
UNIVERSITÀ DEGLI STUDI DI FIRENZE
Dipartimento di Ingegneria dell’Informazione

Dottorato di Ricerca in
Ingegneria Informatica, Multimedialità e Telecomunicazioni

ING-INF/05

An Ontological Approach
Supporting the Development
of Safety-Critical Software

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in Informatics Engineering, Multimedia and Telecommunications

Irene Bicchierai

Ph.D. Coordinator

Prof. Luigi Chisci

Advisors

Prof. Enrico Vicario

Prof. Giacomo Bucci

XXVI Ciclo – 2011-2013

Ai miei genitori e a Leonardo

“. . .
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.”

Dante, Inferno, Canto XXVI, vv. 119-120

Acknowledgements
Innanzitutto vorrei ringraziare i miei Professori Enrico Vicario e Giacomo
Bucci, per l’aiuto che mi hanno dato durante il lavoro di tesi, per avermi
guidato dandomi spunti e suggerimenti durante questi tre anni, e soprattutto
per la fiducia che hanno riposto in me.

Un grazie enorme a Laura. Per tutte le volte che ti ho chiesto aiuto e tu sei
stata disponibile a darmelo, per tutte le volte che ci siamo ascoltate e capite.
In questi anni mi hai insegnato tanto e spero di essere riuscita a mettere in
pratica anche solo un po’ dei tuoi insegnamenti.

Grazie a tutti i ragazzi che fanno parte, o hanno fatto parte, dell’STLab!!!
Grazie a Lorenzo, Alessandro, Jacopo, Valeriano, Tommaso, Marco P., Marco
M., Andrea, Fulvio, Simone. In particolare grazie a Carlo, con cui ho condiviso
buona parte del lavoro di questa tesi. Grazie per le chiacchierate durante
i pranzi in mensa, per i momenti piacevoli passati insieme, per i pranzi nel
soppalco . . .

E poi grazie alla mia famiglia, alle mie amiche, a Alessandra, alla mia cu-
gina Giulia, per avermi sempre appoggiato e incoraggiato ad ottenere risultati
sempre migliori.

Un grazie speciale ai miei genitori, Misia e Egidio, per come mi siete stati
vicino in questi anni, per non avermi mai fatto mancare niente. Grazie per
avermi assecondato in tutto ciò che mi piaceva e per aver accettato ogni mia
scelta anche se talvolta non incontrava le vostre aspettative. Grazie perché se
dovessi valere qualcosa come persona, il merito sarebbe soprattutto vostro.

E infine grazie a Leonardo, che, da fidanzato, in questi tre anni è diventato
mio marito. Grazie per avermi sempre incoraggiato, sopportato e supportato,
grazie per tutto l’amore che mi dai ogni giorno.

ACKNOWLEDGEMENTS iii

Abstract

In several application domains, the development of safety-critical software is
subject to certification standards which prescribe to perform activities depend-
ing on information relative to different stages of development. Data needed in
these activities reflects concepts that pertain to three different perspectives:
i) structural elements of design and implementation; ii) functional require-
ments and quality attributes; iii) organization of the overall process. The
integration of these concepts may considerably improve the trade-off between
reward and effort spent in verification and quality-driven activities.

This dissertation proposes a systematic approach for the efficient man-
agement of concepts and data involved in the development process of safety
critical systems, illustrating how the activities performed during the life cycle
can be integrated in a common framework. This thesis addresses the exploita-
tion of ontological modeling and semantic technologies so as to support cohe-
sion across different stages of the development life cycle, attaching a machine-
readable semantics to concepts belonging to structural, functional and process
perspectives. The formalized conceptualization enables the implementation of
a tool leveraging well established technologies aiding the accomplishment of
crucial and effort-expensive activities.

Contents

List of Acronyms iii

Introduction vii

1 Defining an ontology to systematize life cycle activities 1
1.1 Ontologies . 1

1.1.1 RDF ed RDF Schema 2
1.1.2 Ontology Web Language 3
1.1.3 SPARQL Protocol and RDF Query Language 6
1.1.4 Semantic Web Rule Language 8
1.1.5 Ontological architecture 8

1.2 Ontological formalization of three perspectives 10
1.2.1 Structural perspective 10
1.2.2 Functional perspective 11
1.2.3 Process perspective . 12

1.3 Supporting dependability techniques through ontologies 14
1.3.1 SW-FMEA and SW-FTA 15
1.3.2 Ontological formalization of SW-FMEA and SW-FTA . . 18

2 Instantiating the ontology to systematize life cycle activities 22
2.1 An industrial tailoring of the V-Model life cycle 22
2.2 Connecting different perspectives 25

2.2.1 Tracing requirements 25
2.2.2 Following the documentation process 28
2.2.3 Verifying activities of the development process 29

CONTENTS i

3 Casting UML-MARTE and pTPNs in the ontology 31
3.1 Formal methods in an industrial SW process 31
3.2 Supporting the documentation process through UML-MARTE . . 35

3.2.1 System/Subsystem Analysis and Design and SSDD document 35
3.2.2 SW Requirements Analysis and SRS document 40
3.2.3 SW Design and SDD document 40

3.2.3.1 Semi-formal specification through UML-MARTE 43
3.2.3.2 Semi-formal specification through timelines . . . 48

3.3 Supporting development activities through pTPNs 50
3.3.1 Formal specification . 52
3.3.2 Architectural verification 56
3.3.3 Disciplined implementation of real-time code 57
3.3.4 Execution Time profiling 58

4 Implementing a tool to manage the ontology 65
4.1 Architecture and use cases . 65
4.2 Basic tool capabilities . 68
4.3 Advanced tool capabilities . 72
4.4 Practical experimentation on a real case study 76

Conclusions 83

Bibliography 85

CONTENTS ii

List of Acronyms
AASTR APS Autonomous Star Tracker

ADL Architectural Description Language

APS Active Pixel Sensor

ASD Astrium Space Deutschland

BCCT Best Case Completion Time

BDA Bi-Directional Analysis

CENELEC European Committee for Electrotechnical Standardization

CRC Class Responsibility Collaboration

CRUD Create, Retrieve, Update, Delete

CSCI Computer Software Configuration Item

DAL Development Assurance Level

DSML Domain Specific Modeling Language

ECSS European Cooperation for Space Standardization

ESA European Space Agency

EU Electronic Unit

FMEA Failure Mode and Effects Analysis

LIST OF ACRONYMS iii

FT Fault Tree

FTA Fault Tree Analysis

GSPN Generalized Stochastic Petri Net

HCI Hardware Configuration Item

IEC International Electrotechnical Commission

IRC InfraRed Camera

ISO International Organization for Standardization

IT Image Tracking

LOC Lines Of Code

LQN Layered Queuing Network

LS Laser Sensor

MB Main Board

MCS Minimal Cut Set

MDD Model Driven Development

MIL-STD Military Standard

NMSPN Non-Markovian Stochastic Petri Net

OS Optical Sensor

OU Optical Unit

OWL Ontology Web Language

PA Process Algebra

PN Petri Net

POJO Plain Old Java Object

pTPN preemptive Time Petri Net

QN Queuing Network

LIST OF ACRONYMS iv

QoS Quality of Service

RAMS Reliability, Availability, Maintainability and Safety

RAMSES Reliability Availability Maintainability and Safety
Engineering Semantics

RDF Resource Description Framework

RTAI Real Time Application Interface

RTCA Radio Technical Commission for Aeronautics

RTOS Real-Time Operating System

SC System Control

SD1 System Requirements Analysis

SD2 System Design

SD3 SW-HW Requirements Analysis

SD4-SW Preliminary Software Design

SD5-SW Detailed Software Design

SD6-SW SW Implementation

SD7-SW SW Integration

SD8 System Integration

SD9 Transition To Utilization

SDD Software Design Description

SIL Safety Integrity Level

SM Servo-Motor

SMU System Monitoring Unit

SPA Stochastic Process Algebra

SPARQL SPARQL Protocol and RDF Query Language

LIST OF ACRONYMS v

SRS Software Requirements Specification

SSDD System/Subsystem Analysis and Design

STD Software Testing Description

SW software

SW-FMEA Software Failure Mode and Effects Analysis

SW-FTA Software Fault Tree Analysis

SWRL Semantic Web Rule Language

TE Top Event

TPN Time Petri Net

TS Temperature Sensor

TVC TeleVision Camera

UML Unified Modeling Language

UML-MARTE UML profile for Modeling and Analysis of Real-Time and
Embedded systems

UML-SPT UML profile for Schedulability, Performance, and Time

URI Universal Resource Identifier

VP Video Processor

W3C World Wide Web Consortium

WCCT Worst Case Completion Time

XML Extensible Markup Language

LIST OF ACRONYMS vi

Introduction
In the life cycle of safety-critical systems, development and documentation

activities comprise a major step of the overall effort. While intended to support

quality assessment along the entire life cycle, they become crucial in a more

evident manner at the time of certification.

In industrial environments, the development life cycle of safety-critical SW

is subject to specific certification standards, such as RTCA/DO-178B-C [94] for

airborne SW, MIL-STD-498 [112] for military devices, CENELEC EN 50128

[34] for railways signalling, ECSS E-40 [45] for space, and ISO/IEC 62304 [64]

for medical devices. These standards prescribe to perform activities and to

produce documents collecting information scattered all along the development

life cycle. Nature and form of practices and artifacts required by different

standards share many common principles, and basically refer to the common

framework of the V-Model lifecycle [30, 39].

The inherent complexity of prescribed activities is largely exacerbated by

their dependency on information relative to different stages of development.

In particular, these data are formalized in different documentation artifacts,

often contributed by different parties or units, and pertaining to three differ-

ent perspectives: the structural elements of design and implementation, the

functional and Reliability, Availability, Maintainability and Safety (RAMS)

requirements, and the organization of the overall process. The integration of

these three perspectives may largely improve the trade-off between reward and

INTRODUCTION vii

effort spent in verification and quality-oriented activities, and it may open the

way to agile tailoring of the process model to the specific characteristics of

different projects and organizations.

Among the activities prescribed by safety critical standards, Failure Mode

and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) aim at evalu-

ating RAMS requirements, verifying the completeness of the countermeasures

taken to mitigate the frequency of failures, by leveraging the analysis of the im-

plemented functionalities and of the interactions among internal and external

system components. More specifically, FMEA [73] is prescribed in industrial

contexts to identify failure modes, their causes and effects, as well as determ-

ine actions reducing the impact of failure events. The analysis is carried out

since the initial phases of the development process, when mitigating actions

can be more easily taken. Unfortunately, FMEA-related information is usually

acquired in natural language, implying that interpretation of the terms and

concepts used across the analysis may differ from team to team; even the same

team may give different interpretation when reusing an already performed ana-

lysis in a later occasion. Due to the lack of reusability, FMEA is often done

from scratch. FMEA was first developed by the Department of Defence of

USA and standardized in the MIL-STD-1629A [111], and it was then exten-

ded to various other industrial domains, some of which developed their own

standards. FTA [119] is often carried out as the verification of FMEA. In

fact, while FMEA is a bottom-up analysis, FTA is a top-down analysis that

starts from a failure mode of the system and identifies conditions that would

cause that failure mode. In other words, once a specific hazard is identified,

FTA searches all possible combinations of the conditions that could force the

system to reach the state of hazard.

Efficient and effective management of the volume and the heterogeneity of

data involved in the development process have motivated research on method-

ologies for a systematic approach to execution, integration and correlation of

all the activities performed during the product life cycle and of their relevant

products (this whole concept is called systematization). The systematization

of development practices may facilitate agile tailoring of the process model to

INTRODUCTION viii

the specific characteristics of different projects and organizations, adapting to

different constraints set by the applicable certification standards.

Ontological modelling and semantic technologies provide a relatively recent

yet mature basis that may support this systematization aim. An ontology is

defined as an explicit specification of a conceptualization [56], this means that

it is used to formalize concepts involved in any domain of interest. In [51], three

ontological models are proposed to characterize relations among components,

functions, and quality attributes in complex embedded systems. The method

and the system presented in [123] aim at facilitating reuse of knowledge as

well as supporting complete and precise descriptions of processes and products.

The semantic knowledge is hierarchically organized in form of taxonomies, con-

taining typical recurring technical knowledge about systems, functions, failure

modes, and actions. In [81], an ontology-based model-driven engineering pro-

cess for compositional safety-analysis is introduced. The authors elaborate a

domain ontology allowing the integration of a reasoner and inference rules to

detect lack of model elements and inconsistent parts. In [41], the ontological

formalization of FMEA concepts provides the ground for their explicit rep-

resentation and for their unambiguous interpretation, while an ontology for

the formalization of fault trees is proposed in [42]. In [70], a mapping from

the concepts of an extended functional ontology to the concepts of a classic

FMEA worksheet is introduced. The ontology presented in [16] enables to sup-

port the automation of activities and the management of information related

to the FMEA process applied to SW (SW-FMEA), showing the effectiveness

of the methodology in the context of a space project. Such ontological model

is integrated with SW metrics in [15].

In this thesis, an ontological approach is proposed to support the devel-

opment of safety-critical systems, also implementing a tool that enables its

enactment in the framework of various certification standards. In particu-

lar, semantics of concepts and data involved in the development process is

formalized, providing a common conceptual framework robust enough to en-

force cohesion and consistency among information elements acquired along

different phases of the development process and possibly contributed by dif-

INTRODUCTION ix

ferent parties. The ontological model presented in this dissertation provides a

self-consistent representation of concepts involved in three different perspect-

ives: i) the structural perspective concerned with the structural decomposi-

tion; ii) the functional perspective concerned with functional requirements and

quality attributes; iii) the process perspective concerned with the phases of the

development and the documents produced. The framework permits to attach a

machine-readable semantics to concepts collected in the life cycle and to tailor

the model to the characteristics of different standards leveraging the extensibil-

ity and the manageability provided by the ontological architecture. The enact-

ment of the ontological model in a practical application context is shown from

two different points of view. On the one hand, the UML profile for Modeling

and Analysis of Real-Time and Embedded systems (UML-MARTE) diagrams

[84] and the preemptive Time Petri Net (pTPN) theory [26] are combined both

to manage the documentation process prescribed by MIL-STD-498 [112] and

to support design and verification activities of the development process. On

the other hand, the ontological model is directly cast into an advanced SW

architecture, built on top of well-established Semantic Web technologies. The

formalized conceptualization enables effective application of reasoning tools

aiding the accomplishment of crucial and effort-expensive activities.

The rest of the thesis is organized as follows:

• Chapter 1 recalls features of ontologies and Semantic Web technologies

(Section 1.1), then describes the intensional part of the ontological model,

made up by concepts comprised in the structural, functional and process

perspectives (Section 1.2). Finally, SW-FMEA and SW-FTA are ad-

dressed, highlighting concepts of the model that are involved in these

two techniques (Section 1.3).

• Chapter 2 illustrates an industrial tailoring of the V-Model SW life cycle,

specifying the documents produced in each development activity (Sec-

tion 2.1), then it describes the population of the extensional part of the

ontology, illustrating the associations between concepts which provide

the connections among the three perspectives (Section 2.2).

INTRODUCTION x

• Chapter 3 describes the application of the methodology to a project of

development, introducing the context of application (Section 3.1) and

showing how the documentation process is managed with UML-MARTE

diagrams (Section 3.2) and how the design and verification activities are

supported by pTPN theory (Section 3.3).

• Chapter 4 illustrates the tool supporting the methodology, through its

architecture and its usage (Section 4.1), its functionalities, from basic

(Section 4.2) to advanced (Section 4.3), and through the experience done

within the real scenario of a scheduler of an electromechanical system for

immunoenzymatic analyses (Section 4.4).

INTRODUCTION xi

Chapter

1
Defining an ontology

to systematize life cycle activities

The aim of this thesis is to provide a methodology to support the development

process of safety critical systems, systematizing activities and practices typical

of industrial contexts. This is carried out through an ontological model and a

tool that leverages Semantic Web techniques.

This Chapter gives a hint of ontologies and ontological architectures (Sec-

tion 1.1), describes the ontological model representing concepts involved in the

development process (Section 1.2), and explains how these concepts support

SW-FMEA and SW-FTA (Section 1.3).

1.1 Ontologies

An ontology is an explicit and formal specification of a shared conceptual-

ization [56]. Ontologies are technologies for knowledge representation and

constitute one of the main elements of the Semantic Web [12]. For a better

understanding, ontologies should be evaluated in the context of the stack of

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 1

Ontologies

technologies and standards of the Semantic Web shown in Figure 1.1: Ontology

Web Language (OWL) [77], the language standardized by World Wide Web

Consortium (W3C) used to describe ontologies, depends on Resource Descrip-

tion Framework (RDF) [69] and RDF Schema [22] which, in turn, depend on

Extensible Markup Language (XML) [21] and XML Schema [48]. Here only

the main features needed to comprehend the proposed ontological architecture

will be described.

XML + NS + xmlschema

RDF + rdfschema

Ontology vocabulary

Logic

Proof

Trust

Digital
Signature

URIUnicode

rules

data

data

selfdescriptive
document

Figure 1.1. Stack of the Semantic Web technologies.

1.1.1 RDF ed RDF Schema

RDF [69] is the standard proposed by W3C for the encoding, the exchange,

and the reuse of web metadata and is made up by two components: on the

one hand the RDF Model and Syntax, which describes the structure of models

and their representation in XML, on the other hand the RDF Schema, which

describes the syntax needed to define schemas and vocabularies to represent

metadata.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 2

Ontologies

In a RDF model, every resource is identified by means of a Universal Re-

source Identifier (URI). The minimum unit which contains information is

constituted by a statement, which is a triple of resources, shown in Figure 1.2,

identified by a subject, a predicate, and an object. The object can be a datatype

expression such as a string or a number as well as a resource.

Subject ObjectPredicate

Figure 1.2. The RDF triple.

A RDF model is constituted by some statements that can be connected by

means of resources. The resource which represents the subject of a triple can be

also, without any limitations, the object of another triple so as to construct an

oriented graph. RDF models are extremely flexible because resources described

in the models have not any special meaning. Only through RDF Schema a

hierarchy of classes and a set of objects are defined through the specification

of their meaning. RDF Schema is a vocabulary for describing properties and

classes of RDF resources, together with semantics for generalization-hierarchies

of such properties and classes.

1.1.2 Ontology Web Language

OWL [77] is the language proposed by W3C for the encoding of ontological

models and is part of the stack of the technologies recommended for the Se-

mantic Web. OWL is a vocabulary, which extends the vocabulary of RDF

Schema, for the description of classes and properties of RDF Resources. Here

only the main aspects of the language are described to give a compact and

precise overview on its features and potentialities.

The fundamental elements of an ontological model are classes, which rep-

resent categories, sets or collections of elements (for example Doctor and Pa-

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 3

Ontologies

tient, but also Time and Space). Figure 1.3 shows how a class can be defined:

through the specification of the name, using the notion of set, enumerating

the elements which form the class, or applying a restriction on the value of a

property. Classes can be related each other through inheritance, equivalence

or disjointness.

Class

Named Class Boolean Class Enumerated Class Restriction Class

Complement Class Union Class

Intersection Class

All Value From Class

Some Value From
Class

Has Value Class Min Cardinality Class

Max Cardinality Class Cardinality Class

superClasses | equivalentClasses | disjointClasses

Figure 1.3. Simplified model of classes in OWL.

The other fundamental elements of ontological models are properties, which

describe the internal structure of classes or the relations among classes. Fig-

ure 1.4 shows how properties and their features can be defined in OWL, for

example they can be symmetric or transitive. Properties, such as classes, can

be related each other through inheritance, equivalence or disjointness.

Classes and properties represent the intensional part of the ontology, while

their instantiations represent the extensional part: individuals are realizations

of concepts described by classes and attributes are realizations of properties.

The OWL language provides three increasingly expressive sublanguages

designed for use by specific communities of implementers and users:

• OWL Lite supports those users primarily needing a classification hier-

archy and simple constraint features. For example, it provides support

for thesauri and other taxonomies.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 4

Ontologies

Property

Object Property Datatype Property

Datatype Range

Class

domain

range

range

superProperty | equivalentProperties

Figure 1.4. Simplified model of properties in OWL.

Individual

Property Value Property

Class

values

types

sameAs | differentFrom

Figure 1.5. Simplified model of individuals in OWL.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 5

Ontologies

• OWL DL supports those users who want the maximum expressiveness

without losing computational completeness (all entailments are guaran-

teed to be computed) and decidability (all computations will finish in

finite time) of reasoning systems. OWL DL includes all OWL language

constructs with restrictions such as type separation (a class can not also

be an individual or property, a property can not also be an individual or

class). OWL DL is so named due to its correspondence with Description

Logics, a field of research that has studied a particular decidable frag-

ment of first order logic. OWL DL was designed to support the exist-

ing Description Logic business segment and has desirable computational

properties for reasoning systems.

• OWL Full is meant for users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees. For ex-

ample, in OWL Full a class can be treated simultaneously as a collection

of individuals and as an individual in its own right.

Each of these sublanguages is an extension of its simpler predecessor, both in

what can be legally expressed and in what can be validly concluded.

Recently, W3C has defined OWL 2 [120] which is an extension and revision

of OWL, guaranteeing complete backwards compatibility with OWL 1. In fact,

almost all the building blocks of OWL 2 were present in OWL 1, albeit possibly

under different names.

1.1.3 SPARQL Protocol and RDF Query Language

SPARQL Protocol and RDF Query Language (SPARQL) [90] is a query lan-

guage recommended for RDF by W3C. It can be used to express queries across

diverse data sources, whether the data is stored natively as RDF or viewed

as RDF via middleware. SPARQL contains capabilities for querying required

and optional graph patterns along with their conjunctions and disjunctions.

SPARQL also supports extensible value testing and constraining queries by

source RDF graph. The results of SPARQL queries can be results sets or

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 6

Ontologies

RDF graphs.

Most forms of SPARQL query contain a set of triple patterns called a

basic graph pattern. Triple patterns are like RDF triples except that each of

the subject, predicate and object may be a variable. A basic graph pattern

matches a subgraph of the RDF data when RDF terms from that subgraph

may be substituted for the variables and the result is RDF graph equivalent

to the subgraph.

For example, Listing 1.1 shows a simple SPARQL query to find the title

of a book from a graph of information. The query consists of two parts: the

SELECT clause identifies the variables to appear in the query results, and

the WHERE clause provides the basic graph pattern to match against the

data graph. The basic graph pattern in this example consists of a single triple

pattern with a single variable (?title) in the object position.

SELECT ?title

WHERE {

<http :// example.org/book/book1 > <http :// example.org/title > ?title .

}

Listing 1.1. Example of a SPARQL query.

This query is supposed to be executed on the data graph shown in Listing

1.2.

<http :// example.org/book/book1 > <http :// example.org/title > ‘‘First example ’’

Listing 1.2. RDF model on which the SPARQL query is executed.

The result of the execution of the query is shown in Table 1.1.

title

“First Example”

Table 1.1. Result of the SPARQL query.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 7

Ontologies

1.1.4 Semantic Web Rule Language

Semantic Web Rule Language (SWRL) [59] is a language proposed by W3C for

writing inference rules and is a combination of OWL-DL with the Rule Markup

Language [19]. It extends the set of OWL axioms to include Horn-like rules.

It thus enables Horn-like rules to be combined with an OWL knowledge base,

allowing the application of deduction and inference rules on ontological models.

The proposed rules are of the form of an implication between an ante-

cedent (body) and consequent (head). The intended meaning can be read as:

whenever the conditions specified in the antecedent hold, then the conditions

specified in the consequent must also hold.

Both the antecedent (body) and consequent (head) consist of zero or more

atoms. An empty antecedent is treated as trivially true (i.e. satisfied by every

interpretation), so the consequent must also be satisfied by every interpreta-

tion; an empty consequent is treated as trivially false (i.e. not satisfied by any

interpretation), so the antecedent must also not be satisfied by any interpret-

ation. Multiple atoms are treated as a conjunction.

For example, using this syntax the rule shown in Listing 1.3 asserts that the

combination of the hasParent and hasBrother properties implies the hasUncle

property. In the abstract syntax the rule corresponds to the expression shown

in Listing 1.4. It is worth noting that some rules that can be written through

SWRL correspond to axioms that can be defined directly through OWL.

hasParent (?x1 ,?x2) and hasBrother (?x2 ,?x3) -> hasUncle (?x1 ,?x3)

Listing 1.3. Example of a SWRL rule.

1.1.5 Ontological architecture

Ontological technologies mainly originate with the intent to contribute to the

realization of the Semantic Web [12]. This denotes an evolution of the current

web, in which information is semantically defined so as to enable automated

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 8

Ontologies

Implies(

Antecedent(hasParent(I-variable(x1) I-variable(x2))

hasBrother(I-variable(x2) I-variable(x3)))

Consequent(hasUncle(I-variable(x1)I-variable(x3)))

)

Listing 1.4. Example of a SWRL rule.

processing. Ontological technologies comprise a rich framework of paradigms,

languages, and off the shelf components, which can serve beyond the specific

intent of the Semantic Web, and may become an effective pattern for the

organization of complex SW architectures. An ontological architecture [27] is

a SW architecture with the capabilities of representation and classification of

ontologies combined with the capability of elaboration of an objects-oriented

language. In an ontological architecture there are three components:

• the Domain Layer, which realizes with an object model the application

logic and the data processing functionalities;

• the Data Layer is responsible for data representation and conceptualiz-

ation and is implemented through an ontological model;

• the Mapping Layer bridges the gap between the Domain Layer and the

Data Layer solving the impedance mismatch, i.e. the conceptual distance

between the object model and the ontological model, and enabling the

application logic to operate both on the extensional and the intensional

part of the ontology.

In an ontological architecture the Domain Layer can delegate to the Data

Layer not only the representation of data but also the representation of con-

cepts. In so doing, the domain logic is captured by the ontological model,

enabling the generalization of the application logic so as to adapt it not only

to the changes of instances, but also to the changes of concepts. This provides

a method to dynamically modify the structure and the behavior of a system,

as in the Reflection architectural pattern [103].

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 9

Ontological formalization of three perspectives

1.2 Ontological formalization of three perspectives

This Section illustrates how the formal characterization of concepts involved

in the development process and the automatic manipulation of their data in-

stances are supported by the ontological abstraction. These concepts belong

to three different perspectives: i) the structural perspective concerned with

the structural decomposition; ii) the functional perspective concerned with

functional requirements and quality attributes; iii) the process perspective

concerned with the phases of the development and the documents produced.

STRUCTURAL
PERSPECTIVE

PROCESS
PERSPECTIVE

FUNCTIONAL
PERSPECTIVE

Figure 1.6. The whole ontological model representing all the concepts comprised
in the three perspectives.

1.2.1 Structural perspective

The structural perspective, shown in Figure 1.7, comprises ontological con-

cepts which model structural SW elements. A generic structural element is

represented by the Item class. An item can be the entire Computer Software

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 10

Ontological formalization of three perspectives

Configuration Item (CSCI) (i.e. an aggregation of SW with an individual con-

figuration), a SW Component, a SW Module, or a Method. Here items are

hierarchically organized from the entire CSCI to the method (i.e. the smal-

lest SW part with precise functionalities), however other types of structural

elements can be added to the model as subclasses of the class Item. Further-

more items are linked through is part of or is composed by associations so as

to allow the customization of the model according to the structural hierarchy

adopted in the specific context.

Each Method is associated with Code Metrics which represent structural

metrics of the code. Examples of code metrics are number of Lines Of Code

(LOC), level of nesting, and cyclomatic complexity. Instances of code metrics

are associated with a method through an instance of the Code Metric Account-

ability association class representing the value of the specific metric for that

method. A structural item is associated with the Faults that represent the

structural defects of the item itself. A fault can be a Basic Fault or a logical

combination of other faults (i.e. AND, OR, NOT).

<<owlClass>>
Item

<<owlClass>>
CSCI

<<owlClass>>
 SW Module

<<owlClass>>
Method

<<objectProperty>>
is_part_of<<owlClass>>

 SW Component

<<owlClass>>
Code Metric Accountability

<<owlClass>>
 Code Metric

<<objectProperty>>
has_CM

<<objectProperty>>
has

1*

<<owlClass>>
 Fault<<objectProperty>>

has
1..*

<<owlClass>>
 NOT

<<owlClass>>
 AND

<<owlClass>>
 OR

2..* 2..* 1

<<owlClass>>
 Basic Fault

*

<<objectProperty>>
is_composed_by

0..1

Figure 1.7. The ontological concepts belonging to the structural perspective.

1.2.2 Functional perspective

The functional perspective comprises ontological concepts concerned with func-

tional and quality requirements. Figure 1.8 shows the involved ontological

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 11

Ontological formalization of three perspectives

concepts. A Requirement can be either a Functional Requirement, if it refers

to the functionalities implemented by the CSCI or a RAMS Requirement, if

it refers to RAMS attributes. A Test, associated with a requirement, verifies

the correct implementation of it. A requirement is associated also with Fail-

ure Events, that are the different ways in which the delivered service deviates

from the correct implementation of the system function [2]. A failure event

can be a Testing Failure or an Operational Failure, whether the failure is dis-

covered during the testing phase or during the operational phase, respectively.

A failure can be associated with the Failure Effects produced on the system.

A requirement is associated with the Assurance Level which is defined de-

pending on the risk associated with the implementation of the requirement

itself. The assurance level must be satisfied in the development of SW ele-

ments implementing the requirement. Regulatory standards as [94, 34, 82]

define the assurance levels classifying SW items according to risk associated

with their implementation in relation to dependability attributes (e.g. availab-

ility, reliability, safety) relevant for the considered application [2, 101]. Stand-

ards prescribe the execution of activities and the production of artifacts along

the development life cycle in order to achieve some specified levels of assur-

ance: RTCA [94] defines Development Assurance Levels (DALs), which guide

the activities performed along the development; CENELEC [34] associates

with Safety Integrity Levels (SILs) the corresponding intervals of failure rates;

NASA [82] specifies a SW Risk Index and a SW Safety Effort and the mapping

between them. The allocation of the assurance level to SW can be performed

through the use of algorithms and criteria as those discussed in [17].

1.2.3 Process perspective

The process perspective comprises the ontological concepts concerned with the

development process such as activities and documents. Figure 1.9 shows the

involved ontological concepts. Standards and regulation adopted in the specific

context (e.g. CENELEC EN 50128 [34], ISO/IEC 62304 [64], RTCA/DO-

178B [94]) are represented by the Applicable Regulation class. They prescribe

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 12

Ontological formalization of three perspectives

<<owlClass>>
 Requirement

<<owlClass>>
RAMS Requirement

<<owlClass>>
 Functional Requirement

1..* <<owlClass>>
 Failure Event

<<owlClass>>
Operational Failure

<<owlClass>>
Testing Failure

<<owlClass>>
Assurance Level

<<objectProperty>>
defines

<<owlClass>>
 Test <<objectProperty>>

executes

1

<<objectProperty>>
has

1..*

<<owlClass>>
 Failure Effect

*
<<objectProperty>>

has

Figure 1.8. The ontological concepts belonging to the functional perspective.

to perform activities represented by Design And Verification Activity class,

and guide the production of documents, represented by Document class, along

the development life cycle. Examples of design and verification activities are

testing, architectural verification with formal methods, Hazard Analysis.

In this thesis the MIL-STD-498 [112], which defines several types of doc-

uments with their content, is adopted. In Figure 1.9 four of the documents

prescribed by MIL-STD-498 are modeled as subclasses of the Document class:

the System/Subsystem Analysis and Design (SSDD), the Software Require-

ments Specification (SRS), the Software Design Description (SDD), and the

Software Testing Description (STD). Nevertheless other documents can be

modeled, adding one subclass for each document.

The SSDD document [115] describes the architectural design of a system or

subsystem, identifying the CSCIs of the system and the requirements allocated

to them, stating their purpose and presenting their mutual relationships. It is

used as the basis for further system development.

In the SRS document [114], functional and non-functional requirements of

a CSCI are described along with their failure modes and the effects of failures.

Functional requirements are prescribed to be organized in groups: they can be

divided depending on the operation mode they refer to. Following the common

practice, an SRS can be divided in two parts, the one listing the functional

requirements, the other summing up the quality attributes. The former part

is modeled by a class labelled CSCI Capabilities Reqs. Section, the latter is

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 13

Supporting dependability techniques through ontologies

modeled by a class labelled Other Reqs. Section.

The SDD document [113] is divided in two parts: the former reports a high

level description of the SW items and their functionalities, the latter provides a

detailed description of the same items, including explanatory code fragments.

The STD document [116] describes test preparations, test cases, and test

procedures to be used to perform qualification testing of a CSCI or a system

or subsystem.

<<owlClass>>
Document

<<owlClass>>
SRS

<<owlClass>>
SDD

<<owlClass>>
STD

<<owlClass>>
Applicable Regulation

<<owlClass>>
Design And Verification

Activity

<<objectProperty>>
prescribes

<<owlClass>>
CSCI

Capabilities
Reqs. Section

<<owlClass>>
Other Reqs.

Section

<<objectProperty>>
prescribes

1..* 1..*

<<owlClass>>
SSDD

11

Figure 1.9. The ontological concepts belonging to the process perspective.

1.3 Supporting dependability techniques

through ontologies

In this Section, two dependability techniques used in the development of safety

critical systems are described, showing how the ontological model of Section 1.2

comprises concepts involved in these two techniques.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 14

Supporting dependability techniques through ontologies

1.3.1 SW-FMEA and SW-FTA

FMEA is a widely used dependability and safety technique which aims at

the systematic identification of the failure modes of a system, of the generat-

ing causes, of the consequences they might have, and of the countermeasures

that could mitigate their effects or reduce their likelihood. FMEA was first

developed by the Department of Defense of USA and standardized in the

MIL-STD-1629A [111], and it was then extended to various other industrial

domains, some of which developed their own standards [61, 106, 23]. Fur-

thermore, FMEA has been treated in a large number of works in literature

[108, 80].

Unfortunately, FMEA-related information is usually acquired in natural

language, implying that interpretation of the terms and the concepts used

across the analysis may differ from team to team; even the same team may

give different interpretation when reusing an already performed analysis in

a later occasion. Due to the lack of reusability, FMEA is often done from

scratch and in large systems it is barely possible to avoid inconsistencies [41].

Furthermore, when used by itself, FMEA does not consider the combination of

failure occurrences [49]. It is difficult to organize and master the large amount

of information contained in the worksheets so there exist ad hoc tools aiding

the FMEA process. Popular tools include: Relex [92], an integrated tool

for reliability and safety evaluation of systems; XFMEA [98], which focuses

on FMEA technique supporting data management and reporting; Byteworx

FMEA [31], which handles FMEA process guiding the analysis with a checklist,

pointing out the missing steps. In all these tools the main functionalities aim

at providing a way to fill in FMEA worksheets and to navigate through the

large amount of data. A less explored direction is how to deal with the volume

and the heterogeneity of the data collected during FMEA at different phases

of the life cycle.

To address these issues, several authors have proposed to resort to onto-

logies as a way to formalize the FMEA process, to manipulate concepts and

to process data involved in the analysis. The methodology introduced in [72]

is based on a knowledge engineering framework for integrating FMEA and

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 15

Supporting dependability techniques through ontologies

diagnosis models around a central Domain Ontology in support of multiple

product-modeling environments. A reference model, unifying and formalizing

FMEA concepts into an ontology expressed in F-Logic [68], has been proposed

in [41].

While FMEA has been mainly thought for hardware systems, its use is

also advocated for those systems where safety and dependability are strongly

affected by SW, resulting in the so-called SW-FMEA. This is explicitly pre-

scribed in several regulatory standards driving the development process in

mature application contexts, such as space [47, 82] or railways signalling [34].

However, the application of FMEA to SW faces various major hurdles.

Functional requirements allocated to SW are by far more complex than those

assigned to hardware; identification of failure modes of SW components cannot

rely on data-sheets or operational previous experience; SW faults often elude

testing, remaining hidden until some complex triggering conditions activate

them [2, 96]; they cannot be traced back to well identified causes, such as

ageing, wearing, or stressing [87]. Complexities affecting SW-FMEA, in con-

junction with those described for the classical FMEA, add further motivations

to employ ontologies to deal with them, so as to improve the overall process.

Fault Trees (FTs) are widely employed in the industrial practice [60, 62, 63,

91] as a means to represent the hierarchical relationships among causal factors

that can yield an undesired outcome called Top Event (TE). A system can

be modeled through a FT following a top-down approach, which identifies the

events leading to the occurrence of the TE and expresses their relationships by

combining them through boolean logic gates (i.e. AND, OR and KofN gates).

This step is then repeated for each event until the so-called basic events are

identified. Qualitative analysis of a FT provides the enumeration of the set of

Minimal Cut Sets (MCSs), i.e. minimal combinations of leaf events that lead

to the occurrence of the TE.

In the usual formulation, leaf events are associated with fixed, time-independent

failure probabilities, calculated in a rather static manner on the basis of statist-

ical information concerning the reliability of single components [119]. Quant-

itative evaluation of a FT supports reliability and safety analysis [57, 101]

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 16

Supporting dependability techniques through ontologies

through the derivation of the TE failure probability. This can be accom-

plished by following either an indirect approach, which derives the probability

of the TE by combining the probabilities of all the MCSs, or a direct ap-

proach, which repeatedly combines nodes probabilities at each gate of the tree

[95]. The probability of the TE depends only on the structure of the tree, with

no reference to time. However, reliability of system components often evolves

over time, due to such factors as: components aging; operation modes changing

over time; maintenance and rejuvenation processes. In these cases, probability

of the TE at different instants of time must be repeatedly recomputed in a

kind of polling process, in order to take into account how the probability of

component failures is conditioned by the actual operating conditions.

FTA, such as FMEA, is a technique originally thought for the analysis of

hardware systems but it has been adapted to SW, resulting in the so-called

SW-FTA. The subject of the analysis is the combination of causes that leads

to a failure, represented in the root node of the fault tree, using boolean logic.

The analysis can be conducted in several phases of the life cycle, even if the

application to the source code level is extremely more complex and expensive.

In fact, executing corrections and design changes during the first phases of the

life cycle is more convenient than during the code implementation.

In [110], the application of SW-FTA during the phases of requirements ana-

lysis and system design is encouraged. In particular, the identification in this

phases of most critical components, permits to apply for these components the

SW-FTA also to the code level. During the phase of requirements analysis, the

objectives of the application of SW-FTA are: a) identifying problems on the

specification of requirements so as to modify weak requirements or add new

ones; b) determining the requirements that have a strong impact on reliability

or safety, so as to trace the SW components responsible for their implementa-

tion. During the SW design the objectives of the SW-FTA are: a) determining

eventual flows or defects in the high level design; b) establishing SW compon-

ents and modules implementing requirements identified in the previous phase,

so as to make particular attention on their implementation. During the SW

implementation, for every SW component identified in the previous phase FTs

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 17

Supporting dependability techniques through ontologies

are generated so as to determine the set of instructions that may lead to mal-

functionings or hazards. In this way the SW-FTA is applied only to a limited,

but significative, set of SW components, identifying the critical situations since

the first phases of the development life cycle.

The Bi-Directional Analysis (BDA) [75, 50] is a technique which combines

SW-FMEA and SW-FTA to provide a more complete analysis methodology

to systematically identify the potential failure modes of the system, their ef-

fects and their propagation, and the events that trigger the failures. BDA

starts with a forward analysis similar to SW-FMEA, proceeding from the fail-

ure modes to their effects so as to evaluate their consequences. Once failure

modes with catastrophic consequences are determined, a backward search is

performed through FTA, examining the probability of occurrence of each an-

omaly that has produced the failure mode. In this way the BDA determines

the combination of vulnerabilities which can lead to failures.

The proposed methodology formalizes the semantics of both concepts and data

involved in SW-FMEA and SW-FTA and it permits the automatic processing

of data and the automatic generation of SW-FTs and SW-FMEA worksheets.

1.3.2 Ontological formalization of SW-FMEA and SW-FTA

The SW-FMEA process is naturally decomposed into phases. In [97], SW-

FMEA is decomposed into two steps: i) a hazard analysis is initially performed

to identify failure modes and their consequences; ii) countermeasures for mit-

igation or elimination of failures are then identified. In [53], SW-FMEA is

decomposed into two phases: i) System SW-FMEA, performed early in the

design process to minimize the impact of design recommendations resulting

from the analysis; ii) Detailed SW-FMEA, performed later during the system

design, with the aim of discovering safety requirements not being met and

possible additional requirements. In [20], the process is decomposed into four

activities: Top level functional FMEA, Functional SW-FMEA, Interface SW-

FMEA, and Detailed SW-FMEA, corresponding to different levels of detail of

the analysis.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 18

Supporting dependability techniques through ontologies

SW Requirements
Analysis

SW Design

SW Coding

HW-in-the-loop
Testing

SRS

SDD

TOP LEVEL
FUNCTIONAL

SW-FMEA

DETAILED
FUNCTIONAL

SW-FMEA

Figure 1.10. The stages of the SW-FMEA process mapped on the activities of a
development life cycle.

Here, the SW-FMEA process is assumed to be decomposed into two phases

spanning over the design side of the SW life cycle as shown in Figure 1.10: the

Top Level Functional SW-FMEA is mapped on the SW Requirements Analysis ;

the Detailed Functional SW-FMEA is mapped on the SW Design and SW

Coding activities. While the treatment of this thesis is focused on this concrete

case, the proposed ontological model can be conveniently adapted to other

methods and practices like those previously mentioned [97, 53, 20].

The first phase of the analysis, called Top Level Functional SW-FMEA,

is carried out early in the SW life cycle, when the impact of changes to the

original project is significantly less expensive. The analysis is performed during

the allocation of technical requirements to the CSCIs in which the system is

decomposed. The second phase of the analysis, called Detailed Functional SW-

FMEA, is accomplished when the SW architecture is almost completed and

each CSCI has been associated with a SW structure (see Figure 1.10).

The focus is on the definition of requirements associated with the CSCI s

(in the Top Level Functional SW-FMEA) and the other structural items, such

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 19

Supporting dependability techniques through ontologies

as SW Components, SW Modules, or Methods (in the Detailed Functional SW-

FMEA). Requirements are first associated to CSCIs, then are decomposed and

associated with structural items implementing them.

Each requirement is associated with one or more Failure Events, which

are the different ways in which the delivered service deviates from the correct

implementation of the system function [2]. Failure events are associated with

their Failure Effects representing the consequences of the failure upon the

system environment. Consequences are then classified through the severity

of failure events. The number, the labeling and the characteristics of the

severity levels are application-related and involve the dependability attributes

for the considered application [46, 94, 35]. For example, according to the ECSS

standard the severity level of a failure is classified in minor or negligible, major,

critical and catastrophic. Each level is mapped to a numerical value ranging

from 1 to 4 respectively. The causes of the failure events are represented by

the Fault class. A fault can be a Basic Fault or a logical combination of other

faults.

The criticality of each requirement accounts for the risk of failures and is

defined as a function of the severity of the failure and the probability of the

failure occurrence. The analysis is carried out in early development phases

in an iterative manner. At each iteration the criticality of requirements is

evaluated and, if necessary, further requirements are added as countermeasures

against more severe failure events.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 20

Supporting dependability techniques through ontologies

<<owlClass>>
Item

<<owlClass>>
CSCI

<<owlClass>>
 SW Module

<<owlClass>>
Method

<<objectProperty>>
is_part_of

<<owlClass>>
 SW Component

<<objectProperty>>
is_implemented_by

<<owlClass>>
 Requirement

<<owlClass>>
RAMS Requirement

<<owlClass>>
 Functional Requirement

1..*

<<owlClass>>
 Fault

<<owlClass>>
 Failure Event

<<objectProperty>>
causes

<<objectProperty>>
has

<<objectProperty>>
has

1..*

1..*

1..*

<<owlClass>>
 NOT

<<owlClass>>
 AND

<<owlClass>>
 OR

<<owlClass>>
 Basic Fault

2..* 2..* 1

<<owlClass>>
 Failure Effect

1..*

<<objectProperty>>
is_composed_by

*

<<objectProperty>>
has

0..1

Figure 1.11. UML representation of the intensional part of the ontology modeling
the concepts involved in SW-FMEA and SW-FTA.

DEFINING AN ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 21

Chapter

2
Instantiating the ontology

to systematize life cycle activities

This Chapter describes an industrial tailoring of the V-Model SW life cycle [30],

specifying the documents produced in each development activity (Section 2.1).

Then the instantiation of the ontological model is described, showing how,

in industrial practice, the extensional part of the model can be populated

with actual data derived from artifacts and documents produced along the

development life cycle (Section 2.2).

2.1 An industrial tailoring of the V-Model life cycle

Figure 3.1 shows the general structure of a V-Model SW life cycle [30] (inner

scheme) and the specific industrial tailoring (outer scheme), emphasizing the

artifacts of the documentation process prescribed by MIL-STD-498 [112] and

possible iterative refinements along the development. The steps are briefly

recalled to introduce the concepts that are significant for the proposed meth-

odology.

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 22

An industrial tailoring of the V-Model life cycle

SRS

SW Requirements
Analysis

SSDD

SD1
System Requirements

Analysis

Planning and
Budget

User Requirements

System Architecture

Technical Requirements

Software Architecture

Software Design

System
Level

System
 Level

Unit
Level

SW Component
 Level

SW Module
 Level

 SD7-SW
SW Integration

SW Design

SW Coding

HW-in-the-loop
Testing

System
Integration
and Testing

SDP

SDD

SD2
System Design

 SD5-SW
Detailed Software

Design

SD9
Transition to
Utilization

SD4-SW
Preliminary Software

Design

SD8
System Integration

SD3
SW/HW

Requirements
Analysis

System/
Subsystem

Analysis and
Design

 SD6-SW
SW

Implementation

SD7-SW
SW

Integration
STD

Figure 2.1. Scheme of the System Development (SD) submodel of the V-Model
life cycle [30] tailored according to MIL-STD-498 [112]. The picture highlights
MIL-STD-498 documents (in bold) and development iterations (bold arrows).

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 23

An industrial tailoring of the V-Model life cycle

System Requirements Analysis (SD1), System Design (SD2), and the first

part of SW-HW Requirements Analysis (SD3) are integrated in a single activity

named System/Subsystem Analysis and Design. This develops on the outcomes

of the Planning and Budget activity (out of the scope of the V-Model) and

produces the SSDD document, specifying system decomposition into units

made of CSCIs and Hardware Configuration Items (HCIs). The second part

of SD3 is mapped on SW Requirements Analysis, which lists all functional and

non-functional SW requirements in the SRS document.

Preliminary Software Design (SD4-SW) and Detailed Software Design (SD5-

SW) are integrated in SW Design, which produces the SDD document, spe-

cifying the dynamic architecture of each CSCI as a set of concurrent tasks

(each of them is a SW component) with allocated resources and prescribed

time requirements.

SW Implementation (SD6-SW) is covered by SW Coding, which imple-

ments the dynamic architecture of each CSCI and their functional behavior,

and by the first part of HW-in-the-loop Testing, which addresses testing of

low-level modules. SW Integration (SD7-SW) at the SW Component Level is

mapped on the second part of HW-in-the-loop Testing, which verifies the in-

tegration of low-level modules within each CSCI and produces the STD which

describes test preparations, test cases, and test procedures to be used to per-

form qualification testing of a CSCI.

SD7-SW at the Unit Level and System Integration (SD8) are aggregated in

System Integration and Testing, which tests first the integration of CSCIs and

HCIs within each unit and then the integration of all units within the system;

Transition To Utilization (SD9) puts the completed system into operation at

the intended application site. These activities are out of the scope of the

industrial tailoring described here.

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 24

Connecting different perspectives

2.2 Connecting different perspectives

The proposed ontological formalization described in Section 1.2 provides a

systematic ground for the integration of concepts concerned with the struc-

tural, functional and process perspectives. Concepts of the ontological model

become concrete by associating them with actual data derived from artifacts

and documents produced along the development life cycle. This stands for

the population of the ontological model with instances of structural elements

(e.g. CSCI, SW component), functional elements (e.g. functional require-

ment, failure event), process elements (e.g. document, applicable regulation),

and relations among them. This Section illustrates the connections among the

three perspectives showing how instances of associations between concepts of

different perspectives can be obtained.

2.2.1 Tracing requirements

The association among structural and functional elements is a crucial point in

the development and is also important with respect to maintainability, since

it impacts on the ability of the system in isolating or correcting a defect as

well as on satisfaction of new requirements. In addition, the identification of

the SW items that implement a requirement is also relevant to verify that

the implementation is compliant with design specification, in fact this activity

is carried out after the SW Coding, where the code is already available. As

a matter of fact, the regulatory standards expressly require that documents,

such as SRS and SDD, contain the traceability matrix.

Traceability of requirements has been addressed in various works [44, 125,

124]. In [44] the identification of required computational units is performed

through a technique that combines static and dynamic analysis, using concept

analysis. The static part of the technique consists in the extraction of the

static dependency graph, while the dynamic part of the technique traces the

execution of some features, giving the system appropriate inputs. A classific-

ation of components is then obtained, analyzing the relevance of a component

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 25

Connecting different perspectives

<<owlClass>>
 SW Component

<<owlClass>>
 Functional Requirement

<<owlClass>>
Usage Degree

<<objectProperty>>
is_implemented_by
<<objectProperty>>has_used_component

1..*

<<objectProperty>>
is_implemented_by

<<owlClass>>
 Requirement

<<owlClass>>
RAMS Requirement

<<owlClass>>
Item

<<objectProperty>>
is_part_of

<<owlClass>>
 Fault

<<objectProperty>>
has <<owlClass>>

 Failure Event

<<objectProperty>>
causes

1

1..* 1..*
<<objectProperty>>

has

1..*

<<owlClass>>
 Test

<<objectProperty>>
executes

1..*

Functional Perspective

Structural Perspective

1..*

<<owlClass>>
 Failure Effect

*

<<objectProperty>>
has

<<owlClass>>
 NOT

<<owlClass>>
 AND

<<owlClass>>
 OR

2..* 2..* 1

<<owlClass>>
 Basic Fault

0..1

<<objectProperty>>
is_composed_by

*

Figure 2.2. The connections among the structural and the functional perspect-
ives, established through the associations between the SW items and the imple-
mented requirements and between a failure event and the faults causing it.

with regard to a feature. The approach presented in [125] is based on the iden-

tification of code invoked during both the execution of the target feature and

the execution of the other features. Subtraction of the second from the first

gives the desired result. The quantitative evaluation of the relation between

a component and a feature is addressed in [124] through the introduction of

three metrics: the concentration of a feature in a component, the dedication

of a component to a feature, and the disparity which measures the closeness

between a feature and a component. The authors consider a component as

a file composed by basic blocks (i.e. sequences of consecutive statements or

expressions containing no transfer of control).

The objective of the analysis is the identification, through tests execu-

tion, of instances of the association between Requirements and Items shown

(in bold) in Figure 2.2, which allows to connect the structural and the func-

tional perspectives. Specifically, in order to show the approach, the association

between a Requirement and SW Components is considered. The association

between a Test and Requirements exercised in the test is also shown (in bold)

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 26

Connecting different perspectives

in Figure 2.2.

Formally, let ri be a generic requirement and cj a generic SW component,

the relation T ⊆ 2FR×2C where FR is the set of requirements and C is the set

of SW components, is looked for during the tests. The generic test T ∈ T is

defined as < Tr, Tc > where Tr ∈ 2FR and Tc ∈ 2C . In doing so, < Tr, Tc >∈ T
means that a set of SW components Tc are related to a set of requirements Tr.

Abusing of terms, a component ci is called necessary for a requirement rj if

∀T ∈ T : rj ∈ Tr ⇒ ci ∈ Tc,

a component ci is called potential for a requirement rj if

∃T ′, T ′′ ∈ T : rj ∈ T ′r ∧ rj ∈ T ′′r ⇒ ci ∈ T ′c ∧ ci 6∈ T ′′c .

As in [43], the usage degree (UG) of a SW component ci in the implementation

of a requirement rj, accounts for how many methods M of ci are executed in

realizing rj:

UG(ci, rj) =
M(ci, rj)

M(ci)
.

To identify the relation T , a set of tests is performed in order to exercise one

or more requirements tracing the SW components implementing them. This

has been done resorting to Aspect Oriented Programming [67, 107]. Instances

of the association of Figure 2.2 between a requirement and SW components

are obtained for each requirement extracting the components necessary for its

implementation. Then these associations are imported in the ontology, which,

as a result, provides the ground to perform verification of the compliance of

SW implementation with its specification.

The connection between the functional and the structural perspectives is

realized also with the association between a Failure Event, which represents

a failure of the associated Requirement, and the Faults that model the causes

of the failure. The association between an Item and its Faults cannot be

completely automated. However, given a failure, thanks to the association

of the requirement with SW items implementing it, the analyst is led to find

those items that more likely contain the fault that causes the failure.

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 27

Connecting different perspectives

2.2.2 Following the documentation process

The specific instances of some concepts are reported in documents produced

along the development life cycle and subject to MIL-STD-498 [112]. This en-

ables the population of the extensional part of the ontological model while

maintaining consistency with the industrial practice and improves cohesion

among the activities of the life cycle and the documents, enabling their auto-

matic production.

Figure 2.3 shows (in bold) the connections among the classes representing

the documents and the classes corresponding to the concepts reported in the

documents. Concepts belonging to the structural perspective addressing the

SW structure are reported in design documents: CSCIs (i.e. CSCI class) are

reported in the SSDD, while the other structural items (i.e. SW Compon-

ent, SW Module and Method classes) are reported in the SDD where they are

defined and associated with their functionalities. Concepts belonging to the

functional perspective addressing requirements (i.e. Requirement class) are

contained in the SRS. In particular, the former part of the SRS contains Func-

tional Requirements while the latter reports RAMS Requirements. Concepts

representing tests (i.e. Test class) are reported in the STD.

<<owlClass>>
 Requirement

<<owlClass>>
RAMS Requirement

<<owlClass>>
 Functional Requirement

<<owlClass>>
Document

<<owlClass>>
SRS

<<owlClass>>
SDD

<<objectProperty>>
contains

<<objectProperty>>
contains

<<owlClass>>
CSCI

Capabilities
Reqs. Section

<<owlClass>>
Other Reqs.

Section

<<owlClass>>
STD

<<owlClass>>
Test

<<objectProperty>>
contains

1..*1..*

<<objectProperty>>
contains

1..*
<<objectProperty>>

executes

1..*

Functional Perspective Process Perspective

Structural Perspective <<owlClass>>
CSCI

<<owlClass>>
 SW Module

<<owlClass>>
Method

<<owlClass>>
 SW Component

<<owlClass>>
SSDD

1..* 1..* 1..*1..*

<<objectProperty>>
contains

1 1

Figure 2.3. The connections among the three perspectives, established through
the production of documents along the development life cycle.

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 28

Connecting different perspectives

2.2.3 Verifying activities of the development process

<<owlClass>>
Method

<<owlClass>>
Code Metric

Accountability

<<owlClass>>
Design And Verification

Activity

<<owlClass>>
 Code Metric

<<objectProperty>>
has_CM

<<objectProperty>>
is_developed_with

<<objectProperty>>
has

1

<<owlClass>>
Assurance Level

<<objectProperty>>
satisfies

<<owlClass>>
 Requirement

<<objectProperty>>
defines

<<owlClass>>
D&V Activity

Accountability

<<objectProperty>>
has_P

1..*

1..*

<<objectProperty>>
satisfies

1

1

1

1

Process Perspective

Structural Perspective

Functional Perspective

Figure 2.4. The connections among the structural, functional and process per-
spectives, established through the verification of the level of assurance.

The three perspectives are connected also through the verification of the

level of assurance obtained in the development process, so as to guide the

elimination of design and implementation flaws which could impair the sys-

tem dependability. This is carried out after the implementation, by verifying

whether the actual implementation of SW items satisfies the level of assurance

associated with the requirements implemented. If this verification shows that

the required level of assurance is not achieved, additional testing activities or

code revisions of the items violating the expected level of rigor can be per-

formed. A requirement defines a required level of assurance depending on the

risk associated with the implementation of the requirement itself. The devel-

opment of SW items implementing the requirement must satisfy the required

level of assurance. For each level of assurance, standards prescribe to execute

activities and to develop SW with specific values of code metrics. Therefore

each level of assurance is associated with a set of required predicates about

code metrics and design and verification activities [16, 15].

A set of predicates for a requirement r has the form

Pr =
{
X1 Q k1, . . . , Xn Q kn, Y1 = s1, . . . , Ym = sm

}
with n,m ∈ N

where, referring to the fragment of the ontological model shown in Figure 2.4,

Xi and Yj, with i = 1 . . . n and j = 1 . . .m, are instances of Code Metric

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 29

Connecting different perspectives

and Design And Verification Activity classes, respectively, while ki and sj

are instances of Code Metrics Accountability and D&V Activity Accountability

classes, respectively. If all the SW items contributing to the realization of r

are implemented with values of Xi lower (greater) than ki and Yj equal to sj,

then r is considered rigorously implemented.

A concrete example of a set of predicates is

Pr = {CC < 5, TC = “all edges”}

where CC stands for the McCabe’s cyclomatic complexity and TC stands

for the testing coverage, two metrics playing an important role in industrial

contexts.

Predicates can be operatively verified by collecting values of code metrics

and information about executed activities. Several tools supporting static

analysis can be used to extract values of code metrics [117, 93], while data

regarding activities can be extracted directly from the documentation. Once

data relative to metrics are available, the validation process for a requirement

implementation consists in checking whether each SW item implementing it

satisfies the predicates. This will be shown in Section 4.3.

INSTANTIATING THE ONTOLOGY TO SYSTEMATIZE LIFE CYCLE ACTIVITIES 30

Chapter

3
Casting UML-MARTE and pTPNs

in the ontology

This Chapter describes the application of the methodology in a experience of

a development in a one-year-long project at the FinMeccanica site of Selex

Galileo in Florence. The activities of the life cycle are supported by the

combination of UML-MARTE diagrams [84] and pTPN theory [26] both to

manage the documentation process prescribed by MIL-STD-498 [84] and to

support development activities. The UML-MARTE diagrams allow to form-

alize the description of concepts contained in documents (Section 3.2). The

pTPN theory allows to perform design and verification activities so as to obtain

a determined level of assurance (Section 3.3).

3.1 Formal methods in an industrial SW process

Standards such as RTCA/DO-178B [94], MIL-STD-498 [112], CENELEC EN

50128 [34], ECSS E-40 [45], and ISO/IEC 62304 [64] explicitly recommend the

introduction of formal methods as a means to improve the rigor of development

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 31

Formal methods in an industrial SW process

and the quality of SW, provided that the adoption of these techniques does

not radically upset the consolidated practice. Hence, an increasing attention is

focused on any measure that aims at smoothing the impact of formal methods

so as to facilitate an effective integration within the development life cycle.

Formal methods can actually contribute to increase the quality of SW com-

ponents by supporting multiple activities along the development life cycle.

Formal modeling provides a well-defined semantics, which removes inconsist-

encies of natural language and permits definition of a non-ambiguous spe-

cification. This enables rigorous analysis through comprehensive exploration

of system behaviors, supporting derivation of a proof of correctness of SW

design. As a relevant point, early assessment of requirements allows early feed-

back at design stage, which may have an impact on the quality and the cost

of the final product. Formal specification also supports Model Driven Devel-

opment (MDD), including derivation of code that preserves model semantics,

fast prototyping, incremental integration and testing of low-level modules. The

formal description supports the testing stage as well, providing the basis for

automation of the testing process and for generation of a test oracle.

UML-MARTE diagrams [84] and pTPN theory [26] are combined both to

manage the documentation process prescribed by MIL-STD-498 [84] and to

support development activities. In particular, UML-MARTE provides a semi-

formal specification that is practical enough to meet the needs of an advanced

industrial domain and sufficiently structured to allow mapping on pTPNs.

This enables the integration of the two core processes yielding an effective

ground for deployment of pTPN theory while attaining a smooth impact on

the consolidated practice. Guidance for translation of UML-MARTE diagrams

into equivalent pTPN models is provided, using timeline schemata as an in-

termediate artifact supplying a synthetic and compact representation of SW

design.

Various efforts have been pursued to compile UML specifications [86, 85]

into formal models used for performance prediction [3] and dependability ana-

lysis [10]. In many of these approaches, UML diagrams are translated into

Petri Net (PN) models [79, 8, 9, 40, 7]. In [79], a compositional approach de-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 32

Formal methods in an industrial SW process

rives a Generalized Stochastic Petri Net (GSPN) from a UML State Machine

based on StateChart Diagrams, defining a formal semantics for a significant

subset of State Machine elements. The approach is extended in [8] by applying

the translation also to UML Sequence Diagrams, providing a more complete

representation of system behavior. The method proposed in [9] combines State

Machines and Activity Diagrams to derive a Stochastic Well-formed Net for

evaluation of performance metrics, such as sojourn time and response time.

In [40], performance of a SW architecture is evaluated through a two-phase

methodology which first annotates a UML specification with tags and stereo-

types of the UML profile for Schedulability, Performance, and Time (UML-

SPT) [83], and then generates a corresponding Non-Markovian Stochastic Petri

Net (NMSPN) model. In [7], a Time Petri Net (TPN) model is derived from a

UML-based SW specification enriched with annotations of the UML-MARTE

[84], which is specifically targeted to capture non-functional properties of real-

time embedded systems. The resulting TPN model is used to assess the risk

of timing failures in early stages of SW life cycle.

Several other approaches address translation of UML specifications into

performance models based on Queuing Networks (QNs) and Process Algebrae

(PA) [88, 37, 54, 76, 4, 105, 36, 89, 126, 55]. The approach proposed in [88]

builds a Layered Queuing Network (LQN) from a UML description of system

architecture made of Class/Object Diagrams and Sequence Diagrams, by con-

verting each architectural pattern into a performance submodel. In [37], QN

models are incrementally built from UML diagrams early available during SW

development, providing fast feedback to the designer. The approach is exten-

ded in [54] to encompass mobility-based paradigms in the SW architecture of

an application. In [76], a set of annotated Use Case, Activity, and Deployment

Diagrams is translated into a discrete-event simulation model used to derive

performance indexes. The methodology is improved in [4] using QN analysis

to derive performance bounds. In the approach of [105], annotated UML spe-

cifications are exported and analyzed as QN models, using an XML-based

interchange format which allows flexibility in design and analysis stages. SW

performance analysis is also applied in [36] in the context of an industrial case

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 33

Formal methods in an industrial SW process

study from the telecommunication domain, translating Sequence Diagrams and

StateChart Diagrams first into flow graphs and then into a specification based

on Æmilia [11], an Architectural Description Language (ADL) defined upon a

Stochastic Process Algebra (SPA). In [89], a metamodel named Core Scenario

Model (CSM) is defined which supports derivation of various kinds of perform-

ance models from an UML diagram annotated with UML-SPT stereotypes.

The approach is implemented in the PUMA (Performance by Unified Model

Analysis) tool architecture [126], which provides a unified interface between

SW design models and performance models. An intermediate metamodel is

used also in [55] to derive performance models from UML diagrams. The trans-

formation framework is based on a kernel language called KLAPER and helps

in bridging the gap between design-oriented and analysis-oriented notations.

Integration of formal methods along the development process of real-time

SW has been practiced in various MDD approaches and related tools [109, 1,

58, 18, 71, 32], supporting formalization of system requirements and design

choices through Domain Specific Modeling Languages (DSMLs), and auto-

mated derivation of concrete artifacts such as real-time code, documentation,

and tests [66, 102]. The model-based SW development process presented in

[18] supports simulation and testing of complex embedded systems in auto-

motive applications. To this end, an executable specification of the entire

system is generated during early design phases and then iteratively refined

throughout the design process. The Palladio model-driven approach [65] sup-

ports prediction of Quality of Service (QoS) properties of component-based

SW architectures, providing a meta-model for specification of performance-

relevant information [6] and a simulator for derivation of performance, reliab-

ility, maintainability, and cost metrics. It is implemented in a well-established

tool which enables integration within a component-based development process

[71]. In [32], an MDD framework is presented that integrates the core theory

of pTPNs [26, 25] in a tailoring of the V-Model SW life cycle [30], enabling

automated derivation of pTPN models from a semi-formal specification, auto-

mated compilation of models into real-time code running on RTAI [38], and

measurement-based Execution Time evaluation. As a characterizing trait, pT-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 34

Supporting the documentation process through UML-MARTE

PNs encompass temporal parameters varying within an assigned interval and

support representation of suspension in the advancement of clocks. This at-

tains an expressivity that compares with StopWatch Automata [33], PNs with

hyper-arcs [100], and Scheduling-TPNs [74], enabling convenient modeling of

usual patterns of real-time concurrency [29].

3.2 Supporting the documentation process

through UML-MARTE

This Section shows how UML-MARTE [84] and other notations are used to

support the documentation process prescribed by MIL-STD-498 [112] and to

formalize concepts involved in the activities of the life cycle. Each Subsection

describes an activity of the life cycle of Figure 3.1 together with the documents

produced, which are instances of the Document class of the ontological model

shown in Figure 1.9.

3.2.1 System/Subsystem Analysis and Design

and SSDD document

During System/Subsystem Analysis and Design, definition of User Require-

ments enables identification of system functionalities and their allocation to

system units. This activity produces the SSDD document which contains the

description of the system decomposition into units and their decomposition in

CSCIs and HCIs.

In the industrial case study addressed here, an electro-optical system is

developed as a part of the equipment of a military vehicle to guarantee bat-

tlefield advantage through the use of visual, infra-red and thermal imaging,

long-range target acquisition and illumination, and precise aiming. Therefore,

the system is decomposed into: an Optical Unit (OU) made of sensors, cam-

eras, and servo-motors; an Electronic Unit (EU) responsible for sensor control

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 35

Supporting the documentation process through UML-MARTE

SRS

SW Requirements
Analysis

SSDD

SD1
System Requirements

Analysis

Planning and
Budget

User Requirements

System Architecture

Technical Requirements

Software Architecture

Software Design

System
Level

System
 Level

Unit
Level

SW Component
 Level

SW Module
 Level

 SD7-SW
SW Integration

SW Design

SW Coding

HW-in-the-loop
Testing

System
Integration
and Testing

SDP

SDD

SD2
System Design

 SD5-SW
Detailed Software

Design

SD9
Transition to
Utilization

SD4-SW
Preliminary Software

Design

SD8
System Integration

SD3
SW/HW

Requirements
Analysis

System/
Subsystem

Analysis and
Design

UML-MARTE
Component Diagrams

CRC Cards

UML-MARTE
Component Diagram

UML-MARTE
Class Diagram

UML-MARTE
Object Diagram

UML-MARTE
Activity Diagrams

Timeline

PTPN

 SD6-SW
SW

Implementation

SD7-SW
SW

Integration
STD

Figure 3.1. Scheme of the System Development (SD) submodel of the V-Model
life cycle [30] tailored according to MIL-STD-498 [112]. The picture highlights
the inclusion of artifacts (white boxes) within MIL-STD-498 documents (dashed
arrows), translation of documentation artifacts into a formal specification (dotted
arrows), and development iterations supported by the approach (bold arrows).

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 36

Supporting the documentation process through UML-MARTE

and image processing; and, a System Monitoring Unit (SMU) managing the

entire system. EU plays the role of a bridge in the communication between

SMU and OU, forwarding the commands periodically sent by SMU to OU and

sending back the corresponding replies.

A UML-MARTE Component Diagram can effectively capture system de-

composition, as exemplified in Figure 3.2: SMU and EU are modeled through

the ProcessingResource stereotype (i.e., a resource allocated to the execution

of schedulable resources); OU is represented through the DeviceResource ste-

reotype (i.e., an external device that may be manipulated through specific

services); and, the two communication channels connecting EU with SMU and

OU are specified through the CommunicationMedia stereotype (i.e., a mean

to transport information from one location to another).

Figure 3.2. System/Subsystem Analysis and Design: SSDD document. UML–
MARTE Component Diagram of the system.

At this stage, functionalities of each system unit are allocated to CSCIs

and HCIs. With regard to the industrial experience, the focus here is on

the development of EU, which is sufficient to illustrate the approach and the

complexities of the case study. According to this, the decomposition of OU

into HCIs is illustrated only to make explicit the connections with HCIs of

EU, and SMU is left out of the scope for this work. EU is responsible for

controlling devices of OU, sending them commands elaborated by SMU and

forwarding their replies to SMU. EU also processes images acquired by OU and

sends obtained results to SMU. Therefore, EU functionalities are allocated

to two CSCIs: System Control (SC), responsible for communication with

OU and SMU, and Image Tracking (IT), responsible for image processing.

In turn, each CSCI is associated with a real-time task-set and allocated to

an HCI. Specifically: SC is allocated to Main Board (MB), which embeds a

PowerPC MPC 5200B processor [52] and runs the VxWorks 6.5 [122] Real-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 37

Supporting the documentation process through UML-MARTE

Time Operating System (RTOS); IT is allocated to Video Processor (VP),

which runs a proprietary commercial RTOS. EU also embeds a battery. OU

is made of six HCIs: Servo-Motor (SM), InfraRed Camera (IRC), TeleVision

Camera (TVC), Laser Sensor (LS), Optical Sensor (OS), and Temperature

Sensor (TS).

Also the aspect of unit decomposition can be effectively represented through

a UML-MARTE Component Diagram, as illustrated in Figure 3.3. A CSCI

is represented by the rtUnit stereotype (i.e., a real-time application that owns

one or more schedulable resources); a real-time task-set is modeled by the

SchedulableResource stereotype (i.e., an active resource that performs actions

using the processing capacity brought from a processing resource managed

by a scheduler); an HCI is specified through the HwCard stereotype (i.e., a

printed circuit board typically made by chips and electrical devices); and,

a battery is represented by the HwPowerSupply stereotype (i.e., a hardware

component supplying the hardware platform with power). Association of a

CSCI with a real-time task-set is modeled by the allocate stereotype (i.e., an

allocation relation between elements of the application model and those of the

execution platform, represented by the ApplicationAllocationEnd and Execu-

tionPlatformAllocationEnd stereotypes, respectively, denoted by ap allocated

and ep allocated for short, respectively). The allocate stereotype is also used

to represent allocation of a real-time task-set to an HCI.

An UML-MARTE Component Diagram also permits to make explicit rela-

tionships between HCIs and CSCIs as exemplified in Figure 3.3. Specifically,

MB and VP are connected through bus B7, specified by the HwBus stereotype

(i.e., a particular wired channel with specific functional properties). MB is also

connected to SMU through bus B6 and to HCIs of OU through buses B1, B2,

B3, B4, and B5. Note that every bus is bidirectional and is represented by a

provided and a required interface in the diagram of Figure 3.3.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 38

Supporting the documentation process through UML-MARTE

Figure 3.3. System/Subsystem Analysis and Design: SSDD document. UML–
MARTE Component Diagram of system units.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 39

Supporting the documentation process through UML-MARTE

3.2.2 SW Requirements Analysis and SRS document

SW Requirements Analysis and subsequent activities proceed separately for

each CSCI up to the final integration. In the SRS document of a CSCI,

a conventional structure similar to Class Responsibility Collaboration (CRC)

cards [5] can be used to specify its functional behavior as a set of capabilities.

Each capability reflects a CSCI functionality, is associated with one or more

collaborating HCI/CSCI/Unit, and may be decomposed in sub-capabilities.

Capabilities identified during this step are then allocated to structural items,

enabling definition of their functional and non-functional requirements.

Table 3.1 specifies the capabilities of the SC, i.e., the CSCI of EU. Init ini-

tializes HW and SW; capabilities from IT Communication up to SM Communication

manage buses connecting SC with: IT (B7), SMU (B6), and four HCIs of

OU, i.e., LS (B1), IRC (B5), TVC (B3), and SM (B4); LS-IRC Power and

TVC Configuration control LS, IRC, and TVC sensors; SMU-OU Commands

manages communication between SMU and OU and, since it requires the most

computational effort, it is decomposed in sub-capabilities, shown in Table 3.2.

Communication with the other two HCIs of OU (i.e., OS and TS) is performed

through bus B2 which is directly managed by MB (i.e., the HCI which SC is

allocated to).

3.2.3 SW Design and SDD document

In this context, the SDD document produced by SW Design specifies the dy-

namic architecture of a CSCI in the form of a set of concurrent tasks [29]

following a pre-defined structure. Each task is represented in the ontology as

an instance of SW component class of the model shown in Figure 1.7.

• A task may be either recurrent or one-shot. A recurrent task is an in-

finite sequence of identical activities called jobs activated with periodic

or sporadic policy (i.e., with release time deterministic or bounded by

a minimum value, respectively), with deadline less or equal to the min-

imum inter-release time. A one-shot task is a single job activated in

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 40

Supporting the documentation process through UML-MARTE

Capability Description Collaboration

Init HW and SW initialization -

IT Communication Communication with IT IT

SMU Communication Communication with SMU SMU

LS Communication Communication with LS LS

IRC Communication Communication with IRC IRC

TVC Communication Communication with TVC TVC

SM Communication Communication with SM SM

LS-IRC Power Switching on/off LS and IRC LS and IRC

TVC Configuration Management of the TVC TVC

configuration

SMU-OU Commands Management of messages -

exchanged by SMU and OU

Table 3.1. SW Requirements Analysis: SRS document. CRC card of SC (the
CSCI of EU).

reaction to an internal event (e.g., the release of a semaphore) or an ex-

ternal event (e.g., the arrival of a signal), with deadline less or equal to

the minimum inter-occurrence time of the event.

• A job is a sequence of chunks running under static priority preemptive

scheduling; each chunk requires one or more resources with a priority

level (low priority numbers run first) and has an associated entry-point

method implementing its functional behavior with a non-deterministic

range of Execution Time.

• Chunks belonging to jobs of different tasks may share resources (e.g.,

memory space) and synchronize on semaphores under priority ceiling

emulation [104], i.e., raising their priority to the highest priority of any

chunk that ever uses that semaphore. Wait and signal semaphore opera-

tions are constrained to occur at the beginning and at the end of chunks,

respectively.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 41

Supporting the documentation process through UML-MARTE

Sub-Capability Description Collaboration

SMU Commands Management of SMU -

commands and OU replies

TVC Commands Management of the TVC -

configuration parameters

HCIs Trasmission Activation of data trasmission

to IRC, TVC, and LS

-

LS-IRC State Management of the switched

on/off state of IRC and LS

-

HCIs Data Processing of HCIs data -

SM LocationData Processing of the SM location

data elaborated by IT

-

OperationModes Management of system -

Operation Modes

Table 3.2. SW Requirements Analysis: SRS document. Decomposition of
SMU-OU Commands in sub-capabilities.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 42

Supporting the documentation process through UML-MARTE

3.2.3.1 Semi-formal specification through UML-MARTE

The model of a task-set can be conveniently documented through a UML-

MARTE Class Diagram, as illustrated in Figure 3.4. Tasks are specified by

the SwSchedulableResource stereotype (i.e., a resource that executes concur-

rently with other resources under the supervision of a scheduler according to

a scheduling policy); chunks are modeled through the EntryPoint stereotype

(i.e., a routine to be executed) and the association between a task and its

chunks is modeled as a dependency; binary semaphores are represented by the

SwMutualExclusionResource stereotype (i.e., a resource used to synchronize

the access to shared variables).

Figure 3.4. SW Design: SDD document. UML-MARTE Class Diagram of the
task-set model.

The SW Design proceeds through three steps: i) identification of struc-

tural relations among tasks through a UML-MARTE Component Diagram; ii)

definition of non-functional behavior of tasks through a UML-MARTE Ob-

ject Diagram; and, iii) specification of functional behavior of tasks through

UML-MARTE Activity Diagrams.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 43

Supporting the documentation process through UML-MARTE

Specification of inter-task relations A UML-MARTE Component Diagram can

be conveniently used to represent relations among tasks of a CSCI as well as

relations between a task of a CSCI and the collaborating HCI/CSCI/Unit,

as illustrated in Figure 3.5 with reference to the SC task-set of the indus-

trial case study. Specifically, the six capabilities managing buses that connect

SC with IT, SMU, and OU (in Table 3.2, Communication capabilities) are

allocated to separate tasks named Tsk2, Tsk3, ..., and Tsk7; the remaining

four capabilities (in Table 3.2, Init, LS-IRC Power, TVC Configuration, and

SMU-OU Commands) are assigned to a single task named Tsk1. According

to this, the SC task-set is made of seven tasks and Tsk1 comprises its central

element. Tsk2, Tsk4, Tsk5, Tsk6, and Tsk7 interface the associated HCI/C-

SCI with Tsk1 which, in turn, is interfaced to SMU through Tsk3. Tsk1 is

responsible for processing SMU commands, producing data for the addressed

HCIs/CSCIs, and writing them on shared memories. These data are then sent

to HCIs/CSCIs by the associated tasks, which are also responsible for writing

back the replies. Finally, Tsk1 forwards replies to SMU via Tsk3. Commu-

nications through buses are described by the HwBus stereotype, while shared

memories are represented by the SharedDataComResource stereotype (i.e., a

specific resource used to share the same area of memory among concurrent

resources).

Specification of non-functional behavior In the definition of the dynamic ar-

chitecture of a task-set, non-functional requirements are derived from con-

tractual prescriptions, or obtained from previous artifacts, or autonomously

chosen by the developer. Minimum inter-release times and deadlines are dir-

ectly prescribed by User Requirements, while task periods are usually design

choices. The number of chunks constituting a task reflects the number of

sub-capabilities allocated to the task, and it may be refined during develop-

ment iterations depending on the number of branches in the structure of the

task. The Execution Time of a chunk can be first tentatively guessed through

analogy with previous or similar realizations, and it is progressively refined

during development iterations. Semaphore synchronizations necessary to ac-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 44

Supporting the documentation process through UML-MARTE

Figure 3.5. SW Design: SDD document. UML-MARTE component diagram of
the SC task-set.

cess shared data directly come from tasks interactions.

A UML-MARTE Object Diagram can effectively capture the dynamic ar-

chitecture of a task-set, enabling representation of non-functional properties,

as exemplified in Figure 3.6 with reference to the SC task-set of the industrial

case study. Tsk1 and Tsk2 are periodic tasks with period and deadline of 10

and 20 ms, respectively; Tsk3 and Tsk4 are sporadic tasks with minimum

inter-release time and deadline of 20 and 40 ms, respectively; Tsk5, Tsk6,

and Tsk7 are one-shot tasks with deadline of 10 ms. Tsk1 requires cpu with

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 45

Supporting the documentation process through UML-MARTE

priority level 1; the other tasks require cpu with priority level 2. Specifically,

minimum inter-release times and deadlines of Tsk3 and Tsk4 directly come

from User Requirements constraining timeliness of image processing and sys-

tem management; Tsk5, Tsk6, and Tsk7 are modeled as one-shot tasks since

communication with IRC, TVC, and LS is activated on demand by Tsk1, de-

pending on the HCI/CSCI addressed by the current SMU command; Tsk1 and

Tsk2 are modeled as periodic tasks to guarantee recurrent control on servo-

motors and SMU-OU messages; Tsk2 period and deadline are chosen equal

to Tsk3 deadline so as to timely actuate SMU commands addressing servo-

motors; Tsk1 period and deadline are selected equal to half Tsk3 deadline as

a result of the subsequent analysis.

A UML-MARTE Object Diagram also permits to specify the chunks of each

task and their semaphore synchronizations. This is exemplified in Figure 3.6

with reference to the SC task-set of the industrial case study, avoiding repres-

entation of every chunk and semaphore to reduce the cluttering. For instance,

Tsk1 is made of twenty-two chunks, which result from the four capabilities as-

signed to SC, the sub-capabilities of SMU-OU Commands, and some branches

introduced during refinement of entry-points; chunk C11 executes entry-point

f11 with an Execution Time constrained within [0.005, 0.100] ms, and it is

synchronized with chunk C23 on semaphore sem1 to access data that Tsk1

shares with Tsk2.

Specification of functional behavior The procedural aspects of a task-set can be

conveniently specified using UML-MARTE Activity Diagrams according to the

following methodology:

• each task is represented by a separate swimlane labeled with the task

name;

• releases of periodic, sporadic, and one-shot task are modeled by input

signals labeled with the period, the inter-release interval, and the activ-

ating event, respectively;

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 46

Supporting the documentation process through UML-MARTE

Figure 3.6. SW Design: SDD document. UML-MARTE Object Diagram of the
SC task-set (times expressed in ms). For the sake of readability, only the first
and the last chunk of each task are represented, e.g., Tsk1 is made of 22 chunks
from C11 up to C122.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 47

Supporting the documentation process through UML-MARTE

• chunk computations are specified by actions labeled with the chunk

name;

• private data structures of a task are represented by objects lying within

the task swimlane;

• data structures shared with other tasks are represented by objects lying

on the border of the task swimlane;

• wait and signal semaphore operations are represented through input and

output signals, respectively, labeled with the semaphore name.

Figure 3.7 illustrates the concept with reference to task Tsk1 of the in-

dustrial case study. The task is periodically activated every 10 ms; after

activation, it performs the sequence of chunks C11, C12, C13, and C14, syn-

chronizing on semaphores sem1, sem2, sem3, and sem4, respectively, to access

shared memories. Afterwards, different paths are followed depending on OU

and EU configuration parameters.

For reasons of space, UML-MARTE Activity Diagrams of Tsk2 through

Tsk7, each composed of a task swimlane, are not shown here.

3.2.3.2 Semi-formal specification through timelines

In practical applications, UML-MARTE diagrams often tend to explode in

complexity, as illustrated by Figures 3.6 and 3.7. To circumvent the problem,

the methodology of development can conveniently integrate a domain specific

notation based on the concept of timelines [29]. These provide a synthetic

and intuitive description of the dynamic architecture, acting as an intermedi-

ate model that helps in bridging the gap between a semi-formal specification

suitable for SW documentation and a formal specification supporting correct-

ness verification through analysis. In this perspective, the proposed approach

exposes similarities with [55, 40, 89], where intermediate artifacts are used

as an interface between design-oriented and analysis-oriented models. In the

formalism of timelines:

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 48

Supporting the documentation process through UML-MARTE

Figure 3.7. SW Design: SDD document. UML-MARTE Activity Diagram of
task Tsk1 of SC (times expressed in ms). For the sake of readability, only
a few UML-MARTE stereotypes, activity names, shared memories, and guard
conditions are shown (up to the first branch).

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 49

Supporting development activities through pTPNs

• a task is specified by an open box containing its chunk sequence and dec-

orated with its name and release interval; a down-headed arrow specifies

its deadline; and, a double-headed or a single-headed arrow indicates

whether the task is recurrent or one-shot, respectively;

• a chunk is specified by a rectangle annotated with its name, Execution

Time interval, required resources (e.g. cpu), priority level, and entry-

point;

• branches and re-joins in a sequence of chunks are specified using dia-

monds;

• activations of a one-shot task in reaction to an event thrown by a chunk

of a different task are specified by a dotted-arrow from the chunk to the

activated task;

• binary semaphore operations are specified by decorating chunks with

circles annotated with a sequence of operations, each referred to a sem-

aphore name.

Figure 3.8 exemplifies the concept with reference to the SC task-set of the

industrial case study, making explicit the sequence of chunks executed by each

task and their semaphore synchronizations. Note that the single schema of

Figure 3.8 replaces the Class Diagram of Figure 3.4, the Object Diagram of

Figure 3.6, the Activity Diagram of Figure 3.7, and the remaining Activity

Diagrams of Tsk2 through Tsk7 (not reported here).

3.3 Supporting development activities

through pTPNs

This Section illustrates how the formal nucleus of pTPNs [26] is used to sup-

port design and verification activities of the development process, providing

guidance for derivation of pTPN models from timeline schemata to achieve in-

tegration with the documentation process prescribed by MIL-STD-498 [112].

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 50

Supporting development activities through pTPNs

Tsk4

{cpu: 2}
f42()

{cpu: 2}
f43()

Tsk5

{cpu: 2}
f51()

{cpu: 2}
f52()

sem4.w sem4.ssem2.w sem2.s
[40, ∞]

C42[0.01,0.07] C43[0.03,0.12]

{cpu: 2}
f53()

sem7.w sem7.sC51[0.005,0.1] C52[0.8,1.3] C53[0.005,0.05]

{cpu: 2}
f31()

{cpu: 2}
f32()

{cpu: 2}
f33()

Tsk3

{cpu: 2}
f34()

sem5.w sem5.sC31[0.8,1.3] C32[0.01,0.12] C33[0.01,0.3] C34[0.025,0.3]
[20, ∞]

Tsk2

{cpu: 2}
f21()

{cpu: 2}
f23()

sem3.w sem3.s sem1.w sem1.s

[20, 20]
C21[0.005,0.1] C23[0.005,0.05]

Tsk1

{cpu: 1}
f11()

{cpu: 1}
f12()

{cpu: 1}
f13()

{cpu: 1}
f14()

{cpu: 1}
f122()

sem1.w sem1.s sem2.w sem2.s sem3.w sem3.s sem4.w sem4.s

[10, 10]

{cpu: 1}
f15()

{cpu: 1}
f16()

{cpu: 1}
f17()

{cpu: 1}
f18()

{cpu: 1}
f114()

{cpu: 1}
f115()

{cpu: 1}
f116()

{cpu: 1}
f118()

{cpu: 1}
f117()

{cpu: 1}
f113()

{cpu: 1}
f19()

{cpu: 1}
f119()

{cpu: 1}
f120()

{cpu: 1}
f121()

{cpu: 1}
f110()

{cpu: 1}
f111()

{cpu: 1}
f112()

sem5.w

sem5.s

C11[0.005,0.1] C12[0.005,0.05] C13[0.005,0.05] C14[0.005,0.05]

C15[0.005,0.05]

C16[0.005,0.05]

C17[0.005,0.05]

C118[0.005,0.05]

C117[0.005,0.05]

C119[0.005,0.05]

C120[0.005,0.05]

C121[0.005,0.05]

C122[0.05,0.2]C116[0.005,0.05]

C18[0.005,0.05]

C113[0.005,0.05]

C19[0.005,0.05]

C110[0.005,0.05]

C111[0.005,0.05]

C112[0.005,0.05]

C115[0.005,0.05]

C114[0.005,0.05]

sem5.s

sem5.s

sem2.s

sem5.s

sem5.s

sem4.s

sem1.s
sem3.s

sem7.ssem7.w

sem4.w
sem2.w

sem3.w
sem1.w

sem7.w sem7.s

{cpu: 2}
f22()

C22[0.8,1.3]

10

20

40

10

20

sem6.s
sem6.w

sem6.w sem6.s

sem6.w sem6.s

{cpu: 2}
f41()

C41[0.8,1.3]

Tsk6

{cpu: 2}
f61()

{cpu: 2}
f62()

{cpu: 2}
f63()

sem7.w sem7.sC61[0.005,0.1] C62[0.8,1.3] C63[0.005,0.05]

10

sem6.w sem6.s

Tsk7

{cpu: 2}
f71()

{cpu: 2}
f72()

{cpu: 2}
f73()

sem7.w sem7.sC71[0.005,0.1] C72[0.8,1.3] C73[0.005,0.05]

10

sem6.w sem6.s

[10, ∞]

[10, ∞]

[10, ∞]

Figure 3.8. SW Design: SDD document. The timeline schema of the SC task-set
(times expressed in ms).

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 51

Supporting development activities through pTPNs

It is worth remarking that the translation process can be automated and the

resulting pTPN can even remain transparent to the designer, who will be only

concerned with the construction of the timeline schema.

In each Subsection an activity, which is an instance of the Design And

Verification Activity class of the ontological model shown in Figure 1.9, is

described. The methodology proposed in this thesis allows to keep trace of

their execution, verifying the level of assurance attained in the development

process.

3.3.1 Formal specification

A pTPN [26, 25] extends the model of TPNs [78, 13, 118] with a set of preempt-

able resources whose availability conditions the progress of timed transitions.

According to this, each transition is associated with a firing interval, delimited

by a static Earliest Firing Time (EFT) and a static Latest Firing Time, and

may request a set of resources with a priority level. A transition is enabled

if all its input places contain at least one token: in this case, it is associated

with a dynamic time-to-fire taking a non-deterministic value within its static

firing interval. An enabled transition is progressing and reduces its time-to-fire

if every of its associated resources is not requested by any other enabled trans-

ition with a higher priority level; otherwise, it is suspended and maintains the

value of its time-to-fire, which is resumed when the transition is assigned all its

associated resources again. A progressing transition is firable if its time-to-fire

is not higher than that of any other progressing transition. When a transition

fires, a token is removed from each of its input places and a token is added to

each of its output places.

Note that the form of syntax and semantics of pTPNs could be reasonably

extended so as to account for weights associated with pre-conditions (i.e., arcs

from a place to a transition) and post-conditions (i.e., arcs from a transition

to a place). In general, this can help in representing contexts where places

account for resources and where multiple resources may be needed to perform

semaphore actions. However, in the proposed approach, this element of ex-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 52

Supporting development activities through pTPNs

pressivity is not needed as transitions account for actions that always depend

on boolean conditions.

A pTPN model can be derived from a timeline schema either manually

or automatically, following a procedure steered by the model structure. In

general, the translation associates a place with each logical condition of each

job and with each semaphore, and uses transitions to account for job releases,

chunk completions, branches, semaphore and priority operations. For the sake

of readability, the process is illustrated by referring to the SC task-set of the

industrial case study, discussing derivation of the pTPN shown in Figure 3.9

from the timeline depicted in Figure 3.8.

Periodic releases of Tsk1 and Tsk2 are modeled by transitions with neither

input places nor resource requests; therefore, they fire repeatedly with inter-

firing times falling within their static firing intervals. According to this, t10

and t20 model releases of Tsk1 and Tsk2, respectively. Tsk3 and Tsk4 are

specified as sporadic, since they are both activated by an external event not

under scheduler control. However, since SW requirements prescribe the ac-

tivating events to be periodic, then releases of Tsk3 and Tsk4 are accounted

by transitions t30 and t40, respectively, with deterministic firing interval of

[20, 20] and [40, 40] ms, respectively. One-shot tasks Tsk5, Tsk6, and Tsk7

are activated in a mutually exclusive manner, thus they are mapped on the

same pTPN representation. Their releases are represented by transition t50,

preconditioned by the output place of the transitions that model the comple-

tion of the activating chunks. Its firing interval accounts for the time spent in

the elaboration of the activating signal.

Job chunks are modeled by transitions with static firing intervals equal

to the Execution Time range, with requested resources and static priorities.

For instance, transition t12 models the completion of chunk C11 of Tsk1.

Branches are modeled by immediate transitions preconditioned by the output

place of the preceding chunk; conversely, rejoins are accounted by making

the chunks share the same output place. For instance, transitions t113, t146,

and t157 are preconditioned by place p113 to represent a branch among the

mutually exclusive chunks C15, C16, and C17 of Tsk1; conversely, transitions

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 53

Supporting development activities through pTPNs

t10 t11 t12

[10,10]
{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.050]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

sem1 sem3sem2 sem4

t152

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05] {cpu: 1}

[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0.005,0.05]

{cpu: 1}
[0.05,0.2]

sem5

sem7to sem5

to sem5

from sem7

to sem7

from sem2

from sem4

from sem1 from sem3

to sem2

t20 t27 t28 t29

[20,20]
{cpu: 2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.1]

{cpu: 2}
[0.8,1.3]

{cpu: 2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

p21

from sem3 to sem3 from sem1 to sem1

t30 t38

[40,40]
{cpu: 2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.01,0.07]

{cpu: 2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.03,0.12]

p31 p38

from sem2 to sem2 from sem4 to sem4

{cpu:2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005, 0.1]

{cpu: 2}
[0.8,1.3]

{cpu: 2}
[0,0.1]

t40

[20,20]
{cpu: 2}
[0.8,1.3]

{cpu: 2}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

{cpu: 2}
[0.01,0.3]

{cpu: 2}
[0.025,0.3]

p41

from sem5 to sem5

t159

t50

{cpu: 2}
[0,0.05]

p51

Tsk1

Tsk2

Tsk3

Tsk5/Tsk6/Tsk7

Tsk4

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

from sem7 to sem7from sem6 to sem6

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005, 0.05]

{cpu: 1}
[0.005,0.05]

to sem6
{cpu: 1}
[0,0.05]

from sem6

[0,0]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05][0,0]

sem6

t113

t146

t157

{cpu: 2}
[0.8,1.3]

p11

p152
p113

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

t13

to sem5
{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]{cpu: 1}

[0,0.05]

to sem4
{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

to sem5

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.005,0.05]

to sem3 to sem1
to sem5

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

{cpu: 1}
[0.005,0.1]

t210 t211p211

{cpu: 1}
[0,0.05]

{cpu: 1}
[0.01,0.12]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

t411p411

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

t511p511

{cpu: 1}
[0,0.05]

{cpu: 1}
[0,0.1]

{cpu: 1}
[0,0.05]

t123

t128

t138

t145

t156

t158

t22

Figure 3.9. SW Design: SDD document. The pTPN model of the dynamic
architecture of the SC (times expressed in ms). To reduce the cluttering, the
figure does not show the names of places and transitions that are not mentioned
in the text.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 54

Supporting development activities through pTPNs

t123, t128, t131, t138, t145, t152, t156, and t158 share the output place p152

to account for a rejoin after the completion of the mutually exclusive chunks

C17, C110, C111, C112, C113, C114, C115, C116, C118, C119, C120, and

C121 of Tsk1.

According to the priority ceiling emulation protocol [104], low-priority tasks

Tsk2, Tsk3, ..., and Tsk7 undergo a priority boost and synchronize on a

semaphore in the sections where they access memories shared with the high-

priority task Tsk1. Binary semaphores are modeled as places initially marked

with one token. Since experimental results prove that the time spent in priority

boost/deboost and semaphore wait/signal operations is not negligible with

respect to the Execution Time range of the SC entry-points, these operations

are represented by separate transitions with nonpoint-like firing interval. For

instance, sem1 represents a binary semaphore synchronizing the access to a

memory shared between chunks C11 and C23; t27 models a priority boost; t11

and t28 account for sem1 wait operations; t12 and t29 represent the completion

of C11 and C23, respectively; t13 and t210 model sem1 signal operations; t211

accounts for a priority deboost. This differs from [32], where priority boost

and semaphore wait operations are represented by immediate transitions, while

priority deboost and semaphore signal operations are accounted by transitions

also modeling chunk completions. The abstraction of [32] is motivated by the

fact that, on the RTOS in use there, the time spent in priority and semaphore

operations is negligible with respect to the Execution Time range of entry-

points under development. Thus, since preemption by a different task within

the priority ceiling cannot occur at deboost, the model of [32] does not need

to distinguish chunk completions from semaphore signal and priority deboost

operations.

Note that deadlines do not have a direct counterpart in the pTPN model,

although they could be explicitly represented through additional watch trans-

itions as proposed in [14]. However, this would considerably increase the degree

of concurrency of the model and thus the complexity of the analysis. Moreover,

in most of the cases, deadlines are coincident with minimum inter-release times,

so that deadline misses can be easily identified as task releases occurring while

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 55

Supporting development activities through pTPNs

a task-job is still pending.

3.3.2 Architectural verification

The pTPN representation of a task-set opens the way to automated verification

of non-functional requirements through state-space analysis. This comprises

the step of development which permits to achieve major results, which would

be significantly hard to perform without relying on a rigorous formal basis.

Verification of non-functional requirements develops on the enumeration of

the space of state-classes, which is called state-class-graph [26, 25]. A symbolic

run is a path in the state-class-graph representing the dense variety of runs

that execute a sequence of transitions with a dense variety of timings between

subsequent firings. Selection and timeliness analysis of all symbolic runs that

start with a task release and terminate with its completion, which is called

task symbolic runs, enable the derivation of the Best Case Completion Time

(BCCT) and the Worst Case Completion Time (WCCT) of each task. This

supports verification of deadlines as well as derivation of the minimum laxity

which they are attained with.

Architectural verification can be performed through the Oris Tool [24],

which implements state-space enumeration, selection of paths attaining spe-

cific sequencing and timing constraints, and their tight timeliness analysis.

In the case of industrial application, the first round of verification detected a

deadline miss by one-shot tasks Tsk5, Tsk6, and Tsk7, which are triggered by

Tsk1. Reduction of Execution Times of chunk entry-points was not feasible,

since allocated ranges had already been narrowed up to an acceptable trade-

off between precise estimates and safe bounds [121]. Therefore, the dynamic

architecture was redesigned by raising Tsk1 period from its initial value of 5

ms up to 10 ms, as shown in the final specification depicted in Figures 3.6

and 3.8. Architectural verification finally yielded the following results: state-

space analysis enumerated 4041 state-classes in nearly 1 second; selection and

timeliness analysis of task symbolic runs spent nearly 5 seconds to derive 5941,

5660, 5135, 4100, 46 paths for Tsk1, Tsk2, Tsk3, Tsk4, Tsk5/Tsk6/Tsk7, re-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 56

Supporting development activities through pTPNs

spectively, with a WCCT of 1.55, 5.67, 4.02, 7.76, 8.56 ms, respectively. This

proved that all deadlines were met with minimum laxity of 8.45, 14.33, 15.98,

32.24, 1.44 ms for Tsk1, Tsk2, Tsk3, Tsk4, Tsk5/Tsk6/Tsk7, respectively.

3.3.3 Disciplined implementation of real-time code

During SW Coding, the proposed approach permits to compile the pTPN

model of the dynamic architecture of a CSCI into a skeleton of control code, i.e.,

the code that performs job releases, manages semaphore and priority handling

operations, and invokes functional code represented by chunk entry-points.

The control code conforms with pTPN semantics and can be implemented

manually, following a programming discipline steered by the model structure

which could be easily automated.

Here translation of pTPN models into real-time code is described, address-

ing code running on VxWorks 6.5 [122], which comprises a common platform

for industrial applications. Each task of the timeline specification can be im-

plemented as a real-time task with a priority and an associated entry-function.

In particular, each periodic task is triggered by a periodic alarm and it is actu-

ally made recurrent through an explicit loop control structure programmed in

its entry-function. At each iteration of the loop, the entry-function synchron-

izes on the alarm and performs a single job execution. In a similar manner,

a loop control structure is also programmed in the entry-functions of sporadic

and one-shot tasks. Specifically, at each loop repetition, the entry-function of a

sporadic task synchronizes on an external signal, whereas the entry-function of

a one-shot task synchronizes on an additional semaphore instrumental to one-

shot activation. This semaphore is created by the init function and signaled

by the activating task.

The architecture of the implementation is further extended to enable ob-

servation of possible re-entrant job releases, i.e., the situations in which a job is

released before the previous one is completed. Therefore, releases of each task

are performed by a single high-priority real-time task that spawns a separate

task for each job execution. This keeps the Execution Time of each loop of

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 57

Supporting development activities through pTPNs

the high-priority task sufficiently short to avoid the completion after the sub-

sequent release. Though useful for testing purposes in early implementation

stages, this solution is not suitable for deployment code, since the dynamic

creation of tasks is deprecated by most regulatory standards for safety-critical

SW, e.g., the Ravenscar profile [28].

In the industrial case study, the SC task-set was implemented as a kernel

module of VxWorks 6.5 [122]. The init function of the kernel module creates

semaphores sem1, sem2, and sem7 which are explicitly represented in the

timeline schema of Figure 3.8. It also invokes the primitive sysClkRateSet

to set the period of the system clock equal to the minimum value that can be

imposed on the MB, i.e., 1 ms. To obtain fine-grained time measurements, a

hardware counter was used that attains 1 ns granularity.

3.3.4 Execution Time profiling

During HW-in-the-loop Testing, the proposed approach supports a disciplined

and focused testing that uses the model as an oracle to reveal defects pertain-

ing to concurrency control and timing. In particular, this enables verification

of design assumptions about temporal parameters through profiling, with spe-

cific emphasis on Execution Times of implemented chunks and timings actually

provided by the RTOS. Inconsistencies between assumptions and evidences

can be managed through different approaches: by fixing implementation so as

to fit specification assumptions; by repeating formal verification on a refined

specification that accounts for actually observed parameter values; by provid-

ing a recommendation that draws attention on aspects of the implementation

that may be not completely covered by formal verification.

The code of a CSCI can be instrumented so as to produce a time-stamped

log of each event corresponding to each transition in the pTPN model of the

task-set. The impact of logging on a real-time queue is evaluated by estimating

its Execution Time through several repetitions of the operation. The opera-

tion of logging is conveniently allocated to the dynamic architecture in order

to keep instrumentation code separate from functional code of chunk entry-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 58

Supporting development activities through pTPNs

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
s

execution no.

Figure 3.10. Sequence of observed Execution Times of the logging operation.

points. This supports automation of the procedure of code generation, leaving

the developer only the responsibility of implementing functional entry-points.

At the end of each run of the implementation, the sequence of time-stamped

logs is sent to the desktop machine for off-line analysis. Logs support re-

construction of the sequence of states visited during execution, evaluation of

the sojourn time in each state, and identification of progressing/suspended

transitions in each state. This permits to determine whether the execution

log comprises a feasible behavior of the pTPN specification, enabling off-line

derivation of the Execution Time of any event as the sum of sojourn times in

the visited states where the corresponding transition is progressing. As a sali-

ent trait, measurements are carried out by letting chunk entry-points execute

in interrupted mode, thus taking into account preemption events, HW/SW

interrupts, pipeline and cache effects [121].

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 59

Supporting development activities through pTPNs

 1

 10

 100

 1000

 10000

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

ob

se
rv

at
io

ns

ms

[0.00306, 0.00456] ms

µ = 0.003282 ms
 = 0.000165 ms

Figure 3.11. Histogram of observed Execution Times of the logging operation.

In the case of industrial application, 10, 000 repetitions of the logging oper-

ation are performed and the difference between subsequent logged time-stamps

are measured. The sequence and the histogram of observed Execution Times

are reported in Figures 3.10 and 3.11, respectively. They show that: 99.5%

of the values fall in the range [0.00306, 0.00456] ms, with a mean value of

0.003282 ms and a standard deviation of 0.000165 ms; recurrent peaks in the

interval [0.017, 0.022] ms occur in 0.5% of the cases and can be ascribed to

timing uncertainties due to HW effects, which are usually in the order of a

few tens of µs. Unfortunately, the time spent for logging turned out to be

not negligible with respect to the granularity of temporal parameters of the

task-set, which in fact are in the order of 0.005 ms to 40 ms. To circumvent

overestimation of Execution Times, which may be caused by the logging over-

head, firing intervals of temporal parameters were enlarged during iterative

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 60

Supporting development activities through pTPNs

refinements of the dynamic architecture of the task-set.

 1

 10

 100

 1000

 19.75 19.8 19.85 19.9 19.95 20 20.05 20.1 20.15 20.2 20.25

ob

se
rv

at
io

ns

ms

Figure 3.12. Histogram of observed inter-release times of periodic release of
Tsk2.

In the industrial case study, the SC code was integrated with functional

entry-points of its chunks and finally tested in a simulated environment, where

selected HCIs/CSCIs of the system (in Figure 3.3, SM, IRC, TVC, LS, and IT)

were emulated by a SW application running on a desktop processor connected

to the MB through five serial buses. The first round of profiling detected an un-

sequenced execution during which the high-priority task Tsk1 was overtaken

by the low-priority task Tsk2. Inspection of functional code of the two tasks

revealed that the failure was caused by a task programming defect, consisting of

two chunks (i.e., chunk C21 of Tsk2 and chunk C13 of Tsk1) synchronizing on

a semaphore that was not explicitly represented in the dynamic architecture.

The inconsistency was fixed by adding a semaphore named sem3 to the SC

task-set and by repeating formal verification.

During subsequent executions, time-frame violations were detected on dif-

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 61

Supporting development activities through pTPNs

ferent chunks of different tasks. Optimization of chunk entry-points did not

succeed in fixing the problem. Finally, the failure was found out to be due to

a cycle stealing by a VxWorks task named tNetTask, which provides packet-

processing network services and runs at priority level 50. The issue was circum-

vented by refining the model and repeating formal verification. In particular,

the priority of SC tasks was raised from their initial values higher than 100, as

usual for user tasks, to values lower than 50, as shown in the final specification

of Figure 3.9.

 1

 10

 100

 1000

 10000

 0 0.01 0.02 0.03 0.04 0.05

ob

se
rv

at
io

ns

ms

Figure 3.13. Histogram of observed Execution Times of the wait operation per-
formed by Tsk2 on semaphore sem3.

Inter-release times of periodic task Tsk2 is measured, which correspond

to inter-firing times of transition t20 in the pTPN of Figure 3.9. The n-th

inter-release time δn is equal to:

δn =
(
(1 + n) · T + εn+1

)
− (n · T + εn) = T + εn+1 − εn, (3.1)

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 62

Supporting development activities through pTPNs

where T = 20 ms is Tsk2 period and εn is the duration that elapses between

the time n · T at which the n-th task job should be released and the n-th

time-stamp. ε1, ..., εN can be assumed to be independent and identically

distributed random variables. If ε1, ..., εN were uniformly distributed over an

interval [0, γ], then δ would be triangularly distributed over [T − γ, T + γ].

However, in the practice, they are not uniformly distributed due to processor,

bus, and cache effects. The histogram of observed inter-release times plotted

in Figure 3.12 reveals that 98.9% of cases fall within [19.920, 20.069] ms with

a peak on 20 ms, while the remaining 1.1% fall within [19.784, 19.920] ms

and [20.069, 20.217] ms. Fixing the implementation so as to conform with

the design assumption of period 20 ms was not a viable option, being release

time jitters dependent on the interaction between the RTOS and the MB.

Repetition of the analysis on a refined model was not a convenient approach

as well, since asynchronous releases largely increase the state space. Therefore,

in this case, the most appropriate action seemed to be a warning to subsequent

testing stages.

Figure 3.13 shows the histogram of measured Executions Times of the

wait operation performed by Tsk2 on semaphore sem3, which corresponds

to transition t22 with firing interval [0, 0.05] ms in the pTPN of Figure 3.9.

Observed Execution Times fall in the interval [0.006, 0.050] ms, included in

the interval [0, 0.05] ms, with a peak on 0.012 ms. As already remarked in

Section 3.3.1, the time spent for semaphore operations on the RTOS in use

here is not negligible with respect to the order of the Execution Time of entry-

points.

Execution Times of entry-point f122 of chunk C122 of Tsk1 is finally

measured, which corresponds to transition t159 with firing interval [0.05, 0.2]

ms in the pTPN of Figure 3.9. The histogram of observed values plotted in

Figure 3.14 has a thin spectrum within [0.080, 0.183] ms, contained in the

interval [0.05, 0.2] ms, with a peak on 0.089 ms. This actually reflects the

absence of data-dependent alternatives in the implementation of the entry-

point.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 63

Supporting development activities through pTPNs

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3

ob

se
rv

at
io

ns

ms

Figure 3.14. Histogram of observed Execution Times of entry-point f122 of
Tsk1.

CASTING UML-MARTE AND PTPNS IN THE ONTOLOGY 64

Chapter

4
Implementing a tool to manage

the ontology

The ontological abstraction proposed in Section 1.2 can be directly conver-

ted into an advanced SW architecture. This has been done by implementing

a web application, called Reliability Availability Maintainability and Safety

Engineering Semantics (RAMSES), built on top of a stack of Semantic Web

technologies and standards. In this Chapter the implementation of the tool is

described, through its architecture (Section 4.1), its basic and advanced func-

tional capabilities (Section 4.2 and Section 4.3, respectively), and through its

experimentation in a real scenario (Section 4.4).

4.1 Architecture and use cases

The web application architecture is shortly sketched in Figure 4.1. The Present-

ation Layer represents the interface between the user and the Domain Layer,

which realizes, with an object model, the application logic and the data pro-

cessing functionalities. The Data Layer is responsible for data representation

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 65

Architecture and use cases

Ontological Application

Presentation Layer

Domain Layer

OOM Layer

Data Layer

POJO

Ontological Model

Figure 4.1. Three-tier ontological architecture of a web application incorporat-
ing layers interfacing to users (Presentation Layer), managing application logic
(Domain Layer), mapping between object model and data model (Object to On-
tology Mapping Layer), and realizing data representation and conceptualization
(Data Layer). The Domain Layer is implemented using POJO and the Data
Layer is realized through an Ontological Model.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 66

Architecture and use cases

and conceptualization and is implemented through an ontological model. The

Object-to-Ontology Mapping Layer bridges the gap between the Domain Layer

and the Data Layer solving the impedance mismatch, i.e. the conceptual dis-

tance between the object model and the ontological model. In so doing, the

domain logic is captured by the ontological model, enabling the generalization

of the application logic to adapt it as the concepts describing data change.

Figure 4.2 shows that the ontological model is composed by two parts: the one

is the domain model which is the model described in Section 1.2, the other is

the core model which contains the entities that allow to perform operations

on the domain model, such as adding concepts or properties, through the tool

interface without programming.

ONTOLOGICAL ARCHITECTURE

DOMAIN MODEL

CORE MODEL

Figure 4.2. The ontological architecture incorporating the core model and the
domain model.

Use of ontologies brings about a number of relevant benefits: i) each pro-

ject can be represented in OWL form and then it can be exported and im-

ported through this format, enhancing reusability and interoperability; ii) the

construction of worksheets and other reports is reduced to the extraction of

proper data from the result set generated by a SPARQL query, which in turn

is automatically resolved by an ontological reasoner; iii) new information can

be inferred from the knowledge base by the ontological reasoner by means, for

instance, of predefined SWRL rules.

Figure 4.3 shows the UML Use Case Diagram of the tool. Data is divided in

projects and users are divided in groups: a group can work only on predefined

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 67

Basic tool capabilities

projects. There are four types of users:

• guest can only search and view the project data;

• standard user can perform Create, Retrieve, Update, Delete (CRUD)

operations on Projects and Entities involved in the methodology (e.g.

functional requirements, SW components, documents) and other addi-

tional functionalities, such as import/export of documents, generation

of SW-FTs, visualization of hierarchical views, generation of SW-FMEA

worksheets and inspection of required activities and metrics;

• admin can perform import/export of a project through its OWL repres-

entation and CRUD operations on User and Group;

• expert can perform CRUD operations on resources of the core model,

modifying the domain model. He is the only user that has the necessary

domain expertise to add new knowledge to the model.

4.2 Basic tool capabilities

The user populates the extensional part of the ontology with data produced

along the development life cycle. This enables the execution of basic activ-

ities such as the production of SW-FMEA worksheets and SW-FTs and the

generation of hierarchical views of structural elements. Classes representing

concepts involved in SW-FMEA and SW-FTA are shown in Figure 1.11.

The format of the worksheet depends on standards and practices used in

the application context. For instance, the format shown in Figure 4.4 follows

the ECSS standard. In other contexts some names of the fields may be slightly

different from these; moreover, depending on the stage of the analysis, the tool

can generate worksheets in which some fields are omitted.

Part of the concepts contained in the ontology stands for data categories

contained in the worksheet. For instance, Item, Functional Requirement, Fail-

ure Event, and Failure Effects correspond to the classes of the ontology with the

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 68

Basic tool capabilities

guest

standard
user

CRUD Project

CRUD Entity

CRUD User
admin

Import/Export Project

expert

CRUD Resources

CRUD Classes

CRUD Properties

CRUD Editor
CRUD Query

CRUD Group

View Project

Search Project

Checking
Activities and Metrics

View SW-FMEA
worksheets

View structural hierarchy

View SW Fault Trees

Import/Export Documents

Figure 4.3. Use Case Diagram representing the functionalities supported by
RAMSES.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 69

Basic tool capabilities

Item
Number Item Functional

Requirement
Failure
Event

Failure
Effects Severity

Failure
Detection
Methods

Compensating
Provisions

Corrective
Actions

Failure Modes and Effects Analysis - Worksheets
System ________________
Mission ________________

RemarksFailure
Causes

Figure 4.4. The format of a row in the SW-FMEA worksheet, as standardized in
ECSS.

same name, Failure Causes corresponds to the Fault class of the ontology, and

Item Number, Severity, Detection Methods, Compensating Provisions, Correct-

ive Actions and Remarks can be added to the model as failure properties. As

mentioned in Section 1.1, thanks to a query language as SPARQL, the onto-

logy can be queried to extract the concepts’ instances to fill in the worksheet.

As far as the ontology is concerned, this is written in OWL and organized as

triples (or statements) in the form of 〈subject,predicate,object〉, where subject is

the concept described by the triple, predicate describes a relationship between

subject and object which, in turn, is a concept as well. The SPARQL query

shown in Listing 4.1 automatically obtains the generic SW-FMEA worksheet

of Figure 4.4.

SELECT ?idComponent ?component ?functReq ?failureEvent ?failureCause

?failureEffect ?severityLevel ?detMethod ?compProv ?corrAct

?remarks

WHERE { ?component rdf:type <urn:ramses#SWComponent > .

?component <urn:ramses#hasItemId > ?idComponent .

?functReq <urn:ramases#isImplementedBy > ?component .

?functReq <urn:ramses#hasFailureEvent > ?failureEvent .

?fault <urn:ramses#isCausesOf > ?failureEvent .

?failureEvent <urn:ramses#hasEffect > ?failureEffect .

?failureEvent <urn:ramses#hasSeverityLevel > ?severityLevel .

?failureEvent <urn:ramses#hasDetectionMethod > ?detMethod .

?failureEvent <urn:ramses#hasCompensatingProvision > ?compProv .

?failureEvent <urn:ramses#hasCorrectiveAction > ?corrAct .

?failureEvent <urn:ramses#hasRemarks > ?remarks }

Listing 4.1. A SPARQL query producing a result set comprising the values for
the construction of the SW-FMEA worksheet.

The query that produces SW-FTs is more complex, because the depth

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 70

Basic tool capabilities

of the tree is not known a priori. Instances of the concepts of the ontological

model stand for data needed for the construction of the SW-FTs. For instance,

in Figure 4.5 the format of a generic FT is shown: the nodes labelled Basic

Fault, OR and AND correspond to subclasses of the Fault class, while the TE

corresponds to the Failure Event class.

Top Event

Basic Fault

Basic Fault

Basic FaultBasic Fault

AND

OR

AND

Figure 4.5. The format of a generic FT.

RAMSES can also build hierarchical views of structural elements, provid-

ing a clearer picture of the system, by aggregating data scattered in different

documents produced along the life cycle. Figure 4.6 shows the hierarchical

view of structural elements obtained through the execution of the SPARQL

query of Listing 4.2. Thanks to the ontological model, the tool can be adapted

to the needs of the application context. In fact, through the tool interface the

user expert can create his own typical structural hierarchy, modifying the on-

tological model adding items and editing their properties. The schema shown

in Figure 4.6 corresponds to the left side of the model of Figure 1.7.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 71

Advanced tool capabilities

SELECT ?CSCI ?SWComponent ?SWModule ?Method

WHERE { ?CSCI rdf:type <urn:ramses#CSCI > .

?CSCI <urn:ramses#hasSWComponent > ?SWComponent .

?SWComponent <urn:ramses#hasSWModule > ?SWModule .

?SWModule <urn:ramses#hasMethod > ?Method}

Listing 4.2. A SPARQL query producing a result set comprising the data used
to build the hierarchical view.

CSCI 1

SWComponent 1.1

CSCI 2

SWComponent 2.1

SWModule 2.1.1

SWModule 2.1.2

SWModule 2.1.3

Method 2.1.2.1

+

+

-

-

+

-

-

-

Figure 4.6. Sample of structural hierarchy.

4.3 Advanced tool capabilities

In addition to the previously mentioned capabilities, the tool provides ad-

vanced functionalities to ease and improve the development process.

RAMSES aids the analyst in the identification of failure events and sup-

ports the accomplishment of testing activities. If a failure event is discovered

during the operational phase, the associations between failures, requirements

and tests permit to identify the tests that should have covered the failure.

Once the analyst has identified the faults that cause the failure and associated

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 72

Advanced tool capabilities

them with structural items (e.g. SW components), other requirements that

could be not satisfied are identified by means of the association between SW

items and requirements.

The tool can also ease and improve the process of recertification. This

can be useful when some changes happen in the development process. These

changes may refer to the implementation of SW (i.e. the structural perspect-

ive), the requirements (i.e. the functional perspective), or the adopted stand-

ard/regulation (i.e. the process perspective). The ontological model reacts to

these changes giving evidence of possible inconsistencies arisen among the data

inserted in the ontology. The tool also recommends the re-execution of tests

or the accomplishment of specific activities so as to conform with a specific

standard.

Furthermore, pluggable modules, supporting specific activities, can be de-

vised to produce concepts and associations that, leveraging OWL, can be in-

tegrated in the ontology, assuring consistency and coherence with data already

present. For instance, a plug-in module implementing the process of tracing

requirements, described in Section 2.2.1, has been integrated in the tool. Fig-

ure 4.7 shows an UML Activity Diagram describing actions performed by the

plug-in module and by RAMSES to obtain instances of the association of Fig-

ure 2.2 between requirements and SW components. This is used to verify

information contained in the traceability matrix reported in the SDD docu-

ment. The plug-in is implemented as a Java application which uses AspectC

to instrument the scheduler code so as to extract information about SW com-

ponents executed. The process follows the activities shown in Figure 4.7; the

result is an OWL file which is imported in RAMSES to add to the ontology

the instances of the association. Other appropriate plug-ins allowing the auto-

matic import of requirements from specification documents can be developed.

In addition, the tool exploits the inference capabilities of an ontological

reasoner by means of SPARQL queries or predefined SWRL rules. The reas-

oning capability is crucial for the verification of the level of assurance. As

reported in Section 2.2.3, a requirement is rigorously implemented if the re-

lated SW items satisfy a predefined set of predicates. For example, the SWRL

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 73

Advanced tool capabilities

Export
Project Write Tests

Write Code
and Aspect

Modules

 Tests

SW under Test
and AOP
modules

ExportedProject.owl

Processing
of SW

Instrumented
SW

Import of
Requirements

and Components

List of
Requirements

Requirement
and Test
Selection

Test Execution

List of Tests List of Requirements

List of Traces Execution of Tests

Identification of the
Association And Usage

Degree Computation
FileToExported .owl

Import
Associations

RAMSES ANALYST PLUG-IN

Import of
Tests

List of
Tests

Figure 4.7. UML Activity Diagram showing actions performed by RAMSES and
the plug-in module during the activity of tracing requirements.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 74

Advanced tool capabilities

rule of Listing 4.3 can be used to verify a predicate (an instance of the general

form shown at the end of that Section). Thanks to this kind of rules, RAMSES

is able to recommend appropriate actions to the analyst, taking advantage of

the ontology.

ramses:FunctionalRequirement (?r) ∧
∧ ramses:isImplementedBy (?r,?ud) ∧
∧ ramses:hasUsedComponent (?ud ,?swc) ∧
∧ ramses:hasSWModule (?swc ,?swm) ∧
∧ ramses:hasMethod (?swm ,?m) ∧
∧ ramses:hasParamAcc (?m,?spa) ∧
∧ ramses:hasLinkedParameter (?spa , ?sp) ∧
∧ ramses:hasName (?sp,‘‘cyclomatic complexity ’’) ∧
∧ ramses:hasParamValue (?spa , ?pv) ∧
∧ swrlb:greaterThan (?pv, 5) ⇒
⇒ ramses:NotRigorous (?f)

Listing 4.3. SWRL rule verifying the satisfaction of a predicate: if there exists
a SW component ?swc which is implemented by a SW module ?swm containing
a method ?m having a McCabe’s cyclomatic complexity ?sp greater than 5 the
predicate is violated and the functional requirement is considered not rigorously
implemented.

Regarding the SW-FMEA, the tool provides advanced functionalities to

ease and improve the execution of the analysis. For example, the tabular

nature of the SW-FMEA worksheet leads to a scattered representation of in-

formation about the system. Therefore, the search for the failures causing a

certain effect compels the analyst to jump from one row to another of the work-

sheets, searching for the content of cells labelled Failure Effects (Figure 4.4).

On the contrary, the ontology of Figure 1.8 makes explicit the association

between a Failure Event and a Failure Effect, simplifying the search for the

failures causing a certain effect. In fact, instances of the required entities can

be easily retrieved through a SPARQL query. In other words, the ontology

provides the tool the capability of gathering information which is hidden (e.g.

scattered throughout the worksheets) in a classical SW-FMEA process.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 75

Practical experimentation on a real case study

4.4 Practical experimentation on a real case study

The major application of the tool has been in the AASTR project, a space

project managed at the FinMeccanica site of Selex Galileo in Florence. The

project targeted the development of the Active Pixel Sensor (APS) Autonom-

ous Star Tracker for the Bepi Colombo Mission under the control of Astrium

Space Deutschland (ASD) and European Space Agency (ESA). The main pur-

pose of the AASTR SW is acquiring data from the APS detector, performing

the star clustering and filtering, and then calculating the attitude and the an-

gular rate. Attitude propagation allows tracking of the stars. To give an idea

of our case study, AASTR SW is composed by a single CSCI, having 8 possible

operation modes and 243 functional requirements.

To avoid disclosure of classified details, in the following the tool is de-

scribed through the report of its application to a smaller project concerning

a scheduler of an electromechanical system for immunoenzymatic analyses,

manufactured by BioMérieux, a worldwide group specialized in the field of in

vitro diagnostics for medical and industrial applications. The scheduler [99]

has been developed in the Software Technologies Laboratory (University of

Florence). The system executes multiple concurrent analyses, the aim of the

scheduler is to minimize the completion time for the overall set of analyses,

avoiding conflicts in the shared hardware. The scheduler is composed by a

single CSCI and has to satisfy 7 functional requirements; one of them, called

Constraints loading, imposes timing constraints to analyses execution. The

CSCI is made up of 10 SW components, 10 SW modules, and 76 methods.

The user creates a project through the tool interface shown in Figure 4.8.

The project is associated with a standard, which is an instance of the class

Applicable Regulation, and with some structural items. The user can insert

information about the items composing the system and the related functional

requirements, with their failure events, the structural faults and the failure

effects; all of them are loaded in the ontological base through the tool interface.

In Figure 4.9 properties of a CSCI are shown.

Once the previous data have been input, the associations between failure

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 76

Practical experimentation on a real case study

Figure 4.8. Screenshot showing the tool interface provided to create a new
Project.

events and effects discussed in Section 4.3 can be visualized, helping the analyst

in focusing the causes of a certain effect.

Collected structural information (i.e. instances of SW Component, SW

Module, Method), added to the ontological base, can be browsed through the

tool interface. Hierarchical views such the one generated by the query of List-

ing 4.2, can be displayed as in Figure 4.10. Furthermore, the SW-FMEA work-

sheets and the SW-FTs related to the failure events inserted in the ontology

can be automatically generated.

To verify the association of requirements with structural items the plug-

in described in Section 2.2.1 can be executed. The application of the plug-

in to the scheduler has shown that, for instance, the functional requirement

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 77

Practical experimentation on a real case study

Figure 4.9. Screenshot showing the tool interface provided to show information
about an instance of a CSCI.

Constraints loading is implemented by 5 SW components whose usage degrees

are as follows:

SW Component Usage Degree (%)

block 100.00

matrix 42.86

problem 60.00

problem solver 10.00

startingjitter strategies 16.67

This particular result verifies that the actual implementation is compliant with

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 78

Practical experimentation on a real case study

Figure 4.10. The generated system hierarchical view as generated by the
RAMSES tool through a SPARQL query on the ontology.

the traceability matrix reported in the documentation of the scheduler, thus

witnessing the goodness of the approach.

In the project, 24 metrics have been used. Though only the following

metrics have been considered: McCabe cyclomatic complexity, number of ex-

ecutable statements, number of lines of code, number of lines of comments. In

any case, new metrics can be dynamically added at any time through the tool

interface. As the values of the metrics and of the executed development activ-

ities are inserted in the ontological base, the reasoner controls if the required

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 79

Practical experimentation on a real case study

level of assurance for a requirement is reached by the current implementation

using a rule such that of Listing 4.3. If a violation is detected by the reasoner,

RAMSES indicates the values of code metrics that are not compliant with the

prescriptions (Figure 4.11) and the development activities that are executed

with not standard values (Figure 4.12).

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 80

Practical experimentation on a real case study

Figure 4.11. Screenshot of the RAMSES tool showing code metrics with not
compliant values.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 81

Practical experimentation on a real case study

Figure 4.12. Screenshot of the RAMSES tool showing activities executed with
not compliant values.

IMPLEMENTING A TOOL TO MANAGE THE ONTOLOGY 82

Conclusions
This thesis proposes an ontological model formalizing concepts and data in-

volved in the development process of safety-critical systems, giving them a

precise semantics, so as to integrate in a common framework the activities

performed and the outcomes produced during the whole life cycle. The work

presented in [16] and [15] is enhanced by adding the process perspective to

the structural and functional ones, capturing concepts involved in the regu-

lation of industrial processes. The proposed methodology is based on an on-

tological formalization of the development process which is robust enough to

enforce cohesion and consistency among information acquired along different

phases of the development process, possibly contributed by different parties.

In this manner, a general framework is obtained that can be adapted to any

given context. The framework can be tailored to different regulatory standards

leveraging the extensibility and the manageability provided by the ontological

architecture.

Furthermore, the methodology includes a comprehensive approach for man-

aging the documentation process prescribed by MIL-STD-498 through UML-

MARTE diagrams and for supporting design and verification activities through

the formal nucleus of pTPNs. UML-MARTE is conveniently used to manage

the documentation process prescribed by MIL-STD-498, providing a semi-

formal specification that is practical enough to fit the industrial practice and

sufficiently structured to enable subsequent application of advanced formal

CONCLUSIONS 83

CONCLUSIONS

methods. This provides an effective ground for deployment of pTPN theory,

supporting the steps of design, implementation, and verification.

The formalized ontological conceptualization enables effective application

of reasoning tools aiding the accomplishment of crucial and effort-expensive

activities. This includes basic functionalities such as efficient production of

SW-FMEA worksheets and SW-FTs as well as hierarchical views of structural

elements. The ontological formalization also provides the ground for advanced

functionalities such as the verification of the execution of prescribed activities

so as to conform to a specific standard and the automatic identification of SW

elements impairing the required quality of service.

The ontological model opened the way to the implementation of a tool,

called RAMSES, built on top of well-established Semantic Web technologies.

RAMSES automates the processing of data by exploiting query capabilities of

SPARQL as well as inference capabilities of an off-the-shelf reasoner. The tool

can be adapted to different industrial processes/life cycles, leveraging the ad-

aptability of the ontological model. Furthermore modules performing specific

activities, can be plugged into the tool to produce concepts and associations

that, leveraging OWL, can be integrated in the ontology, assuring consistency

and coherence with data already present. For instance, a specific plug-in was

devised and the information generated by its execution was integrated in the

ontology to verify the consistency of documents produced along the develop-

ment life cycle.

The tool has been experimented in a satellite star tracker and in a scheduler

of an electromechanical system performing biological analyses; some results are

reported from the latter. The experimentation has proved feasibility and effect-

iveness of both the ontological approach and the tool, showing improvements

over current practices.

CONCLUSIONS 84

Bibliography
[1] R. Alur, I. Lee, and O. Sokolsky. Compositional refinement for hier-

archical hybrid systems. In Hybrid Systems: Computation and Control,
LNCS 2034, pages 33–48. Springer–Verlag, 2001.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11 – 33, January 2004.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based
performance prediction in software development: a survey. IEEE Trans.
on SW Eng., 30(5):295 – 310, May 2004.

[4] S. Balsamo, M. Marzolla, and R. Mirandola. Efficient performance mod-
els in component-based software engineering. In Proceedings of the 32nd

EUROMICRO Conf. on SW Eng. and Advanced Applications, pages 64–
71, Washington, DC, USA, 2006. IEEE Computer Society.

[5] K. Beck and W. Cunningham. A laboratory for teaching object oriented
thinking. SIGPLAN Not., 24(10):1–6, 1989.

[6] S. Beckera, H. Koziolekb, and R. Reussner. The Palladio component
model for model-driven performance prediction. Journal of Systems and
SW, 82:3–22, 2009.

[7] S. Bernardi, J. Campos, and J. Merseguer. Timing-failure risk assess-
ment of UML design using Time Petri Net bound techniques. IEEE
Transactions on Industrial Informatics, 7(1):90–104, February 2011.

[8] S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence dia-
grams and statecharts to analysable Petri Net models. In Proceedings

BIBLIOGRAPHY 85

of the 3rd international workshop on Software and performance, WOSP
’02, pages 35–45, New York, NY, USA, 2002. ACM.

[9] S. Bernardi and J. Merseguer. Performance evaluation of UML design
with Stochastic Well-formed Nets. Journal of Systems and Software,
80:1843–1865, 11 2007.

[10] S. Bernardi, J. Merseguer, and D. C. Petriu. Dependability modeling
and analysis of software systems specified with UML. ACM Computing
Survey, 2011.

[11] M. Bernardo, L. Donatiello, and P. Ciancarini. Stochastic process al-
gebra: From an algebraic formalism to an architectural description lan-
guage. In Performance Evaluation of Complex Systems: Techniques and
Tools, volume 2459 of Lecture Notes in Computer Science, pages 173–
182. Springer Berlin / Heidelberg, 2002.

[12] T. Berners-Lee. Semantic web roadmap. http:// www.w3.org/2001/sw,
1998.

[13] B. Berthomieu and M. Diaz. Modeling and Verification of Time De-
pendent Systems Using Time Petri Nets. IEEE Trans. on SW Eng.,
17(3):259–273, March 1991.

[14] B. Berthomieu and M. Menasche. An enumerative Approach for Analyz-
ing Time Petri Nets. In R. E. A. Mason, editor, Information Processing:
Proceedings of the IFIP Congress 1983, volume 9, pages 41–46. Elsevier
Science, 1983.

[15] I. Bicchierai, G. Bucci, C. Nocentini, and E. Vicario. Integrating metrics
in an ontological framework supporting SW-FMEA. In 3rd International
Workshop on Emerging Trends in Software Metrics, WETSoM 2012,
pages 35 –41, 2012.

[16] I. Bicchierai, G. Bucci, C. Nocentini, and E. Vicario. An ontological ap-
proach to systematization of SW-FMEA. In Proceedings of the 31st Int.
Conf. on Computer Safety, Reliability, and Security, SAFECOMP’12.
Springer-Verlag, 2012.

[17] P. Bieber, R. Delmas, and C. Seguin. DALculus: theory and tool for
development assurance level allocation. In Proceedings of the 30th In-
ternational Conference on Computer Safety, Reliability, and Security,
SAFECOMP’11, pages 43–56. Springer-Verlag, 2011.

BIBLIOGRAPHY 86

[18] C. Bodenstein, F. Lohse, and A. Zimmermann. Executable specifications
for model-based development of automotive software. In IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, SMC 2010, pages
727 –732, October 2010.

[19] H. Boley, T. Athan, A. Paschke, S. Tabet, B. Grosof, N. Bassiliades,
G. Governatori, F. Olken, and D. Hirtle. Specification of Deliberation
RuleML 1.0. http://wiki.ruleml.org/index.php/Specification, 2012.

[20] J.B. Bowles and C. Wan. Software Failure Modes and Effects Analysis
for a small embedded control system. In Reliability and Maintainability
Symposium, 2001. Proceedings. Annual, pages 1 –6, 2001.

[21] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition).
http://www.w3.org/TR/2008/REC-xml-20081126, November 2008.

[22] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. http://www.w3.org/TR/rdf-schema, February 2004.

[23] BSI - British Standard Institution. BS5760 Reliability of Systems, Equip-
ment and Components Part 5. Guide to Failure Modes, Effects and Crit-
icality Analysis (FMEA and FMECA). Technical report, British Stand-
ard Institution, 1991.

[24] G. Bucci, L. Carnevali, L. Ridi, and E. Vicario. Oris: a Tool for Model-
ing, Verification and Evaluation of Real-Time Systems. Int. Journal of
Software Tools for Technology Transfer, 12(5):391 – 403, 2010.

[25] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Modeling Flexible Real
Time Systems with Preemptive Time Petri Nets. In Proc. of the 15th

Euromicro Conf. on Real-Time Systems (ECRTS03), July 2003.

[26] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Timed State Space
Analysis of Real Time Preemptive Systems. IEEE Trans. on SW Eng.,
30(2):97–111, February 2004.

[27] G. Bucci, V. Sandrucci, and E. Vicario. An Ontological SW Architec-
ture Supporting Agile Development of Semantic Portals. In Software
and Data Technologies, volume 22 of Communications in Computer and
Information Science, pages 185–200. Springer Berlin Heidelberg, 2009.

BIBLIOGRAPHY 87

[28] A. Burns, B. Dobbing, and T. Vardanega. Guide on the use of the ADA
Ravenscar profile in high integrity systems. ADA Letters, XXIV(2):1–74,
2004.

[29] G. Buttazzo. Hard Real-Time Computing Systems. Springer, 2005.

[30] BWB - Federal Office for Military Technology and Procurement of Ger-
many. V-Model 97, Lifecycle Process Model-Developing Standard for IT
Systems of the Federal Republic of Germany. General Directive No. 250,
June 1997.

[31] Byteworx. Byteworx FMEA official website. http://www.byteworx.com.

[32] L. Carnevali, L. Ridi, and E. Vicario. Putting preemptive Time Petri
Nets to work in a V-Model SW life cycle. IEEE Trans. on SW Engin-
eering, 37(6), November/December 2011.

[33] F. Cassez and K. G. Larsen. The Impressive Power of Stopwatches,
volume 1877. LNCS, August, 2000.

[34] CENELEC. EN 50128 - Railway applications: SW for railway control
and protection systems, 1997.

[35] CENELEC. EN 50126 - Railway applications: the Specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS), 2007.

[36] D. Compare, A. D’Onofrio, A. Di Marco, and P. Inverardi. Automated
Performance Validation of Software Design: An Industrial Experience.
In ASE, pages 298–301, 2004.

[37] V. Cortellessa and R. Mirandola. PRIMA-UML: a performance val-
idation incremental methodology on early UML diagrams. Science of
Computer Programming, 44:101–129, July 2002.

[38] Dept. of Aerospace Engineering - Polytechnic of Milan. RTAI: Real Time
Application Interface for Linux. https://www.rtai.org.

[39] Die Beauftragte der Bundesregierung für Informationstechnik. V - Mod-
elXT - Definition and documentation on the web.

[40] S. Distefano, M. Scarpa, and A. Puliafito. From UML to Petri Nets: The
PCM-Based Methodology. IEEE Trans. on SW Engineering, 37(1):65
–79, January/February 2011.

BIBLIOGRAPHY 88

[41] L. Dittmann, T. Rademacher, and S. Zelewski. Performing FMEA Using
Ontologies. In Proceedings of 18th International Workshop on Qualitat-
ive Reasoning (QR04), pages 209–216, Northwestern University, Evan-
ston, USA, August 2004.

[42] I. M. Dokas and C. Ireland. Ontology to support knowledge represent-
ation and risk analysis for the development of early warning system in
solid waste management operations. In Int. Symp. on Environmental
Software Systems (ISESS) 2007, 2007.

[43] M. Eaddy, A. Aho, and G. C. Murphy. Identifying, assigning, and quan-
tifying crosscutting concerns. In Proceedings of the First International
Workshop on Assessment of Contemporary Modularization Techniques,
ACoM ’07, Washington, DC, USA, 2007. IEEE Computer Society.

[44] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Trans. on SW Eng., 29:210–224, March 2003.

[45] European Cooperation for Space Standardization. ECSS-E-ST-40C
Space Engineering - Software, March 2009.

[46] European Cooperation for Space Standardization. ECSS-Q-ST-30-02C
Space product assurance - Failure modes, effects (and criticality) analysis
(FMEA/FMECA), March 2009.

[47] European Cooperation for Space Standardization. ECSS-Q-ST-80C
Space product assurance - Software product assurance, March 2009.

[48] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second
Edition. http://www.w3.org/TR/xmlschema-0, February 2004.

[49] M.S. Feather. Towards a unified approach to the representation of, and
reasoning with, probabilistic risk information about software and its sys-
tem interface. In 15th International Symposium on Software Reliability
Engineering. ISSRE 2004, pages 391 – 402, Nov. 2004.

[50] Q. Feng and R. R. Lutz. Bi-directional safety analysis of product lines.
Journal of Systems and Software, 78(2):111 – 127, 2005.

[51] A. Fiaschetti, F. Lavorato, V. Suraci, A. Palo, A. Taglialatela,
A. Morgagni, R. Baldelli, and F. Flammini. On the use of semantic
technologies to model and control security, privacy and dependability in
complex systems. In Proceedings of the 30th international conference on

BIBLIOGRAPHY 89

Computer safety, reliability, and security, SAFECOMP’11, pages 467–
479, Berlin, Heidelberg, 2011. Springer-Verlag.

[52] Freescale Semiconductor. MPC5200B Data Sheet, 2010.

[53] P.L. Goddard. Software FMEA techniques. In Reliability and Maintain-
ability Symposium, 2000. Proceedings. Annual, pages 118 –123, 2000.

[54] V. Grassi and R. Mirandola. PRIMAmob-UML: a methodology for per-
formance analysis of mobile software architectures. In Proc. of the 3rd

Int. Workshop on SW and Performance, WOSP ’02, pages 262–274, New
York, NY, USA, 2002. ACM.

[55] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between
design and performance/reliability models of component-based systems:
a model driven approach. Journal of Systems and SW, 80, 2007.

[56] T. R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

[57] E. J. Henley and H. Kumamoto. Reliability Engineering and Risk As-
sessment. Englewood Cliffs, N.J.: Prentice Hall, 1981.

[58] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proc. of the IEEE, pages
84–99, 2003.

[59] I. Horrocks, P. F Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML, May 2004.

[60] IHS. FTA-Pro. http://www.dyadem.com.

[61] International Electrotechnical Commission. IEC-60812 Analysis tech-
niques for system reliability - Procedure for Failure Mode and Effects
Analysis (FMEA), 1985.

[62] Isograph Inc. FaultTree+. http://www.faulttree.org.

[63] ITEM Software. ITEM ToolKit. http://www.itemsoft.com.

[64] P. Jordan. IEC 62304 International Standard Edition 1.0 Medical device
software - Software life cycle processes. The Institution of Engineering
and Technology Seminar on Software for Medical Devices, 2006.

BIBLIOGRAPHY 90

[65] Karlsruhe Institute of Technology (KIT), FZI Research Center for
Information Technology, and University of Paderborn. Palladio:
A software architecture simulation approach. http://www.palladio-
simulator.com.

[66] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated
Development of Embedded Software. Proc. of the IEEE, 91:145–164,
January 2003.

[67] G. Kiczales, J. Lamping, A. Mehdhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP),
pages 53–60. Springer-Verlag, 1997.

[68] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the Association for Computing
Machinery, 42:741–843, 1995.

[69] G. Klyne and J. J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. http://www.w3.org/TR/rdf-concepts,
February 2004.

[70] Y. Koji, Y. Kitamura, and R. Mizoguchi. Ontology-based transformation
from an extended functional model to FMEA. In In Proc. of ICED 05,
2005.

[71] H. Koziolek and J. Happe. A QoS Driven Development Process Model
for Component-Based Software Systems. In Proc. 9th Int. Symposium on
Component-Based Software Engineering (CBSE’06), volume 4063, pages
336–343. Springer-Verlag, 2006.

[72] B. H. Lee. Using FMEA models and ontologies to build diagnostic mod-
els. Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing, 15:281–293, September 2001.

[73] N. Leveson. Safeware: system safety and computers. Addison-Wesley,
1995.

[74] D. Lime and O. H. Roux. Formal verification of real-time systems with
preemptive scheduling. Real-Time Syst., 41(2):118–151, 2009.

[75] R. R. Lutz and R. M. Woodhouse. Requirements analysis using forward
and backward search. Annals of Software Engineering, pages 459–475,
1997.

BIBLIOGRAPHY 91

[76] M. Marzolla and S. Balsamo. UML-PSI: The UML Performance SIm-
ulator. In Proc. of the 1st Int. Conf. on the Quantitative Evaluation of
Systems, pages 340–341, Enschede, The Netherlands, September 2004.
IEEE Computer Society.

[77] D. L. McGuinness and F. van Harmelen. OWL 2 Web Ontology Lan-
guage. http://www.w3.org/TR/owl-features, February 2004.

[78] P. Merlin and D.J. Farber. Recoverability of Communication Protocols.
IEEE Trans. on Comm., 24(9):1036–1043, 1976.

[79] J. Merseguer, J. Campos, S. Bernardi, and S. Donatelli. A Composi-
tional Semantics for UML State Machines Aimed at Performance Eval-
uation. In Proceedings of the Sixth International Workshop on Discrete
Event Systems (WODES’02), pages 295–302, Washington, DC, USA,
2002. IEEE Computer Society.

[80] R. J. Mikulak, R. McDermott, and M. Beauregard. The Basics of FMEA.
Productivity Press, 2008.

[81] K. Mokos, G. Meditskos, P. Katsaros, N. Bassiliades, and V. Vasili-
ades. Ontology-based model driven engineering for safety verification.
In 36th EUROMICRO Conference on SW. Eng. and Advanced Applica-
tions, SEAA 2010, pages 47–54, 2010.

[82] National Aeronautics and Space Administration. NASA Software
Safety Guidebook NASA-GB-8719.13 - NASA TECHNICAL STAND-
ARD, March 2004.

[83] Object Management Group. UML Profile for Schedulability, Perform-
ance and Time Specification, January 2005.

[84] Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems v1.0, 2009.

[85] Object Management Group. Unified Modeling Language: Infrastructure,
Version 2.3, September 2009.

[86] Object Management Group. Unified Modeling Language: Superstructure,
Version 2.3, September 2009.

[87] H. Pentti and H. Atte. Failure Mode and Effects Analysis of software-
based automation systems - STUK-YTO-TR 190. VTT Industrial Sys-
tems - STUK, August 2002.

BIBLIOGRAPHY 92

[88] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based perform-
ance analysis applied to a telecommunication system. IEEE Trans. on
SW Eng., 26:1049–1065, November 2000.

[89] D. B. Petriu and M. Woodside. An intermediate metamodel with
scenarios and resources for generating performance models from UML
designs. SW Systems and Modeling, 6:163–184, 2007.

[90] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. http://www.w3.org/TR/rdf-sparql-query, January 2008.

[91] PTC Product Development Company. Windchill Fault Tree Analysis
software. http://www.ptc.com/product/relex/fault-tree.

[92] PTC Product Development Company. Windchill FMEA official website.
http://www.ptc.com/product/windchill/fmea.

[93] QA Systems - The Software Quality Company. Cantata++.
http://www.qa-systems.com/cantata.html.

[94] Radio Technical Commission for Aeronautics. DO-178B, Software Con-
siderations in Airborne Systems and Equipment Certification, 1992.

[95] S. Rai. Evaluating FTRE’s for Dependability Measures in Fault Tolerant
Systems. IEEE Trans. on Comput., 44(2):275–285, Feb. 1995.

[96] E. S. Raymond. The New Hacker’s Dictionary. The MIT Press, Cam-
bridge, 1991.

[97] D. J. Reifer. Software Failure Modes and Effects Analysis. IEEE Trans-
actions on Reliability, R-28(3):247 –249, aug. 1979.

[98] ReliaSoft. XFMEA official website. http://www.reliasoft.com/xfmea.

[99] L. Ridi, J. Torrini, and E. Vicario. Developing a scheduler with
difference-bound matrices and the floyd-warshall algorithm. IEEE Soft-
ware, 29:76–83, 2012.

[100] O. H. Roux and D. Lime. Time Petri Nets with inhibitor hyperarcs:
formal semantics and state-space computation. 25th Int. Conf. on Theory
and Application of Petri Nets, 3099:371–390, 2004.

BIBLIOGRAPHY 93

[101] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and reliab-
ility analysis of computer systems: an example-based approach using the
SHARPE software package. Kluwer Academic Publishers, Norwell, MA,
USA, 1996.

[102] D. C. Schmidt. Model–Driven Engineering. IEEE Computer, pages 1–2,
February 2006.

[103] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, and J. Wiley.
Pattern-oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. John Wiley & Sons, 2000.

[104] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Trans. on Comput.,
39(9):1175–1185, 1990.

[105] C. U. Smith, C. M. Lladó, V. Cortellessa, A. Di Marco, and L. G. Willi-
ams. From UML models to software performance results: an SPE process
based on XML interchange formats. In Proc. of the 5th Int. Workshop
on SW and Performance, pages 87–98, 2005.

[106] Society of Automotive Engineers’. SAE J-1739 Potential Failure Mode
and Effects Analysis in Design (Design FMEA) and Potential Failure
Mode and Effects Analysis in Manufacturing and assembly Processes
(Process FMEA) Reference Manual, 1994.

[107] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An
Aspect-Oriented Extension to C++. In Proceedings of the 40th Inter-
national Conference on Technology of Object-Oriented Languages and
Systems (TOOLS) Pacific 2002, pages 53–60, 2002.

[108] D. H. Stamatis. Failure Mode and Effect Analysis: FMEA from Theory
to Execution. Amer Society for Quality, 2003.

[109] The Mathworks. Simulink. www.mathworks.com/products/simulink.

[110] M. Towhidnejad, D.R. Wallace, and Jr. Gallo, A.M. Validation of object
oriented software design with fault tree analysis. In Proceedings of the
28th Annual NASA Goddard Software Engineering Workshop (SEW’03),
pages 209 – 215, Dec. 2003.

[111] United States Department of Defense. MIL-STD-1629A - Procedures for
Performing a Failure Mode, Effects and Criticality Analysis. Technical
report, US Department of Defense, November 1980.

BIBLIOGRAPHY 94

[112] United States Department of Defense. MIL-STD-498, MILITARY
STANDARD FOR SOFTWARE DEVELOPMENT AND DOCU-
MENTATION. Technical report, USDoD, 1994.

[113] United States Department of Defense. MIL-STD-498, SDD Data Item
Description. Technical report, USDoD, 1994.

[114] United States Department of Defense. MIL-STD-498, SRS Data Item
Description. Technical report, USDoD, 1994.

[115] United States Department of Defense. MIL-STD-498, SSDD Data Item
Description. Technical report, USDoD, 1994.

[116] United States Department of Defense. MIL-STD-498, STD Data Item
Description. Technical report, USDoD, 1994.

[117] USC Center for Software Engineering. UCC: Unified Code Count.
http://sunset.usc.edu/research/CODECOUNT.

[118] E. Vicario. Static Analysis and Dynamic Steering of Time Dependent
Systems Using Time Petri Nets. IEEE Trans. on SW Eng., 27(1):728–
748, August 2001.

[119] W. E. Vesely and F. F. Goldberg and N. H. Roberts and D. F. Haasl.
Fault Tree Handbook. U. S. Government Printing Office, 1981.

[120] W3C OWL Working Group. OWL Web Ontology Language.
http://www.w3.org/TR/owl2-overview, December 2012.

[121] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Statshulat, and P. Stenstroem. Priority Inherit-
ance Protocols: The Worst Case Execution-Time problem: Overview of
methods and survey of tools. ACM Trans. Emb. Comp. Sys., 7(3):1–53,
2008.

[122] Wind River. VxWorks. www.windriver.com/products/vxworks.

[123] R. Wirth, B. Berthold, A. Krämer, and Peter. Knowledge-Based Support
of System Analysis for Failure Mode and Effects Analysis. Engineering
Applications of Artificial Intelligence, 9:219–229, 1996.

BIBLIOGRAPHY 95

BIBLIOGRAPHY

[124] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying the closeness
between program components and features. J. Syst. Softw., 54:87–98,
October 2000.

[125] W. E. Wong, J. R. Horgan, S. S. Gokhale, and K. S. Trivedi. Locating
program features using execution slices. In Proceedings of the 1999 IEEE
Symposium on Application - Specific Systems and Software Engineering
and Technology, ASSET ’99, pages 194–203. IEEE Computer Society,
1999.

[126] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer.
Performance by Unified Model Analysis (PUMA). In Proc. of the 5th Int.
Workshop on SW and Performance, pages 1–12. ACM, ACM, 7 2005.

BIBLIOGRAPHY 96

