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1 Introduction

This paper presents a collection of results on the modelling of social phenomena, such
as economic dynamics, tax evasion, diffusion of criminality. A large part of the more
recent results that we will describe were obtained by our research group (lacopo Borsi,
Giorgio Busoni, Antonio Fasano, Alberto Mancini, Luca Meacci, Mario Primicerio)
with the collaboration of Miguel A. Herrero and Juan Carlos Nuno of the Univeristy
Complutense in Madrid, and involving some of our students as well. See [8, 9, 10, 19,
20, 21, 22].

2 Economic dynamics: compartmental models

The simplest mathematical framework that we can use to describe the evolution of the
distribution of wealth in a society is based on a compartmental model. We consider a
closed population composed of N individuals and we identify n sub-populations
(classes) Uy,U,,---,U, of increasing wealth. If we denote by w,;(¢) the number of

individuals that, at time ¢, are in the class U; we have
u(t) + up(t) + - + u, () = N @

Next, we assume that the rate of transition from any class k to the adjacent classes is
linear and governed by suitable non-negative coefficients of “social promotion” «,
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and of “social relegation” [, while the transition to a social class not adjacent
is forbidden.!

Therefore, we will have the following system of ordinary differential equa-
tions:

uk(t) = Ctkfluk(t) — (ak + ﬁk)uk(t) + ﬂk+1uk+1(t), k=1,2,....,n (2)
where ag = fBn+1 = 51 = a,, = 0. It is obvious that if o and §j are constant

for any k, the stationary solution? has to satisfy

a1 09 Qg1 . N
=—— ... —U] =V_1U1, k=2,..,n 3
B2 33 B ®)

and hence is uniquely determined if we impose the condition (1),

Uk

N
(14352 1h-1)’

Now, if we define 79 = 1 we can write

U =

. Nyg—1
Up = —=——— = wi N 5
g 2?21 Vk—1 F ( )

In practice, mobility coefficients are not constant but depend on the social
dynamics itself. For instance in [16] the case is considered when they depend
on the dimension N of the population, assuming that each class has a specific
demographic behaviour. But even in the case of isolated population an inter-
esting situation arises when «j and [ are assumed to depend on the total
wealth of the population. The latter can be expressed as

W(t)=> pru(t), (0<p1<py<..<pn) (6)
k=1

where py is the contribution that each individual in U, gives to the common
richness.

A more sophisticated model, instead of (6) could take into account the
budgetary policy of the government in the form of another ordinary differential
equation

W(t) =Y pru(t) = (W(t),1), (7)
k=1

LOf course, this assumption could be released and coefficients o (k < 1) and Br; (k> 19)
could be introduced. We chose the approach above to give a simpler and more evident picture.
2Note that (1) excludes the trivial solution of (2), sine N > 0.
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where, in this case, pg is the amount of taxes paid by the individual in class
Ui and V¥ is the rate of expenditure of the community.

To characterize the possible stationary solutions of (2), (6), one can use
(5) and say that the system admits as many stationary solutions as the fixed
points of the transformation

W =N prwp(W). (8)
k=1

To be specific, consider the toy model with n = 2
) = Buz —auy, Uz = auy — Buz, W = piug + paus. (9)
Normalizing and setting
z=u1/N,y=y2/N, R=W/p:N, (10)
we have that the stationary wealth R has to satisfy

a+pp
a+p

R= , with p = p1/p2, 0 < p < 1. (11)

The r.h.s. is a given function of R so that (11) can be written as
R=¢(R), (12)

where ¢ is continuous and 0 < ¢ < 1, so that (12) has at least one solution in
(0,1). It turns out that this is unique if ¢’ < 1. It can be easily checked that
it is globally asymptotically stable.

3 Economic dynamics: continuous models

3.1 The balance equation

A generalization of the model described in the previous section consists in
assuming that each individual at a given time ¢ has a wealth index x (where
x is any real non-negative number in a given interval that can represent the
salary, the amount of income tax, etc.: we will normalize x and assume that it
can take any values in [0,1]). We will describe the wealth distribution in the
society by an L! function n(z,t) such that the integral

2
/ n(x,t)de, 0<z <z9 <1,
x

1
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represents the number of individuals that, at time ¢, have wealth index between
z1 and zo.
The mobility in the society is represented by a function ~(z,y) such that

to 1 T2
/ at / dy / n(z, )z, y)dz,
t1 0 1

represents the number of individuals that, in the time interval (1, t2), leave the
class with wealth index belonging to the interval (x1,z9). Similarly, a number

to 1 X2
[t [ e [t
t1 0 T

enters the class (x1,x2) in the time interval (¢1,t2).
The balance equation takes the form

n(x 1 1
? ét,t) = _”(l’at)/o V(xay)dy-i-/o n(y, t)y(y, z)dy, (13)

that has to be solved with a prescribed initial condition

n(x,0) = no(x). (14)

It can be proved [9] that if ng € L1(0,1), ng > 0 and v € L>(0,1)%, v > 0,
then (13), (14) has a unique solution that is non-negative, belongs to L*(0, 1
for any positive ¢ and is continuously differentiable w.r.t. t. Moreover,

/0 (e ) = /0 ' o(2)dz = N. (15)

Among the regularity properties that can be proved (see [10]), we quote the
fact that the differentiability of ng and v yields the same property (w.r.t. x)
for n(x,t).

As a simple example, consider the case

(@, y) = q(y)- (16)
If )
a= /0 q(y)dy > 0, (17)

we can find the explicit form of the solution of (13)-(14)

n(z,t) = %q(az) [1—e "] +no(z)e . (18)
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We note that more general models can be studied with little additional work.
For instance v may be allowed to depend on ¢ as well, or even on the total
wealth that, in the present case, is given by

1
W(t):/o p(z)n(z, t)dz (19)

with p(x) monotonically increasing.

The dependence on age a (which could be crucial when economic dynamics
is coupled with criminology, see [12]) could also be included in the balance
equation. But in that case additional complication is introduced for the pres-
ence of boundary condition on a = 0, in particular when this condition is given
in terms of the fertility of the population.

3.2 Stationary solutions

For the sake of simplicity we will deal with the special case in which ng(z) €
C[0,1] and y(z,y) € C ([0, 1]2), and we will exclude the trivial case v = 0.
Define

1 1
g(x)Z/O v(z,y)dy, h(fv)Z/O v(y, z)dy. (20)

We can prove ([9]) that, if g(z) > 0 in [0, 1], then (13) admits a constant
stationary solution

neo(z) = N, z€]0,1], (21)

if and only if
g(x) =h(x), z€]0,1]. (22)

As an example, consider the particular case

Y(z,y) = p(x)q(y), p(x) >0, q(y)>0. (23)

Then (13) has the stationary solution

Neo(z) = N;Eg </01 Zgz;dz) - (24)

In particular the stationary solution is constant if and only if

q(z) = Ap(z), (25)

for any positive constant A.
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3.3 Inequality index

It is well known that, since the classical paper [18], several indexes have
been proposed to characterize the economic inequality in a society, see the
celebrated Gini’s paper [13] and the references in [17]. We propose here an
index that is simply related to the average wealth. Set in (19)

p(z) =, (26)

(a choice which is reasonable and in any case does not imply a loss of generality
since p(z) is monotonically increasing with x) and define the average per capita
wealth as

W) = N1 / (e t)de. (27)
0

We define the inequality index

(1) = 1 1 z - 2n x x
0= S () | (@=ww) a@oa. e

whence we have immediately

0<i<l. (29)

We note that for a population in which all the members have the same wealth
(necessarily W; from now on we do not indicate time dependence explicitly,
to simplify notation) we would have n(z) = N&(xz — W), where § is the Dirac
distribution. In this case ¢ = 0.

On the contrary, for the same total wealth N W the most unequal distri-
bution corresponds to the case in which N W individuals have wealth index 1

and N (1 — W) have wealth index 0. This corresponds to
n(z) = 2(1 — W)é(x) + 2NW(x — 1), (30)

(the factor 2 is is introduced since fol d(z)dx = fol d(z — 1)dxr = 1/2). Hence,
in this case,

. 1 [ A2 L TR £7\2
N — LM”V+W1—W}:L 31
i [ e va ) (3
To see, on some other examples, how index i depends on the distribution
function n(z), we consider the case

n(z) = Naz®(1 — z)°, (32)

where a,b € N and where « is a normalization constant such that fol n(x)dr =
N. After some lengthy algebra we get

- (33)
= .
a+b+3
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3.4 Some numerical simulations

We give here some mathematical example taken from paper [9].
Let us take the mobility function

Y(z,y) = B()0(|lz — y)H(z — y) + a(z)0(|z — y[)H(y — z) (34)
where
e H is the Heaviside function,
o a(z) = (1-a),
e B(z) ==z,
0

o 0(z) = e /29" (with ¢ = 0.3, z = |& — y|) is a function modulating the
kernel with the distance between x and y.

Let us take four different initial conditions (with the same initial population
N =1/6)

1 2 2
_ —z*/2s _
ni(x) = e , s=0.2, 35
(@) 3sv 2w (35)
1 2 2
_ —(z—0.5)%/2s _
no(x) = ——e , s=0.2, 36
) = 5 om (36)
—a(z — xg) /o, 0 <z <,
n3(x) =< blx — (1 —=))/xo, (1—x0) <z<1, (37)
0, elsewhere,

with xg =1/8, a =2, b= (1/3 — axg) /o,

ny(x) = é (14 sin(4rx)), (38)

and compute n(x,t). We use a finite difference scheme, with an explicit for-
ward method in time. The integrals appearing in the equations are solved
by the trapezoidal rule integration method. The computation shows that the
equilibrium solution corresponding to the four initial conditions coincide (Fig.
6). On the other hand, the evolution of i(t) is obviously different (Fig. 2).

As we did in [9], we now consider an inverse problem for the integro-
differential equation (13) i.e. we look for a function §(z,y) such that (13)
admits a given stationary solution n(x). Of course, we do not expect that such
problem is uniquely solvable (in any case 7 is defined up to a multiplicative
constant). This is clearly shown noting that given n(x) > 0, for any

Y(z,y) = p(z)p(y)i(y), (39)
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. Initial condition n, (x)
o Initial condition n,(x)
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Figure 1: Reaching the equilibrium solution from different initial data. The
equilibrium solution (solid line) is the same in all cases, which have been split

in two figures only for the reader convenience. (A): Initial conditions (35) and
(36). (B): Initial conditions (37) and (38).

Figure 2: Inequality index computed using the mobility function (34) and initial
conditions (35), (36), (37) and (38).
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where p(x) is an arbitrary positive function, equation (13) has the time-independent
solution 7(x).

For a numerical check, let us take ng(z) (see (37)) to play the role of target
equilibrium solution and prove that taking

Y(z,y) = p(x)p(y)ns(y) (40)

for any positive p(x), problem (P) has the asymptotic solution ng(x), for any
initial datum. Fig. 7 and 8 verify this fact, taking n(z,0) = n4(x) as initial
condition and taking two different functions p(z).

Figure 3: An ezample of result stated in (39), with n(x,0) = n4(x) and p(z) =
x+0.1.

t=0
--t=04
—t=4final)
O Target solution

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 4: An example of result stated in (39), with n(x,0) = n4(x) and p(z) =
1.5 + sin(27x).



34 Vietnam Journal of Mathematical Applications, Vol. 12, N. 2, 2014

3.5 A PDE approach

Consider the second integral in (13) and expand n(x,t) assuming that n is
a smooth function:
(y —2)?

n(y,t) = n(z,t) + n.(y,t)(y —x) + nm(y,t)T + .. (41)

Since it is reasonable to think that v has support in a sufficiently “small” strip
centered around the diagonal of the square (0,1) x (0, 1), we approximate (13)
by

on(z,t)

5 = C(z)n(z,t) + B(x)ng(x,t) + D(x, t)ng.(z,t), (42)
with
1
C() = / (. 2) — v(z,v)] dy, (43)
1
B(z) = / (v — 2)1(y, 2)dy, (44)
Uy — )2
D) = [ 5 oy (45)

Because of our assumptions on the support of 7 the integrals in (43),(44),
(45) may be computed over the interval ([z — 6]4+, max(1,z + §)). It is imme-
diately seen that (42) can be written in a divergence form

ni = (D(x)ng, + (B(z) — D'(x)) n), + (D"(x) — B'(z) + C(z))n.  (46)
Here we provide a simple numerical example, assuming

05 exp |- (1205Y if [z — y| < 6
Yayy) =4 7P 262  RIETEEY (47)

0, otherwise.

with 6 = 0.1. Then (46) is a uniformly parabolic equation and if we impose as
boundary condition

D(z)ng + (B(z) — D'(z))n=0, onz =0 and z = 1,

then the quantity fol n(x,t)dx is conserved up to O(4) for any fixed time ¢.

Assuming the following initial condition
— 0.4\’ —0.6\7
no(x) = 0.7exp [— (ZB > + 0.3 exp [<x ) ] (48)
o o
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with o = 0.03, we solved the integro-differential equation (13) and the partial
differential equation (42), both for ¢ € [0,7], with 7" = 100. In Fig. 5 a
comparison of the two solutions evaluated at final time is shown. The initial
condition is also displayed, in order to show the redistribution effect obtained
by imposing a transition function y(z,y) centered in the middle wealth index
0.5. It is worthy to note that the global absolute difference between solutions
(evaluated for any = € [0, 1], at any time) was computed as E' = 0.1183 which is
in agreement with the error estimate in the Taylor approximation (41), namely
E~O(T§) ~0.1

----- Initial condition

—=e— IDE

PDE

0.8 0.9

Figure 5: Comparison between solution of (13), integro-differential equation
(IDE) and (42), partial differential equation (PDE), at final time T = 100.
The initial condition (48) is also displayed..
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4 Mathematical criminology

The use of mathematical models in criminology does not have a large and
rich tradition. Nevertheless, these topics attract a growing attention (see e.g.
the special volume of EJAM [3] where a great deal of references can be found
[14] and some recent workshops [1, 2]).

Essentially, we can generally say that a problem in criminology consists of

(a) An observable: the number of crimes (of a specific type) as a function of
time and position.

(b) The state variables that one wants to take into account, e.g.

— age and income distribution

— mobility

— school, housing, social and urban segregation
— topology of targets

— crime patterns, crime organization

(¢) The control functions as for instance

— police forces and strategy
— social control
— law enforcement (severity of punishment)

— social policy, welfare, school policy.

Although mathematical models might be unable to make quantitative predic-
tions (e.g. number of burglaries that will happen in a given urban domain
over next month), they can suggest the qualitative behaviour of a given so-
cial system and simulate how the outcomes change when control functions are
changed.

Thus, they can be used to plan strategies to contrast criminology and to
employ suitable resources in an optimal way.

Moreover, they are instrumental in the use and interpretation of the enor-
mous amount of data that are stored in the archives.

Roughly speaking, one could identify three main branches of mathematical
criminology, according to the class of methods and models used:

(i) models based on game theory

(ii) models based on population dynamics



Advances in Industrial and Applied Mathematics 37

(iii) agent-based models.

We shall mostly concentrate on population dynamics and will finally deal with
a special class of models that can be included in the third category, i.e. models
based on cellular automata.

4.1 Criminology and population dynamics: “ecological” mod-
els

This class of models, in its different variants, is basically a predator-prey
system. In the simplest case, one has three sub-populations: the targets T, the
criminals C, and the guards G. Of course, T are preys for C, that in turn are
“predated” by G. In some cases G could also be considered predators w.r.t. T
since the latter sub-population bears the costs of maintaining the guards.

The main mathematical information that can be drawn from these models
concerns the study of the equilibrium points and their character (stability,
attractivity and relevant domain, etc.)

A specific case was considered in a paper by Vargo [24]. Here, just C' and
G were considered and in the system

{ C=aC-bCG+ A

. 4
G=-aC+pBCG+ B (49)

A and B represent the influence of external “world” on the two populations.
A more complex model with three sub-populations is considered in [20].
Basically, the system is

T=r(N-T)k—-T)—aTC - pG
C = faTC —yCG — uC (50)
G = gaTC — hwCG — mG
In (50) the number of crimes (proportional to the product T'C') determines the
increase of the number of guards, but also the recruitment of new criminals.

The system (50) is particularly rich, in particular when the terms account-
ing for the effect of predation are substituted by functions of Hollig’s type. But
also when T is assumed to be constant interesting bifurcation behaviours are
observed as a function of parameter v representing the efficiency of security
forces.

The paper [4] considers the interactions between the population of drug
smugglers b and drug producers n. The interaction between the two sub-
populations is symbiotic and the corresponding dynamical system is

{ b= —hib+ k(B —b)n
. = (51)
n = —han + ko(N —n)b
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where B and N are the total number of potential smugglers and producers,
respectively.

4.2 Criminology and population dynamics: “epidemiological
models”

In this class of models, the recruitment in the sub-population of criminals
is supposed to occur by a sort of “contagion” of a part of the population by
the criminals.

For instance, in the paper [23] the following system is considered

N = —ON + puS + (A + BN)C + P + Iy P

S=0N —uS —aS — ASC + —yP (52)
C=aS+ASC —(A+ BN)C — $C + (1 —1)gpoP

P = $:1C — P

Here the class P of prisoners is introduced and the non-criminals are divided
in two sub-classes: S are susceptible to the contagion and may be recruited by
criminals C, while IV are non-susceptible. No “predation” terms are considered.

It can be noted that a “contagion” is also acting between N and C: the
presence of N induces a fraction of C to “redeem”. Among the most question-
able weaknesses of the model we can quote:

(i) the fact that no input is considered from C to S nor from P to S.

(ii) the fact that “deterrence” on S from becoming criminals is determined by
the number of prisoners. As a consequence, we remark that (52) formally
does not preserve the positivity of the solutions.

But it can be noticed that the report quoted above contains a careful cali-
bration of the parameters based on well-structured historical data. The anal-
ysis of equilibrium points allows the authors to simulate different scenarios
corresponding to different policies, i.e. to different set up of parameters. We
can also note that the population of guards is not specifically considered, but
that it could be included by mixing the two types of models.

It is clear that models of this class can also take some “social” factors
into account . For instance, in the scheme considered in [26] a population of
(temporarily) “recovered” is introduced whose inputs come from the susceptible
class (or the “poor” in the spirit of the paper) and from released from jail. The
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system is:
N =—uT — (64 pu)N
S =0oN —B5SC —~8 — uS
C = BSC + ¢BRC — pC — uC (53)
P =pC — 6P — P
R=~S+ 0P — ¢BRC — uR

In (53) ¢ < 1 is the reduction of the efficiency of contagion due to experience
of jail, T is the total dimension of the population. The latter is assumed to be
constant so that if u is the death rate of each sub-population, the aggregate
birth rate is also p (and all individuals are supposed to born in the class N, a
fact that is rather questionable).

4.3 Criminology and mathematical models: a more complex
scheme

A general model taking into account the socio-economic dynamics discussed
in Sec. 2 and the dynamics of recruitment, arrest, etc. of criminals will be
composed of n + 3 populations, where n is the number of classes. Besides of
coefficients a;; and (3 of social promotion and relegation of each social classes,
one has to prescribe the following rates:

e recruitment rate of criminals R; (in principle from each social class);
e crime rate K (in principle affecting each class);

e arrest rate A;

e “spontaneous” decay D of criminals;

e release rate F)j of prisoners (in principle entering each class);

e hiring rate H; of guards;

e “induced” decay of guards L;

e “spontaneous” decay of guards D.

Just to simplify a bit we assume that criminals are recruited in the poorest
class and write?

3The bilinear terms 0;u, (t)C(t) and mC(t)G(t) can be substituted by terms in the Hollig’s
form, 6;u;C/(l; + u;) and mCG/(1 + C).
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Kj =0;u;(1)C(1), K(t) = Zj K;

A =mC(t)G(t)

D = —pC(t) — vC?(t), taking into account some intra-specific competition
F =—71P(t)

H=Y,H; = hK(t)

L=-0A

D = —qG(t)

(54)

If one thinks that some of the parameters listed above may depend on the
actual wealth of the society (that is in turn depending on the u;(t)), it is clearly
understood that the task of getting quantitative information from the model in
real situations is hopeless, and maybe meaningless because of the huge number
of parameters to be calibrated.

In any case, from the theoretical point of view, the well-posedness of the
complete model can be proved, as well as the positivity of all the unknown
functions.

In the sequel we present a concrete example that shows that some qualita-
tive information can be obtained.

Assume n = 2 (two social classes: the poor and the rich individuals).
Moreover we take the police size as a given constant and we disregard the
population in jail. This means that our analysis is done on an intermediate
scale between the average time in jail and the time required to change the
policy of hiring police forces. Thus the model is the following

U = —auy + fug — kur C + pC +vC? + mCG /(1 + C)
Uy = auy — Pug (55)
C = ku1C — pC + vC? —mCG/(1+ O)

We also assume that k& depends on the total wealth W (¢) whose dynamics is
expressed by

UQC
log 4+ ug

W(t) = ajuy + aguy — OW — A(W) —g(W)G. (56)
Here 0 accounts for the budget policy of the community, A measures the neg-
ative effect on the wealth due to the crimes (committed only against the rich
people) and G is the (given) number of guards while g is the rate of expenditure
for their maintenance. To be specific, we suppose that both A and g depend
linearly on W and discuss the equilibria and their stability in terms of k and
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G. Consider in particular the criminal-free equilibrium C' = 0. The stability
of this equilibrium is ensured if and only if

ak —b—cG — dG? < 0, (57)

where a, b, ¢, d are positive numbers that can be calculated from the parameters
of the system. Thus, if k exceeds a critical value depending quadratically on
G, a new equilibrium state exists with non-vanishing population of criminals.

The model can also be used to discuss the budgetary policy of the society.
For this reason we disaggregate in (56) the expressions that are devoted to
social promotion, writing

0=s+0, (58)

so that sW is the rate of “social” expenditures whose effect is modelled assum-
ing that « (i.e. the coefficient of social promotion) is increasing with sW.

Summing up (s + gG)W is the rate of the expenditures devoted to fight
criminality (“how much”) whereas the factor s or the ratio gG/s indicates
“how” the society decides to split this expenditure between repression of the
crime and social promotion.

Using the model above, it is possible to see if this choice can be optimized
(maximization of wealth, minimization of criminality, etc.) over a given time
horizon. Of course, an appropriate cost function has to be defined and mini-
mized.

5 A model based on cellular automata

We consider a particular kind of crime i.e. tax evasion.

Let us study the abstract situation in which an individual (i.e. a cell in
the 2D cellular automaton) can be either in the state X (tax-payer) or Y (tax-
evader) and that the transition from one state to another is influenced by the
state of its neighbours and by a global field.

5.1 No law enforcement

We assume ([19]) that the population occupies every cell of a square grid
of side n, so that the total dimension of the population is N = n x n. In
our case, all the simulations have been performed with n = 40. We define the
probability of changing the current state as sum of these two contributions (see
(7], [6]):

pTOT _ pLOC | pGLO (59)
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pLocC PGLO

where and are the local and global probabilities of changing the
state. Obviously, the probability of remaining in the same state is given by
1— PTOT_

Let us first define the local probabilities. The local probability that a tax-
payer becomes a cheater in the next time step is given by:

N
1&%%:#%%, 0<l<1 (60)

where Ny is the number of cheaters in the neighborhood of this cell formed by
Ny, cells (so, ]\]f\%LY is the fraction of cheaters in its neighborhood). In the same
way we can define the local probability that a cheater becomes a tax-payer as

N, - N
1%%§:hiﬁﬁiﬁ, 0<m<1. (61)

Obviously, Np — Npy corresponds to the number of taxpayers in the neighbor-
hood.

Next, we define the global probability for a tax payer to become a cheater
as

PYONLOC _ 7 0<r<1 (62)

and, similarly, the global probability for a cheater to become a tax payer as

PYONLOC — ¢, 0<a<l. (63)
We use a synchronous or parallel updating rule where all the system sites
are updated at the same time step (in contrast to asynchronous or sequential
updating where only one randomly selected site is update at each time) [11, 25].
We assume reflection boundary conditions on the sides of the square. The
model is then completed by defining the neighborhood of each cell as a square
centered in the cell and formed by m x m cells excluding the cell itself (the
so-called Moore neighborhood [15]). In the sequel, we will specify the value of
m.
In the spirit of classical population dynamics [5], we write an ODE express-
ing the balance in terms of inflow and outflow. Thus, we write:

dy . * k*
— =Y=7"N-Y)-a'"Y+ =Y N-Y)- =(N-Y)Y 4
=Y = (N-Y)—a' Y+ Y (N-Y) - (N-V)Y (64

where the coefficients in the contagion terms are written as lﬁ and kﬁ for
normalization purposes and 7%, a*, [*, k* > 0.

Normalizing and defining the new parameter:

d=1—k (65)
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we have to solve the following Initial Value Problem:

yt) = 7(1-y)—ay+dy(l—-y)
y(0) = wo (66)

An explicit expression of the solution of the Initial Value Problem (66) for
the case d > 0 can be found and its asymptotic value is given by the branch
between 0 and 1 of the following expressions:

o d—(THa) /(T +a)?+2d(T — ) + d?
V= 2d

(67)

Clearly, if we assume that Np, is the entire square or, equivalently, that
m = n, the CA is a probabilistic approach to the finite difference approximation
of equation (66).
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Figure 6: Time evolution of the cheater population y of the ODE and CA
with maximum neighborhood (N7, = 1599). The parameter setup is ap = 0.01
70 = 0.008, Iy = 0.31 kg = 0.30. The initial condition is yo = 0.1. The CA
curve is an average over 10 simulations.

In Figure 6 we display the solution of (66) with yo = 0.1 and the values
of yp = %, where Y} is the total number of cells occupied by cheaters at the
kth-step, of a simulation on a CA with N = 1599.
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5.2 Introducing fiscal policy

For simplicity we assume that the total rate of fiscal revenue of the society
is proportional to the number of tax payers. Moreover, it is assumed that the
total rate of expenditure is proportional to the actual value of W. Thus, the
time evolution of the total wealth is given by:

W=a(N-Y)-0W (68)

where a and 6 are non negative. Correspondingly, for the CA model, we define
a normalized wealth at each time step k:

Wg = wWg—1+ 1 —yp_1 —Owp_1 (69)

Next we assume that the coefficients 7, o, k and [ may depend on the
policy the society is adopting to contrast tax evasion. More specifically, we
assume that the policy of the society in controlling tax evasion is characterized
in terms of the fraction 0 ¢ of the budget devoted to this goal per unit time.

(i) It is reasonable to assume that o and k are increasing functions of the
amount of resources the society allocates to fight tax evasion. Therefore, we
assume

a=aqq(2—eP?Y) (70)

and
k=ky(2—eP?¥Y) (71)

where ¢ w accounts for the expenses devoted to prevent tax evasion and p > 0
is a sensitivity parameter to be adjusted to experimental data.

(ii) Coefficient 7 and [ on the contrary, should decrease with the intensity
of the contrast to parasitism. We set

T=19(1l+eP%Y) (72)

and
I=1y(1+eP¥?). (73)

In Figure 7 we show the dependence on ¢ of the asymptotic values of w and
of y.

One could ask which is the optimal value of ¢ according to this model. We
give here a simple criterion: we prescribe a time horizon T' (i.e. a number v
of time steps) over which we want to design our policy and give as the initial
values the values gy, wy corresponding to the “anarchic” state of the society
(i.e. ¢ =0). Then, we compute the time evolution of y and w for increasing
values of . Denoting by 7(¢) and w(p) the values at step v, the “gain” will
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Figure 7: Asymptotic values of y (A) and w (B) obtained from the CA model
for different values of . The parameter setup is g = 0.01 79 = 0.008 [y = 0.31
mo = 0.30 and p = 5 and Ny = 120. The asymptotic value is evaluated as an
average over 1000 time steps (after a transient period of 1000 steps) and over
10 simulations.

be G(¢) = w(p) — wo. To obtain this gain, the society has spent and amount
E(¢) = Z?:_llqbwj. In Figure 8 we display the difference G(¢) — E(p) for
increasing values of ¢. The simulation shows that there is a value ¢y of ¢ for
which this difference is maximum and a value, @2, beyond which increasing
investment in fighting cheaters is no longer convenient (since the difference
becomes negative).
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Figure 8: Difference between the gain and the expenditure over a time horizon
of five years (T' = 50). As it can be seen, 1 ~ 0.002 and 2 ~ 0.005. The same
parameter setup as before is used: ag = 0.01 79 = 0.008 Iy = 0.31 my = 0.30.
Moreover, p =5 and N; = 120
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