (3.9) but with a random choice of the phases, shown in the left

bottom panel. We find that the tails of the density distribution can be nicely fitted

with the function n0(x) ∝ |x |−α exp(−2γ|x |, ) as discussed in [20,73,122] (here we find

α ' 2, γ ' 4×10−4). The same fitting lines are reported in all the three, for comparison.

These figures confirm that the phase randomization anstaz holds also for the case of

the speckle potential, and that the asymptotic density distribution can be reproduced

by the diagonal term in Eq. (3.53). Correspondingly, also the evolution of R(t) in the

last (right bottom) panel of Fig. (3.10) shows a behavior similar to the quasi-periodic

case. Finally, we notice that a similar behavior holds also in case of a single speckle

realization, but with larger local density fluctuations with respect to the average case.

In fact, the relation in Eq. (3.9) becomes more and more accurate as we average over

over an increasing number of disorder realizations.
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Figure 3.10: Localization in the speckle potential. Top Left: Initial wave packet (black
dashed line) and asymptotic density distribution obtained from the full expression in
equation Eq. (3.9) (red line), with the tails fitted as ∝ |x |α exp(−2γ|x |) (black line); the
same lines are plotted also in the other panels for comparison. Top Right: contribution
of the diagonal terms, see equation Eq. (3.53) (orange). Bottom Left: Eq. (3.9) with
a random choice of the phases ϕn (blue line). Bottom Right: evolution of the quantity
R(t) in Eq. (3.54), compared with the case of Eq. (3.9) for a random choice of the
phases ϕn (black dotted line), R ' 0.959.



4
Dynamics of interacting wave packets

in disordered time-dependent potentials:
destruction of Anderson localization

In the previous chapter we had studied the behavior of a one dimensional eave packet

in the presence of a static disordered potential; in particular we focused our attention

onto the Anderson localization phenomenon, which is peculiar of these systems and

leads to a wide range of macroscopic properties of matter, the most evident being

the transition between conducting and insulating phases due to the suppression of the

diffusion of the wave packet. One dimensional systems are very useful because they are

easier to study than other in higher dimensions but, on the other hand, they could be

considered a little bit trivial in the sense that any amount of disorder introduced in the

system results in Anderson localized wave function. In the following we want to go a step

further, studying what happens if, in addiction to static disorder, one introduces sources

of possible delocalization, i.e. mechanism that could restore the expansion of the wave

packet; in particular we will consider potentials which are random both in space and time,

interactions among particles (i.e., nonlinear systems) and the interplay between them.

The motivation of this study lies on the fact that although disorder plays by itself a

fundamental role in nature, as demonstrated by the large amount of papers concerning it,

there are situations in which other ingredients, such as variations in time of the potential

and interactions, could not be avoided.

We already said that since the pioneering work of Anderson [2] numerous studies

of the properties of disordered system have been performed. Most pf these studies

have dealt with model systems, generally one dimensional, consisting of static diagonal

disorder and focused their attention on single-particle properties like the behavior of the

single-particle density of states, the nature of single-particle states, etc. Some year

after the publication of Anderson’s paper the field of quantum transport in disordered

potentials starts to attract the interest of researcher more and more, with particular

65
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attention to the microscopic description of it. An aspect of those systems which has

received comparatively little attention [26, 28, 29] is the behavior of particles motion

under the influence of dynamic, i.e. time dependent, disorder. In the following we report

our result for the motion of a particle in a system with just site diagonal disorder. In

most of the papers dealing with those systems we found that authors frequently use

both Vl (i.e. diagonal disorder) and K1 (i.e. nearest neighborhood tunneling) are time

dependent, in particular this models has been employed to described the effect of an

uncorrelated dynamic, thermally induced, disorder, i.e. phonons. In [27] and references

therein, in particular [29], effect of this phonon bath is presented in details and exact

solutions for site diagonal disorder is reported. Moreover in [30] exact solution for just

time varying tunneling K(t), with static potential Vl , is presented.

We know that the Hamiltonian of the system is the linear part of Eq. (2.34), i.e.

H = −
M∑
l=1

[
φl(t)φ

∗
l+1(t) + φ∗l (t)φl+1(t)

]
+ Vl(t)|φl(t)|2 , (4.1)

where, as in 2.4, energies are measured in units of KEr1. The correspondent equation

of motion for the field φl(t) is found by applying i φ̇l(t) = ∂H/∂φ∗l (t) (see Eq. (2.34)

with U = 0):

i φ̇l(t) = − (φl−1(t) + φl+1(t)) + Vl(t)φl(t) , (4.2)

in which time is measured in units of ~/KEr1.
We need to find a possible model for Vl(t), in particular we want to create a function

which is not only random in time but also that possesses a controllable degree of ran-

domness. In the following we present two possibilities of doing that, and then we study

their effects onto the evolution of an initially localized, i.e. Gaussian with sufficiently

small width, wave packet.

4.1 Creation and control of the noise

Our goal is create a potential Vl(t) that shows a behavior in time that is random, or

noisy, but we also search for a situation in which this randomness is quite controllable,

in order to directly study the influence of this noise.

First of all we suppose to perturb the static potential modulating its amplitude as

Vl(t) = Vl [1 + Af (t)] , (4.3)

where of course Vl is the static disordered potential, A is the amplitude of the modulation

and f (t) is the function which brings all the informations about the noise. This specific

choice for the perturbing disordered potential is due mainly to the fact that it could be

1As mentioned in Chap. 2, here we will use K instead of J for the tunneling energy.
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implemented in an experiment, as recently done in [87], and also because for sufficiently

small A the noisy part f (t) could in principle being treated with standard time dependent

perturbation techniques. Although the latter sounds very interesting, we do not follow

that way, because we found (as we will show later) that for large enough time the result

of our studies do not depend on A.

We then consider two type of f (t):

f (t) =

sin [ω(t)t + φ(t)] Frequency noise,

sin [ω0t + φ(t)] Phase noise.
(4.4)

We immediately notice that, in both cases, the noisy nature of this function is not explicit

but is carried by the phase φ(t), or the frequency ω(t) respectively. Moreover in the

case of frequency noise we also make the phase φ(t) to be time dependent, for a reason

that will be explained later, but we will show that the noisy feature is still determined

by ω. We stress here that we have to deal with just one parameter in order to change

the degree of noisiness of f (t), which makes the system quite simple to treat. In the

following we will treat directly the case in which the parameters vary in time in such

a way that they lead to a random potential. On the other hand one can mange φ(t)

or ω(t) in order to have sufficient slow variation and try to describe what happens in

those cases by the mean of standard perturbation theory, applying the well known Fermi

Golden rule, or, for much slower variation, within adiabatic approximation.

4.1.1 Phase Noise

Let us start considering the phase noise, where the name recalls the fact that the

noise is all inside the phase of the sinusoidal function in Eq. (4.4). The easiest way we

found to generate a random potential is to abruptly change φ every fixed time step, which

from now on we call dephasing time and it will be denoted by Td . We will show that its

value, compared to other fundamental time scale of the system, defines completely all

the noise properties in particular correlation function (in time) and power spectrum.

As just said, how much f (t) is random or not depends non only on Td but also on

other time intervals, in particular with the total time of the simulation, or experiment,

Tmax and the period of periodic function T0 = 2π/ω0. The reason of this is simple:

suppose to have Td > Tmax , this means that the first change of phase takes place after

the end of our experiment (we use this term for both numerical and real experiments),

i.e. no change of phase are performed. For Td ≥ Tmax we have no random potential.

Due to this we take into account only Td < Tmax , even Td � Tmax , which means that

during the experiment we have nφ = Tmax/Td changes of phase:

φ(t) =

nφ∑
j=1

φi [Θ(t − (j − 1)Td)−Θ(t − jTd)] , (4.5)
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In Eq. (4.5) φj is a randomly chosen within the interval [−π,+π], with uniform prob-

ability; Θ(t) is the Heaviside step function, and the term in square parentheses ensure

that the phase is kept constant between tho subsequent change. In Fig. (4.4) some

examples of the application of Eq. (4.5) are reported, showing both φ(t) and f (t) for

different Td . We now have the ingredients that have to be used in order to modify the

degree of noisiness of f (t): we have to compare Td with both Tmax and T0. First of all,

let us look to the time correlations of f (t) for different values of dephasing, while we

keep Tmax and ω0 fixed, with the prescription that Tmax � Td . In Fig. (4.4) we plot

some examples of g(τ) = 〈f (t)f (t+τ)〉, where angular brackets 〈· · · 〉 stand for average

over realizations. From these graphs it is evident that Td set the correlations time for

the disorder, i.e. we can write

〈f (t)f (t + τ)〉 =
1

Tmax

∫ Tmax

0

(
f (t)− f (t)

)(
f (t + τ)− f (t + τ)

)
dt

= g(τ)Θ (t − Td) ,

in which f̄ means the average in time, i.e. f (t) =
∫ Tmax

0 f (t)dt/Tmax . The motivation for

the previous result is quite simple, and is a direct consequence of the time dependence of

φ(t): inside an interval of width Td the function f (t) is perfectly coherent due to the fact

that it is a normal periodic function; for τ > Td the shifted function f (t + τ) is no more

in phase with f (t) and then coherence drops to values around zero. This suppression of

coherence is then enhanced when averaged over realization, due the random choice of

different phases. We thus have

g(τ) =


∑nφ

j=1
1
Td

∫ Td
0

[
fj(t)− fj(t)

] [
fj(t + τ)− fj(t)

]
dt if t ≤ Td ,

0 if t > Td ,

where fj(t) = sin(ω0t + φj). A good estimation give Td = T0/4 as the dephasing

under which we can say that any possible correlation is canceled (see first column in Fig.

(4.4)), in the sense that g(τ) > 0 for t < Td and zero otherwise. This behavior is also

evident if one looks to the the power spectrum of f (t), defined as the squared modulus

of its Fourier transform, i.e. |F [f (t)]|2 ≡ |f̃ (ω)|2. Let us start by analyzing the simplest

situation, a single step of f (t); this is the main constituent of the whole noise and, as we

will show shortly, its behavior influences the overall spectrum. So, consider the function

within a generic interval t ∈ [jTd , (j + 1)Td ], where φj is kept constant:

fj(t) = sin(ω0t + φj) [Θ(t + jTd)−Θ(t − (j + 1)Td)] ,

in which we do not specify any prescription on Td . This is clearly written as the product

of two function, i.e. f (t) = g(t)ḣ(t), and its Fourier transform correspond to the
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convolution of the Fourier transform of each member:

f̃j(ω) =
(
g̃j ∗ h̃j

)
(ω) =

∫ +∞

−∞
g̃j(ω − ν)h̃j(ν) dν . (4.6)

Identifying gj(t) with sin(ω0t + φj) returns immediately

g̃j(ω) =
1√
2π

∫ +∞

−∞
sin(ω0t + φj) e

iωt dt

= i

√
π

2

[
e−iφj δ(ω − ω0)− e iφj δ(ω + ω0)

]
, (4.7)

while for h(t) we have

h̃j(ω) =
1√
2π

∫ +∞

−∞
[Θ(t + jTd)−Θ(t − (j + 1)Td)] e iωt dt

= −
i√
2π

e i(j+
1
2 )ωTd e

iωTd/2 − e−iωTd/2

ω

=
Td√
2π
e i(j+

1
2 )ωTd sinc

(
ωTd

2

)
, (4.8)

where we define the function sinc(x) = sin(x)/x . Eq. (4.8) gives us an important feature

of the system, in effect if one works in the limit of Td � T0 it is allowed to consider

Tdω � 1; due to this the spectrum of the step function becomes∣∣h̃j(ω)
∣∣2 ∝ T 2

d if Td � T0 , (4.9)

which clearly is a flat spectrum, i.e. we deal with a function which has white noise

characteristics, this is nicely shown in Fig. (4.5)

Now, inserting equations (4.7) and (4.8) in (4.6) one get

f̃j(ω) =
iTd

2
e i(j+

1
2 )ωTd

{
e−i[(j+

1
2 )ω0Td+φj ] sinc

[
(ω − ω0)Td

2

]
+

− e i[(j+
1
2 )ω0Td+φj ] sinc

[
(ω + ω0)Td

2

]}
, (4.10)

from which the power spectrum Sp(ω) = |f̃ (ω)|2 is immediately found

|f̃j(ω)|2 =
T 2
d

4

{
sinc2

[
(ω − ω0)Td

2

]
+ sinc2

[
(ω + ω0)Td

2

]
+

− 2 cos [(2j + 1)ω0Td + 2φj ] sinc
[

(ω − ω0)Td
2

]
sinc

[
(ω + ω0)Td

2

]}
. (4.11)

In Fig. (4.1) we report the function expressed in Eq. (4.11) for different values of the

dephasing time, keeping all the other parameters fixed. From that figure it is evident

how the spectrum changes as Td is lowered: for Td � T0, there are few changes of φ



70 4. Interactions and disordered time-dependent potentials

Figure 4.1: Power spectrum defined in Eq. (4.11) (in arbitrary units), normalized in such
a way that maximum value is always 1. We emphasize that with this kind of random
potential we can obtain a power spectrum which goes from white noise (flat spectrum),
for Td � T0, to the pure periodic signal (two delta peaks) for Td � T0. Here we consider
Td = 0.01T0, 0.25T0, 0.5T0, T0, 10T0 and 100T0, with T0 = 4/5, and use the same φ
for all graphs (e.g. φ = 0).

and so spectrum resemble the one of a periodic function sin(ω0t) (see Eq. (4.7); as

Td is decreased the peaks at ±ω0 becomes broader and broader and the modulation

due to the sinc function play a significant role. Going ahead for Td = T0/ the two

separated peaks join together and from that moment the spectrum will be dominated

by the Fourier transform (4.8). Finally, for Td � T0 the spectrum could be considered

flat over a wide region of ω, so we enter the white noise regime. In Fig. (4.1) we have

considered different Td with all the other parameters being constant, but in Eq. (4.11)

we can find that there is also a dependence onto the phase φj in a specific interval. How

the spectrum changes with the phase is reported in Fig. (4.2), where we observe that

for different φj one can get totally different spectra.

Up to now we have considered just the case of a single step but, as described before,

the real f (t) is the sum of many steps, namely

f (t) =

nφ∑
j=1

fj(t) ,

that gives

f̃ (ω) =

nφ∑
j=1

f̃j(ω) ,

due the linearity of the Fourier transform. The summations over many time steps modifies

the spectrum of f (t) in the sense that there are several interference terms like the last

one in Eq. (4.11) between both the same and different steps. In Fig.(4.3) we compare
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Figure 4.2: Power spectrum defined in Eq. (4.11) (in arbitrary units), normalized in
such a way that maximum value is always 1. Here we set T0 = 4/5 and Td = T0/4 and
consider two different values of φ. It is clear that a single phase can modify the shape
of the spectrum in a very strong way.

|f̃ (ω)|2 obtained both numerically and by the mean of Eq. (4.10) once inserted in the

previous one. Finally, in Fig. (4.4) we report a summary of what we explained up to now

for the phase noise, showing all the main quantities, i.e. φ(t), f (t), g(τ) and 〈|f̃ (ω)|2〉
for three different values of Td , from low to high noise.

4.1.2 Frequency Noise

Another possibility to create a random function of time is to change the frequency ω

of f (t) with a scheme that is similar to the one described before. Every time step Td we

change ω by picking up a random value from a certain interval centered around a main

frequency ω0:

ω(t) =

nφ∑
j=1

ωj [Θ(t − (j − 1)Td)−Θ(t − jTd)] , (4.12)

ωj ∈ [ω0 − ∆ω,ω0 + ∆ω] ;

moreover we want to generate f (t) which does not has any sudden jump; those discon-

tinuity in f (t) are the main feature of the phase noise, and in that case they can not be

avoided. If we now change the frequency randomly, instead of the phase, we can make

f (t) continuous by adjusting the phase in the proper way: if at Td frequency changes

from ω1 to ω2, then asking for continuity results simply in sin(ω1T+φ1) = sin(ω2T+φ2),

which gives φ2 = φ1 + (ω1 − ω2)T . So, in order to preserve the continuity of the signal

we have to add to Eq. (4.12) the prescription

φj = φj−1 + [ωj − ωj+1] jTd , (4.13)

where ωj and φj stand for ω(jTd) and φ(jTd), respectively. Requiring the continuity of

f (t) strongly affects its behavior, in particular we will show in a few that we can not
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Figure 4.3: Power spectrum 〈|f̃ (ω)|2〉. From top to bottom Td = T0/4, T0 and Td =

3T0. Each plot is obtained by averageing over 500 realizations. Right column shows
〈|f̃ (ω)|2〉 numerically, while left column represent |

∑
j f̃j(ω)|2 with f̃j(ω) expressed in

Eq. (4.10). In both cases the spectra obtained with the two technique coincide.
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Figure 4.4: Some characteristic features of the time dependent function f (t) in the case
of the phase noise. In the first row we report the phase φ(t), while in the second row
we plot the whole f (t). Notice the jumps of f (t) in correspondence to the changes of
φ. Last two rows show the correlation function g(τ) and the power spectrum of f (t),
respectively. As described in the text f (t) shows coherence only for t ≤ Td , because in
an interval Td the phase is constant. This influence f̃ (ω), which is the convolution of the
two delta peaks, coming from the sin(ω0t+φ), and the sinc function which is the Fourier
transform of a step function. As Td is lowered, the width of the sinc increases and we
approach the white noise limit, which we report in Fig. (4.5). Here we set: T0 = 4/5,
so ω = 2π × 5/4, and Tmax = 10T0. From left to right we consider Td = T0/4, T0 and
3T0.
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Figure 4.5: f (t), correlation function g(τ) and power spectrum |f̃ (ω)|2 in the case of
Td very short compared to T0, in the specific Td = T0/100. As expected the changes of
phase are so frequent that we fall into the white noise, i.e. flat spectrum, regime. The
values for the parameters used here are the same as in Fig. (4.4).

reach situations of very wide spectra, which means that we can not have a real broadband

noise, provided that ∆ω � ω0. The last sentence underline that in that kind of noise

we have to deal mainly with two parameter: dephasing Td and frequency interval ∆ω;

here we will just give a qualitative description for the behavior of the noise for different

parameters, reporting the results in Fig. (4.6), Fig. (4.7) and Fig. (4.8). Using a

notation similar to the one introduced in 4.1.1, we can write

f (t) =

nφ∑
j=1

sin(ωj t + φj) [Θ(t − jTd)−Θ(t − (j + 1)Td)] ≡
nφ∑
j=1

fj(t) .

In a single step jTd < t < (j+ 1)Td we can compute the Fourier transform f̃j(ω) as done

in Eq. (4.10), noticing that in both cases they have the same form. Then we obtain

f̃j(ω) =
iTd

2
e i(j+

1
2 )ωTd

{
e−i[(j+

1
2 )ωjTd+φj ] sinc

[
(ω − ωj)Td

2

]
+

− e i[(j+
1
2 )ωjTd+φj ] sinc

[
(ω + ωj)Td

2

]}
.

Once we have to find the total power spectrum, i.e. |f̃ (ω)|2 = |
∑

j f̃j(ω)|2, we have here
a different result compared to the phase noise. As first, notice that with this noise we

have to deal with many many frequencies, so in principle we have as many delta peaks

as the number of them; in addition to this we have to take into account the broadening

of each peak do to the sinc arising from the step function. So we have a spectrum that

enlarges with increasing ∆ω, because we can span a large interval of frequencies. In the

previous case of phase noise, we had shown that decreasing Td drives f (t) into a regime

which is comparable to the white noise, in principle one can think that the same could

be done also for the frequency noise but with the prescription of the continuity of f (t)

it becomes impossible. Suppose to deal with not too large ∆ω, i.e. ∆ω = ω0/5 which a

typical value used in the experiment presented in [87], so the ωj are not too far one from

the other. Then, if we change it very frequently with a Td much smaller than T0 we

create a series of fj(t) that have similar frequencies and match one another due to Eq.
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Figure 4.6: Noise characteristic for T0 = 4/5, i.e. ω0 = 2π × 5/4, ∆ω = 0.1ω0. From
left to right we set Td = 0.1T0, T0 and 5T0. From top to bottom we plot the following
quantity: ω(t), f (t), 〈g(τ)〉 and 〈|f̃ (ω)|2〉. Average performed over 100 realizations.

(4.13). Practically this results into a f (t) which is closer to sin(ω0t +φ0) (φ0 being the

initial phase), so instead of enlarging the spectrum we have come back to the perfect

periodic case. With this in mind we can state that for ∆ω � ω0 f (t) is the same both

in the limit of Td � T0 and Td � T0. This is also shown in Fig. (4.6) where it is clear

that whatever Td is chosen (there we have Td/T0 = 0.1, 1 and 5) the spectrum does

not differs too much from the one of a perfect sin(ω0t) function. If one wants to obtain

broad spectrum in the case of frequency noise the only possibility is to select ∆ω � ω0

and Td ' T0. Although we have just shown that this type of noise does not allow

a wide range of possible spectra, the possibility of avoid any sudden changes of f (t)

makes it very interesting for the experimental physicists, which have implemented it in

a series of recent experiment [87]. This because the bandwidth they can reach by using

the frequency noise is sufficient in order to reach their goals, and the continuity of f (t)

is also important for them otherwise there should be a series of problem arising from this

sharp variation of the external potential. In Fig. (4.9) we report the figure in [87] in
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Figure 4.7: Same as Fig. (4.6) for ∆ω = 0.5ω0.
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Figure 4.8: Same as Fig. (4.6) for ∆ω = ω0.



78 4. Interactions and disordered time-dependent potentials

Figure 4.9: Typical power spectrum for the noise the author use in their experiments,
obtained with the frequency noise method [87]. Figure extracted from [87].

which the authors shows a typical power spectrum of the noise they had used.

4.2 Noise-induced normal diffusion

In the previous chapter we have studied how a one-dimensional wave packet Anderson

localize in the presence of a static disordered potential. This a widely studied and now we

want to study what happens if to it we superimpose a time dependent random potential

as the one described before.

The model we are going to use is the one of Eq. (4.2), with the random potential

defined in Eq. (4.3):

i
d

dt
φl(t) = − [φl−1(t) + φl+1(t)] + Vlφl(t) + AVl f (t)φl(t) . (4.14)

In all the simulations we employ the phase noise scheme for f (t), this is motivated also

if one looks to [87] where, although the experiments was done by using the frequency

noise scheme, the numerical results they used as comparison were obtained with the

phase noise. As static disorder Vl we use here two type of disorder: Anderson and

bichromatic. The first one allows us to perform faster simulations, while the second is

interesting because of the recent experiment developed in Florence at LENS [87,125].

As said in the introduction of this chapter, the motion of a particle in a potential

which randomly changes in time has been faced since long ago, due to the fact that

thermal bath for quantum particles, as phonons for an electron moving in a lattice, could

me modeled like that. Thermal agitation has been shown to give rise to diffusion in a

noninteracting tight-binding lattice [26, 27]. In those papers the thermal agitation was

described as random disorder, uncorrelated in space and time, with zero mean. Because
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of this a natural choice for the underling static disorder Vl is the Anderson model that

we have explained to be uncorrelated in space, and then we modulate it by an f (t) with

sufficiently small correlations time. We demonstrate that this can be easily achieved by

implementing the phase noise scheme. Also recently, in a paper by Quach [46], a similar

problem was studied regarding a series of coupled optical cavities with a two-level atom.

In order to study and characterize the dynamics of a wave packet it is useful to

consider two quantities: the width σ(t) and the partecipation ratio PR(t), respectively

defined as

σ(t) =
√
m2(t) , (4.15)

where

m2(t) =
∑
l

l2|φl(t)|2 −

(∑
l

l |φl(t)|2
)2

, (4.16)

and

PR(t) =
1∑

l |φl(t)|4
; (4.17)

the first gives informations about the spatial spreading of the density ρl(t) = |φl(t)|2,
while the second could be regarded as the number of sites significantly populated.

Despite these two seems to be linked, and one could expect that larger packets

occupy a grater number of sites, there is some situations in which looking just at one

of them one could reach to incorrect interpretation. This is the case of self trapping, in

which σ(t) increases in time but PR(t) stays more or less constant, meaning that φl(t)

has a frozen bulk that does not evolve and that is responsible for the high occupation of

some sites, while the tails of the density still moves and lead to an increasing width. This

peculiar case is reasonably described as a localized state, because most of the particles do

not move, but it is not Anderson localization. We will show later that this phenomenon

occurs in interacting system and we find that, once a noise is added to the system, the

interplay between self trapping and delocalization induced by the noise ends up in some

interesting features.

Here we just recall the statistical properties of the Anderson disorder

Vl ∈ [−W,W ] , P(Vl) =
1

W
[Θ(V +W )−Θ(V −W )] ,

and the definition of a quasi-periodic lattice

Vl =
∆

J
cos(2πβl + θ) ,

which are the two kind of disorder used in our simulations. In all the cases we take into

account we uses as initial state a Guassian defined as

φl(t = 0) = A exp

[
−

(l − L/2)2

4σ2
0

]
, (4.18)



80 4. Interactions and disordered time-dependent potentials

0 100 200 300 400 500
10-27

10-22

10-17

10-12

10-7

0.01

l @siteD

Ρ
lHtL

1 10 100 1000 104

5.0

2.0

3.0

t @Ñ�KD

XΣH
tL\
@sit

eD

1 10 100 1000 1044.

5.

6.

7.

8.

t @Ñ�KD

XPR
HtL\
@sit

eD

Figure 4.10: Example of Anderson localization. First panel shows the density profile (log
scale), second and third panel σ(t) and PR(t), respectively. As expected after an initial
stage those quantities do not evolve. Using expression in Eq. (4.19) we have σ(t) ≈ tα,
with α = 0.

where L is the number of lattice sites, so the Guassian is centered in the middle of the

lattice, σ0 is the initial width and we always set σ0 = 2. In Eq. (4.18) we just indicate

a proportionality because we also fix the density

L∑
l=1

|φl(0)|2 = 1 ,

from which we get A. For very large system A approaches the values it should have in

a continuous system, i.e. A2 = 1/σ0

√
2π. When such a wave packet is loaded onto

a disordered potential we known from literature [1, 2, 68, 94] and previous chapter that

it exponentially localizes. A consequence of this is well explained in the title of the

milestone paper of Anderson [2]: the absence of diffusion. Using (4.15) and (4.17) this

will be simply visible: after an initial dynamics in which the density profile ρl(t) = |φl(t)|2

rearranges, in particular the tails, then it stops all the expansion and both σ(t) and PR(t)

remains constant in average [55,80,90], as we also report in Fig. (4.10).

After having verified the appearance of Anderson localization (see Fig. (4.10) we turn

on the temporal disorder, that we call also noise, A · f (t), and look to what happens.

As predicted in several papers (e.g. [26–29, 46] ) dynamical disorder breaks localization

and restore the expansion of the wave packet. One of the objective of this work is to

characterize its spreading, in order to classify the dynamics of the packet. In general

at larger time one finds that the width grows in time as a power of time, σ(t) ∝ tα,

depending on the exponent one deals with different dynamical regimes [55,80]:

σ(t) ∝ tα



α = 0 localization,

α < 0.5 subdiffusive regime,

α = 0.5 normal diffusion,

0.5 < α < 1 super-diffusive regime,

α = 1 ballistic regime.

(4.19)
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Figure 4.11: Evolution of σ(t) for a Gaussian wave packet as in Eq. (4.18), with σ0 = 2.
Static disorder with an Anderson model of W = 1.5.
Left panel: simulations performed for fixed Td = 0.2 and different amplitude A.
Right panel: here we present the σ(t) in the case of fixed A = 1.0 and different Td .

We start by considering the situations reported in Fig. (4.11): we keep constant the

parameters which define the noisy behavior of f (t), i.e. T0 and Td (we are working in

the case of Tmax � T0, Td so it does influence f (t)) and vary its intensity A. As one

could imagine, the more we perturb the system, the greater the expansion of ρl(t) is.

Another possibility is to keep fixed the intensity of the disorder, and change the degree

of noisiness by varying Td . A possible result is also plotted in Fig. (4.11). Comparing

the plots in Fig. (4.11) we immediately notice that if for constant dephasing σ(t) at

fixed time increases with A, the same does not happens in the opposite situation, i.e.

A fixed and different Td . A more clear example is reported In Fig. (4.12) where σ(t)

at t = 1000 is plotted as function of Td for different disorder amplitude W , while all

other parameters are kept constant. In that figure we emphasize that σ(tmax) is not a

monotonic function of Td , but it has a maximum for certain values of dephasing. This

suggests that the expansion depends onto spectrum Sp(ω) of f (t), which is itself a

function of Td as demonstrated in Eq. (4.11). An analogous result could be find in [46],

where authors shows that the equivalent of σ(t) as a maximum for certain values of the

correlation time of the noise, when a disordered background is present.

In the following we will try to give an explanation of this peculiar behavior, as done

in [87]. A good start point is the classical diffusion equation

∂ρ(x, t)

∂t
=
D

2

∂2ρ(x, t)

∂x2
, (4.20)

where D is the diffusion coefficient for the distribution ρ(x, t). A possible solution of

Eq. (4.20) is the Gaussian

ρ(x, t) =
1

σ(t)
√

2π
e
− x2

2σ2(t) , (4.21)
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Figure 4.12: σ(t) at t = 1000 as function of the dephsaing time Td in the case of
Anderson disorder with W = 1.5 (squares), W = 2 (circles) and W = 4 (triangles).
Notice that the behavior of the curves is similar to the one of η in Fig. (4.18), suggesting
that there is a connection between expansion and η. Moreover the greater W the smaller
σ(tmax), this reflects that also the localization eigenstates, at least their overlaps, play
a role. For stronger disorder, i.e. large W , states are more localized and their overlap
become smaller and smaller, this suppresses transition between them driven by the noise,
slowing down the diffusion process.

which is a self-similar solution in the sense that during the evolution ρ(x, t) will keep a

Gaussian shape but with a variance σ(t) that is a function of time. Inserting Eq. (4.21)

in Eq. (4.20) we obtain

2σ(t)
dσ(t)

dt
= D ,

that is
dσ2(t)

dt
= D . (4.22)

Eq. (4.22) is readily integrated, giving σ2(t) = σ2
0 +Dt or, equivalently,

σ(t) = σ0

√
1 +

t

t0
. (4.23)

In (4.23) we introduced σ0 = σ(0) that is the initial width of ρ(x, t) and define t0 =

D/σ2
0. We are interested in the asymptotic, i.e. large t, dynamics so Eq. (4.23) can be

approximated with

σ(t) ≈
√
D
√
t . (4.24)

We obviously obtain that the width of a Gaussian like the one in (4.21), which we recall

is a solution of Eq. (4.20), grows in time as the square root of t so, in accordance with

(4.19), it has diffusive dynamics.

As already mentioned, there are predictions about discrete system in the presence

of an uncorrelated noise claiming that it will be driven into a diffusion regime. i.e.

σ ∼
√
t [27, 29, 46]. To verify this in our systems we integrate Eq. (4.2) up to mlarge
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Figure 4.13: Exponent α of Eq. (4.25) for a noise with A = 1, T0 = 4/5 and Td = 0.2.
Static disorder is an Anderson chain with W = 1.5. Simulations are performed up to
t = 103, and we consider 100 realizations of disorder. Left and right panel differs only
for the method use for determining α, but the two curves are compatible within errors.

times. Here by large we mean a time t at which ρl(t) is expanded in such a way that

one has there is a large time interval in which ln(σ(t)) versus ln(t) is linear. Once we

have the data set we fit them with a generalized version of (4.23)

σ(t) = σ0

(
1 +

t

t0

)α
, (4.25)

with σ0, t0 and α being free parameters. At this stage we are only interested in α. We

had largely investigated by a large amount of numerical simulations this problem, and in

Fig. (4.13) we report an example that clarify what we have obtained. Fig. (4.13) shows

that α is in accordance with the theory prediction; there we shown for completeness two

way of extracting α from the data. In the left panel we fit every single realization of

σ(t) with (4.25) and at the end we calculate the weighted average, using the fit errors

as weights. This is the reason of the error bars in left panel of Fig. (4.13). In the right

panel, on the other hand, we first average the σ(t) to obtain curves like the ones in Fig.

(4.11) and then fit the realization-averaged 〈σ(t)〉. This last case is presented in Fig.

(4.14) From (4.25) we can also extract both σ0 and t0, and combining them we can

estimate the diffusion coefficient

D =
σ2

0

t0
, (4.26)

we stress here that, although we get a different α for each fit of σ(t), the diffusion

coefficient is always defined with σ2
0 in order to have the right physical dimensions, [D] =

[L2][T−1], which allows a comparison between D extracted from different sets of data.

This procedure was implemented also in [87] to compare numerical and experimental

data, and what they find is reported in Fig. (4.15). There they plot D as function of A2

for different disorder strength, and what is important to notice is that each curves has a

linear behavior with A2 up to a certain values which depends on the disorder, and that the

slope of D(A2) is a function of disorder strength too. We try to give some explanation of
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Figure 4.14: 〈σ(t)〉 averaged over 100 realizations of the disorder. The dashed red line
is a fit of the data with (4.25). In each panel we put the results of the fit. Parameters
used here are W = 1.5 for the Anderson noise, for the noise we set T0 = 4/5, Td = 0.2.
From top left different A are considered: 0.3, 0.5, 0.7 and 1.0 (clockwise).
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this dependence on both A2 and the disorder by implementing a perturbative approach,

which can give a clear, although not too detailed, idea of the mechanism underline the

noise-driven diffusion.

The approach we use is based onto the standard perturbative method for linear

system in the presence of time-dependent potential, i.e. on the transitions between

states induced by the perturbation, and onto the prescription of [126]. In that paper

author finds that D ∝ Γξ2 in which ξ is a characteristic length of the system and Γ is

the transition rate within perturbative approach [127]; in the case of disordered system

a good choice for ξ seems to be the localization length because, as we will show, it

determines the length-scale for the spatial overlap between states, which is involved in

the calculation of Γ [87].

Let us consider the quasi-periodic lattice, and suppose to be in the localized regime

λ > 2. From previous chapters we know that fir a ginven λ all the eigenstates of the

system are Anderson localized with the same localization length [55,67,68,77,80,87]

ξ =
1

ln(λ/2)
; (4.27)

now take a look to Eq. (4.1), together with Eq. (4.3) we can always write

Hl(t) = H
(0)
l + Af (t)Vl ,

where we divided the time independent part H(0)
l , given by the Aubry-André model in

Eq. 2.39 for U = 0, from the non stationary one. Thus we have

H
(0)
l =

M∑
l=1

[
−
(
φlφ
∗
l+1 + φ∗l φl+1

)
+ λ cos(2πβl + θ)|φl |2

]
.

In the regime of small noise amplitude, A � 1, it is true that Af (t)Vl � H
(0)
l and we

can assume that the only effect of noise is to induce hopping between different localized

states of the unperturbed system. The coupling is driven by the frequency component

of the noise spectrum that is resonant with the energy difference between states. For a

proper choice of λ one can always obtain ξ ∼ 1, i.e. states decays rapidly onto length

scale comparable to the lattice spacing, then we can only consider coupling between

neighboring sites, due to the fast decay of states.

The question is how to determine Γ which, in this perturbative regime, is defined

by [87]

Γ ∝ A2η |〈i |Vl |f 〉|2 . (4.28)

Let us explain a little bit more in details each terms of Eq. (4.28): |〈i |Vl |f 〉|2 is the usual

matrix element of the perturbation between |i〉 and |f 〉. The term A2η arises from the

time dependent f (t); as already said the transition is be possible only if the right right
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frequency ωi f = Ef −Ei is present into the spectrum of f (t), Sp(ω) = |f̃ (ω)|2. Because
it is has its own dependence onto the frequency we have to take into account for the

overlapping between the distribution of the eigenfrequencies of the system, P(ω), and

Sp(ω). We thus define a quantity that can be linked to this

η ∝
∫
P(ω)Sp(ω) dω , (4.29)

that we then introduce in Eq. (4.28). We use proportionality because the numerical value

depends onto the normalization of both P(ω) and Sp(ω). A2 in front of all measures

the strength of the noise, i.e. it is proportional to the integrated power spectrum. In

the experiments the time-varying field Af (t) inject into the system a quantity of energy

which is
∫
Sp(ω)dω ∝ A2; if one normalize Sp(ω) to 1, as we do in all our calculations,

then obtains the form we have just introduced with explicit A2.

In the experiments described in [87] and here reported in 4.5 authors do not use

η to give an estimation of this overlap because the definition in (4.29) is not directly

measurable. They instead use the width of Sp(ω),

δω ∝
∫ ωmax

−ωmax
ω2Sp(ω) dω ,

or

δν =
δω

2π
.

They found that δν which gives larger expansions is close to the inverse of the bandwidth

W of the disorder, i.e. δν ∼ W/h, this agrees with what we find numerically for η. We

had demonstrated that changing Td modify Sp(ω) and thus its width δω; comparing Fig.

(4.12) with (4.16) it is possible to see that maximum for σ(tmax) is achieved for Td of

the order of 1/W, and for this values δν ∼ 1/Td . So we have exactly δν ∼ W as the

best conditions for expansion.

Regarding the overlapping integral we have to consider |λ〈i | cos(2πβl + θ)|f 〉|2, to
get an analytic prediction we use the strong assumptions

|λ〈i | cos(2πβl + θ)|f 〉|2 ≈ λ2|〈i |f 〉|2 , (4.30)

and assume the eigenstates |n〉 exponentially localizes as

〈l |n〉 ≈
1√
ξ

exp

(
−
|l − ln|
ξ

)
, (4.31)

where ln is the localization center of the eigenstate. The approximation done before

suggest to consider state for which |li − lf | ' 1, and with this in mind one can readily

find

λ2|〈i |f 〉|2 ≈ λ2 (1 + ξ)2

ξ2
.
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Now, using Eq. (4.27) one get 2

λ2|〈i |f 〉|2 ≈ e2/ξ (1 + ξ)2

ξ2
. (4.32)

Finding an expression for η is little bit more difficult, because none of the function

involved are known exactly. However we could approximate the density of state of H(0)
l

as a box distribution large W = 1 + λ/2, which is the width of the energy spectrum for

a quasi-periodic lattice:

ρ(En) =
1

W

[
Θ

(
En +

W
2

)
−Θ

(
En −

W
2

)]
;

this description differs from the real due to the fact that it does not consider any gap

present in the spectrum, which instead could play a role [80,128]. This hypothesis turns

in a eigenfrequencies distribution

P(ω) ≈
2

W [Θ(ω +W)−Θ(ω −W)] . (4.33)

Working in the strong noise limit, i.e. Td � T0 , we find that the optimal condition for

the diffusion is obtained for Td = 2π/W, which means (see Eq. (4.11) that Sp(ω) has

its first minima in ω = ±W/2 and could be identified with

Sp(ω) ∝ W
1

W2
sinc2

(
ω

2π

W

)
, (4.34)

where the linear dependence onW coming from
∫
Sp(ω)dω = 1; we imposed this normal-

ization to Sp(ω) since we explicit the A2 contribution in (4.28). Using the approximations

(4.33) and (4.34) in (4.29) we obtain

η ∝
1

W . (4.35)

Remembering that W = 1 + λ/2 and λ = 2 exp(1/ξ) we arrive to

Γ ∝ A2 (1 + ξ)2

ξ2
(

1 + e1/ξ
) . (4.36)

Finally, to obtain an expression for D we recall what is written in [126]

D ∝ Γξ2 , (4.37)

identifying ξ in that article with the localization length, so inserting (4.36) into (4.37)

2The calculation of the integral is based onto a semi-discrete approximation: we consider the
eigenstates in the continuum as φ(x) = exp(−|x |/ξ)/

√
ξ, which is normalized to 1. Then we take

〈i |f 〉 =
∫
φ(x)φ(x − 1)dx , where 1 is the lattice spacing, having set it as unit length.
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Figure 4.15: Left panel: measured D vs A2, for different values of disorder strength.
There the experiment performed with a quasi periodic lattice, from top to bottom :
λ = 2.5 (rhombuses), 3 (spheres), 3.5 (stars) 4 (circles), 5.5 (triangles) and 8 (squares).
Open symbols stand for the experimental measurements and filled ones for numerical
simulations. Dashed line represents the critical values for A, i.e. Ac , and D above which
perturbative approach fails.
Right panel: normalized diffusion coefficient D/A2 vs. the localization length ξ, for the
regime of small A in both experiment (open squares) and numerical simulations (filled
squares), and for A = 1 in simulations (triangles). The dash-dotted line shows the
prediction with perturbative approach (4.38). For numerical data, solid lines are just
guide to the eye. Figure taken from [87].

the result is [87]

D ∝ A2 (1 + ξ)2

1 + e1/ξ
. (4.38)

A nice proof of this prescription could be find in [87], from which we take Fig. (4.15)

Remaining in the perturbative approach we try explore a little bit more wider set of

situations which can help us to better understand which role is played by each of terms

involved in Γ. Eq. (4.28) shows that the transition rate is made as the product of two

parts, one belonging to the spatial properties of the disorder |Vi f |2 and the other coming

from interplay between the noise and twill be focused to the noise dependence. As widely

shown in 4.1.1, in particular Eq. (4.11), Sp(ω) is a function of Td , ω0 = 2π/T0 and its

shape will suffer sensible changes as one of those parameters is varied, see Fig. (4.4). In

Fig. (4.16) and Fig. (4.17) we will consider the case of two different disorder and various

noisy functions f (t): the former define the energy spectra, i.e. the eigenfrequencies of Vl ,

the latter gives Sp(ω). In those figures it is immediately visible that the overlap between

Sp(ω) and P(ω) could be very different and to confirm it we numerical compute η and

show it in the left panel of Fig. (4.18). There we show also the plot of Fig. (4.12);

comparing the two panels, in particular those data that are computed for the same value

of T0, we see that the behavior of η(Td) is the same of σ(tmax) versus Td . This is a
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Figure 4.16: Comparison between the power spectrum of the noise with T0 = 0.2 and
the distribution of eigenfrequencies ωi f = Ei − Ef for the Anderson model with W = 2

(top row) and quasi-periodic lattice with ∆/J = 2.5 (bottom row). From left ot right
we consider different dephasing time Td : 0.05, 0.2, 0.4 and 0.8.

Figure 4.17: Comparison between the power spectrum of the noise with T0 = 31.5 and
the distribution of eigenfrequencies ωi f = Ei − Ef for the Anderson model with W = 2

(top row) and quasi-periodic lattice with ∆/J = 2.5 (bottom row). From left to right
we consider different dephasing time Td : 0.05, 0.2, 0.4 and 0.8.

clear proof that our picture describing noise induced expansion for the wave packet as

the transitions between states works properly.

A better study will go into the direction of also finding the dependence of |Vi f |2 onto

the type of disorder, but this is not a goal of this work. Future development will go into

that direction.

4.3 Interacting wave packet in a random potential

Up to now we have only considered the dynamics of a wave packet driven by a linear,

although complicated, time-dependent Hamiltonian. We have demonstrated that if the

behavior in time of the Hamiltonian is comparable to some noise a wave packet will

shows a normal diffusive dynamics, increasing its width as the square root of time; this

type of system is quite diffuse in nature once one deals with some random vibration or

thermal bath. Another interesting aspect of nature is that among particles there could
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Figure 4.18: Left panel: η defined in Eq. (4.29) against Td for different types of disorder
and noise frequency ωo = 2π/T0. We consider Anderson disorder with W = 2 (circles),
W = 4 (triangles) and quasi-periodic lattice of ∆/J = 2.5 (squares). Upper data for
T0 = 31.5 and lower for T0 = 0.2.
Right panel: σ(tmax) versus Td as in Fig. (4.12). Notice that the lower set of data for
η and σ(tmax), which are computed for the same T0, behave exactly in the same manner.

be interactions that can not be avoided, even if small. The study of their influence on

the expansion of a wave packet is a field of research belonging to different branches of

physics: from nonlinear science to atomic physics. As described in previous chapter the

use of Fano-Feshbach [107–109] magnetic resonance in ultracold atomic gases open a

wide range of possibilities for studying those phenomena that until now were just treated

from a theoretical point of view.

The microscopic dynamics is governed by the Eq. (2.34), in which we have to add

the explicit time dependence of Vl , thus

i
dφl(t)

dt
= − [φl−1(t) + φl+1(t)] + Vl [1 + Af (t)]φl(t) + U |φl(t)|2 φl(t) . (4.39)

4.3.1 Repulsive interactions: subdiffusion

Solving Eq. (4.39) without the noise, i.e. f (t) = 0 or for us simply A = 0, is

the subject of many theoretical papers [49–58, 60] and recently it was also investigated

experimentally with cold atoms [88]. Is is not our aim to give e review of those theories,

we just put our attention on the fact that in this case interactions lead to a subdiffusive

expansion of the wave packet: its width grows in time as tα with α < 0.5, as indicated

in (4.19). To give a simple explanation one can say that the finite interaction energy

breaks the orthogonality of the single-particle eigenstates of the linear system, weakening

the localization. In this case one can describe the resulting dynamics by the mean of

perturbative theory as an interaction-assisted coherent hopping between localized states,

with a coupling strength that decreases as the sample expand, since the density and hence

the interaction energy decreases [87,88]. This is the usual description of the process from

a microscopic point of view, but in general one can also try to give a picture of what is



4.3 Interacting wave packet in a random potential 91

going on taking into account the macroscopic quantities that are, in principle, accessible

to experiment. We have exactly done this in 4.2, where we have analyzed the effect of

the noisy Vl(t) by looking at σ(t) and PR(t): we consider that the wave packet, which

at t = 0 is taken to be Gaussian (4.18), expands maintaining its shape but increasing

σ and this was derived from the classical diffusion Eq. (4.20). Something similar has

been done also in the case of finite repulsive interaction, U > 0, again without noise.

In that case the density profile does not evolves following (4.20), being the observed

expansion subdiffusive, and then one has to consider a generalized nonlinear diffusion

equation (NDE) in which the diffusion coefficient is not a constant D but depends onto

the density, i.e. D(n(x, t)) and so decreases as the wave packet spreads. This results

in a slowing of the process with respect to the case of normal diffusion with α = 0.5.

For reasons of completeness we want just to report that a suitable microscopic model

for this kind of dynamics relies onto a scheme similar to that one used in the case of

the noise-assisted diffusion. The diffusion coefficient is taken to be D ∼ Γξ2, with ξ

characteristic localization length of the disordered potential, and the transition rate is

defined as (using dimensional units) [125]

Γi f =
2π

~
|〈i |Hint |f 〉|2

|Ei − Ef |
, (4.40)

where Hint ∝
∫
ρ(x)2dx is term in the Hamiltonian describing the interactions; |i〉 and

|f 〉 represent generic initial and final states or, better, quadruplets of them due to the

structure of Hint . For suitable values of the disorder strength only long-distance couplings

are allowed, which tend to decrease with decreasing interactions energy; in this case one

recovers that D ∝ σ−β, with β > 2.

Let us introduce the NDE as in [125]:

∂ρ(x, t)

∂t
=

∂

∂x

[
D0ρ

a(x, t)
∂ρ(x, t)

∂x

]
, (4.41)

which takes explicitly into account the density-dependent diffusion coefficient. In the

usual solving of this problem the asymptotic one searches for solution at asymptotic

time, i.e t � 1, and it has been demonstrated that a good set of solutions is made by

the self-similar functions [125,129]:

ρ(x, t) ∝
[

1−
x2

w(t)

]1/a

Θ (w(t)− |x |) . (4.42)

From (4.42) it comes from that both w(t) and σ(t) evolves as t1/(2+a) with a ≥ 2.

Although (4.42) gives good results as t � 1, it does not describe short-time dynamics

and, moreover, in real experiments the ρ(x, 0) is better approximated by a Gaussian

rather than a function like that. In [125] authors suggest a simple and clear way to

retain the already known results but with the corrections needed in order to take into



92 4. Interactions and disordered time-dependent potentials

account the aspects just mentioned. They express a Gaussian as certain limit of function

like the one in (4.42), namely

exp

(
−
x2

w2

)
= lim

b→0

(
1−

bx2

w2

) 1
b

, (4.43)

and then use for the solutions of (4.41) the following ansatz3

ρ(x, t) = A

[
1−

b(t)x2

w(t)2

]1/b(t)

Θ

(
w(t)√
b(t)

− |x |

)
, (4.44)

which should be good at short times. In (4.44) A(b, w) is an appropriate normalization

constant and for the exponent they assume

b(t) = a[1− exp(−t/τ)] . (4.45)

Within this framework they found that the width ρ(x, t) evolves in time as (4.25) with

a diffusion exponent α = 1/(a + 2) [125], that is in accordance with the predictions

of [129].

Finally, we had obtained that an interacting wave packet expanding onto a disordered

lattice has a width that spreads in time as

σ(t) ∝ D(t) tα , (4.46)

with a diffusion coefficient given by

Dint(t) = 2α
σ

1/α
0

t0
σ(t)2(1− 1

2α) . (4.47)

Eq. (4.46) and Eq. (4.47) are consistent with a generalized version of the classical

diffusion equation (4.22). Indeed inserting (4.47) in dσ2(t)/dt = Dint(t) and solving

for σ2(t) one gets at the end

σ(t) = σ0

(
1 +

t

t0

)α
,

which is again the function of Eq. (4.25).

3Complete expression for the approximation of (4.42) could be found in [125]:

ρ(x, t) =
b(t)3/2Γ(1/b + 3/2)
√
πw(t)Γ(1/b)

(
1−

b(t)x2

w(t)

) 1
b(t)

Θ

(
w(t)√
b(t)

− |x |

)



4.3 Interacting wave packet in a random potential 93

Figure 4.19: From left to right: width 〈σ(t)〉, partecipation ratio 〈PR(t)〉 and energies
in the case of DNLS with an Anderson disorder with W = 2. Data averages over 50
realizations. When interesting we put on the graphs also the values of the diffusion
exponent obtained from a fit with the function in (4.23). Here is important to notice
that σ(t) ∝ tα with α = 0.3625± 0.0003, so the expansion is clearly subdiffusive. The
nonlinear parameter is set to U = 50. Data are averaged over 50 realizations of the
disorder.

4.3.2 Attractive interaction: self trapping

Self-trapping is a localization phenomenon that arise in non interacting system, and

it is totally different from the Anderson localization. First of all there is the possibility

of having it also in pure periodic systems and in a double well potential [130–133]. The

explanation of this phenomenon could be find with very simple arguments based on

energy conservation [50]: all start from the fact that Eq. (4.39) in absence of the noise,

i.e. A = 0, is describes a closed system in which both norm
∑

l |φl(t)|2 and energy are

conserved. Let us focus on the energy; as we already noticed the underlying periodic

potential modify the energy spectrum of non interacting particle by opening gaps of

forbidden energies between regions of allowed energies. Moreover, the discrete version

of ( correspond to the tight binding approximation (see . . .) in which one has to deal with

just the lowest band of the lattice; due to this the energy of the linear system is bounded

both from bottom and above. If we create an initial localized state (as the Gaussian we

always use) the energy of which is quite far from those boundaries one can prove that

self trapping mechanism set in: the system is unable to transfer energy from interaction

to kinetic an potential and the only way it has to preserve the total energy is to keep the

density peaked in some region of the (one dimensional) space. This high peaks brings

the high contribution from interaction energy (proportional to on site density) while the

phases of φl(t) runs following their dynamics.

A signature of self trapping could be find looking to both the width σ(t) and the

partecipation number PR(t), following the ideas we draw few line before we expect that

σ(t) could evolves, even increasing in time due to the dynamics of non self-trapped atoms

in the tails of ρl(t) [50, 134], but the PR(t), which we remind measures the number of

significantly populated sites, should remains constant in average because the bulk of φ(t)
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does not expand. In our case the state is prepared as usual:

φl(0) = N exp

[
−

(l − lc)2

4σ2
0

]
,

without any additional phase exp(iθl(0)) (i denotes the imaginary units), and N a real

constant fixing the normalization of the wave function. If we write the wave function in

the usual modulus phase representation, remembering that |φl(t)|2 = ρl(t),

φl(t) =
√
ρl(t)e

iθl (t) ,

and put it into the definition of the kinetic energy, we have

Ekin(t) = −
∑
l

[
φl(t)φ

∗
l+1(t) + h.c.

]
= −2

∑
l

√
ρl(0)ρl+1(0) cos[θl(t)− θl+1(t)] , (4.48)

For our choice of the initial conditions the initial kinetic energy becomes

Ekin(0) = −2
∑
l

√
ρl(0)ρl+1(0) ,

which is the minimum value accessible. When the wave packet evolves each φl(t) acquire

a certain phase and Ekin(t) grows going to 0 which correspond to complete uncorrelated

phase differences between nearest sites, i.e. all the free particle state of the first band

are populated. We show this behavior for the kinetic energy because we can now better

understand what we have state at the beginning: in this case if we choose U < 0 strong

enough the kinetic energy goes again to 0, and to ensure energy conservation the interac-

tion energy and potential energy have to compensate the increasing of Ekin and the only

possibility is to generate regions of high density which carry a lot of interaction energy.

In Fig. (4.20) we plot ρl , σ(t) and PR(t) which give a clear signature of the self trapping

mechanism. We stress here that the self trapping is a localization phenomenon which

arises from the interplay between interactions and the bounded spectrum of the linear

system, so it is totally a different mechanism from Anderson localization: self trapping

does not depends onto the disorder, it is possible to observe it also in perfectly periodic

system with appropriate nonlinear terms. On the other hand Anderson localization is a

single particle behavior, and it appears only if a disordered potential is present: it depend

just on the nature of the system. In one dimension every disorder lead to localization,

not all interaction gives self trapping. Moreover self trapping and Anderson localization

influence different parts of the wave packet: the former acts onto a finite region where

density is higher and its a macroscopic phenomenon, the latter instead generate expo-

nential decay on the tails. An outline of this is reported in Fig. (4.21), where ρl(t) for

the bare disordered system and with strong attractive interactions are compared.
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Figure 4.20: Left panel: at the center 〈ρl(0)〉 (dashed line) and 〈ρl(t)〉 (solid line,
colored area used to evidence it) for t = 104. Initial and final density do not differs a lot,
there is a high-density frozen bulk, while few atoms move in the tails of the distribution.
Inset: 〈σ(t)〉 (left) and 〈PR(t)〉 (right); while the first increases to the particle in the
wings of the density the second reaches a situation in which it is constant in average.
This is a signature of self trapping: ρl(t) has a bulk that does not spread, and that
accounts for the number of significantly occupied sites.
Right panel: Evolution in time of the energies in the case of self trapping. Top data are
the kinetic and potential energies, the bottom data is the interaction energy. It stops
increasing when self-trapping sets in.

4.4 Interplay between noise and interactions

In 4.2 and 4.3 we had illustrated that a wave packet loaded onto a disordered potential

shows different type of spreading depending on the terms that are added to the linear,

stationary, Hamiltonian:

• only noise: the expansion is diffusive, i.e. σ(t) ∝ Dnoise
√
t, with a diffusion

coefficient Dnoise that is constant and depends onto the both the properties of

disorder and noise;

• only interactions: the expansion is subdiffusive, i.e. σ(t) ∝ Dint(t) tα, with α <
0.5 andDint(t) which implicitly depends on time through the width σ, i.e. D(σ(t)).

In this section we will take into account the interesting situation of both of them present

in the system, i.e. we will numerically study the whole (4.39). The presence of both this

sources of Anderson localization breaking (we specify that is the Anderson localization

that disappears because we have seen that other type of localization, i.e. self-trapping,

could exist) lead to different situations, in particular when one considers repulsive or

attractive interactions. A summary of various situations is reported in Fig. (4.22), for the

case of Anderson model. We can observe that the system still expands with a dynamics

that at large times is diffusive, meaning that for t > t∗ � t0 (t0 is the activation time

in (4.25) the noise dominates over all other processes inducing delocalization, but for

t < t∗ U and f (t) works together and, depending onto the sign of U, the influences the
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Figure 4.21: Left panel: surface plot of 〈ρl(t)〉, averaged over 50 realizations of the
disorder. Here the self-trapping is extremely evident: the center of the distribution does
not evolve, while its wings spread wilt time passes.
Central and Rigth panel: ρl(t) in the case of only disorder and of disorder with U � 0,
as indicated into the plots. Shaded area correspond to the Anderson localized wave
packet.

dynamics differently. Very shortly: if U > 0 and noise and interactions cooperate and

the observed σ(t) is always equal or larger than the one observed in the case of noise

or interactions alone, depending on their values; if U � 0 interactions contribute to the

appearance of an initial expansion faster than diffusive, and after that the system shows

an interesting contemporary presence of both diffusion and self-trapping.

4.4.1 Repulsive interactions and noise: cooperation

In the first two row of both Fig. (4.22) we observe that when noise and interactions

are introduced together the expansion in globally faster compared to the case of noise

or interactions alone. At final time, 〈σ(t)〉 of the weave packet subject to both U and

A·f (t) (blue lines) is equal or larger than the other two cases of noise alone (red lines) and

interactions alone (green lines), but with an exponent α of (4.25) that is intermediate

between the previous, i.e. 0.25 ≤ α ≤ 0.5. This indicates that both the delocalization

mechanism are playing a role which depends onto the relative strength of the two.

We have discussed before that the expansion in nonlinear disordered lattices (inter-

actions) and random potential in time (noise) have been studied extensively in theory

and experiments in different fields, but up to now we are not aware of any theory for this

combined problem. Recently was published a paper regarding it [87] in which some of

the results of this work has been reported.

In order to derive a simple model which can give a description for what observed

we suppose that the width of the wave packet evolves in time as (4.25) and obeys an

equation that takes into account both the mechanism acting onto the system, i.e. noise

and interactions. Because of this, we state that the evolution in time of σ2(t) depends

onto the linear combination of (4.22) and (4.47):

dσ2(t)

dt
= Dnoise +Dint(t) , (4.49)
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Figure 4.22: 〈σ(t)〉 evolution for different situation of noise and interactions interplay.
In each panel we consider the case of only noise (red), only interactions (green) and
both of them (blue) present in the Hamiltonian (4.39). Black curve correspond to the
case of neither noise nor interactions acting, i.e. Anderson localization set in. From left
to right we conisder increasing noise amplitude A = 0.1, 0.5 and 0.8, while going from
top to bottom we have two cases with repulsive interactions U = 10 (first row), U = 50

(second row) and one with repulsive interactions U = −100 (third row). The static
potential Vl is and Anderson disorder with W = 2.5; for the noise f (t) we set T0 = 4/5

and Td = 0.2. Data averaged over 50 realizations of disorder.
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Figure 4.23: Surface plot for the evolution of ρl(t), averaged over 50 realizations of
Vl(t). From left to right: interactions alone, noise alone and both of them acting
simultaneously. For Vl we use a quasi-periodic lattice λ cos(2πβl + φ) with λ = 2.5 and
β = (

√
5 − 1)/2. Noise parameters are A = 0.5, Td = 0.2, ω0 = 2π × 5/4, nonlinear

term is U = +50.

where we stress that the constant part arises from the noise, while the time dependent

part from the interaction. This is again reasonable if compared with the models discussed

in 4.2 and 4.3: expansion induced by noise or interactions is driven by two different micro-

scopic mechanism. The first give rise to a constant Dnoise due to the fact the transition

rate between state depends only onto the parameters of the system (noise amplitude

and power spectrum, disorder strength which fixes ξ and the energy spectrum), while

interactions introduces a Dint(t) that depends implicitly on time through the density.

This is still true when they are both present, and so we are reasonably confident in using

(4.49) to describe the overall process. We have performed a lot of simulations for two

types of disorder (Anderson and quasi-periodic) and for a wide range of parameters (in

Fig. (4.23) and (4.24) we report the plot of the evolution of ρl(t) in two of them) and

we find that Eq. (4.49) is valid in most of the cases. Moreover, we have to say that an

equation similar to (4.49) has been theoretically predicted in [135] for Brownian motion

of classical interacting particle.

In order to verify the goodness of (4.49) we first extract Dnoise and Dint from the

respective case of noise and interactions alone by fitting data with (4.25), then results

are used to numerically solve (4.49) with the appropriate initial condition (i.e. as σ0

we use the one extracted from the fit of the case with both noise and interactions

with (4.25)). The numerical solution of Eq. (4.49) is actually in good agreement with

the experimental data and also with the numerical results coming from the integration

of Eq. (4.39). In Fig. (4.25) we show it together with an example over many of

the observation done. The examples of the experimental observations and numerical

simulations reported in Fig. (4.25) strongly support the hypothesis of additivity of the

two delocalization mechanisms, at least at first order. In the experimental data (see

left panel of Fig. (4.25)) typically one observes a slightly faster diffusion with noise and

interaction. This difference is due to the axial excitation in presence of noise, which in
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Figure 4.24: Surface plot for the evolution of the density ρl(t), averaged over 50 re-
alizations of the random potential Vl(t). From left to right we consider the case of
interaction alone, noise alone and both of them acting simultaneously. Underling static
disorder is an Anderson lattice characterized by W = 2. Noise parameters are A = 0.5,
Td = 0.2, ω0 = 2π × 5/4, while for the interaction we set U = +50.

turn excites the radial degrees of freedom in presence of interaction [88] and produces

the increased expansion shown in Fig. (4.25). On the contrary, in numerical simulations,

which neglect the axial-to-radial coupling, there are much smaller deviations from the

solution of Eq. (4.49), of the order of a few lattice constants (see right panel of Fig.

(4.25)).

The good agreement between the experimental data and the prediction of Eq. (4.49)

persists for the whole range of A and Eint that are accessible in the experiment, with A

ranging from 0.4 to 1 and Eint adjustable up to ≈ J. Furthermore, as we described above

in Fig. (4.15), in numerical simulations we can explore the region of large A and/or ξ,

where the perturbative description of the noise effect fails. Interestingly enough, although

this regime is not perturbative, we find the additivity of noise and interaction mechanisms

also in this case. An investigation over a broad range of parameters in theory indicates

that the system should behave in a fully symmetric way for attractive and repulsive

interaction, provided that also the energy distribution is reversed when changing the sign

of the interaction. For example, the diffusion dynamics for a repulsive system initially

prepared in a potential minimum is equivalent to the one of an attractive system initially

prepared in a potential maximum.

Therefore, the large region of validity of Eq. (4.49) supports the idea that the

observed anomalous diffusion is driven by the additivity of the two delocalization mecha-

nisms, which indeed act independently. Note that the interaction-assisted diffusion tends

to vanish as the sample expands, so that one should expect a long-time crossover to a

regime where interaction effects are negligible, and the system diffuses normally due to

noise alone. While we can clearly observe this crossover in the simulations, its exper-

imental characterization is prevented by the limited observation time. Although this,

numerical simulations indicate that deviation from this behavior might appear and Eq.

(4.49) does not describes the expansion of the wave packet in the proper way. We had
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Figure 4.25: Noise and interaction additive anomalous diffusion.
a) Measured time evolution of the width for noise alone (triangles), interaction alone
(squares), or both (circles), for ∆/J = 4. The noise amplitude is A = 0.6, while the
interaction strength is Eint ∼ 0.8J. The experimental data are fitted with Eq. (4.25)
(solid lines). The dashed line is the numerical solution of Eq. (4.49) using the extracted
diffusion coefficients from the fits, with the confidence interval shown as a gray area.
b) Relative residuals of the fit, for the case with noise and interaction, and the solution
of Eq. (4.49), with the associated confidence interval (gray area).
c) Numerical simulation of the time evolution of the width for interaction alone (i), noise
alone (ii), and both (iii), for ∆/J = 2.5, J = 180 Hz, A = 0.195, T = 1 ms and
Eint = 1.6J. The numerical data are fitted with Eq. (4.25) (solid lines), whereas the
dashed line is the numerical solution of Eq. (4.49).
d) Relative residuals of the numerical σ(t) with noise and interaction (iii) and the solution
of Eq. (4.49). The gray area represents the confidence level of 2 standard deviations.
Figure taken from [87].
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Figure 4.26: Deviations from additivity with a narrowband noise. Numerical simulation
of the time evolution of the width (top panel) and relative residuals (bottom panel) with
the same parameters of Fig. (4.25), but with Td = 10ms. Deviations from additivity
are evident in the discrepancy between the curve with noise and interaction (blu line)
and the solution of Eq. (4.49) (dashed line).

observed those deviation into two different situations: a noise with a bandwidth much

smaller than the eigengrequencies distribution width, which implies that the parameter

η in (4.29) becomes very small, or when interactions are strong enough (both in the

repulsive and attractive regime, depending on the initial conditions) to generate trapping

mechanism (see 4.4.2). For small η the diffusion is much slower than the case of greater

one (see Fig. (4.18)), and we describe this in 4.2 using the idea that narrower Sp(ω)

can not couple many localized states due to the fact that Sp(ω) does not posses the ap-

propriate ω associated to that transition. Very interestingly the addition of interactions

seems to restore a fast expansion in this regime, as if the additional coupling mechanism

between states due to Hint generates an effective broader spectrum Sp(ω). An example

of this is reported in Fig. (4.26), where we use for f (t) a dephasing time Td 10 times

smaller than the one sued in the simulations reported in Fig. (4.25). One observes a

Dnoise smaller than int the case of broadband noise; interactions are able to restore a

diffusion comparable with the one the one obtained in the case of both interactions and

broadband noise, therefore much faster than the one predicted by the additive conjecture

in Eq. (4.49).

It is important to notice that in this regime the additive hypotesis in Eq. (4.49)

fails although the diffusion mechanism is well described by the perturbative model in
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4.2. This example together with its complementary case of strong noise which manifests

additivity to the interactions, despite the perturbative model is no longer valid, indicates

an independence of the hypothesis (4.49) from the validity of the perturbative description

given by Eq. (4.36), Eq. (4.37) and Eq. (4.38).

4.4.2 Attractive interactions and noise

The second regime in which (4.49) does not work is the one observes the appearance

of self-trapping, as described in 4.3.2, Eint is too large to be transformed into kinetic

energy during the expansion [55,132], and the bulk of the system is effectively localized.

A couple of examples are shown in Fig. (4.28) and Fig. (4.29), in which self-trapping

in achieved by the mean of a strong attractive U onto the initial state (4.18), close to

the ground state of the system. Here, we observe an interplay of noise and interac-

tion resulting in a breakdown of the additivity (4.49) and in a transient super-diffusive

behavior, i.e. an expansion with α > 0.5. In absence of noise, the central part of the

distribution, where Eint is large, cannot expand, and therefore σ(t) increases slower than

normal (see 4.3.2 and figures therein). Noise can break this trapping by providing the

necessary energy to couple the interaction-shifted states to the lattice band. This causes

the fast expansion at short times, which is even faster than normal diffusion. We note

that related super-diffusion effects have been predicted in linear systems with varying

energy [136]. An analogous effect might arise when the noise is able to release the large

kinetic energy associated to the self-trapped part of the system, but further studies are

needed to clarify this mechanism.

4.5 Random system with interactions: experimental re-
alization

In all the previous sections we have considered theoretical models and numerical

simulations which are linked to a specific Hamiltonian or, equivalently, to a given equation

of motion (e.g. (4.39), and we have stressed many times that the possible experimental

study of this kind of systems is not simple do to the fact that all the terms involved in

Eq. (4.39) are not easy to control, or impossible. Because of this it is hard to build up

an experiment that could analyzed both the single effects of noise and interactions, and

the combinations of them. This is true when one deals with condensed matter system,

in which parameters defining the problem are not totally accessible. A great jump to skip

those difficulties was done when ultracold atomic system became realizable. The power

of those system is that one can, at least in principle, model an experiment starting from

the Hamiltonian due the possibility of controlling and tuning different parameters, as

we have already described. With ultracold atoms one can select the confining potential

defining the dimensionality of the system, the external potential acting on the atoms
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Figure 4.27: Surface plot for the evolution of the density ρl(t), averaged over 50 real-
izations of the random potential Vl(t), in the case of strong attractive interactions.
Left panel: only interactions. Bulk of ρl does not move: the self trapping. Tails spreads
leading to a subdiffusive regime.
Central panel: only noise. ρl(t) expands following Eq. (4.20): σ(t) ∝

√
t.

Right panel: noise and interactions. U < 0 works to create self-trap atoms in the bulk
of ρl(t), as in the first panel; noise allows low density tails to expand. Comparing with
central panel one observes that, although the width is smaller, the enlargement of the
whole distribution is faster.
Parameters for static disorder, noise and interactions are the same as in Fig. (4.28).

and last but not least the interactions among atoms. This peculiarity give to ultracold

atoms a role of privilege into the wide world of investigation of quantum world.

In this thesis we will refer to the recent work by the Florence group at LENS [87].

Here we report what they describe in that paper, to which we gave our contribution with

numerical simulations and theoretical analysis.

4.5.1 Static disorder

In these experiments the static disorder is created by the mean of a quasi-periodic

potential that we know is

V (x) = V1 sin2(k1x + θ1) + V2β
2 sin2(βk1x + θ2) .

The relevant length scale is given by the period of the main lattice, i.e. d = λ1/2, while

for energies the two important scales are the tunneling energy J, which typically is of the

order of 150Hz, and the disorder strength ∆, proportional to V2 (see [67,68] and 1.2.1).

4.5.2 Noise implementation

In the experiment of [87] the frequency noise scheme described in 4.1.2 is used

to generate Vl(t). The noise has a sufficiently broad spectrum in order to couple as

many state as possible within the lattice bandwidth W/h ≈ (2∆ + 4J)/~), but with

the prescription that excitations of radial modes (see 2.3) and transition to the first
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Figure 4.28: 〈σ(t)〉 and 〈PR(t)〉 (averaged over 50 realizations of disorder) in the case
of both attractive interactions U = −100 and noise (T0 = 4/5, Td = 0.2, A = 0.5).
Underling static disorder is an Anderson potential with W = 2.
Left panel: 〈σ(t)〉. Dashed lines correspond to fit with (4.25). Only noise (top curve)
and only interactions (bottom curve) gives diffusive and sub-diffusive expansion, respec-
tively. Middle curve: combined action of U < 0 and f (t) lead to an expansion with
an exponent α > 0.5, i.e. faster than diffusive. At the end of which σ(t) again goes
diffusively.
Right panel: 〈PR(t)〉. For only interactions (bottom curve) self-trapping is evident.
For only noise (top curve) PR(t) grows. Noise and interactions together: initially inter-
actions are so strong that dominate, PR(t) lies onto the curve of the only interactions
case, then ρl(t) starts to spreads and populates more sites.

excited band of the lattice will be avoided; the frequencies associated to those process

are ωr = 2π × 50Hz for the radial modes and ∆Egap/h ≈ 3 − 5KHz for the first band

state excitation.

Typical values for the parameter in f (t) are ω0/2π = 250Hz, ∆ω0/2π = 50Hz

and Td ∼ 5ms. This choice result in a spectrum that for t � Td decays exponentially

outside the band [ω0 − ∆ω0, ω0 + ∆ω0], on a frequency scale ≈ 1/Td , as shown in Fig.

(4.9). We recall (see 4.1.2) that this kind of noise is easier to realize and introduces

less disturbance in the system due to the fact that at each change of frequency also

phase varies in order to keep f (t) continuous. Moreover we have shown in 4.1.2 that

for t ≈ Td Sp(ω) contains only few frequencies around ω0, this might results in an

inefficient coupling between states, as the parameter η assumes very small values, in

order to provide diffusion [87, 137]. This aspect which is clearly visible numerically it

is not observed in the experiment, a possible explanation is that in experiments the

relative phase between the two lattices is not completely fixed, but it changes in time

due to external factor such as mirror vibrations, this introduces into the system a small,

but not negligible phase noise which leads to a small expansion also in the absence of

controlled noise. Numerical simulations performed with a phase noise with small A and

2π/Td ≈ 440Hz (assuming this as a typical frequency for mechanical vibration) are in

accordance with the measured increasing of σ(t) of the order of 1µm of an experiment



4.5 Random system with interactions: experimental realization 105

Figure 4.29: Numerical simulations for 〈σ(t)〉 for attractive interaction alone (red curve),
noise alone (black curve) or both (blue curve) in the case of an underlying quasi-periodic
potential with ∆/J = 2.5, J = 180Hz, A = 0.4, U = −35 and Td = 0.6ms. As in Fig.
(4.28) an intermediate super-diffusive (α > 0.5) seems to be induced by self-trapping,
while asymptotically one recovers normal diffusion with exponent α ∼ 0.5. Dashed and
dot-dashed lines shows the the diffusive and super-diffusive slope, respectively. Figure
taken from [87].

in which A = 0.

4.5.3 Interaction energy

Regarding the interactions, they are tuned by changing the scattering length as by

the mean of a Fano-Feshbach resonance, and they obtain values within 0.1a0 and 300a0

[138]. The mean interaction energy per atom is defined as

Eint =
2π~as
m

n̄ ,

where n̄ is the mean on-site density. This quantity can be related to the nonlinear

parameter in (4.39) approximatively by

Eint ≈
2JU

n̄s
,

where n̄s stand for the mean number of sites occupied by the atomic distribution [55,

68,87].

In order to create quasi 1D samples atoms are trapped by a radial frequency of

ωr = 2π × 50Hz. This radial degree of freedom limits the possible range for Eint to

value not much larger than J or ∆.
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Figure 4.30: Left panel: noisy quasi-periodic potential (blue line), realized by a static
main optical lattice overlapped with a secondary one (red line) with a broadband ampli-
tude modulation.
Right panel: measured σ(t) for different values of noise amplitude and interaction en-
ergy: A = 0 and Eint ∼ 0 (stars), A = 0.9 and Eint ∼ 0 (triangles), A = 0 and
Eint ∼ 0.8J (squares) and A = 0.8 and Eint ∼ 0.8J (circles). Solid lines correspond to
fit of data with (4.25). The quasi-periodic potential ha ∆/J = 4.
Figure taken from [87].

4.6 Summary and outlook

An effective overview of the extensive investigation done can be achieved by looking

to the partecipation number PR(t) (4.17) for varying A, Eint (U) and Sp(ω) in numerical

simulations. The specific diagram in Fig. (4.31), which shows the calculated PR(t) at

t = 10 s, for the expansion of a particular Gaussian initial distribution (4.18), can be

used to summarize general properties investigated with our system.

For a broadband noise (width of Sp(ω) comparable to the bandwidth of the under-

lying disordered potential, see left panel in Fig. (4.31)), one finds again that Anderson

localization is suppressed by either noise or interaction, with both leading to an expansion

of the system. We remark that the underlaying mechanisms for these two expansions are

quite different: weak interaction produces a coherent coupling of single-particle local-

ized states; the resulting transport can be modeled as a coherent hopping between such

states, with a characteristic sub-diffusive behavior that is determined by the changing

density (see 4.3). Noise instead drives an incoherent hopping between localized states,

which result in a diffusive expansion (see 4.2). Once both transport mechanisms are

combined, one sees an enhanced expansion, as highlighted by the increasing width in

the left panel of Fig. (4.31) for finite A and Eint . Our detailed time-dependent analysis

indicates that this combined diffusion is well modeled by the generalized, additive diffu-

sion model of Eq. (4.49). This surprisingly simple results seems not to be limited to the
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Figure 4.31: Generalized diffusion regimes. The color scale represents the number of
significantly occupied sites after 10 sec of our numerically simulated expansion, for ∆ =

2.5J, J = 180 Hz and a Gaussian wave packet initially distributed over ≈ 13 lattice sites.
Left panel: dependence on A and Eint for a broadband noise (Td ≈ h/W).
Right panel: dependence on Eint and δν (i.e. the width of Sp(ω/2π)), for a fixed noise
strength A = 0.4.
Figure taken from [87].

region of parameters where the noise- or interaction-induced diffusions can be modeled

by perturbative approaches.

Numerical simulations reveal also a region of stronger interaction, where the inter-

action itself prevents expansion, because of the self trapping-mechanism. This is visible

as a reduction of the PR(t) for increasing Eint (U) in Fig. (4.31). Here, the addition

of noise restores a diffusion, which our time-dependent analysis has shown to have an

anomalous super-diffusive nature. In this regime, the model of Eq. (4.49) clearly breaks

down.

Finally, an interplay of noise and interaction is seen also in presence of narrowband

noise, as shown in right panel of Fig. (4.31): here expansion is studied for different

η (defined in Eq. (4.29)), and Eint , for a fixed value of the noise strength (i.e. A =

0.4). In the non interacting regime, the diffusion constant decreases for increasing η.

The addition of the interaction recovers a faster expansion, which however cannot be

described by Eq. (4.49). In this chapter we have studied the transport of a wave-packet

in presence of controllable disorder, noise (see 4.1), and interaction. Most of the work

has been done numerically, and from the result we get we build up a model that explains

what one observes in some interesting situations. One of the possible realizations for

the model studied has been realized by an ultracold atomic system (see 4.5) [87]. Most

of the results reported in [87] are reported here, because the numerical simulations used

in that paper are one of the main subject of this work.
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We have characterized the noise induced diffusion and its interplay with an interaction

induced subdiffusion by studying the evolution of the wave packet width σ(t), suppos-

ing that it is described by Eq. (4.25). We have observed that the complex anomalous

diffusion resulting by the simultaneous presence of the two processes, can be remarkably

explained by a simple generalized diffusion equation (4.49) in a wide range of parame-

ters. Finally, we have numerically observed also regimes where the presence of trapping

phenomena produce a more complex interplay between the noise and interaction induced

diffusion mechanisms (see 4.4.2). It is interesting to note that a quasi-periodic lattice

might allow to study also a different regime that has been extensively analyzed in the-

ory [29, 139, 140], in which in absence of noise all the eigenstates are extended, while

the noisy potential is disordered. This regime can be achieved simply by using a weaker

disorder, below the localization threshold, λ < 2. Preliminary numerical simulations we

have performed show that in this case the noise slows the dynamics from ballistic to

diffusive, which are in perfect accordance with the recent results published in [46].

In 4.5 we recall [87], and show how the combination of an ultracold atomic system

with optical lattices can be effectively employed to study quantum phenomena related

to noise. In the future study of lattice systems with higher dimensionality or in reduced

dimensions will allow to explore the regime of strong correlations, and again in this case

one can face the problem from a theoretical point of view but also the numerics could

eventually be supported by experiments. Here there is a strong interest in understanding

the behavior of open quantum systems [141], and how quantum phase transitions are

affected by noise [142]. An interesting alternative to the use of a noisy optical potential

is to employ a large sample of a second atomic species with a controllable thermal

distribution, which is coupled via resonant elastic scattering to the atomic system under

study. This approach might allow to introduce a noise in thermal equilibrium, and to

simulate phonon-related phenomena [26,143,144].

Furthermore, an experiment like the one in [87] could be easily used to control the

temperature of our weakly interacting bosons in presence of disorder, to investigate the

many-body metal-insulator transitions at finite temperatures [145], and in this direction

could also be interesting to perform a systematic theoretical investigation.
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Disorder and localization

with two interacting condensates

5.1 Basic Ideas

In this chapter we describe how Anderson localization could be obtained in a system

made by two interacting condensates.

We find a seminal idea in a paper by Gavish and Castin [146] in which authors propose

to cerate a Bose-Einstein condensate loaded into an optical lattice in such a way that

only some randomly chosen sites will be populated with a large number of atoms. Then

a second condensate is loaded onto this array of randomly distributed delta peaks which

clearly is a realization of a disordered potential. Because atoms creating the disorder

are frozen, i.e. once they occupy the sites they will not move any more, we are in the

presence of a static disorder. We follow this idea of using two condensate one of which

has a non uniform spatial distribution that act onto the second as a disordered potential

but, instead of the method suggested in [146], we want the disorder potential to be

generated by the condensate itself without any external trapping.

This is possible because in an optical lattice, under some conditions which are the-

oretically well-known [117,147–149,149–152] and experimentally verified [153,154], an

uniform distributed interacting condensate (described as a plane wave of well defined

momentum) when slightly perturbed starts to evolve in time creating fluctuations and

breaking its flat density: this is known as modulation-instability phenomenon and it arises

from the interplay between the lattice and the interactions among atoms [117].

First we consider just one BEC and study the properties of the disorder it generates,

in particular the dependence onto the ratio between the self-interaction strength and

the tunneling rate which turns out to be the only important parameter of this problem.

Then we take into account the second condensate, interacting with the first but not

with itself, and study Anderson localization.

109
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5.2 Model

the system is well described by two coupled discrete nonlinear Schrödinger equations:

i~ψ̇Dl (t) = −KD
(
ψDl−1(t) + ψDl+1(t)

)
+
[
UDD|ψDl (t)|2 + Λ|ψLl (t)|2

]
ψDl (t)

i~ψ̇Ll (t) = −KL
(
ψLl−1(t) + ψLl+1(t)

)
+ Λ|ψDl (t)|2ψLl (t) , (5.1)

here we use dimensional units. Note that the coupling between ψD and ψL has a mean

filed form analogous to the single specie term in the Gross-Pitaevskii equation. In (5.1)

D,L stand for disordered and localized, respectively, meaning that the first equation

describes the condensate which is dynamically unstable and which will be considered as

the disorder, while the second equation describes the condensate that could Anderson

localize because of the presence of the other. We set the self-interaction term of the

second (L) species to zero because we want it just to feel the presence of the first one,

which acts like an external potential by the mean of Λ|ψDl (t)|2.

Problem is thus characterized by four explicit parameters:

• Tunneling rates: KD,L;

• Self interaction strength: UDD;

• Interspecies interaction strength: Λ;

moreover we have to take into account he total number of particles for each condensate

or, more correctly, the filling factor which is defined as the ratio between the total number

of particle ND,L =
∑

l=1,M |ψ
D,L
l (t)|2 and the number of lattice sitesM: ρ̄D,L = ND,L/M.

It is possible to perform a rescaling of those equations by defining two new wave

function as ψD,Ll =
√
ND,Lφ

D,L
l , in such a way that

∑M
l=1 |φ

D,L
l |2 = 1. Moreover it will

be useful to measure time in units of ~/KL, and the reason it will be explained in the

following. Defining the new parameters

g =
UDDND
KL

; α =
KD
KL

; η =

√
NL
ND

; λ =
Λ
√
NDNL
KL

, (5.2)

we get

i φ̇Dl (t) = −α
(
φDl−1(t) + φDl−1(t)

)
+ g|φDl (t)|2φDl (t) + λη|φLl (t)|2φDl (t) ,

i φ̇Ll (t) = −
(
φLl−1(t) + φLl−1(t)

)
+
λ

η
|φDl (t)|2φLl (t) . (5.3)

Equations (5.3) could be useful becouse they contains constants that depend explicitly

on the parameters of the problem, such as the number of atoms.
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5.3 Disorder creation and characterization

Now we will consider the evolution of a single interacting condensate in a lattice,

the dynamics of which is driven by the DNLS in Eq. (2.34), in order to look to the

density profile ρl(t) = |φl(t)|2 and study some of its statistical properties in particular

the probability distribution function and the autocorrelations function. As in Chap. 4 we

are dealing with

i φ̇l(t) = − (φl−1(t) + φl+1(t)) + g|φl(t)|2φl(t) , (5.4)

where the field φl(t) is normalized to 1, and is g defined in (5.2).

5.3.1 Dynamical instability of DNLS

Starting from Eq. (5.4) we will show how from a uniform density a disordered one

can be obtained. The method is extremely simple and it lies onto the interplay between

lattice, which introduce not only discretization of space but also fundamental changes

in the dispersion law of free particle (i.e. band structure), and nonlinearity coming from

interactions among particles. This means that, in order to create a disordered density,

we have just to take a uniform ditribution, slightly perturb it, and than let it evolves

following Eq. (5.4).

Stationary Solution

First we recall that Eq. (5.4) has stationary solutions that are plane waves:

φl(t) = φ0 exp [i(pl − νt)] ; (5.5)

each corresponding to an energy1

ω = −2 cos(p) +
g

M
, (5.6)

where we use the fact that
∑M

l=1 |φl |2 = 1 ends up in φ0 =
√

1/M, and g = UN/K.

Eq. (5.5) readily gives the on-site density ρl(t) ≡ |φl(t)|2 = 1/M, which is uniform in

space and constant in time: the condensate will remain uniformly distributed over all the

lattice.

Stability Analysis

Once we have stationary solutions of Eq. (5.5) we want to investigate if they are

stable or not under the influence of small perturbations. This is a widely studied problem,

1Because we are using dimensionless equations, energy and frequencies are equivalent.
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both in free space and in the presence of a lattice, by the mean of stability analysis

method in combination with the Bogoliubov theory of condensate (see for example [103,

104, 147–150, 155]); here we briefly report results presented in [149]. First we need to

introduce the Bogoliubov formalism

φl(t) = (φ0 + δφl) e
i(pl−νt) ≡

(
φ0 + ul(t)e

iql + vl(t)
∗e−iql

)
e i(pl−νt) , (5.7)

with q being the perturbation’s momentum, notice that here only a single q is considered.

Putting together Eq. (5.7) and Eq. (5.4) we get, at first order in u/ψ0, a matrix equation

for the time-derivative of the perturbation modes u and v :

i
d

dt

(
u

v

)
=

(
a c

−c∗ a − b

)(
u

v

)
= ω

(
u

v

)
, (5.8)

with a = 2 sin p sin q, b = 2 cos p−2 cos p cos q and c = g. Eigenvalues ω± of Eq. (5.8)

form the excitation spectrum of the condensate. The secular equation associated to Eq.

(5.8) is

ω2 − 2aω + a2 − b2 + c2 = 0 ,

which has two solutions: ω± = a ±
√
b2 − c2. Using the extended form for a b and c

we obtain

ω± = 2 sin p sin q ± 2
∣∣∣sin

q

2

∣∣∣√2 cos p
(

2 cos p sin2 q

2
+
g

M

)
. (5.9)

When ω± are complex the wave function become dinamically, ormodulationally, unstable.

This because

ul(t) ∝ exp(iωt) = exp(i<(ω±)t) exp(−=(ω±)t) ,

then, if =(ω±) < 0, amplitude of ul exponentially grows in time.

In order to observe those instabilities we need the expression under the square root to

be negative, and finding the set of parameters for which this happens is quite complicated

because they are a lot. As first simplification from now on we will only consider U > 0,

i.e. g > 0, meaning that we will work only with system composed by particles with

repulsive interactions. With this assumptions we have that waves in Eq. (5.7) will be

unstable only for cos p < 0, which means −π < p < −π/2 and π/2 < p < π, and this

can be demonstrated by simple arguments:

• cos p < 0 implies −2| cos p| sin2(q/2) + g/M > 0. This, solved for q, could have

solutions, at least in principle;

• cos p > 0 suggests sin2(q/2) < −(g/2M cos p). This has no solution because the

r.h.s is always negative, due the fact that we impose g > 0.

From the first condition we can determine a value for g above which all q are unstable.
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Figure 5.1: Surface plot of Sgn
[
2 cos p

(
2 cos p sin2 q

2 + g
M

)]
as function of (p, q) for

different values of g (indicated on the graphs) and a lattice of M = 211 sites. Black
regions correspond to negative values of the function, white region to positive. As
determined in the text negative values, and then instability, are confined in interval
−π < p < −π/2 and π/2 < p < π. It is important to notice that for g ≥ 2M, i.e.
g ≥ 212, all q’s are unstable while for g < 2M some white region (i.e. stable q) are still
present.

Looking at the previous results we have that for cos p < 0 instabilities appear when

sin2(q/2) < g/2M| cos p|. Because sin x is limited the inequality is alway satisfied for

g/2M| cos p| > 1 so, because | cos x | ≤ 1, we obtain that

if g > 2M any perturbation we put on the large amplitude wave of momentum

−π < p < −π/2 or π/2 < p < π is unstable.

Perturbing stationary solutions

We have just shown that amplitude of unstable modes exponentially grows in time, so

in order to create a disordered density profile we need to perturb an initial wave function

with the largest possible number of unstable modes. We try with two different methods:

one consists in perturbing the momentum distribution, the other in disturbing directly

the density. We find that both of them leads to disordered profiles that have the same

properties, but for completeness we give a short description of both of them.

We start by creating the unperturbed carrying wave: φl =
√

1/M exp(ip0l) with

p0 = 2πl/M, l being an integer. The latter definitions comes from our choice of using

periodic boundary condition, φ1 = φM+1 and φ0 = φM . The Fourier transform of this

wave is φ̃p = δpp0 . Numerically, we first create φ̃p(0), then we have two possibilities:

• Perturbing function in momentum space by adding a random background:

φ̃p(0) = δpp0 + ε∆[−π;π] ,

where ε � 1 and ∆[a; b] is a random number between a and b, picked up from

an uniform distribution. φl(t = 0) is then obtained by applying a Fourier anti-

transformation: φl(0) = F−1[φ̃p(0)].
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Figure 5.2: <(ω) (solid line) and =(ω) (dashed line) as function of q − p0 for different
nonlinearities g and carrying wave momenta p0 and fixed M = 211. It is evident that the
imaginary part becomes nonzero for p0 > π/2 and its value, as well as the one of the
real part, depends on g. Meaning that in order to have dynamical instabilities we need to
set p0 > π/2 but which of perturbation modes are unstable depend on the nonlinearity.



5.3 Disorder creation and characterization 115

• Perturbing function in real space. The idea is to write down initial function as

φl(0) + δφl in order to obtain small perturbation on the density: ρl(0) + δρl ≡
ρl(0) + εlρl(0) with εl = ε∆[−1; 1] as before. Taking the modulus square of

the perturbed function, |φl(0) + δφl |2, and equating it to the perturbed density

ρl(0) + δρl , up to first order in δφl we get δρl = δφ∗l φl + δφlφ
∗
l .

At the end we normalize φl(0) + δφl(0) to 1. After various simulations we choose to

perturb the density, because we have seen that acting directly on φ̃p(0), if ε is not small

enough, could lead to a density which is not close to a uniform value already at t = 0.

On the other hand, using the second method we anyway obtain a momentum distribution

peaked on p0 with a small background but ρl(0) is as close as we want to the constant

value 1/M. φl(0) is then used as initial condition to solve Eq. (5.4).

Short-time dynamics: Bogoliubov theory

Once the regions of stability of the perturbation have been found, we numerically

integrate Eq. (5.4) and check if the scheme of previous section works well. First we put

our attention on short-time scale, at which the Bogoliubov perturbation method should

work properly. In Fig. (5.3) we report our results: there we compare the momentum dis-

tribution, defined as the squared modulus of the Fourier transform of the wave function,

at some short time (in units of ~/K) with the imaginary part of ω in Eq. (5.9). Because

{u(t), v(t)} ∝ exp(=(ω)t), ω ≡ 1/τ0 defines a timescale τ0 at which the perturbation

of (quasi)momentum q has significantly increased its amplitude and so the greater =(ω)

the shorter the time at which that perturbation could play a relevant role. Of course

this two quantities could not be compared directly, but =(ω) gives a clear guide to the

eye that shows us which result we have to expect.

First we fix the carrying wave momentum p0 = π, and N = 100M in order to be

in the regime where DNLS well describes a condensate, then we consider values of g

below and above the threshold, results for two of them are presented in Fig. (5.3). As

expected, apart from the highest peak at p/π = 1 which correspond to the unperturbed

wave, the momentum distribution follows the prediction of Bogoliubov. For g < 2M we

could see a region where perturbation do not increase their amplitude while for g > 2M

all q are unstable, it is also evident the local maxima of φ̃p correspond to the maxima of

=(ω), i.e. to the fastest increasing perturbation.

5.3.2 Disordered density profiles

Although the short time dynamics could be interesting by itself, we want to study

the behavior of the condensate at time much larger than the one at which Bogoliubov

theory still works. This is motivated by the fact that we have to wait a certain amount

of time in order to let the perturbations grow and brake the uniform density. Very naively
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Figure 5.3: Momentum distribution (in logarithmic scale) after a short time interval for
two different values of U: 0.5 on the left panel, and 2.5 on the right. Black dashed line
are the imaginary part of the Bogoliubov frequencies, =(ω). Here they are just guide
to the eye, but the fact that shape of ρ̃p recalls =(ω) confirms the population of single
momenta evolves following Bogolibuov prediction.

we could imagine that if we wait for a sufficient long time all the momentum component

start to being populate, without following Boboliugobv prescription, and we loose the

initial uniform density profile |φl(0)|2 = 1/M; at this stage we are dealing with a new

density that is, somehow, disordered. In order to confirm or not our idea we have to

perform a statistical analysis over a certain amount of profiles. Our studies has been

done by considering a large set of different parameters, in particular we try with different

p0 and g. We numerically integrate Eq. (5.4) by a standard 4th order Runge-Kutta

method, and look to three quantities, two more linked to the definition of a disorder,

• Probability Distribution Function (PDF) P[ρl(t)] (where ρl(t) = |φ(t)|2),

• Correlation function g(1)
i (t) =

∑M
l=1 ρl(t)ρl+1(t),

and the third one that could tell us something interesting on the physics of the system

• ρ̃p(t) = |F [φl(t)]|2.

To obtain a significant number of densities we consider different realizations of initial

condition ψl(0), which differ one from the other because of the random choice of the

background perturbation.

By analyzing our data we observe an interesting feature of this system: a crossover

between two different type of disorder. The first one is characterized by a PDF with

Gaussian shape and ρ̃p(t) is nicely fitted Gaussian centered around p = 0, the second

has a PDF which shows an exponential decay at small ρ together with small populated

region of higher ρ, moreover its the momentum distribution has two maxima in p = ±π
and a minimum at p = 0. This feature seems quite peculiar and we want to study it

with a little bit more attention by performing a series of simulations for various sets of

parameters (p0, g), in order to characterize the crossover. We initially do not find a clear
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way to explain this, also because we find that the crossover depends on both p0 and g,

but then we find in literature something very interesting concerning system with negative

temperature.

Are we dealing with negative temperature?

Our attention were captured by the shape of the momentum distribution, which

changes from a Gaussian centered around 0 to a shape with two peaks at ±π. This

behavior recall us a recent paper by Bloch [156] where the authors built up a very

fascinating experiment to create a system that shows negative absolute temperature

for some of its degrees of freedom. We than find some other articles in literature, in

particular [157–159], where the idea of negative temperature where presented and [160]

in which authors study a system directly linkable with the one presented here.

The main idea is that a system which energy spectrum is bounded from above has

states with negative temperature, and one of the first example was an ensemble of

nuclear spin [157]. It is evident that, because of the lattice, our system is energetically

bounded, moreover we are working in tight-binding approximation, which enforce this

fact considering just the first Bloch band. As we showd in Chap. 2 Eq. (5.4) is derived

from the Hamiltonian

H = −
M∑
l=1

(φlφ
∗
l+1 + c.c.) +

g

2

M∑
l=1

|φl |4 ; (5.10)

inserting in it a stationary solution φl =
√

1/M exp[i(p0l−νt)] we get the energy density,

i.e. energy per site,

h ≡
H
M

= −
2

M
cos p0 +

g

2M2
. (5.11)

In [159] the author find a combination of parameters which defines a threshold for the

transition from T > 0 to T < 0, this threshold is written in terms of energy density and

it is hc = g/M2. So we have that

if h < hc system has T > 0 while for higher energy, h > hc , system has T < 0;

transition point is defined by h = hc which, in our case, becomes

cos p0 = −
g

4M
. (5.12)

In [160] authors shows also that at negative temperature system shows peculiar dynamical

structure called breathers, which are very high density peak with a very long life-time,

that is exactly the situation which we find and is also described in [159]. In situations

where h > hc the PDF P(ρl) (which in [159] is called p(a)) has apparently an exponential

decaying shape meaning that there are some few sites occupied with a large number of

particles, while most of the sites are populated by a small amount of them; in that
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Figure 5.4: Standard deviation of 〈σ[ρl(t)]〉 versus time, averaged over 10 realizations
of the disorder.

case Rasmussen et al in [159] conclude that the system is in a state with negative

temperature. They are working in the grandcanonical ensemble while we are in the

microcanonical one, having a well defined value of energy and particles number. In [160]

authors find a functional method to determine a temperature also in the microcanonical

ensemble, and this turns out to be again negative in this situation.

A possible way to visualize this change of temperature is to plot the distribution of

energy n(Ep) instead of the momentum distribution np, that is similar to what has been

done in [156]. In that paper, and in the following, Ep does not refer do the real energy

level of the system, but rather to energies of the free particle which, in the presence

of a lattice, are Ep = −2 cos p. We will show that the logarithm of n(Ep) versus Ep
changes slope going from a side of hc to the other. If, naively but we think not correctly

because we are microcanical, we interpret this slope as ln(n(Ep)) ∝ −Ep/T the changes

in temperature will become more clear.

To compute the PDF for each value of g we take into account not only different

realizations for a fixed time t, but also densities at different times. The reason of this

choice lie on observation that from a certain t0 many quantities of interest, such as PDF,

the standard deviation of ρl (see Fig. (5.4) and the momentum distribution ρ̃p, reach

a regime in which they do not evolve macroscopically, i.e. change shape, but fluctuate

around a mean value. This could be interpreted as a thermalization of the system, and

this sentence becomes more meaningful if interpreted in the sense described before, i.e.

if we associate to the momentum distribution a temperature (whatever this means in

our case).

h < hc : Gaussian disorder

From Eq. (5.12) h < hc becomes g > 4M| cos(p0)|: in this regime we are considering

large enough interactions. Although Eq. (5.4) does not take into account quantum

fluctuations, thus it is not strictly possible to speak about superfluid-insulator transition,

we can argue from simple energetic arguments what could happen in this case. Because
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Figure 5.5: Top row: density profile ρl = |φl(t)|2 at t = 104~/K for p0 = π and a lattice
size M = 256 sites. Bottom row: probability density function P(ρ), computed over 100
realizations. Here we consider g = 5120, 12800 and 25600. Black lines corresponds
to fits of the data with a Gaussian ∝ exp[−(ρl − a)2/2σ2]. We can observe that the
Gaussian shrinks with increasing g.

Eint > Ekin tunneling between neighboring sites is not favorite because the energy cost

due to repulsion is too high to avoid. A clear consequence could be understood in the

limit g = UN/K � 1: tunneling is suppressed and then ρl(t) is frozen to ρl(0). If we

now slightly decrease g tunneling becomes possible but, because it is too small, only few

particles can move around the lattice. Some examples are reported in Fig. (5.5). This

behavior could be inferred also looking at the probability distribution function (PDF),

P(ρl), which remains Gaussian but enlarges for decreasing g, as shown in Fig. (5.5) by

the black lines which are data fit with P(ρl) ∝ exp(−(ρ− a)2/2σ2).

h > hc : Exponential decaying disorder

In the opposite limit of small U one observes a very peculiar dynamical behavior: the

creation of peculiar structures in the density called breathers [159,160]. A clear example

of this is shown in Fig. (5.6); in each density plotted there is a certain amount, generally

small, of high peaks where the density is ten times larger than the average value, those

are the breathers. Their formation is possible because the energy cost the system has

to pay is not too large, due to the very small interactions among particles, which is a

mechanism similar to the self-trapping described in Chap. 4. This situations is very

similar to the one proposed in [146], but the important difference between that paper

and our system is that here this array of high peaks randomly distributed is self-generated

by the condensate itself, just because it is dynamically unstable.

Once generated the density profile we again perform a statistical analysis in order to

characterize it, focusing first on P(ρl), as shown in Fig. (5.6). The distribution of density
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Figure 5.6: Top row: density profile ρl = |φl(t)|2 at t = 104~/K for p0 = π and a
lattice size M = 256 sites. Formation of breathers, few peaks of height much larger
then the average density 1/M, is evident. Bottom row: probability density function
P(ρ), computed over 100 realizations. Its behavior stress presence of breathers: for
small ρ it decay exponentially, but for higher values a small peak is present. Here we
consider g = 12.8, g = 25.6, g = 256.

profile reflect the formation of breathers-like structure: each PDF has an exponential

decaying shape for low values ρl , i.e. a large fraction of lattice site are populated by a

small amount of particle, but there is a small amount of sites where ρl are much much

higher.

5.4 Interacting BECs: Anderson localization

We have shown that an interacting condensate loaded into a lattice, because of the

modulation instabilities, assumes during its dynamics a nonuniform density profile. Now

we go further and introduce a second condensate which interact with the first one by a

mean field term, but does not interact with itself. This scheme is well described by Eq.

(5.1), and in particular the second equation describe a condensate moving in a lattice

to which a potential Vl(t) = (λ/η)|φDl (t)|2 is superimposed. This is key point: use

a condensate φDl (t) to generate a disordered, even time-dependent, potential Vl(t) ∝
ρDl (t) which will be seen by a second condensate described by the wave function φLl (t).

As shown in Chap. 1 and 3 a wave packet loaded onto a one dimensional static

disordered potential will become Anderson localized, and the localization properties (in

particular the localization length) depend on the disorder parameters, i.e. distribution

function, correlations, amplitude and mean. In our system we need to create disordered

potentials with different characteristics and, moreover, we want these to be controllable;

let us start to look how it is made possible.
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Figure 5.7: Simulations for three different values of initial energy: h > hc , h = hc and
h < hc . From left to right we increase g. Without any perturbation of the initial state
the critical energy density corresponding to T = 0 is hc = g/4M2. In the first and last
column we select g far from this vales: under and above it, respectively. Second column
shows the case of h = hc , we reach that situation by numerically finding g from that
condition. Each g correspond to a different disorder: first row shows the density profile
for a single realization while in the two last rows we report the density distribution function
P(ρ) and the density-density correlation function. In the second row momentum and
energy (inset) distribution are plotted. Is is clear that ρ̃p changes its shape, and because
of this also the non interacting particle energy distribution shows different slope (in log
scale). We could interpret this as a changing of the system’s temperature.
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First we suppose to work with two species with a different number of atoms ND �
NL, i.e. the specie which creates the disorder is more abundant then the other. Further-

more, looking at Eq. (5.1), we see that the effective disordered potential is

Vl(t) = ΛρDl (t) ,

where Λ is proportional to the interspecies scattering length. A change in Λ implies a

scaling of ρDl , this means that we can modify both the mean value and the standard

deviation of the disorder by setting Λ; notice that this scaling does not affect the distri-

bution of the disorder: if P(ρDl ) is Gaussian or exponentially decaying it keeps its shape.

This ensure that we deal with the same kind of disorder created by the initial choice of

U.

The second important point is the time dependence of Vl(t). The theory of localiza-

tion deals of course with static potentials and we see in Chap. 4 that if stationarity is

not satisfied Anderson localization could be modified or even destroyed and a spreading

of ψLl (t) is restored. Here we focus on Anderson localization, considering static po-

tentials, i.e. dV (t)/t = 0. How can we control this? Numerically it is very easy, and

again evident in Eq. (5.1); ρl(t) change in time because the tunneling between sites, in

our case nearest neighboring sites, is possible. If particles can not jump from one site

to the nearest and density does not evolve any more. Tunneling rate is determined by

parameters α(t) thus the easiest way to obtain a static disorder is to set it to zero, i.e.

in our equation we have

α(t) = Θ (tdis − t) .

This choice for α lies on the fact that, for our convenience, we measure time in units of

~/KL thus, because single species simulations were performed by using ~/K to measure

time, the natural choice is to set KD = KL, so we are in the same situations analyzed

before. The value of tdis is selected by looking at previous results: as we shown in Fig.

5.4, depending on g, the density profile evolution take some times in order to reach a

situation of quasi-stationary disorder properties: because we want a disorder with well-

defined characteristics we have to wait a time longer, or at least equal, to this. At

t = tdis interaction between species L and D is turned on, i.e.

Λ ≡ Λ(t) = ΛΘ(t − tdis) .

We have now introduced the last parameter we can manipulate, the interspecies inter-

action strength Λ. We use for Λ values determinate as follows: for a specific realization

of ρDl we have that at t = tdis it has a standard deviation defined by

σR =
√
〈ρ2
l (tdis)〉 − 〈ρl (tdis)〉2 . (5.13)

We want to create a disorder with unitary standard deviation: this uniquely fixes this
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parameters

Λ(t) =
1

σR
Θ(t − tdis) ; (5.14)

by this definition the disordered potential has

〈Vl(tdis)〉 = ΛρL ; σ(Vl(tdis)) =
√
〈V 2
l (tdis)〉 − 〈Vl(tdis)〉2 = 1 ,

where we set ρL = NL/M.

We have created a system in which, when the interaction between species is turned on,

density ρDl (τd) is frozen by suppressing the tunneling between sites. This configuration

correspond the problem of an expanding wave packet (species L) in the presence of a

disordered potential, ΛρDl (τD), considered also in Chap. 3. Because our system is one

dimensional we are sure that Anderson localization has to take place, and so the tails

of ρLl (τ) must become exponentially decaying and, moreover, the expansion of the wave

packet should be suppressed. To prove that tis is true we perform a complete simulations

of this situations for different disorder realizations, i.e. different initial conditions ψDl (0),

and then we apply again what described in Chapter 1 to put in evidence the robustness

of our hypothesis.

First we determinate how in the presence of this specific disorder a wave packet

should localize or, in order to give a more direct observable quantity, an estimation of

the localization length. This is possible to do, and particularly easy in one dimension,

by implementing the so-called Transfer Matrix method (see 1.3.2 and [62, 80, 98, 100])

which is based on a physical-mathematical theorem involving random matrices, and it is

also useful due to the fact that localization length is a strong self-averaging quantity, this

means that we could determine it onto a sufficiently large system instead of performing

averages over many disorder realizations, however in numerical simulation we can not

implement too large lattices, so we have to take into account this kind of averaging also

because density is not a self-averaging quantity. In Fig. 5.9 and Fig. 5.8 we report

the result obtained with the two type of disorder described before, moreover we compare

them with the method of Chap. 3 to confirm its validity also in this case. In those figures

we can see that finite size effects play a significant role in measuring Lloc onto disorder-

averaged densities: due the finite length of the array each realizations of the disorder

gives Lloc(E) that is not exactly the one predicted with the mentioned transfer-matrix

method, but there are fluctuations which becomes larger for small systems. Because of

this the averaged density will show a localization length comparable the largest between

all the realization taken into account: Lloc(E) for a single realizations and the same

quantity averaged over disorder gives, in those cases, quite different results.
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Figure 5.8: Top row: localization length as function of energy for the disorder used
in our simulations. We consider 10 realizations of disorder for a lattice of M = 2048

sites. Other parameters are NL = M, ND = 4M and U = 10. On the left Lloc(E)

for a single realization, on the right the same quantity averaged over 10 realizations,
〈Lloc(E)〉. This gives a smooth curve, but ti does not describe properly the properties of
the system: each realization has indeed its own maximum Lloc , the greatest of them will
dominate when we average density profiles. Remaining panels shows density profiles of an
initially Gaussian wave packet of width 10 sites. Central row: on the left we put 〈ρL(t)〉
at t = 5000~/K; in the right one the diagonal part of the density. Last panels shows 〈ρLl 〉
obtained with the random-phases ansatz as described in Chap. 3. Each plot is obtained
by averaging over 10 realizations of the disorder. Dashed line correspond to the initial
wave packet while the others are fits of the tails with exp(−2|x |/ξ). Left and right tails
are fitted separately and we get: ξL = 11.62± 0.05 and ξR = 12.7± 0.1. Those values
are compatible with the maximum values of LlocE = 11.6 obtained with the transfer
matrix method. Notice that left and right tails do not have the same localization length,
this is because each of them is dominated, in average, by the tail of the realization with
the largest Lloc .
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Figure 5.9: Same quantities of Fig. (5.8) for the case U = 0.1K. Fitting left and right
tails of 〈ρ(t)〉 with exp(−2|x |/ξ) gives ξL = 32.0± 0.2 and ξR = 33.0± 0.2. Maximum
values of Lloc(E) for those 10 realizations of disorder is 32.2 which is reasonably close
to the fitted values.
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6
Conclusions

In this thesis I have reported the results of my studies about the dynamics of a wave

packet loaded into disordered potential in the intriguing case of both nonlinearity and

stochastic time-dependent potentials acting on it. I have been stimulated by the fact

that, although many real systems can be described by models involving them, I do not

find a clear understating of their interplay. I investigate it mainly from a theoretical

point of view, but I also collaborated with ultracold atoms experiment in Florence [87]

for which I realize numerical simulations and analytical models.

This works starts dealing with Anderson localization of non interacting particles in

static disorder: this is the basic phenomenon that characterize those systems and it will

be present in all the model we consider. I try to interpret it giving a simple picture of

what happens to a wave packet when it localizes; I do not search for the origins of the

exponential decay of the tails, but rather find a suitable description of why it assumes

this special shape. Recalling the possibility of using eigenstates of a potentials as a

basis for the state of a system, we show that the interference between them leads to a

suppression of the macroscopic dynamics, at least in the tails of the wave packet that are

the parts where Anderson localization manifests. This is a complementary point of view

with respect to all the others interpretations given until now, typically based on the idea

that plane waves of certain momentum will become localized due to the scattering with

defects of the random potential. I found that in disordered systems the random structure

of energy spectrum leads to destructive interference between eigenstates. Because this

interference describes the dynamics of a wave packet, its disappearance results in a

quasi static profiles: system is localized. More in the specific it is Anderson localized

because the tails shows exponential decay, but this comes from the underlying shape of

eigenstates which form the wave packet. We suppose that if one finds potentials the

eigenenergies of which are distributed in a random way any wave packet moving on it

will stops its dynamics and becomes localized with a shape that is specific of a given

potential. Results reported in the thesis have been published in [161].
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I apply those methods also to system of coupled Bose-Einstein condensate, using a

model in which one condensate evolves in time assuming a spatial density profile which

is not uniform. This is a good proposal and I do not find anything similar in literature.

Some papers deal with the idea of using one condensate to Anderson localize another,

but the one which is used as disorder is simply trapped by external potentials. Here I

suggest that disorder is created by the condensate just because it follows its natural

evolution so, at least in principle, no trapping is needed. Then I analyze these profiles

looking to their spatial correlations and probability density function. I found that two

classes of disorder can be created, both of them uncorrelated in space, but with density

peaks that are distributed according to different distributions. Which type is generated

depends on the strength of interactions, which we assume to be always repulsive. Small

interactions lead to a potentials with few high peaks and all the other sites of the lattice

are almost empty, this is described by an exponential decaying distribution functions.

For large interactions, on the other hand, probability distribution function is found to be

Gaussian; at each sites density shows fluctuations around its mean value. In addition

to this I take into account the momentum distribution of the disordered condensate

and the results I obtained are quite interesting. Each disorder corresponds to a specific

momentum distribution: Gaussian disorder has a momentum distribution which is also a

Gaussian centered around the zero momentum while exponential decaying disorder has a

momentum distribution with two pronounced peaks at the highest momenta, i.e. at the

boundaries of the Brillouin zone. When I found it I was advised that such a behavior could

be related to a change in temperature, the particular intriguing aspect is that these kind

of systems could show absolute negative temperature. This is due to the presence of the

lattice that introduces an upper bound to the energy spectrum; it has been demonstrated

that this allows the systems to achieve negative temperature. In cold atoms it has been

observed in the last years but with a slightly more complicated scheme: here it seem that

it derives naturally from the evolution of the system. After having studied the disorder I

consider the localization of a wave packet, which represents the second specie, onto it.

First I determine the possible localization length then compare the result obtained for a

complete integration of the equations of motion with the scheme previously discussed.

The results are in complete accordance once finite size effects are taken into account.

So fare I have only spoken about localization which is of great interest, both theo-

retical because of its deep quantum origin and practical do to the fact that disorder are

ubiquitous in nature. But it is also true that localization has to fight against different

processes that tend to destroy it. Two typical examples are interaction among parti-

cles and time-dependent potentials. Both of them goes into the direction of destroying

Anderson localization and restoring macroscopic dynamics, and I study this dynamics

looking to the evolution of the width of the wave packet and to the mean number of

sites it occupies. About noise I discuss possible method to create and control a stochas-

tic time-dependent potential and study how changing the parameters that define it could
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influences the dynamics of the whole wave packet. I found that correlation time of the

disorder plays a role, and it could be understood when its inverse is compared to the

typical energy differences between eigenstates; because correlation time is related to the

width of frequency spectrum of the potential, the more this machetes the distribution of

eigenfrequencies for the underlying static disorder, the more the wave packet expand. I

also find that, with all types of noise considered, results into a diffusive behavior of the

wave packet, which is in accordance with most of the known results for these systems. In

the case of only interactions existing theories predict a subdiffusive regime and indeed it

is what I recover. I review some of the basic models that gives an explanation of this and

then I discuss the peculiar phenomenon of self-trapping, which set in for strong enough

interactions. It is also interesting to say that there are in literature papers that describe

interactions acting as an effective noise, under this light the two effect we consider are

more closer then one can think. After having analyzed them separately I start to consider

the combined effect of the two; this leads to a large number of possible situations. I

always get result indicating that a wave packet expand more under the contemporary

actions of the noise and interactions then in the case of only one of them present. I

build up a simple model that works properly in a wide range of parameter, model that

lies onto the simple idea that expansion is driven by a linear combinations, i.e. the sum,

of the single effects. I apply this model both on numerical simulations but also to exper-

imental results coming from measurements on ultracold atomic samples, again I recover

that it well describes the dynamics for a large interval of the parameters involved in the

systems, but there are also situation in which the models does not work. I also try t give

an explanation to it. At the end I report some numerical results of a fascinating effect

predicted for the interplay of noise and self-trapping: a transient super diffusion before

the system slows down to normal diffusive behavior. This type of anomalous diffusion is

not new in random time-dependent potentials, but I do not find any works dealing with

its appearance in systems similar to the one I have considered. Many of the results I

presented here are published in [87,125]

Finally I want to say that, although we find interesting result which are supported

also by experimental observations, there are still opens questions. Regarding the specific

subject of this thesis, some parts are still under study: the interplay between self-trapping

and noise, or the possibility of create a more complete model for the diffusions. Another

interesting development will concern the two species localization: what could happens if

the one that generates the disorder will evolve in time? Is Anderson localization robust

against this? Moreover we remark that all the results in this thesis are derived in a

mean field regime, the most intriguing future studies go into the direction of taking into

account the full quantum problem, by implementing Bose-Hubbard like Hamiltonians.

Counting for quantum fluctuations could give new results about which we do not have

any idea up to now, but the possibility of investigating different states of matter and

transitions between them, under the light of the idea of various insulating-superfluid
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crossover, will be in our opinion a fruitful field of research.



A
Wannier function

In this appendix we will shortly reports basic theory of Wannier functions, which is

important when a link between discrete systems and continuous systems in the presence

of periodic lattices is needed.

What will be write in the following is the subject of many of textbook in solid state

physics, in particular we will refer to [91].

Let us consider a single particle 1D Hamiltonian with a periodic potential of period

d , i.e. U(x) = U(x + jd) with j ∈ N:

H = −
~2

2m

d2

dx2
+ U(x) .

The Bloch’s theorem [91] states that eigenstates of H have the form

ψn,k(x) = e ikxun,k(x) , (A.1)

where k is the quasi-momentum, n is the band index and un,k(x) is a function with the

same periodicity of U(x), i.e. un,k(x + jd) = un,k(x). Quasi momentum is restricted to

the first Brillouin zone k ∈ [−π/d, π/d ] and, in a system of finite length can assume N

possible values, N being the number of periods of U(x) present in the system. Because

this periodicity, it follows from (A.1) that

ψn,k(x + jd) = e i jndψn,k(x) . (A.2)

If one considers any of the ψn,k(x) as a function of k for fixed x , he recovers again a

periodic function with period 2π/d . This means that it has a Fourier series expansion in

plane waves with wave vectors in real space. Keeping x fixed we therefore are allowed

to write

ψn,k(x) =
1√
N

∑
j

wn,j(x)e i jkd . (A.3)
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The Fourier components wn,j(x) are called Wannier functions and they depend on x , on

the sites j and onto the band n; they are of coure defined by an inverse Fourier transform

wn,j(x) =
1√
N

∑
k

ψn,k(x)e−i jkd , (A.4)

where summation over k is limited to the fist Brillouin zone; for very large systems the

summation could be substituted by an integral.

Now we report some of the main properties of those functions:

• As a consequence of Bolch’s theorem and of (A.4) all the functions have the same

shape:

wn,j+l(x + ld) = wn,j(x) , (A.5)

so we will use the notation

wn,j(x) = wn,j(x − jd) . (A.6)

• They form a complete and orthonormal set of functions. Completeness follows

from the fact that we expressed the basis of the Bloch functions (which we re-

member are eigenstates of H) as linear combination of wn,j(x). Orthogonality is

given by ∫
w ∗n,j(x)wm,l(x) = δnmδj l . (A.7)

Again, this can be demonstrated using (A.4) and the fact that (A.1) are othogonal.

• It is well known that the energy spectrum of H is formed by a series of bands

separated by gaps of forbidden energies. Wannier functions of the lowest energy

band are centered around the lattice sites jd . Moreover for suitable choice for the

phases of (A.1) one can always consider real wn,j(x), symmetric around jd and

they rapidly go to zero away from the site [162].
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