
8

m
a
n

u
a
le

 d
i
id

e
n

ti
tà

 v
is

iv
a
 u

ni
ve

rs
ità

 d
eg

li
st

ud
i d

i fi
re

nz
e

dipartimento di ingegneria dell’informazione

Dottorato di Ricerca in Informatica, Sistemi e Telecomunicazioni
Ciclo XXVI

(Anni 2011/2013)

Settore Scientifico Disciplinare: INF/01

A M E T H O D O L O G Y A N D F R A M E W O R K F O R
M O D E L - D R I V E N D E P E N D A B I L I T Y A N A LY S I S

O F C R I T I C A L E M B E D D E D S Y S T E M S A N D
D I R E C T I O N S T O WA R D S S Y S T E M S O F S Y S T E M S

leonardo montecchi

Supervisor: Prof. Andrea Bondavalli

PhD Coordinator: Prof. Luigi Chisci

December 2013

Leonardo Montecchi: A Methodology and Framework for Model-Driven Dependabili-
ty Analysis of Critical Embedded Systems and Directions Towards Systems of Systems,
Dottorato di Ricerca in Informatica, Sistemi e Telecomunicazioni, Ciclo XXVI,
Università degli Studi di Firenze. © December 2013.

A B S T R A C T

In different domains, engineers have long used models to assess the feasibil-
ity of system designs; over other evaluation techniques modeling has the key
advantage of not exercising a real instance of the system, which may be costly,
dangerous, or simply unfeasible (e.g., if the system is still under design).

In the development of critical systems, modeling is most often employed as
a fault forecasting technique [6], since it can be used to estimate the degree
to which a given design provides the required dependability attributes, i.e.,
to perform quantitative dependability analysis. More in general, models are
employed in the evaluation of the Quality of Service (QoS) provided by the
system, under the form of dependability [6], performance, or performability
[125] metrics. From an industrial perspective, modeling is also a valuable tool
in the Verification & Validation (V&V) process, either as a support to the process
itself (e.g., FTA [174]), or as a means to verify specific quantitative or qualitative
requirements.

Modern computing systems have become very different from what they used
to be in the past: their scale is growing, they are becoming massively dis-
tributed, interconnected, and evolving. Moreover, a shift towards the use of
off-the-shelf components is becoming evident in several domains. Such increase
in complexity makes model-based assessment a difficult and time-consuming
task. In the last years, the development of system has increasingly adopted the
Component-Based Development (CBD) and Model-Driven Engineering (MDE)
philosophies as a way to reduce the complexity in system design and evalua-
tion. CBD refers to the established practice of building a system out of reusable
“black-box” components, while MDE refers to the systematic use of models as
primary artefacts throughout the engineering lifecycle [168]. Engineering lan-
guages like UML, BPEL, AADL, etc., allow not only a reasonable unambiguous
specification of designs, but also serve as the input for subsequent development
steps like code generation, formal verification, and testing. One of the core tech-
nologies supporting model-driven engineering is model transformation [58].

Transformations can be used to refine models, apply design patterns, and
project design models to various mathematical analysis domains in a precise
and automated way. In recent years, model-driven engineering approaches have
been also extensively used for the analysis of the extra-functional properties of
the systems. To this purpose, language extensions were introduced and utilized
to capture the required extra-functional concerns.

Despite several approaches propose model transformations for dependabil-
ity analysis, still there is not a standard approach for performing dependabil-
ity analysis in a MDE environment. Indeed, when targeting critical embedded

iii

iv

systems, the lack of support for dependability attributes, and extra-functional
attributes in general, is one of the most recognized weaknesses of UML-based
languages. Also, most of the approaches have been defined as extensions to
a “general” system development process, often leaving the actual process un-
specified. Similarly, supporting tools are typically detached from the design
environment, and assume to receive as input a model satisfying certain con-
straints. While in principle such approach allows not to be bound to specific
development methodologies, in practice it introduces a gap between the design
of the functional system model, its enrichment with dependability information,
and the subsequent analysis. Finally, the specification of properties our of com-
ponents’ context, which typically holds for functional properties, is much less
understood for non-functional properties.

The work in this thesis elaborates on the combined application of the CBD
and MDE philosophies and technologies, with the aim to automate depend-
ability analysis of modern computing systems. A considerable part of the work
described in this thesis has been carried out in the context of the ARTEMIS-JU
“CHESS” project [35], which aimed at defining, developing and assessing a
methodology for the component-based design and development of embedded
systems, using model-driven engineering techniques.

The work in this thesis defines and realizes an extension to the CHESS frame-
work for the automated evaluation of quantitative dependability properties.
The extension constitutes of: i) a set of UML language extensions, collectively
referred to as DEP-UML, for modeling dependability properties relevant for
quantitative analysis; ii) a set of model-transformation rules for the automated
generation of Stochastic Petri Nets (SPNs) models from system designs en-
riched with DEP-UML; and iii) a model-transformation tool, realized as a plu-
gin for the Eclipse platform, concretely implementing the approach. After in-
troducing the approach, we detail its application with two case studies.

While for embedded systems it is often possible, or even mandatory, to follow
and control the whole design and development process, the same does not
hold for other classes of systems and infrastructures. In particular, large-scale
complex systems don’t fit well in the paradigm proposed by the CHESS project,
and alternative approaches are therefore needed. Following this observation,
we then elaborate on a workflow for applying MDE approaches to support the
modeling of large-scale complex systems. The workflow is based on a particular
modeling technique, and a supporting domain-specific language, TMDL, which
is defined in this thesis. After introducing a motivating example, the thesis
details the workflow, introduces the TMDL language, describes a prototype
realization of the approach, and describes the application of the approach to
two examples. We then conclude with a discussion and a future view on how
the contribution of this thesis can be extended to a comprehensive approach
for dependability and performability evaluation in a “System of Systems” [181]
context.

v

More in detail, this dissertation is organized as follows. Chapter 1 introduces
the context of the work, describing the main concepts related to dependability,
and dependability evaluation, with a focus on model-based assessment. The
foundation of CBD and MDE approaches, the role of the UML language, and
main related work are instead discussed in Chapter 2.

Chapter 3 describes the CHESS project, and introduces the language exten-
sions that have been defined to support dependability analysis. Moreover, the
chapter details the entire process that drove us to such extensions, including the
elicitation of language requirements and the evaluation of existing languages
in the literature. The model-transformation algorithms for the generation of
Stochastic Petri Nets are described in Chapter 4, while the adopted architecture
for the concrete realization of the analysis plugin is described in Chapter 5.
Chapter 6 describes the application of our approach to two case studies: of a
multimedia processing workstation and a fire detection system.

The need for a complementary approach for the evaluation of large-scale
complex system is discussed in Chapter 7, with the aid of a motivating exam-
ple of a distributed multimedia application. Chapter 8 describes our approach
for the automated assembly of large dependability models through model-
transformation. The thesis then concludes with an outlook on the relevance
of the work presented in this thesis towards a System of Systems approach to
the evaluation of large-scale complex systems.

R E L AT E D P U B L I C AT I O N S

This thesis is partially based on work included in the following publications:

I. L. Montecchi, P. Lollini, and A. Bondavalli. “A Reusable Modular
Toolchain for Automated Dependability Evaluation.” In: 7th Interna-
tional Conference on Performance Evaluation Methodologies and Tools. VAL-
UETOOLS’13 (Turin, Italy, Dec. 10–12, 2013). 2013;

II. L. Montecchi, A. Ceccarelli, P. Lollini, and A. Bondavalli. “Meeting the
challenges in the design and evaluation of a trackside real-time safety-
critical system.” In: Proceedings of 4th IEEE Workshop on Self-Organizing
Real-Time Systems. SORT’13 (Paderborn, Germany, June 20, 2013). 2013;

III. N. Veeraragavan, L. Montecchi, N. Nostro, A. Bondavalli, R. Vitenberg,
and H. Meling. “Understanding the Quality of Experience in Modern Dis-
tributed Interactive Multimedia Applications in Presence of Failures: Met-
rics and Analysis.” In: Proceedings of the 28th ACM Symposium on Applied
Computing. SAC’13 (Coimbra, Portugal, Mar. 18–22, 2013). DADS Track.
ACM, 2013;

IV. A. Bondavalli, P. Lollini, I. Majzik, and L. Montecchi. “Modelling and
Model-Based Assessment.” In: Resilience Assessment and Evaluation of Com-
puting Systems. Ed. by K. Wolter, A. Avritzer, M. Vieira, and A. van
Moorsel. Springer, July 2012, pp. 153–165;

V. A. Bondavalli, P. Lollini, and L. Montecchi. “Graphical formalisms for
modeling critical infrastructures.” In: Critical Infrastructure Security: As-
sessment, Prevention, Detection, Response. Ed. by F. Flammini. WIT Press,
Feb. 2012, pp. 57–73

VI. L. Montecchi, P. Lollini, and A. Bondavalli. “Towards a MDE Transfor-
mation Workflow for Dependability Analysis.” In: Proceedings of the 16th
IEEE International Conference on Engineering of Complex Computer Systems.
ICECCS’11 (Las Vegas, NV, USA, Apr. 27–29, 2011). IEEE, 2011, pp. 157–
166;

VII. L. Montecchi, P. Lollini, and A. Bondavalli. “Dependability Concerns
in Model-Driven Engineering.” In: IEEE International Symposium on Ob-
ject/Component/Service-Oriented Real-Time Distributed Computing Workshops.
WORNUS’11 (Newport Beach, CA, USA, Mar. 28–31, 2011). IEEE, 2011,
pp. 254–263;

vii

viii related publications

and the following currently submitted work:

VIII. L. Montecchi, P. Lollini, and A. Bondavalli. A DSL-Supported Workflow for
the Automated Assembly of Large Performability Models. Submitted to the 10th
European Dependable Computing Conference (EDCC 2014).

The following publications are related to the topic of the thesis as well, but
where published before the beginning of the Ph.D. course:

IX. A. Ceccarelli, J. Grønbæk, L. Montecchi, H.-P. Schwefel, and A. Bondavalli.
“Towards a Framework for Self-Adaptive Reliable Network Services in
Highly-Uncertain Environments.” In: Proceedings of the 13th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops. ISORCW’10 (Carmona, Spain, May 4–7,
2010). IEEE, 2010, pp. 184–193;

X. A. Bondavalli, P. Lollini, and L. Montecchi. “QoS Perceived by Users of
Ubiquitous UMTS: Compositional Models and Thorough Analysis.” In:
Journal of Software 4.7 (Sept. 2009);

XI. P. Lollini, L. Montecchi, M. Magyar, I. Majzik, and A. Bondavalli. “Analy-
sis of the impact of communication protocols on service quality in ERTMS
automatic train control systems.” In: Symposium on Formal Methods for
Automation and Safety in Railway and Automotive Systems. (FORMS/FOR-
MAT’08) (Budapest, Hungary, Oct. 9–10, 2008). 2008;

XII. A. Bondavalli, P. Lollini, and L. Montecchi. “Analysis of User Perceived
QoS in Ubiquitous UMTS Environments Subject to Faults.” In: 6th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Sys-
tems. SEUS’08 (Capri Island, Italy, Oct. 1–3, 2008). Springer, 2008, pp. 186–
197.

Finally, the following work, published within the Ph.D. course, is only marginally
related to the topics of this thesis:

XIII. A. Ceccarelli, L. Montecchi, F. Brancati, P. Lollini, A. Marguglio, and A.
Bondavalli. “Continuous and Transparent User Identity Verification for
Secure Internet Services.” In: IEEE Transactions on Dependable and Secure
Computing (To Appear);

XIV. V. Bonfiglio, L. Montecchi, F. Rossi, and A. Bondavalli. “On the Need
of a Methodological Approach for the Assessment of Software Archi-
tectures within ISO26262.” In: Proceedings of Workshop CARS (2nd Work-
shop on Critical Automotive applications: Robustness & Safety) of the 32nd
International Conference on Computer Safety, Reliability and Security. SAFE-
COMP’13/CARS’13 (Toulouse, France, Sept. 24–27, 2013). 2013;

related publications ix

XV. L. Montecchi, P. Lollini, A. Bondavalli, and E. La Mattina. “Quantitative
Security Evaluation of a Multi-biometric Authentication System.” In: Com-
puter Safety, Reliability, and Security. Proceedings of SAFECOMP 2012 Work-
shops. SAFECOMP’12/DESEC4LCCI’12 (Magdeburg, Germany, Sept. 25–
28, 2012). Ed. by F. Ortmeier and P. Daniel. Vol. 7613. LNCS. Springer,
2012, pp. 209–221;

XVI. L. Montecchi, P. Lollini, B. Malinowsky, J. Grønbæk, and A. Bondavalli.
“Model-based analysis of a protocol for reliable communication in railway
worksites.” In: Proceedings of the 15th ACM International Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems. (MSWiM’12)
(Paphos, Cyprus, Oct. 21–25, 2012). ACM, 2012, pp. 23–32;

XVII. A. Bondavalli and L. Montecchi. “Metodi Combinatori.” Italian. In: ed. by
A. Bondavalli. L’Analisi Quantitativa dei Sistemi Critici. Esculapio, 2011.

A C K N O W L E D G M E N T S

I would like to deeply thank my supervisor, Prof. Andrea Bondavalli, for his
continuous support and motivation to my study and research activities. On
many aspects, his useful insights really helped me to have a broader point of
view on problems and their solutions.

I would also like to express my sincere gratitude to Paolo Lollini, for his
incomparable availability and contribution with comments, ideas, and sugges-
tions on many topics presented in this work. Sincere thanks also to the other
present and former members of the Resilient Computing Lab (RCL) research
group, Valentina Bonfiglio, Francesco Brancati, Andrea Ceccarelli, Nicola Nos-
tro, for the enjoyable time spent together and the stimulating discussions and
collaborations.

My great appreciation goes also to all the people who participated in the Na-
tional and International research projects in which I have been involved, espe-
cially the ARTEMIS-JU “CHESS” project, which has been a tough but enriching
experience. In particular, I would like to thank Stefano Puri for his precious
support on technical UML aspects, and Silvia Mazzini, Barbara Gallina, Tullio
Vardanega for the useful discussions.

I would also like to thank all the other collaborators of my research, in partic-
ular Jesper Grønbæk, for the discussions on online diagnosis and reconfigura-
tion, and Narasimha Raghavan, for the discussions on the World Opera system;
both topics have been inspiring to me when shifting my attention to large-scale
systems.

I am also thankful to all the people who have been working in the PhD
room in these years, each of them really contributed to a better personal and
professional experience.

Special appreciation is deserved to my parents, to whom I owe a debt of
gratitude. Finally, thanks to Aurora, my cousin Serena, my aunt Maria and my
uncle Mario; all of them have been reference points during the last three years,
and I am grateful for their very different ways of supporting me during this
period.

— Leonardo Montecchi

xi

C O N T E N T S

1 dependability and performability evaluation 1

1.1 Dependability and Performability Concepts 1

1.1.1 Basic definitions . 2

1.1.2 Threats: faults, errors, failures 3

1.1.3 The means for achieving dependability 4

1.2 Model-Based Evaluation . 6

1.2.1 Modeling Formalisms . 7

1.2.2 Model construction and solution approaches 13

1.2.3 Modelling and solution tools 14

1.3 Summary and Historical View . 15

2 modern approaches to system development 17

2.1 Component-Based Development 17

2.2 Model-Driven Engineering . 19

2.3 The Unified Modeling Language 20

2.3.1 UML Diagrams . 21

2.3.2 The Profiling Mechanism 23

2.4 Model-Driven Dependability Analysis 24

2.5 Summary . 26

3 supporting dependability analysis in a component-based

framework 29

3.1 The CHESS Methodology . 29

3.1.1 Project Overview . 29

3.1.2 Methodology Overview . 30

3.1.3 System Design in CHESS 33

3.1.4 CHESS ML and the CHESS Editor 35

3.2 Dependability Modeling Requirements 37

3.3 Conceptual Model . 39

3.3.1 Layer 1: Structure . 41

3.3.2 Layer 2: Threats . 41

3.3.3 Layer 3: Means . 43

3.3.4 Layer 4: Attributes . 45

3.4 Investigation of Existing Languages 46

3.4.1 QoS&FT . 46

3.4.2 MARTE . 47

3.4.3 SysML . 48

3.4.4 EAST-ADL2 . 48

3.4.5 AADL . 49

3.4.6 DAM . 49

xiii

3.4.7 Summary . 51

3.5 DEP-UML . 51

3.5.1 Component-based approach 54

3.5.2 Dependability templates . 54

3.5.3 Error propagation . 56

3.5.4 Error Model . 57

3.5.5 Hierarchical and modular modeling 61

3.5.6 Modeling of redundancy structures 62

3.5.7 Maintenance activities . 63

3.5.8 Metrics specification . 65

3.6 Summary . 67

4 automated dependability analysis : transformations 69

4.1 Approach . 69

4.2 The Intermediate Dependability Model (IDM) 70

4.2.1 Overview . 71

4.2.2 Usage Example . 73

4.3 From DEP-UML models to IDM models 75

4.3.1 Creation of components . 76

4.3.2 Projection of dependability templates 77

4.3.3 Projection of error model specifications 79

4.3.4 Projection of non-stereotyped components 80

4.3.5 Projection of propagation relations 81

4.3.6 Projection of activities . 83

4.3.7 Projection of analysis objectives 83

4.4 From IDM models to Stochastic Petri Nets 84

4.4.1 Projection of components and threats 84

4.4.2 Projection of propagation relations 87

4.4.3 Projection of activities . 88

4.4.4 Projection of analysis objectives 94

4.4.5 Priorities and additional constraints 95

5 implementation within the eclipse platform 97

5.1 Designing a Reusable Toolchain . 97

5.1.1 Architecture Overview . 98

5.1.2 Client Process – Metamodels 100

5.1.3 Client Process – Transformations 101

5.2 The “State-based Analysis Plugin” 102

5.2.1 Client Process . 102

5.2.2 Server Process . 108

5.3 Summary . 108

6 case studies 111

6.1 Multimedia Processing Workstation 111

6.1.1 System Description . 112

xiv

6.1.2 System model with CHESS ML and DEP-UML 113

6.1.3 Analysis and Results . 120

6.2 Fire Detection System . 123

6.2.1 System Description . 123

6.2.2 System Model – Early Phase 125

6.2.3 Analysis and Results – Early Phase 129

6.2.4 System Model – Refinement 131

6.2.5 Analysis and Results – Refinement 134

6.3 Summary . 137

7 modeling large-scale complex systems 139

7.1 Large-Scale Complex Systems . 139

7.2 The “Template Models” Approach 140

7.2.1 Template Models and Parameterization 140

7.2.2 Application Using Stochastic Activity Networks 142

7.3 Motivating Example: A World Opera 142

7.4 Performability Model of the World Opera System 144

7.5 Current Limitations . 146

8 a workflow for automated assembly of complex models 149

8.1 Workflow Overview . 149

8.2 Main Concepts . 151

8.3 Template Models Description Language 152

8.3.1 TMDL “Library” . 153

8.3.2 TMDL “Scenario” . 154

8.4 Model Generation Overview . 155

8.4.1 Prototype Realization . 156

8.5 Application to the World Opera System 156

8.5.1 Library Specification . 157

8.5.2 Specification of Scenarios 159

8.6 Application to the HIDENETS System 163

8.6.1 Library Specification . 163

8.6.2 Specification of Scenarios 165

8.7 Towards a System of Systems Approach 167

Conclusion and Outlook 169

Bibliography 173

Appendices 193

a acronyms 195

b list of graphics 199

xv

1
D E P E N D A B I L I T Y A N D P E R F O R M A B I L I T Y E VA L U AT I O N

Information Technology (IT) has become widespread in our everyday life; mod-
ern society is increasingly relying on computerized systems for fundamental
services like communications, transportation, power distribution. Many people
need to rely upon the services provided by these system, as their malfunctions
can cause very serious consequences both in terms of loss of human’s life or
in terms of conspicuous economical losses. It is therefore necessary to ensure
that such critical systems are designed to fulfill specific properties, in order for
us to “sufficiently trust” the service they provide. The set of these properties is
studied in the conceptual framework of dependability.

1.1 dependability and performability concepts

The concepts described in this thesis are based on the universally accepted
definition and taxonomy of dependability described in [6]. According to the
original definition, dependability is “the ability to deliver service that can justifi-
ably be trusted”. An alternate definition, which also provides a way to judge if
a given service is dependable is “the ability of a system to avoid service failures
that are more frequent or more severe than is acceptable”.

Dependability is a composite concept that encompasses number of different
attributes, including:

• availability, readiness of correct service, i.e., the ability to deliver correct
service with respect to the alternation between correct and incorrect ser-
vice;

• reliability, continuity of correct service, i.e., the ability to continuously de-
liver correct service;

• maintainability, the ability to undergo repairs and modifications;

• safety, the absence of catastrophic consequences on the user(s) and the
environment;

• integrity, the absence of improper system state alterations.

• confidentiality, the absence of unauthorized disclosure of information.

Security is defined as a composite of the attributes of confidentiality, integrity,
and availability (for authorized actions only).

1

2 dependability and performability evaluation

Figure 1.1: The dependability and security tree [6].

Quantitative dependability evaluation involves the quantification of such at-
tributes by means of metrics using different techniques, e.g., the Mean Time To
Failure (MTTF) is a metric used to quantify the reliability attribute of a system.
In certain classes of systems, referred to as degradable systems, dependability
attributes are intertwined with performance aspects: the failure of system com-
ponents can affect the overall system performance. This lead to the definition
of performability [125], as a combination of performance and reliability concepts,
thus describing the performance provided by the system in degraded service
states. It should be noted that systems are typically not required to excel in all
the attributes described above. Actually, some of them are in contrast to each
other; for example, a way to avoid catastrophic consequences (safety) is to force
the system into a “safe state”, interrupting the service it provides (thus affecting
its reliability).

A systematic description of dependability concepts spans its attributes (in-
troduced above), threats, and means (Figure 1.1). It is practically impossible to
guarantee that a system will be always working properly during its entire life-
cycle: in the achievement of its dependability attributes a system has to face a
certain number of threats, which should be contrasted with appropriate means,
i.e., countermeasures. These concepts are detailed in the following.

1.1.1 Basic definitions

We first clarify the system concept: “a system is an entity that interacts with
other entities, i.e., other systems, including hardware, software, humans, and
the physical world with its natural phenomena” [6]. These other entities with
which the system interacts are its environment.

1.1 dependability and performability concepts 3

The function of a system is what the system is intended to do, and it is de-
scribed by the functional specification. The behavior of a system is what the
system does to implement its function, and it is described by a sequence of
states. The service delivered by a system (called the provider) is its behavior as
it is perceived by its user(s); a user is another system that receives such ser-
vice. The part of the provider’s system boundary where service delivery takes
place, is provider’s service interface. The part of the provider’s total state that
is perceivable at the service interface is its external state; the remaining part is
its internal state. The delivered service is a sequence of the provider’s external
states.

The structure of a system is what enables it to generate the behavior. From
a structural viewpoint, a system is composed of a set of components bound
together in order to interact, where each component can be considered another
system. The total state of a system is then the set of the external states of its
atomic components. The recursion stops when a component is considered to be
atomic: any further internal structure cannot be discerned, or is not of interest
and can be ignored.

1.1.2 Threats: faults, errors, failures

Correct service is delivered when the service implements the system function. A
failure is an event that occurs when the delivered service deviates from correct
service. A system may not, and generally does not, always fail in the same way;
the ways a system can fail are called failure modes, and they can be characterized
by their domain (value or timing), by the perception of users (consistent and
byzantine), by the capability to detect them (signalled or unsignaled) and by
the consequences on the system environment (from benign to catastrophic).
An error is a deviation from the correct system state. Failures are caused by
errors: a failure occurs when an error reaches the service interface and alters
the provided service.

A fault is an adjudged or hypothesized cause of an error; an error is then
the manifestation of a fault within a program or data structure. With respect
to its duration, it can be permanent, intermittent or transient: a permanent fault
is continuous and stable, while a transient fault results from temporary envi-
ronmental conditions. An intermittent fault is a fault that is only occasionally
present due to instability in the system or the environment. Faults can also
be classified with respect to their origin. Physical faults arise from physical
phenomena either internal (such as shorts or opens), or external to the sys-
tem (such as electromagnetic interference). Human faults may be either design
faults, which are committed during system design or modification, they may be
interaction faults, which are violations of operating or maintenance procedures.
A complete classification of faults is provided in [6].

4 dependability and performability evaluation

Figure 1.2: Error propagation [6].

A fault that has not yet produced an error is a dormant fault, otherwise it
is an active fault. An existing dormant fault is said to become active when
some change in conditions (e.g. an input applied to the component) causes the
fault to affect the computation. An active fault is either i) an internal fault that
was previously dormant and that has been activated, or ii) an external fault.
The computation process can then produce other errors that can propagate
within the same component (internal propagation), so that an error successively
generates other errors. Error propagation from one component (A) to another
component (B) that receives service from A (i.e., external propagation) occurs
when an error reaches the service interface of component A. At this time, the
service delivered by A to B becomes incorrect, and the ensuing failure of A
appears to B as an external fault, thus propagating an error in the internal state
of B.

Faults, errors and failures are collectively referred to as the “threats” to de-
pendability, as they can induce a system to deliver an incorrect service (or to
deliver no service), thus “threatening” the system in its objective of achieving
the target dependability attributes. The causality relationships between faults,
errors and failures is summarized in Figure 1.2.

1.1.3 The means for achieving dependability

To contrast the existing threats, the development of dependable systems re-
quires the combined application of different techniques (means): fault preven-
tion, to prevent faults to occur or be introduced in the system; fault tolerance, to
deliver a correct service even in presence of faults; fault removal, to reduce the
number or severity of faults; fault forecasting, to estimate the number of faults
that are present in the system, their future impact, and their possible conse-
quences.

1.1 dependability and performability concepts 5

fault prevention. Fault prevention is performed thanks to specific devel-
opment techniques and quality assessment processes during software design
and the development of hardware components. Such techniques include for
example structured programming and modularity for what concerns software,
and rigorous productive processes for what concerns hardware. Physical faults
can be prevented through specific protections, e.g., shielding from electromag-
netic interference. Fault originating from human interactions can instead be
prevented through training of personnel or strict procedures. Faults originat-
ing from external attacks can be prevented for example through firewalls and
other security devices or policies.

fault tolerance . Fault tolerance aims at preserving a correct service in
presence of active faults. It is typically implemented through error detection
and subsequent recovery of system state. The recovery of system state trans-
forms a state containing one or more errors (and possibly faults) in a state that
does not contains errors, or faults that can be activated again.

Recovery consists of error handling and fault handling. Error handling re-
moves errors from system’s state through either i) rollback, in which the system
is reverted to a previous state; ii) rollforward, in which the system is moved to
a completely new state; or iii) compensation, in which the system state contains
enough redundancy to mask the error. Fault handling prevents identified faults
to be activated again, through four phases: i) fault diagnosis, ii) fault isolation,
iii) system reconfiguration, iv) system reinitialization. Fault handling is usually
followed by corrective maintenance activities, which remove faults isolated by
fault handling, e.g., replacing a component that has been marked as faulty.

fault removal . Fault removal can be performed both during the develop-
ment phase, and during the operation life of the system. Fault removal is also
one of the objectives of the V&V process. Verification is the process of check-
ing whether the system adheres to given properties; if it does not, two steps
should be undertaken: diagnosing the fault(s) that prevented the verification
conditions from being fulfilled, and then performing the necessary corrections.
Checking the specification is instead usually referred to as validation.

Verification techniques can be classified based on the need to exercise the
system. Static verification verifies the system without its actual execution, e.g.,
via static analysis, theorem proving, or model-checking techniques. Verifying
the system through exercising it constitutes dynamic verification; supplied in-
puts can be either symbolic (symbolic execution), or actual in the case of testing
techniques. Corrective or preventive maintenance is a fault removal technique
that is applied during the operational life of the system.

fault forecasting . Fault forecasting is performed by evaluating the sys-
tem behavior with respect to the occurrence and activation of faults. Evaluation

6 dependability and performability evaluation

can be either qualitative, aiming at identifying and classifying the combination
of events that can lead the system to fail, or quantitative (i.e., probabilistic),
aiming at evaluate in probabilistic terms the degree to which dependability
attributes are satisfied by the system.

The two main complementary approaches to probabilistic fault forecasting,
aimed to derive probabilistic estimates, are modeling and testing.

1.2 model-based evaluation

In model-based evaluation [141], a model is an abstraction of a system that
highlights the important features of the system and provides ways of quanti-
fying its properties, neglecting all those details that are relevant for the actual
implementation, but that are marginal for the objective of the study.

Models play a primary role in dependability and performability assessment
of modern computing systems. They are employed, in different forms, to apply
all the techniques described above. Models to support the generation of code
implementing specific design patterns is a fault prevention technique; models
as a support to diagnosis (e.g., see [59]) are a fault tolerance technique; the use
of model-checking to verify protocols and algorithms is a fault removal tech-
nique. In this thesis we focus on modeling as a fault forecasting technique, i.e.,
as a method to derive probabilistic estimates of system dependability metrics.

As a fault-forecasting technique, model-based evaluation allow system archi-
tects to understand and learn about specific aspects of the system, to detect
possible design weak points or bottlenecks, to perform early validation of de-
pendability requirements, or to suggest solutions for future releases or modi-
fications of the systems. Within the domain of critical systems, modeling is a
valuable tool since it avoids to perform analysis, e.g., “what-if” analyses, on a
real instance of the system, which may be costly, dangerous or simply unfeasi-
ble. Modeling is also of primary importance as a support to the design process,
in which the real system is not yet available.

Assessing the resilience of composite systems, is a difficult task that may re-
quire the combination of several assessment methods and approaches. In this
perspective, models can be profitably used as support for experimentation and
vice-versa. On one side, modelling can help in selecting the features and mea-
sures of interest to be evaluated experimentally, as well as the right inputs to
be provided for experimentation. On the other side, the measures assessed ex-
perimentally can be used as parameters in the models, and the features identi-
fied during the experimentation may impact the semantics of the dependability
model.

1.2 model-based evaluation 7

1.2.1 Modeling Formalisms

Modeling is composed of two phases: i) the construction of a model of the
system from the elementary stochastic processes that model the behavior of the
components of the system and their interactions; and ii) processing the model
to obtain the expressions and the values of the dependability measures of the
system.

Research in dependability analysis has led to a variety of modeling for-
malisms. Each of these techniques has its own strengths and weaknesses in
terms of accessibility, ease of construction, efficiency and accuracy of solution
algorithms, and availability of supporting software tools. The choice of the most
appropriate model depends upon the complexity of the system, the questions
to be answered, the accuracy required, and the resources available to the study.

In the following, we provide an overview of modeling formalism that are
most common in model-based evaluation of dependable systems.

Combinatorial models

Modeling formalisms can be broadly classified into combinatorial (non-state-
space) models and state-space models. In contrast with state-space models,
combinatorial models do not enumerate all possible system states to obtain a
solution. Instead, simpler approaches are used to compute system dependabil-
ity measures [141]. While being concise, easy to understand, and supported by
efficient evaluation methods, such methods require strong assumptions to be
made on the system. Typically, realistic features such as interrelated behaviour
of components, imperfect coverage, non-zero reconfiguration delays, and com-
bination with performance can not be captured by these models.

Despite some extensions to “classical” combinatorial models introduce prim-
itives to specify some kinds of dependencies between components (e.g., see
[67]), their modeling power is still limited with respect to that offered by state-
space models.

The most widespread combinatorial model in dependability analysis is ar-
guably the Fault Trees (FTs) formalism [174]. A fault tree is a connected acyclic
graph (i.e., a tree), in which internal nodes are logic gates (e.g., AND, OR, k-
out-of-n) and leaves represent “basic events”, typically failures of system com-
ponents. The root of the tree, also known as “top event”, represents the failure
of the system. A fault tree models the conditions that need to occur, in term of
basic events, in order to cause the occurrence of the top event. Several variants
of this basic definition exist; for example, in certain formulations internal nodes
are allowed to share a common input for modeling convenience. When using
such a notation, a fault tree, from a strictly formal point of view, is not a “tree”
anymore.

8 dependability and performability evaluation

The quantitative evaluation of a FT consists in the determination of top event
probability, based on the probabilities of basic events; the probability of any
intermediate event (i.e., other internal nodes of the tree) can also be determined.
Probability values can represent different metrics (e.g., reliability, availability)
for different applications.

It is important to highlight that a fault tree is not in itself a quantitative
model. It is a qualitative model that can be evaluated quantitatively, as it is
often done. The use of fault trees is of particular industrial relevance in the de-
velopment of critical systems; their usage, non only for quantitative evaluation,
is standardized as the Fault Tree Analysis (FTA) practice [95].

Reliability Block Diagrams (RBDs) are another popular combinatorial for-
malism in dependability analysis, due to its resemblance with classical block
diagrams describing the physical structure of systems. However, an RBD is a
graphical structure which maps the operational dependency of a system on its
components, and not the actual physical structure of the system. An RBD is
composed of two types of nodes: blocks representing system components, and
“dummy” nodes for connections between the components. Edges and dummy
nodes model the operational dependency of a system on its components. At
any instant of time, if there exists a path in the system from the start dummy
node to the end dummy node, then the system is considered operational; oth-
erwise, the system is considered failed. A failed component blocks all the paths
on which it appears.

Other graph-based models which can be classified as combinatorial models
exist in literature, e.g., Reliability Graphs (RGs) [120], and Attack Trees [177], a
variant of fault trees tailored to security analysis.

Markov Chains

When combinatorial models are not sufficient, modelers can employ different
kinds of state-space models, which allow more complex relationships between
system components to be represented. To this purpose, Markov Chains (MCs)
are widely used in different domains, and are also the theoretical basis for the
evaluation of more expressive state-based formalisms.

A Markov Chain (MC) [19] is a Markov process with a discrete (or countable)
state space. A system can be modeled using a MC if its evolution in time is
independent from the past, but only depends on the current state. The set of
possible states of a Markov chain is called the state-space, denoted by S. A
state change of a Markov chain is called a state transition. More formally, a MC
is a stochastic process

{
X(t), t ⩾ 0

}
with a discrete state space such that for

any n > 0 and any sequence of increasing time instants t1, t2, . . . , tn, tn+1, the
following equation holds:

P
{
X(tn+1) = j | X(tn) = in,X(tn−1) = in−1, . . . ,X(t1) = i1

}
=

= P
{
X(tn+1) = j | X(tn) = in

}
, ∀j, in, in−1, . . . , i1 ∈ S.

(1.1)

1.2 model-based evaluation 9

Equation 1.1 describes the memoryless (or Markov) property: the future behav-
ior of the process is independent from its past. Moreover, if the exact charac-
terization of the present state of the process is independent from the current
time, then the Markov chain is said to be time-homogeneous, otherwise it is
said to be a non-homogeneous Markov chain. The parameter t that indexes the
Markov chain can be either discrete or continuous. In the first case we have a
Discrete-Time Markov Chain (DTMC),

{
Xn | n ⩾ 0

}
, where state transitions

only occur at discrete points in time, often called steps, whereas in the latter
case we have a Continuous-Time Markov Chain (CTMC),

{
X(t) | t ⩾ 0

}
, in

which state transitions may occur at any point in time.
The only continuous probability distribution that satisfies the memoryless

property is the exponential distribution; therefore, each transition from state i

to state j of a CTMC chain occurs in an exponentially distributed time; the rate
of the transition is thus exactly the inverse of the mean of the corresponding
exponential distribution.

Unfortunately, not all the existing systems and their features can be prop-
erly described using Markov processes, since these processes require the strong
assumption that the holding time in any state of the system is exponentially dis-
tributed. In some cases this assumption may be very unrealistic, and to properly
represent the system behaviour more general stochastic processes (e.g., semi-
Markov, Markov Regenerative or even non-Markovian processes) must be used.

When dealing with such processes, complex and costly analytical solution
techniques may have to be used. If analytic solution methods do not exist at
all, discrete-event simulation must be used to solve the models thus providing
only estimates of the measures of interest. Alternatively, one can approximate
an underlying non-Markovian process with a Markov process; the price to pay
following this approach is a significant increase in the number of states of the
resulting Markov model, and errors introduced by the approximation.

Petri Nets

Petri Nets (PNs) theory was originally introduced by C. A. Petri in 1962 [157].
A Petri net is a particular kind of directed graph, together with an initial state
called the initial marking, µ0. The underlying graph of a Petri net is a directed
weighted graph consisting of two kinds of nodes, places and transitions, where
arcs connect either a place to a transition, or a transition to a place. Formally
[139], a place-transition Petri net is 5-tuple PN = (P, T ,A,M,µ0), where:

• P = {p1,p2, . . . ,pn} is a finite set of places.

• T = {t1, t2, . . . , tm} is a finite set of transitions.

• A ⊆ (P×T)∪ (T ×P) is a set of arcs connecting elements of P and elements
of T , also called flow relation. Arcs going from a place to a transition are

10 dependability and performability evaluation

called input arcs, while arcs directed from a transition to a place are called
output arcs.

• M : A → N+ is the multiplicity associated with arcs in A.

• µ0 : P → N is the initial marking that denotes the initial number of tokens
for each place in P.

The places that are linked to transition t by an input arc are called the input
places of the transition. Similarly, the places linked to transition t by an output
arc are called the output places of the transition.

In the graphical representation, places are drawn as circles and transitions are
drawn as bars or boxes. Arcs are labeled with their multiplicity (i.e., a positive
integer), where arcs with multiplicity k are interpreted as k parallel arcs. A
marking (corresponding to a state of the model) assigns to each place a non-
negative integer. If a marking assigns to place p an integer k we say that p is
marked with (i.e., contains) k tokens, which are graphically represented as black
dots inside the place. A given marking µi is denoted by a vector of of size n,
where n = |P| is the number of places; µi(p) denotes the number of tokens in
place p in marking µi. The reachability set is defined to be the set of all markings
reachable by firings of transitions from the initial marking; the reachability graph
is a directed graph in which nodes are elements in the reachability set, and arcs
connect marking µi to µj if marking µj can be reached in one step (i.e., the
firing of a single transition) from µi.

Transitions model activities which can occur and change the state of the sys-
tem. Transitions are only allowed to fire if they are enabled, and this happens
when there are enough tokens available in the corresponding input places.
When the transition fires, it removes from each of its input places a number
of tokens equal to the multiplicity of the corresponding input arc, and adds to
each of its output places a number of tokens equal to the multiplicity of the
corresponding output arc. When two enabled transitions share an input place
and the number of tokens therein is not sufficient for both of them to fire, the
transitions are said to be in conflict, and a selection rule (usually a priority
associated to transitions) must be employed to break the competition in favor
of one of them. A system can be modelled by representing its states as mark-
ings of the PN: tokens can be used to represent entities of the system, such as
tasks to be executed, messages to be sent, while transitions model activities or
synchronization constraints of the system, and the firing rules define the pre-
conditions to be satisfied for the activities to be executed or the synchronization
to be completed, respectively.

The absence of the notion of time in the class of basic “Place/Transition”
(P/T) Petri nets does not allow quantitative analysis of the modeled system
to be performed. This formalism was mainly introduced to model qualitative
aspects of systems (concurrency, parallelism) and to verify its structural prop-

1.2 model-based evaluation 11

erties (like, the absence of deadlocks, a given order in the firing of transition,
or other invariants).

Stochastic Petri Nets

A very popular extension of the place-transition Petri nets formalism is the class
of Stochastic Petri Nets (SPNs) [129]. In the classical definition of SPNs, each
transition t is associated with a random firing delay following an exponential
probability distribution. The enabling rules for transitions are the same as of
the PN models. As soon as a transition t gets enabled, a random firing time
is sampled from the exponential distribution associated to t, and a timer starts
counting from that time down to zero. Transition t fires if and only if it remains
continuously enabled until the timer reaches zero. When t fires, the tokens are
removed from their input places and added to the output places in a single
atomic and instantaneous operation (atomic firing rule).

It is interesting to observe that in the time interval between the enabling and
the firing of t, other transitions sharing some input places with t can get en-
abled and fire without disabling it, provided that there is a sufficient number
of tokens in the common input places. On the contrary, in the case of a conflict,
the transition whose timer reaches zero first is the one that fires (“race model”).
It is important to note that the use of exponential distribution relieves the user
from the specification of the behavior of transitions that do not fire after having
been enabled, i.e., the specification of an execution policy [44], which specifies
how the time they spent while enabled should be taken into account in the
computation of their new firing time. With the “resampling” policy a new firing
time is always sampled; with the “enabling memory” policy the elapsed time is
taken into account provided that the transition remains enabled; with the “age
memory” the elapsed time is always taken into account (i.e., even if it is dis-
abled and then becomes enabled again). Thanks to the memoryless property of
the exponential distribution (Equation 1.1), whether the memory of the elapsed
time is kept or not, the remaining time is still exponentially distributed with
the same rate.

The evolution of a SPN model can be represented by a continuous-time ho-
mogeneous Markov chain, whose state space elements are in a one-to-one corre-
spondence with the elements of the reachability set, and whose transitions rates
among states are equal to the firing rates of the transitions that produce the cor-
responding marking change in the SPN. An SPN model can thus be solved in
terms of the marking occupation probabilities by performing the analysis of the
associated Markov chain.

SPNs Extensions and Other Formalisms

Due to their expressiveness, SPNs are commonly used as a method to describe
a Markov process at a higher abstraction. Several extensions have been intro-

12 dependability and performability evaluation

duced in literature, adding new primitives to support a more compact specifi-
cation of the state-space, or allowing the specification of non-Markov processes.

Two of the most well known extensions to the SPNs formalism include Gen-
eralized Stochastic Petri Nets (GSPNs), which allow exponentially timed tran-
sitions as well as immediate (i.e., firing with zero delay) transitions, and Deter-
ministic and Stochastic Petri Nets (DSPNs), which allow transitions with deter-
ministic firing delays to be specified. Other extensions include Semi-Markovian
Stochastic Petri Nets (SMSPN), Timed Petri Nets (TPN), Generalized Timed
Petri Nets (GTPN), Markov Regenerative Stochastic Petri Nets (MRSPN). Some
formulations define SPNs as the formalism in which timed transitions fire after
a random firing delay, following a general probability distribution, and then
define the class of SPNs where all distributions are exponential as a particular
subclass. A classification of main SPNs variants and their underlying stochastic
processess can be found in [44].

Stochastic Reward Nets (SRNs) [47] provide guards, marking-dependent arc
multiplicities, priorities, and support the specification of metrics for the analy-
sis directly in the model. Stochastic Activity Networks (SANs) [167] are an even
more powerful extension of SPNs; they allow arbitrary probability distributions
for the firing time of activities, support the specification of both discrete and
continuous state, and introduce the additional input gate and output gate prim-
itives allowing arbitrary modification on SAN marking to be performed upon
firing of a transition (activity in SANs terminology). Furthermore, they allow
most model parameters to be specified as marking-dependent expressions.

Other modelling formalisms exist that allow a high-level specification of
Markov Chain models, e.g., Stochastic Automata Networks [158] or the family
of formalisms collectively known as Stochastic Process Algebras [51]. Such for-
malisms are extensions of basic process algebras, which are augmented with the
ability to associate probabilities and/or time delays to the execution of actions,
thus allowing quantitative analysis to be performed on the model. Different
stochastic process algebras have been introduced, with Performance Evaluation
Process Algebra (PEPA) [91] being the most influencing one in dependability
and performance analysis. Similarly to extensions to Petri nets, some of these
formalisms are Markovian, e.g., PEPA, or MTIPP1 [88], therefore having evalua-
tion techniques based on the evaluation of the underlying Markov chain. Other
formalisms allow the specification of more general probability distributions,
e.g., SPADES [83], and thus require more sophisticated numerical techniques
or discrete-event simulation.

The work in this thesis focuses on dependability evaluation techniques based
on Stochastic Petri Nets and their extensions. More information on stochastic
process algebra approaches can be found in [8, 51].

1 Markovian Timed Processes for Performance Evaluation

1.2 model-based evaluation 13

1.2.2 Model construction and solution approaches

The main problem in using state-based models to realistically represent the
behavior of a complex system is the explosion in the number of states (often
referred to as the “state-space explosion” problem). Significant progress has
been made in addressing the challenges raised by the large size of models
both in the model construction and model solution phase, using a combination
of techniques that can be categorized with respect to their purpose: largeness
avoidance and largeness tolerance, see [101, 141] for three comprehensive sur-
veys.

Largeness avoidance techniques try to circumvent the generation of large
models using, for example, state truncation methods [34], state lumping tech-
niques [103], hierarchical model solution methods [164], fixed point iterations
[116], hybrid models that combine different model types [140] and fluid flow
approximation [91, 92]. However, these techniques may not be sufficient as the
resulting model may still be large. Thus, largeness tolerance techniques are
needed to facilitate the generation and the solution of large state space models.

Largeness tolerance techniques propose new algorithms and/or data struc-
tures to reduce the space and time requirements of the model. This is usually
achieved through the use of structured model composition approaches, where
the basic idea is to build the system model from the composition of sub-models
describing system components and their interactions. Efficient processing rules
are then defined for the elaboration of the sub-models and their interconnec-
tions. Following the approach proposed in [159], for example, the generator
matrix of a CTMC is not entirely stored, but it is implicitly represented as Kro-
necker product of a number of smaller matrices. In [48] largeness is tolerated
using Multivalued Decision Diagrams (MDDs) to efficiently explore large state
spaces.

Other approaches try to tolerate model largeness using model decomposi-
tion and aggregation of the partial results. The basic idea is to decouple the
model into simpler and more tractable sub-models, and the measures obtained
from the solution of the sub-models are then aggregated to compute those
concerning the overall model. A survey on decomposition/aggregation ap-
proaches can be found in [114]. In the same work, also extended in [112], the
authors also propose a general modelling framework that adopts three dif-
ferent types of decomposition techniques to deal with model complexity: at
functional, temporal, and model-level. Largeness tolerance techniques that are
applied at implementation-level also exist, such as disk-based approaches [64],
where the model structure is stored in the disk, thus allowing larger models
to be solved, or “on-the-fly” approaches, [63] which completely avoid the stor-
age of structures in memory, generating them iteratively while computing the
solution.

14 dependability and performability evaluation

Rather than focusing on model construction, some approaches concentrate on
the definition of the measures of interest to be evaluated on the model. In fact,
many sophisticated formalisms exist for specifying system behaviors, but meth-
ods for specifying performance and dependability metrics have remained quite
primitive until recent years. To cope with this problem, modelers often must
augment system models with extra state information and events to support
particular variables. To address this problem the so-called “path-based reward
variables” have been introduced in [142]. More recently, model-checking tech-
niques have been extended to support the specification of quantitative prop-
erties, which are evaluated by stochastic model-checking approaches [8]. Since
their introduction, stochastic temporal logics like the Continuous Stochastic
Logic (CSL) and its extensions [68], have been applied for the purpose of de-
pendability evaluation as well [2, 84].

Even if these techniques are used, solving large state-space models still re-
mains a difficult task. Moreover, under certain conditions model solution may
be a challenge even for models having only a few states. In particular, a large
difference between the rates of occurrences of events leads to the stiffness prob-
lem (e.g., see [119]. Stiffness may be avoided using aggregation and decomposi-
tion techniques in which the resulting sub-problems are non-stiff (e.g., see [18]),
or it may be tolerated using specific numerical solvers (e.g., see [136, 138]).

It is important to note that all the techniques discussed above are complemen-
tary and, when evaluating real-life systems, more than just a single technique
may be needed at the model construction and model solution levels.

1.2.3 Modelling and solution tools

Several software tools have been developed over the years to address depend-
ability and performability modelling and evaluation. Extensive surveys of the
problems related to techniques and tools for dependability and performance
evaluation can be found for example in [29, 85, 165]. Tools for the evaluation
of dependability and performability models are often broadly grouped in two
main categories.

Single-formalism/multi-solution tools are built around a single formalism and
one or more solution techniques. They are very useful inside a specific domain,
but their major limitation is that all parts of a model must be built in the sin-
gle formalism supported by the tool. Within this category we can distinguish
between two main sets of tools, based on the adopted modeling formalism.
The first set of tools is based on the Stochastic Petri Nets formalism and its
extensions; some examples are DSPNexpress [110], GreatSPN [7], SURF-2 [12],
DEEM [20], TimeNET [191]. Other tools are instead based on stochastic pro-
cess algebras; they provide numerical solutions and in some cases simulation-
based results as well. This set includes for example the PEPA Eclipse Plugin

1.3 summary and historical view 15

Figure 1.3: Timeline of advances in modelling and model-based assessment [25].

[178], CASPA [106], PEPS [11], and PRISM [107]. All the above tools provide
analytic/numerical solvers for a generated state-level representation and, in
some cases, support simulation-based solution as well. Other tools use other
model specification approaches, sometimes tailored to a particular application
domain, e.g., HIMAP [173] and TANGRAM-II [28].

Multi-formalism/multi-solution tools support multiple modelling formalisms,
multiple model solution methods, and several ways to combine the models, also
expressed in different formalisms. They can be distinguished with respect to the
level of integration between formalisms and solution methods they provide.
In particular, some tools provide the infrastructure to unify different single-
formalism modelling tools into a unique software environment; examples in
this category are IDEAS [74], FREUD [135], and DRAWNET++ [73].

Other tools actually implement new formalisms, composition operators and
solvers within a unique comprehensive framework. Though more difficult than
building a software environment out of existing tools, this approach has the po-
tential to much more closely integrate models expressed in different modelling
formalisms. To the best of our knowledge, SHARPE [179], SMART [45], DEDS
[10], OsMoSys [184], POEMS [1] and Möbius [55] are the main tools falling in
this category.

1.3 summary and historical view

The previous section has provided an overview of stochastic model-based ap-
proaches for dependability and performance evaluation of computing systems,
with a focus of SPNs-based approaches. An historical timeline of research in
model-based evaluation, as well as current active directions, is sketched in Fig-
ure 1.3 and summarized in the following.

16 dependability and performability evaluation

The introduction of FTA andm PNs in the early 60’s had a great impact on
the formalization of model-based assessment practice. For several years, model-
based assessment was based on these formalisms, as well as on the earlier theo-
ries of MCs and Queuing Networkss (QNs) [19]. Later, PNs and MCs influenced
to many other higher-level formalisms (SPNs, GSPNs, SANs, etc.), which are
currently widely used for model-based analysis. The largeness and complex-
ity of the models rapidly became a challenging issue to be addressed, and
in the beginning of the 80’s researchers started focusing on the development
of methodologies, techniques and tools to avoid or tolerate model complexity.
From the early 90’s a direction began to explore the combination of different
evaluation approaches (mainly experimental approaches and modeling), with
the aim to exploit their synergies and complementarities. In the same years,
stochastic extensions to process algebras were being introduced in the litera-
ture, most notably with the introduction of PEPA in the mid 90’s.

Aside from the continuing development in largeness avoidance and largeness
tolerance techniques, two main fertile research lines in model-based evaluation
currently focus on i) the integration of model-based evaluation with other tech-
niques, e.g., experimental evaluation; and ii) the automated derivation of analy-
sis models from higher-level architectural descriptions of the system. Actually,
in the last 20 years, a major direction has focused on the use of engineering
languages (UML, AADL, etc.) to facilitate the construction of the models by
designers, and on the development of transformation techniques and tools to
translate such high-level models to analysis models for dependability evalu-
ation. The work presented in this thesis falls within this research direction,
whose context is introduced in the next chapter.

2
M O D E R N A P P R O A C H E S T O S Y S T E M D E V E L O P M E N T

In this chapter we describe the context in which dependability analysis is cast
throughout this dissertation, discussing the problem(s) that we are going to
address, and surveying the main related work present in literature.

We first introduce two popular system development methodologies that have
gained popularity in recent years, namely Component-Based Development (Sec-
tion 2.1) and Model-Driven Engineering (Section 2.2), which consitute the basis
for our approach. Then, we discuss the role of UML in supporting such method-
ologies (Section 2.3), and present the main work related to model-driven de-
pendability analysis (Section 2.4). A summary is then provided in Section 2.5,
in which we highlight our motivations and we position the work in this thesis
with respect to the presented state of the art.

2.1 component-based development

The need for modularity and composition in tackling the complexity of modern
systems has emerged in several engineering domains. The one in which this
aspect is most evident is perhaps software engineering, where techniques for
constructing a software system out of reusable elements had a great resonance
[76, 124].

Actually, since the early days of programming, subroutines were invented
to conserve memory [52]. Their function was to allow programmers to exe-
cute code segments more than once, without having to duplicate that code in
each physical location where it was needed. This kind of reuse was aiming
at conserving computational resources; later, it was realized that reuse could
save “human” resources as well. The principles of separation of concerns [65]
and information-hiding [156] contributed to set the basis for modern software
reuse, advocating the need to divide the system into parts, such that the whole
system was easily changed by replacing any module with one satisfying the
same interface.

Still today, software engineering is exploring and growing this paradigm,
shifting from objects to components. While there exist slightly different defini-
tions of what a “component” is [27, 176], it is generally agreed that a component
should have at least three fundamental characteristics. A component:

i. is an independent and replaceable part of a system that fulfills a clear
function;

ii. works in the context of a well-defined architecture;

17

18 modern approaches to system development

Figure 2.1: Components are assembled through their interfaces.

iii. communicates with other components through its interfaces.

The shift from objects to components led to a new approach to the defini-
tion of system architectures, in which the system is assembled — rather than
developed — by connecting pre-existing components through their interfaces
(Figure 2.1). Software engineering is therefore focusing to develop methodolo-
gies to structure system architectures so that they can be built out of reusable
components. Moreover, ways in which components are interconnected are also
being studied, so that the simple “subroutine call” approach can be substituted
with higher level mechanisms such as event signalling. This includes “wrap-
ping” stand-alone systems in software to make them behave as components,
or wrap components to make them behave as stand-alone systems [52]. This
approach to software development is known as either Component-Based De-
velopment (CBD) or Component-Based Software Engineering (CBSE), with the
latter having a stronger emphasis on software.

It might be argued that the component concept is similar to the traditional
object concept in the OOP1 paradigm. However, while there are many analogies
between the two, the component notion goes much further. Reuse in OOP usu-
ally refers to reuse of classes or libraries in a specific programming language,
e.g., Java or C#. A component should be reusable without even knowing the
programming language or platform that it uses in its internals: the same spec-
ification can be implemented in different ways. Also, while CBSE develops
Object Oriented Programming (OOP) concepts at a further abstract level, it is
acknowledged that OOP is neither sufficient nor necessary for the application
of CBSE principles [27]. Finally, the CBSE approach has at its foundation the
“buy, don’t build” philosophy: assuming that there is sufficient commonality
in many large software systems, it should be more convenient for companies to
rely on specialized Commercial Off-The-Shelf (COTS) components, rather than
building their own solution to the (sub)problem. Such COTS components may
then be developed by different organizations, using different languages and
platforms.

In order for components to be composed together, they must however con-
form to a given component model, which fixes the kind of information that is
associated with components, how components are defined, their structure, as

1 Object Oriented Programming [124]

2.2 model-driven engineering 19

well as their possible interactions. More precisely, according to [33], a compo-
nent model defines standards for i) properties that individual components must
satisfy, and ii) methods, and possibly mechanisms, for composing components.
A more general definition of component is then “a software building block that
conforms to a component model”.

Actually, the CBSE approach has been quickly adopted by the software engi-
neering community, and several commercial component models have emerged;
Microsoft’s COM/COM+ [126], Oracle’s JavaBeans [175], and the OMG’s CORBA
standard [145] are well-established technologies for the component-based de-
velopment of software systems.

However, while CBD is a reality in some domains (e.g., enterprise appli-
cations), in the development of embedded systems it is not yet a completely
accepted practice, and industrial software-developers are still, to a large extent,
using monolithic and platform-dependent software technologies [128]. This as-
pect is even more prominent in safety-critical or mission-critical embedded sys-
tems.

Among the factors which are preventing a complete adoption of the CBD in
such domains, the unavoidable impact on the development process [56], and
resulting costs and risks associated with the adoption of a new development
methodology play a key role, but they are not the main reason. In particular,
the vast majority of tools for supporting component-based development allow
component and services to be specified only from a functional point of view,
while non-functional attributes are not addressed with a comparable maturity.
Such non-functional — or extra-functional — attributes, which are mildly im-
portant in other domains, are of utmost important in embedded and real-time
systems, especially if employed for critical applications. They need therefore to
be addressed in the component model, so to be taken into account during all
the phases of system design.

Even though there is much more emphasis on software in literature, it should
be noted that the CBD notion can be applied to hardware components as well.
Actually, another challenge in CBD development of embedded systems con-
cerns with coping with both hardware and software components: their integra-
tion is often cumbersome due to their incompatibilities, different specifications
and different approaches in their development [109].

2.2 model-driven engineering

CBD is not the only initiative that emerged in the last years to facilitate the
development of software-intensive systems and improve productivity. Model-
Driven Engineering (MDE) [168] refers to the systematic use of models as pri-
mary artefacts throughout the engineering lifecycle, focusing on the aspects

20 modern approaches to system development

of the particular problem to solve, and abstracting away from implementation
details.

Software developers have always tried to develop abstractions to help them
to focus on concepts related to the problem to be solved, rather than to the
underlying computing environment.

Modern programming languages, like Java or C#, and the associated frame-
works have successfully raised the abstraction level, and the adoption of domain-
specific libraries have minimized the need to re-invent common solutions for
problems related to specific application domains. Nevertheless, the complexity
problem has not vanished: libraries and development platforms are increas-
ing in complexity, similarly to applications that rely on them; moreover, they
should be maintained and upgraded, which requires considerable time and re-
sources. Most importantly, even though such technologies have improved the
abstraction level, they are still oriented to computational aspects of the prob-
lem: they provide abstractions in the solution domain (computing technologies)
rather than in the problem domain, i.e., in concepts related to the particular
application domain of interest [168].

An approach to cope with such complexity is to develop MDE techniques,
which combine:

i. Domain Specific Languages (DSLs), which formalize the application struc-
ture, behavior and other information required in a particular domain; and

ii. Model-transformations and generators, which analyze specific aspects of
a model, and synthesize different kind of artifacts, such as source code,
simulators, documentation, etc.

The ability to automatically synthetize such artifacts from system models helps
ensuring the consistency between system specification, implementation, and
analysis models. DSLs are defined by means of metamodels; a metamodel de-
fines in an unambigous way the concepts that belong to a certain domain,
their structure, and their relationships. A metamodel defines the elements of
the modeling language and defines the constraints that a model must fulfill
in order to be consdered valid, i.e., it is a “model of models” in that particu-
lar language. MDE tools (should) then verify that models respect the structure
imposed by their metamodels and any other constraints that may have been
specified. By performing such constraints-checking they are able to i) guaran-
tee the correctness of artifacts produced by transformations, or ii) identify many
of the problems arising in the design process already from its early phases.

2.3 the unified modeling language

The Unified Modeling Language (UML) is, in general, a central resource in the
development of modern software systems; this becomes especially true when

2.3 the unified modeling language 21

a MDE process is employed. Historically, UML was born as the result of the
joint effort of important personalities in object-oriented software development,
Grady Booch, Ivar Jacobson and James Rumbaugh, which were working to-
gether in the 90’s with the aim to fuse their leading design methods (Booch,
OOSE, OMT) in a single standard language; the initial version of UML (1.0)
was proposed to the Object Management Group (OMG) in 1996, and was offi-
cially adopted as a standard in November 1997 [104]. The most recent version
currently released by the OMG is UML 2.4.1 [149, 150], which was released in
August 2011.

The objective of UML is to provide system architects, software engineers,
and software developers with tools for analysis, design, and implementation of
software-based systems as well as for modeling business and similar processes.
UML is a language with a very broad scope that covers a large and diverse
set of application domains. Not all of its modeling capabilities are necessarily
useful in all domains or applications; for the same reasons it may be difficult
to specify precise concepts belonging to the domain of interest in a convenient
way. To a certain extent, this limitation can be in part overcome through the
profiling mechanism (see Section 2.3.2), the extension mechanism provided by
the UML standard.

The set of modeling concepts of UML is partitioned into four horizontal lay-
ers of increasing capability, called compliance levels, organized in two specifica-
tions, “Infrastructure” [149] and “Superstructure” [150]. The UML Infrastruc-
ture provides an entry-level modeling capability (layer L0), and represents a
common denominator that can serve as a basis for interoperability between dif-
ferent categories of modeling tools. Further modeling capabilities are defined
by the UML Superstructure, which includes the specification for layers L1, L2,
and L3.

2.3.1 UML Diagrams

UML consists of thirteen diagram types, each addressing a different aspect
of the system or providing a different way for organizing system concepts.
UML diagram types can be categorized into structural diagrams, which are used
to model the structure of the system, and behavioral diagram, which focus on
modeling the behavior of the system and its components (Figure 2.2).

Concerning structural diagrams, the most widespread is certainly the Class
Diagram, which shows the structural entities of the designed system as related
classes and interfaces, with their features, constraints and relationships; the
Object Diagram is an instance-level class diagram, i.e., it shows instance spec-
ifications of classes, interfaces, and associations. The Package Diagram shows
packages and relationships between packages. The Composite Structure Diagram
is typically used to show the internal structure of a classifier as composed of

22 modern approaches to system development

Figure 2.2: UML 2.4.1 diagram types [150].

its properties, parts, and relationships; in some contexts it is also employed to
describe — from a structural point of view — the elements that collaborate
to produce a certain behavior. The Component Diagram shows components and
dependencies between them, in a CBD fashion. The Deployment Diagram ad-
dresses the architecture of the system as deployment of software artifacts to
deployment targets; in general, deployment can involve specification-level de-
ployment, which does not references specific instances of artifacts or nodes,
or instance-level deployment. The Profile Diagram is a particular kind of dia-
gram, similar to the Class Diagram, which is used to define UML profiles (see
Section 2.3.2).

Concerning behavioral diagrams, the Use Case Diagram describes a set of ac-
tions that some “subject” (i.e., the system) should or can perform in response
to external users, called “actors”. The Activity Diagram describes a parameter-
ized behavior, represented as a flow of actions (i.e., lower-level behaviors); the
diagram is used to describe the control flow, as well as the data flow, between
actions of the system. The State Machine Diagram is used for modeling discrete
behavior through finite state transitions; state machines can express the behav-
ior or usage protocol of a classifier or of parts of the system.

A particular subset of behavioral diagrams are identified as interaction di-
agrams, since they are used to model interactions between system elements.
Among them, the Sequence Diagram is the most widely used, and describes the
interactions that are needed between objects in order to to accomplish a given
task; the focus of this diagram is on message interchange and ordering across
a number of “lifelines”. The Communication Diagram is related to the sequence
diagram, in that it shows messages exchanged between objects; however, the
focus here is not on temporal ordering, but rather on the structure of inter-

2.3 the unified modeling language 23

actions between objects. The Timing Diagram is used with a primary purpose
to reason about time; is shows the timeline of changes occurring in individual
classifiers or interactions of classifiers along a linear time axis. Finally, the In-
teraction Overview Diagram is a variant of the Activity Diagram, in which nodes
are interactions or interactions users; it is therefore used to describe the coor-
dination of different interactions. The lifelines and messages do not appear at
this overview level.

2.3.2 The Profiling Mechanism

The UML2 specification defines a lightweight mechanism for extending the
UML metamodel, called profiling. A UML profile is an extension of the UML
metamodel containing specializations for a specific domain, platform, or pur-
pose; a UML profile is defined through the Profile Diagram. Extensions are de-
fined by means of streotypes and meta-attributes. A stereotype specializes an
existing metaclass, by adding meta-attributes and/or constraints to it. Since
UML2 a stereotype introduced by the profiling mechanism is considered to all
purposes a new metaclass. From a practical point of view, a UML profile is a
particular kind of package, grouping all the newly introduced extenisons and
constraints.

The profiles mechanism however is not a first-class extension mechanism,
since it does not allow a complete freedom in modifying the metamodel, but
rather it imposes constraints on how metamodel extensions should be per-
formed. Actually, the profiling mechanism does not allow to modify the ex-
isting UML metamodel, or to create a new metamodel, and it is not possible to
take away any of the existing constraints: the source metamodel is considered
as “read-only”, and profiles can only extend it.

There are several reasons to extend the existing UML metamodel, e.g., pro-
viding a specific terminology for a certain domain; providing a different nota-
tion for existing elements; add constraints on the usage of the metamodel; add
information that can be used for model-transformation or code generation purposes.

While UML is the leading modeling language in software engineering, some
of its limitations impair its application for the development of critical and real-
time systems, most importantly the limited support for the specification of non-
functional properties. To address this problem, the UML profiling mechanism
has been widely adopted, leading to a wide range of profiles for different pur-
poses. Among them, the Object Management Group itself has published as
OMG standards several UML profiles related to non-functional system proper-
ties, e.g., the SPT [152], QoS&FT [151], MARTE [143], and SysML [148] profiles.
To a certain extent, the aforementioned profiles address some of the aspects
concerning the specification of non-functional properties; further details will
be provided in Section 3.4.

24 modern approaches to system development

Concerning dependability properties however, there are still no standardized
solutions, although the awareness of this problem is growing, to the point that
OMG has recently published a Request For Information (RFI), and later a
Request For Proposal (RFP) on “assuring dependability of consumer devices”
[144, 146], i.e., its intent to produce a new standard for such domain.

2.4 model-driven dependability analysis

Deriving dependability analysis models from the engineering models that are
created during the development process has the advantage that — besides the
required model extensions — there is no need to learn and use specific de-
pendability analysis formalisms, and modelling efforts can therefore be saved.
This is definitely a benefit, since formalisms employed for model-based eval-
uation are highly specialized, far from the typical engineering languages that
are used to design system architectures, and thus require specific expertise for
their application, as well as a higher learning and modeling effort.

Although the interest in the definition of a standard UML profile for depend-
ability properties is quite recent, the idea of automated derivation of depend-
ability models from higher-level engineering models has appeared in literature
in different ways, even before the formalization of the MDE methodology. At
the same time, the emergence of MDE, and the elaboration of automated model
transformation techniques [58] have opened up new ways to integrate model-
based evaluation into the development process.

Different approaches for the automated derivation of dependability models
have appeared in literature, often using ad-hoc language extensions. Two sur-
veys on this topic can be found in [9] and [15].

Some approaches directly model the detailed dependability-related behavior
in the engineering model that describes the system architecture. A good exam-
ple of this approach is the AADL Error Model Annex [172]: the dependability
behavior is described at a very detailed level, which facilitates the mapping
to a state-based analysis formalism like GSPNs [163]. As another example, in
[153] UML is used to specify information on error propagation and module
substitution, which is then mapped to dynamic fault trees.

The opposite approach is to limit the amount of information that is specified
at UML level, and to synthetize dependability models by combining informa-
tion obtained from different diagrams, typically including structural diagrams
which describe the system architecture. The work in [61] defines an approach
for deriving a fault tree by analyzing the information contained in sequence
diagrams, a deployment diagram, and the system’s operational profile. Simi-
larly, the authors of [54] define an approach for evaluating system reliability by
means of Bayesian formulas, synthetizing information from a set of diagrams
annotated with probability values. Such approach has been later extended in

2.4 model-driven dependability analysis 25

the context of SPT and QoS&FT profiles in [53]. The authors of [79] propose a
methodology for risk assessment of UML models. The approach aims at iden-
tifying the high-risk components and connectors of the product architecture:
first, for each component and connector in software architecture, a dynamic
heuristic risk factor is obtained and severity is assessed based on hazard anal-
ysis. Then, a Markov model is constructed from he UML model to obtain sce-
narios risk factors. The work in [21, 117] defined a model-transformation al-
gorithm that generates a GSPN model from a set of UML diagrams in which
components and connectors are enriched with dependability attributes. The
resulting dependability model is obtained by combining dependability infor-
mation applied on system components with structural information present in
the functional model of the system.

Other approaches focus instead on behavioral UML diagrams, and derive
stochastic analysis models by fixing a precise semantics for them and attach-
ing timing information to actions. As an example, the work in [60] relies on
guarded statecharts (i.e., state machines) to generate SRN models, which can
then be analyzed to obtain quantitative dependabiltiy and performability met-
rics. The approach presented in [14] and [123] defines a semantics for UML
statecharts and sequence diagrams aimed at performance evaluation, the ap-
proach focuses on delays and synchronization in the executions of actions, and
defines a transformation to derive a performance model based on such seman-
tics. The approach has been later extended [16].

Another set of work put more emphasis on the definition of a language to
support dependability or performance properties. The work in [81] define the
KLAPER language, an intermediate model focused on supporting performance
analysis in a model-driven fashion. The work in [16] focuses on dependability
properties and defines the DAM profile, by aggregating information used by
different approaches in literature; the DAM profile is discussed in more details
in Section 3.4, together with the other main relevant languages Another ma-
jor contribution to a dependability-oriented language is UMLsec [100], which
defines extensions for specifying security-related information in UML software
specifications. The UMLsec focus is however in i) evaluating UML specifications
for the presence of vulnerabilities using formal semantics, and ii) supporting
the generation of code enforcing the security properties specified at UML level.
In other terms, UMLsec focuses on fault prevention and fault removal, rather than
fault forecasting.

Finally, some approaches use model-driven engineering techniques to inte-
grate various aspects from different models into a global system dependability
model. In complex, dynamic distributed systems the dependability model shall
be constructed from several engineering models that capture various aspects of
the system at different hierarchy levels. Typically the user, application, architec-
ture, and network levels are distinguished. For example, the work in [22, 105]
defined an evaluation workflow for large mobile systems, in which the gener-

26 modern approaches to system development

ation of the dependability model is based on i) the UML workflow model of
user activities, ii) the topology model of network connections, constructed au-
tomatically from user mobility traces; and iii) the application-service-resource
dependency models, also specified with UML.

Transformations from engineering languages other than UML have also been
defined, using similar approaches. For example, in the web services domain,
the BPEL2 language is typically used as a source for generating a dependability
analysis model, e.g. see [78, 190]. Some of the approaches presented above have
also been implemented in supporting tools, e.g., see [94, 115, 162, 186].

2.5 summary

Although a lot of work has been (and is being) developed on MDE techniques
for dependability analysis, most of the approaches have been defined as ex-
tensions to a “general” system development process, often leaving the actual
process unspecified. Similarly, supporting tools are typically detached from the
design environment, and assume to receive as input a model satisfying certain
constraints.

While in principle such approach allows not to be bound to specific develop-
ment methodologies, in practice it introduces a gap between the design of the
functional system model, its enrichment with dependability information, and
the subsequent analysis. This is one of the effects of the complexity and gener-
ality of UML, which typically leads system designers to adopt only a subset of
the language. Even worse, different teams or companies are likely to adopt dif-
ferent subsets, possibly using different approaches and diagrams to accomplish
the same task. This is particularly relevant in CBD, where the language primi-
tives selected for system design depend on the adopted component model, and
not vice-versa [155].

As a result, once the functional model of the system has been designed, there
is no guarantee that a given UML-based analysis technique can be applied, e.g.,
the required functional elements might not have been used in the description
of the system, and thus cannot be extended with dependability information, or
they may have been used for a different purpose with respect to the intended
one.

Following this observation, the work in this thesis defines a MDE approach
for dependability analysis by taking into account a concrete system develop-
ment process, and the associated component model. Proper language exten-
sions and model transformations to support automated dependability analysis
are defined, and the approach is then realized as an analysis plugin to be in-
tegrated in the design environment. From a practical point of view, having the
analysis tool capable of direct interactions with the system design environment:

2 Business Process Execution Language [187].

2.5 summary 27

i) ensures and enforces the correctness of the model provided as input to the
transformation algorithms, and ii) enables back-annotation of obtained results
directly in the design model.

3
S U P P O RT I N G D E P E N D A B I L I T Y A N A LY S I S I N A
C O M P O N E N T- B A S E D F R A M E W O R K

In this chapter we describe the process that we followed for enriching a component-
based system design framework with support for automated dependability
analysis. The first necessary step is the definition of the supporting language.
We explicitly target the CHESS component-based framework [35], and we de-
scribe the process that has been followed for the definition of dependability
extensions to the core CHESS methodology. Such extensions led to the defini-
tion of a UML profile, DEP-UML.

The process we adopted consists of the following steps:

i) identification of modeling requirements (Section 3.2);

ii) definition of domain concepts of interest (Section 3.3);

iii) analysis of relevant existing languages (Section 3.4);

iv) definition of extensions for supporting dependability analysis in the tar-
get framework (Section 3.5).

These steps are detailed in the following sections. Additionaly, Section 3.1 in-
troduces the peculiarities of system design methodology advocated by CHESS.

3.1 the chess methodology

This section introduces the CHESS project and methodology, detailing its ob-
jectives and highlighting its peculiarities with respect to the system design pro-
cess; a proper introduction to such context is necessary for understanding some
of the choices in the definition of our approach.

3.1.1 Project Overview

The ARTEMIS-JU “CHESS” project [35] aimed at developing, applying and
assessing an industrial-quality MDE infrastructure that permits high-integrity
embedded systems to be assembled in a component-based fashion, while re-
taining guarantees in terms of functional and non-functional properties. One
of the objectives of the project was to define a cross-domain methodology, suit-
able for (but not limited to) the automotive, railway, and aerospace application
domains.

29

30 supporting dependability analysis in a component-based framework

Figure 3.1: The CHESS workflow for system development and analysis.

In the CHESS approach, the development process is supported by differ-
ent kinds of analyses which allow the feasibility of the system’s design to be
assessed from different points of view. Such analyses include static code anal-
yses, schedulability analyses, and dependability analyses. In accordance with
MDE principles, the analysis models should be automatically derived from the
high-level model that describes the system’s architecture (Figure 3.1).

The CHESS approach promotes an iterative and incremental development
process, in which the system’s model is constantly updated and refined based
on the results obtained by the different analysis techniques. Analysis results
are used to enrich the initial CHESS model from which the analysis has been
triggered, in a process usually called “back-annotation” [50, 86], and can be
used as input for subsequent analyses. The source code, possibly including
legacy code, can be analyzed as well using code analysis techniques (e.g., call-
graph analysis).

Concretely, the project aimed to: i) define a distinctive design and develop-
ment methodology, ii) define an ADL capable of supporting it, and iii) con-
cretely implement the methodology in an industrial-quality framework.

3.1.2 Methodology Overview

The CHESS philosophy refers to a particular MDE initiative, the Model-Driven
Architecture (MDA) proposed by the OMG [147]. In the MDA workflow, the
system designer creates a Platform Independent Model (PIM), which is inde-
pendent from the execution platform that will actually implement the system.
From the By coupling the PIM model with deployment information, a Platform
Specific Model (PSM) is then generated by automated transformations. From
the PSM, code generation may be triggered to obtain an implementation of the
designed system for a given execution platform.

Accordingly, the CHESS user constructs a PIM, specifying a component-
based solution to his problem that is not dependent on a specific implemen-

3.1 the chess methodology 31

Figure 3.2: CHESS high-level design process [40].

tation. This platform independent model is then decorated with all the needed
extra-functional attributes related to dependability and predictability. When the
user has provided a description of the target execution platform and allocated
the PIM components on it, the PIM is then automatically transformed to a Plat-
form Specific Model (PSM). In the CHESS workflow the PSM is read only: users
are not allowed to directly modify it [40].

The CHESS development environment allows the user, through a range of
analysis and code generation tools, to validate the feasibility of the solution.
These analyses can be performed either on the PIM, the PSM, or the generated
code (Figure 3.2). Analysis tools propagate their specific results back to the PIM;
such results are then used by the user to refine his PIM and its attached extra-
functional attributes in order to meet his purposes. Once the user is satisfied
with the application design (i.e., when it satisfies all the desired requirements),
code generation tools allow him to generate source code for the desired target
platform.

In adopting such workflow, CHESS defines its own methodology: a component-
oriented design process, centered around the “Correctness-by-Construction”
and “Separation of Concerns” concepts [36].

Correctness-by-Construction

Correctness by Construction (C-by-C) [32] is a software production method that
fosters the early detection and removal of development error to build safer,
cheaper and more reliable software. The practices engaged in the realization
of these goals include: i) the use of formal and precise tools and notations for

32 supporting dependability analysis in a component-based framework

any product of the development cycle, whether document or code; ii) the use
of tools to verify the product of each development step; iii) the conscious effort
to say things only once so as to avoid contradictions and repetitions; iv) the
conscious effort to design software that is easy to verify, by e.g., using safer
language subsets or explicit coding and design patterns.

In a model-driven workflow, two alternate solutions are possible in the design
space for ensuring model correctness [36]:

i. To allow the user the largest freedom of expressive power in the software
specification and modeling and then verifying a-posteriori the correctness
of the model against some correctness criteria.

ii. To restrict the expressive power of the user by propagating to the design
space the applicable domain-specific constraints, and enforcing them ac-
tively so that the resulting model is correct by construction against the
domain criteria.

In the former approach, the design space is intentionally void of any domain-
specific semantics or constraints and the user’s meaning can be expressed with
full freedom: the domain-specific aspects are introduced at a later point. A
model specified in this manner may of course fail some a-posteriori checks and
thus incur the need for possibly escalating modifications, whose repercussions
are difficult to judge in effort, time and cost.

In the latter approach instead, the design infrastructure supports the desired
semantics and constraints directly in the user’s design space. In that manner
we have a-priori guarantees that the user model is correct against those con-
straints; this also means that it can safely be used as input for the subsequent
MDE activities. This second alternative is the one selected (and enforced) by
the CHESS design methodology.

Separation of Concerns

Separation of concerns is a concept first advocated by Dijkstra in [65], and
involves the clean separation of different aspects of software design. As a major
advantage, it enables separate reasoning and focused specification. The CHESS
methodology especially seeks rigid separation between functional and extra-
functional concerns.

IEEE Std-1471 [99], also known as ISO/IEC 42010:2007, describe recommended
practices for the architectural description of software-intensive systems. The
document prescribes that the “architectural description of the system is orga-
nized into one or more constituents called views”, where a view is a partial
representation of a system from a particular viewpoint, which is the expression
of some stakeholders’ concerns.

Currently, only the SysML language [148] provides direct support for user-
defined viewpoints and views [36]. The CHESS methodology moves a step

3.1 the chess methodology 33

further, by defining a modeling environment that allocates distinct concerns to
distinct views. Modeling concerns, and therefore views, are first separated out
in the two main categories: functional and extra-functional. The extra-functional
view is then further subdivided in: deployment, where the system configura-
tion is specified in terms of physical (i.e., hardware) modeling as well as of
software apportionment and allocation to it; predictability, where real-time at-
tributes and requirements are specified; and dependability, where attributes and
requirements related to safety and dependability are specified.

In order to make a view-based development effective, it is important that
all the supported PIM views be fully consistent with one another for all model
elements that may appear in multiple views. In general, two alternate strategies
exist to meet this goal [36]:

i. A synthetic approach, in which each view is modeled separately with one
or more models, and is later composed with the other views;

ii. A projective approach, in which the information that pertains to individ-
ual views is extracted from a single underlying model that describes the
entire system.

CHESS adopts the second option. In keeping with the principle of separation of
concerns, CHESS views do not incur overlaps of responsibility for modification:
while multiple views can have read rights over cross-cutting aspects, only a
single view can have create/write rights on them.

Moreover, views in CHESS are not limited to being a way to master com-
plexity, but they are also a way to enforce correctness by construction: the user
is prevented from creating or modifying elements in a given diagram depend-
ing on the current view; editor-level restrictions include for example palette
features and property editors.

3.1.3 System Design in CHESS

The CHESS methodology organizes the system design (and development) pro-
cess in a series of precise steps, which guide and constrain the user in a proper
component-based workflow. The main steps are outlined in the following [36,
38, 154].

1: Interfaces. An interface is a set of operations and interface attributes. Op-
erations are defined with a signature, determined by an operation name
and an ordered set of parameters, each one with a direction (in, in out,
out) and a parameter type An interface can also contain the declaration
of one or more interface attributes. An interface shall include at least one
operation or one interface attribute; multiple operations can be grouped
in the same interface.

34 supporting dependability analysis in a component-based framework

2: Component types. The component type is the design entity that forms the
basis for a reusable software element. A designer specifies component types,
in isolation, with no relationship with other components. The component
type specifies a list of provided interfaces and required interfaces, (i.e., the
services which have to be provided to/by other components), by refer-
encing already-defined interfaces. The component type may additionally
define a set of component type attributes, which are typed parameters
with a private visibility (visible only by the operations of the component).

3: Component implementations. The designer proceeds in the design by creat-
ing a component implementation from a component type. A component
implementation is a concrete realization of a component type, and its re-
alization can be delegated to a software supplier. A component type may
have several implementations, which may differ for example for resource
usage, accuracy in the solution, etc., or simply for the adopted program-
ming language.

A component implementation must implement all the functional services
of its component type. The code included in a component implementa-
tion is purely sequential code and shall be void of any tasking or timing
constructs. Despite the sequential nature of the code, an implementation
may set specific non-functional constraints to preserve the functional cor-
rectness of its behaviour. For example, a control law may work correctly
only if executed within a range of frequencies. Technical budgets on the
execution time or memory footprint can be placed either on operations or
on the whole component.

4: Component instances and component bindings. A component instance is in-
stantiated from a component implementation. A component instance is
the design entity that is subject to composition with other components
to fullfill their functional needs, and it is the deployment unit of the
approach. From the functional point of view, there are no differences
between a component implementation and an instance derived from it.
However, instances of the same component implementation may be dec-
orated with different non-functional attributes. Components connections
are defined by the user at design time, by matching the required and
provided interfaces of component instances.

5: Decoration with non-functional attributes. After the functional model of soft-
ware entities has been completely specified, the designer can initiate its
decoration with non-functional attributes. At this stage, the designer can
specify dependability attributes, timing and synchronization attributes, as
well other non-functional attributes.

6: Hardware topology and target platforms.

3.1 the chess methodology 35

In parallel with the software architecture definition, the CHESS develop-
ment process requires the user to provide a description of the target ex-
ecution platform; the hardware model should be limited to the elements
that are relevant for code generation or analysis purposes. The execution
platform is modeled in CHESS through components, following a process
similar to the one adopted for the definition of the software system: the
user first define the hardware components, whose instances are then con-
nected together to build the hardware architecture.

7: Component instance deployment. Once the hardware topology has been de-
fined, the last step to perform in the design space is instance deploy-
ment, which includes the allocation of component instances to processing
units, and possibly the allocation of component bindings to physical in-
terconnections. This additional information is used for code-generation
purposes, but can be used also to refine analysis results, e.g., the compu-
tation of WCETs1.

8: Model-based analysis. Once the model has been fully annotated with the
non-functional properties of interest, static model-based analysis can be
performed to assess the feasibility of current designs with respect to dif-
ferent dimensions, including dependability properties.

The extraction of information from the user model, the generation of the in-
put for the analysis tools, and the application of the analysis techniques shall
be automatic. Moreover, the results of the analysis shall be propagated back to
the design model, so that the designer can use them as input to implement the
required design modifications. The analyses can be iterated at will, with differ-
ent iterations resulting from a simple change of attributes, until the properties
of interest are judged to be satisfactory by the designer.

3.1.4 CHESS ML and the CHESS Editor

Practical support to the CHESS methodology is provided by the “CHESS Mod-
eling Language” (CHESS ML). The core CHESS ML language has been defined
as a collection-extension of subsets of standard OMG languages: UML, MARTE,
and SysML, and it is implemented as an UML2 profile [37].

CHESS ML contains specific features to support the CHESS methodology. As
an example, it defines the «ComponentType» and «ComponentImplementation»

stereotypes (both extending the UML Component metaclass), which are used to
represent the respective entities defined in the methodology. To further enforce
the defined design workflow, elements identified as «ComponentType» cannot
own any behavior, since they should not address implementation concerns.

1 Worst-Case Execution Times

36 supporting dependability analysis in a component-based framework

Figure 3.3: Support for views in the CHESS editor [38].

The allocation of software component instances to the hardware platform is
performed by importing the Assign stereotype from MARTE, which applies to
UML::Comment elements. The “view” concept is also addressed by the language,
and it is implemented by stereotyping UML::Package elements; for example, the
«DeploymentView» stereotype is used to define the Deployment view.

The CHESS ML language provides support for modeling properties at in-
stance level: in a CHESS ML model, component instances can be explicitly
represented using UML::InstanceSpecification elements, and can be deco-
rated with non-functional properties. A specific stereotype, «CHGaResources-
Platform» extends the «MARTE::GaResourcesPlatform», allowing its applica-
tion to InstanceSpecification elements. In this way, non-functional analyses
can be performed at instance level as well.

The overall CHESS methodology is implemented as a set of plugins for
the Eclipse platform [80], which are publicly available for download [35]. The
CHESS toolset includes a diagram editor based on a customized version of
Papyrus [82], an EMF-based graphical model editor focused on UML. The
CHESS editor supports different design views (Figure 3.3), enforcing a strict
the separation between them: RequirementsView, for modeling system require-
ments; FunctionalView, for modeling functional properties; ExtraFunctionalView,
for modeling extra-functional software properties; DeploymentView, for mod-
eling the hardware platform and allocation; DependabilityView, for modeling
dependability properties of the hardware platform; AnalysisView, for modeling
analysis-specific concerns.

The CHESS methodology aims at properly supporting the representation of
non-functional properties at instance level in the same model, i.e., the ability
to attach non-functional properties to InstanceSpecification elements. How-

3.2 dependability modeling requirements 37

ever, since a hierarchical description of instances is not properly supported at
diagram level, the hierarchical structure of composite components is modeled
in CHESS using the parts concept, i.e., defining subcomponents using Property

elements. Taking Property entities as representation of instances is particularly
useful for the modeler, since it allows the usage of the Composite Structure Dia-
gram (CSD), which is a very common diagram in UML, and it is therefore well
supported by current modeling tools. On the other hand, the CSD has strong
limitations with respect to the modeling of instances, since parts are instances
modeled in the context of a given component “A” [150]: when creating an in-
stance out of A we can’t provide different values for properties of A internals
parts (i.e., properties of subcomponents).

Due to such UML limitation about the entities available in the CSD, in or-
der to properly apply different non-functional properties at instance level, the
information modeled in CSDs needs to be mapped to UML InstanceSpeci-

fication elements. The CHESS toolset implements this feature (through the
“Build Instances” command), allowing to automatically derive a set of In-

stanceSpecification elements from a Composite Structure Diagram (CSD).
Each Property and Connector element is mapped into a dedicate Instance-

Specification, while each Port is mapped into a Slot. The collection of gen-
erated instances is what should be taken into account by model-transformation
algorithms. In this way, different non-functional properties can be applied to
different component instances.

3.2 dependability modeling requirements

The goal of this section is to define the dependability aspects that the CHESS ML
language should be able to express. Multiple information sources have been
analyzed, including available languages and extensions, explicit requirements
from industrial partners of the CHESS project, and experiences from past projects
starting from the HIDE project [21, 89]. Such analysis helped us to identify a
set of nine requirements, grouped in four categories (Table 3.1). Detailed re-
quirements from CHESS industrial partners have shown to be a subset of these
abstract requirements and have been successfully mapped to them [39].

Requirement SA01 states that the language should allow the system to be
represented as a collection of interconnected atomic and/or composite compo-
nents allowing for hierarchical structures. Hierarchical modeling is a manda-
tory feature for dependability analysis of complex systems: it allows designers
to adopt the right level of abstraction for different purposes and promotes an
incremental design methodology.

Components can be classified in various ways: based on their nature (soft-
ware or hardware); based on their structure (atomic or composite); based on
their behavior with respect to error propagation (stateful or stateless). This

38 supporting dependability analysis in a component-based framework

Table 3.1: Identified requirements to support dependability analysis.

Definition of the System Architecture

SA01 Need to model the structure of the system as a composition of
subsystems/components.

SA02 Need to define different kind of components.
SA03 Need to define the common types of fault tolerant structures and

the role that each component plays in such structures.
SA04 Need to model dependency relations between components of the

system.

Definition of the Fault/Error/Failure Characteristics

FEF01 Need to describe the different type of faults, errors, and failures
that may affect system components.

FEF02 Need to define specific qualitative and quantitative dependability
properties to qualify components.

Definition of Maintenance Characteristics

M01 Need to represent different maintenance policies and activities.

Definition of Requirements and Measures

A01 Need to define the metrics of interest to perform dependability
and safety analysis.

A02 Need to define system dependability and safety requirements.

classification is fundamental to correctly represent system components from a
dependability perspective (requirement SA02). Stateful components (i.e., com-
ponents that exhibit an internal state), for instance, may be subject to latent
errors; the distinction between hardware and software components determines
the kind of threats that may affect the component [6].

Fault-tolerant structures are commonly used to improve the dependability of
safety-critical or high-available systems and must be carefully represented in
the system model. A language for the specification of dependability properties
should allow the designer to describe fault-tolerant structures and the role that
each component plays within the structure (requirement SA03). One typical
task in the design of high-integrity systems is to analyze the effectiveness of
redundancy mechanisms in the system design, possibly comparing different
alternatives. In this perspective, such modeling capabilities are of fundamental
importance: a simple way to represent fault-tolerant structures and a seamless
integration with the functional modeling facilitates the comparison of different
designs.

3.3 conceptual model 39

Requirement SA04 states that the language should be able to represent de-
pendency relations that may exist between components of the system. From
the perspective of dependability analysis, a dependency relation between two
components induces an error propagation path between them. For instance,
the failure of a computing hardware resource will propagate to the software
components allocated on it.

The language should allow designers to describe the different threats that
may affect the system, both from a qualitative and quantitative point of view
(requirement FEF01). Such kind of description is usually required by certifica-
tion authorities in the form of a Failure Mode, Effects, and Criticality Analysis
(FMECA) [96] and can be also used for other kind of quantitative and qualita-
tive analyses. In component-based system development the detailed informa-
tion on the internal behavior of individual components however might not be
available (“black-box” components); therefore, in addition to detailed threats
specification, it should also be possible to represent component-level depend-
ability properties, e.g., the mean time required to repair a given component or
its fault occurrence rate (requirement FEF02).

Requirement M01 addresses maintenance: high-integrity systems are subject
to precise maintenance policies and activities during their lifespan, in order to
guarantee an adequate dependability level. Maintenance activities are typically
classified as preventive or corrective, based on whether they are executed based
on some predetermined schedule, or only when specific errors are detected.
The language should allow the modeler to describe the different maintenance
activities that need to be applied to system components.

Requirements A01 and A02 take into account the specification of dependability-
related requirements and constraints, as well as the definition of dependability
metrics to be analyzed by automated analysis techniques. These two require-
ments reflect the two possible uses of a dependability profile in the design of
high-integrity systems: on one hand it supports tracking dependability require-
ments and constraints during system design; on the other hand it supports the
assessment of specific dependability properties with different analysis tech-
niques. The two aspects are of course closely related.

3.3 conceptual model

Based on the requirements identified and described in the previous section,
we defined a conceptual model that collects the domain concepts of interest. A
preliminary version of the conceptual model was first presented in [134]. The
conceptual model described in this section guided the definition of dependabil-
ity extensions to the CHESS ML language.

The goal in the definition of a conceptual model is to identify at abstract level
the main concepts that belong to the domain of interest, together with their

40 supporting dependability analysis in a component-based framework

Figure 3.4: Packages in the defined conceptual model for dependability properties.

relationships. The conceptual model is explicitly chosen to be independent of
design or implementation concerns; at this stage, how the elements that have
been identified will be represented at UML level has not been addressed yet.

The conceptual model is organized in four abstraction layers:

structure This level identifies the basic components of the system and their
dependability and safety properties.

threats This level concerns with the identification of the threats that may
affect the system and its dependability and safety properties.

means At this level the means to attain dependability are identified and de-
scribed. From a general perspective, these are solutions and countermea-
sures which are developed to deal with the threats identified in the above
level and to reach the dependability and/or safety requirements.

attributes This level of abstraction addresses attributes of dependability
which are of interest. This includes both the identification of depend-
ability requirements, as well as the specification of metrics that should be
evaluated by dependability analysis techniques

Such organization reflects the steps that are undertaken in the construction of
the analysis model: i) the definition of the system Structure; ii) the identification
of Threats affecting system components; iii) the definition of Means that are
adopted to avoid threats to affect the provided services, and finally, iv) the
definition of dependability Attributes that are of interest. Each of these four
levels is populated by different packages, which address the concerns related
to that specific level in different ways (Figure 3.4).

It should be noted that the identified packages cover different aspects of de-
pendability analysis, therefore it is expected that only a subset of them are used
in different contexts. The actual set of packages to be used in the modeling pro-
cess is determined by several factors, including the characteristics of the system
to be analyzed, the objectives of analyses, as well as the analysis technique. The

3.3 conceptual model 41

role of each package, and the main concepts that it addresses are described in
the following.

3.3.1 Layer 1: Structure

System Structure

This package addresses the description of the system structure with respect
to dependability analysis (requirement SA01); this involves the definition of
system components and their classification (requirements SA02 and FEF02),
and the basic relations between them (requirement SA04).

The main concepts that are addressed by this package are the following:

• Component. Components are the basic blocks of the system with respect
to dependability analysis. From the dependability point of view, a com-
ponent may be affected by faults, errors, and failures.

• Components classification. Different kinds of components may exist within
the system, having different properties and/or behavior with respect to
dependability. Classifying them across different dimensions add useful
information with respect to dependability analysis. For example, hardware
and software components are subject to different kind of faults [6], and
stateful and stateless components exhibit a different behavior with respect
to error propagation.

• Use relations. Components are connected through their interfaces, and
they interact in order to implement the system’s function. Components
may require services to perform their function (i.e., they are “clients”), or
they may provide services to the other components (i.e., they are “servers”).
When a component uses the functionality provided by another compo-
nent, a potential error propagation path is established.

• Composition relations. Components may be composed of subcomponents,
with multiple levels of depth. With respect to dependability analysis com-
position relations affect how failures of subcomponents propagate to the
higher-level component.

3.3.2 Layer 2: Threats

Threats & Propagation

This package addresses the definition of different types of fault, errors and fail-
ures (FEF01), and the details of error propagation between components (SA04).
The conceptual elements that are addressed by this package are the following:

42 supporting dependability analysis in a component-based framework

• Fault. A fault that may affect a component of the system, possibly gener-
ating errors and/or failures. We distinguish two kinds of faults. Internal
faults develop inside components with a certain occurrence rate or delay,
external faults are generated by external causes and they may originate
from failures of other components.

• Error. An error is a deviation from correct system’s state [6]. Different
errors may develop inside a component as a result of propagation or ac-
tivation of latent faults. If compensation occurs, after a certain amount of
time errors may disappear from the internal state of the component. For
example, an erroneous value stored in a memory cell gets compensated if
it is overwritten by a correct value, before the wrong one is actually used
by other components.

• Failure mode. When an error reaches the service interface of the com-
ponent, a failure occurs. The failure of the component may take dif-
ferent forms, called failure modes. Different failure modes may affect a
component, as result of different error propagation paths. Failure modes
are characterized by their domain, detectability, consistency, and conse-
quences [6]. Failures may propagate in different ways to other compo-
nents depending on their failure mode.

• Propagation path. This concept addresses the identification of propagation
paths that exists in the system. Propagation paths can be characterized by
additional properties (e.g., delay and/or probability of occurrence).

Risk Specification

This packages addresses the identification and documentation of unwanted
accidents (FEF01): it is concerned with describing the vulnerabilities and risks
associated with threats to the system. Specific concepts taken into account by
this packaged are:

• Asset. An asset is a resource of value requiring protection. An asset can be
tangible (e.g., a component, or a specific feature) or intangible (e.g., repu-
tation, knowledge). Identifying and prioritizing a system’s critical assets
is a vital first step in the process to of identifying mitigation measures to
improve its level of protection.

• Threat. A potential cause of an undesired event which may result in harm
to system assets. A threat may refer to a fault, error, or failure of the
“Threats & Propagation” package, but may also be an exceptional event,
not specifically related to any system component (e.g., natural disasters).

• Hazard. A state of the system that, if other specific conditions occur in
the system or the environment, will inevitably lead to an accident. An

3.3 conceptual model 43

instance of the hazard concept may refer to an instance of the failure
concept in the “Threats & Propagation” package.

• Consequence. The consequence on assets of the occurrence of the occur-
rence of an accident. Classification of consequence depends on different
factors, including the application domain.

• Risk. The risk associated the occurrence of an accident. This is typically
obtained as a function of its expected frequency and its consequences
(e.g., see [31]).

3.3.3 Layer 3: Means

Fault Tolerance

This package concerns with the specification of how faults and errors are han-
dled by the system. This aspect includes the description of redundancy struc-
tures (requirement SA03), and the description of error detection mechanisms
(requirement FEF01). The conceptual elements that are addressed by this pack-
age are the following:

• Fault tolerance structure. This concept identifies components which are im-
plemented as a fault tolerant structure

• Redundancy manager. This conceptual element is used to specify that a
component in the system has the role of redundancy manager of a fault
tolerant structure. The redundancy manager is the interface of the struc-
ture to the other components and it is characterized by the redundancy
scheme that it implements.

• Adjudicator. This element is used to specify that a component in the sys-
tem has the role of adjudicator in a fault tolerant structure. The adjudica-
tor checks the correctness of variants operation.

• Variant. This element is used to specify that a component in the system
has the role of a variant in a fault tolerant structure.

• Detection activity. Error detection activities are used to detect the presence
of errors in stateful components. Such activities are characterized by their
coverage and false alarm ratio. Coverage is the probability to detect an
error, given that it is present; false alarm ratio is the probability to detect
an error, given that it is not present. Additional attributes should specify
when the activity should be executed, its duration, which components are
tested and the kind of errors that the activity can detect.

44 supporting dependability analysis in a component-based framework

• Performer of activity. Maintenance and error detection activities may be
performed by other components of the system (e.g., online tests). In such
cases, relations must exist in the dependability model between the detec-
tion activity and the component which is in charge of executing it. With
respect to dependability analysis, such relations allows taking into ac-
count the effect of not being able to perform the activity because of the
failure the component that is in charge of executing it.

Maintenance

This package addresses maintenance-related properties and policies (require-
ment M01). Maintenance can be preventive or corrective; the need for correc-
tive maintenance is determined by monitoring activities which are performed
on system components. The conceptual elements that are addressed by this
package are the following:

• Repair activity. Components may be repaired during the lifetime of the
system. Repair activities may be planned or they may be performed when
some event occurs in the system (e.g., the failure of a component). It is
possible that repair activities do not always complete successfully, but
instead that they are successful with a given probability.

• Replace activity. Components may be replaced during the lifetime of the
system. Often replace can be seen as a special case of repair. However,
it is possible that a component is replaced with a different (functionally
interchangeable) component.

• Overhaul activity. Overhaul is a maintenance activity that has as its pri-
mary objective to prevent components to reach an age in which their
dependability attributes and/or performance are degraded by frequent
failures. In components having an increasing failure rate, overhaul tries
to keep the failure rate below a certain threshold.

• Performer of maintenance activity. Maintenance activities may be performed
by other components of the system. This may be the case, for example,
of automated recovery activities (e.g., restart of a software application).
In such cases, for the same reason of detection activities, relations must
exist in the dependability model between the maintenance activity and
the component which is in charge of executing it.

Risk Mitigation

This package concerns with the specification of means to mitigate the risks
identified in the previous layer. A mitigation of failure is any system means
that allows the detection, propagation control, avoidance and/or mitigation of

3.3 conceptual model 45

the effects of undesired events. Risk mitigation spans very different techniques,
which are often related to the domain of interest or industrial practices of a
specific company; they are therefore not listed here.

Some techniques include the definition of fault-tolerant structures and/or
maintenance policies, and therefore a mitigation may refer to concepts defined
in the “Fault Tolerance” and “Maintenance” packages. However, other tech-
niques adopt different approaches; thus the need for a a separate package. As
an example, some events cannot be avoided because the root cause occurs out-
side the scope of the system (e.g., earthquakes). The only possible mitigation is
therefore a limitation of the resulting consequences, for example by operational
protocols or specific prescriptions.

This kind of information is typically used for traceability of requirements
(requirement A02) or qualitative dependability analysis such as FMECA.

3.3.4 Layer 4: Attributes

Metrics Definition

This package concerns with the definition of analysis objectives for depend-
ability analysis (requirement A01). The main concepts that are addressed by
this package are the following:

• Dependability metric. This concept identifies a dependability metric. A de-
pendability metric is characterized by its name, which identifies the kind
of measure that should be evaluated, and by a reference to the type of
evaluation that should be performed for that measure.

• Evaluation type. This concept identifies the type of evaluation that should
be performed for a dependability metric (e.g., instant of time, steady-
state). Additional parameters concerning the kind of evaluation (e.g., the
time point(s) in case of transient analysis) are addressed by this element.

• Target component. This is a relation connecting a dependability metric to
the target component, i.e., the component whose dependability properties
have to be evaluated.

• Target failure. For a fine-grained specification of dependability metrics, it
should be possible to connect a dependability measure to some specific
failure mode of a system component defined at the “Threats” level. This
relation allows the modeler to define metrics that consider only a subset
of the failure modes of a system component. This facility can be useful
for example when components have multiple failure modes with different
consequences.

46 supporting dependability analysis in a component-based framework

Requirements Specification

This package concerns with the specification of dependability requirements
(requirement A02). The concepts included in this package are the following:

• Requirement. A dependability-related requirement on the system or its
components. A requirement contains a textual description, an may refer
to a dependability metric defined in the “Metrics Specification” package.

• Parent requirement. This relation addresses traceability of requirements de-
composition, by connecting a lower-level requirements with a higher-level
requirement.

• Requirement affects. This relation can be used to connect a requirement
with the system component that is involved. It should be noted that is
not always possible to identify a single component that is involved in
satisfying a requirement: higher-level requirements may involve the entire
system or a set of components.

3.4 investigation of existing languages

As introduced in Section 2.2, different languages proposed in literature and/or
established by industrial practice provide some means to address non-functional
aspects of system architectures.

After having identified the proper language requirements, and defined our
conceptual model, we analyzed the main relevant languages in literature, and
evaluated to which extent they fulfill the identified requirements. The degree
to which such requirements are satisfied is evaluated considering not only the
offered modeling features, but also: i) the offered modeling convenience, and
ii) the extent to which they can be adapted to the target CHESS methodology.
Concerning i), in order to be effective in the development of real systems, the
resulting language should implement the support for requirements in a conve-
nient way for the modeler; concerning ii), the language should not contrast with
the “correctness-by-construction” and “separation of concerns” approaches as
intended by the CHESS methodology.

It should be noted that requirement SA01 is the main purpose of every ADL,
and it is therefore addressed to some extent by all the languages that have been
considered.

3.4.1 QoS&FT

The OMG QoS&FT profile [151] is an extension of the UML language that takes
into account Quality of Service (QoS) contracts and fault tolerance for software
architectures. The main contribution of this profile is the definition of a general

3.4 investigation of existing languages 47

framework for QoS specification. It addresses requirements A01 and FEF02,
since it allows users to specify QoS contracts on component interfaces and con-
straints on the execution of operations.

Relations between system components (SA04) are defined by means of end-
to-end constraints affecting interactions between components. A “QoS Catalog”
includes specific dependability concepts such as “fault” and “failure”; however
some important properties like their occurrence rate are missing. Part of the
profile is devoted to the definition of fault-tolerant software solutions; however
the profile uses a descriptive approach, making it difficult to use the resulting
information for the automated derivation of analysis models. Also, hardware
solutions are not taken into account. Requirement SA03 is therefore only par-
tially satisfied.

Finally, the profile uses a complex and heavy-weight annotation process,
which has so far limited its practical usage. Indeed, it has been shown that
adopting the QoS&FT profile for modeling real systems requires a lot of effort
for the final user [17].

3.4.2 MARTE

The OMG MARTE profile [143] is one of the most widely adopted languages
for modeling non-functional properties of system architectures, and includes
also most of the concepts that were introduced in the earlier Schedulability,
Performance, and Time (SPT) profile [152] Although it does not take into ac-
count dependability properties, some of its features allow it to partially fulfill
the identified requirements and they are therefore discussed in the following.

Its “Generic Component Model” (GCM) refines the UML2 structured class
modeling concept, while the “Hardware Resource Modeling” (HRM) package
supports the description of the hardware platform, thus addressing require-
ment SA01. Furthermore, the “Alloc” package can be used to detail the al-
location of application elements onto the available computing resources. The
Generic Resource Modeling (GRM) package introduces the concept of resource,
and provides several stereotypes that allow different resource types (e.g., stor-
age, communication, computing and device resources) to be distinguished, thus
addressing SA02.

A rich library of non functional quantities is included in the profile, allowing
the specification of a wide range of quantitative properties (e.g., frequencies, de-
lays). Such library does not explicitly define dependability properties; however
it can be used to provide support for the definition of dependability attributes,
e.g. using the NFP_Frequency elements to specify fault occurrence rates.

MARTE also defines the Value Specification Language (VSL), a textual lan-
guage inspired by UML’s Object Constraint Language, which can be used to
specify parameters, variables, and relations between them, also allowing com-

48 supporting dependability analysis in a component-based framework

posite values (such as collection, intervals, and tuple values) to be specified.
VSL is a valuable support to the definition of dependability attributes (require-
ment FEF02) and analysis objectives (requirement A01).

Despite these useful features the profile is mainly focused on modeling real-
time properties; for this reason, maintenance (M01), fault tolerance structures
(SA03), and the specification of threats affecting system components (FEF01)
are not considered at all.

3.4.3 SysML

The Systems Modeling Language (SysML [148]) reuses a subset of UML2 and
provides additional extensions focused on systems engineering. SysML tries to
reduce the size and software-centric structure of UML, adopting a more com-
prehensive view of systems’ development processes. Considerable emphasis is
put on the specification of system requirements and their traceability through
the introduction of “Requirements Diagrams”, thus fulfilling A02. Similarly as
in MARTE, a comprehensive “Model Library for Dimension and Units” pro-
vides the support for describing quantitative attributes, thus addressing FEF02;
however, as in MARTE, dependability properties are not explicitly defined.

SysML provides some enhancements for SA01 with respect to plain UML2. It
comprises a new first class “Block” entity that can be used to model any struc-
tured information related to the system (i.e., both software and hardware for
example); the concept of “Flow Port” extends the basic UML2 “Port” concept to
model continuous flows of data or other materials between system components.
SysML “Parametric Diagrams” allow users to represent relations between value
properties of different blocks of the diagram, through mathematical expressions
that specify constraints on their properties. Nevertheless, SysML has not been
conceived for the specification of dependability properties, and also in this case
specific concerns like maintenance, fault tolerance, and error propagation are
not addressed.

3.4.4 EAST-ADL2

EAST-ADL2 [57] is a modeling language for electronics system engineering
within the automotive domain, which reuses subsets of UML2 and SysML and
provides additional extensions to satisfy specific automotive domain require-
ments. Safety requirements and properties are taken into account by the “ex-
tensions for SafetyRequirements” and “extensions for SafetyCase” packages.

Among the introduced features, specific subsets of the language allow to de-
scribe the erroneous behavior of components through an error model (“exten-
sions for ErrorBehavior” package). EAST-ADL2 features thus provide extensive
support for FEF01, FEF02, and A01. Due to its nature, EAST-ADL2 is however

3.4 investigation of existing languages 49

very tied to the automotive domain: as a simple example, safety is defined by
means of ASILs (Automotive Safety Integrity Levels).

Another issue with respect to the CHESS methodology resides in its error
modeling capabilities. In EAST-ADL2, error modeling is treated as a completely
separated view, orthogonal to the nominal architectural model: relationships
between error behaviors are captured by means of explicit error propagation
ports and connections. This approach provides the greatest degree of flexibility,
but also allows the modeler to define propagation paths where no functional
dependencies exist; this may result to incorrect modeling of error propagation,
thus violating the “correctness-by-construction” principles.

3.4.5 AADL

The “SAE Architecture Analysis and Design Language” standard describes the
AADL language [171], which originated from the avionic domain and has later
been adopted in the automotive industry; it is currently maintained by the So-
ciety of Automotive Engineers (SAE). The AADL language allows components
to be distinguished by category, including for example the “memory”, “bus”,
and “processor” categories, thus fulfilling requirement SA02.

For the purpose of dependability annotations and analysis the AADL Er-
ror Model Annex [172] is of particular relevance, since it allows users to add
dependability-related information to AADL architecture models. This informa-
tion may include fault and repair assumptions, fault-tolerance mechanisms,
stochastic parameters of the system, and properties of phases in a phased-
mission system [71]. Separate error models are defined for system components,
and error propagation takes place through components’ interfaces.

The AADL Error Model Annex provides a textual language capable to ad-
dress, from a modeling power point of view, most of the requirements in Ta-
ble 3.1. However, no predefined attributes or properties are provided: the def-
inition of the possible states of components, as well as the definition of prop-
agation relations, is completely left to the user. While this approach allows for
a detailed specification of dependability properties, a great effort is required to
the end users even for relatively simple models.

3.4.6 DAM

The work in [16] defined the Dependability Analysis Modeling (DAM) profile,
starting from a set of requirements similar to those in Table 3.1. DAM aims at
defining a MARTE-based UML profile for dependability modeling; for this pur-
pose, it defines some stereotypes as specializations of the stereotypes included
in MARTE.

50 supporting dependability analysis in a component-based framework

DAM introduces some features especially tailored to dependability analy-
sis, representing one of the most complete proposals in literature. Requirement
SA03 is addressed by using concepts from the approach defined in [21, 24], in
which the elements of fault-tolerant structures are marked with specific stereo-
types to define their role (e.g., voter, variant, etc.) within the fault-tolerant struc-
ture. The «ErrorPropagation» stereotype allows to model complex propagation
relations between components, thus satisfying SA04. Requirements FEF01 and
FEF02 are addressed by the “Core” and “Threats” packages, allowing to de-
scribe faults, errors, failures, and hazards.

Requirement M01 is only partially addressed by the “Maintenance” package:
preventive maintenance is not fully addressed, and certain class of systems
cannot be properly modeled (e.g., Scheduled Maintenance Systems, SMS [72]).
Requirement A01 is addressed by defining a “Dependability Analysis Context”,
based on MARTE’s “AnalysisContext” model element.

DAM is an important step forward in the introduction of dependability at-
tributes at UML level, and the first attempt to create an “universal” dependabil-
ity profile. In our opinion, it has however some limitations with respect to our
objectives, which led us to the definition of a new language, using a different
approach. On one hand, DAM is very coupled with MARTE, since most of the
stereotypes are defined as extensions of MARTE concepts. For this reason, it
suffers of an approach originally tailored to the analysis of real-time software
properties, which makes it unbiased towards the modeling of software behav-
ior, rather than hardware and structural properties of software. Actually, most
of the stereotypes in the profile extend stereotypes of the MARTE “Generic
Quantitative Analyis Modeling” (GQAM) package, which is intended to sup-
port analysies based on the software behavior [143].

While DAM supports the modeling of threats, they are specified as exten-
sions of the MARTE::GQAM “Step” concept, which represents a primitive step
of a software behavior and can be applied to very different modeling ele-
ments across the functional model. As a result, threat information may result
dispersed across several diagrams, and thus difficult to aggregate by model-
transformation algorithms without introducing further constraints. Moreover,
as previously discussed, providing the user with such a high degree of free-
dom in specifying non-functional attributes does not provide guarantees on
the correctness and consistency of the resulting system model.

An excessive diffusion of information is also noticeable in other parts of the
language, leading to semantic overlaps. For example, the attribute unreliabilty
can be specified for both “Component” elements, and “Service” elements, with
a component providing one or more services. While it can be useful in support-
ing different modeling approaches, specifying both the attributes may result in
an inconsistent model. To a certain extent, this problem is however not com-
pletely avoidable and derives from the intent to address priorities of different
stakeholders in the same model [118].

3.5 dep-uml 51

Table 3.2: Requirements addressed by existing languages.

QoS&FT MARTE SysML EAST-ADL2 AADL DAM

SA01 + + + + + +
SA02 + + +
SA03 ~ + + ~
SA04 + + + + +
FEF01 ~ ~ + ~
FEF02 ~ ~ ~ ~
M01 ~ ~
A01 ~ ~ ~ +
A02 + + + ~

While the DAM profile addresses — to some extent — all the requirements
identified in Section 3.2, we found its approach not adequate for our purposes:
the excessive freedom left to the users, and the possible inconsistencies result-
ing from the specification of non-functional properties are in contrast with the
system design methodology we advocate.

3.4.7 Summary

Our evaluation of existing modeling languages with respect to the identified
requirements is summarized in Table 3.2. Symbol “+” indicates that the re-
quirement is properly fulfilled by the language; symbol “~” states that the
requirement has been taken into account by the language, but it has not been
addressed in a satisfactory way with respect to our objectives, as discussed in
the previous sections. Finally, an empty cell indicates that the requirement is
not addressed, or only marginally addressed, by the language.

As highlighted in the table, while some languages addressing most of the
requirements exist (mainly AADL and DAM), none of them has been deemed
completely satisfactory with respect to our objectives and the target system
design methodology.

3.5 dep-uml

The definition of the conceptual model first, and then the analysis of existing
languages, put the basis for the definition of the “CHESS Dependability Pro-
file”, i.e., the language extensions to be applied to the core CHESS ML language
in order to support the specification and analysis of dependability properties.
In this thesis we focus on a specific portion of that we call “DEP-UML”. This
portion, which can also be seen as a standalone language, is the subset which
supports the application of state-based stochastic dependability analysis. The

52 supporting dependability analysis in a component-based framework

Figure 3.5: Relationship between DEP-UML and the CHESS Dependability Profile.

full specification of the CHESS Dependability Profile is given in [36], and con-
tains model elements to support also other analysis techniques, e.g., FMECA2

and FPTC3-based techniques [49, 75].
The relationships between DEP-UML, the CHESS Dependability Profile, and

the conceptual model are depicted in Figure 3.5. The CHESS Dependability
Profile, as a whole, is an implementation of the conceptual model described
in Section 3.3. DEP-UML contributed to its definition by providing stereotypes
for the System Structure, Threats & Propagation, Fault Tolerance, Maintenance, and
Metrics Specification packages.

The main elements of the language are listed in Table 3.3. In the following,
their description is provided through a practical view of the language, which
describes how such stereotypes are used for modeling dependability informa-
tion in a component-based system design process. The discussion will highlight
the most distinctive features of the DEP-UML language, which are closely re-
lated to requirements listed in Section 3.2:

• support for the CHESS methodology for the specification of component-
based system architectures (SA01);

• a set of “dependability template” stereotypes for adding dependability
information to system components in a compact way (SA02, FEF02);

• simple modeling of error propagation (SA04);

• the ability to define custom error models for detailed threats specification
(FEF01);

• support for hierarchical dependability modeling (SA01, SA04);

• simple modeling of redundancy structures (SA03);

2 Failure Mode, Effects and Criticality Analysis
3 Failure Propagation and Transformation Calculus

3.5 dep-uml 53

DepTemplate (abstract): extensions: UML::Component, UML::InstanceSpecification; at-

tributes: faultOcc; constraints: “Component must be a ComponentImplementation, or be
included in the DeploymentView”.

StatefulHardware: extensions: DepTemplate; attributes: faultOcc, probPermFault, errorLa-
tency, repairDelay.

StatelessHardware: extensions: DepTemplate; attributes: faultOcc, probPermFault, repairD-
elay; constraints: “May not have owned properties”.

StatefulSoftware: extensions: DepTemplate; attributes: faultOcc, errorLatency, repairDelay.
StatelessSoftware: extensions: DepTemplate; attributes: faultOcc; constraints: “May not

have owned properties”.
DependableComponent (abstract): extensions: UML::Component, UML::InstanceSpecification;

attributes: errorModel; constraints: “Component must be a ComponentImplementation,
or be included in the DeploymentView”.

Propagation: extensions: UML::Connector, UML::Comment, UML::InstanceSpecification;
attributes: prob, propDelay; constraints: “Comment has to be stereotyped as
MARTE::Alloc::Assign”.

ErrorModel: extensions: StateMachine (from UML::StateMachines); attributes: prob,
propDelay; constraints: “ErrorModel state machine can have only states and transitions
stereotyped with InternalFault, ExternalFault, Error, FailureMode, Propagation. It has to be
owned by a ComponentImplementation”.

Propagation: extensions: Transition (from UML::StateMachines); attributes: prob, propDe-
lay; constraints: “From Error to Error, or Error to FailureMode only”.

InternalFault: extensions: Transition (from UML::StateMachines); attributes: Occurrence,
permanentProb, transientDuration.

ExternalFault: extensions: Transition (from UML::StateMachines); attributes: fromPort,
propagationCondition.

ThreatState (abstract): extensions: State (from UML::StateMachines).
Error: extensions: ThreatState; attributes: vanishingTime.
FailureMode: extensions: ThreatState; attributes: affectedPorts.
MMActivity (abstract): extensions: UML::Activity, UML::Action; attributes: when, dura-

tion, probSuccess.
Repair: extensions: MMActivity; attributes: targets.
ErrorDetection: extensions: MMActivity; attributes: target, correctionProbability, con-

trolledFailure; constraints: “controlledFailure must be a FailureMode defined for the target”.
StateBasedAnalysis: extensions: MARTE::GQAM:GaAnalysisContext; attributes: mea-

sure, measureEvaluationResult, targetFailureMode, targetDepComponent; constraints: “The
platform attribute (from GaAnalysisContext) has to refer the system to be analyzed, i.e.,
a root InstanceSpecification owning hardware instances and the deployment information
(MARTE::Assign)”.

Table 3.3: Elements of the DEP-UML language.

• support for the specification of preventive and corrective maintenance
activities (M01);

• detailed definition of metrics for dependability evaluation (A01).

54 supporting dependability analysis in a component-based framework

All the attributes of DEP-UML stereotypes are based on MARTE NFP_Com-

monType elements, therefore inheriting the possibility to define their values as
stochastic values, following a certain probability distribution [143].

3.5.1 Component-based approach

One of the peculiarities of the DEP-UML profile is the proper support for
the CHESS component-based modeling methodology. In the CHESS design
methodology (see Section 3.1), components are defined at type level first, pos-
sibly imported and reused from libraries, and then instantiated and connected
together in a proper collaboration scenario. All the connections between com-
ponents instances are assumed to be made through their (compatible) ports.

During the profile implementation specific emphasis has been put to assure
that the dependability information related to a given component can be speci-
fied “out of its context”, i.e., in isolation with respect to the other components
that may populate the system architecture. This approach allows dependability
information to be specified as a reusable concept for components, as already typ-
ically holds in component-based design regarding the functional specification,
thus promoting reuse also in the specification of dependability properties.

However, while it should be possible to specify the dependability properties
of system components in isolation, the context in which the component instance
actually operates may influence its properties. A straightforward example is
given by two instances of identical hard disks: while in principle they would
have the same dependability properties (e.g., fault occurrence rate), the context
in which the two instances operate may be of great influence. An environment
subject to heavier vibrations could for example increase the fault occurrence
rate of the involved disk instance.

Providing the right support for the modeling of dependability properties at
instance level is therefore fundamental. As described in Section 3.1.2, CHESS
ML relies on the Property and InstanceSpecification UML constructs for the
modeling of component instances. The support for specializing dependability
information at instance level is then provided by defining the main stereotypes
as extension of the «InstanceSpecification» UML entity. Thanks to this fea-
ture, dependability attribute values defined at component level can be overrid-
den (if needed) at instance level.

3.5.2 Dependability templates

DEP-UML provides two means to attach dependability information to system
components. The most convenient way is to use a set of pre-defined “tem-
plate” stereotypes that are provided by the language. Such stereotypes describe
common classes of components, and allow their dependability properties to be

3.5 dep-uml 55

specified by means of a simple set of attributes. The definition of such elements
has been inspired by the work developed within the past HIDE project [21].

When such stereotypes are applied, it is assumed that the involved com-
ponent: i) is atomic, i.e., its internal structure is not considered, ii) is affected
by a single failure mode only, and iii) when it fails, all the services it provides
are affected. The introduced dependability templates distinguish between hard-
ware and software components, and between stateful and stateless components.
For software components it is assumed that they are only affected by transient
faults, since permanent faults should have been removed by previous testing
and debugging activities.

The combination of the two above dimensions leads to four different stereo-
types (all of them extending the abstract «DepTempemplate» abstract class):

• «StatefulHardware», which models hardware component having internal
state (e.g., CPUs, memories). Such components may be affected by latent
errors (e.g., a CPU may hold a wrong value in a register), and they may
experience transient as well as permanent faults.

• «StatelessHardware», which models hardware component without inter-
nal state (e.g., buses, cables). In such components fault activation (either
of transient or permanent faults) immediately leads to failure.

• «StatefulSoftware», which models software components having an in-
ternal state. Such kind of components are only subject to transient faults,
and may hold an erroneous value in one of their variables.

• «StatelessSoftware», which models software component that do not
have an internal state. In such components fault activation immediately
leads to failure; moreover the repair is immediate: as soon as the fault
causing the failure is removed, the component is immediately working
properly again, since i) there is no internal state, and ii) there failure has
no “physical” effect on the component.

Based on the kind of component, a subset of the following four attributes can
be specified:

• faultOcc, which specifies the fault occurrence rate of the component. If
it is not specified otherwise, fault occurrence is assumed to follow an
exponential probability distribution.

• probPermFault, which specifies the probability that the fault is a perma-
nent one, as opposed to a transient fault. This attribute is applicable to
hardware components only.

• errorLatency, which specifies the delay after which an error generates a
failure of the component. If it is not specified otherwise, it is assumed to

56 supporting dependability analysis in a component-based framework

Figure 3.6: Applying dependability information to component instances connections.

follow an exponential distribution. This attribute is applicable to stateful
components only.

• repairDelay, which specifies mean time required to repair the component.
If it is not specified otherwise, it is assumed to follow an exponential
distribution.

Such stereotypes can be used from the initial phases of system development,
when detailed information on components dependability properties is not yet
available.

Following the CHESS methodology, such stereotypes can be applied to UML::-

Component elements and UML::InstanceSpecification elements; the latter en-
ables the specification of dependability properties at component instance level.
An additional constraint imposes that the stereotype is applied only on «Compo-

nentImplementation» elements, or «Component» elements in the DeploymentView.
This ensures that dependability information is added only to hardware compo-
nents, or to software components which already have an implementation.

In principle, the language can be extended with additional template stereo-
types. However, when a detailed specification of dependability threats is needed,
it is usually more practical to use other advanced facilities provided by DEP-UML
like the error model construct described later.

3.5.3 Error propagation

Once components are instantiated and connected to form the overall system ar-
chitecture, information concerning error propagation can be properly modeled
with DEP-UML, by specifying the probability that error propagation occurs be-
tween two communicating components, and the delay after which it will occur.

Functional connections between components identify possible propagation
paths within the system. Propagation may occur between two components in-
stances of the same kind (i.e., hardware or software) which are connected to-
gether by a functional relation. Propagation can also occur from hardware to
software component instances, whenever allocation (deployment) relations ex-
ist between them.

3.5 dep-uml 57

Figure 3.7: DEP-UML Error Model example.

The actual information about error propagation is specified through the «Prop-
agation» stereotype (Figure 3.6). Such stereotype may be applied to those lan-
guage constructs that are used, in the functional model of the system, to specify
functional relations and deployment information, i.e.:

• UML::Connector elements, which specify functional relations by connect-
ing the different components instances through ports (both software and
hardware);

• MARTE::Assign comments, which are used to specify deployment infor-
mation, i.e., allocation relations between software and hardware compo-
nents instances.

The stereotype allows the user to specify the probability that propagation oc-
curs between the two components (through prob attribute), and the delay after
which it will occur (through the propDelay attribute). If the stereotype is not
applied, or its parameters are not specified, it is assumed that propagation
between two communicating components occurs instantaneously, with proba-
bility 1.

Finally, the «Propagation» stereotype can also be applied to InstanceSpeci-

fication elements, thus allowing different propagation properties to be speci-
fied for different connector instances (i.e., instances of the same UML::Connector

element).

3.5.4 Error Model

Dependability templates described above provide a reasonable balance between
convenience and modeling power; however, if greater expressiveness is needed,
it can be achieved by attaching a specific “Error Model” to components.

Error models allow designers to provide more details on faults, errors, and
failure modes affecting system components. The ability to define detailed error
models has been recognized as a useful feature in other dependability-oriented

58 supporting dependability analysis in a component-based framework

ADLs. The DEP-UML error model has been inspired by the Error Model Annex
for AADL [172], and the EAST-ADL2 language [57], both featuring a similar
facility, although with some limitations as discussed in Section 3.4.

The DEP-UML error model provides a simple UML-based graphical nota-
tion (like EAST-ADL2), in which however error propagation is constrained to
dependency relations already existing in the architectural model of the system
(like in AADL).

Specifying the error model

The DEP-UML Error Model is defined as a particular kind of state machine,
which is identified with the ad-hoc «ErrorModel» stereotype (Figure 3.7). Once
an error model is created, it is then applied to a component by means of the
«DependableComponent» stereotype and its errorModel attribute.

For consistency with UML2, an «ErrorModel» state machine must contain
an initial state (i.e., a Pseudostate with kind=initial); this state represents the
component’s “healty” state, i.e., the state in which the component is correctly
working. Errors and failure modes are modeled as «UML::State» elements, us-
ing the DEP-UML «Error» and «FailureMode» stereotypes, respectively.

Faults are modeled as transitions (UML::Transition elements) between the
initial state, and states stereotyped as «Error». Two kinds of faults can be mod-
eled in a DEP-UML Error Model. The «InternalFault» stereotype represents
faults that occur spontaneously; conversely the «ExternalFault» stereotype
represents faults that are originated by propagation, i.e., they are coming from
the environment where the current component is (or can be) instantiated.
«InternalFault» elements own the Occurrence attribute, which allows the

probability distribution of fault occurrence to be specified, and permanentProb
and transientDuration, which describe the probability of the fault to be a per-
manent fault, and optionally the average duration of a transient fault. The «Ex-

ternalFault» stereotype has two attributes, fromPort and propagationCondition,
which allow the source of fault to be specified.

The relations between erroneous states of the component, including the re-
lations between errors and failure modes, are specified with UML::Transition

elements. Non-functional attributes that may be applied to such transitions are
the propagation probability and propagation delay, in a similar way as for con-
nection between components. For this purpose, the «Propagation» stereotype
is extended (technically with a “merge increment” [150]) in order to be applied
to UML::Transition element as well.

Specifying affected services

With respect to the need of specifying dependability information out of compo-
nent’s context, but still support detailed specification of component’s threats,
one of the most interesting features provided by the DEP-UML Error Model

3.5 dep-uml 59

Figure 3.8: Connecting failure modes to provided services, through the “affectedPorts”
attribute.

is the ability to link failure modes and external faults to the services provided
and required by the component, respectively.

By default it is assumed that all the failure modes defined in a component’s
error model affect all the services provided by the component. However, it is not
necessarily the case: the classic taxonomy of dependability [6] defines a failure
as the event that occurs when the provided service becomes incorrect. It is therefore
evident that the failures of a component are strictly related to the services it
provides; if a component provides several services, the occurrence of a failure
may involve only one, a subset, or all of them.

In DEP-UML such behavior can be represented by linking «FailureMode»

elements to a set of output ports owned by the component, through the specific
affectedPorts stereotype’s attribute. Such relation makes it possible to identify
the services affected by the failure among those provided by the component
(Figure 3.8). More in general, the affectedPort attribute is used to select a subset
of ports from those which may propagate incorrect data, i.e., any service port
with an output data flow (for software components), and output data ports (for
hardware components).

Similarly, a fault may occur in a component even when only a subset of the
services it requires fail. The failure of a service on which the component relies
is perceived as an external fault [6], which may generate errors and finally lead
the involved component to fail. If a component requires different services, their
failure may have different effects on the internal state of the component, pos-

60 supporting dependability analysis in a component-based framework

Figure 3.9: Connecting external faults to required services, through the “fromPort” at-
tribute.

sibly activating different propagation paths and finally leading the component
to different kind of failures (i.e., different failure modes).

To model this aspect of error propagation, «ExternalFault» elements are
linked to a set of input ports owned by the component through the fromPorts
attribute (Figure 3.9). More in general, the fromPorts attribute selects a subset
of component’s ports that can receive faulty data, i.e., any service port with an
input data flow (for software components), and input data ports (for hardware
components).

The additional propagationCondition attribute can be used to specify the condi-
tion required for the fault to occur, as a combination of failures occurred on the
specified input ports. The grammar for specifying such conditions is reported
in the following:

Listing 3.1: Grammar for the specification of propagation conditions.

<COND> ::= <SIMPLECOND> | <EXTCOND>
<SIMPLECOND> ::= AND | OR
<EXTCOND> ::= <EXTCOND> AND <EXTCOND> | <EXTCOND> OR <EXTCOND> | <F>
<F> ::= <PORT> | <PORT>[<FAILUREMODE>]
<PORT> ::= <text>
<FAILUREMODE> ::= <text>

The <COND> rule describes a propagation condition. A propagation condition
may be specified as a simple condition (<SIMPLECOND>), or as an extended

3.5 dep-uml 61

condition (<EXTCOND>). A simple condition can be used to specify that a fail-
ure must occur on all the ports specified by the fromPort attribute (“AND”), or
on any of them (“OR”).

Extended conditions allow to specify more complex conditions; an extended
condition may be either a logical AND or OR of two extended conditions, or the
specification of a failure occurrence (<F> rule). A failure occurrence is specified
as a UML::Port, and optionally the name of a failure mode; the port must be
one of the “input” ports owned by the component for which the error model
is being defined. Such condition specifies that propagation occurs when the
component connected on the specified port fails. If the name of the failure
mode is specified, only failures occurring with that specific failure mode are
taken into account.

This facility allows the modeler to specify detailed propagation behavior be-
tween components, and it can also be used to model redundancy. In principle,
the grammar can be extended to support the specification of more advanced
conditions (e.g., k-out-of-n).

3.5.5 Hierarchical and modular modeling

DEP-UML pays special attention in supporting hierarchical and modular mod-
eling of dependability properties. Hierarchical modeling and decomposition
is a fundamental aspect of model-driven system development, since it allows
progressive refinement of the model, thus enabling an iterative and incremental
development approach. Two key features of DEP-UML in this perspective are
described in the following.

Three ways to annotate composite components

The language supports three different ways to model the dependability prop-
erties of composite components, i.e., components whose internal structure is
detailed in the functional model of the system. The first alternative is to use the
set of dependability templates described in Section 3.5.2, thus disregarding the
internal structure of the component, and considering it as an atomic component
for the purpose of dependability analysis. This approach is particularly useful
in the initial phases of model refinement, when the dependability properties of
subcomponents may not be yet known.

The second way to attach dependability information to composite compo-
nents is by means of the error model mechanism described in Section 3.5.4: the
stereotype «DependableComponent» (and thus error models) can be applied to
composite components as well. Also in this case, however, the internal structure
of the component is not taken into account for dependability analysis, since the
dependability behavior of the component is completely defined by the error
model.

62 supporting dependability analysis in a component-based framework

Figure 3.10: Modeling of redundancy structures in DEP-UML. The figure depicts the
model of a redundant RAID array with 2 disks and a controller.

As a third alternative, the dependability behavior of the upper level compo-
nent can be completely derived from the dependability behavior of its subcom-
ponents, if available. To apply this strategy all the input and output ports of a
component must be delegated to its subcomponents; in addition, the depend-
ability properties of the subcomponents should have been specified. In this
case, composite components are seen as logical containers with no functional
elements. Since all the required and provided services are delegated to subcom-
ponents, the failures affecting the composite component can be derived from
those affecting the subcomponents to which service interfaces are delegated.

These three alternatives play a key role in the incremental and hierarchical
modeling, providing different level of details corresponding to different stages
of system design.

3.5.6 Modeling of redundancy structures

By combining the features presented above, DEP-UML provides a simple way
to model redundancy in component-based architectures. Redundancy struc-
tures are in general composed of a set of variants, which provide the redundant
service, an adjudicator, which checks the correctness and agreement of variants,
and a redundancy manager, which is in charge of communicating with the rest
of the system and possibly decide the redundancy strategy.

From the perspective of component-based architecture, the services provided
by the redundancy structure are delegated to its subcomponents, with the
redundancy manager being in charge to manage this delegation. The non-
functional behavior of redundancy structures can thus be modeled in DEP-
UML using the error model facility (Section 3.5.4) and composite components
(Section 3.5.5).

Figure 3.10 shows the definition of a redundant RAID array composed of
two identical disks in a mirrored setup and a controller. The whole redundancy
structure is modeled as a composite component, containing two instances of

3.5 dep-uml 63

the “Disk” component and a controller. The controller is the interface of the
redundancy structure with the rest of the system: input and output ports of
the upper-level component are delegated to it. The controller is also connected
in a bidirectional way to the two disks; failures from the two disks may then
propagate to the controller and vice-versa.

The two disks are annotated with the «StatefulHardware» stereotype, while
the redundancy mechanism implemented by the controller is described by at-
taching an error model to it. In the example of Figure 3.10 an «ExternalFault»

connects the initial state of the controller with the error “e1”. The external fault
occurs in the controller when it receives faulty data from the disks; however,
since the two disks are mirrored, the fault will occur only when both of them
are failed. To represent this setup in the error model, the two input ports con-
necting the controller with the two disks are added to the fromPorts attribute,
while the propagationCondition attribute is set to “AND”.

When both disks are failed, the resulting error will then propagate as a failure
of the controller, and (because of delegation) as a failure of the overall redun-
dancy structure. Finally, an internal fault of the controller can also lead to a
failure of the redundancy structure, regardless of the working state of the two
disks.

3.5.7 Maintenance activities

When dependability templates are used, maintenance information can be at-
tached using the repairDelay attribute, which specifies an exponentially dis-
tributed delay after which the component is restored to its original healthy
state.

While such simple specification of repairs is useful, it is not powerful enough
to specify more advanced system-level maintenance strategies. DEP-UML pro-
vides an additional and more detailed mechanism to model maintenance strate-
gies, based on the concept of activity: a maintenance strategy is a collection of
activities that are performed on the system when certain conditions hold. Such
mechanism is also used to specify maintenance policies for components for
which an error model is defined; the error model itself in fact does not provide
any information on repairs.

Activities are specified using extensions of the «MMActivity» abstract ele-
ment, which extends UML::Activity and UML::Action. The conditions that trig-
ger the execution of an activity are specified by the when attribute, through an
expressions in the grammar below.

Listing 3.2: Grammar for specifying conditions for the execution of activities.

<S> ::= <T> [<EX>] | <T> [<EX>] {<L>}
<T> ::= Immediately | AtTime(<realnumber>) | Periodic(<realnumber>)
<EX> ::= (<EX> and <EX>) | (<EX> or <EX>) | not <EX> | true | <FD>

64 supporting dependability analysis in a component-based framework

<FD> := Failed(<FailureMode>) | Detected(<Error>)
<L> := Before(<RealNumber>) | After(<RealNumber>) |

Interval(<RealNumber>,<RealNumber>)

Expressions of such grammar are constituted of three parts: i) a description
of the scheduling of the activity with respect to time in the system’s lifetime
(<T> rule); ii) a condition on the system’s state that must hold in order for
the activity to be executed (<EX> rule); and iii) an additional (optional) condi-
tion that enables the execution of the activity only in a predefined interval of
time (<L>). More in detail, the symbols that form the above grammar have the
following meaning:

• Immediately. The activity is executed immediately as soon as the condi-
tions specified by <EX> hold.

• AtTime(<RealNumber>). The activity is executed at the instant of time spec-
ified by the <RealNumber> element, starting from the beginning of the
scenario.

• Periodic(<Distribution>). The activity is executed periodically, at intervals
of time following the probability distribution that is specified. For peri-
odic activities, we consider the interval of time starting from the begin-
ning of an activity execution and the beginning of the subsequent one. If
the activity duration is greater than this interval of time, the activity is
executed immediately as soon as the previous execution completes.

• Failed(<FailureMode>). Predicate on the state of a component; this predi-
cate is true if the component has failed with the failure mode specified by
the <FailureMode> element.

• Detected(<Error>). Predicate on the state of a component; this predicate is
true if the error <Error> has been detected by error detection mechanisms.

• Before(<RealNumber>). The activity can be executed only at instants of time
prior to the value specified by <RealNumber>.

• After(<RealNumber>). The activity can be executed only at instants of time
after the value specified by <RealNumber>.

• Interval(<RealNumber>,<RealNumber>). The activity can be executed only
in the interval of time identified by the two <RealNumber> values. The
boundaries are included in the interval.

As an example, the expression “AtTime(10.000)” describes a condition for which
the activity is triggered exactly when 10.000 units of time are elapsed. Con-
versely, the expression “Immediately [Failed(A.fm1)]” describes a condition for
which the activity that is executed immediately after failure mode “fm1” of
component “A” has occurred.

3.5 dep-uml 65

Figure 3.11: A repair activity modeling the periodic software rejuvenation of two com-
ponent instances.

The additional duration attribute specifies the probability distribution of the
time required to perform the activity. Two kinds of maintenance-related activi-
ties are considered: “error detection” and “repair”, which are identified by the
«ErrorDetection» and «Repair» stereotypes respectively, both extending the
«MMActivity» element.

The «ErrorDetection» stereotype describes an error detection activity that
is performed on a component. In this context “error detection” is intended in
a general way as any activity that has the objective to discover an erroneous
state of a component. This includes, for example, periodic checks on memories,
assertions checking on variables, overhaul of mechanical components. Based
on the result of this activity, a repair activity can subsequently be triggered.
The attributes of the activity allow specifying a set of component instances (i.e.,
InstanceSpecification elements) that are the targets of error detection, its du-
ration, and its success probability, i.e., the coverage of the detection mechanism.

The «Repair» stereotype describes a generic maintenance activity, and can
represent both preventive and corrective maintenance based on the expression
specified in the when attribute. Depending on the kind of component, the such
stereotypes may be used to model different maintenance operations. For ex-
ample, a «Repair» or a hardware component may involve its replacement with
another (new) component, while for a software component it may simply rep-
resent its restart. Figure 3.11 depicts the specification of a repair activity that
is periodically executed every 3600 time units and targets the two software
component instances “Receiver_impl_inst” and “Analyzer_impl_inst” (e.g., for
software rejuvenation [93]). The completion of the activity takes 60 time units
on the average, and succeeds 99% of the times.

3.5.8 Metrics specification

One of the main features enabling the automatic derivation of analysis models
is the ability to clearly define the metrics that should be evaluated during the
analysis.

66 supporting dependability analysis in a component-based framework

In CHESS ML, the support for metrics specification is provided by reusing
a subset of MARTE, in particular the Generic Quantitative Analysis Modeling
(GQAM) sub-profile. The «GQAM::GaAnalysisContext» stereotype is used as the
basis to model the proper analysis context in CHESS ML; extensions are then be
provided to allow the specification of properties that are specific to the different
analysis methods.

Within DEP-UML, measures that should be evaluated by quantitative de-
pendability analysis are specified using the «StateBasedAnalysis» stereotype.
Such stereotype allows the modeler to specify the metrics to be evaluated
(through the measure attribute), as well as the specific component instances to
take into account (platform, targetDepComponent, targetFailureMode attributes).

The metric attribute expects a string value formatted according a specific
grammar described below.

Listing 3.3: Grammar for the specification of metrics of interest.

<METRIC> ::= <R> | <A>
<R> ::= Reliability { <INST> }
<A> ::= Availability { <INST> } | Availability { <INTV> }
<INST> ::= instantOfTime = <T>
<INTV> ::= intervalEnd = <T> | begin = <T>, end = <T>
<T> ::= <RealNumber>

The language supports the specification of the reliability and availability met-
rics. The reliability metric is specified with respect to a given instant of time t,
while availability can be specified either with respect to an instant of time t,
an interval of time [0, t], or more in general with respect to an interval of time
[a,b].

Once the kind of metric has been specified, the modeler has to define the
“targets” for the metric, i.e., the components with respect to which such metric
should be evaluated; this task is performed as follows.

The platform attribute, inherited from the «GaAnalysisContext» stereotype,
specifies the instance of the overall platform (i.e., the system) on which the
analysis should be executed. This attribute should refer to the UML::Instance-

Specification representing the overall system, which is automatically gener-
ated when the user triggers the “Build Instances” command within the CHESS
editor (see Section 3.1.4).

Within the target platform, the targetDepComponent attribute allows the user
to select a component instance of interest, on which the metrics will be evalu-
ated. The metrics will then be evaluated considering the system failed when the
selected component instance is failed. Typically, the selected (sub-)component
would be the one which provides the desired system service or functionality,
i.e., one to which a specific system functionality is directly delegated, or to
which a specific system requirement is assigned. The user is also allowed to

3.6 summary 67

Figure 3.12: Specification of measures of interest: example for instant of time reliability.

select more than one component instance as target: in that case the system is
considered failed when all the considered component instances are failed.

Using the targetFailureMode attribute, the target for the evaluation can also be
restricted to a specific subset of failure modes, among those affecting the com-
ponent instances specified in targetDepComponent. This attribute may therefore
refer to «FailureMode» elements defined in a «ErrorModel» StateMachine. If
this attribute is specified, then the system will be considered failed only if the
component instances specified in the targetDepComponent attribute are failed
with one of the failure modes specified with the targetFailureMode attribute.

An example of metric definition is provided in Figure 3.12, which depicts the
specification of an instant of time reliability measure. The defined metric tar-
gets the component instance “sw_system_Receiver_impl_inst” within the plat-
form “hwsystem_instSpec”. The expression specified as “measure” attribute
states that the measure should be evaluated at the instant of time t = 10.000
time units. Finally, the «StateBasedAnalysis» stereotype has an additional at-
tribute, the measureEvaluationResult attribute. This attribute is used for the back-
annotation procedure: it is the attribute where the value of the evaluated metric
will be stored by the toolchain.

It should be noted that, based on the actual adopted analysis technique, a
set of additional background information may be needed. Such information
may be related for example with the solution process, the adopted tool or the
analysis method itself. In the CHESS framework, such information is provided
by means of global parameters of the modeling framework, without the need
to add further elements to the language (e.g., the path to the analysis tool on
the filesystem, or tool-specific configuration).

3.6 summary

In this chapter we described the process that we adopted for enriching a compo-
nent-based design process with support for quantitative dependability analysis.
A set of requirements were first identified, which then guided the definition of
a conceptual model collecting the main domain elements of interest; existing
languages in literature were then identified and analyzed.

Such process led to the definition of the “CHESS Dependability Profile”,
which supports different analysis techniques. We focused on a specific set of

68 supporting dependability analysis in a component-based framework

extensions, that we call DEP-UML, which provide support for the specifica-
tion and analysis of quantitative dependability properties. DEP-UML exten-
sions have been defined by taking into account the actual CHESS methodology
and component model, thus ensuring the applicability of dependability exten-
sions on functional models designed with CHESS ML.

The following chapters will describe a set of model-transformations for au-
tomated dependability analysis of DEP-UML models (Chapter 4), the concrete
realization of the analysis plugin (Chapter 5), and the application of the ap-
proach to two case studies (Chapter 6).

4
A U T O M AT E D D E P E N D A B I L I T Y A N A LY S I S :
T R A N S F O R M AT I O N S

In this chapter we define a set of model-transformation rules that enable the
automated generation of stochastic models for quantitative dependability anal-
ysis based on the DEP-UML extensions introduced in Chapter 3. An overview
of the adopted approach is first presented in Section 4.1.

4.1 approach

Most of the works adopting MDE principles for dependability analysis define
a direct transformation from the high-level architectural model to the analy-
sis model. The resulting transformation rules are usually characterized by low
flexibility (i.e., they are hard to adapt to changes in the target languages) and
low reusability (i.e., they are hard to adapt to different languages).

The approach that we use in this thesis solves this problem by relying on
an intermediate model, which acts as a bridge between the high-level modeling
language and the dependability analysis formalism. The intermediate model
introduces an additional abstraction layer, through a representation that is in-
dependent of both the engineering modeling language and the analysis for-
malism. Although the introduction of an additional transformation step might
seem to add unnecessary complexity, the definition of the two transformations
will typically require less effort than the definition of a single, monolithic, one.
Moreover, the adoption of an intermediate model generates more flexible trans-
formations: should one of the two languages (i.e., the high-level language or
the analysis formalism) change, only the transformation rules for that language
would be affected, leaving the rules on the other side unchanged. In addition,
if we consider n engineering languages and m analysis formalisms, n×m pos-
sible transformations between them exist; however, if using an intermediate
model, only n+m transformation algorithms are enough to cover all the pos-
sible combinations (Figure 4.1). With similar motivations, the importance of
using an intermediate model was recognized in other work in the literature as
well, e.g., see [81, 117].

As intermediate model we adopt the “Intermediate Dependability Model”
(IDM) that we introduced in [130, 131]; such language was conceived exactly
with the purpose of being an intermediate model to support automated quan-
titative dependability analysis. As analysis formalism we adopt the class of
Stochastic Petri Nets as defined in [44], in which the firing delay of timed tran-

69

70 automated dependability analysis : transformations

UML

Fault Trees

SysML

...

Stochastic
Activity Networks

Generalized
Stochastic Petri Nets

...

(a) Direct transformations: n×m.

UML

Fault Trees

Intermediate
ModelSysML

...

Stochastic
Activity Networks

Generalized
Stochastic Petri Nets

...

(b) Using an intermediate model: n+m.

Figure 4.1: An intermediate model reduces the number of transformation that need
to be defined, considering n engineering languages, and m analysis for-
malisms.

Figure 4.2: High-level view of the CHESS plugin for state-based dependability analysis.

sition is specified by an arbitrary probability distribution. The reason behind
this choice is due mainly to the need of supporting: i) non-exponential occur-
rence of faults (e.g., for mechanical components), and ii) periodic maintenance
schedules. The resulting workflow is then depicted in Figure 4.2:

i) a first transformation algorithm generates an IDM model from a CHESS ML
architectural model enriched with DEP-UML dependability annotations;

ii) a second transformation algorithm generates a SPN model the IDM model;

iii) as a third step, the SPN model is analyzed and results are reported back
to the original model.

The IDM language is briefly recalled in Section 4.2; its full detailed specifica-
tion can be found in [42, 130]. Section 4.3 describes the first transformation
algorithm (from DEP-UML to IDM), while the second one (from IDM to SPNs)
is described in Section 4.4. The back-annotation process, which is more related
to the implementation, is addressed in the next chapter.

4.2 the intermediate dependability model (idm)

A preliminary version of the IDM was introduced in [134]. The IDM has been
later refined and aligned to the conceptual model of Section 3.3.

It is worthwhile to note that not all the elements in the conceptual model have
a direct representation in the intermediate model: some of them (e.g., redun-
dancy structures), are actually represented as by means of more elementary

4.2 the intermediate dependability model (idm) 71

Figure 4.3: Graphical notation for IDM models.

IDM elements (i.e., logical conditions on propagation paths). This approach
has been chosen in order to keep the IDM metamodel as simple as possible and
avoid duplicated notation.

4.2.1 Overview

The IDM is composed of five logical packages: Statistics, Dependable Compo-
nents, Threats & Propagation, Maintenance & Monitoring, Dependability Analysis.
The main elements of the IDM model and their attributes are summarized in
Table 4.1.

The Statistics package contains a definition of the main probability distribu-
tions that are commonly used in dependability analysis. The Dependable Compo-
nents package contains the definition of an IDM Component: an element which
contains a certain number of faults, errors, failure modes, and the propagation
relations between them. The Threats & Propagation package contains the actual
definition of threats, i.e., InternalFault, ExternalFault, Error, and Failure-

Mode, and of propagation relations between them.
The Maintenance & Monitoring package contains the definition of maintenance

and monitoring (mainly error detection) activities. To specify the conditions for
performing activities, the IDM uses the when attribute in a mechanism simi-
lar to the one employed by DEP-UML (Section 3.5.7). Finally, the Dependability
Analysis package provides support for specifying metrics of interest for the
analysis.

The IDM is composed of nodes and relations, and it can be conveniently ex-
pressed using a graphical notation (Figure 4.3). In the IDM graphical notation,
different nodes are distinguished by their shape: faults are represented by trian-
gles, errors by squares, and failure modes by circles. This distinction permits to
easily identify the elements involved in propagation paths. Relations between
two elements of the model are represented by an arrow following the direction
of the relation, while attributes are represented by short lines ending with a
dot.

However, the main purpose of the graphical notation is to help understand-
ing how model elements are organized within IDM and which are the relations
between them, and to facilitate the description of model-transformation algo-
rithms. As stressed throughout this thesis, the intermediate model is generated
by automated transformations, and the user should not be able to modify or
even access it.

72 automated dependability analysis : transformations

—Statistics—
Distribution (abstract): –
Exponential: attributes: Rate; extensions: Distribution.
Deterministic: attributes: Value; extensions: Distribution.
Gaussian: attributes: Mean, Variance; extensions: Distribution.
Uniform: attributes: Lower, Upper; extensions: Distribution.
Gamma: attributes: Alpha, Beta; extensions: Distribution.
Weibull: attributes: Alpha, Beta; extensions: Distribution.
—Dependable Components—
Component: attributes: Name; associations: Faults, Errors, FailureModes, FaultsGenera-

teErrrors, InternalPropagations, ErrorsProduceFailure.
—Threats & Propagation—
Fault (abstract): attributes: Name.
InternalFault: attributes: Occurrence, PermanentProbability, TransientDuration; extensions:

Fault.
ExternalFault: associations: Source; extensions: Fault.
Error: attributes: Name, VanishingTime.
FailureMode: attributes: Name, Domain, Detectability, Consistency, Consequences.
FaultsGenerateErrors: attributes: Name, ActivationDelay, PropagationProbability, Weight,

PropagationLogic; associations: Source, Destination.
InternalPropagation: attributes: Name, PropagationDelay, PropagationProbability, Weight,

PropagationLogic; associations: Source, Destination.
ErrorsProduceFailure: attributes: Name, PropagationDelay, PropagationProbability, Weight,

PropagationLogic; associations: Source, Destination.
—Maintenance & Monitoring—
Activity (abstract): attributes: Name, Duration, When; associations: Performer.
RepairActivity: attributes: SuccessProbability; associations: Targets; extensions: Activity.
ReplaceActivity: attributes: SuccessProbability; associations: Target, Replacement; exten-

sions: Activity.
DetectionActivity: attributes: Coverage, FalsePositiveRatio, CorrectionProbability; associa-

tions: DetectableErrors, ControlledFailure; extensions: Activity.
—Dependability Analysis—
DependabilityMeasure (abstract): attributes: Name, RequiredMin, RequiredMax; associa-

tions: Target, Evaluations.
Reliability: extensions: DependabilityMeasure.
Availability: extensions: DependabilityMeasure.
Safety: extensions: DependabilityMeasure.
EvaluationType (abstract): –
SteadyState: extensions: EvaluationType.
InstantOfTime: attributes: TimePoint; extensions: EvaluationType.
IntervalOfTIme: attributes: Begin, End; extensions: EvaluationType.

Table 4.1: Main elements of the IDM metamodel and their attributes.

4.2 the intermediate dependability model (idm) 73

Figure 4.4: IDM model of the fire detection system.

4.2.2 Usage Example

In this section we provide an usage example of the IDM, through a simple but
representative example of a fire detection system mounted on-board of auto-
matic light train systems [134]. In such environment, both safety and reliability
are of utmost importance for the service provider. On one hand, a reliable de-
tection of fire events must be provided, to ensure the safety of passengers; on
the other hand a transport system should provide a continuous service, and
false alarm should then be avoided.

The fire detection system takes its decision based on a set of Smoke Sensors
(SMS) and a set of Over-Temperature Detectors (OTD). These sensors are man-
aged by two Fire Detection Units (FDU), which analyze the data received from
them and trigger the alarm signal when a fire event is detected. Both the FDU
are able to detect a fire event, but only one of them is allowed to control the
sensors at the same time.

Each FDU is subject to two failure modes: a “safe” failure mode, and a “haz-
ardous” failure mode. When a FDU fails in the safe mode, an alarm is triggered
and the other FDU takes control of the sensors. When instead a FDU fails in the
hazardous mode, it prevents the other from having access to the sensors data,
thus making the system unable to detect a fire event. A system hazard occurs if:
i) at least one FDU fails in a hazardous mode, or ii) if both the FDU fail, in any
of the two failure modes. For what concerns sensors, their failures are always
considered safe.

We are interested in two kinds of measures: the reliability of the system at
steady-state, which can be expressed with its Mean Time To Failure (MTTF);
and the probability that hazardous event has not occurred at different instants
of time.

74 automated dependability analysis : transformations

The IDM representation of the fire detection system described above is shown
in Figure 4.4. For simplicity, the smoke sensors have been considered as a single
hardware component; the same holds for over-temperature detectors.

The component corresponding to smoke sensors is depicted in the upper-
left part of the figure (labelled “SMS”); after a certain delay (Occurrence at-
tribute) a fault develops inside the block, and with a certain probability it may
be transient or permanent (PermanentProbability attribute). The fault generates
an error in the component, and after an additional propagation delay (Propa-
gationDelay attribute) the error reaches the external interface of the component,
causing a failure of the smoke sensors block. The component corresponding to
over-temperature detectors is labelled “OTD” in the figure and its structure is
similar to the one used for smoke sensors. However, temperature sensors are
stateless component (they do not have an internal state) and any fault imme-
diately causes them to fail. To represent this aspect in the intermediate model,
the propagation delay has been set to zero for the “OTD” component. The two
FDU are shown in the lower-left part of the figure. As for the model of sensors
described above, each of the two FDU may be affected by a fault, which may
then generate an error inside the component. In the components correspond-
ing to the two FDUs, an error may cause two distinct failure modes, which
correspond to the “safe” and “hazardous” failure modes of the units.

The two FDU are enclosed in the higher-level logical component labelled
“Fire Detection Units”; the FailureMode elements of the single FDUs are con-
nected to ExternalFailure elements of the higher-level component, through
the Source attribute. The higher-level component is then affected by four differ-
ent faults: the safe failure of FDU 1, the hazardous failure of FDU 1, the safe
failure of FDU 2, and the hazardous failure of FDU 2. Different combinations
of these failures (specified by the PropagationLogic attribute of propagation rela-
tions) propagate as two different failure modes for the higher-level component:
a “safe” and a “hazardous” failure mode.

The highest-level component (labelled “Fire Detection System”) represents
the whole system and is affected by four different kind of faults corresponding
to the failures of its subcomponents: i) the failure of the smoke sensors block, ii)
the failure of the over-temperature detectors block, iii) the “safe” failure of the
FDUs block, and iv) the “hazardous” failure of the FDUs block. When one of
the first three events occurs, it propagates as a safe failure mode of the system-
level component. The “hazardous” failure mode of the FDUs block propagates
as a “hazardous” failure of the system.

The measures of interest are specified by the two Reliability and Safety

model elements, which are connected to the FailureMode elements of the com-
ponent representing the whole system. The Evaluations attribute specifies the
type of measure that should be evaluated: SteadyState for reliability and In-

stantOfTime for safety.

4.3 from dep-uml models to idm models 75

4.3 from dep-uml models to idm models

This section describes the transformation algorithm that generates an IDM
model from a DEP-UML model; a preliminary version of the transformation
was presented in [131]. The transformation algorithm is based on the following
assumptions:

• the functional model of the system has been designed following the CHESS
methodology described in Section 3.1.2;

• the DEP-UML model contains a proper description of component in-
stances through UML::InstanceSpecification elements;

• to each system component (or component instance) it has been applied
at most one of the following stereotypes: «DependableComponent», «State-
fulHardware», «StatelessHardware», «StatefulSoftware», «Stateless-
Software»;

• the stereotype applied to a component instance matches the one applied
to the related Component (or ComponentImplementation for software com-
ponents);

• stereotypes «StatefulHardware» and «StatelessHardware» are applied
on hardware components (or component instances) only;

• stereotypes «StatefulSoftware» and «StatelessSoftware» are applied
on software component implementations (or component instances) only;

• each software component instance is deployed on at most one hardware
component instance;

• all the provided/required ports of a composite component are delegated
to provided/required ports of its subcomponents; the same holds for in-
/out flow ports.

When using the CHESS framework (i.e., when the input model is a CHESS ML
model) the fulfillment of such assumptions is guaranteed by CHESS views and
other constraints enforced by the CHESS editor.

To simplify the description of the transformation algorithm we introduce
some notation that we will use in the rest of the section. Given an Instance-

Specification inst, we denote with:

• component(inst), the Component (or ComponentImplementation for soft-
ware) from which the instance originates. This information is obtained
from the classifier attribute of inst [150].

• subs(inst), the collection of InstanceSpecification elements represent-
ing sub-instances of inst. This information is obtained from the value
attribute of Slot elements owned by inst [150].

76 automated dependability analysis : transformations

• parent(inst), the InstanceSpecification representing the parent com-
ponent instance of inst, i.e., the InstanceSpecification p such that inst ∈
subs(p).

The transformation is organized in five phases: i) creation of components in
the IDM model; ii) projection of DEP-UML dependability templates; iii) projec-
tion of DEP-UML error models; iv) projection of non-stereotyped components;
v) projection of propagation relations; vi) projection of activities; vii) projection
of analysis objectives.

As mentioned in Section 3.5, most attributes of DEP-UML stereotypes are de-
rived from MARTE NFP_CommonType, thus allowing them to be defined through
probability distributions. Attribute values defined through probability distribu-
tions are projected in the corresponding Distribution element of the IDM model.
In case they are specified as numerical values, their interpretation depends on
the actual attribute, and it is described as part of the transformation rules.

4.3.1 Creation of components

In this phase the Component elements that need to be created in the IDM model
are identified. Based on the applied stereotypes, only a subset of Instance-

Specification elements present in the source model may need to be taken into
account. In particular, when dependability information is applied to a given
component, then its subcomponents are not taken into account.

To identify the component instances to be represented in the IDM model,
two collection data structures are employed: “tocheck” and “idmcomp”. The
algorithm starts selecting the InstanceSpecification element specified in the
platform attribute of the selected «StateBasedAnalysis» stereotype, and adding
it to the “tocheck” collection.

Then, until “tocheck” is not empty, an element i is removed from the collec-
tion: if i, component(i), or both have a DEP-UML stereotype applied to them,
then i is added to the “idmcomp” collection; if no stereotypes are applied and
subs(i) is empty then i is still added to “idmcomp”; otherwise all elements in
subs(i) are added to “tocheck”. When this procedure terminates, component
instances contained in “idmcomp” are those that should be projected as IDM
components.

This procedure selects all component instances such that i) their parents do
not carry dependability information, and ii) they carry dependability informa-
tion, or they do not have sub-instances. Once the components to be projected
are identified, a IDM::Component element is created from each UML::Instance-

Specification contained in idmcomp.

4.3 from dep-uml models to idm models 77

4.3.2 Projection of dependability templates

In this phase we select from “idmcomp” all the elements i such that i or
component(i) have a “dependability template” stereotype applied to them, i.e.,
«StatefulHardware», «StatelessHardware», «StatefulSoftware», or «State-

lessSoftware».
Independently from the actual dependability template, the transformation

creates the following IDM elements: an InternalFault ft, an Error e, a Failure-
Mode fm, a FaultsGenerateErrors fge, a ErrorsProduceFailure epf, and a RepairAc-
tivity ra. Such elements are then associated to Component c, i.e., ft is added to
c.Faults, e is added to c.Errors, fm is added to c.FailureModes, fge is added to
c.FaultsGenerateErrors, epf is added to c.ErrorsProduceFailure.

Some parameters of these elements can be set independently of the actual
dependability template, while others depend on the stereotype that is being
processed. In particular, the duration of a transient fault, ft.TransientDuration, is
always considered to be instantaneous and it is set to a Deterministic element td
having td.Value=0.

For the FaultsGenerateErrors fge the following attributes are always
set: fge.Source=ft, fge.Destination=e, fge.PropagationLogic=ft, fge.Propagation-
Probability=1, fge.Weight=1, fge.ActivationDelay=Deterministic{0}; i.e., error e is
immediately generated from fault ft. Similarly, for the ErrorsProduceFailure fge
relation, the following attributes are always set: epf.Source=e, epf.Destination=fm,
epf.PropagationLogic=e, epf.PropagationProbability=1, epf.Weight=1.

Dependability templates assume that the repair of the component is
started as soon as the component fails; therefore, ra.When is set to
“Immediately [Failed(fm)]”, where fm is the newly introduced failure mode, and
ra.Target is set to c.

Other attributes of the newly introduced IDM elements are set based on the
values of the faultOcc, probPermFault, errorLatency, and repairDelay attributes. All
the “dependability template” stereotypes have a subset of these four attributes;
in the following we then define the transformation rules that apply to these
attributes, and the rule to apply in case the attribute is missing. In case the
stereotype is applied to both i and component(i), only the instance-level at-
tribute values (i.e., those specified on i) are taken into account.

faultocc The faultOcc attribute specifies the fault occurrence rate of the com-
ponent, which is assumed to follow an exponential distribution. Its value,
if specified, is used to set the Occurrence attribute of the InternalFault ele-
ment ft. More in detail, an element fo of type Exponential is created, with
fo.Rate equal to the value of faultOcc; ft.Occurrence is then set to fo. If the
value of faultOcc is not specified, then the elements ft and fge are removed
from the IDM model, i.e., the component is not subject to internal faults,
or their occurrence rate is negligible.

78 automated dependability analysis : transformations

Figure 4.5: Projection of dependability templates in the IDM representation. The figure
details the projection of the «StatefulHardware» stereotype.

probpermfault The probPermFault attribute specifies the probability of per-
manent faults. The value of this attribute is used to set the value of the
ft.PermanentProbability attribute. If the attribute is not present, or its value
has not been specified, then the default value 0 is used.

errorlatency The errorLatency attribute specifies the error latency, i.e., the
mean delay after which the presence of an error in the component leads to
its failure. The value of this attribute is used to set the epf.PropagationDelay
attribute. If the specified value is 0, then epf.ProapagationDelay is set to
a Deterministic element d with d.Value=0. If the specified value is greater
than zero, then epf.PropagationDelay is set to an Exponential element el hav-
ing el.Rate equal to the inverse of errorLatency. If the value of this attribute
is not specified, or it is not present in the stereotype, then the default
value of 0 is used, i.e., an error immediately causes the component to fail.

repairdelay The repairDelay attribute specifies the delay after which the com-
ponent, once failed, gets repaired. If its value is not specified then the
component is never repaired; in this case the previously introduced Re-
pairActivity ra is removed from the IDM model. If the attribute is not
present in the stereotype (i.e., the involved stereotype is «Stateless-

Software»), then the value 0 is used, i.e., the component is immediately
repaired. The value is used to set the Duration attribute of the ra Re-
pairActivity. If the value is 0, then ra.Duration=Deterministic{0}, otherwise
ra.Duration is set to an Exponential element rd, having rd.Rate equal to the
inverse of the repairDelay attribute.

Based on these rules, the transformation performed for a component stereo-
typed with the «StatefulHardware» stereotype is depicted in Figure 4.5, using
the graphical IDM notation.

4.3 from dep-uml models to idm models 79

4.3.3 Projection of error model specifications

In this phase we select from “idmcomp” all the elements i such that i or
component(i) have the stereotype «DependableComponent» applied to them.
Such components have their dependability properties specified through an
UML::StateMachine stereotyped with the «ErrorModel» stereotype, which is
referenced by the errorModel attribute. In this phase all the elements of the error
model are projected, with the exception of «ExternalFault» elements, which
are taken into account later, during the projection of propagation relations (Sec-
tion 4.3.5).

The projection of error model elements is quite simple, since most elements
have a similar representation in the IDM.

«Error»

For each DEP-UML «Error» euml contained in the error model, an Error ele-
ment e is created in the IDM model. The e.VanishingTime attribute is set based on
the euml.vanishingTime attribute. If euml.vanishingTime is specified as a numeric
value, then e.VanishingTime is set to a Exponential element vt, having vt.Rate
equal to the inverse of euml.vanishingTime. Otherwise, e.VanishingTime is set to
an instance of the corresponding Distribution element. The newly created el-
ement e is then added to the Errors attribute of the IDM Component element
corresponding to i.

«FailureMode»

Similarly, for each DEP-UML «FailureMode» fmuml contained in the error model,
a FailureMode element fm is created in the IDM model. The newly created fm ele-
ment is then added to the FailureModes attribute of the IDM Component element
corresponding to i.

«InternalFault»

A DEP-UML «InternalFault» ftuml is a Transition element, connecting the ini-
tial PseudoState to a State euml stereotyped with «Error». For each of them, two
elements are created in the IDM model: an InternalFault ft, and a FaultsGenera-
teErrors fge.

For the InternalFault element, the attributes ftuml.Occurrence, ftuml.permanentProb,
and ftuml.transientDuration are directly mapped to IDM attributes ft.Occurrence,
ft.PermanentProbability, ft.TransientDuration. For the FaultsGenerateErrors relation
the following attributes are set: fge.Source=ft, fge.ActivationDelay=Deterministic{0},
fge.PropagationProbability=1, fge.Weight=1, fge.Destination=e, fge.PropagationLogic=e,
where e is the IDM Error element corresponding to euml.

80 automated dependability analysis : transformations

Both the introduced elements ft and fge are then added to the Component
element corresponding to i, in the Faults and FaultsGenerateErrors attributes,
respectively.

Internal propagation relations

The projection of internal propagation relations involves UML::Transition ele-
ments connecting «Error» elements with FailureMode elements, or Error ele-
ments with other Error elements.

For each Transition tr connecting a Error element with a FailureMode element,
a ErrorsProduceFailure epf relation is created, and added to the Component corre-
sponding to i. The attributes epf.Source and epf.Destination are set to the IDM el-
ements corresponding to the Source and Target elements of the UML::Transition.
The following attributes are then set: epf.PropagationLogic=Source and epf.Weigth=1.

If the Transition is stereotyped as «Propagation», the PropagationProbability
and epf.PropagationDelay are set based on the values of the tr.prob and tr.propDelay

attributes, respectively. If the transition is not stereotyped, then their are set to
default values, which assume an instantaneous propagation with probability 1:
tr.PropagationProbability=1 and tr.PropagationDelay=Deterministic{0}.

For Transition elements connecting «Error» elements with «Error» elements
a similar projection is performed, with the only difference that an InternalProp-
agation element is created in the IDM model.

4.3.4 Projection of non-stereotyped components

In this phase we select from “idmcomp” all the elements i such that neither
i nor component(i) have a DEP-UML stereotype applied to them. These are
component instances that do not have sub-instances and their parents do not
carry dependability information. Nevertheless, these components need to be
represented, sicne they can contribute to error propagation in case of failure of
components interacting with them.

Such components are then projected as IDM components affected by a sin-
gle failure mode, a single error, and no internal faults. Accordingly, for such
components the following elements are created in the IDM model: a Error e, a
FailureMode fm, and a ErrorsProduceFailure epf, and are added to the correspond-
ing attributes of the Component corresponding to i.

For the epf element the following attributes are set: epf.Source=e; epf.Propagation-
Logic=e; epf.Destination=fm, epf.PropagationProbability=1; epf.PropagationDelay=De-
terministic{0}; epf.Weigth=1.

4.3 from dep-uml models to idm models 81

4.3.5 Projection of propagation relations

Error propagation between component instances may take place essentially for
three reasons:

• A component instance uses the service provided by another component
instance. This kind of relation is modeled in DEP-UML through UML
Connector elements connecting ClientServerPort elements.

• A component instance receives an input dataflow from another compo-
nent instance. This kind of relation is modeled in DEP-UML through UML
Connector elements connecting FlowPort elements.

• A software component instance is deployed on a hardware component
instance. This kind of relation is modeled in DEP-UML through UML
Comment elements stereotyped with the MARTE Assign stereotype.

Therefore, the algorithm iterates on all the the InstanceSpecification elements
that are instance of a UML::Connector element, and all the «Assign» elements,
within the platform specified in the considered «StateBasedAnalysis» element.

The iteration is repeated twice: in the first iteration ExternalFault elements
are created for the involved components, in the second iteration FaultsGenera-
teErrors relations are created to specify how such faults propagate within com-
ponents. Such approach is required to correctly transform DEP-UML external
faults that occur as combination of multiple component failures.

Creation of IDM ExternalFault elements

If the element we need to transform is the instance of a Connector c, connect-
ing two ports a and b, then the algorithm proceeds as follows. For each of the
two connector ends, we check if the component instance owning the port has a
representation in the IDM model. If not, then delegation links in its subcompo-
nents are followed until a component instance having a representation in the
IDM model is found. Based on the assumptions that we made, and previous
transformation phases, such a component can always be found1.

Once components a_idm and b_idm are found, corresponding to the IDM pro-
jection of components to which ports a and b are delegated, the transformation
proceeds as follows. The direction of error propagation is obtained from the
direction of the involved ports: propagation occurs from the “out” port to the
“in” port in case of «FlowPort» elements, and from the “provided” port to the
“required” port in case of «ClientServerPort» elements. The case of “inout” or

1 Actually, it could happen that the algorithm reaches a component instance that i) does not have
an IDM representation, and ii) does not have subinstances. However, if such situation occurs,
then it means that DEP-UML annotations exist on some component instance owning the involved
connector; in this case the projection of the connector is not necessary and it is skipped.

82 automated dependability analysis : transformations

“proreq” directions (i.e., bidirectional ports), is handled as if two pairs of ports
with opposite directions existed in the model: two opposite propagation paths
are created.

Let’s assume that error propagation occurs from a_idm to b_idm. In this case,
failures of a_idm are considered external faults for b_idm. If the InstanceSpeci-

�cation element corresponding to a_idm has an error model, then the transfor-
mation creates an IDM ExternalFault element xft for each FailureMode fm that i)
belongs to a_idm, and ii) in the error model was specified as affecting the in-
volved port, through the a�ectedPorts attribute. The attribute xft.Source is then
set to fm, and xft is added to the b_idm.Faults attribute. If a_idm does not have an
error model, then an ExternalFault is created for the unique FailureMode element
associated with a_idm.

The projection of propagation relations due to allocation is performed in
a similar way. In this case the direction of propagation is from hardware to
software, i.e., from the component instance specified in the to attribute of the
MARTE::Assign element, to the component instance(s) specified in the from at-
tribute.

Also in this case, propagation needs to be projected between two components
that have a representation in the IDM model. Given an allocation relation of a
software instance a on a hardware instance b, if a does not have a represen-
tation in the IDM model, then the propagation relation is projected as if each
subcomponent of a was directly allocated on b. Similarly, if b does not have a
representation in the IDM model, a propagation relation is created between a

and each subcomponent of b.
Propagation due to allocation from the IDM component a_idm to the IDM

component b_idm is projected in the same way as for the propagation due to
connectors: for each FailureMode fm belonging to a_idm, an ExternalFault element
xft is created, having xft.Source=fm. In this case, the presence of the error model
has no influence.

Creation of IDM FaultsGenerateErrors elements

Given a propagation relation from IDM component a_idm to IDM component
b_idm, the second iteration creates FaultsGenerateErrors model elements.

If the component “receiving” the propagation (i.e., b_idm, the one for which
ExternalFault elements were created in the previous iteration) does not have an
error model specification in the DEP-UML model, then any “incoming” exter-
nal fault generates the same kind of error in the component, since only a single
Error element has been created by the initial projection of b_idm. Accordingly,
the transformation proceeds as follows. For each of the ExternalFaults elements
xft in b_idm due to a_idm, a FaultsGenerateErrors element fge is created, having
fge.Source=xft, fge.PropagationLogic=xft, and as fge.Destination the unique Error
element present in b_idm.

4.3 from dep-uml models to idm models 83

Otherwise, if b_idm has an error model specification, a FaultsGenerateErrors
fge relation is created for each «ExternalFault» Transition xftuml specified in
the error model. The attribute fge.Destination is set to the «Error» State to which
the transition is connected in the error model.

To set the fge.Source attribute, the xftuml.fromPort attribute is taken into ac-
count. In particular, all the IDM ExternalFault elements of b_idm originated from
a propagation coming from the involved ports are added to fge.Source. The
fge.PropagationLogic attribute is then set based on the value of the xftuml.propagation-

Condition attribute; if the attribute was not specified in DEP-UML, then the
condition is the logical “OR” of all the faults in the fge.Source attribute.

In all cases, if the Connector or Assign elements originating the propagation
is stereotyped as «Propagation», then the attributes fge.ActivationDelay and
fge.PropagationProbability are set based on the respective propDelay and prob at-
tributes. Otherwise, they are set to the default values of fge.ActivationDelay=De-
terministic{0} and fge.PropagationProbability=1, i.e., immediate propagation with
probability 1.

4.3.6 Projection of activities

After all the components, threats, and propagation relations are set in the IDM
model, activities can be projected as well. The representation of activities in
DEP-UML and in the IDM is similar, thus leading to a simple transformation
process.

For each «Repair» activity rep, a RepairActivity ra is created in the IDM model.
Its attributes ra.Duration, ra.When, ra.SuccessProbability are set based on the at-
tributes rep.duration, rep.when, rep.probSuccess. Similarly, the targets of the repair
activities, specified in ra.Targets are set to the corresponding IDM projection of
elements specified in rep.targets.

Similarly, for each «ErrorDetection» activity umldet, an DetectionActiv-
ity det is created in the IDM model. Its attributes det.Duration, det.When,
det.SuccessProbability, det.CorrectionProbability are set based on the attributes
umldet.duration, umldet.when, umldet.probSuccess, umldet.correctionProbability.
The attribute umldet.DetectableError is set to the collection of all the elements
in c.Errors, where c is the Component corresponding to the component instance
specified in the umldet.target attribute.

4.3.7 Projection of analysis objectives

The final step is the projection of analysis objectives, i.e., the measure of interest
that should be evaluated by the analysis. This is specified using the «State-

BasedAnalysis» stereotype and its attributes, as described in Section 3.5.8.

84 automated dependability analysis : transformations

Given a «StateBasedAnalysis» element sba, a Reliability or Availability el-
ement m is created in the IDM model, based on the expression specified as
measure attribute. The attribute m.Evaluations is set based on the parameters
specified in the measure attribute.

The m.Target attribute is set based on the sba.targetDepComponent and sba.target-

FailureMode attributes. The former specifies the target component instance(s) to
be taken into account for the evaluation; the latter is used to specify specific
failure modes to be taken into account. The m.Target attribute should refer to
a collection of IDM FailureMode elements; such collection is identified in the
following way.

First, sba.targetDepComponent is analyzed, and all the FailureMode elements
in c.FailureModes, such that c is the IDM projection of a component instance
specified in sba.targetDepComponent are collected. Then, if sba.targetFailureMode

is specified, only FailureMode elements that are instance of «FailureMode» ele-
ments specified in sba.targetFailureMode are kept, while the others are removed.

4.4 from idm models to stochastic petri nets

This section describes the second macro-step for the automated generation of a
dependability analysis models from UML models annotated with DEP-UML.

The class of Petri nets generated by our transformation algorithm are Stochas-
tic Petri Nets as defined in [44], in which the firing delay of timed transition
is specified by an arbitrary probability distribution. Moreover, we consider ex-
tensions of Petri net primitives that are commonly adopted in literature: arc
multiplicities, inhibitor arcs, guards, transition priorities, marking-dependent
arc multiplicities [47].

The description of the transformation does not follow the package structure
of the IDM, since in the transformation different entities from different pack-
ages are related to each other, and the description may result difficult to follow.
Rather, the description is organized in phases: i) projection of components and
their threats; ii) projection of propagation relations; iii) projection of mainte-
nance and monitoring activities; iv) projection of metrics of interest.

In the following, we use the expression MARK(p) to indicate the marking of
place p, µ(p).

4.4.1 Projection of components and threats

In this phase the subnets corresponding to individual IDM components and
their threats are created. Also, additional auxiliary elements are created, which
are used to model the reset of the component to its initial state, e.g., in case of
repair.

4.4 from idm models to stochastic petri nets 85

Figure 4.6: SPN elements generated from an IDM Component element.

Figure 4.7: IDM to SPN transformation for “FailureMode” elements.

In particular, a place “DoReset” and an immediate transition “Reset” are cre-
ated for each component (Figure 4.6). The “Reset” transition is used to reset the
subnet corresponding to the component to its initial state, for example because
the component has been repaired. The transition is enabled and fires when
place “DoReset” contains a token. Arcs adding tokens to “DoReset” and addi-
tional input arcs to the “Reset” transition are added in subsequent phases of
the transformation.

failuremode . The SPNs submodel associated with FailureMode elements
is depicted in Figure 4.7. For each FailureMode element of the IDM model a
new place is added, representing the model state in which the involved com-
ponent has failed with such failure mode. In order to support the repair of
the component, an input arc is also added, connecting the place correspond-
ing to the FailureMode to the Reset transition of the component. The arc has a
marking-dependent multiplicity, set to MARK(FailureMode), i.e., it removes the
exact number of tokens that are present in the “FailureMode” place (zero if it
is empty). Such kind of arcs are also known as reset arcs [3, 46].

error . The SPNs submodel associated with Error elements is depicted in
Figure 4.8. The transformation of Error elements generates two places: “Error”,
which represents an erroneous state of the component, and “ErrorDetected”,
which holds a token if the error has been detected by the system. The timed
transition “Vanishing” represents the delay after which an error may disappear
from the component’s state, and its time distribution is given by the Vanishing-
Time attribute of the Error IDM element. This transition is created only if the
optional VanishingTime attribute is set, otherwise it is assumed that an error

86 automated dependability analysis : transformations

Figure 4.8: IDM to SPN transformation for “Error” elements.

may not disappear from the state of the component, until the component is
repaired or replaced. Also in this case, two input arcs with marking-dependent
multiplicity are added to connect “Error” and “ErrorDetected” places to the
“Reset” transition of the component.

internalfault. The SPNs submodel associated with InternalFault elements
is depicted in Figure 4.9. The “FaultOccurrence” transition is a timed transition
whose distribution is given by the Occurrence parameter of the InternalFault
element. This transition is always enabled, unless the component has already
failed; this condition is specified with a guard over places generated from com-
ponent’s failure modes.

When the “FaultOccurrence” transition fires it adds a token to place “Fault-
Occurred”, which enables two instantaneous transitions, “Permanent” and “Tran-
sient”, representing the occurrence of a permanent or a transient fault, respec-
tively. Which of the two transitions will fire is probabilistically determined by
their weights, which are set based on the value of the PermanentProbability at-
tribute of the InternalFault element. When any of those two transitions fires it re-
moves the token from place “FaultOccurred” and add a token to place “Fault”,
which represents the presence of a fault in the component; “Transient” also
adds a token in place “TransientFault”, which contains a token for each tran-
sient fault in the component. The transition “TransientDuration” represents the
duration of a transient fault, and its time distribution is given by the attribute
TransientDuration of the InternalFault element. When it fires it removes a token
from place “Fault” and a token from place “TransientFault”.

Places “Fault” and “TransientFault” are connected to the “Reset” transition
in a similar way as described for FailureMode and Error elements.

externalfault. ExternalFault elements specified in the IDM model are not
directly represented in the SPN model. When a reference to an element xft
of type ExternalFault is encountered during the transformation (for example

4.4 from idm models to stochastic petri nets 87

Figure 4.9: IDM to SPN transformation for “InternalFault” elements.

because it is referred by a FaultsGenerateErrors relation), then it is treated as a
reference to the FailureMode element specified in xft.Source.

4.4.2 Projection of propagation relations

The IDM metamodel includes different kinds of propagation relations, namely
FaultsGenerateErrors, InternalPropagation, and ErrorsProduceFailure relations. All
those relations have similar attributes: a set of Source elements, a set of Desti-
nation elements, a PropagationProbability value, a PropagationDelay distribution,
a PropagationLogic expression, and a Weight value. They only differ in the type
Source and Destination elements that are allowed.

The SPN submodel generated from and ErrorsProduceFailures epf element is
shown in Figure 4.10 and it is described in detail in the following; the trans-
formations for the other propagation relations have the same structure. The
“PropagationDelay” transition represents the delay after which error propaga-
tion occurs and its distribution is given by the epf.PropagationDelay; the enabling
condition for this transition is provided by a guard expression, which is derived
from the epf.PropagationCondition. When “PropagationDelay” fires it adds a to-
ken in place “Propagation”. The token in place “Propagation” enables the two
immediate transitions “Propagate” and “NoProp”, which model the probabil-
ity that propagation actually takes place; their weight is given by the “Propaga-
tionProbability” attribute of the relation. If propagation occurs (i.e., transition
“Propagation” fires) a token is added to the place associated with each of the
FailureMode elements referenced in the epf.Destination attribute.

88 automated dependability analysis : transformations

Vanish

Error

Source

ErrorsProduceFailures

ErrorDetected

"Error" subnet

Destination

PropagationDelay

PropagationProbability

FailureMode

"FailureMode" subnet"ErrorsProduceFailures" subnet

Propagation
Propagation

Delay

Propagate

NoProp

PropagationCondition

Figure 4.10: IDM to SPN transformation for “ErrorsProduceFailures” elements.

...

When

...

Activity

"Conditions" subnet "Execution" subnet

Enabled

Figure 4.11: Structure of transformation rules for “Activity” elements of the IDM meta-
model.

4.4.3 Projection of activities

The projection of an activity (i.e., an element of type Activity or one of its sub-
types) can be thought as composed of two tasks:

i. Projection of the conditions that enable the activity to fire. This informa-
tion is provided by the When attribute of the Activity element.

ii. Projection of the actual execution of the activity, and its effects on the
system. This information is provided by the attributes that are specific of
each activity type, and by the activity type itself.

Accordingly, the resulting SPNs model is composed of two subnets: the “Con-
ditions” subnet that models the conditions needed for the execution of the ac-
tivity, and the “Execution” subnet, which models the execution of the activity
(or its failure), and its effects on the system. The interface between these two
subnets is the “Enabled” place, in which the “Conditions” subnet adds a token
if the enabling conditions are met.

The details of the “Conditions” subnet depend on the expression specified
in the When field of the Activity element, while the details of the “Execution”
subnet depends on the particular subtype of Activity that is involved.

4.4 from idm models to stochastic petri nets 89

Conditions

Conditions that enable a given activity to fire are specified in the When at-
tribute, using the grammar defined in Listing 3.2. Conditions specified using
such grammar are composed of three parts:

<t> condition This part specifies at which instant (or instants) of time the
activity should be executed, and the delay between one execution and the other.
It is projected as a transition “Trigger” in the “Conditions” subnet, which adds
a token in the “Enabled” place of the “Execution” subnet (Figure 4.12).

Depending on the actual element some differences in the projection occur:

• Immediately. In this case “Trigger” is an immediate transition, and it is
allowed to fire only once (Figure 4.12a).

• AtTime(<RealNumber>). In this case the “Trigger” transition is a timed
transition, with a deterministic firing delay set to the value of <RealNum-
ber> (Figure 4.12b). Also in this case the transition is allowed to fire only
once.

• Periodic(<Distribution>). In this case the “Trigger” subnet is timed transi-
tion, and its firing delay is set based on the <Distribution> parameter. The
transition is allowed to fire multiple times, since once fired it adds a new
token in place “Wait” (Figure 4.12c).

The guard of the “Trigger” transition is given by the <EX> part of the expres-
sion, whose projection is described in the following.

<ex> condition This part specifies a Boolean predicate that must hold in
order for the activity to be enabled. Such predicate is used in the transforma-
tion to build the guard of the “Trigger” transition described above. Atomic
predicates are the following:

• Failed(<FailureMode>), which holds if the given failure mode has occurred.
This predicate is translated to the expression “MARK(FailureMode_x)>0”,
where “FailureMode_x” is the place corresponding to the FailureMode el-
ement that has been specified in the IDM condition.

• Detected(<Error>), which holds if the given error has been detected. This
predicate is translated to the expression “MARK(ErrorDetected_x)>0”,
where “ErrorDetected_x” is the “ErrorDetected” place corresponding to
the Error element that has been specified in the IDM condition.

<l> condition This part is optional and specifies a condition that limits the
execution of the given activity to specific intervals of time.

90 automated dependability analysis : transformations

Trigger

...

When

...

Activity "Conditions" subnet

Immediately [true]

"Execution" subnet

EnabledWait

(a) “Immediately” nodes

Trigger

...

When

...

Activity
"Conditions" subnet

AtTime(<RealNumber>) [true]

"Execution" subnet

EnabledWait

(b) “AtTime” nodes

Trigger

...

When

...

Activity

"Conditions" subnet

Periodic(<Distribution>) [true]

"Execution" subnet

EnabledWait

(c) “Periodic” nodes

Figure 4.12: IDM to SPN transformation for <T> conditions.

In the SPN model this condition is modeled by adding a place “Disable” to
the “Conditions” subnet, and adding an inhibitor arc that connects the place to
the “Trigger” transition described above. Based on the actual value of the <L>
condition, the token in place “Disable” is added or removed at precise instant
of times (Figure 4.13). A <L> condition can take the following values:

• Before(<RealNumber>), which means that the activity is enabled only be-
fore the instant of time that is specified. In this case the “Disable” place
is initially empty. An additional timed transition “Delay” is added to
the “Conditions” subnet, having a deterministic firing delay equal to the
value of the <RealNumber> parameter. When this transition fires, it adds
a token in place “Disable”, thus disabling the “Trigger” transition (Fig-
ure 4.13a).

• After(<RealNumber>), which means that the activity is enabled only after
the instant of time that is specified. In this case the “Disable” place ini-
tially contains one token. An additional timed transition “Delay” is added
to the “Conditions” subnet, having a deterministic firing delay equal to
the value of the <RealNumber> parameter. When this transition fires, it
removes the token from the “Disable” place, thus enabling the “Trigger”
transition. The transition is enabled to fire exactly once, because of the
“FireOnce” place (Figure 4.13b).

• Interval(<RealNumber>,<RealNumber>), which means that the activity is
enabled only in a specific interval of time. Also in this case the “Dis-

4.4 from idm models to stochastic petri nets 91

Trigger
...

When

...

Activity

"Conditions" subnet

Periodic(<Distribution>) [true]
{ Before(<RealNumber>) }

"Execution" subnet

EnabledWait

FireOnce Disable
Delay

(a) “Before” nodes

Trigger
...

When

...

Activity

"Conditions" subnet

Periodic(<Distribution>) [true]
{ After(<RealNumber>) }

"Execution" subnet

EnabledWait

Disable
Delay

(b) “After” nodes

Trigger
...

When

...

Activity

"Conditions" subnet

Periodic(<Distribution>) [true]
{ Interval(<RealNumber>,<RealNumber>) }

"Execution" subnet

EnabledWait

Disable
t1

t2

InInterval

(c) “Interval” nodes

Figure 4.13: IDM to SPN transformation for <L> conditions.

able” place initially contains one token. Two additional timed transitions
“t1” and “t2” are added, both having a deterministic firing delay. A place
named “InInterval” is also added to the “Conditions” subnet. The firing
delay of “t1” is set to the difference between the second and the first <Re-
alNumber> parameter, i.e., the duration of the specified interval. When
“t1” fires it removes the token from the “Disable” place and adds one to-
ken to the “InInterval” place; the “Trigger” transition becomes therefore
enabled. The firing delay of “t2” is set to the value of the second <Real-
Number> parameter. When “t2” fires it removes the token from the “InIn-
terval” place and adds a token to “Disable”, thus disabling the “Trigger”
transition (Figure 4.13c).

92 automated dependability analysis : transformations

Figure 4.14: IDM to SPN transformation for “RepairActivity” elements.

Execution

The details concerning the execution of an activity and its possible effects on the
system depend on the type of the activity. In particular, the following kinds of
activities are supported by the current version of the transformation workflow.

repairactivity The RepairActivity element is used to model maintenance
activities on the system (both preventive and corrective). The “Execution” sub-
net of a RepairActivity element contains a timed transition “Duration”, which
represents the time required to physically execute the repair, including the time
required to call the support personnel, if required.

The “Duration” transition is enabled when a token is in place “Enabled”, and
when it fires it removes the token from “Enabled”, and adds a token in “Com-
pleted”. The distribution of the firing delay is given by the Duration attribute
of the “Repair” element. The token in place “Completed” enables the two im-
mediate transitions “Success” and “Failure”, which represent the success and
failure of the repair, respectively. The weight of the two transitions is given by
the SuccessProbability attribute. If the repair succeeds, a token is added in the
“DoReset” place of each “Component” referenced in the Target field of the Re-
pair element (Figure 4.14). The firing of the “Reset” transition then resets the
subnet related to the component to its initial healthy state.

errordetection The ErrorDetection element is used to model error detec-
tion activities on the system. The “Execution” subnet of an ErrorDetection ac-
tivity ed is similar to the one for the RepairActivity model element. The success
and failure of the activity, and the weights of the immediate transitions in this
case are provided by the ed.Coverage attribute.

For each Error e in ed.DetectableErrors, an output arc connecting “Success”
and the place “ErrorDetected” corresponding to e is created. Such output arc
has a marking-dependent multiplicity, MARK(Error), where Error is the “Error”
place corresponding to e. In this way, the token to the “ErrorDetected” places
is added only when an error is actually present in the component.

4.4 from idm models to stochastic petri nets 93

Figure 4.15: IDM to SPN transformation for “ErrorDetection” elements.

The optional attribute ControlledFailure can be used to specify a FailureMode in
which the Component is driven if an error is detected (e.g., a safe failure mode).
If this attribute is specified, then additional arcs are added in the SPN model.
In particular, if FailureMode_1 is the FailureMode element referenced by the Con-
trolledFailure attribute, an output arc is added between the “Success” transition
of the activity “Execution” subnet and place “FailureMode_1” corresponding to
such failure mode. Also, an input arc is added between place “FailureMode_-
X”, corresponding to other failure modes of the involved component. All these
arcs have the following marking-dependent multiplicity:

IF(MARK(Error1)>0 OR ... OR MARK(ErrorN)>0)THEN(1)ELSE(0)}

where Error1 . . . ErrorN are “Error” places corresponding to the Error elements
specified in ed.DetectableErrors. In this way, the component is placed in the spec-
ified failure mode only when one of the specified errors is detected.

replaceactivity The ReplaceActivity element is used to model the replace-
ment of a component, i.e., a particular case of repair in which the component is
substituted with another one, specified with the Replacement attribute, possibly
with different dependability characteristics.

A possible way to support such element is to generate a SPN subnet similar
to the one that is generated for RepairActivity elements, with the only difference
that, in case of success, a token is added also to an additional “BeenReplaced”
place (Figure 4.16). The rest of the transformation would then replace each pa-
rameter in the “Component” subnet related to the Component specified in the
Target attribute with a marking-dependent expression based on the marking of
place “BeenReplaced”. The expression would return the parameter value re-
lated to Target if “BeenReplaced”, and the value related to Replacement if “Been-

94 automated dependability analysis : transformations

Figure 4.16: IDM to SPN transformation for “ReplaceActivity” elements.

Replaced” contains one token. In this way the replacement of a component with
one with different parameters can be properly modeled.

4.4.4 Projection of analysis objectives

In the IDM, the metrics to be analyzed on the model are defined through sub-
types of the DependabilityMeasure abstract model element.

The Target attribute of the DependabilityMeasure model element references a
set of FailureMode elements, which correspond to a set of places in the SPN
model. Such failure modes are those that should be taken into account in the
evaluation of the specified measure, i.e. the system is considered failed if (at
least) one of them has occurred.

For all the DependabilityMeasure elements (i.e., Reliability, Availability, and
Safety), the measure of interest is obtained by defining a reward function of
the state of the generated SPN model. The construction of the reward function
is based on the Target attribute of the DependabilityMeasure element, and it is
described in the following. Based on the type of measure specified in the IDM
model, instant-of-time, interval-of-time, or steady-state analysis is then speci-
fied.

availability For Availability model elements the reward function is defined
as a function that return 1 if all the places corresponding to FailureMode
elements specified in Target are empty, i.e., the system is in a state which
is free from the specified failure modes.

reliability The Reliability metric evaluates the probability that a specific fail-
ure mode, or set of failure modes have not occurred until time t. For this
reason, the evaluation of this metric needs the introduction of an ad-hoc
additional place, which is used to record if the specified failure modes
have occurred at least once in the system lifetime. Such place, “System-
Failed”, is connected to an immediate transition, “SystemFailure”, which
adds a token to it when the specified condition occurs, i.e., when at least
one of the places corresponding to FailureMode elements specified in Tar-

4.4 from idm models to stochastic petri nets 95

get are not empty. Multiple firing of the transition are avoided by adding
an inhibitor arc connecting it to the “SystemFailure” place.

safety For what concerns quantitative evaluation, the Reliability and Safety
model elements are projected in the same way: in this context, safety
is evaluated as the reliability with respect to specific failure modes (i.e.,
catastrophic failure modes).

4.4.5 Priorities and additional constraints

Finally, to ensure the correct behavior of the generated model, additional con-
straints are imposed. In particular, we need to i) prevent the model from en-
tering markings that could lead to infinite sequences of vanishing marks, through
infinite firings of immediate transitions; and ii) ensure the correct ordering of
events. This is achieved by setting different priorities to different kinds of imme-
diate transitions in the model; we use priority values ranging from 8 (highest)
to 1 (lowest).

The highest priority (8) is set to “SystemFailure” transitions, i.e., transitions
associated with Reliability or Safety IDM elements. In this way the “recording”
of the occurrence of a system failure is performed before any repair transition
is triggered. Priority 7 is set to “Propagate” and “NoProp” transitions of prop-
agation relations (Figure 4.10); the propagation process is therefore completed
before any other actions (e.g., repairs) are performed.

Priority 6 is associated to “Reset” transitions of components, while priority
5 is associated to those “PropagationDelay” transitions which are immediate
transitions. In this way, the firing of further propagation transitions in compo-
nents that are going to be instantaneously repaired is avoided. Priority 4 is asso-
ciated with immediate “TransientDuration” transitions; since they have a lower
priority with respect to “PropagationDelay” transitions, transient faults whose
duration is assumed to be immediate are still propagated as errors within the
component.

Priority 3 is associated with the “Success” and “Failure” transitions of activ-
ities “Execution” subnet (e.g., see Figure 4.14); while priority 2 is set to “Dura-
tion” transition of activities, in case they are immediate transitions. This ensure
that the outcome of an activity (i.e., success or failure) is selected before fur-
ther executions on the same activity. All the other immediate transitions in the
model have priority 1.

Finally, an additional condition is added to guards of Reset transitions asso-
ciated with components. The guard constrains the activity to fire only when
i) no external faults are affecting the component, i.e., when the corresponding
“FailureMode” places are empty, or ii) the component causing such external
faults is going to be reset as well (i.e., a token is present in its “DoReset” place).
This condition is necessary in order to avoids loops of immediate transitions in

96 automated dependability analysis : transformations

situations where a component gets repaired with zero delay (e.g., «Stateless-
Software» components), but at the same time it is affected by instantaneous
error propagation from another system component. Moreover this condition
models the aspect for which, once failed, a component cannot become fully
functional again until all the service it requires are restored.

5
I M P L E M E N TAT I O N W I T H I N T H E E C L I P S E P L AT F O R M

The overall CHESS methodology is implemented as an UML2 profile and a
set of plugins for the Eclipse platform [70, 80]. The CHESS toolset includes a
diagram editor based on a customized version of Papyrus [82], and a set of
plugins to perform code generation, model-transformation, and different kinds
of analyses.

In this chapter we describe the implementation of the Eclipse plugin for
quantitative dependability analysis, which implements the model-transformation
algorithms described in Chapter 4. Moreover, the plugin automatically gener-
ates the input for the analysis tool, evaluates the specified metrics, and reports
the results back in the original CHESS ML model.

While the toolchain originated within the CHESS project, in its design we
focused on modularity and reusability, in order to be able to adapt the resulting
toolchain in other contexts. This is a fundamental aspect of developing a model-
transformation toolchain, as the MDE world is constantly evolving, with new
models, languages, and tools being constantly introduced and refined.

The process of defining a reusable toolchain architecture is described in
Section 5.1, while Section 5.2 describes its implementation within the CHESS
framework. The plugin is available on the CHESS website [35]. Its usage is illus-
trated in a demonstration video [41], and within a tutorial that guides the user
through the application of the analysis plugin on a CHESS ML model [133].

5.1 designing a reusable toolchain

The abstract toolchain architecture proposed in this section targets tools for the
automatic execution of non-functional analysis of system architecture specified
in UML-like modeling languages, with back-annotation of results. From a high
level perspective, the plugin should be able to automatically i) generate an
analysis model which complies with the architectural description of the system,
ii) analyze the model for the specified metrics of interest, and iii) propagate the
obtained results back in the architectural description of the system that has
been received as input.

Additionally, our objective was to create a plugin which as much reusable as
possible, in order to adapted with reduced effort to other contexts. For this rea-
son, the plugin has also specific requirements concerning reusability. Toolchain
requirements are summarized in Table 5.1, grouped in the “functionality” and
“reusability” categories.

97

98 implementation within the eclipse platform

Table 5.1: Identified requirements for a toolchain performing non-functional analysis
on a system architecture specified in a UML-like language.

Functionality

F1 The plugin should take as input a description of the system architecture in a
UML-like language, including the extra-functional properties needed for the
analysis, and a set of metrics to be evaluated.

F2 If the input model contains all the necessary information, the plugin should
be able to generate a stochastic model of the system for the evaluation of the
specified metrics.

F3 The plugin should be able to analyze the generated model using external tools.
F4 The plugin should be able to extract the results from the analysis tool, and

propagate them into the architectural model that was received as input.

Reusability

F1 The plugin should take as input a description of the system architecture in a
UML-like language, including the extra-functional properties needed for the
analysis, and a set of metrics to be evaluated.

F2 If the input model contains all the necessary information, the plugin should
be able to generate a stochastic model of the system for the evaluation of the
specified metrics.

F3 The plugin should be able to analyze the generated model using external tools.
F4 The plugin should be able to extract the results from the analysis tool, and

propagate them into the architectural model that was received as input.

The designed architecture for the analysis plugin is sketched in Figure 5.1 and
it is described in the following. For higher flexibility the toolchain is divided
into a client and a server process, communicating through a TCP/IP network.
Of course, the server and client processes may reside on the same physical
machine as well.

5.1.1 Architecture Overview

The client has the responsibility of performing the required model transforma-
tions in order to i) generate the analysis model in a format readable by the tool,
and ii) perform the back-annotation of analysis results.

The client process takes as input an architectural model from the design en-
vironment, and it generates the analysis model targeted to a specific analysis
tool. The model is then transmitted to the server process, which executes the
analysis tool and forwards the results back to the client. The obtained results
are then back-annotated into the original architectural model that has triggered
the analysis by the client process.

5.1 designing a reusable toolchain 99

Figure 5.1: Abstract toolchain architecture for automated dependability analysis. La-
bels m1. . .m5 indicate the involved models in the toolchain, while la-
bels t1. . . t4 indicate model transformation steps. For greater flexibility, the
workflow is divided into a client and server process, which may however
reside on the same physical machine as well.

The server process has the task of actually executing the analysis tool on the
model generated by the client process, wait for results, and communicate the
results back to the client process. Having a separate process for executing the
analysis tool has a number of important advantages.

First of all, it allows the user not to be bound to the platform required by
the selected analysis tool. Complex analysis tools often require a specific envi-
ronment in order to work properly, i.e., specific operating systems, libraries, or
tuning of system configurations. In such way, the analysis tool can be installed
on a properly configured ad-hoc machine (possibly even a virtual machine),
while the final user can continue to use its favorite environment for design
purposes. Second, it lowers the hardware requirements of the user machine,
by making it possible to move model evaluation, which is typically a resource-
intensive task, to a dedicated machine. At the same time, this approach does
not not prevent setting up a local-only configuration, where the analysis tool
is run on the same machine as the client. Finally, this approach facilitates the
management of licensing issues; for example it is possible to distribute the code
of the frontend as open source, even if the backend relies on some proprietary
tool which cannot be redistributed.

The transformation chain within the client process involves the use of five
different metamodels (m1. . .m5), and four model-transformation algorithms
(t1. . . t4). Adopting a multi-step transformation process improves the reusabil-
ity of different portions of the toolchain. The role of each of these elements in
the abstract toolchain is described in the following.

100 implementation within the eclipse platform

5.1.2 Client Process – Metamodels

Architectural Model (m1)

An m1 model contains an architectural description of the system in some
kind of system engineering modeling language (e.g., UML, SysML). The model
should contain all the information that is needed to perform the analysis, e.g.,
by using some ad-hoc extension to the a general purpose modeling language,
or by using a domain-specific language that is able to represent all the required
information. Typically, at this level the model contains a large number of details
that are unnecessary for the analysis, which are expression of different concerns
of different stakeholders.

This metamodel can be reused in toolchains that use the same architectural
language to describe the system architecture.

Analysis-Dependent Model (m2)

An m2 model contains all the information that is necessary and sufficient to
perform the intended analysis, filtered with respect to the original engineering
model, and organized in a convenient way to facilitate the subsequent model-
transformation steps. For example, when performing dependability analysis,
only dependability-related information is retained; similarly, for performance
analysis, the metamodel should be able to describe performance-related infor-
mation.

The IDM described in Section 4.2 is a m2 model tailored to quantitative de-
pendability analysis. The KLAPER language of [81] is another example of m2

model developed in literature. An m2 metamodel could be reused in devel-
oping toolchains that perform, possibly in different contexts, the same kind of
analysis.

Formalism-Dependent Model (m3)

An m3 model contains an implementation of the analysis model in the for-
malism that has been selected for the analysis (e.g., Stochastic Petri Nets, Fault
Trees, PEPA. . .). At this level, the model is however still an abstract representa-
tion and it is not yet bound to any specific analysis tool. Formalism-dependent
models exist in literature, often in the form of “interchange format” based on
XML, e.g., the Performance Model Interchange Format (PMIF) [170], an in-
terchange format for Queuing Networks models, and the Petri Nets Markup
Language (PNML) [90], an interchange format for Petri net models.

This metamodel can be reused in toolchains that employ the same formal-
ism for performing the target analysis technique. It should be noted that this
metamodel can be reused even if the kind of analysis is different; for exam-

5.1 designing a reusable toolchain 101

ple, Stochastic Petri Nets are used both for dependability and for performance
analysis.

Tool-Dependent Model (m4)

An m4 model is the concrete analysis model in a format specifically tailored
to the selected analysis tool. Typically, this model is a file that can be directly
provided as input to the tool.

This metamodel can be reused in toolchains that use the same tool to perform
the analysis. It should be noted that it may be possible to reuse this metamodel
even if a different formalism is used for the analysis. It may be the case for
example when multi-formalism tools (e.g., Möbius [77]) are used for the evalu-
ation.

Analysis Results (m5)

An m5 model is a model describing the results provided by the analysis tool,
and it is used for the back-annotation process.

As above, when using multi-formalism tools, this metamodel can be reused
even if the adopted formalism varies. Moreover, it can be reused even when
different tools are used for the analysis, but use some standard format for the
produced output (e.g., CSV, XML).

5.1.3 Client Process – Transformations

Filtering (t1)

The first model-transformation has the task of filtering out the information
required for the analysis from the mass of information that is typically present
in the architectural model of the system. Usually, this is the most complex
algorithm of the entire chain, since it requires to navigate the entire engineering
model, which may consist of several different diagrams, and relate concepts that
refer to the same system entities. This model-transformations is applied on m1

models to generate m2 models.

Analysis Model Implementation (t2)

The second transformation implements the analysis model in the selected anal-
ysis formalism. The definition of this model-transformation step requires an
expert in the selected analysis technique, and knowledge of the analysis for-
malism. This model-transformation is applied on m2 models to generate m3

models.

102 implementation within the eclipse platform

Code Generation (t3)

The third model-transformation has the task to generate the actual input file
needed for the analysis tool. For this reason, this step is typically more oriented
towards code generation rather than model-transformation, since the final goal
is to generate a source file that should be read by the adopted analysis tool.
This model-transformation is applied on m3 models to generate m4 models.

Back-Annotation (t4)

The back-annotation is a particular kind of model-transformation that has the
task to propagate the results of the analysis back into the model that has trig-
gered it. This transformation takes as input also the original model, which is
refined with the new information, i.e., it is applied on a (m1,m5) pair of models,
to generate a modified m1 model.

5.2 the “state-based analysis plugin”

The abstract architecture described in Section 5.1 has been concretely imple-
mented within the CHESS project to realize the CHESS “Plugin for State-Based
Analysis” (CHESS-SBA), by instantiating all the elements described in Fig-
ure 5.1.

CHESS ML (with DEP-UML extensions) is used as m1 language; the IDM of
Section 4.2 as m2, and PNML as m3. The adopted analysis tool is the discrete-
event simulator provided with the DEEM tool [20, 137]. The tool receives as
input a “DEEM Input File” (m4) and produces a “DEEM Results File” (m5)
having a specific format. Table 5.2 summarizes how the individual elements of
the abstract toolchain have been realized within CHESS.

5.2.1 Client Process

The client process is written in Java, as a plugin for the Eclipse platform [80];
therefore, it can be used on any platform for which Eclipse is available.

CHESS ML (m1)

For the “Architectural Model” level the adopted language is the CHESS ML
language developed within the CHESS project, which includes the DEP-UML
extensions of Section 3.5. The full specification of the CHESS ML language is
available in [36].

5.2 the “state-based analysis plugin” 103

Table 5.2: The elements constituting the abstract toolchain, and their implementation
in the CHESS plugin.

Abstract Toolchain Element CHESS-SBA Implementation

Client Process Java (Eclipse Plugin)
Architectural Model m1 CHESS ML
Analysis-Depenent Model m2 IDM
Formalism-Depenent Model m3 PNML
Tool-Depenent Model m4 DEEM Input File
Analysis Results m5 DEEM Results File
m1 −→ m2 t1 ATL Module
m2 −→ m3 t2 ATL Module
m3 −→ m4 t3 ATL Query
m4,m1 −→ m1 t4 Java

Server Process Java (Standalone)
Analysis Tool DEEM Simulator

IDM (m2)

For the “Analysis-Dependent Model” level, we adopted the Intermediate De-
pendability Model (IDM) of Section 4.2. The IDM has been defined exactly with
the purpose of being an intermediate language to support model transforma-
tion for quantitative dependability analysis.

PNML (m3)

The Petri Net Markup Language (PNML) [90] is a proposal for a Petri net
interchange format based on XML that is under development as an ISO/IEC
standard. ISO/IEC 15909 [97, 98] aims to provide a standard for the repre-
sentation of Petri Nets models, and it is organized in three parts, describing:
1) formal definitions and graphical notations, 2) the transfer format (i.e., the
concrete PNML language), and 3) Petri net types and extensions. Such charac-
teristics make PNML a good choice for implementing the m3 metamodel in our
toolchain: it is specific of the formalism selected for the analysis (i.e., Petri nets
and their extensions), but it is not tailored to any specific analysis tool.

However, to date only Part 1 [97] and Part 2 [98] of the standard have been
published, while Part 3 has not been disclosed yet. Part 2 defines the PNML
language and the way to represent basic non-timed P/T Petri nets, as well as
the extension mechanisms to attach additional properties to Petri net elements
(e.g, the firing distribution of transitions). The actual standardized extensions
to support different classes of Petri nets will however be included in Part 3 of
the standard, and are not available yet.

As such, an ad-hoc PNML extension has been defined to represent the class of
Stochastic Petri Nets needed for our analysis, which adds to the basic P/T Petri

104 implementation within the eclipse platform

nets defined in the standard the following features, that we use in the analysis
model generated by our transformation algorithm: i) timed transitions; ii) in-
hibitor arcs; iii) priorities for immediate transitions; iv) weights for immediate
transitions; v) guards; vi) marking-dependent model parameters; vii) metrics
of interest for the evaluation.

As a simple example, the PNML code corresponding to a Stochastic Petri Net
composed of two places and an exponential transition with rate 10.0 is shown
in the listing below.

Listing 5.1: PNML example.

<pnml xmlns="http://www.pnml.org/version−2009/grammar/pnml">
<net id="n1" type="http://www.pnml.org/version−2009/grammar/ptnet">

<name><text>pnml_example</text></name>
<place id="p1">

<name><text>p1</text></name>
<initialMarking><text>1</text></initialMarking>

</place>
<place id="p2">

<name><text>p2</text></name>
<initialMarking><text>2</text></initialMarking>

</place>
<transition id="t1">

<name><text>t1</text></name>
<exponential><rate>10.0</rate></exponential>

</transition>
<arc id="a1" source="p1" target="t1">

<inscription><text>1</text></inscription>
</arc>
<arc id="a2" source="t1" target="p2">

<inscription><text>1</text></inscription>
</arc>

</net>
</pnml>

DEEM Input File (m4)

A “DEEM Input File”, which is used as the m4 model, is essentially a text
file composed of different sections, containing (in the following order): i) the
header, which is almost fixed for any input file; ii) the definition of variables to
be used in the study definition; iii) the studies to be performed on the model,
i.e., the combination of different values for the variables specified above; iv) the
list of places; v) the list of transitions; vi) the list of arcs; vii) the list of measures
of interest that should be evaluated.

5.2 the “state-based analysis plugin” 105

DEEM Results File (m5)

Similarly to the input file, the “DEEM Results File” is also a text file, containing
the results of the evaluation. More in detail, the file contains: i) an header,
which is almost fixed, ii) the parameters that have been used to run the analysis,
including model parameters and simulator parameters, iii) the time for which
the analysis has been run, and finally iv) a set of evaluated metrics. For each
metric the tool provides its mean, as well as the confidence interval, and the
number of values on which it has been computed.

CHESS ML → IDM (t1)

The transformation algorithm for generating IDM models from DEP-UML (or
CHESS ML) models has been defined in Section 4.3. This transformation step
has been implemented as a “Module” in the ATLAS Transformation Language
(ATL) [5].

IDM → PNML (t2)

The transformation algorithm for generating SPNs models from IDM models
has been defined in Section 4.4. This transformation step is implemented as a
“Module” in the ATL language as well, using an Ecore metamodel of PNML as
target language.

As an example, the listing below describes the ATL implementation of the
rule for projecting IDM Component elements (Figure 4.6). From an IDM Com-

ponent element, three PNML elements are generated: a place, an immediate
transition, and an arc connecting the two.

Listing 5.2: ATL implementation of the rule for projecting IDM components (see Section 4.4.1).

rule Component {
from

c : IDM!Component
to

doreset : PNML!Place
(

id <− c.Name + ’_doreset’,
initialMarking <− thisModule.newPTMarking(0)

),
reset : PNML!GSPNImmediateTransition
(

id <− c.Name + ’_reset’,
Priority <− thisModule.priReset,
Weight <− 1.0

),
arcreset : PNML!GSPNArc
(

id <− c.Name + ’_arcreset’,
source <− doreset,

106 implementation within the eclipse platform

target <− reset
)

}

PNML → DEEM Input File (t3)

The DEEM Input File is generated from the PNML model by looping through
the list of places, transitions, and arcs, and generating a string for each of them.
While the first three sections of the file (header, variables, and studies) are
mostly fixed in the current implementation, the others are generated based on
the content of the PNML model as follows.

places For each place in the PNML model the following string is generated
in the DEEM model:

PLACE:"N",X,Y,M,C;

where N is the name of the place, X and Y its coordinates for a possible graph-
ical representation, M the initial marking, and C the maximum capacity (i.e.,
the maximum number of tokens that the place is allowed to contain).

transitions In the DEEM input format transitions are specified as:

TRANS:"N",X,Y,D,T,P,DIST,’COND’,’V1’,
(

V
);

where N is the name of the transition, X, Y and D are parameters for a possi-
ble graphical representation, T is the type of the transition (i.e., “Immediate” or
“Timed”), P is the priority for immediate transitions, DIST is the probability dis-
tribution of firing time, COND is the enabling condition, V1 is the first param-
eter of the probability distribution for timed distributions, and the weight for
immediate distributions, V repeats V1 and in addition it specifies any other pa-
rameters of the probability distribution if more than one parameters are needed
(e.g., for the Normal distribution both the mean and the variance are needed).

arcs For each arc in the PNML model the following string is then added to
the model:

K1:"P","T",M,K2,’F’,
(X1,Y1,...,Xn,Yn),1;

5.2 the “state-based analysis plugin” 107

where K1 is a string that specifies the type of the arc (“IARC” for input arcs,
“OARC” for output and inhibitor arcs), P is the place connected to the arc, T is
the transition connected to the arc, M is the multiplicity value of the arc, K2 is a
numerical code that identifies the type of the arc, F is an (optional) multiplicity
function, and X1, Y1, . . . , Xn, Yn are parameters that identify the points touched
by the arc in its graphical representation.

measures of interest In the DEEM input format the measures of inter-
est are specified as:

RES_FUNC:"N",’F’,T;

where N is a name used to identify the measure, F is the reward function, and
T is the type of measure, with “0” identifying an instant of time measure, “1” a
measure accumulated over an interval of time, and “2” a measure accumulated
and averaged over the length of the interval. Each measure defined at the higher
levels results in a specific string, defining a measure of interest in the DEEM
Input Format. For example, consider the measure “Reliability”, having as target
a failure mode “FM0” of component “C1”, and let “C1_Failed0” be the place
representing such failure mode in the PNML model. Such measure is defined
through the following string in the DEEM Input File:

RES_FUNC:"ReliabilityC1_0",
’IF(MARK(CI_Failed0)>0)THEN(0)ELSE(1)’,1;

This transformation step is implemented as a “Query” in the ATL language
[5]. While ATL modules perform model-transformations, queries are used to
compute primitive values from source models. When strings are computed
from source models, ATL queries can be used to perform code generation.

DEEM Results File → CHESS ML (t4)

This transformation step takes as input the specific output of the DEEM tool
and the CHESS ML model that triggered the analysis, and modifies the latter
by including the results of the analysis.

At UML level (m1 model) the metric to be evaluated is defined by means of
the «StateBasedAnalysis» stereotype. The name of the UML classifier to which
the stereotype is applied provides the search key to lookup the results value in
the DEEM Results File. In the current implementation, once the resulting value
has been identified, the obtained result is back-annotated in the measureEvalu-
ationResult attribute of the «StateBasedAnalysis» stereotype that defined the
metric. Given its simplicity, this transformation step is implemented as pure
Java code.

108 implementation within the eclipse platform

5.2.2 Server Process

The server process is realized in Java as well, and it consists in a wrapper to
the DEEM Simulator: it implements the TCP/IP communication with the client,
and interacts with the tool. The server starts by listening on a predefined TCP
port (9977 has been selected as the default one), and it waits for connections
from client processes.

The server is multi-threaded, and it allows multiple instances of the DEEM
Simulator to be executed in parallel, thus taking advantage of multi-processor
or multi-core systems. When a new client connects, the server starts a new
thread to handle the connection, and returns in a listening state. The thread
receives the m5 model (i.e., a “DEEM Input File”) from the client and saves it
to a temporary folder on the server machine. To avoid conflicts, the name of the
folder is derived from a combination of the current time on the server, and the
IP address of the connecting client. The thread then runs the DEEM Simulator
with the provided input file, and waits for the analysis to complete.

While the analysis is running, the server periodically updates the client on
the current progress. Once the simulation is finished, the results file is read
from the temporary directory, and transmitted back to the connected client.
The temporary directory is then removed, and the connection is closed.

5.3 summary

The model-transformation approach described in the previous chapter has been
concretely realized as a plugin for the Eclipse platform. The main focus in defin-
ing the architecture of such plugin was to enable its reuse and adaptation to dif-
ferent environments and contexts. This led to specific requirements concerning
toolchain reusability, and the definition of a generic architecture for a reusable
toolchain to be use as a reference in the development of the CHESS-SBA tool.
In the following we discuss the context in which the toolchain can potentially
be reused, and how.

reuse with other adls (r1). The adaptation of the toolchain to ADLs
other than CHESS ML (e.g., AADL, SysML) requires to modify only few
elements of the architecture, namely m1, t1, and m4. All the other ele-
ments (including the server process) can be reused as they are. Of course,
the new m1 language should be able to express all the dependability in-
formation that is needed for the analysis.

reuse with other evaluation tools (r3). Reusing the toolchain with
other evaluation tools for Stochastic Petri Nets, metamodels m1, m2, m3,
as well as model transformations t1 and t2 can be completely reused. The
other elements of the client process, which are more dependent on the

5.3 summary 109

adopted analysis tool, need however to be modified. In order to inter-
act with the new analysis tool, the server process needs of course to be
modified as well.

reuse with other analysis formalisms (r2). Also when adapting to
another analysis formalism (e.g., PEPA), some of the existing toolchain
elements can be reused. In particular, metamodels m1 and m2, as well as
the associated t1 transformation can be reused as they are. In certain cases
it may be possible to reuse also m4, m5, t3, t4, e.g., when the analysis tool
is a multi-formalism tool supporting the new analysis formalism.

reuse for other analyses . Although the need to reuse the toolchain for
other analysis purposes was not part of initial requirements, parts of the
implemented toolchain can in principle be reused also for other kind of
analyses. For example, Stochastic Petri Nets and similar formalisms are
also used for performance, power efficiency, and other kinds of analy-
ses. In such case, metamodels m3, m4, m5, transformations t3, t4, as well
as the server process can be reused. Of course, the source language m1

would be a different language containing information for that particular
kind of analysis, which would then be filtered into a different analysis-
dependent intermediate model (m2). Accordingly, related model-trans-
formations (t1 and t2) would need to be changed as well.

platform independency (r4). The requirement of platform indepen-
dency is achieved by i) using Java as the main language for developing
the toolchain, and ii) dividing the toolchain into a client and a server
process. Although the server process is bound to the platform required
by the evaluation tool (Linux in case of the DEEM Simulator), the client
process runs within the Eclipse framework [80], which is available for a
wide range of platforms. The final user of the toolchain, which will in-
teract with the client process only, is therefore not bound to any specific
computing platform.

Finally, another important benefit in using such toolchain architecture is the
convenience in its implementation: the different elements of the plugin can
be developed in isolation, and can therefore be assigned to different teams or
individuals, possibly based on their skills in different areas of expertise (e.g.,
metamodeling, model-transformation, coding).

6
C A S E S T U D I E S

In this section we apply the approach presented in the previous chapters to two
different case studies, modeling the system architecture with CHESS ML, and
performing quantitative dependability analysis through the CHESS-SBA tool.

Within the CHESS project, the approach has been applied to a simple use-case
of an onboard system in the railways domain [42]. The detailed descriptions
of CHESS case studies is however confidential material restricted to project
partners only. Also, since the CHESS use-case had to take into account for all
the project concerns (i.e., code generation, schedulability, dependability. . .), it
addressed only a subset of DEP-UML capabilities, while the case studies pre-
sented in this chapter and are more focused on DEP-UML features. For this
reason, the use-case developed within CHESS is not reported here; applica-
tion of the methodology and plugin to such use-case can however be found
in a demonstration video [41] developed within the project and the associated
tutorial material [133].

All the metrics that are reported in this chapter have been evaluated by
discrete-event simulation, and are computed on at least 103 and at most 105

simulation batches, with a confidence level of 99% and relative confidence in-
terval of half-width 1%. It is however important to emphasize that the focus
here is not on the actual number obtained from evaluations, but rather on the
evaluation process itself.

6.1 multimedia processing workstation

Digital multimedia content is becoming an integral part of our modern society.
Many public and private organizations are providing access to some kind of
multimedia service, e.g., for education [111], or entertainment purposes. Such
applications are often required to support real-time streaming, to provide re-
mote access some kind of event that is currently ongoing. Real-time multime-
dia streaming is also employed in critical applications, e.g., computer-assisted
surgery [122], or “access to medical expertise” [22]. More in general, real-time
processing of data streams (not necessarily of multimedia kind) is employed
for online monitoring applications [26, 66], which play a key role in achieving
dependability of critical systems and infrastructures.

The case study presented in this section involves a multimedia processing
system, having the task to perform real-time processing of data. The focus is
on real-time audio/video processing, e.g., for Distributed Interactive Multime-

111

112 case studies

dia Applications (DIMAs) [108], in which the main dependability requirement
concerns with their availability.

6.1.1 System Description

The system is composed of a dedicated hardware workstation, running an ad-
hoc multimedia processing software application.

The multimedia processing software provides its clients with a streaming
service, exposing the functions needed to control the stream. Internally, the
software application is composed of four main components: the processing com-
ponent, performing the actual data processing; the input component, handling
the real-time acquiring and buffering of data to be processed; the output com-
ponent, for the transmission of processed data; and the supervisor component,
having the task to coordinate the other components, and exchange control data
with the clients.

The hardware architecture of the workstations is composed of a main board,
a CPU, and an input/output board. Additionally, the hardware architecture in-
cludes a Graphics Processing Unit (GPU), which is used to aid the CPU in the
computations. Actually, the recent growth of GPUs capabilities, and the intro-
duction of General Purpose GPUs (GPGPUs), has made it common to use the
GPU as a coprocessor for performing intensive data processing [62]. A promi-
nent example is the Nvidia’s Compute Unified Device Architecture (CUDA)
which provides GPGPU capabilities to off-the-shelf GPU devices. The process-
ing component is thus realized as a CUDA application, to gain advantage of
the processing power of the GPU.

For the purpose of our analysis, we consider such a system to be affected
by two possible failure modes: stopped, in which the data stream that should
be produced by the application is interrupted, and degraded, in which the data
stream that should be produced by the application is present but not completely
correct, e.g,. delayed or with lower quality.

We assume that the system is used without interruptions (24 hours per day,
7 hours per week), and we are interested in its dependability properties in the
timespan of 1 month, e.g., in order to evaluate the provided QoS during a billing
period, after which the system is completely checked and repaired, if needed.
Concerning the metrics of to be evaluated on the system, we are interested in
i) its availability during the month; and ii) its failure distribution with respect to
each failure mode, i.e., the probability that such failure mode has occurred at
least once, after one month of continuous operation.

One acknowledged problem in the usage of CUDA modules for high-integrity
operations is the lack of basic error detection and correction capabilities in
GPUs, conversely to CRC or ECC mechanisms that are typically present in tra-
ditional processing units and memories [121]. For this reason, the processing

6.1 multimedia processing workstation 113

component is deemed to be more subject to faults with respect to the other
components of the software architecture. To contrast this behavior, the process-
ing component is periodically restarted, in order to remove latent errors that
might have been accumulated. Since it may be affected by propagation, the su-
pervisor component is restarted as well. One of the objectives of the analysis is
also to evaluate the effect of this rejuvenation [93] countermeasure with respect
to the metrics of interest, and tune the restart period.

6.1.2 System model with CHESS ML and DEP-UML

In this section we describe how such system is designed and analyzed follow-
ing the CHESS ML methodology, and using DEP-UML and the related model-
transformations to perform the analysis of the target dependability metrics.

Functional Software Model

According to the CHESS methodology, the first step in system design is the
creation of the software architecture. The main entities involved in the design
of the software architecture are shown in the Class Diagram of Figure 6.1. For
convenience, the figure depicts the final version of the diagram; it should be
noted however that, according to the CHESS methodology, the diagram should
be built incrementally in different design views. In particular, the enrichment
with dependability information is typically performed at a later step, after the
overall system architecture has been defined.

The first step is to create the interfaces that will be used by software compo-
nents of the system. This involves four interfaces: IStream, the main interface of
the system to the environment; IProcessing, which enables the control of the
processing component; IInput and IOutput, which let the supervisor interacts
with the input and output components, respectively.

The second step involves the creation of component types: the Processing

component type realizes the IProcessing interface, i.e., it exposes such inter-
face to the other components of the architecture. Similarly, component types
StreamReader and StreamWriter realize the IInput and IOutput interfaces, re-
spectively. Such relationships are specified with Realization relations in the di-
agram. Finally, the Supervisor component type realizes the IStream interface,
i.e., the main interface of the multimedia processing application to the environ-
ment. However, in order to realize such interface, the Supervisor depends on
(i.e., it requires) the other three interfaces defined before: IProcessing, IInput
and IOutput. Such dependencies are specified with Dependency relations in the
diagram.

The subsequent step involves the definition of component implementations.
In this case, one implementation per component type is defined: Supervisor_-
impl, StreamReader_impl, and StreamWriter_impl realize component types Su-

114 case studies

Figure 6.1: Software entities involved in the design of MultimediaProcessing applica-
tion, enriched with DEP-UML dependability annotations.

pervisor, StreamReader, and StreamWriter, respectively. Component imple-
mentation CUDA_impl realizes the implementation of component type Process-

ing, through GPGPU code for the CUDA platform. Finally, component Multi-
mediaProcessing represents the overall software application.

The overall software architecture is then specified, as a composition of con-
nected component instances. Instances are specified by means of a Composite
Structure Diagram (Figure 6.2), in which the internal structure of the Multi-

mediaProcessing component is detailed. The MultimediaProcessing compo-
nent contains four component instances: one for each of the defined component
types. The instance of Processing_impl exposes a provided port of type IPro-

cessing, through which it is connected to a matching required port of the Su-

pervisor_impl instance. In a similar way, instances of StreamReader_impl and
StreamWriter_impl are connected to the instance of Supervisor_impl, through
its required ports.

Hardware Platform and Allocation

Once the software architecture has been completely specified, the hardware
platform is then defined. The hardware platform is constituted of four compo-
nents (Figure 6.3): i) the main board to which other components are connected

6.1 multimedia processing workstation 115

Figure 6.2: Software architecture of the MultimediaProcessing application, enriched
with DEP-UML dependability annotations.

Figure 6.3: Hardware components constituting the multimedia workstation, enriched
with DEP-UML dependability annotations.

(MainBoard component); ii) the Central Processing Unit (CPU component); iii) the
Graphics Processing Unit (GPU component); and iv) the Network Interface Card
(NIC component). Finally, the Workstation_HW component represents the hard-
ware platform itself.

In a similar way as for the software architecture, the architecture of the hard-
ware platform is specified by defining instances of the specified components
(Figure 6.4). The hardware platform contains four component instances, one for
each of the specified components. The component MainBoard has three «Flow-

Port» ports of kind inout, meaning that bidirectional communication occurs on
them. Such ports connect the MainBoard instance with instances of components
CPU, GPU, and NIC. Finally, the CHGaResourcePlatform stereotype is applied to
the Workstation_HW component, in order to allow the resulting InstanceSpec-

ification to be targeted by the analysis.

116 case studies

After both the software and hardware architecture have been completely
defined, allocation of software component instances on hardware component
instance is performed. However, for allocation to be specified, the actual In-
stanceSpecification elements need to be generated from Composite Structure
Diagram specifications.

The creation of InstanceSpecification elements is performed by the execut-
ing the “Build Instance” command of the CHESS framework on the components
for which a Composite Structure Diagram has been defined [38]: in this case the
MultimediaProcessing and Workstation_HW components.

The result of this action is shown in the left part of Figure 6.4, in which
the generated software and hardware InstanceSpecification elements are de-
picted. The Composite Structure Diagram of Figure 6.2 leads to the creation of 8

InstanceSpecification elements: 1 for the containing component, 1 for each of
the subcomponents, and 1 for each connector. Similarly, 8 InstanceSpecifica-

tion elements are generated from the Composite Structure Diagram in Figure 6.4.
Once both software and hardware instances are available, two UML com-

ments, stereotyped with «MARTE::Assign» are used to specify allocation infor-
mation (Figure 6.4). In particular, the rightmost comment specifies the alloca-
tion of the CUDA processing module on the GPU, i.e., of MultimediaProcess-
ing_CUDA_impl_inst software instance on the Workstation_HW_gpu hardware
instance. The leftmost comment specifies instead that the other instances of
software components implementations are allocated on the CPU, i.e., on the
Workstation_HW_cpu instance.

Enrichment with Dependability Information

The modeled system architecture is then enriched with dependability infor-
mation, using DEP-UML stereotypes. Component implementations CUDA_impl,
StreamReader_impl and StreamWriter_impl are annotated with “dependability
template” stereotypes (see Figure 6.3). StreamReader_impl and StreamWriter_-

impl are considered «StatelessSoftware» components: although they might
have some internal buffer for processing stream I/O, they are of are of reduced
size, and error latency is thus considered to be negligible. Accordingly, only the
faultOcc attribute is specified for them.

Conversely, component implementation CUDA_impl is a «StatefulSoftware»

component: internal variables are used for different aspects of stream process-
ing. Faults may therefore require some time before they reach the service in-
terface; in the figure, errorLatency is set to 0.083 hours, which correspond to
approximately 5 minutes.

A more detailed dependability specification is provided for the Supervisor_-

impl component implementation, for which an error model is defined (Fig-
ure 6.5). The «ExternalFault» xft1 occurs when a failure occurs on one of the
two required ports of type IInput and IOutput, i.e., when the components con-

6.1 multimedia processing workstation 117

Fi
gu

re
6
.4

:H
ar

dw
ar

e
ar

ch
it

ec
tu

re
of

th
e

m
ul

ti
m

ed
ia

w
or

ks
ta

ti
on

,w
it

h
al

lo
ca

ti
on

in
fo

rm
at

io
n.

118 case studies

Figure 6.5: Error model for the Supervisor_impl component implementation.

nected on the other end of such ports fail. Such event generates the «Error»

EmptyBuffer, meaning that the supervisor is no longer able to read from (write
to) the input (output) buffer. After a short delay (0.001 hours, approximately
3.6 seconds) the error causes the occurrence of the Stopped failure mode.

Instead, a failure occurring on the port of type IProcessing generates an
error of kind AlteredData within the supervisor, meaning that the stream data
has been altered during its processing. The same error can also be generated by
an internal fault of the supervisor component, e.g., for a wrong handling of data
exchanged through the interfaces. With probability 0.7, and a delay of 1 minute,
the AlteredData error may cause the occurrence of the Degraded failure mode,
in which the streaming is still active, but produces wrong or degraded output.
The presence of the AlteredData error can also lead to the Stopped failure
mode; we assume however that the supervisor has a high chance to recover
(e.g., by skipping some frames), and thus propagation occurs in this case with
a lower probability (0.2) and a higher delay (0.25 hours, corresponding to 15

minutes).
Since Supervisor_impl_inst is the component instance to which the overall

system service is delegated (see Figure 6.2), the two failure modes specified in
the error model are also the two possible failure modes of the system.

“Dependability template” stereotypes are also used to attach dependability
information on hardware components (see Figure 6.3). In particular, the CPU

and GPU components are considered «StatefulHardware» components, since
they have internal memories in which latent errors may accumulate; errorLa-
tency is set to 0.017 hours, which correspond to approximately 1 minute. The
MainBoard and NIC components are instead considered «StatelessHardware»

components. The CPU and MainBoard are the most reliable ones, both having a
fault occurrence rate of 10−6 faults/hour; the GPU and NIC have instead a fault
occurrence of an order of magnitude higher, 10−5 faults/hour. After the fail-

6.1 multimedia processing workstation 119

Figure 6.6: Definition of the maintenance activities performed on the multimedia pro-
cessing application.

ure, an hardware components is repaired after an exponential delay of mean 24

hours (repairDelay attribute).
Connectors connecting component instances, both software and hardware,

are annotated with the «Propagation» stereotype (see Figures 6.2 and 6.4). Sim-
ilarly, «Assign» allocation specification are enriched with the «Propagation»

stereotype. Propagation from hardware to software is assumed to always occur
(i.e., with probability 1), and with a mean delay of about 1 minute.

Finally, the specification of the periodic restart of the processing and super-
visor components is specified as a maintenance activity, through the «Repair»

stereotype (Figure 6.6). The activity targets the CUDA_impl_inst and Supervi-

sor_impl_inst instances of the CUDA_impl and Supervisor_impl component
implementations, and it is executed periodically every 24 hours. The activity
succeeds 90% of the times, and requires 0.01 hours to be completed, i.e., 36
seconds.

Finally, metrics of interest for the analysis are defined. Figure 6.7 depicts the
definition of three Component elements stereotyped with the «StateBasedAnal-

ysis» stereotype, which define three metrics that should be evaluated by the
CHESS-SBA plugin.

Figure 6.7a depicts the definition of the interval-of-time availability of the super-
visor; since it is the component that interacts with the external environment by
providing the “streaming” service, it is the one that is targeted by the analy-
sis. Accordingly, the targetDepComponent attribute refers to the MultimediaPro-

cessing_Supervisor_impl_inst InstanceSpecification element. The measure
attribute specifies that the metrics is an interval-of-time availability, in the in-
terval [0, t], with t = 720 hours, corresponding to 1 month. In the following, we
will refer to this metric as the Availability of the system, A(0, t).

Figures 6.7b and 6.7c depict the definition of the instant-of-time reliability of
the supervisor, with respect to the failure modes “Stopped” and “Degraded”, re-
spectively. In this case also the targetFailureMode attribute needs to be specified,
and it is set to the corresponding «FailureMode» elements in the error model
of Supervisor_impl (see Figure 6.5). In the following, we refer to these metrics
as Rstop(t) and Rdeg(t), respectively.

For all the three metrics, the platform attribute, which identifies the hardware
platform to be taken into account, refers to the Workstation_HW_instSpec.

120 case studies

(a) A(0, t), t = 720 hours.

(b) Rstop(t), t = 720 hours. (c) Rdeg(t), t = 720 hours.

Figure 6.7: Definition of the metrics of interest for the evaluation of the multimedia
processing application.

Table 6.1: Main parameters used in the evaluation of the multimedia workstation.

Symbol Corresponding model element Default value

λCPU CPU.faultOcc 10−6 faults/hour
λGPU GPU.faultOcc 10−5 faults/hour
λMB MB.faultOcc 10−6 faults/hour
λIO IO.faultOcc 10−5 faults/hour
TRej Rejuvenation.when.Deterministic.Value 24 hours
λCUDA CUDA_impl.faultOcc 10−3 faults/hour

6.1.3 Analysis and Results

The system model is then evaluated using the CHESS-SBA plugin described
in Chapter 5. The generated IDM model contains 198 elements, including all
the auxiliary elements (e.g., instances of Distribution elements). In particu-
lar, the model includes 8 Component, 8 InternalFault, 13 ExternalFault, 9

Error, 9 FailureMode, 17 FaultsGenerateErrors, 10 ErrorsProduceFailure, 5

RepairActivity, 1 Availability, 2 Reliability elements. The PNML model
generated from it contains 1674 elements, including 132 places, 155 transitions,
and 405 arcs. Finally, the resulting DEEM input file contains 1580 lines.

During the evaluation, some key system parameters have been varied in or-
der to assess their impact on the metrics of interest. The main parameters of
this study are summarized in Table 6.1, together with their default values, and
the corresponding DEP-UML attributes in the previously presented diagrams.

As a first study, we evaluate the impact of the fault occurrence rate of the
CUDA_impl component implementation (λCUDA parameter) on the probability

6.1 multimedia processing workstation 121

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

F
(t

)
=

 1
-R

(t
)

Time t (days)

Impact of "CUDA" component implementation fault

occurrence rate on the probability of system failure

 ["Stopped" failure mode]

λCUDA = 2.56e-03 hours
λCUDA = 5.12e-03 hours
λCUDA = 1.02e-02 hours

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

F
(t

)
=

 1
-R

(t
)

Time t (days)

Impact of "CUDA" component implementation fault

occurrence rate on the probability of system failure

 ["Degraded" failure mode]

λCUDA = 2.56e-03 hours
λCUDA = 5.12e-03 hours
λCUDA = 1.02e-02 hours

(b)

Figure 6.8: Impact of the fault occurrence rate of the CUDA_impl component implemen-
tation on the failure probability of the system.

of occurrence of the two system’s failure modes. Such analysis helps in un-
derstanding the behavior of the system in case of faults, and thus define the
proper QoS contracts to offer. For varying the fault occurrence rate, we selected
the CUDA_impl component since it is the one with the higher fault occurrence
rate; a similar analysis could however be performed on the other components
as well.

The results of such evaluation are shown in Figure 6.8, both for the “Stopped”
failure mode (6.8a) and for the “Degraded” failure mode (6.8b). More in details,
the figure depicts the quantities Fstop(t) and Fdeg(t) as a function of time,
evaluated as 1−Rstop(t) and 1−Rdeg(t), respectively. The evaluation has been
performed on a timespan 1 month (30 days, 720 hours).

Of course, an increase of the fault occurrence rate of the component causes an
increase of failure probability for both the failure modes. However, the results
clearly show that a failure of the CUDA component is more likely to cause
a degradation in the multimedia stream, rather than an interruption of the
processing Actually, even with a fault occurrence rate one order of magnitude
higher than the default, there is still a 30% probability that the “Stopped” failure
mode never occurs within one month of operation, while the probability that
degradation has occurred at least once is near to 1.

It should be noted however that reliability is not the main requirement of the
system, which instead should provide a high availability level in its operational
period of one month. In the following we then evaluate the impact of system
parameters on the A(0, t) metric, with a particular focus on assessing the effec-
tiveness of the rejuvenation mitigation measure that has been defined during
system design. Figure 6.9 shows the impact of the period at which software re-
juvenation is performed, i.e., the period at which component instances CUDA_-

122 case studies

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

2 4 8 12 24 36 48 72 96

A
v
a

ila
b

ili
ty

 A
(0

,t
),

 t
=

7
2

0
 h

o
u

rs

Restart period for the CUDA_impl_inst

 and Supervisor_impl_inst component instances (hours)

Interval-of-time availability of the multimedia processing application,

 at varying the period at which software rejuvenation is performed

Figure 6.9: Availability of the multimedia processing application at varying the rejuve-
nation period.

impl_inst and Supervisor_impl_inst are restarted. Results in the figure show
that the countermeasure is actually effective in improving system availability,
and that the restart period should be tuned based on the actual availability re-
quirements of the system. For example, the default configuration is not enough
for providing an availability level higher than 99%, which is instead achieved
by triggering the restart every 12 hours.

The next evaluation focus on assessing the ability of the introduced mecha-
nism to contrast software faults that are originated from failures of the hard-
ware platform. For this purpose, we evaluate the impact on A(0, t) of the fault
occurrence rate of hardware components, at varying the Trej parameter. Fig-
ure 6.10 shows the results of this evaluation for the GPU (6.10a) and MB (6.10b)
components. The obtained results show that the restart of selected software
components actually provides some benefits also with respect to hardware fail-
ures, probably due to the occurrence of transient faults.

This mechanism is however effective only if the increase in the fault occur-
rence rate is limited. Considering the GPU component, for example, an increase
of one order of magnitude still allows an availability level of 99% to be reached,
by adopting a restart period of 8 hours. However, if λGPU increases to 10−4

faults/hour, the level of 99% cannot be reached anymore, even if using a restart
period of 2 hours.

The impact of the mainboard is even higher (Figure 6.10b): in this case, a
fault occurrence rate of 10−4 faults/hour makes the availability metric unable
to even reach the level of 97%. This is mainly due to the fact that a failure of the
MB component propagates to all the other hardware components, possibly also
leading them to failure; the failure of the mainboard has thus a higher impact
on the ability of the system to provide a correct service.

6.2 fire detection system 123

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

2 8 24 48 96

A
v
a
ila

b
ili

ty
 A

(0
,t
),

 t
=

7
2
0
 h

o
u
rs

Restart period for the CUDA_impl_inst

 and Supervisor_impl_inst component instances (hours)

Impact of the fault occurrence rate of the GPU on system availability

λGPU=10
-6

 hours
λGPU=10

-5
 hours

λGPU=10
-4

 hours

(a)

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

2 8 24 48 96

A
v
a
ila

b
ili

ty
 A

(0
,t
),

 t
=

7
2
0
 h

o
u
rs

Restart period for the CUDA_impl_inst

 and Supervisor_impl_inst component instances (hours)

Impact of the fault occurrence rate of the MB on system availability

λMB=10
-6

 hours
λMB=10

-5
 hours

λMB=10
-4

 hours

(b)

Figure 6.10: Impact of GPU and MB fault occurrence rates on the availability of the
multimedia processing application.

6.2 fire detection system

While the previous case study was mainly descriptive, in this section we aim
to “emulate” the design and assessment of a safety-critical system using the
proposed methodology. The case study is a revisited and extended version of
the fire detection system modeled with the IDM in [134] and recalled in Sec-
tion 4.2.2.

This case study also demonstrates how the DEP-UML, while compatible with
it, does not need to strictly follow the CHESS development methodology, in
which the design of the software architecture plays a primary role. Instead, the
approach can be applied also with a more hardware-oriented view of the sys-
tem, for the analysis of hardware architectures only.

With respect to the previous one, this case study also highlights the sup-
port of DEP-UML for incremental modeling and evaluation. Actually, during
our fictional path to the design of the system, we will take into account two
subsequent refinement steps, corresponding to different stages of system de-
velopment.

6.2.1 System Description

We here recall the description of the system, and provide additional details that
will be taken into account during the modeling process.

The fire detection system takes its decision based on a set of Smoke Sensors
(SMS) and a set of Over-Temperature Detectors (OTD). These sensors are man-
aged by two Fire Detection Units (FDU), which analyze the data received from

124 case studies

them and trigger the alarm signal when a fire event is detected. Both the FDU
are able to detect a fire event, but only one of them is allowed to control the
sensors at the same time; accordingly, they periodically switch between “mas-
ter” and “slave” status: while both receive sensors data, only the “master” is
able to properly command the sensors.

During normal operation, each FDU emits a “No Fire/Smoke Detected”
(NFSD) signal, to indicate that no fire or smoke have been detected by read-
ing the controlled sensors. When fire or smoke is detected, the FDU disables
the signal, thus raising an alarm. A hardware fail-safe comparator receives both
NFSD signals from the FDUs, and provides a global system alarm if at least one
of the two FDUs has triggered an alarm; therefore, the comparator triggers the
alarm also if the two NFSD signals become different, e.g., because one of the
two FDUs is not correctly working.

In addition to the NFSD signal, each FDU has the following additional inter-
faces: “TLoop”, which connects to the set of over-temperature sensors, “SLoop”,
which connects to the set of smoke sensors, and “FDU_SC”, which connects
each FDU to the other one through a serial cable. The “FDU_SC” interface is
used by the two FDUs to agree on their master/slave roles.

An FDU is affected by two possible failure modes. In the “No Alarm” failure
mode the fire detection functionality of the FDU is compromised but no other
consequences of the system occur; in this case the FDU moves to a safe state
and signals its failure. In the the “Holds Control” failure mode fire detection
is compromised as well, and there is also the possibility that an FDU prevents
the other to become “master”, thus preventing it to access the sensors. A catas-
trophic event occurs when both the FDUs are in a state such that the system
would not be able to detect a fire event. For the purpose of reliability, the sys-
tem is considered failed when at least one of the two FDUs would not be able
to detect a fire event.

Each FDU is composed of the following boards: i) Backplane (BKP) board,
on which all the other boards are connected; ii) Power Supply (PSP) board,
which provides the power to the backplane board and consequently to all the
other boards; iii) Temperature Loop (TLP) board, which interfaces with the
over-temperature sensors through the “TLoop” interface; iv) Smoke Loop (SLP)
board, which interfaces with the smoke sensors through the “SLoop” interface;
v) Input/Output (I/O) board, which manages the NFSD interface and triggers
the alarm; vi) Central Processing Unit (CPU) board, which analyzes the data
coming from the smoke and over-temperature sensors, possibly triggering the
alarm signal on the I/O board. The CPU board is directly connected to other
FDU’s CPU board through the “FDU_SC” interface.

The “Holds Control” failure mode can be caused by a failure of the CPU
itself, or by specific failure modes of the SLP and TLP boards, which prevent
the CPU to release the previously acquired “master” status.

6.2 fire detection system 125

Figure 6.11: Hardware components which are involved in the definition of architecture
of the fire detection system, in two subsequent refinement steps.

The system is subject to a complete maintenance every 104 = 10.000 hours of
operations, after which every single sensor as well as all components of both
FDU are checked for correct operation. After 104 hours of operation the system
is therefore considered to be as good as new.

System safety requirements impose a Safety Integrity Level (SIL) [31] equal or
higher to SIL-1. Therefore, the aim of the analysis is quantify the probability of
occurrence of an hazard, i.e., of an event for which both the FDUs are not able
to detect the fire. To fulfill the SIL-1 quantitative requirements [31], the mean
time to the occurrence of an hazard, Mean Time To Hazardous Event (MTTHE),
should be higher than 105 hours. Moreover, we are also interested in system
reliability, measured as the MTTF, which should be higher than the planned
maintenance interval.

6.2.2 System Model – Early Phase

The system is designed and analyzed in two subsequent refinement steps. In the
first step the two FDUs are seen as black-boxes components, i.e., their internal
structure is not detailed.

The hardware components involved in the definition of the system architec-
ture are depicted in the Class Diagram of Figure 6.11. For convenience, the figure
shows components involved in both the phases of system modeling; leftmost
components are those involved in the first refinement only; rightmost compo-
nents are introduced in the second refinement step.

The first refinement step involves five components: OTD, representing the set
of over-temperature sensors; SMS representing the set of smoke sensors; FDU,
representing a FDU; Switch, representing the fail-safe comparator; and System,
representing the overall fire detection system.

126 case studies

Figure 6.12: Hardware architecture of the fire detection system.

Such components are instantiated in the Composite Structure Diagram of the
System component (Figure 6.12), in order to define the overall system (hard-
ware) architecture. The hardware architecture includes an instance of the SMS

and OTD components, both having a «FlowPort» of kind out, on which the data
acquired by sensors is retrieved.

The architecture also includes two instances of the FDU component (fdu1 and
fdu2), and an instance of the Switch component. The instance of the Switch

component has two «FlowPort» elments with in direction, corresponding to
the two “NFSD” signals received from the FDUs.

Each FDU instance has three in «FlowPort» and two out «FlowPort» elements.
A couple of ports with opposite direction correspond to the “FDU_SC” in-
terface, which connects each FDU component instance with the other one. The
other «FlowPort» with out direction corresponds to the “NFSD” interface, and
it is connected with the instance of the Switch component. Finally, the other
two ports with in direction are connected with the instances of the SMS and OTD

components, in order to retrieve the data from sensors, and correspond to the
“SLoop” and “TLoop” interfaces, respectively.

Concerning dependability attributes, the SMS component is considered a «State-

fulHardware» component, with an errorLatency of 30 minutes, while OTD is a
«StatelessHardware». In fact, smoke sensors perform short-term averages of
the acquired value, while over-temperature detectors are simply heat-sensible
electrical elements. For the same reason, over-temperature detectors are more
reliable than smoke sensors, and have a lower fault occurrence rate (faultOcc
attribute). Both components have a 10% chance of transient faults. The repair

6.2 fire detection system 127

Figure 6.13: Error model for the Switch component.

delay is not specified, since it is assumed that no repairs are performed until
10.000 hours of system lifetime have elapsed.

The dependability properties of the FDU and Switch components are instead
specified using «DependableComponent» stereotype and the error model facil-
ity. The «ErrorModel» for the Switch component is depicted in Figure 6.13.
The error model contains a single «Error» BothFailed, which is generated by
the «ExternalFault» xft_fdu. Its fromPorts and propagationCondition attributes
specify that such fault occurs when both the components connected through
the nfsd1 and nfsd2 ports are failed, i.e., when both the FDUs are failed. The
presence of the BothFailed error within the Switch immediately leads to the
CatastrophicFailure failure mode of the comparator, i.e., the failure of the
system-level “NFSD” signal, which corresponds to the hazardous event.

The «ErrorModel» associated with the FDU component is instead depicted in
Figure 6.14. The FDU is subject to two failure modes, NoAlarm and HoldsCon-

trol. The NoAlarm failure mode, in which the NFSD signal cannot be correctly
triggered, affects the nfsd port only. HoldsControl corresponds to the “Holds
Control” failure mode, in which the FDU may prevent the other one from ac-
cessing the sensors; accordingly, this failure mode affects both the nfsd and the
toOther ports of the FDU. The two failure modes are caused by the e1 and e2

errors, respectively. Error e2, leading to the “Hazardous” failure mode can be
caused by an internal fault of the FDU only; conversely, error e1 can occur also
because of propagation from smoke or temperature sensors.

Once all the required properties are specified, the «CHGaResourcesPlatform»

is applied to the System component, in order for it to be targeted by the analysis,
and component instances are generated. At this point, the metrics of interest
for the analysis can be specified using the «StateBasedAnalysis» stereotype
(Figure 6.15).

The probability of occurrence of a hazardous event (6.15a) is specified as an
instant-of-time reliability metric, having the component instance System_switch
as targetDepComponent. Such specification means that an hazardous event has
occurred if the service provided by the switch component has failed. In the
following evaluations we will refer to this metric as the Safety of the system,
S(t).

128 case studies

Figure 6.14: Error model associated with the FDU component (first refinement step).

(a) S(t), t = 104 hours. (b) S(t), t = 104 hours.

Figure 6.15: Definition of metrics of interest for the evaluation of the fire detection
system.

The probability of system failure (e.g., an alarm has been raised because of
the failure of a component), is specified as an instant-of-time reliability metric
as well, having both instances of the FDU component, System_fdu1 and System_-
fdu2 as targetDepComponent (6.15b). Such specification means that, from a func-
tional point of view, the system is failed if at least one of the FDUs is failed: in
this case the system will enter a safe state and halt its service1. In the following,
we will refer to this metric as the Reliability of the system, R(t).

Since we assume that the system is as good as new after 104 hours of op-
eration, the probabilities that it “survives” two different maintenance cycles
are independent, and the number of intervals the system survives before ex-
periencing a failure follows a geometric distribution. The MTTF and MTTHE
metrics can then be obtained from R(t) and S(t), respectively, as the mean of

1 It should be noted that such behavior could be modeled also by specifying two different failure
modes for the switch, and then defining two different metrics based on them. This approach is
not adopted here since it produces a more complex error model for the switch, and would also
add additional complexity later in the refinement phase (see Section 6.2.4).

6.2 fire detection system 129

Table 6.2: Main parameters used in the evaluation of the fire detection system.

Symbol Corresponding model element Default value

λOTD OTD.faultOcc 5.90 · 10−8 faults/hour
λSMS SMS.faultOcc 2.19 · 10−6 faults/hour
λft1
FDU errmod_FDU.ft1.occurrence 3.44 · 10−5 faults/hour

λft2
FDU errmod_FDU.ft2.occurrence 3.82 · 10−6 faults/hour

pprop fdu1_to_fdu2.prob; fdu2_to_fdu1.prob 10%

a geometric distribution multiplied by the length of the interval between two
maintenance periods i.e.:

MTTF =
R(T)

1−R(T)
· T , T = 104 hours.

MTTHE =
S(T)

1− S(T)
· T , T = 104 hours.

(6.1)

6.2.3 Analysis and Results – Early Phase

We now report some evaluations on the early system design. The generated
IDM model contains 126 elements, while the resulting PNML model contains
1152 elements (including 252 arcs, 86 places, and 93 transitions). The resulting
DEEM input file contains 988 lines. The main parameters used in this phase, to-
gether with corresponding attributes in the DEP-UML model and their default
values are listed in Table 6.2. Such default values have been derived from the
real industrial project to which this case study is inspired; in general, they can
be obtained from datasheets [180] or records from previous similar projects.

The values obtained for the target metrics, with default values as reported in
the table are the following:

S(104) = 8.460727 · 10−1, R(104) = 4.541527 · 10−1,

which yield:

MTTHE = 54965 hours, MTTF = 8320 hours.

Unfortunately, both the metrics are below the values required to to satisfy sys-
tem requirements; a more extended analysis to identify design solutions needs
therefore to be performed. In particular, the most critical components with re-
spect to the defined metrics need to be identified. This can be accomplished by
evaluating the impact of the fault occurrence rates of the different system com-
ponents on the metrics of interest. The results of such evaluations are reported
in Figure 6.16.

Figure 6.16a depicts the impact on the target metrics of varying the fault oc-
currence rate of the over-temperature detectors block; the vertical line marks

130 case studies

the default value for the λOTD parameter. As shown in the figure, the OTD com-
ponent has very little impact on the overall system metrics, mainly due to the
fact that it has a very low fault occurrence rate. A wrong estimation of the reli-
ability of this component has a reduced impact on the system: even if the fault
occurrence rate is one order of magnitude higher, the system metrics would
remain practically constant. On the other hand, further improving the fault oc-
currence rate of this component would not bring significant improvements on
system properties as well.

A similar trend is observed for the SMS component (Figure 6.16b); however,
the different default (i.e., estimated) value for λSMS lead us to different consid-
erations. In this case, an optimistic estimation of this parameter has a significant
effect on system reliability and safety; for this reason the value of this param-
eter should be carefully assessed. On the other hand, achieving a lower fault
occurrence rate for the SMS component, e.g., by adopting higher-quality sensors,
has little impact on the overall system metrics. In particular, even with λSMS

two order of magnitude lower, S(104) is still below 0.9, which is not sufficient
to satisfy system safety requirements.

The impact of the fault occurrence rate of the FDU component is highlighted
in Figure 6.16c. Since the FDU component is affected by two different internal
faults, having different occurrence rates, the x axis shows the sum between
λft1FDU and λft2FDU, while the ratio between them is kept constant. As shown in the
figure, the FDU component is the most critical component, and the dependability
bottleneck of the system. The default value falls in a very critical point, and a
little error in the estimation of its value can yield very large differences on
the overall system metrics. Moreover, the figure shows that a relatively small
improvement on the fault occurrence rate(s) of the FDU component (less than an
order of magnitude) can be sufficient to let the system satisfy its requirements.
As an example, the value S(104) ≈ 0.916, which is obtained for λFDU ≈ 2.2 ·
10−5 faults/hour, is sufficient to achieve MTTHE ≈ 1.09 · 105 hours.

Further analysis of the impact of the FDU component is reported in Fig-
ure 6.17, which focuses on assessing the impact of error propagation between
the two FDUs. The two figures depict the metrics S(t) (6.17a) and R(t) (6.17b)
as functions of time and propagation probability pprop. As expected, results
show that the propagation probability has impact on the S(t) metric only. From
a modeling point of view, such results are a confirm that the system model has
been correctly specified using the DEP-UML language; from a system design
point of view, such results highlight and quantify the importance of FDUs error
propagation with respect to system safety. However, the impact on safety seems
to be relatively modest with this configuration, since in the worst case the S(t)

metric is reduced by about 5%.

6.2 fire detection system 131

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-08 1e-07 1e-06 1e-05 0.0001

R
(t

)
o
r

S
(t

),

t=

1
0
.0

0
0
 h

o
u
rs

λOTD (hours
-1

)

Impact of the OTD component on the reliability

 and safety of the fire detection system (early model)

Safety
Reliability

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-08 1e-07 1e-06 1e-05 0.0001

R
(t

)
o
r

S
(t

),

t=

1
0
.0

0
0
 h

o
u
rs

λSMS (hours
-1

)

Impact of the SMS component on the reliability

and safety of the fire detection system (early model)

Safety
Reliability

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-08 1e-07 1e-06 1e-05 0.0001 0.001

R
(t

)
o
r

S
(t

),

t=

1
0
.0

0
0
 h

o
u
rs

λFDU = λ
ft1
FDU + λ

ft2
FDU (hours

-1
)

Impact of the FDU component on the reliability

and safety of the fire detection system (early model)

Safety
Reliability

(c)

Figure 6.16: Impact of fault occurrence rates of different components on the target
system-level metrics.

6.2.4 System Model – Refinement

At a later stage, more detailed analysis is performed on the system, following
a refinement of the system architecture. The results obtained from the previ-
ous evaluation suggest to focus on the FDU component, which appears to be
the most critical one. Accordingly, the second refinement details the internal
FDU architecture, by adding to the already introduced components also the BKP,
PSP, SLP, TLP, CPU, and I/O components (see Figure 6.11). Instances of newly in-
troduced components are defined and connected together in a Composite Struc-
ture Diagram which details the internal architecture of the FDU component (Fig-
ure 6.18). Input and output ports through which the FDU component interacts
with the other components of the system architecture are delegated to the sub-

132 case studies

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2500 5000 7500 1000012500150001750020000

S
(t

)

Time t (hours)

Impact on system safety of the probability of error

propagation between the two FDUs (early model)

pprop=0.1
pprop=0.5
pprop=0.8

pprop=0.99

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2500 5000 7500 1000012500150001750020000

R
(t

)

Time t (hours)

Impact on system reliability of the probability of error

propagation between the two FDUs (early model)

pprop=0.1
pprop=0.5
pprop=0.8

pprop=0.99

(b)

Figure 6.17: Impact of propagation probability between the two FDUs on the metrics
of interest.

component who is in charge to implement such interface. The smoke and tem-
perature ports are delegated to instances of the SLP and TLP boards, respectively;
the nfsd port to the instance of the I/O board; the toOther and fromOther ports
to the CPU board. We emphasize that — due to the component-based approach
that has been adopted — the previously specified system model has not been
modified, but only extended.

The CPU instance is directly connected to the SLP and TLP instances, and to
the I/O instance. All the boards are connected with bidirectional ports with the
BKP instance, with the exception of the PSP instance, having only an output port
on which it provides power to the BKP instance.

Concerning dependability attributes, for the BKP and I/O board, the «State-

lessHardware» stereotype is used, while we assume that the PSP board has an
error latency of 30 minutes, and therefore we apply the «StatefulHardware»

to it. For the SLP, TLP, and CPU boards an error model is instead defined, and
applied through the «DependableComponent» stereotype. Finally, the «Depend-

ableComponent» stereotype that was previously attached to the FDU component
is removed, in order for the transformation algorithm to take into account for
the newly defined internal structure of the component.

The error model for the SLP board is shown in Figure 6.19; the one defined for
the TLP board is very similar and it has been omitted. The SLP board is affected
by two failure modes, Safe, in which smoke sensors data cannot be acquired
by the CPU, and Hazardous, in which smoke sensors data cannot be acquired
by the CPU and the release of the master status is prevented. The two failure
modes are caused by the NoSensorsData and StuckMaster errors respectively,
which in turn are caused by two different «InternalFault» elements (slpft1 and
slpft2) having different occurrence rates. Moreover, the NoSensorsData error can

6.2 fire detection system 133

Figure 6.18: Internal architecture of the FDU component.

Figure 6.19: Error model for SLP/TLP boards. The figure shows the error model for
the SLP board; the TLP board has a similar behavior.

also be caused by an external fault occurring on the smoke_in port of the SLP

component, i.e., by the failure of the smoke sensors block itself.
Figure 6.20 depicts the error model defined for the CPU component. This error

model is similar to the error model that was defined for the whole FDU com-
ponent in the previous refinement step (see Figure 6.14). In particular, the same
errors and failure modes are considered: a “NoAlarm” failure mode, which
propagates through the alarm port only, and a “HoldsControl” failure mode,
which propagates through the toOther port as well. Errors e1 and e2, leading
to the NoAlarm and HoldsControl failure modes respectively, can occur due to
two different kind of internal faults, having different occurrence rates. More-
over, they can also occur due to external faults occurring on ports tlp_in and
slp_in, which connect the CPU with the SLP and CPU boards: e1 occurs when at
least one of the two boards fail with the “Safe” failure mode (and none with

134 case studies

Figure 6.20: Error model for the CPU.

Table 6.3: Additional parameters adopted in the evaluation of the fire detection system.

Symbol Corresponding model element Default value

λft1
SLP errmod_SLP.slpft1.occurrence 1.27 · 10−6 faults/hour

λft2
SLP errmod_SLP.slpft2.occurrence 1.14 · 10−5 faults/hour

λft1
TLP errmod_TLP.tlpft1.occurrence 4.74 · 10−7 faults/hour

λft2
TLP errmod_TLP.tlpft2.occurrence 4.266 · 10−6 faults/hour

the “Hazardous” failure mode), while e2 occurs when at least one of them fails
with the “Hazardous” failure mode.

In order to properly execute the model transformation, InstanceSpecifica-
tion elements need to be re-generated using the “Build Instances” command.
This process generates a total of 52 InstanceSpecification elements, includ-
ing instances of connectors: 20 instances for each of the two FDUs (and its
subcomponents), 3 as instances of the SMS, OTD, and Switch components, and 9

as instances of connectors at the higher level of abstraction. Metrics of interest
are defined exactly in the same way as in Figure 6.15, and do not need to be
modified.

6.2.5 Analysis and Results – Refinement

The refined design of the system is then analyzed for a more precise evaluation
of system metrics, and for the identification of dependability bottlenecks. The
generated IDM model for the refined DEP-UML model contains 402 elements,
which result in a PNML model containing 3706 elements (including 852 arcs,
280 places, and 315 transitions). Finally, the resulting DEEM input file consists
of 3287 lines. With respect to parameters adopted in the earlier analysis, in this
section we use some additional ones (Table 6.3)

6.2 fire detection system 135

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

R
(t

)
o
r

S
(t

)

Time t (10
3
 hours)

Reliability and safety of the fire detection system

Results obtained in the two refinement steps (default values)

Safety (1st Refinement)
Safety (2nd Refinement)
Reliability (1st Refinement)
Reliability (2nd Refinement)

Figure 6.21: Comparison between the metrics of interest evaluated in the two phases.
In the earlier design phase reliability and safety of the system have been
underestimated.

From the new evaluations performed on the refined system model, it results
that the reliability and safety of the system have been underestimated in the
earlier design phase, as shown in Figure 6.21. More in details, the values ob-
tained for the target metrics in the refined model are the following:

S(104) = 8.789582 · 10−1, R(104) = 4.962623 · 10−1,

which yield:

MTTHE = 72616 hours, MTTF = 9852 hours.

Although there has been a slight improvement in the metrics of interest, such
increase is not yet enough to satisfy system requirements. The design process
then proceeds by identifying the components which still prevent the system to
reach the target values for the metrics of interest. Moreover, the earlier design
stage has shown that error propagation between the two FDU has a modest
impact on system safety; this evaluation will also aim to further investigate this
aspect.

The most peculiar components in the refined architecture are most likely
the SLP, TLP, and CPU components, since they all exhibit two different failure
modes, one of which may lead to error propagation towards the other FDU.
For the above reasons, system evaluation in the second refinement step will
focus mainly on the SLP, TLP, and CPU components.

Figure 6.22 shows some of the results that have been obtained from the anal-
ysis of the SLP component. In particular, the evaluation reported in the figure
aimed at assessing the impact on S(t) of: i) the occurrence rates of the two inter-
nal faults affecting the component, and ii) the probability of error propagation
between the two FDUs. Results in Figure 6.22a are obtained by varying the

136 case studies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-07 1e-06 1e-05 1e-04 1e-03

S
(t

)

λ
ft1
SLP (hours

-1
)

Impact of occurrence rate of fault ft1 in the SLP component

at varying the probability of propagation between the FDUs

[λ
ft2
SLP = 1.14e-05 hours

-1
]

pprop = 0.1
pprop = 0.5
pprop = 0.8
pprop = 0.99

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-07 1e-06 1e-05 1e-04 1e-03

S
(t

)

λ
ft2
SLP (hours

-1
)

Impact of occurrence rate of fault ft2 in the SLP component

at varying the probability of propagation between the FDUs

[λ
ft1
SLP = 1.27e-06 hours

-1
]

pprop = 0.1
pprop = 0.5
pprop = 0.8
pprop = 0.99

(b)

Figure 6.22: Impact of occurrence rates of the two internal faults of the SLP component
on system safety, at varying of the propagation probability between the
FDUs.

occurrence rate of slpft1, λft1SLP, while λft2SLP holds its default value; conversely,
results in Figure 6.22b are obtained by varying λft2SLP only. The vertical lines in
both plots highlight the default value of the parameter under study.

The first interesting result is that the two internal faults of the SLP component
have a different behavior with respect to error propagation between the FDUs.
While in both cases an increase of the fault occurrence rate leads to a decrease
of system safety, the decrease due to slpft2 only slightly depends on the pprob

parameter (6.22b); conversely, the decrease due to slpft1 heavily depends on it
(6.22a). However, this behavior occurs only for high values of λft1SLP, while for
values near its default value the S(t) metric is almost constant.

Another aspect of interest for system design is that further decreasing the
occurrence rate of slpft1 does not yield any improvement in the metrics of in-
terest. Thus, it is not a viable way to achieve the target safety and reliability
metrics. Reducing the occurrence rate of the slpft2 fault can instead provide
some improvements to the S(t) metric, which might be sufficient to satisfy the
target requirements.

Following such results, and similar ones obtained for the TLP component, we
decide to evaluate three different system configurations, in which:

A: the λft2SLP parameter is decreased by 50%;

B: the λft2TLP parameter is decreased by 50%;

C: both the λft2SLP and the λft2TLP parameters are decreased by 50%.

From a practical point of view, a decrease of fault occurrence rate can be ob-
tained in different ways, e.g., by adopting more reliable elements in the SLP and

6.3 summary 137

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

MTTHE MTTF

Default

A

B

C

Figure 6.23: Impact of reducing the occurrence rates for faults slpft2 and tlpft2 on
system safety and reliability metrics.

TLP boards, or redesigning the circuitry affected by faults slpft2 and tlpft2,
using a different layout.

The results obtained from this evaluation are reported in Figure 6.23, using
the MTTF and MTTHE metrics, computed as described in Equation 6.1. The
horizontal lines mark the corresponding safety (105) and reliability (104) re-
quirements. As shown in the figure, both configurations A and C are able to
satisfy the MTTF requirement, although by a very small extent. Concerning the
safety requirement however, only configuration C is able to reach the required
MTTHE value.

A design satisfying system requirements has been then identified (configu-
ration C); this refinement step imposes therefore new requirements on FDUs
subcomponents, in particular on the SLP and TLP boards. Further refinement
could, for example, proceed to a more detailed analysis of them. It should be
noted that, although the MTTHE requirement is met by this configuration, ad-
ditional countermeasures could be introduced to further increase system safety.
For example, additional maintenance actions could be planned to periodically
check failed FDUs, and possibly repair or replace them.

6.3 summary

This chapter focused on the application of the DEP-UML language and tools
to two case studies. The case studies highlighted different characteristics of
the approach and language, and demonstrated its applicability for quantitative
dependability evaluation of different kinds of systems and different kinds of
requirements. The support for hierarchical and incremental modeling allows
models to be extended and refined in different phases of system development.

The remaining part of this dissertation builds on the observation that, for
certain systems, it is not always possible to completely follow their design and

138 case studies

development process. Still, even the evaluation of these systems should be able
to benefit from MDE techniques and approaches.

7
M O D E L I N G L A R G E - S C A L E C O M P L E X S Y S T E M S

While for embedded systems it is often possible, or even mandatory, to fol-
low and control the whole design and development process, the same does not
hold for other classes of systems and infrastructures. In particular, large-scale
complex distributed systems don’t fit well in the paradigm proposed by the
CHESS project, and alternative approaches are therefore needed. In this chap-
ter we discuss the challenges in model-based evaluation of large-scale complex
systems, highlighting some existing countermeasures and current gaps, with
the aid of a motivating example of a Distributed Interactive Multimedia Appli-
cation (DIMA). In the subsequent chapter we will then propose an approach
which applies MDE techniques to fill the identified gaps.

7.1 large-scale complex systems

Critical Infrastructures (CIs), meaning those infrastructures whose disruption
would have a debilitating impact on the society (e.g., telecommunications, power
systems, transportation), are typically deployed on very large geographic scales
(often nation-wide), and thus comprise a very large number of components, or-
ganized in a hierarchical structure, and driven by complex interactions.

For several decades, such systems have been mostly isolated systems, dis-
connected from the outside world and using proprietary components and pro-
tocols. This has slowly but continuously changed, to the point that it is not
uncommon anymore for CIs to use off-the-shelf components or to be (at least
partially) connected to the Internet. Such shift in their architecture introduces
additional interdependencies [161] between system components, thus exacer-
bating the already severe complexity problem.

On the other hand, the reduced cost, increased performance, and overall im-
proved quality of electronic devices is leading to an increasing trend to deploy
highly distributed and interconnected systems. Furthermore, the wide avail-
ability of wireless connectivity is opening up new possibilities that were not
possible in the past, e.g. car platooning via ad-hoc wireless networks [22]. Such
new systems, or extensions to existing systems, exhibit strong commonalities
with CIs, at least in the challenges raised in the model-based evaluation of their
performability properties.

In general, model-based analysis of modern systems is facing great chal-
lenges: their scale is growing, they are becoming massively distributed, inter-

139

140 modeling large-scale complex systems

connected, and evolving. The high number of components, their interactions,
and rapidly changing system configurations represent notable challenges.

It should be noted that a large amount of work in literature proposes tech-
niques for the generation, handling, and numerical evaluation of large state-
space models. Such techniques are mostly aimed at the evaluation of large state-
space models, and employ numerical techniques for efficient state-space repre-
sentation and/or efficient model solution.

While techniques for the efficient evaluation of large state-space models are
paramount, the growing complexity of modern systems is also posing chal-
lenges for the specification of analysis models themselves. Models should be
able to cope with the high dynamicity which typically characterizes such sys-
tems, evolving requirements and architecture, and events originated from the
environment. Therefore, evaluation models should be able to rapidly adapt to
new system conditions in order to evaluate if, and how, its properties have
changed, and possibly suggest reconfiguration actions [30].

7.2 the “template models” approach

A key principle in addressing the complexity in modeling large systems and
infrastructures is modularization, i.e., following the principle to build complex
models in a modular way through composition of smaller submodels. While
compositional modeling approaches (e.g., [158, 166]) were initially introduced
for the purpose of reducing the size of the generated state-space, such ap-
proaches have later gained importance also in improving the specification of
models, since they also carry with them a number of other practical advan-
tages: submodels are usually simpler to be managed, can be reused, can be
refined, and can be modified in isolation from other parts of the model.

We focus on the domain of Stochastic Petri Nets, and in particular on their
composition through place superposition (i.e., place sharing), which is quite com-
mon in performability modeling. Approaches using transition superposition (i.e.,
synchronization) have also been introduced in the literature [69]. However,
meaningful composition in this case requires to understand how transition
properties — firing delays, guards, priorities — are composed, which can be
addressed in different ways, and does not have a unique solution. However,
it usually requires further constraints to be imposed on submodels (e.g., syn-
chronizing transitions must have the same rate), or additional information to
be specified during composition.

7.2.1 Template Models and Parameterization

Focusing on place sharing, several approaches based on Petri nets have rec-
ognized the benefits in applying separation of concerns principles [65] to the

7.2 the “template models” approach 141

Figure 7.1: Template models and parameterization.

construction of performability analysis models. In such approaches (e.g., see
[43, 102, 160, 169, 182]) the overall analysis model is built out of well-defined
submodels, addressing specific aspects of the system, which are then composed
by place superposition. The overall composed model is obtained by following
predefined composition patterns, based on the actual scenario to be represented.

In performing system decomposition, particular attention is devoted to the
identification of the interfaces between the different submodels, thus improving
the modularity of the model: submodels can be modified in isolation from the
rest of the model, can be replaced or refined as needed, provided that their
interfaces remain the same, can be rearranged based on modifications in sys-
tem configuration. This approach also eases the integration with external tools:
a given submodel, implementing a specific function, may be replaced with a
specialized external tool, either directly or through a “wrapper” model.

Another dual aspect that enhances the modularity of submodels is the iden-
tification of their parameters. In large-scale systems, different components may
have a similar behavior, only differing by some parameters that are specific of
a particular instance of the component, depending on its role in the system, or
the environment in which it is operating.

This process leads to the definition of “template” submodels, which are com-
posed of two parts: a part defining its behavior, and a part defining its param-
eters (Figure 7.1). In the construction of the overall model these templates are
then instantiated multiple times, with different parameters settings. This ap-
proach saves the modeller from manually create (and maintain) multiple mod-
els for components having a similar behavior, which is a very time-consuming
and error-prone task. Also, any change in a template model is automatically
reflected in all the instances of that template.

When carried to its extremes, this approach leads to a modeling paradigm
that resembles Object Oriented Programming (OOP): “libraries” of template
submodels are created for a given system, having fixed “interfaces” and “pa-
rameters”. Such templates are then “instantiated” multiple times and then con-
nected through their interfaces. Actually, when referring to submodels and their

142 modeling large-scale complex systems

properties, to stress their encapsulation some of the existing work actually use
OOP-derived terms like template [169], interface, instance [23], inheritance [13].

7.2.2 Application Using Stochastic Activity Networks

The Stochastic Activity Network (SAN) formalism [167], which can be consid-
ered an extension of SPNs, and the supporting Möbius framework [55] provide
useful primitives for applying the aforementioned approach.

SAN models are composed using the Replicate/Join state-sharing formalism
[166]: the Join composition operator is used to compose two or more submodels,
by sharing places between them; the Replicate composition operator is used to
combine multiple identical copies of a submodel, also sharing places between
them; such operators can be applied iteratively, thus forming a tree structure.

The support for the definition of model interfaces and parameters is provided
by special kinds of places that can be added to SAN models, called “extended
places” [55]. Such places are not limited to hold an integer number of tokens,
but instead can hold an instance of a given datatype, including most of C++
basic types, arrays, as well as structured data types. Thanks to extended places,
interfaces between submodels can be defined in a very convenient way.

Template submodels are then instantiated and their interfaces combined us-
ing the Replicate/Join formalism. Parameters places are usually shared with an
ad-hoc “Setup” submodel, which has the only task of initializing the parame-
ters of the different submodels, based on the desired scenario (e.g., see [113]).
It is worth noting that composed SAN models constructed in this way are most
often solved by discrete-event simulation, due to i) the large state-space of the
overall composed model; and ii) the violation of constraints for their analyti-
cal solution that are imposed by Möbius solvers [127], e.g., the existence of a
vanishing initial state.

7.3 motivating example : a world opera

As motivating example we introduce the World Opera (WO) system described
in [183]. The WO consortium and its partners are engaged in conducting dis-
tributed, real-time, live opera performances across several world renowned
opera houses. Each opera house represents a real-world stage with its own
musicians, singers, dancers, and actors. Interaction between the artists is or-
chestrated by a single conductor present at a single selected stage. Participat-
ing artists from different real-world stages map to virtual-world stages, which
are projected as video on display devices, and shown to the audience at the
local opera house as well as audiences at geographically distributed (remote)
opera houses. Additionally, virtual-world stages can display animated cartoon
characters mimicking the behavior of the artists at remote stages. The virtual-

7.3 motivating example : a world opera 143

Camera 1 Video Capturing
Workstation 1

Camera 2 Video Capturing
Workstation 2

Camera 3 Video Capturing
Workstation 3

Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Mic 6

WMic
1

WMic
2

WMic
3

WMic
4

WMic
5

WMic
6

Mixer

Audio
Workstation

1

Audio
Workstation

2

Spk 1

Spk 3

Spk 2

Spk 4

Gateway

Display
Workstation

1
Projector 1

Display
Workstation

2
Projector 2

Display
Workstation

3
Projector 3

Figure 7.2: System architecture of a World Opera stage [183].

world and real-world stages together form a mixed-reality stage. A collection
of distributed mixed-reality stages together constitute a WO application.

Even though it may not be strictly defined as a “critical” infrastructure, from
an architectural point of view it exhibits many of characteristics typical of large-
scale systems. It is composed of etherogeneous elements, which collaborate to
provide different services within the system; the number of different types of
such elements is small, while the actual number of instances of such elements
is high; instances of such elements have different settings but similar behav-
ior; based on the service provided by the system, the actual interconnection
between system components may differ.

The typical setup for a World Opera performance consists of 3 to 7 real-
world stages with different artists and possibly a different set of technical com-
ponents (microphones, projectors, etc.). The activities at each stage in WO are
logically divided into four tasks. Capturing involves corresponding components
receiving activation signals and generating streams. There exist three principal
stream types: video, audio and sensor (e.g., to track the movement of an artist
on the stage). Processing is then performed on all generated streams to remove
noise. Additionally, video streams are encoded to reduce the size of streams,
timestamped, and processed using computer vision techniques for artistic rea-
sons. Streaming, involves transmitting and receiving the streams to and from the
remote stages. Finally, rendering involves processing (e.g., decoding) received
streams, synchronizing them based on their timestamps and then rendering
them to the virtual-world.

The architecture considered for a general WO stage is shown in Figure 7.2. A
stage consists of: microphones and cameras to capture the multimedia streams
from actors; projectors and speakers to render the streams to the audience; a

144 modeling large-scale complex systems

mixer to route audio streams; workstations for processing of captured streams;
a gateway for transmission of streams to/from remote stages. The actual num-
ber and kinds of components present in each stage depend on the number of
artists present in the stage, and the role of the stage in the overall show.

The infrastructure allowing for these applications includes a high number of
specialized hardware and software components, whose slight malfunction of
these components could severely affect the show1 due to the strict functional
requirements. Fault-tolerant architectural solutions are therefore necessary to
ensure the correct execution of a WO show. However, in order to design such
a fault-tolerant solution it is essential to understand the interaction between
the components and the potential effects of their failure, from the audience
perspective, on the overall show.

7.4 performability model of the world opera system

A set of meaningful metrics for the evaluation of the WO system have been
defined in [182], and evaluated on a simplified case study. A more complex
and faithful model of the system has been developed using a modular mod-
eling approach as discussed before [132]. In the following, we briefly describe
the identified template models and their interfaces, in order to support our
discussion; further details can be found in [132].

The model considers components and streams as the basic elements of a WO
show, both having different possible working states (e.g., working/failed for
components, good/missing/delayed for streams). The state of a stream in a
certain physical point of the architecture depends on the state of all the compo-
nents that have processed it so far (including components that are capturing it).
The state of different streams as they are reproduced to the audience provides
insights on the QoS perceived by the users and it is therefore the main target of
evaluation.

In the modeling of the WO system 4 basic SAN templates are involved [132]:

• Component: A physical component of the WO architecture. The interfaces
of this submodel are working_state, holding the current state of the com-
ponent, and num_f for each failure mode f, counting the number of com-
ponents in the same group that have experienced failure mode f.

• StreamCollector: Models the capturing of a stream. Its interfaces are num_f

for each failure mode f of associated capturing components, and stream_-

out, which represents the state of the captured stream. The model sets
the state of the captured stream (place stream_out) based on the state of
components that are capturing it.

1 In order to prevent ambiguity, here we avoid using the term “performance”to refer to the artistic
exhibition of actors and musicians.

7.4 performability model of the world opera system 145

Figure 7.3: A SAN composed model for a WO stage, built out of the 4 identified SAN
templates [132].

• StreamAdapter: Models the processing of a stream. Its interfaces are com-

ponent_state, representing the state of the associated processing compo-
nents, stream_in, representing the state of the stream received as input,
and stream_out, representing the state of the stream produced as output.
The model sets the state of the output stream based on the state of the
state of the component, and the state of the received stream.

• StreamPlayer: Models the playback of a stream to the audience. Its inter-
faces are the state of the stream as received as input, stream_in, the state
of associated playback components, num_f, and the state of the stream as
reproduced to the audience, stream_play. The model sets the state of the
reproduced stream based on the state of received stream, and the state of
playback components.

These templates have also a number of parameters; for example, the failure rate
and the number of spares in case of components. The actual implementation of
these models depends on the behavior to be modeled; for simplicity, we assume
here a hot-spare behavior for all components as in [182], thus leading to a single
“Component” template.

By just composing multiple instance of these basic building blocks, a wide
variety of different scenarios can be assessed. As an example, Figure 7.3 shows
the composed model for a WO stage consisting of 6 microphones, 2 cameras,
4 speakers, 2 projectors, 3 workstations, 1 mixer and 1 gateway, and employed
in a WO show consisting of 5 application streams (3 video streams and 2 au-
dio streams). The model consists of 33 atomic model instances, created from
the fixed set of 4 templates listed above. Actually, such model is only a part
of a bigger model addressing a three-stage WO performance, comprising ~50

components, modeled by ~100 instances of the 4 template models described
above.

146 modeling large-scale complex systems

However, the manual construction of such a model is a cumbersome task
since, based on the target system configuration: i) the proper number of tem-
plate instances must be selected and instantiated; ii) the graph structure of the
model (i.e., which node participates in which Join and Replica nodes) should
be defined; and iii) most importantly, the proper place superpositions must be
applied in order for the overall model to exhibit the intended behavior.

7.5 current limitations

Currently, the applicability of this approach is hampered by two major practical
limitations: i) the lack of formalization of template composition patterns, and
consequently ii) the lack of means for automated application of such patterns.

Following the introduced example, some rules for creating instances in the
WO model are:

• For each application stream to be modeled create an instance of the “StreamCol-
lector” template model

• For each component of the stage create an instance of the “Component” tem-
plate, and for each of the streams that are processed by the component, create and
instance of the “StreamAdapter” template.

Unfortunately, it is not sufficient to simply add atomic model instances to the
overall model. Referring to Figure 7.3, for each “Rep” or “Join” node (red and
blue nodes, respectively) there exist a precise pattern of place sharing to be
followed in order to correctly assemble all the instances of atomic templates
(black nodes). Manually performing such a task requires considerable effort at
the increasing of model largeness. Examples of rules for connecting instances
in the WO model are:

• For each stream in the scenario, connect each “StreamCollector” instance with
the instances of “Component" templates corresponding to components that are
used to capture the stream. Interfaces to be connected are num_f in all models.

• For each processing component, connect “StreamAdapter” instances with the
corresponding instance of the “Component” template. Interfaces to be connected
are working_state and component_state.

For large systems actually remembering or following such patterns is diffi-
cult; even more if modifications occur in system configuration. For example,
the highlighted part of Figure 7.3 models the playback of three video streams
(v_orchestra, v_director, v_scene) on two different projectors (projector_orchestra
and projector_scene). Adding a third projector dedicated to the v_director stream
only would require to: i) add a new instance of the “Component” template for

7.5 current limitations 147

modeling the new projector, ii) removing the corresponding instance s1_play_-
v_director of the “StreamPlayer” model from the “Projector_Orchestra_and_Di-
rector” Join node, iii) properly connect the new “Component” instance and
the existing s1_play_v_director instance into a new Join node, and iv) properly
connect the new Join as child of the “DisplayWS_with_Streams” Join.

It should be noted that the Möbius framework [55] provides some means for
reducing the effort required to specify complex models. Actually, its implemen-
tation of the Rep/Join composition formalism [166], allows multiple instances
of the same SAN [167] model to be reused. However, instances of the same
submodel are completely identical in Möbius, and each instance still needs to be
manually connected to the rest of the composed model.

While established formalisms exist both for defining the submodels (e.g.,
SANs) and for physically composing them (e.g., Replicate/Join), the patterns
to be followed for their composition — which depend on the system to be
modeled, and the set of identified submodels — are typically not formalized.
In many cases, they are provided either informally or by examples. Even worse,
sometimes those “rules” are not even written somewhere, but they are only
known to the person(s) that developed the submodel library. As a result i)
submodels libraries are difficult to be shared and reused, and ii) the overall
system model for different scenarios must be assembled by hand by people
who know the appropriate rules to follow. Furthermore, even when rules for
the composition of submodels have been properly specified, obtaining a valid
(i.e., correctly assembled) model requires a lot of manual effort. In the next
chapter we aim to address this problem using MDE techniques.

Within the performability community, the approach which is more related
to ours is the one proposed by the OsMoSys framework [184]. In particular, it
also promotes an Object-Oriented modeling approach, using OO-derived terms
like “model class”, which have strong analogies with terms adopted in the next
chapter. The focus, and consequently the approach, is however quite different.
OsMoSys provides a way to compose performability models created with dif-
ferent formalisms, and to orchestrate their solution in order to evaluate the
global system model. Our focus is on the reuse and automation of composition
patterns for a specific class of formalisms, aiming at enabling the automatic
assembly of large performability models with reduced effort for the user.

8
A W O R K F L O W F O R A U T O M AT E D A S S E M B LY O F
C O M P L E X M O D E L S

In this chapter we propose an approach aiming to fill the gap in the application
of the previously presented “template models” approaches, by introducing a
workflow based on: i) a custom language to precisely specify template models
libraries and composition patterns, and ii) automated model-transformations to
automatically instantiate the model templates and properly connect the overall
system model, based on library-specific patterns.

8.1 workflow overview

The proposed approach is based on the Template Models Description Language
(TMDL), an ad-hoc language to describe template models, which is composed
of two parts: a “Library” part, and a “Scenario” part. The overall workflow is
summarized in Figure 8.1 and described in the following.

Step 1. Starting from system requirements and architecture, an expert in per-
formability modeling develops a “Template Models Library”, i.e., a library of
reusable submodels and composition patterns. Such library is composed of two
parts:

• TMDL Library: A specification in the TMDL language, containing i) the
definition of elementary template models and their interfaces, and ii) a
set of valid composition templates, which specify valid patterns for com-
posing template instances.

• Templates Implementation: The internal implementation of template models
that have been specified in the TMDL Library. This part depends on the
specific tools and formalisms that are adopted in the workflow. As an
example, the PNML language [90] can be used as storage format.

Step 2. Once the template models library has been established, the differ-
ent system scenarios and configurations that should be analyzed are defined.
This step is performed using the TMDL language as well, with a specification
which corresponds in selecting and instantiating (i.e., assigning values to their
parameters) a set of templates specified in the model library. From a practical
perspective, TMDL “Scenario” specifications can be created manually starting
from informal descriptions of scenarios to be analyzed, but could be also auto-
matically generated from UML-like architectural models, by applying model-
transformation techniques. In this perspective, TMDL “Scenario” can also be

149

150 a workflow for automated assembly of complex models

Figure 8.1: Our workflow for the automated generation of performability models. Ele-
ments depicted in gray are specified using the TMDL language.

considered as a sort of intermediate model between an architectural system
description, and the SPNs model that is going to be generated.

Step 3. Starting from the Template Models Library defined in Step 1, and the
description of scenarios provided in Step 2, the performability models for all the
different scenarios and configurations are automatically assembled and then
evaluated. The generation of composed models is accomplished by means of the
“TMDL Automated Composition Algorithm”, which takes as input a “TMDL
Scenario” specification and generates the corresponding evaluation model by
properly assembling instances of “Template Implementations” based on the
patterns specified in the “TMDL Library” (see Figure 8.1).

It is important to note that the “Automated Composition Algorithm” of Fig-
ure 8.1 is the same for every library of template models, i.e., it is defined and im-
plemented only once, and can be reused to automatically assemble models de-
scribing different systems1. This it the key point of our approach, and the
main reason to develop the TMDL language. Also, we aimed at a more general
approach with respect to defining a set of model transformations specifically
tailored to the WO system.

The workflow defined above has strong analogies with concepts encountered
in Component-Based Development (CBD), and in particular with the concept
of “composition system”. According to [4, 87], a composition system is defined
by three elements: i) composition technique, ii) component model, and iii) com-
position language. The composition technique defines how components are phys-
ically connected, while the component model defines what a component is and
how it can be accessed. The composition language is used to specify components
and “composition programs”, i.e., a kind of script that specifies which compo-
nents should be connected, and how, in order to obtain the intended composed

1 Provided of course that different template models libraries have been defined.

8.2 main concepts 151

Figure 8.2: Relations of elements included in our workflow with the notion of compo-
sition system. Original picture from [87].

structure. Composition programs are interpreted by a composition engine, which
in our workflow is represented by the “TMDL Automated Composition Algo-
rithm”.

Therefore, reformulating our previous discussion, for realizing our target
“composition system”, languages to specify components exist (i.e., template
models based on SPNs and their extensions), as well as the composition tech-
nique (i.e., Rep/Join and state-sharing in general). What is currently missing is
a composition language capable to specify how submodels should be assem-
bled; Such role is played by the TMDL language introduced in the following.
moreover, a composition language consists in a component description language,
to specify components, and a composition description language, to specify compo-
sition programs [87]; such two aspects correspond exactly to the “Library” and
“Scenario” portions of TMDL (Figure 8.2).

8.2 main concepts

In the following we first introduce the main concepts on which the TMDL
language builds.

The basic building blocks of TMDL are model templates. Model templates have
a set of interfaces, which specify how they can be connected to other model
templates, and a set of parameters, which specify variable elements in the com-
ponent (e.g., the initial number of tokens in a certain place for a SAN model).
Component templates can be either atomic templates or composition templates. A
set of model templates constitutes a library.

Atomic templates are associated to an implementation in the selected state-
based formalism (e.g., a PNML file, or a tool-specific format like the XML-based
format used by the Möbius tool). Composition templates contain references to
a set of submodels, i.e. other model templates. For each of the referenced sub-
models a multiplicity attribute may be specified. Composition templates can
have parameters as well, which allow for example parametric multiplicity val-
ues to be specified. Composition templates include a set of merging rules, which
specify the patterns for connecting the interfaces of their submodels.

152 a workflow for automated assembly of complex models

A model class is obtained from a component template by associating concrete
values to its parameters, and it is defined by a reference to a template model,
and possibly a set of values for its parameters. In addition to the set of values
for its parameters, a composed class can also contain references to other model
classes, which are used as concrete submodels, provided that they are compat-
ible with the specification of the template.

A model class can be used more than once in the overall composed system
model, e.g., in case multiple identical elements are present in the system. A
model instance is an individual instance (copy) of a model class. An atomic in-
stance is a copy of the template implementation, where all the parameters have
been set as specified by the model class. A composed instance is an instance of a
composed model class, i.e., a collection of model instances composed according
the specified patterns.

Submodels of a composition can in turn be other composed models. There-
fore, a composed instance can be considered the root of a tree, in which inter-
nal nodes are associated with other composed instances, and leaves are atomic
instances. The overall model that represents a certain scenario is therefore iden-
tified by an instance of a composed component. Accordingly, a scenario (i.e., our
“composition program”) is specified as a set of model classes, and a “root” in-
stance that provides what could be called the “entry point” of the composition
program.

Multiplicity allows multiple model instances to be specified by specifying
the model class and a numeric value. In the model generation phase, an index
is automatically assigned to each of the generated instances, allowing them
to be distinguished from each other. By default, indices are set based on the
multiplicity of the model instance, i.e. a multiplicity of n generates n instances,
with indices ranging from 1 to n. For greater flexibility, TMDL allows the user to
directly specify an array of indices in place of a multiplicity value. For example,
by specifying {3, 4, 5} as a multiplicity value, in the model generation phase 3

identical model instances will be created, having indices 3, 4, and 5. Moreover,
indices should be associated with textual prefix, thus allowing to distinguish
indices related to different dimensions.

When any interface of a submodel becomes an interface of a composed
model, an index (and possibly a prefix) is appended to its name. Such name
is the instance name of the interface.

8.3 template models description language

The metamodel of the TMDL language is shown in Figure 8.3. For simplicity,
only the main language elements are shown in the figure: data types and other
supporting elements have been omitted. As described before, the purpose of
TMDL is twofold: to define libraries of template models, and to define scenarios

8.3 template models description language 153

Figure 8.3: Simplified version of the TMDL metamodel. For simplicity, data types and
other supporting elements (e.g., arrays) are not shown in the figure.

in which such templates should be instantiated. For this reason, a specification
in the TMDL language (specification element) may contain a model library
(library element), and a certain number of scenarios (scenario elements).

8.3.1 TMDL “Library”

A library is composed of a set of template elements. Each template has a dis-
tinguished name, and a set of parameters (param). The template element is an
abstract element, which is refined in atomic templates (atomic) and composi-
tion templates (composition). Each template has a distinguishing name, and a
textual prefix, which can be specified for indexing purposes. When the Boolean
replica attribute is set, the composition template is simply a replica of another
template; in this case the composed template can be used in any place where
the template it replicates is expected.

An atomic template has a body attribute, which specifies where to actu-
ally find an implementation of such model, and a set of atomic interfaces
(interface_atomic). An atomic interface can be either a single interface (interface_-
single), or an array of related interfaces (interface_array). In the latter case,
the interface has associated a multiplicity value and, optionally, a textual prefix.

A composition template contains a set of block elements, which specify
which kind of templates are allowed to be used as submodels for the composi-
tion. Each block element has a distinguished name, and references a template

154 a workflow for automated assembly of complex models

element. A multiplicity value can be specified to define multiple instances of the
same model class as submodels.

Additionally, a composition template specifies a set of rules that should be
followed in connecting together its subcomponents (mergerule). Which inter-
faces are selected for each mergerule is specified by mergeitem elements. Each
mergeitem element references a single interface element, and optionally, a
specific block element and a multiplicity value. If a block is specified, the rule
is restricted to subcomponents derived from such block only; similarly, if the
multiplicity attribute is specified, the rule is restricted to subcomponents hav-
ing the specified indices only. Each mergerule contains one or more mergeitem

elements.
Three kinds of merge rules are supported by TMDL: mergeall, mergebyname,

and forward. The mergeall rule specifies that all the selected interfaces should
be connected together, to form a single interface of the composed component.
The forward rule specifies that a single interface of a subcomponent should
directly become an interface of the composed component; in this case no inter-
faces are joined together. The mergebyname specifies that, within the selected in-
terfaces, those with the same instance name should be merged together, to form
a single interface of the composed component. The instance name is formed
by the “base name”, i.e., the name specified in the composition template, and
any indices and prefixes appended during model generation. Without further
parameters, instance names need to be exactly the same for merging to occur.
The user may however specify a set of prefixes to which the comparison should
be restricted. If some of the selected interfaces cannot be merged with any other
interface they are forward as interfaces of the composed model.

Finally, a composition template may specify a set of bindings between its
parameters and parameters of its subcomponents (parambinding); in such case,
parameters of submodels are constrained to hold the same value as parameter
of the parent model.

8.3.2 TMDL “Scenario”

A scenario is composed of a set of classes (class elements). Each class has
a distinguished name, and references a specific template in the model library.
Moreover, a class may contain a set of assignments, which specify concrete
values for the parameters specified in the component template.

In case of a composed class, i.e., a class element which references a com-

position template, submodels may be explicitly defined with instanceof el-
ements. Each instanceof element references another model class in the same
scenario, and possibly a multiplicity value. An instanceof element may also
specify a replica behavior, and a “replica” composition template. In this case

8.4 model generation overview 155

the selected model class is first replicated using the specified replica template
(provided that they are compatible).

It should be noted however that instanceof elements are not always needed.
When a model template has no parameters, or only one model class derived
from it exists in the scenario, submodel instances are automatically generated
by the transformation algorithm, based on the template specified in the sub-
models library, since in this case no ambiguity exist on parameter values to
apply.

Finally, the root attribute of the scenario element defines the model class
which, once instantiated, represents the overall system scenario.

8.4 model generation overview

The third step of the workflow in Figure 8.1 is performed by the automated
model generation algorithm, which is organized in two phases: instances gener-
ation, in which component instances are generated, and instances composition, in
which the generated component instances are connected together.

The generation algorithm uses two data structures: a queue Q containing
model classes that still need to be instantiated, and a stack T containing model
instances that have been instantiated but whose interfaces still need to be con-
nected. More in details, given a TMDL “Library” L, and a TMDL “Scenario” S,
the steps to assemble the overall performability model are summarized in the
following:
— Instances generation —

1) Based on the root element in S, the root model class c is identified. The pair
{c, 1} is enqueued in Q.

2) The pair {c,m} is dequeued from Q:

a) instances of c are created based on multiplicity m;

b) an index is assigned to each instance;

c) each instance is pushed into the stack T .

3) If c is a composed class:

a) For each model class ci, referenced as submodel of c with multiplicity
mi, the pair {ci,mi} is enqueued in Q.

b) If the composition template corresponding to c requires additional sub-
models that have not been specified in the scenario, the corresponding
default pairs {cj,mj} are created, based on default values of template
parameters, and enqueued in Q.

4) If Q is not empty then go back to Step 2. Otherwise stop: all the instances
required to obtain a valid model have been created.

156 a workflow for automated assembly of complex models

— Instances composition —

1) The instance i is removed from the stack T .

2) If i is a composed instance, then the interfaces of its submodels are connected
based on the rules defined by the related model template.

3) If T is not empty, then go to Step 1. Otherwise the whole model generation
process ends.

During the instances generation phase, for each model template links to the
instances that it has generated are stored, so that pattern specified in different
templates can be applied to the proper model instances.

8.4.1 Prototype Realization

It is commonly agreed [185] that the development of custom DSLs and the re-
lated model-driven workflows is a complex task that should be addressed with
an iterative process. Useful feedback for the formalization of domain concepts
is obtained by the definition and implementation of the language; feedback for
the definition of the language is obtained by the definition and implementation
of model-transformations; feedback on model-transformations is obtained by
validating the produced artifacts.

According to this view, a prototype of the entire workflow has been realized,
based on the Eclipse platform, and it will guide us through the validation and
refinement of the entire approach. The TMDL meta-model has been defined as
an Ecore model using EMF [70], while Xtext [189] has then been used to define
a textual syntax, and to generate the editor and parser for the language.

Concerning the model composition and generation algorithm, it shall actu-
ally be composed of two phases: i) generation of required instances and assign-
ment of their parameters; ii) composition of generated instances; and iii) the
actual copy of template implementations to populate the generated structure.
The first two steps have been realized using the ATL language [5], while the
third, uses simple XSL Transformations (XSLT) [188] to manipulate XML mod-
els, i.e., to substitute parameters placeholders with the corresponding actual
values obtained from the previous steps.

8.5 application to the world opera system

In this section we describe the application of the proposed approach to the WO
model described in Section 7.4.

8.5 application to the world opera system 157

8.5.1 Library Specification

As introduced before, the performability model for a World Opera show con-
sists of 4 atomic templates: Component, StreamCollector, StreamAdapter, Stream-
Player. For simplicity, we assume here that components are subject to two fail-
ure modes: a “silent” failure mode, in which the component just stops working,
and a “noisy” failure mode, in which the component produces noisy/incorrect
output. Selected portions of the the TMDL “Library” specification for this sys-
tem are shown in Listing 8.1. Ellipses (. . .) have been used to mark parts of the
specifications which have been omitted.

Atomic templates are defined in lines 1–16; for each of them, an implemen-
tation of the model is referenced using the body attribute. The atomic template
component (lines 1–9) has five parameters: failrate, which specifies the failure
rate of the component, spares, which specifies the number of spares allowed for
the component, fprobnoisy, which specifies the probability that the component
fails with the noisy failure mode, sw_delay and sw_prob, which specify the de-
lay and failure probability of switching to a spare component. The component
atomic template exposes four interfaces. As discussed in Section 7.4, working_-
state provides the current working state of the individual component, while
num_components, num_failed_noisy, and num_failed_silent are used to record, for
components in the same group, the number of them that are currently working
or failed.

The streamcollector template (lines 10–14) models the recording of a stream. It
has no parameters, and its interfaces are stream_out, num_components, num_-
failed_noisy, and num_failed_silent. It should be noted that the streamcollector
template is associated with the “s” (for stream) prefix. The index associated to
instances of this template is related to the index of streams to be represented in
the scenario. The streamadapter and streamplayer templates have a similar struc-
ture and they are not shown here. They are also associated with the “s” prefix.

Lines 18–52 depict the specification of some composition templates. The rep-
component template (lines 18–28) is a “replica” composition template for the
component template model. This template specifies which interfaces should be
connected together when composing multiple identical instances of the com-
ponent template. This template covers the “Rep” nodes of Figure 7.3: “Rep1”,
“Rep2”, “rep01”, and “rep02”. The template has one parameter, num, speci-
fying the number of components to be replicated. The interfaces which are
connected together are num_components, num_failed_noisy, and num_failed_silent,
while working_state interfaces are not connected.

Lines 30–44 depict the specification of the node_displayws, corresponding to
the composition of a display workstation with its “StreamAdapter” models,
and with the models of the projectors that are under its control. This compo-
sition template covers the node “DisplayWS_with_Streams” of Figure 7.3. The
template has one parameter, streams, describing which streams (in the form of

158 a workflow for automated assembly of complex models

numerical indices) should be handled by the display workstation represented
by the model. Submodels of this template are: one instance of the component
template to represent the workstation (“ws”), a certain number of instances
of the component template to represent the projectors (“proj”), and a certain
number of streamadapter templates (“sa”). As shown in the listing, the mul-
tiplicity of the streamadapter templates is set based on the streams parameter.
Three mergerules are defined: i) merge working_state in the component model
with component_state in all the streamadapter models; ii) merge stream_out of
the streamadapter models with the stream_in of node_proj models having the
same indices (i.e., referring to the same stream), and iii) forward the stream_in

of streamadapter models as interfaces of the composed model (they will be ei-
ther connected with corresponding interfaces of the mixer, or forwarded up as
interfaces of the whole stage).

The specification of the overall WO model corresponds to the stageset tem-
plate (lines 46–52). As submodels it has a certain number of the stage template
model. The stage template model, not shown here for the sake of brevity, cor-
responds to the top-level Join of Figure 7.3, i.e., the “Gateway_with_Streams”
node in the top right part of the figure. Intuitively, each stage submodel has
one interface for each stream in which the stage is involved. More in detail,
for each stream that is acquired in the stage, the stream_out interface of the
corresponding streamadapter model is forwarded as outgoing_out; similarly, for
each stream that is received from another stage, the stream_in interface of the
corresponding streamadapter model is forwarded as incoming_in.

The mergebyname specification in the stageset template model specifies that
outgoing_out and incoming_in interfaces of stage models should be connected
based on their indices having prefix “s”. For example, if stage A has an in-
terface whose instance name is “incoming_in_s3”, and stage B has an interface
whose instance name is “outgoing_out_s3” the two interfaces will be connected
together.

Listing 8.1: (Selected portions of the) TMDL “Library” specification for the World Opera system.

1 atomic component {
2 body "Component.xml"
3 parameters {
4 failrate def 1.0E−4, spares def 0, fprobnoisy def 0,
5 sw_delay def 1, sw_fprob def 0.05

6 }
7 interfaces { num_components, num_failed_noisy,
8 num_failed_silent, working_state }
9 },

10 atomic streamcollector prefix "s" {
11 body "StreamCollector.xml"
12 interfaces { stream_out, num_components,
13 num_failed_noisy, num_failed_silent }
14 },

8.5 application to the world opera system 159

15 atomic streamadapter prefix "s" { ... },
16 atomic streamplayer prefix "s" { ... },
17

18 composition replica repcomponent {
19 parameters { num def 1 }
20 submodules {
21 block c { component mult paramref { num } }
22 }
23 mergerules {
24 mergeall num_components { "component.num_components" },
25 mergeall num_failed_noisy { "component.num_failed_noisy" },
26 mergeall num_failed_silent { "component.num_failed_silent" }
27 }
28 },
29 ...
30 composition node_displayws {
31 parameters { streams def { 1 } }
32 submodules {
33 block ws { component mult 1 },
34 block proj { node_proj },
35 block sa { streamadapter mult paramref { "node_proj.streams" } }
36 }
37 mergerules {
38 mergeall component_state {
39 "component.working_state", "streamadapter.component_state" },
40 mergebyname streams_out {
41 "streamadapter.stream_out", "node_proj.stream_in" },
42 forward streams_in { "streamadapter.stream_state_in" }
43 }
44 },
45 ...
46 composition stageset {
47 submodules { block sg { stage } }
48 mergerules {
49 mergebyname inout prefixes "s" {
50 "stage.incoming_in", "stage.outgoing_out" }
51 }
52 }

8.5.2 Specification of Scenarios

Listing 8.2 shows a subset of the TMDL “Scenario” specification for a WO
performance comprising three stages and five multimedia streams, listed in the
following:

1. a_orchestra – audio of the orchestra;

2. a_scene – audio of actors;

3. v_orchestra – video of the orchestra;

160 a workflow for automated assembly of complex models

4. v_scene – video of actors;

5. v_director – video of the orchestra director.

Streams 1,3, and 5 are captured in stage #1, while streams 2 and 4 are captured
in stage #2. All the streams are reproduced in all the three stages. Stage #1,
corresponds to the model depicted in Figure 7.3.

Listing 8.2 focuses on the specification of projectors of Stage #1, i.e., the high-
lighted part of Figure 7.3. Using the component template, a model class for a
projector is created (lines 3–9), and values are specified for all its parameters,
except sw_fprob and spares, for which the default value specified in the template
is used.

Listing 8.2 also shows the definition of two different model classes based
on the same template. In particular, classes s1_proj_orchestra_director and s1_-
proj_scene are created from the same node_proj model template; the two nodes
“Projector_Orchestra_and_Director” and “Projector_Scene” in Figure 7.3 would
be generated as instances of these two classes.

The specification of s1_proj_orchestra_director states that such composed class
has an instance of the projector class as submodels, and that it handles streams
3 and 5. Submodels of kind “StreamAdapter” do not need to be specified: their
multiplicity is derived from the stream parameter, in a similar way as for the
node_displayws template (see Listing 8.1). Similarly, the specification of s1_proj_-
scene specifies that the corresponding projector should handle stream 4.

A class derived from the node_displayws is shown in the listing, specifying
that the display workstation should process streams 3, 4, and 5. Also in this
case, the “StreamPlayer” models do not need to be specified.

Listing 8.2: (Selected portions of the) TMDL/Scenario specification for a WO performance composed of
three stages and five streams.

1 scenario { root wo_show
2 ...
3 class projector { usetemplate component
4 assignments {
5 "component.failrate" value 0.006,
6 "component.fprobnoisy" value 0.1,
7 "component.sw_delay" value 60.0,
8 }
9 },

10 class workstation { usetemplate component ... }
11 ...
12 class s1_proj_orchestra_director { usetemplate node_proj
13 assignments { "node_proj.streams" value { 3,5 } }
14 submodels { projector }
15 },
16 class s1_proj_scene { usetemplate node_proj
17 assignments { "node_proj.streams" value { 4 } }
18 submodels { projector }

8.5 application to the world opera system 161

19 },
20 ...
21 class s1_node_displayws { usetemplate node_displayws
22 assignments { "node_displayws.streams" value { 3,4,5 } }
23 submodels {
24 workstation, s1_proj_orchestra_director, s1_proj_scene
25 }
26 },
27 ...
28 class wo_show { usetemplate stageset ... }
29 }

One of the major advantages in using this approach, once the TMDL “Library”
specification is established, is the ability to automatically obtain the model for
different system scenarios by simply changing few lines of the TMDL “Sce-
nario” specification. Listing 8.3 shows the modifications needed to perform
the modification discussed in Section 7.5, i.e., introducing a new projector for
stream 5, v_director. Using the TMDL approach, this modification only requires
to add the specification of a new class based on the node_proj template (s1_proj_-
director class), having parameter streams set to {5}, and add it as a submodel of
the class corresponding to the display workstation.

Listing 8.3: Modified TMDL “Scenario” specification for adding a new projector dedicated to stream 5,
v_director, to the model.

1 class s1_proj_orchestra { usetemplate node_proj
2 assignments { "node_proj.streams" value { 3 } }
3 submodels { projector }
4 },
5 class s1_proj_director { usetemplate node_proj
6 assignments { "node_proj.streams" value { 5 } }
7 submodels { projector }
8 },
9 class s1_proj_scene { usetemplate node_proj

10 assignments { "node_proj.streams" value { 4 } }
11 submodels { projector }
12 },
13 ...
14 class s1_node_displayws { usetemplate node_displayws
15 assignments { "node_displayws.streams" value { 3,4,5 } }
16 submodels {
17 workstation, s1_proj_orchestra, s1_proj_director, s1_proj_scene
18 }
19 },

Let us now suppose that the architecture of Stage #1 changes, and that stream
v_scene is now reproduced on two identical projectors. The few required modifi-
cations to the specification (with respect to Listing 8.2) are shown in Listing 8.4.

162 a workflow for automated assembly of complex models

In this case we have only added the specification “replica repcomponent mult
2” to the projector submodel, meaning that it should be replicated twice, using
the replica template repcomponent.

Listing 8.4: Modified TMDL “Scenario” specification for a scenario where stream v_scene is reproduced
on two identical projectors.

1 class s1_proj_scene { usetemplate
2 node_proj assignments { "node_proj.streams" value { 4 } }
3 submodels { projector replica repcomponent mult 2 }
4 },

Listing 8.5 considers the case in which the two projectors have instead different
properties. In this case, two different classes projector_a and projector_b should
be defined from the same template, having different parameters. Then, the two
classes are set as submodels of the s1_proj_scene model class, which refers to
stream v_scene.

Listing 8.5: Modified TMDL “Scenario” specification for a scenario where stream v_scene is reproduced
on two projectors having different properties.

1 class projector_a { usetemplate
2 assignments { "component.failrate" value 0.006, ... }
3 },
4 class projector_b { usetemplate component
5 assignments { "component.failrate" value 0.001, ... }
6 },
7

8 class s1_proj_scene { usetemplate node_proj
9 assignments { "node_proj.streams" value { 4 } }

10 submodels { projector_a, projector_b }
11 },

Even these simple operations, if performed directly on the model, would re-
quire considerable effort for the modeler. Performing the same modification
that is specified in Listing 8.5 would require the following steps: i) duplicat-
ing the atomic model for the “Projector”, modifying the needed parameters,
ii) adding an instance of the new “Projector” atomic model to the composed
model of Figure 7.3, iii) properly connect the interfaces of the new model to the
“Projector_Scene” Join. More complex modifications would require even more
steps to be performed, in the worst case leading to modify the shared variables
within all the Join nodes until the root of the overall model. In our approach,
once the model library has been specified, such modifications are instead han-
dled automatically by the model generation process.

8.6 application to the hidenets system 163

8.6 application to the hidenets system

In order to verify the applicability of this approach to different kind of systems,
we applied the TMDL specification approach to another library of template
models, which were used in the past in the context of the HIDENETS project
[22] to model a vehicular networks system in a highway scenario. The model,
defined using the SANs formalism, is described in [23, 113], and it is not fully
described here for the sake of brevity.

The use-case modeled in [23] evolves around a scene with an accident on a
road, and a subsequent traffic jam. The considered network scenario is com-
posed by a set of overlapping UMTS2 mobile telecommunication cells cov-
ering a highway, and a set of mobile devices (embedded or inside cars and
emergency vehicles) moving in the highway and requiring different network
services, including “regular” services (e.g., voice calls, browsing), and “emer-
gency” services (e.g., multimedia communication between the ambulance and
the hospital).

The challenge in such use-case is being able to provide the emergency ser-
vices in a congested environment (users in the traffic jam), while still provid-
ing an acceptable QoS to other users. For this purpose, the analysis focused on
evaluating the impact of different parameters on a set of key reliability and per-
formance metrics [23]. Also in this case, the TMDL approach would facilitate
the evaluation of target metrics in different scenarios, e.g., different network
services, different base stations layouts, different classes of users.

8.6.1 Library Specification

The performability model for the HIDENETS use case was based on 7 atomic
SAN templates: Phases, User, UserMobility, BaseStation, Service, ServiceManager,
CellManager. The scenario evaluated in [23] consisted of four base stations, two
different kind of users (regular users and the ambulance), and five network ser-
vices (3 regular services and 2 emergency services). The corresponding com-
posed model, obtained from ~40 instances of the above template models, is
depicted in Figure 8.4.

Selected portions of the the TMDL “Library” specification for this system are
shown in Listing 8.6. Atomic templates are defined in lines 1–16; for each of
them, an implementation of the model is referenced using the body attribute.
The atomic template “basestation” (lines 1–10) has two parameters: numser-
vices, which specifies how many services are supported by such basestation,
and load_max, which specifies the maximum allowed load for that basestation.
The basestation atomic template exposes several interfaces. Among them, two
are shown in the listing: LoadFactor exposes the current load factor of the bases-

2 Universal Mobile Telecommunications System

164 a workflow for automated assembly of complex models

Figure 8.4: Composed SAN model for the HIDENETS scenario with 4 basestations and
5 services. Adding a 6th service requires adding (and properly connecting)
the highlighted submodels.

tation; while ChannelCount is an array that, for each service, contains the num-
ber of channels allocated to that service on the basestation. Accordingly, the
cardinality of the array is set to the numservice parameter.

The cellmanager template (lines 11–16) has the role of managing the delivery
of a specific service to a specific basestation. Accordingly, it has a load parame-
ter, which specifies the (average) load produced on the basestation by allocating
one channel for such service.

Lines 17–34 depict the specification of a composition template, servicenode,
which represents a service of the network. The template has two parameters:
load, which specify the load produced by the allocation of one channel for that
service, and mycells, which specifies on which basestations the service is im-
plemented. The servicenode composition template composes one instance of a
service component (line 23), one instance of a servicemanager component (line
24), and a certain number of cellmanager components (line 25). Since each cell-
manager model manages the delivery of the service on a given basestation, the
multiplicity of the cellmanager submodules is set to match the value of the my-
cells parameter. Line 27 shows an example usage of the bind construct, which
allows parameters of submodules to be “linked” to parameters of the contain-
ing template. In this case the load parameter of the cellmanager submodules is
bound to the load parameter of the servicenode composition template.

Lines 28–33 define the rules to follow to assemble the servicenode template
based on its submodules. Line 29 specifies that the ServChannels interface of
the servicemanager should be connected together with the ServChannels interface
of all the cellmanager submodules. Interfaces ChannelCount and LoadFactor are
forwarded from the cellmanager submodules.

8.6 application to the hidenets system 165

Listing 8.6: (Selected portions of the) TMDL “Library” specification for the HIDENETS system.

1 atomic basestation { body "BaseStation.xml"
2 parameters {
3 numservices def 1,
4 load_max def 0.8
5 }
6 interfaces {
7 LoadFactor, ...
8 array ChannelCount mult paramref numservices
9 }

10 }, ...
11 atomic cellmanager { body "CellManager.xml"
12 parameters {
13 load def 0.01

14 }
15 interfaces { ... }
16 },
17 composition servicenode {
18 parameters {
19 my_cells def { 1 },
20 load def 0

21 }
22 submodules {
23 block s { service mult 1 },
24 block sm { servicemanager mult 1 },
25 block cm { cellmanager mult paramref mycells }
26 }
27 bindings { "cellmanager.load" to load }
28 mergerules {
29 mergeall ServChannels { "cellmanager.ServChannels", "servicemanager.ServChannels" }
30 forward ChannelCount { "cellmanager.ChannelCount" },
31 forward LoadFactor { "cellmanager.LoadFactor" }
32 ...
33 }
34 }
35 ...

8.6.2 Specification of Scenarios

Listing 8.7 shows a subset of the TMDL “Scenario” specification for the scenario
modeled in [23, 113]. In particular, the definition of the different services and
the different class of users is shown.

Using the servicenode template, five model classes are created, each one rep-
resenting one of the five services of the scenario: voice, browsing, filetransfer,
emergency_data, emergency_video (lines 4–13). Each of them is supported by all
the four basestations (mycells parameter), but has different values for the load
that it generates (load).

166 a workflow for automated assembly of complex models

Listing 8.7 also shows the definition of two different class of users, both based
on the template_user template (lines 14–23). The “normal” user is represented by
the normaluser composed component; the scenario specifies that three compo-
nents derived from the servicenode template should be used as subcomponents:
voice, browsing and filetransfer. The “ambulance” user is represented by the am-
bulance component, which uses the same template, but uses emergency_data,
and the emergency_video as submodels, since it has access to different network
services provided by the infrastructure.

Listing 8.7: (Selected portions of the) TMDL/Scenario specification for the scenario evaluated in [23, 113].

1 scenario {
2 root caraccident
3 ...
4 class voice { usetemplate servicenode
5 assignments {
6 "servicenode.my_cells" value { 1,2,3,4 },
7 "servicenode.load" value 0.01357

8 }
9 },

10 class browsing { usetemplate servicenode ... }
11 class filetransfer { usetemplate servicenode ... }
12 class emergency_data { usetemplate servicenode ...
13 class emergency_video { usetemplate servicenode ... }
14 class normaluser { usetemplate user
15 submodels {
16 voice mult { 1 }, browsing mult { 2 }, filetransfer mult { 3 }
17 }
18 }, ...
19 class ambulance { usetemplate user
20 submodels {
21 emergency_data mult { 4 }, emergency_video mult { 5 }
22 }
23 },
24 } }

Listing 8.8 shows the modifications needed in order to add an “Instant Mes-
saging” service for normal users. In order to add the new service, it is sufficient
to create a new messaging model class (from the servicenode template) and add
it as submodel of the normaluser class.

Listing 8.8: Modifications required to the TMDL “Scenario” specification in order to add a 6th service
“Instant Messaging” to the scenario.

1 class messaging { usetemplate servicenode
2 assignments {
3 "servicejoin.my_cells" value { 1,2,3,4 },
4 "servicejoin.load" value 0.001357

5 }
6 }, ...

8.7 towards a system of systems approach 167

7 class normaluser { usetemplate template_user
8 submodels {
9 voice mult { 1 }, browsing mult { 2 }, filetransfer mult { 3 }, messaging mult { 6 }

10 }
11 },

Performing the same modification by hand would require the modeler to add
6 atomic models, and properly connect them to each other, and to the already
existing portion of the model, possibly also requiring modifications to existing
connections. With this approach, connections are specified in the library, and
are performed automatically by the model generation and composition algo-
rithm. Applying the TMDL approach appears therefore to be useful in very
different kind of systems.

8.7 towards a system of systems approach

We conclude this chapter with an outlook on possible applications of the pro-
posed approach, with a focus on exploiting its synergies with the other contri-
butions of this dissertation.

While the approach introduced in this chapter can be useful to support the
modeling of large and dynamic systems under different configurations, so far
we have still assumed static template models libraries, created by hand a-priori,
based on the knowledge of the system that is under the analysis.

A further shift in system complexity has been however recently introduced
by the System of Systems (SoS) paradigm, in which etherogeneous existing
computer systems, called Constituent Systems (CS) are integrated in order to
provide synergistic services and more efficient economic processes. This inte-
gration is occurring in many areas denoted by different names, including web
services, sensor networks, critical infrastructures; the core issue in all these sys-
tems is the same, i.e., the integration of autonomous systems to solve a given
problem.

One of the peculiarities of such systems consists in their dynamicity and
etherogeneity: over the years, new functionalities are added to these systems,
existing functionalities have to be modified in order to meet the demands of an
evolving society, and new stand-alone systems are being interconnected and in-
tegrated. Model-based dependability evaluation in such a dynamic and evolv-
ing context is an unprecedented challenge. Moreover, system evaluation should
be performed continuously, when new components are introduced into (or re-
moved from) the environment.

While neither the DEP-UML nor the TMDL approaches alone would be com-
pletely sufficient in such context, we believe that their combined application
can provide a useful contribution towards a System of Systems (SoS) evalu-
ation framework. The TMDL approach provides a contribution in managing

168 a workflow for automated assembly of complex models

Figure 8.5: The application of approaches presented in this thesis for a System of Sys-
tems evaluation approach.

dynamicity in system configurations, since evaluation models for different con-
figurations could be automatically assembled based on libraries of template
models. On the other hand, the DEP-UML approach can be employed to ac-
tually populate such model libraries, obtaining a stochastic model for depend-
ability analysis as an artifact of the system development process.

This view is further illustrated in Figure 8.5, and described in the follow-
ing. We suppose that two new elements of the SoS architecture are developed
using the CHESS methodology; their evaluation models are automatically de-
rived and placed in the model library (#1). The system configuration is then
described by means of the TMDL language (#2), and an overall SoS analysis
model is generated (#3). After some time, a new component is developed, and
can potentially become part of the SoS; its evaluation model is therefore gen-
erated and stored in the model-library (#4). The introduction of a new element
in the model library may require to add other “templates”, in order to com-
pose the newly introduced model with existing ones (#5). After some time, the
system configuration changes, possibly including the newly developed com-
ponent. The corresponding TMDL specification is then updated to reflect the
change, possibly referring to the newly added template (#6). The new SoS eval-
uation model is then automatically assembled (#7) and evaluated. The above
steps are of course repeated during the entire life of the SoS, for a continuous
evaluation of its the target metrics.

C O N C L U S I O N A N D O U T L O O K

Models plays a primary role in dependability and performability assessment
of modern computing systems. Modeling, over other evaluation techniques,
has the key advantage of not exercising a real instance of the system, which
may be costly, dangerous, or simply unfeasible (e.g., because the system is still
under design). As a fault-forecasting technique, model-based evaluation can
be used to estimate the degree to which a given design provides the required
dependability attributes, thus allowing system architects to understand and
learn about specific aspects of the system, to detect possible design weak points
or bottlenecks, to perform early validation of dependability requirements, or to
suggest solutions for future releases or modifications. More in general, models
are employed in the evaluation of the QoS provided by the system, under the
form of dependability, performance, or performability metrics.

Modern computing systems have become very different from what they used
to be in the past: their scale is growing, they are becoming massively dis-
tributed, interconnected, and evolving. Moreover, a shift towards the use of
off-the-shelf components is becoming evident in several domains. Such increase
in complexity makes model-based assessment a difficult and time-consuming
task. Moreover, models need to be maintained and updated throughout the en-
tire system design process, reflecting architectural changes, variations in system
or component configurations, and possibly integrating additional information
produced by other evaluation approaches.

In the last years, the development of systems has increasingly adopted the
CBD and MDE philosophies as a way to reduce the complexity in system de-
sign. CBD refers to the established practice of building a system out of reusable
“black-box” components, while MDE refers to the systematic use of models as
primary artefacts throughout the engineering lifecycle. Languages like UML,
BPEL, AADL, etc., allow not only a reasonable unambiguous specification of
design but also serve as the input for subsequent development steps like code
generation, formal verification, and testing.

In the last decade, MDE approaches have been also extensively employed for
the analysis of extra-functional system properties. To this purpose, language ex-
tensions were introduced and utilized to capture the required extra-functional
concepts. Deriving dependability analysis models from the engineering mod-
els that are created during the development process has the advantage that —
besides the required model extensions — there is no need to learn and use
specific formalisms, and modelling efforts can therefore be saved. Although
a lot of work has been (and is being) developed on MDE techniques for de-
pendability analysis, most of the approaches have been defined as extensions

169

170 conclusion and outlook

to a “general” system development process, often leaving the actual process
unspecified. Similarly, supporting tools are typically detached from the design
environment, and assume to receive as input a model satisfying certain con-
straints. While in principle such approach allows not to be bound to specific
development methodologies, in practice it introduces a gap between the design
of the functional system model, its enrichment with dependability informa-
tion, and the subsequent analysis. This is one of the effects of UML complexity
and generality, which typically lead system designers to adopt only a subset of
the language; even worse, in different contexts different subsets are typically
adopted. As a result, once the functional model of the system has been de-
signed, there is no guarantee that a given UML-based analysis technique can
be applied.

The work in this thesis defined a MDE approach for quantitative depend-
ability analysis by taking into account a concrete system development process,
and the associated component model. The reference methodology is the one de-
fined within the CHESS project, which focuses on the development of critical
real-time embedded systems, spanning the railway, telecommunications, space,
and automotive domains. The CHESS methodology is realized by means of the
CHESS ML modeling language, a UML profile which reuses portions of the
UML, MARTE, and SysML standards, and adds further elements to support its
component model.

Based on the CHESS methodology and language, a set of extensions to sup-
port the specification and analysis of dependability properties have been de-
fined, with a focus on quantitative dependability analysis. The process leading
to the definition of such extensions included several phases: i) collection of
language requirements, based on requirements of industrial partners, common
practices, and other sources; ii) definition of a conceptual model of required
concepts; iii) analysis of existing languages; iv) actual definition of UML exten-
sions. The resulting language, DEP-UML, supports the specification of depend-
ability properties of components, multiple failure modes, propagation, mainte-
nance activities, fault-tolerant structures, and promotes an incremental model-
ing approach, in which the system is designed in subsequent refinement steps.

After defining DEP-UML, the thesis designed a model-transformation algo-
rithm for the automated generation of Stochastic Petri Nets (SPNs) from mod-
els enriched with DEP-UML properties. The algorithm adopts an intermedi-
ate model, and actually defines two model-transformations: the first generates
an intermediate representation from DEP-UML models; the second generates
a SPNs model from the obtained intermediate representation. The proposed
approach has been concretely realized as a plugin for the Eclipse platform,
and it has been integrated with the overall CHESS framework, which also in-
cludes a diagram editor and constraints checking mechanisms. From a practi-
cal point of view, having the analysis tool capable of direct interactions with
the system design environment: i) ensures and enforces the correctness of the

conclusion and outlook 171

model provided as input to the transformation algorithm, and ii) enables back-
annotation of obtained results in the design model. While the tool is integrated
in the CHESS framework, it has been designed with the aim to be reused in
other contexts; as such, its architecture actually relies on multiple intermediate
model-transformation steps.

The introduced approach (and tool) is then applied to two extensive case
studies. The first one takes into account a multimedia processing workstation
with high availability requirements, and aims at evaluating the effectiveness of
a software rejuvenation policy. The functional model of the system has been
designed according to the CHESS methodology, and then evaluated using the
proposed approach. A second case study of a fire detection system demon-
strates the application of DEP-UML to the analysis of hardware architectures.
This case study took into account two hierarchical levels of the system, and
highlighted how the methodology can be applied in incremental refinement
steps, with limited modifications on the already specified architecture.

The last part of the thesis builds on the key observation that, while for em-
bedded systems it is often possible to follow and control the whole design
and development process, the same does not hold for other classes of systems
and infrastructures. In particular, large-scale complex systems don’t fit well in
the paradigm proposed by the CHESS project, and alternative approaches are
therefore needed.

The thesis then analyzed a common technique used in the domain of Stochas-
tic Petri Nets for modeling large-scale complex systems; such technique, which
has some similarities with object-oriented approaches, relies on the definition
of “template” models, which are then instantiated multiple times with differ-
ent parameters and composed by place superposition. The main gaps that were
identified in its application reside in i) the definition of patterns for assembling
instances of template models, which are typically defined only informally, and
ii) the actual assembly of the overall model, which requires complex and time-
consuming tasks. The modification of the system model is therefore cumber-
some, and changes in system configurations, or different system scenarios are
difficult to take into account.

To address this problem, an MDE workflow for the automated composition of
complex performability models has then been defined. The workflow is based
on the Template Models Description Language (TMDL), a domain-specific lan-
guage that allows libraries of template models to be specified (including com-
position patterns), and then used. A key point of the approach is that the model
generation algorithm is the same for any TMDL library, and it is defined and
implemented only once, since semantic information on the transformation is
moved to the model library. After having introduced such workflow, the the-
sis detailed the TMDL language, and described a prototype realization of the
workflow within the Eclipse platform. Te use of the TMDL language for the
specification of template models libraries and is then illustrated through its

172 conclusion and outlook

application to two different examples. The application of such approach, still
in a prototypal shape, could improve the modeling of large-scale, complex,
and dynamic systems. Actually, a modification in system configuration would
only require small changes to the TMDL specification, and the triggering of the
model-generation algorithm.

The thesis than concluded with an outlook on the possible combined appli-
cation of the proposed approaches, with a focus on exploiting their synergies.
In particular, a further shift in system complexity has been introduced by the
System of Systems (SoS) paradigm, in which etherogeneous existing computer
systems, called Constituent Systems (CS) are integrated in order to provide
synergistic services and more efficient economic processes. This integration is
occurring in many areas denoted by different names, including web services,
sensor networks, critical infrastructures; the core issue in all these systems is
the same, i.e., the integration of autonomous systems to solve a given problem.

While neither the DEP-UML nor the TMDL approaches alone would be com-
pletely sufficient in such context, we believe that their combined application
can provide a useful contribution towards a System of Systems (SoS) evalua-
tion framework. The TMDL approach (introduced in Chapters 7–8) provides
a contribution in managing dynamicity in system configurations, since eval-
uation models for different configurations could be automatically assembled
based on libraries of template models. On the other hand, the DEP-UML ap-
proach (introduced in Chapters 3–6) can be employed to actually populate such
model libraries, since stochastic models for dependability analysis are obtained
as an artifact of the system development process.

The field for the application of MDE techniques for dependability is therefore
growing; future work should be aimed at supporting model-based evaluation
at different system scales, and at integrating models and results into a System
of Systems evaluation framework.

B I B L I O G R A P H Y

[1] V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E. Houstis, J.
Rice, R. Sakellariou, D. Sundaram-Stukel, P. Teller, and M. Vernon. “PO-
EMS: end-to-end performance design of large parallel adaptive com-
putational systems.” In: IEEE Transactions on Software Engineering 26.11

(2000), pp. 1027–1048 — cited on page 15.

[2] E. Amparore and S. Donatelli. “Model checking CSLTA with Determinis-
tic and Stochastic Petri Nets.” In: Proceedings of the 40th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. DSN’10 (Chicago,
Illinois, USA, June 28–July 1, 2010). IEEE, 2010, pp. 605–614 — cited on

page 14.

[3] T. Araki and T. Kasami. “Some decision problems related to the reacha-
bility problem for Petri nets.” In: Theoretical Computer Science 3.1 (1977),
pp. 85–104 — cited on page 85.

[4] U. Aßmann. Invasive Software Composition. Springer, 2003 — cited on page 150.

[5] Atlas Transformation Language (ATL). url: http://www.eclipse.org/atl/
(visited on 12/28/2013) — cited on pages 105, 107, 156.

[6] A. Avižienis, J.-C. Laprie, B. Randel, and C. Landwehr. “Basic Concepts
and Taxonomy of Dependable and Secure Computing.” In: IEEE Trans-
actions on Dependable and Secure Computing 1.1 (2004), pp. 11–33 — cited on

pages iii, 1–4, 38, 41–42, 59.

[7] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, and G.
Franceschinis. “The GreatSPN Tool: Recent Enhancements.” In: ACM
SIGMETRICS Performance Evaluation Review 36.4 (Mar. 2009), pp. 4–9 —

cited on page 14.

[8] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. “Performance
evaluation and model checking join forces.” In: Communications of the
ACM 53.9 (Sept. 2010), pp. 76–85 — cited on pages 12, 14.

[9] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. “Model-based
performance prediction in software development: a survey.” In: IEEE
Transactions on Software Engineering 30.5 (2004), pp. 295–310 — cited on

page 24.

[10] F. Bause, P. Buchholz, and P. Kemper. “A Toolbox for Functional and
Quantitative Analysis of DEDS.” In: Computer Performance Evaluation. Ed.
by R. Puigjaner, N. Savino, and B. Serra. Vol. 1469. LNCS. Springer, 1998,
pp. 356–359 — cited on page 15.

173

http://www.eclipse.org/atl/

174 bibliography

[11] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and W. Stewart. “The
PEPS Software Tool.” In: Computer Performance Evaluation. Modelling
Techniques and Tools. Ed. by P. Kemper and W. H. Sanders. Vol. 2794.
LNCS. Springer, 2003, pp. 98–115 — cited on page 15.

[12] C. Beounes, M. Aguera, J. Arlat, S. Bachmann, C. Bourdeau, J.-E. Doucet,
K. Kanoun, J.-C. Laprie, S. Metge, J. Moreira de Souza, D. Powell, and
P. Spiesser. “SURF-2: A program for dependability evaluation of com-
plex hardware and software systems.” In: 23rd International Symposium
on Fault-Tolerant Computing, Digest of Papers. FTCS-23 (Toulouse, France,
June 22–24, 1993). IEEE, 1993, pp. 668–673 — cited on page 14.

[13] S. Bernardi and S. Donatelli. “Stochastic Petri nets and inheritance for
dependability modelling.” In: Proceedings of the 10th IEEE Pacific Rim
International Symposium on Dependable Computing. PRDC’04 (Papeete,
Tahiti, French Polynesia, Mar. 3–5, 2004). IEEE, 2004, pp. 363–372 — cited

on page 142.

[14] S. Bernardi, S. Donatelli, and J. Merseguer. “From UML Sequence Dia-
grams and Statecharts to Analysable Petri Net Models.” In: Proceedings
of the 3rd International Workshop on Software and Performance. WOSP’02

(Rome, Italy). ACM, 2002, pp. 35–45 — cited on page 25.

[15] S. Bernardi, J. Merseguer, and D. C. Petriu. “Dependability modeling
and analysis of software systems specified with UML.” In: ACM Com-
puting Surveys 45.1 (Nov. 2012), 2:1–2:48 — cited on page 24.

[16] S. Bernardi, J. Merseguer, and D. C. Petriu. “A dependability profile
within MARTE.” In: Software and Systems Modeling 10.3 (2011), pp. 313–
336 — cited on pages 25, 49.

[17] S. Bernardi and D. C. Petriu. “Comparing two UML Profiles for Non-
functional Requirement Annotations: the SPT and QoS profiles.” In:
UML Modeling Languages and Applications. UML 2004 Satellite Activi-
ties. UML 2004 Satellite Activities (Lisbon, Portugal, Oct. 10–15, 2004).
Vol. 3297. LNCS. Springer, 2004 — cited on page 47.

[18] A. Bobbio and K. Trivedi. “An Aggregation Technique for the Transient
Analysis of Stiff Markov Chains.” In: IEEE Transactions on Computers
C-35.9 (Sept. 1986), pp. 803–814 — cited on page 14.

[19] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications. John Wiley & Sons, 2006 — cited on pages 8, 16.

[20] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and I. Mura. “De-
pendability modeling and evaluation of multiple-phased systems using
DEEM.” In: IEEE Transactions on Reliability 53.4 (Dec. 2004), pp. 509–522

— cited on pages 14, 102.

bibliography 175

[21] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and G.
Savoia. “Dependability Analysis in the Early Phases of UML Based Sys-
tem Design.” In: Journal of Computer Systems Science and Engineering 16.5
(2001), pp. 265–275 — cited on pages 25, 37, 50, 55.

[22] A. Bondavalli, O. Hamouda, M. Kaâniche, P. Lollini, I. Majzik, and H.-P.
Schwefel. “The HIDENETS Holistic Approach for the Analysis of Large
Critical Mobile Systems.” In: IEEE Transactions on Mobile Computing 10.6
(June 2011), pp. 783–796 — cited on pages 25, 111, 139, 163.

[23] A. Bondavalli, P. Lollini, and L. Montecchi. “QoS Perceived by Users of
Ubiquitous UMTS: Compositional Models and Thorough Analysis.” In:
Journal of Software 4.7 (Sept. 2009) — cited on pages 142, 163, 165–166, 203.

[24] A. Bondavalli, I. Majzik, and I. Mura. “Automatic Dependability Anal-
ysis for Supporting Design Decisions in UML.” In: Proceedings of the 4th
IEEE High Assurance System Engineering Symposium). HASE’99 (Washing-
ton D. C., USA, Nov. 17–19, 1999). IEEE, 1999, pp. 64–71 — cited on page 50.

[25] A. Bondavalli, P. Lollini, I. Majzik, and L. Montecchi. “Modelling and
Model-Based Assessment.” In: Resilience Assessment and Evaluation of
Computing Systems. Ed. by K. Wolter, A. Avritzer, M. Vieira, and A. van
Moorsel. Springer, July 2012, pp. 153–165 — cited on page 15.

[26] A. Bovenzi, S. Russo, F. Brancati, and A. Bondavalli. “Towards iden-
tifying OS-level anomalies to detect application software failures.” In:
Proceedings of the 1st IEEE International Workshop on Measurements and
Networking. M&N’11 (Anacapri, Italy). 2011, pp. 71–76 — cited on page 111.

[27] A. W. Brown and K. C. Wallnau. “The current state of CBSE.” In: IEEE
Software 15.5 (September/October 1998), pp. 37–46 — cited on pages 17–18.

[28] R. M. L. R. Carmo, L. R. Carvalho, E. Souza e Silva, M. C. Diniz, and
R. R. Muntz. “TANGRAM-II: A performability modeling environment
tool.” In: Computer Performance Evaluation Modelling Techniques and Tools.
Ed. by R. Marie, B. Plateau, M. Calzarossa, and G. Rubino. Vol. 1245.
LNCS. Springer, 1997, pp. 6–18 — cited on page 15.

[29] G. Casale, R. R. Muntz, and G. Serazzi. “Special issue on tools for com-
puter performance modeling and reliability analysis.” In: ACM SIGMET-
RICS Performance Evaluation Review 36.4 (Mar. 2009), pp. 2–3 — cited on

page 14.

[30] A. Ceccarelli, J. Grønbæk, L. Montecchi, H.-P. Schwefel, and A. Bon-
davalli. “Towards a Framework for Self-Adaptive Reliable Network Ser-
vices in Highly-Uncertain Environments.” In: Proceedings of the 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops. ISORCW’10 (Carmona, Spain, May 4–
7, 2010). IEEE, 2010, pp. 184–193 — cited on page 140.

176 bibliography

[31] CENELEC EN 50126:1999-09. Railway applications – The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS).
1999 — cited on pages 43, 125.

[32] R. Chapman. “Correctness by Construction: A Manifesto for High In-
tegrity Software.” In: Proceedings of the 10th Australian Workshop on Safety
Critical Systems and Software. SCS’05 (Sydney, Australia, Aug. 19–20,
2005). Australian Computer Society, Inc., 2006, pp. 43–46 — cited on page 31.

[33] M. Chaudron, I. Crnkovic, and H. van Vliet. “Component-based soft-
ware engineering.” In: Software Engineering: Principles and Practice. Ed.
by H. van Vliet. Wiley, 2008. Chap. 18 — cited on page 19.

[34] D. Chen, S. Dharmaraja, D. Chen, L. Li, K. Trivedi, R. Some, and A.
Nikora. “Reliability and availability analysis for the JPL Remote Explo-
ration and Experimentation System.” In: Proceedings of the International
Conference on Dependable Systems and Networks. DSN’02 (Bethesda, MD,
USA, June 23–26, 2002). IEEE, 2002, pp. 337–342 — cited on page 13.

[35] CHESS: “Composition with guarantees for High-integrity Embedded Soft-
ware components aSsembly”. ARTEMIS-2008-1-100022. url: http://www.
chess-project.org/ — cited on pages iv, 29, 36, 97.

[36] CHESS Project. Analysis and Evaluation Solutions. Deliverable 2.2. Dec.
2010 — cited on pages 31–33, 52, 102.

[37] CHESS Project. CHESS Modelling Language and Editor. Deliverable 2.1.
Mar. 2010 — cited on page 35.

[38] CHESS Project. CHESS Toolset User Guide. Version 3.2. url: http://www.
math.unipd.it/~azovi/CHESS/CHESS_3.2/ (visited on 12/28/2013) —

cited on pages 33, 36, 116.

[39] CHESS Project. Dependability and security properties and analysis methods.
Deliverable 3.1. Mar. 2010 — cited on page 37.

[40] CHESS Project. Multi-concern Component Methodology (MCM) and Toolset.
Deliverable 2.3.2. Jan. 2012 — cited on page 31.

[41] CHESS Project. State-Based extra functional properties and State-Based Anal-
ysis. Video Demonstrations, Set 2. url: http://www.chess-project.
org/page/videos-1 (visited on 12/28/2013) — cited on pages 97, 111.

[42] CHESS Project. Transformations and analysis support to dependability. De-
liverable 3.2.2. Dec. 2011 — cited on pages 70, 111.

[43] S. Chiaradonna, P. Lollini, and F. Di Giandomenico. “On a Modeling
Framework for the Analysis of Interdependencies in Electric Power Sys-
tems.” In: Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. DSN’07 (Edinburgh, UK, June 25–
28, 2007). IEEE, 2007, pp. 185–195 — cited on page 141.

http://www.chess-project.org/
http://www.chess-project.org/
http://www.math.unipd.it/~azovi/CHESS/CHESS_3.2/
http://www.math.unipd.it/~azovi/CHESS/CHESS_3.2/
http://www.chess-project.org/page/videos-1
http://www.chess-project.org/page/videos-1

bibliography 177

[44] G. Ciardo, R. German, and C. Lindemann. “A characterization of the
stochastic process underlying a stochastic Petri net.” In: IEEE Transac-
tions on Software Engineering 20.7 (1994), pp. 506–515 — cited on pages 11–12,

69, 84.

[45] G. Ciardo and A. Miner. “SMART: simulation and Markovian analyzer
for reliability and timing.” In: Proceedings of IEEE International Computer
Performance and Dependability Symposium. IPDS’96 (Urbana-Champaign,
IL, USA, Sept. 4–6, 1996). IEEE, 1996, p. 60 — cited on page 15.

[46] G. Ciardo. “Petri nets with marking-dependent arc cardinality: Prop-
erties and analysis.” In: Proceedings of the 15th International Conference
on Application and Theory of Petri Nets. ICATPN’94 (Zaragoza, Spain,
June 20–24, 1994). Ed. by R. Valette. Vol. 815. LNCS. Springer, 1994,
pp. 179–198 — cited on page 85.

[47] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Muppala, and K. S.
Trivedi. “Automated Generation and Analysis of Markov Reward Mod-
els Using Stochastic Reward Nets.” In: Linear Algebra, Markov Chains,
and Queueing Models. Ed. by C. D. Meyer and R. J. Plemmons. Vol. 48.
The IMA Volumes in Mathematics and its Applications. Springer, 1993,
pp. 145–191 — cited on pages 12, 84.

[48] G. Ciardo and A. S. Miner. “Efficient reachability set generation and
storage using decision diagrams.” In: Proceedings of the 20th International
Conference on Applications and Theory of Petri Nets. ICATPN’99 (Williams-
burg, Virginia, USA, June 21–25, 1999). Springer, 1999, pp. 6–25 — cited on

page 13.

[49] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, T. Vardanega,
and A. Zovi. “CHESS: a Model-Driven Engineering Tool Environment
for Aiding the Development of Complex Industrial Systems.” In: Pro-
ceedings of the 27th International Conference on Automated Software Engi-
neering. ASE’12 (Essen, Germany, Sept. 3–7, 2012). ACM, Sept. 2012 —

cited on page 52.

[50] F. Ciccozzi, A. Cicchetti, and M. Sjodin. “Towards a Round-Trip Support
for Model-Driven Engineering of Embedded Systems.” In: Proceedings of
the 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. SEAA’11 (Oulu, Finland). IEEE, 2011, pp. 200–208 — cited on

page 30.

[51] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone. “Stochastic Pro-
cess Algebras.” In: Formal Methods for Performance Evaluation. Ed. by M.
Bernardo and J. Hillston. Vol. 4486. LNCS. Springer, 2007, pp. 132–179

— cited on page 12.

178 bibliography

[52] P. C. Clements. “From Subroutines to Subsystems: Component-Based
Software Development.” In: The American Programmer 8.11 (1995) — cited

on pages 17–18.

[53] V. Cortellessa and A. Pompei. “Towards a UML profile for QoS: a contri-
bution in the reliability domain.” In: SIGSOFT Software Engineering Notes
29.1 (2004), pp. 197–206 — cited on page 25.

[54] V. Cortellessa, H. Singh, and B. Cukic. “Early reliability assessment
of UML based software models.” In: Proceedings of the 3rd International
Workshop on Software and Performance. WOSP’02 (Rome, Italy). New York,
NY, USA: ACM, 2002, pp. 302–309 — cited on page 24.

[55] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H. Sanders.
“Möbius 2.3: An extensible tool for dependability, security, and perfor-
mance evaluation of large and complex system models.” In: 39th IEEE/I-
FIP International Conference on Dependable Systems Networks. DSN’09 (Es-
toril, Portugal, June 29–July 2, 2009). IEEE, 2009, pp. 353–358 — cited on

pages 15, 142, 147.

[56] I. Crnkovic, M. Chaudron, and S. Larsson. “Component-Based Devel-
opment Process and Component Lifecycle.” In: Proceedings of the In-
ternational Conference on Software Engineering Advances. ICSEA06 (Tahiti,
French Polynesia, Oct. 29–Nov. 3, 2006). IEEE, 2006, pp. 44–44 — cited on

page 19.

[57] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M.-O.
Reiser, A. Sandberg, D. Servat, R. Tavakoli Kolagari, M. Törngren, and
M. Weber. “The EAST-ADL Architecture Description Language for Au-
tomotive Embedded Software.” In: Model-Based Engineering of Embedded
Real-Time Systems. Ed. by H. Giese, G. Karsai, E. Lee, B. Rumpe, and B.
Schätz. Vol. 6100. LNCS. Springer, 2011, pp. 297–307 — cited on pages 48, 58.

[58] K. Czarnecki and S. Helsen. “Classification of Model Transformation
Approaches.” In: Proceedings of the 18th Annual SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOP-
SLA’03 (Oct. 26–30, 2003). Anaheim, CA, USA: ACM, 2003 — cited on

pages iii, 24.

[59] A. Daidone, F. D. Giandomenico, A. Bondavalli, and S. Chiaradonna.
“Hidden Markov Models as a Support for Diagnosis: Formalization of
the Problem and Synthesis of the Solution.” In: Proceedings of the 25th
IEEE Symposium on Reliable Distributed Systems. SRDS’06 (Leeds, UK,
Oct. 2–4, 2006). 2006, pp. 245–256 — cited on page 6.

[60] M. Dal Cin, G. Huszerl, and K. Kosmidis. “Evaluation of Safety-Critical
Systems based on Guarded Statecharts.” In: Proceedings of the Fourth IEEE
International Symposium on High Assurance Systems Engineering. HASE’99

(Washington D. C., USA, Nov. 17–19, 1999). IEEE, 1999 — cited on page 25.

bibliography 179

[61] A. D’Ambrogio, G. Iazeolla, and R. Mirandola. “A method for the pre-
diction of software reliability.” In: Proceedings of the 6th IASTED Software
Engineering and Applications Conference. SEA’02 (Cambridge, MA, USA,
Nov. 4–6, 2002). 2002 — cited on page 24.

[62] S. Datla and N. Gidijala. “Parallelizing Motion JPEG 2000 with CUDA.”
In: Proceedings of the 2nd International Conference on Computer and Electrical
Engineering. ICCEE’09 (Dubai, Dec. 28–30, 2009). Vol. 1. 2009, pp. 630–
634 — cited on page 112.

[63] D. D. Deavours and W. H. Sanders. “"On-the-fly" solution techniques for
stochastic Petri nets and extensions.” In: IEEE Transactions on Software
Engineering 24.10 (Oct. 1998), pp. 889–902 — cited on page 13.

[64] D. D. Deavours and W. H. Sanders. “An efficient disk-based tool for
solving large Markov models.” In: Performance Evaluation 33.1 (1998),
pp. 67–84 — cited on page 13.

[65] E. W. Dijkstra. “On the role of scientific thought.” In: Selected Writings on
Computing: A Personal Perspective. Ed. by E. W. Dijkstra. Springer, 1982,
pp. 60–66 — cited on pages 17, 32, 140.

[66] L. Dingping, Z. Kaitao, and Y. Qiqi. “Application of Data Stream Outlier
Mining Techniques in Steam Generator Safety Early Warning System of
Nuclear Power Plant.” In: Proceedings of the 5th International Conference on
Measuring Technology and Mechatronics Automation. ICMTMA’13 (Hong
Kong, Jan. 16–17, 2013). IEEE, 2013, pp. 287–290 — cited on page 111.

[67] S. Distefano and A. Puliafito. “Dependability Evaluation with Dynamic
Reliability Block Diagrams and Dynamic Fault Trees.” In: IEEE Transac-
tions on Dependable and Secure Computing 99.2 (2008) — cited on page 7.

[68] S. Donatelli, S. Haddad, and J. Sproston. “Model Checking Timed and
Stochastic Properties with CSLTA.” In: IEEE Transactions on Software En-
gineering 35.2 (2009), pp. 224–240 — cited on page 14.

[69] S. Donatelli. “Superposed Generalized Stochastic Petri Nets: Definition
and efficient solution.” In: Proceedings of the 15th International Conference
on Application and Theory of Petri Nets. ICATPN’94 (Zaragoza, Spain,
June 20–24, 1994). Ed. by R. Valette. Vol. 815. LNCS. Springer, 1994,
pp. 258–277 — cited on page 140.

[70] Eclipse Modeling Framework (EMF). url: http : / / www . eclipse . org /

modeling/emf/ (visited on 12/28/2013) — cited on pages 97, 156.

[71] P. Feiler and A. Rugina. Dependability Modeling with the Architecture Anal-
ysis & Design Language (AADL). Technical Report CMU/SEI-2007-TN-
043. Software Engineering Institute, Carnegie Mellon, July 2007 — cited on

page 49.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

180 bibliography

[72] R. Filippini and A. Bondavalli. “Modeling and Analysis of a Scheduled
Maintenance System: a DSPN Approach.” In: The Computer Journal, BCS
47.6 (2004), pp. 634–650 — cited on page 50.

[73] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, and V. Vit-
torini. “DrawNET++: Model Objects to Support Performance Analysis
and Simulation of Systems.” In: In Proceedings of the 12th International
Conference on Computer Performance Evaluation: Modelling Techniques and
Tools. TOOLS’02 (London, UK, Apr. 14–17, 2002). Ed. by T. Field, P. Har-
rison, J. Bradley, and U. Harder. Vol. 2324. LNCS. Springer, 2002, pp. 55–
60 — cited on page 15.

[74] R. Fricks, C. Hirel, S. Wells, and K. Trivedi. “The development of an
integrated modeling environment.” In: Proceedings of the World Congress
on Systems Simulation. WCSS’97 (Singapore, Sept. 1997). 1997, pp. 471–
476 — cited on page 15.

[75] B. Gallina, M. Javed, F. U. Muram, and S. Punnekkat. “A Model-Driven
Dependability Analysis Method for Component-Based Architectures.”
In: Proceedings of the 38th EUROMICRO Conference on Software Engineering
and Advanced Applications. SEAA’12 (Çeşme, Turkey, Sept. 5–8, 2012).
IEEE, 2012, pp. 233–240 — cited on page 52.

[76] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995 — cited on page 17.

[77] S. Gaonkar, K. Keefe, R. Lamprecht, E. Rozier, P. Kemper, and W.
H. Sanders. “Performance and dependability modeling with Möbius.”
In: ACM SIGMETRICS Performance Evaluation Review 36.4 (Mar. 2009),
pp. 16–21 — cited on page 101.

[78] L. Gönczy, S. Chiaradonna, F. Di Giandomenico, A. Pataricza, A. Bon-
davalli, and T. Bartha. “Dependability Evaluation of Web Service-Based
Processes.” In: Proceedings of the 3rd European Performance Engineering
Workshop. EPEW’06 (Budapest, Hungary, June 21–22, 2006). Ed. by A.
Horváth and M. Telek. Vol. 4054. LNCS. Springer, 2006, pp. 166–180 —

cited on page 26.

[79] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D. E.
M. Nassar, H. Ammar, and A. Mili. “Architectural-Level Risk Analysis
Using UML.” In: IEEE Transactions on Software Engineering 29.10 (Oct.
2003), pp. 946–960 — cited on page 25.

[80] G. Goth. “Beware the March of this IDE: Eclipse is overshadowing other
tool technologies.” In: IEEE Software 22.4 (July-August 2005), pp. 108–
111 — cited on pages 36, 97, 102, 109.

bibliography 181

[81] V. Grassi, R. Mirandola, and A. Sabetta. “Filling the gap between de-
sign and performance/reliability models of component-based systems:
A model-driven approach.” In: Journal of Systems and Software 80.4 (2007),
pp. 528–558 — cited on pages 25, 69, 100.

[82] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic. “Papyrus: A UML2 Tool
for Domain-Specific Language Modeling.” In: Model-Based Engineering
of Embedded Real-Time Systems. International Dagstuhl Workshop, Revised
Selected Papers. (Dagstuhl Castle, Germany, Nov. 4–9, 2007). Ed. by H.
Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz. Vol. 6100. LNCS.
Springer, 2011, pp. 361–368 — cited on pages 36, 97.

[83] P. G. Harrison and B. Strulo. “SPADES - a Process Algebra for Discrete
Event Simulation.” In: Journal of Logic and Computation 10.1 (Jan. 2000),
pp. 3–42 — cited on page 12.

[84] B. R. Haverkort, H. Hermanns, and J.-P. Katoen. “On the Use of Model
Checking Techniques for Quantitative Dependability Evaluation.” In:
Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems.
SRDS’00 (Nürnberg, Germany, Oct. 16–18, 2000). IEEE, 2000, pp. 228–
237 — cited on page 14.

[85] B. R. Haverkort and I. G. Niemegeers. “Performability Modelling Tools
and Techniques.” In: Performance Evaluation 25.1 (1996), pp. 17–40 — cited

on page 14.

[86] A. Hegedus, G. Bergmann, I. Ráth, and D. Várró. “Back-annotation of
Simulation Traces with Change-Driven Model Transformations.” In: Pro-
ceedings of the 8th IEEE International Conference on Software Engineering
and Formal Methods. SEFM’10 (Pisa, Italy, Sept. 13–18, 2010). IEEE, 2010,
pp. 145–155 — cited on page 30.

[87] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. “On
Language-Independent Model Modularisation.” In: Transactions on
Aspect-Oriented Software Development VI. Special Issue on Aspects and
Model-Driven Engineering. Ed. by S. Katz, H. Ossher, R. France, and J.-
M. Jézéquel. Springer, 2009, pp. 39–82 — cited on pages 150–151.

[88] H. Hermanns and M. Rettelbach. “Syntax, Semantics, Equivalences, and
Axioms for MTIPP.” In: Proceedings of the 2nd Workshop on Process Alge-
bras and Performance Modelling. PAPM’94 (Erlangen, Germany, July 1994).
1994, pp. 71–87 — cited on page 12.

[89] HIDE: “High Level Integrated Design Enviroment for Dependability”. 1998 —

cited on page 37.

182 bibliography

[90] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Trèves. “The Petri
Net Markup Language and ISO/IEC 15909-2.” In: Proceedings of the
10th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools. CPN’09 (Aarhus, Denmark, Oct. 19–21, 2009). 2009 — cited on

pages 100, 103, 149.

[91] J. Hillston. “A Compositional Approach to Performance Modeling.”
PhD thesis. Cambridge University Press, 1995 — cited on pages 12–13.

[92] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. “Fluid stochas-
tic Petri nets: Theory, applications, and solution techniques.” In: Euro-
pean Journal of Operational Research 105.1 (Feb. 1998), pp. 184–201 — cited

on page 13.

[93] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. “Software rejuvenation:
analysis, module and applications.” In: 25th International Symposium on
Fault-Tolerant Computing, Digest of Papers. FTCS-25 (Pasadena, CA, USA,
June 27–30, 1995). IEEE, 1995, pp. 381–390 — cited on pages 65, 113.

[94] H.Zhao, D.Song, and Y.Dong. “Design and Implementation of AADL
Model Safety Assessment Tool.” In: Proceedings of the 12th International
Conference on Quality Software. QSIC’12 (Xi’an, China, Aug. 27–29, 2002).
IEEE, 2012, pp. 251–257 — cited on page 26.

[95] IEC 60125: “Fault tree analysis (FTA)”. Second Edition. Dec. 2006 — cited on

page 8.

[96] IEC 60812: “Analysis techniques for system reliability – Procedure for failure
mode and effects analysis (FMEA)”. Second Edition. Jan. 2006 — cited on

page 39.

[97] ISO/IEC 15909-1: “Software and Systems Engineering – High-level Petri nets
– Part 1: Concepts, definitions and graphical notation”. 2004 — cited on page 103.

[98] ISO/IEC 15909-2: “Software and Systems Engineering – High-level Petri nets
– Part 2: Transfer format”. 2011 — cited on page 103.

[99] ISO/IEC Standard for Systems and Software Engineering - Recommended
Practice for Architectural Description of Software-Intensive Systems. ISO/IEC
42010, IEEE Std 1471-2000. 2007 — cited on page 32.

[100] J. Jürjens. “UMLsec: Extending UML for Secure Systems Development.”
In: Proceedings of the 5th International Conference on The Unified Modeling
Language. UML’02 (Dresden, Germany, Sept. 30–Oct. 4, 2002). Springer,
2002, pp. 412–425 — cited on page 25.

[101] M. Kaâniche, P. Lollini, A. Bondavalli, and K. Kanoun. “Modeling the
resilience of large and evolving systems.” In: International Journal of Per-
formability Engineering 4.2 (Apr. 2008), pp. 153–168 — cited on page 13.

bibliography 183

[102] K. Kanoun and M. Ortalo-Borrel. “Fault-tolerant system dependability-
explicit modeling of hardware and software component-interactions.”
In: IEEE Transactions on Reliability 49.4 (2000), pp. 363–376 — cited on

page 141.

[103] J. Kemeny and J. Snell. Finite Markov Chains. D. Van Nostrand Company,
Inc., 1960 — cited on page 13.

[104] C. Kobryn. “UML 2001: A Standardization Odyssey.” In: Communica-
tions of the ACM 42.10 (Oct. 1999), pp. 29–37 — cited on page 21.

[105] M. Kovács, P. Lollini, I. Majzik, and A. Bondavalli. “An integrated frame-
work for the dependability evaluation of distributed mobile applica-
tions.” In: Proceedings of the 2008 RISE/EFTS Joint International Workshop
on Software Engineering for Resilient Systems. (Newcastle upon Tyne, UK,
Nov. 17–19, 2008). ACM, 2008, pp. 29–38 — cited on page 25.

[106] M. Kuntz, M. Siegle, and E. Werner. “Symbolic Performance and De-
pendability Evaluation with the Tool CASPA.” In: Applying Formal Meth-
ods: Testing, Performance, and M/E-Commerce. Proceedings of FORTE 2004
Workshops. FORTE’04 (Toledo, Spain, Oct. 1–2, 2004). Vol. 3236. LNCS.
Springer, 2004, pp. 293–307 — cited on page 15.

[107] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM: Probabilistic
Model Checking for Performance and Reliability Analysis.” In: ACM
SIGMETRICS Performance Evaluation Review 36.4 (2009), pp. 40–45 — cited

on page 15.

[108] E. Lamboray, A. Zollinger, O. G. Staadt, and M. Gross. “Interactive Mul-
timedia Streams in Distributed Applications.” In: Computer & Graphics
27.5 (2003) — cited on page 112.

[109] L. Lednicki, A. Petricic, and M. Zagar. “A Component-Based Technol-
ogy for Hardware and Software Components.” In: Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced Applications.
SEAA’09 (Patras, Greece, Aug. 27–29, 2009). IEEE, Aug. 2009 — cited on

page 19.

[110] C. Lindemann, A. Reuys, and A. Thummler. “The DSPNexpress 2000

performance and dependability modeling environment.” In: 29th An-
nual International Symposium on Fault-Tolerant Computing, Digest of Papers.
FTCS-29 (Madison, WI, USA, June 15–18, 1999). 1999, pp. 228–231 — cited

on page 14.

[111] Y. Liu, X. Wang, and L. Zhao. “Scalable Video Streaming in Wireless
Mesh Networks for Education.” In: International Journal of Distance Edu-
cation Technology 9.1 (Jan. 2011), pp. 1–20 — cited on page 111.

184 bibliography

[112] P. Lollini, A. Bondavalli, and F. di Giandomenico. “A Decomposition-
Based Modeling Framework for Complex Systems.” In: IEEE Transactions
on Reliability 58.1 (Mar. 2009), pp. 20–33 — cited on page 13.

[113] P. Lollini, L. Montecchi, and A. Bondavalli. On the evaluation of HI-
DENETS use-cases having phased behavior. Technical Report RCL-071201.
Università degli Studi di Firenze, Dipartimento di Sistemi e Informatica,
Dec. 2007 — cited on pages 142, 163, 165–166, 203.

[114] P. Lollini. “On the Modeling and Solution of Complex Systems: From
Two Domain-Specific Case-Studies Towards the Definition of a More
General Framework.” PhD thesis. Università degli Studi di Firenze, Dot-
torato in Informatica e Applicazioni (XVIII ciclo), Dec. 2005 — cited on

page 13.

[115] M. Magyar and I. Majzik. “Modular Construction of Dependabil-
ity Models from System Architecture Models: A Tool-Supported Ap-
proach.” In: Proceedings of the 6th International Conference on the Quanti-
tative Evaluation of Systems. QEST’09 (Budapest, Hungary, Sept. 13–16,
2009). 2009, pp. 95–96 — cited on page 26.

[116] V. Mainkar and K. Trivedi. “Sufficient conditions for existence of a fixed
point in stochastic reward net-based iterative models.” In: IEEE Trans-
actions on Software Engineering 22.9 (Sept. 1996), pp. 640–653 — cited on

page 13.

[117] I. Majzik, A. Pataricza, and A. Bondavalli. “Stochastic Dependability
Analysis of System Architecture Based on UML Models.” In: Architecting
Dependable Systems. Ed. by R. De Lemos, C. Gacek, and A. Romanovsky.
Vol. 2677. LNCS. Springer, 2003, pp. 219–244 — cited on pages 25, 69.

[118] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri. “Providing Ar-
chitectural Languages and Tools Interoperability through Model Trans-
formation Technologies.” In: IEEE Transactions on Software Engineering
36.1 (2010), pp. 119–140 — cited on page 50.

[119] M. Malhotra. “An efficient stiffness-insensitive method for transient
analysis of Markov availability models.” In: IEEE Transactions on Reli-
ability 45.3 (1996), pp. 426–428 — cited on page 14.

[120] M. Malhotra and K. Trivedi. “Power-hierarchy of dependability-model
types.” In: IEEE Transactions on Reliability 43.3 (1994), pp. 493–502 — cited

on page 8.

[121] N. Maruyama, A. Nukada, and S. Matsuoka. “A high-performance fault-
tolerant software framework for memory on commodity GPUs.” In: Pro-
ceedings of the IEEE International Symposium on Parallel Distributed Process-
ing. IPDPS’10 (Apr. 19–23, 2010). IEEE, 2010, pp. 1–12 — cited on page 112.

bibliography 185

[122] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian. “Remote
surgery case: robot-assisted teleneurosurgery.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. ICRA’04 (New Or-
leans, LA, USA, Apr. 26–May 1, 2004). Vol. 1. IEEE, 2004, pp. 819–823 —

cited on page 111.

[123] J. Merseguer, J. Campos, S. Bernardi, and S. Donatelli. “A compositional
semantics for UML state machines aimed at performance evaluation.”
In: Proceedings of the 6th International Workshop on Discrete Event Systems.
WODES’02 (Zaragoza, Spain, Oct. 2–4, 2002). 2002, pp. 295–302 — cited on

page 25.

[124] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997 — cited

on pages 17–18.

[125] J. F. Meyer. “On Evaluating the Performability of Degradable Comput-
ing Systems.” In: IEEE Transactions on Computers C-29.8 (Aug. 1980),
pp. 720–731 — cited on pages iii, 2.

[126] Microsoft. COM: Component Object Model Technologies. url: http://www.
microsoft.com/com/default.mspx (visited on 12/28/2013) — cited on

pages 19, 195.

[127] Möbius Manual. Version 2.4, Rev. 1. University of Illinois at Urbana-
Champaign, PERFORM Group. Dec. 2012 — cited on page 142.

[128] A. Möller, J. Fröberg, and M. Nolin. “Industrial Requirements on Com-
ponent Technologies for Embedded Systems.” In: Proceedings of the 7th
International Symposium on Component-Based Software Engineering. Ed. by
I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. Wallnau. Vol. 3054.
LNCS. Springer, May 24–25, 2004, pp. 146–161 — cited on page 19.

[129] M. K. Molloy. “Performance Analysis Using Stochastic Petri Nets.” In:
IEEE Transactions on Computers 31.9 (Sept. 1982), pp. 913–917 — cited on

page 11.

[130] L. Montecchi, P. Lollini, and A. Bondavalli. An Intermediate Dependability
Model for state-based dependability analysis. Technical Report RCL101115.
Università degli Studi di Firenze, Resilient Computing Lab, Jan. 2011 —

cited on pages 69–70.

[131] L. Montecchi, P. Lollini, and A. Bondavalli. “Towards a MDE Transfor-
mation Workflow for Dependability Analysis.” In: Proceedings of the 16th
IEEE International Conference on Engineering of Complex Computer Systems.
ICECCS’11 (Las Vegas, NV, USA, Apr. 27–29, 2011). IEEE, 2011, pp. 157–
166 — cited on pages 69, 75.

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx

186 bibliography

[132] L. Montecchi, N. Nostro, N. Veeraraghavan, R. Vitenberg, H. Meling,
and A. Bondavalli. Stochastic Activity Networks model for the evaluation of
the World Opera system. Technical Report RCL-131001. Università degli
Studi di Firenze, Resilient Computing Lab, Oct. 2013 — cited on pages 144–

145.

[133] L. Montecchi. Module 05: State-based Dependability Analysis. CHESS
Project Training Video. url: http://www.chess-project.org/page/
training (visited on 12/28/2013) — cited on pages 97, 111.

[134] L. Montecchi, P. Lollini, and A. Bondavalli. “Dependability Concerns in
Model-Driven Engineering.” In: IEEE International Symposium on Object/-
Component/Service-Oriented Real-Time Distributed Computing Workshops.
WORNUS’11 (Newport Beach, CA, USA, Mar. 28–31, 2011). IEEE, 2011,
pp. 254–263 — cited on pages 39, 70, 73, 123.

[135] A. van Moorsel and Y. Huang. “Reusable software components for
performability tools, and their utilization for web-based configuration
tools.” In: Proceedings of the 10th International Conference in Computer Per-
formance Evaluation: Modeling Techniques and Tools. TOOLS’98 (Palma de
Mallorca, Spain, Sept. 14–18, 1998). Ed. by R. Puigjaner, N. N. Savino,
and B. Serra. Vol. 1469. LNCS. 1998, pp. 37–50 — cited on page 15.

[136] A. van Moorsel and W. H. Sanders. “Adaptive Uniformization.” In:
ORSA Communications in Statistics: Stochastic Models 10.3 (Aug. 1994),
pp. 619–648 — cited on page 14.

[137] M. Moretto. “Progettazione, realizzazione ed utilizzo di un generatore
di simulatori per sistemi a fasi multiple.” Italian. English title: “Design,
realization, and application of a generator of simulators for multiple-
phase systems”. Master’s thesis. Università degli Studi di Pisa, Corso di
Laurea in Ingegneria Informatica, Dec. 2004 — cited on page 102.

[138] J. K. Muppala, M. Malhotra, and K. S. Trivedi. “Stiffness-tolerant meth-
ods for transient analysis of stiff Markov chains.” In: Microelectronics and
Reliability 34 (1994), pp. 1825–1841 — cited on page 14.

[139] T. Murata. “Petri nets: Properties, analysis and applications.” In: Proceed-
ings of the IEEE 77.4 (1989), pp. 541–580 — cited on page 9.

[140] M. Nelli, A. Bondavalli, and L. Simoncini. “Dependability Modelling
and Analysis of Complex Control Systems: an Application to Railway
Interlocking.” In: Proceedings of the 2nd European Dependable Computing
Conference. EDCC-2 (Taormina, Italy, Oct. 2–4, 1996). 1996, pp. 93–110 —

cited on page 13.

[141] D. M. Nicol, W. H. Sanders, and K. S. Trivedi. “Model-based evaluation:
from dependability to security.” In: IEEE Transactions on Dependable and
Secure Computing 1.1 (Jan.-March 2004), pp. 48–65 — cited on pages 6–7, 13.

http://www.chess-project.org/page/training
http://www.chess-project.org/page/training

bibliography 187

[142] W. D. Obal II and W. H. Sanders. “State-space support for path-based re-
ward variables.” In: Proceedings of the 1998 International Computer Perfor-
mance and Dependability Symposium. IPDS’98 (Durham, NC, USA, Sept. 7–
9, 1998). 1998, pp. 228–237 — cited on page 14.

[143] Object Management Group. A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems, Version 1.1. OMG Document
{formal/2011-06-02}. June 2011 — cited on pages 23, 47, 50, 54.

[144] Object Management Group. Assuring Dependability of Consumer Devices –
Request For Information. OMG Document {sysa/2011-12-02}. Dec. 2011 —

cited on page 24.

[145] Object Management Group. Common Object Request Broker Architecture
(CORBA)®. url: http : / / www . omg . org / spec / CORBA/ (visited on
12/28/2013) — cited on pages 19, 195.

[146] Object Management Group. Dependability Assurance Framework For
Safety-Sensitive Consumer Devices – Request For Proposal. OMG Document
{sysa/2013-03-13}. Mar. 2013 — cited on page 24.

[147] Object Management Group. MDA Guide Version 1.0.1. OMG Document
{omg/03-06-01}. June 2003 — cited on page 30.

[148] Object Management Group. OMG Systems Modeling Language (OMG
SysML), Version 1.3. OMG Document {formal/2012-06-01}. June 2012 —

cited on pages 23, 32, 48.

[149] Object Management Group. OMG Unified Modeling Language (OMG
UML), Infrastructure, Version 2.4.1. OMG Document {formal/2011-08-05}.
Aug. 2011 — cited on page 21.

[150] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure, Version 2.4.1. OMG Document {formal/2011-08-
06}. Aug. 2011 — cited on pages 21–22, 37, 58, 75.

[151] Object Management Group. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms (OMG QoS&FT), Ver-
sion 1.1. OMG Document {formal/2008-04-05}. Apr. 2008 — cited on pages 23,

46.

[152] Object Management Group. UML Profile for Schedulability, Perfor-
mance, and Time Specification (OMG SPT), Version 1.1. OMG Document
{formal/05-01-02}. Jan. 2005 — cited on pages 23, 47.

[153] G. J. Pai and J. B. Dugan. “Automatic synthesis of dynamic fault trees
from UML system models.” In: Proceedings of the 13th International Sym-
posium on Software Reliability Engineering. ISSRE’02 (Annapolis, MD,
USA, Nov. 12–15, 2002). 2002, pp. 243–254 — cited on page 24.

http://www.omg.org/spec/CORBA/

188 bibliography

[154] M. Panunzio and T. Vardanega. “A Component Model for On-board
Software Applications.” In: 36th EUROMICRO Conference on Software
Engineering and Advanced Applications. SEAA’10 (Lille, France, Sept. 1–
3, 2010). 2010, pp. 57–64 — cited on page 33.

[155] M. Panunzio and T. Vardanega. “Pitfalls and misconceptions in
component-oriented approaches for real-time embedded systems:
lessons learned and solutions.” In: Proceedings of the 3rd Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems.
CRTS’10 (San Diego, CA, USA, Nov. 30, 2010). 2010 — cited on page 26.

[156] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules.” In: Communications of the ACM 15.12 (Dec. 1972), pp. 1053–
1058 — cited on page 17.

[157] C. A. Petri. “Kommunikation mit Automaten.” German. PhD thesis.
Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2,
1962 — cited on page 9.

[158] B. Plateau and K. Atif. “Stochastic automata network for modeling par-
allel systems.” In: IEEE Transactions on Software Engineering 17.10 (Oct.
1991), pp. 1093–1108 — cited on pages 12, 140.

[159] B. Plateau. “On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms.” In: Proceedings of the 1985 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems. SIGMETRICS’85 (Austin, TX, USA, Aug. 26–29, 1985). New York,
NY, USA: ACM, 1985, pp. 147–154 — cited on page 13.

[160] M. Rabah and K. Kanoun. “Performability evaluation of multipurpose
multiprocessor systems: the "separation of concerns" approach.” In:
IEEE Transactions on Computers 52.2 (2003), pp. 223–236 — cited on page 141.

[161] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. “Identifying, under-
standing, and analyzing critical infrastructure interdependencies.” In:
IEEE Control Systems Magazine 21.6 (Dec. 2001), pp. 11–25 — cited on

page 139.

[162] A.-E. Rugina, K. Kanoun, and M. Kaâniche. “The ADAPT Tool: From
AADL Architectural Models to Stochastic Petri Nets through Model
Transformation.” In: Proceedings of the 7th European Dependable Computing
Conference. EDCC’08 (Kaunas, Lithuania, May 7–9, 2008). 2008, pp. 85–90

— cited on page 26.

[163] A.-E. Rugina, K. Kanoun, and M. Kaâniche. “A system dependability
modeling framework using AADL and GSPNs.” In: Architecting Depend-
able Systems IV. Ed. by R. de Lemos, C. Gacek, and A. Romanovsky.
Vol. 4615. Springer, 2007, pp. 14–38 — cited on page 24.

bibliography 189

[164] R. Sahner, K. Trivedi, and A. Puliafito. Performance and Reliability Anal-
ysis of Computer Systems. An Example-Based Approach Using the SHARPE
Software Package. Kluwer Academic Publishers, 1996 — cited on page 13.

[165] W. H. Sanders. “Integrated frameworks for multi-level and multi-
formalism modeling.” In: Proceedings of the 8th International Workshop on
Petri Nets and Performance Models. PNPM’99 (Zaragoza, Spain, Sept. 6–
10, 1999). IEEE, 1999, pp. 2–9 — cited on page 14.

[166] W. H. Sanders and J. F. Meyer. “Reduced base model construction meth-
ods for stochastic activity networks.” In: IEEE Journal on Selected Areas in
Communications 9.1 (Jan. 1991), pp. 25–36 — cited on pages 140, 142, 147.

[167] W. H. Sanders and J. F. Meyer. “Stochastic activity networks: formal
definitions and concepts.” In: Lectures on Formal Methods and Performance
Analysis. Ed. by E. Brinksma, H. Hermanns, and J.-P. Katoen. Vol. 2090.
Springer, 2002, pp. 315–343 — cited on pages 12, 142, 147.

[168] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineer-
ing.” In: Computer 39.2 (2006), pp. 25–31 — cited on pages iii, 19–20.

[169] M. Serafini, P. Lollini, and A. Bondavalli. “Modeling on-line tests in
safety-critical systems.” In: Safety and Reliability for Managing Risk.
London: Taylor & Francis Group, 2006 — cited on pages 141–142.

[170] C. U. Smith, C. M. Lladó, and R. Puigjaner. “Performance Model In-
terchange Format (PMIF 2): A Comprehensive Approach to Queueing
Network Model Interoperability.” In: Performance Evaluation 67.7 (July
2010), pp. 548–568 — cited on page 100.

[171] Society of Automotive Engineers. Architecture Analysis & Design Lan-
guage (AADL). SAE Standards: AS5506. Nov. 2004 — cited on page 49.

[172] Society of Automotive Engineers. Architecture Analysis & Design Lan-
guage (AADL) Annex Volume 1. SAE Standards: AS5506/1. June 2006 —

cited on pages 24, 49, 58.

[173] M. Sridharan, S. Ramasubramanian, and A. K. Somani. “HIMAP: Ar-
chitecture, Features, and Hierarchical Model Specification Techniques.”
In: Proceedings of the 10th International Conference in Computer Performance
Evaluation: Modeling Techniques and Tools. TOOLS’98 (Palma de Mallorca,
Spain, Sept. 14–18, 1998). Ed. by R. Puigjaner, N. N. Savino, and B. Serra.
Vol. 1469. LNCS. Springer, 1998, pp. 348–351 — cited on page 15.

[174] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J. Rails-
back. Fault Tree Handbook with Aerospace Applications. Version 1.1. NASA,
Aug. 2002 — cited on pages iii, 7.

[175] Sun Microsystems. JavaBeans™. Version 1.01. Aug. 1997 — cited on page 19.

[176] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Second Edition. Addison-Wesley Professional, 2002 — cited on page 17.

190 bibliography

[177] C.-W. Ten, C.-C. Liu, and M. Govindarasu. “Vulnerability Assessment
of Cybersecurity for SCADA Systems Using Attack Trees.” In: Power
Engineering Society General Meeting. (Tampa, FL, USA, June 24–28, 2007).
IEEE, 2007, pp. 1–8 — cited on page 8.

[178] M. Tribastone, A. Duguid, and S. Gilmore. “The PEPA eclipse plugin.”
In: ACM SIGMETRICS Performance Evaluation Review 36.4 (Mar. 2009),
pp. 28–33 — cited on page 15.

[179] K. Trivedi. “SHARPE 2002: Symbolic Hierarchical Automated Reliability
and Performance Evaluator.” In: Proceedings of the International Confer-
ence on Dependable Systems and Networks. DSN’02 (Bethesda, MD, USA,
June 23–26, 2002). 2002, p. 544 — cited on page 15.

[180] U.S. Department of Defense. Military handbook – Reliability prediction of
electronic equipment. MIL-HDBK-217F. Jan. 1990 — cited on page 129.

[181] U.S. Department of Defense. Systems Engineering Guide for Systems of Sys-
tems. Version 1.0. Aug. 2008 — cited on page iv.

[182] N. Veeraragavan, L. Montecchi, N. Nostro, A. Bondavalli, R. Vitenberg,
and H. Meling. “Understanding the Quality of Experience in Modern
Distributed Interactive Multimedia Applications in Presence of Failures:
Metrics and Analysis.” In: Proceedings of the 28th ACM Symposium on
Applied Computing. SAC’13 (Coimbra, Portugal, Mar. 18–22, 2013). DADS
Track. ACM, 2013 — cited on pages 141, 144–145.

[183] N. Veeraragavan, R. Vitenberg, and H. Meling. “Reliability Modeling
and Analysis of Modern Distributed Interactive Multimedia Applica-
tions: A Case Study of a Distributed Opera Performance.” In: Proceedings
of the 12th IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems. Vol. 7272. LNCS. Springer Berlin Heidelberg,
2012, pp. 185–193 — cited on pages 142–143.

[184] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis. “The Os-
MoSys approach to multi-formalism modeling of systems.” In: Software
and Systems Modeling 3.1 (2004), pp. 68–81 — cited on pages 15, 147.

[185] M. Völter. “MD* Best Practices.” In: Journal of Object Technology 8.6 (Sept.
2009), pp. 79–102 — cited on page 156.

[186] M. Walter, C. Trinitis, and W. Karl. “OpenSESAME: an intuitive depend-
ability modeling environment supporting inter-component dependen-
cies.” In: Proceedings of the 3rd Pacific Rim International Symposium on
Dependable Computing. PRDC’01 (Seoul, Korea, Dec. 17–19, 2001). 2001,
pp. 76–83 — cited on page 26.

[187] Web Services Business Process Execution Language (WS-BPEL). Version 2.0.
Organization for the Advancement of Structured Information Standards
(OASIS), Apr. 2007 — cited on page 26.

bibliography 191

[188] XSL Transformations (XSLT), Version 2.0. W3C Recommendation. Jan.
2007 — cited on page 156.

[189] Xtext – Language Development Made Easy! url: http://www.eclipse.
org/Xtext/ (visited on 12/28/2013) — cited on page 156.

[190] A. Zarras, P. Vassiliadis, and V. Issarny. “Model-Driven Dependability
Analysis of WebServices.” In: On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE. Proceedings of the OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2004, Part II. Ed. by
R. Meersman and Z. Tari. Vol. 3291. LNCS. Springer, 2004, pp. 1608–1625

— cited on page 26.

[191] A. Zimmermann. “Modeling and evaluation of stochastic Petri nets with
TimeNET 4.1.” In: Proceedings of the 6th International Conference on Per-
formance Evaluation Methodologies and Tools. VALUETOOLS’12 (Cargèse,
France, Oct. 9–12, 2012). 2012, pp. 54–63 — cited on page 14.

http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/

A P P E N D I C E S

193

A
A C R O N Y M S

AADL Architecture Analysis & Design Language

ARTEMIS Advanced Research & Technology for EMbedded
Intelligence and Systems

ARTEMIS-JU ARTEMIS Joint Undertaking

ASIL Automotive Safety Integrity Level

ATL ATLAS Transformation Language

BPEL Business Process Execution Language

CBD Component-Based Development

CBSE Component-Based Software Engineering

CI Critical Infrastructure

COM Component Object Model [126]

CORBA Common Object Request Broker Architecture [145]

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CS Constituent Systems

CSD Composite Structure Diagram

CSL Continuous Stochastic Logic

CTMC Continuous-Time Markov Chain

CUDA Compute Unified Device Architecture

DAM Dependability Analysis Modeling

DIMA Distributed Interactive Multimedia Application

DSL Domain Specific Language

DSPN Deterministic and Stochastic Petri Net

DTMC Discrete-Time Markov Chain

FMECA Failure Mode, Effects and Criticality Analysis

FPTC Failure Propagation and Transformation Calculus

FT Fault Tree

FTA Fault Tree Analysis

GCM Generic Component Model

195

196 acronyms

GPGPU General Purpose GPU

GPU Graphics Processing Unit

GRM Generic Resource Modeling

GSPN Generalized Stochastic Petri Net

HIDENETS HIghly DEpendable NETworks and Services

HRM Hardware Resource Modeling

IT Information Technology

KLAPER Kernel LAnguage for PErformance and Reliability analysis

MC Markov Chain

MARTE Modeling and Analysis of Real-Time Embedded systems

MDA Model-Driven Architecture

MDD Multivalued Decision Diagram

MDE Model-Driven Engineering

MTIPP Markovian Timed Processes for Performance Evaluation

MTTF Mean Time To Failure

MTTHE Mean Time To Hazardous Event

NFSD No Fire/Smoke Detected

OCL Object Constraint Language

OMG Object Management Group

OOP Object Oriented Programming

PEPA Performance Evaluation Process Algebra

PIM Platform Independent Model

PMIF Performance Model Interchange Format

PN Petri Net

PNML Petri Nets Markup Language

PSM Platform Specific Model

P/T Place/Transition

QN Queuing Networks

QoS Quality of Service

QoS&FT Quality of Service & Fault Tolerance

RBD Reliability Block Diagram

RFI Request For Information

RFP Request For Proposal

list of graphics

RG Reliability Graph

SAN Stochastic Activity Network

SIL Safety Integrity Level

SysML Systems Modeling Language

SoS System of Systems

SPN Stochastic Petri Net

SPT Schedulability, Performance, and Time

SRN Stochastic Reward Net

TMDL Template Models Description Language

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

VSL Value Specification Language

V&V Verification & Validation

WCET Worst-Case Execution Time

WO World Opera

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

197

B
L I S T O F G R A P H I C S

figures

Figure 1.1 The dependability and security tree [6]. 2

Figure 1.2 Error propagation [6]. 4

Figure 1.3 Timeline of advances in modelling and model-based as-
sessment [25]. 15

Figure 2.1 Components are assembled through their interfaces. . . . 18

Figure 2.2 UML 2.4.1 diagram types [150]. 22

Figure 3.1 The CHESS workflow for system development and anal-
ysis. 30

Figure 3.2 CHESS high-level design process [40]. 31

Figure 3.3 Support for views in the CHESS editor [38]. 36

Figure 3.4 Packages in the defined conceptual model for depend-
ability properties. 40

Figure 3.5 Relationship between DEP-UML and the CHESS Depend-
ability Profile. 52

Figure 3.6 Applying dependability information to component in-
stances connections. 56

Figure 3.7 DEP-UML Error Model example. 57

Figure 3.8 Connecting failure modes to provided services, through
the “affectedPorts” attribute. 59

Figure 3.9 Connecting external faults to required services, through
the “fromPort” attribute. 60

Figure 3.10 Modeling of redundancy structures in DEP-UML. The
figure depicts the model of a redundant RAID array with
2 disks and a controller. 62

Figure 3.11 A repair activity modeling the periodic software rejuve-
nation of two component instances. 65

Figure 3.12 Specification of measures of interest: example for instant
of time reliability. 67

Figure 4.1 An intermediate model reduces the number of transfor-
mation that need to be defined, considering n engineer-
ing languages, and m analysis formalisms. 70

Figure 4.2 High-level view of the CHESS plugin for state-based de-
pendability analysis. 70

Figure 4.3 Graphical notation for IDM models. 71

Figure 4.4 IDM model of the fire detection system. 73

199

list of graphics

Figure 4.5 Projection of dependability templates in the IDM repre-
sentation. The figure details the projection of the «State-

fulHardware» stereotype. 78

Figure 4.6 SPN elements generated from an IDM Component element. 85

Figure 4.7 IDM to SPN transformation for “FailureMode” elements. 85

Figure 4.8 IDM to SPN transformation for “Error” elements. 86

Figure 4.9 IDM to SPN transformation for “InternalFault” elements. 87

Figure 4.10 IDM to SPN transformation for “ErrorsProduceFailures”
elements. 88

Figure 4.11 Structure of transformation rules for “Activity” elements
of the IDM metamodel. 88

Figure 4.12 IDM to SPN transformation for <T> conditions. 90

Figure 4.13 IDM to SPN transformation for <L> conditions. 91

Figure 4.14 IDM to SPN transformation for “RepairActivity” elements. 92

Figure 4.15 IDM to SPN transformation for “ErrorDetection” elements. 93

Figure 4.16 IDM to SPN transformation for “ReplaceActivity” ele-
ments. 94

Figure 5.1 Abstract toolchain architecture for automated depend-
ability analysis. Labels m1. . .m5 indicate the involved
models in the toolchain, while labels t1. . . t4 indicate model
transformation steps. For greater flexibility, the workflow
is divided into a client and server process, which may
however reside on the same physical machine as well. . . 99

Figure 6.1 Software entities involved in the design of Multimedi-

aProcessing application, enriched with DEP-UML de-
pendability annotations. 114

Figure 6.2 Software architecture of the MultimediaProcessing ap-
plication, enriched with DEP-UML dependability anno-
tations. 115

Figure 6.3 Hardware components constituting the multimedia work-
station, enriched with DEP-UML dependability annota-
tions. 115

Figure 6.4 Hardware architecture of the multimedia workstation,
with allocation information. 117

Figure 6.5 Error model for the Supervisor_impl component imple-
mentation. 118

Figure 6.6 Definition of the maintenance activities performed on
the multimedia processing application. 119

Figure 6.7 Definition of the metrics of interest for the evaluation of
the multimedia processing application. 120

Figure 6.8 Impact of the fault occurrence rate of the CUDA_impl com-
ponent implementation on the failure probability of the
system. 121

200

list of graphics

Figure 6.9 Availability of the multimedia processing application at
varying the rejuvenation period. 122

Figure 6.10 Impact of GPU and MB fault occurrence rates on the
availability of the multimedia processing application. . . 123

Figure 6.11 Hardware components which are involved in the defini-
tion of architecture of the fire detection system, in two
subsequent refinement steps. 125

Figure 6.12 Hardware architecture of the fire detection system. . . . 126

Figure 6.13 Error model for the Switch component. 127

Figure 6.14 Error model associated with the FDU component (first re-
finement step). 128

Figure 6.15 Definition of metrics of interest for the evaluation of the
fire detection system. 128

Figure 6.16 Impact of fault occurrence rates of different components
on the target system-level metrics. 131

Figure 6.17 Impact of propagation probability between the two FDUs
on the metrics of interest. 132

Figure 6.18 Internal architecture of the FDU component. 133

Figure 6.19 Error model for SLP/TLP boards. The figure shows the
error model for the SLP board; the TLP board has a sim-
ilar behavior. 133

Figure 6.20 Error model for the CPU. 134

Figure 6.21 Comparison between the metrics of interest evaluated in
the two phases. In the earlier design phase reliability and
safety of the system have been underestimated. 135

Figure 6.22 Impact of occurrence rates of the two internal faults of
the SLP component on system safety, at varying of the
propagation probability between the FDUs. 136

Figure 6.23 Impact of reducing the occurrence rates for faults slpft2
and tlpft2 on system safety and reliability metrics. . . . 137

Figure 7.1 Template models and parameterization. 141

Figure 7.2 System architecture of a World Opera stage [183]. 143

Figure 7.3 A SAN composed model for a WO stage, built out of the
4 identified SAN templates [132]. 145

Figure 8.1 Our workflow for the automated generation of performa-
bility models. Elements depicted in gray are specified
using the TMDL language. 150

Figure 8.2 Relations of elements included in our workflow with the
notion of composition system. Original picture from [87]. 151

Figure 8.3 Simplified version of the TMDL metamodel. For simplic-
ity, data types and other supporting elements (e.g., ar-
rays) are not shown in the figure. 153

201

list of graphics

Figure 8.4 Composed SAN model for the HIDENETS scenario with
4 basestations and 5 services. Adding a 6th service re-
quires adding (and properly connecting) the highlighted
submodels. 164

Figure 8.5 The application of approaches presented in this thesis
for a System of Systems evaluation approach. 168

tables

Table 3.1 Identified requirements to support dependability analysis. 38

Table 3.2 Requirements addressed by existing languages. 51

Table 3.3 Elements of the DEP-UML language. 53

Table 4.1 Main elements of the IDM metamodel and their attributes. 72

Table 5.1 Identified requirements for a toolchain performing non-
functional analysis on a system architecture specified in
a UML-like language. 98

Table 5.2 The elements constituting the abstract toolchain, and their
implementation in the CHESS plugin. 103

Table 6.1 Main parameters used in the evaluation of the multime-
dia workstation. 120

Table 6.2 Main parameters used in the evaluation of the fire detec-
tion system. 129

Table 6.3 Additional parameters adopted in the evaluation of the
fire detection system. 134

listings

3.1 Grammar for the specification of propagation conditions. 60

3.2 Grammar for specifying conditions for the execution of activities. 63

3.3 Grammar for the specification of metrics of interest. 66

5.1 PNML example. 104

5.2 ATL implementation of the rule for projecting IDM components
(see Section 4.4.1). 105

8.1 (Selected portions of the) TMDL “Library” specification for the
World Opera system. 158

8.2 (Selected portions of the) TMDL/Scenario specification for a WO
performance composed of three stages and five streams. 160

8.3 Modified TMDL “Scenario” specification for adding a new pro-
jector dedicated to stream 5, v_director, to the model. 161

202

list of graphics

8.4 Modified TMDL “Scenario” specification for a scenario where
stream v_scene is reproduced on two identical projectors. 162

8.5 Modified TMDL “Scenario” specification for a scenario where
stream v_scene is reproduced on two projectors having different
properties. 162

8.6 (Selected portions of the) TMDL “Library” specification for the
HIDENETS system. 165

8.7 (Selected portions of the) TMDL/Scenario specification for the
scenario evaluated in [23, 113]. 166

8.8 Modifications required to the TMDL “Scenario” specification in
order to add a 6th service “Instant Messaging” to the scenario. . 166

203

	Dependability and Performability Evaluation
	Dependability and Performability Concepts
	Basic definitions
	Threats: faults, errors, failures
	The means for achieving dependability

	Model-Based Evaluation
	Modeling Formalisms
	Model construction and solution approaches
	Modelling and solution tools

	Summary and Historical View

	Modern Approaches to System Development
	Component-Based Development
	Model-Driven Engineering
	The Unified Modeling Language
	UML Diagrams
	The Profiling Mechanism

	Model-Driven Dependability Analysis
	Summary

	Supporting Dependability Analysis in a Component-Based Framework
	The CHESS Methodology
	Project Overview
	Methodology Overview
	System Design in CHESS
	CHESS ML and the CHESS Editor

	Dependability Modeling Requirements
	Conceptual Model
	Layer 1: Structure
	Layer 2: Threats
	Layer 3: Means
	Layer 4: Attributes

	Investigation of Existing Languages
	QoS&FT
	MARTE
	SysML
	EAST-ADL2
	AADL
	DAM
	Summary

	DEP-UML
	Component-based approach
	Dependability templates
	Error propagation
	Error Model
	Hierarchical and modular modeling
	Modeling of redundancy structures
	Maintenance activities
	Metrics specification

	Summary

	Automated Dependability Analysis: Transformations
	Approach
	The Intermediate Dependability Model (IDM)
	Overview
	Usage Example

	From DEP-UML models to IDM models
	Creation of components
	Projection of dependability templates
	Projection of error model specifications
	Projection of non-stereotyped components
	Projection of propagation relations
	Projection of activities
	Projection of analysis objectives

	From IDM models to Stochastic Petri Nets
	Projection of components and threats
	Projection of propagation relations
	Projection of activities
	Projection of analysis objectives
	Priorities and additional constraints

	Implementation Within the Eclipse Platform
	Designing a Reusable Toolchain
	Architecture Overview
	Client Process – Metamodels
	Client Process – Transformations

	The ``State-based Analysis Plugin''
	Client Process
	Server Process

	Summary

	Case Studies
	Multimedia Processing Workstation
	System Description
	System model with CHESS ML and DEP-UML
	Analysis and Results

	Fire Detection System
	System Description
	System Model – Early Phase
	Analysis and Results – Early Phase
	System Model – Refinement
	Analysis and Results – Refinement

	Summary

	Modeling Large-Scale Complex Systems
	Large-Scale Complex Systems
	The ``Template Models'' Approach
	Template Models and Parameterization
	Application Using Stochastic Activity Networks

	Motivating Example: A World Opera
	Performability Model of the World Opera System
	Current Limitations

	A Workflow for Automated Assembly of Complex Models
	Workflow Overview
	Main Concepts
	Template Models Description Language
	TMDL ``Library''
	TMDL ``Scenario''

	Model Generation Overview
	Prototype Realization

	Application to the World Opera System
	Library Specification
	Specification of Scenarios

	Application to the HIDENETS System
	Library Specification
	Specification of Scenarios

	Towards a System of Systems Approach

	Conclusion and Outlook
	Bibliography
	Appendices
	Acronyms
	List of Graphics

