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Abstract

This dissertation is the result of three years of experimentation and research

at General Electric Transportation Systems (GETS), Intelligent Control Systems,

division of Florence. In the early years of 2000 GETS decided to open to research

activities in order to introduce formal methods in the development cycle of railway

signalling solutions. For this purpose, it was decided to start a collaboration

with the University of Florence, in particular with the Computer Engineering

Department (D.S.I. - Dipartimento di Sistemi e Informatica). This work reports

the achievements of the research, the lesson learnt and, �nally, the advantages

of the introduction of formal methods in GETS development cycle.
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CHAPTER 1

Introduction

The industries are increasingly focusing on the adoption of formal and semi-formal

methods, including modeling technology, in the di�erent stages of the develop-

ment of software products [7] [48] [47]. The Paris Metro [23], the SACEM system

[35], and the San Juan metro [43] are past and recent examples of successful

stories about the usage of these technologies in the railway domain. The use of

models allows to reach an abstraction level di�cult to achieve when working with

hand-written code, and allows to grasp concepts that otherwise would be lost in

the early stages of development. The many bene�ts of this approach become

focal for the development of safety-critical systems, where having control of the

system that is being developed is critical.

The industries involved in the development of safety related systems, such as

railway, aerospace, automotive, moved closer to graphical tools such as AS-

CET, AutoFocus [38], SCADE [19], and Simulink/State�ow [82]. In particu-

lar, Simulink/State�ow is widely used for the development of embedded control

applications, thanks to the built-in tools State�ow Coder [81] and Real Time

Workshop Embdedded Coder [80] which allow the generation of code starting

from models.

1



Chapter 1. Introduction 2

General Electric Transportation Systems (GETS) is a well known railway sig-

nalling systems manufacturer leading in railway signalling systems, from Auto-

matic Train Protection systems (ATP) to Interlocking Systems (IXL). In early

2000's GETS decided to introduce formal methods in its development process,

initially by the means of Simulink/State�ow for modeling requirements, then for

code generation starting from the model, and �nally applied to higher levels of

design, such as requirement and architecture speci�cation.

GETS products are developed mostly for Europe and shall hence comply with

the CENELEC standards [9] [10], a set of norms and methods to be used while

implementing a product having a determined safety-critical nature. In order to

certify a product according to CENELEC, companies are required to give evi-

dence to the certi�cation authorities that a development process coherent with

the prescriptions of the norm has been followed. The introduction of formal

methods in the development process is thus not easy: for example, in the case

of automatically generated code from formal descriptions, the code shall anyway

conform to speci�c quality standards, and normally the companies use coding

guidelines in order to avoid usage of improper constructs that might be harmful

from the safety point of view. Thus, when the Model-Based Development with

code generation is adopted, the generated code shall comply to the same stan-

dards asked for the hand-crafted code. Furthermore, the problem is raised also

for the used tools used code generation tools, since the norms ask for a certi-

�ed or proven-in-use translator from models to code: Simulink/State�ow do not

possess this property, and thus a strategy has to be de�ned in order to address

this issue.

Once the Model-Driven Development was accepted formally in the development

process of the company, the research activity moved its focus into the intro-

duction of modeling techniques and formal methods also in early phases of the

development process, such as requirements and architecture speci�cation, in or-

der to create an uniform development process.

The need for a more formal approach to high-level design derives, among the

others, from the inadequacy of a text centric approach, which usage has been

reduced in favor of a more formal notation, traceability enforcement and cross-
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phase integrated documentation obtained through the usage of SysML/UML

graphical languages (Object Management Group [OMG], [53]).

The dissertation, which reports the results achieved in the context of the col-

laboration between GETS and University of Florence, is structured as follows.

Chapter 1 presents an overview of the normative background in which GETS

operates, an introduction to the de�nition of formal methods and the objectives

of the research and collaboration with GETS. In Chapter 2 is given a short in-

troduction to the Model-Based Design and to the Simulink/State�ow toolsuit.

In Chapter 3 it is presented the Model-Based Design approach applied to the

GETS development process of software products, result of the research and the

collaboration with University of Florence, and a case study in the context of the

SSC Baseline 3 GETS developed project, is detailed in order to better understand

the technologies applied to the new development process. In Chapter 4 it is pre-

sented the second direction of the research, the introduction of formal methods

in the early phased of the development, i.e., the requirements and architecture

speci�cation through the usage of SysML language. Chapter 5 summarizes the

leasson learned during research and the experience in collaboration with GETS.

1.1 Background

1.1.1 Formal methods

With the term formal methods we refers to mathematically rigorous techniques

and tools for the speci�cation, design and veri�cation of software and hardware

systems [15] [5] [49]. Mathematically rigorous means that:

• speci�cations used in formal methods are well-formed statements in a

mathematical logic;

• the veri�cations are rigorous deductions in that logic;

The formal methods applied to development process usually result in a frame-

work that includes a formal language, veri�cation techiniques and a set of tools

that implements all the above. The formal language is an unambiguous nota-

tion which possess well-de�ned semantics and syntax, used to express a system
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speci�cation. The veri�cation techniques are applied basing on the system speci-

�cation in order to check if the system conforms to the desired properties. Finally,

the tools are intended as a development process which is composed by successive

re�nements in which the intial speci�cation is transformed into a more detailed

representation of the system until the �nal implementation, included the veri�-

cation of the system properties.

Formal methods have been widely discussed in literature, such as the VDM

(Vienna Development Method) [41], B method [69], and the RAISE (Rigorous

Approach to Industrial Software Engineering) [51] method, together with for-

mal methods that focus mostly on parts of the whole formal process, such as

PVS (Prototype Veri�cation System) [58], HOL (Higher Order Logic) [32] and

Z [73]. Unfortunately these methods did not widely spread in industrial employ-

ment, since, except for few projects such as Paris Metro onboard equipment [23],

where the B method has been employed, and the Maeslant Kering storm surge

barrier control system [86], where both the Z and the Promela [37] notations

have been used, there is scarce in industrial context. Industries perceive formal

methods as experimental techologies, and scepticism about their usefulness re-

mains widespread.

1.1.2 Norms in the design and development of safety-

critical railway systems

The Safety Critical systems are those systems whose exercise involves a level of

risk of exposure of people, environment and material assets to dangerous situ-

ations, with the possibility of accidents due to malfunctions caused by errors or

failures [9] [11] [10]. It is necessary to be sure that a system has a probability

less than a given tolerable limit (THR, Tolerable Hazard Rate) to cause serious

injury, before it can be put into operation. Safety is therefore de�ned as the

absence of unacceptable levels of risk [9], or even the property of a system to

not cause harm to human life or to the environment [70].

In the �eld of railway signalling, standards were created by CENELEC (Comité
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européen de normalization en électronique et en électrotechnique or European

Committee for Electrotechnical Standardization), and, since 2002, these stan-

dards have been also prescribed by RFI (Italian Railway Network) as a reference

for the certi�cation of products and electronic systems in safety in railway sig-

nalling. Some of these standards are listed below:

• EN-50126 [9]: Railway applications - The speci�cation and demon-

stration of dependability, reliability, availability, maintainability and safety

(RAMS).

• EN-50129 [11]: Railway applications - Safety related electronic systems.

• EN-50128 [10]: Railway applications - Software for railway control and

protection systems.

• EN-50159 [12]: Railway applications - Communication, signalling and

processing systems - Part 1: Safety related communication in closed trans-

mission systems.

Figure 1.1: CENELEC norms scopes of application

The basic concept of the EN-50128 norm is the SSIL (Software Safety In-

tegrity Level): the higher is the level of a system, the more serious are the

consequences of a failure. Integrity levels range from 0 to 4, where 0 is the lower

level, which refers to software with no e�ects on the safety of a system, and 4 is

the maximum. These standards are in relation to each other as shown in Figure

1.1. The horizontal axis of the �gure shows the scope of each standard, as is

shown on the vertical progression from the most general to the most speci�c
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standard.

The intention of CENELEC is to provide a model at European level in which

the development of the safety-critical systems and their veri�cation are oriented

to totality of the dependability requirements. Dependability is de�ned as the

property of a system to be �usable� by an human being, or a community, with-

out the danger of unacceptable risks [3]. Dependability includes the following

attributes:

• Reliability: is the capacity of a system to perform a required function,

under certain conditions and for a speci�ed period of time.

• Availability: is the ability of a system to perform a required function

at a certain time or during a speci�ed time interval, given the necessary

resources.

• Maintainability: probability that for a given system unit can be carried

out a given active maintenance action, during an interval of time, imple-

mented through procedures and required means.

• Safety: absence of intolerable levels of risk of harm.

The development process of a system subject to the requirements RAMS

(Reliability - Availability - Maintainability - Safety) is therefore composed of the

following stages [59] :

• de�nition of the scope and objective of the system;

• analysis of the risk (e.g., calculation of the tolerable failure rate);

• design of the system functions. The requirements of each safety function

de�nes the integrity level of the system;

• implementation;

• installation of the system;

• submission of the safety analysis produced during the development stages

to the railway authority.
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The safety requirements are central for this model of development: they guide

the design and implementation of the system and are used as a reference when

evaluating the model itself. The risk analysis provides the tools necessary to

establish safety requirements; the process of risk analysis includes [59]:

• Hazard analysis: the hazard is de�ned as a risky situation that can lead

to an accident. At this stage of the risk assessment it is necessary to

identify the potential hazard, and reconstructs the sequence of events that

can lead to them, in order to calculate the probability that these events

will occur. This probability is classi�ed by levels, ranging from Incredible

(when it is assumed that a hazard can never occur) to Frequent.

• Risk assessment: in this phase are de�ned sequences of events leading

from an hazard to an accident, which is classi�ed according to severity,

as well as the hazards. The severity varies from the maximum level of

Catastrophic, where people are killed and wounded, to Insigni�cant, if only

minor injuries and little damage to the system happen.

Once the two assessments above have been evaluated, it is determined what

is the acceptable risk for each hazard, in accordance with the recommendations

by railway authority.

Among the norms that are part of the CENELEC, EN 50128 is the one that

speci�es the procedures and technical requirements for the development of pro-

grammable electronic systems for the usage in railway control and protection

applications. This norm applies only within the scope of the software (e.g.,

�rmware, operating systems, applications) and the interaction between the soft-

ware and the system.

The development of secure software also requires the application of some basic

principles , including:

• modularity;

• veri�cation activities at each stage of the development cycle;

• libraries and modules that are used must be veri�ed;

• creation of clear documentation;
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The system veri�cation is an essential step: it is driven by the requirements,

and aims to demonstrate that the system meets the safety and integrity require-

ments. Quantitative veri�cation can not be carried out within the software, since

the rate of failure and the contribution it gives to the occurrence of an accident

cannot be quanti�ed. For this reason the software is veri�ed using qualitative

techniques: the EN 50128 de�nes a life cycle for the de�nition of the speci�ca-

tions, the development and veri�cation of software. At each stage of the cycle

there is a veri�cation process to ensure the compliance of the system to the level

of integrity required. This life cycle is shown in Figure 1.2.

Figure 1.2: Phases of the life cycle of the software (CENELEC EN-50128)

The norm also lists tables in which in which the techniques that can (or must)

be applied to ensure conformity of the system are related to the required level of

integrity with the integrity level itself. An example of such a table is shown in
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Figure 1.3. As you can see there are di�erent priorities in the recommendations:

• 'M', mandatory: indicates that the technique must be used for the given

level of integrity;

• 'HR', highly recommended: indicates that the technique should be

used for the given level of integrity. If this technique is not used, this shall

be justi�ed and another equivalent technique shall be used in its place;

• 'R', recommended: is a technique that can be used at the discretion

of designers and veri�ers;

• '-' : indicates that there are no recommendations in the use of the

technique nor the reasons why it should not be adopted;

• 'NR', (not recommended): indicates that the technique is not recom-

mended for the given level of integrity. However, if this technique is used,

it must be justi�ed.

Figure 1.3: Example of relationship between techniques and levels of integrity

1.1.3 Quality of code according to standard CENELEC

EN 50128

The norm CENELEC EN 50128 provides, among other things, information about

the quality, the required structure, readability, traceability and testability of re-

quirements [24]. In the table shown in Figure 1.3 it is possible to note how to
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adopt standards in the coding is highly recommended for each type of system,

regardless of the SIL, if not mandatory: it is highly recommended to provide a

uniform layout of the code, as well as to strengthen the use of standard methods

of safe design.

The Coding Standards are a set of rules and restrictions on a given programming

language useful to avoid possible failures that can be caused by the use of that

speci�c programming language. Among the provided rules are:

• justi�cation for the use of a speci�c programming language;

• standard already available for a given programming language;

• restrictions to use to avoid failures;

Also the norm DO-178B [61], which is the reference document for determining the

safety and reliability of software in avionics, de�nes the Software Code Standards

as concerning the code formatting and the conventions used for the names of

variables, functions, and so on, and this is further evidence that the code quality

is critical in environments in which software safety-critical related systems have

to be developed: in fact the adoption of a common and consistent coding style

facilitates the understanding and maintenance of the code, especially if it is

developed by multiple people in co-operation.

1.2 Problem statement

This dissertation is the result of a three years reasearch activity and collaboration

with GETS, started at the end of 2009, aiming at addressing the following:

Problem Statement

De�ning and implementing a methodology for the adoption of

formal methods and code generation technology in the development

of safety-critical systems by a railway signalling manufacturer.

During the research, the problem statement has been decomposed into the

following sub-goals:
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1. Finalize the introduction of the Model-Based Design in the development

process with a special focus on the validation of the translation process

and the veri�cation process. The generated code correctness is fundamen-

tal, CENELEC EN 50128 norm [10] asks for a certi�ed or proven-in-use

translator. Since Simulink/State�ow have not this property, a strategy has

to be de�ned in order to ensure that the code behavior is compliant to the

model behaviour, and no additional improper functions are added during

the code synthesis phase.

2. Integrate the new formal development techinque in the process, also in

the early phases of development, such as requirements speci�cation and

architecture speci�cation. The introduction of new technologies in an es-

tablished process is not straightforward: the process structure shall be

adjusted and shall be maintened coherent even if changes are applied. For

GETS, which operates in a safety-critical systems development context,

this is fundamental, since its products have to be validated according to

the prescripted normatives.
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Model Based Design and Code Generation

Model-Based Design (MBD) [71] has been widely accepted and adopted by in-

dustries. The basic concept of the MBD is that the whole software development

process aims to produce graphical model abstractions, from which to derive an

implementation, manually or automatically. There are tools which support the

possibility to simulate and test directly on the model (e.g., Simulink/State�ow

[82], SCADE [19], Scilab/Scicos [68]) before the implementation is actually de-

rived. In its objective, i.e., to detect design defects before the project is deployed,

the MBD approach is not di�erent from the formal methods, but the latter are

perceived more di�cult to use than the former: MBD is closer to the needs of

developers, that consider the graphical approach more intuitive than a formal

description.

Simulink/State�ow has been elected as de-facto standard for modeling and code

generation for safety industries, surpassing other tools such as SCADE, based on

Lustre synchronous language, Scilab/Scicos, an open source platform for mod-

elling and simulating control systems, ASCET [20] and AutoFocus [38], both us-

ing block notations for the representation of distributed processes and embedding

advanced veri�cation capabilities. Simulink/State�ow provides a lot of built-in

blocks and libraries, and its intuitive state machine graphical editor (State�ow)

12
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allows the developers to build prototypes and simulate directly on them in a very

intuitive way.

In this chapter it is brie�y introduced the Model-Based Design approach and it

is presented the Simulink/State�ow toolsuite that has been chosen by the com-

pany in order to apply the MBD development paradigm to the development of

safety-critical railway signalling systems.

2.1 Basic concepts of Model-Based Design

The use of models for the development of complex systems is now an established

practice in many engineering disciplines, such as the construction of complex

buildings such as bridges, or, in the mechanical domain, cars. The models help

in understanding the problem, and thanks to a high level of abstraction also help

in �nding the solution. It is obvious, therefore, that this approach to develop-

ment has recently been proposed for the creation of software, often considered

among the most complex engineering systems. The Model Based Design is based

on the paradigm that the main objective, and the product, of the software de-

velopment are the models instead of code listings [71]. The biggest advantage

that is derived from this approach is the fact that the models are expressed using

concepts, which are less restrictive than the technologies that must be employed

for implementation, and are closer to the problem domain that is being analyzed.

This translates into ease of speci�cation, understanding and maintenance of the

designed system. Another important advantage is the independence of the cho-

sen programming language: the models in fact possess a su�ciently high level

of abstraction to be able to decouple from the implementation choices.

To exploit the full potential of MBD is necessary to:

• generate the software completely from the model. This approach is rel-

atively recent, as earlier models were only used to generate the software

structure (skeleton) or code fragments. The automatic code generation

assumes with respect to the programming languages the same role that

the third generation of languages has taken with respect to the assembly

language.
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• automatically verify the models (e.g., by executing the model it is simulated

the behavior of the system).

Therefore, the models are used for both the generation of the code and, in a

certain way, for the veri�cation of the same. Figure 2.1 schematically shows the

di�erence between an approach that uses the model as a basis for development-

level documentation (left) and MBD approach with complete generation of code

(right) [46].

Figure 2.1: The MBD approach with code generation

In order for the MBD approach to be useful and e�ective, the models con-

structed must have �ve key features [71]:

Abstraction is the most important feature. A model is a reduced-scale transla-

tion of the system that is meant to represent. If you go to hide, or eliminate,

the details that are irrelevant to a given point of view, the model allows to

understand more easily the essence of the system more easily. Given that

the required systems are becoming increasingly sophisticated, abstraction

is the only method that allows to deal with the increasing complexity.

Understandability: compared to the directives used in the code listings, which

require an understanding of often extremely intricate syntactic rules, the

model allows to have a a rather clear overview of the system. Abstraction
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is not enough, but it is necessary to take into account, during the process

of modeling, this desirable property that the model should have.

Accuracy: a model should provide a representation consistent with the capabil-

ities of the system that it purports to represent.

Predictability: it shall be possible, through the use of a model, to predict

the properties of interest of the system, both through the execution of

the model (i.e., the simulation of the system) than through some kind of

formal analysis.

Convenience: the last property that the model must have is that of being

�economic�: this means that it must be cheaper to build and analyze the

model rather than the modeled system.

Given the characteristics listed, it is essential to take into account the quality of

the models that are being created.

2.2 The importance of the quality of the mod-

els

To ensure that the MBD approach is also applicable in the development of rail-

way protection systems, it is essential that the code generators used provide a

translation from model to code of a certain quality, that complies with the reg-

ulations in force in this �eld.

Given what has been said about it, it is easy to see how the models are closely

related to the system they represent, and as a result the quality of the models is

crucial to the quality of the produced software. This has given rise to the need

to transfer to the models a series of checks that were previously performed on

the code listings: in fact, the MBD approach allows the application of various

types of analysis directly the model (e.g., the static analysis and simulation), re-

ducing the number of checks carried on directly on the code, which are the most

expensive ones. Many companies in various sectors, such as rail, automotive and

aerospace industries, which have adopted the MBD approach, have created rules

and veri�cation techniques that, when applied to models, allow to understand
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if the code that will be generated automatically from those models will meet

expected directives, which are de�ned to improve quality, increase safety and

e�ciency.

2.3 Brief introduction to Simulink / State�ow

modeling tools

In this section it will be brie�y introduced the Simulink/State�ow [82] modeling

suite, which increased its popularity in the last years also thanks to its usage in

the Model-Based Design by major companies working in safety-critical contexts

(e.g., Airbus [78], Alstom [79], NASA [84]).

This introduction will give an overview on principal components of State�ow

tool, starting from the FSM, modeled through State�ow Graphic Editor, to the

Automatic Code Generation functionalities given by the State�ow Coder.

2.3.1 Introduction

State�ow is a tool for modeling by means of Harel state machines [36]. The

tool is fully integrated in Simulink and interacts with it in the creation of models

with a high level of detail: however Simulink is suitable for the modeling of dy-

namic systems, dealing with the dynamics for continuous-time and discrete-time

systems, while State�ow provides a suitable environment for the development of

models aimed at the realization of logical algorithms and event-driven reactive

systems.

Domain

State�ow is today widely used in many industries, among which stand the auto-

motive one and aerospace one. The joint use of Simulink and State�ow allows

the creation of embedded control systems. Simulink is used for the implemen-

tation of numerical algorithms, while State�ow is better suited to the creation



Chapter 2. Model Based Design and Code Generation 17

of the control logic of reactive systems, i.e., systems that change their state in

response to an event. The reactive systems are thus modeled as state machines

[24] [44].

State�ow is extremely useful for the design of:

• Functioning logic: control of the system behavior according to its func-

tioning mode. The system under development can thus assume a limited

number of functioning states.

• Supervisory logic: �ow-chart design. It determines how the system be-

haves in reaction to events or conditions.

• Scheduling: scheduling and timing of activities.

• Errors management: supervision over the process of identi�cation, iso-

lation and resolution of error conditions in the system.

State�ow basic concepts

State�ow is based on the theory of state machines enunciated by David Harel

in the late '80s [36], and adopted by the UML standard. Harel introduced an

enhanced version of the state machines, retaining the graphical formalism but

introducing innovative elements that allow extremely �exible modeling and a high

level of detail, impossible to achieve with traditional state machines.

The innovations concern:

• deterministic automata;

• hierarchical approach (states can have di�erent priorities during execution);

• parallelism (more than one state active at the same time);

• new semantics;

In this context, a �nite state machine is de�ned as the representation of a

reactive system, driven by events. In such a system, the transition from one

operative mode, or state, to another is accomplished when certain conditions

occur.
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Generally, the �nite state machines are represented by their graphs of compo-

nents, states, and the connections between them, the transitions: the behavior

of the whole designed system is provided in terms of transitions between states;

the active state at a given time is determined precisely by the path that goes

from the initial state and moves along transitions triggered by conditions.

2.3.2 State�ow

State�ow allows to build �nite state machines that can be used to simulate the

behavior of a system, or to generate code that will be used for embedded systems

(e.g., control systems). Below are presented the main components available in

State�ow to create such machines.

State�ow elements

States

The state is one of the fundamental components of State�ow, and describes a

mode of operation of an event-driven system. The fact that a state is active or

not changes dynamically based on events that have occurred and the conditions

that have been met during the execution of the FSM.

Every state has a parent state, even if the State�ow diagram is composed of a

single state: in this case the parent is the state diagram itself, which contains

the state. It is possible to insert states in other states, so as to form a hierarchy.

Each state has a name that uniquely identi�es it among those of the same

hierarchical level. In addition, in the label of a state, other than the name, can

be speci�ed a number of actions that must be performed at particular times of

execution:

• entry (en): the action that follows this keyword is performed by the

system every time that the state is activated, i.e., an event brings the FSM

into that speci�c mode of operation;

• during (du): the action that follows this keyword is performed until the

system has this speci�c mode of operation. Once the system exits from the

mode of operation related to this state, the action is no more performed;
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• exit (ex): the action that follows this keyword is performed when the

system changes mode of operation, i.e., exits from the state;

• on �event� : the action that follows this keyword is performed when the

speci�ed �event� occurs.

An example of a state with speci�ed actions is represented in Fig. 2.2.

Figure 2.2: Actions speci�ed in the label of a state

State�ow provides two types of states that can be used for the realization of

the �nite state machine which models the system:

• Parallel states (AND), shown in Fig. 2.3, that can be simultaneously

active at a given instant of execution. The picture shows that both states

are highlighted in blue, that indicates that a state is active at a given

moment of time.

Figure 2.3: Parallel states execution

• Exclusive states (OR), shown in �gure 2.4, which can not be active

simultaneously. Also in this case the pciture shows how only a state during
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the execution of the two is active, as only one of them is highlighted in

blue.

Figure 2.4: Exclusive states execution

Transitions

A transition is a graphical object that, in most cases, connects an object to

another: the transition is characterized by a source object and a target object,

that not necessarily are states. The label on a transition describes the condition

that enables passing from the source to the destination object.

A transition can thus connects:

• two states;

• a state and a junction;

• two junctions;

• a state and a box object;

• a junction and a box object;

It is important to note that the transitions have a direction. An unlabeled tran-

sition that connects two states is shown in Fig. 2.5.

Conditions

The conditions are Boolean expressions that specify, with their value, if a tran-

sition should be triggered or not, given that the source state of the transition is
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Figure 2.5: A transition between two states

active at the time when the condition becomes true. Wanting to make a practical

example, we may consider the change of gear of an engine, which occurs when

the speed exceeds a certain threshold. This can be represented with the chart

shown in Fig. 2.6. The condition is indicated on the label of the transition and

enclosed in brackets. The �gure also shows the hierarchy that may exist between

the states: the state Gear contains the two states First and Second, making the

state Gear the parent of the other two states.

Gear_shift is instead another type of State�ow construct, i.e. an Event: this

further type of objects that State�ow provides to modelers will be described be-

low, in a dedicated section.

Actions

The actions, when speci�ed in the label of a transition, can belongs to two

classes:

• actions related to the condition, which are executed when the correspond-

ing condition is true at the moment of the transition;

• actions related to the transition, which are executed when the transition is

enabled, without dependence on conditions.

Both types of actions are represented in Fig. 2.7.
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Figure 2.6: Example of a condition for the activation of a transition

Default transition

The default transition is a transition that speci�es which particular state must

be active when there is ambiguity between two or more exclusive states at the

same hierarchical level. Fig. 2.8 shows an example of the usage of the default

transition: when the machine is turned on and reaches the state Lights, the

operation mode is placed on the state O�, which is connected to the default

transition, as long as the event �Switch_on� occurs. From the �gure it can be

noticed that the default transition does not have a source object, but only a

target object.

Data

The data are non-graphical objects that store numeric values used in State�ow

charts; not having a corresponding graphic object, data are not directly rep-

resented on the chart, but can be accessed through the user interface Model

Explorer, shown in Figure 2.9. Each data has its own scope, which de�nes

whether the data is:

• local to the State�ow diagram;
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Figure 2.7: Actions related to a transition

Figure 2.8: An example of using the default transition

• an output that goes from the State�ow diagram to Simulink diagram of

which the �rst is as a component;

• an input from the Simulink diagram;

• data de�ned in the MATLAB workspace;

• constants;

From the image it is possible to note that Model Explorer provides numerous

information regarding the data, among which, as already mentioned, the scope,

the data type and the name of the data.



Chapter 2. Model Based Design and Code Generation 24

Figure 2.9: Displaying Data in a State�ow diagram using Model Explorer

The data can also be aggregated into unique objects, which are called Bus, which

can be compared, for example, to the structures in the C programming language.

Events

The events are non-graphical objects, similarly to data. Events guide the exe-

cution of the State�ow diagram, and have a function similar to the switches.

Events can be managed through the Model Explorer; events can also be created

at any level of the hierarchy, and possess properties such as scope, which de�nes

whether an event is:

• local to the State�ow diagram;

• an output that goes from the State�ow diagram to Simulink diagram of

which the �rst is as a component;

• an input from the Simulink diagram;

The events can also be found on the labels of transitions: in a similar way as

applies to the conditions, the transition becomes active when the event that is

speci�ed on the label occurs.

Junctions

The junctions are decision points in the system. A junction is a graphical object

that simpli�es State�ow diagrams representations, implementing constructs such

as if-then-else, shown in Fig. 2.10. The image also shows the code corresponding
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to the structure.

The junctions are crucial for the creation of Flowchart (functions), which will be

presented in the following paragraphs.

The transitions that are connected to the junction are called segments, and have

the same properties as any other transition.

Figure 2.10: If-then-else implemented through junction

Graphical functions

The graphical functions (or �owchart) are functions de�ned graphically by a

�ow chart, and add expressive power to the language of the actions de�ned in

State�ow. The functions are formed by transitions and junctions interconnected,

as shown in the example in Fig. 2.11. A function can have arguments and can

provide return values: in the case depicted by Fig. 2.11, the input arguments are

a and b, and the return value z is given by the sum of the squares of the two

arguments.

2.3.3 Graphic State�ow Editor: an example

Simulink/State�ow toolsuite can be used, as already introduced, for modeling a

system that requires a certain logic of operation. In this section it is presented

an example of the modeling through State�ow of a controller for a system with
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Figure 2.11: Example of use of a function

two fans for cooling.

In Fig. 2.12 is shown the diagram representing the system, which decides, on the

basis of the detected temperature and provided input, if none, one or two fans

shall be activated. The State�ow chart is integrated into a Simulink model, not

shown, which implements additional components forming a larger system.
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Figure 2.12: Example of State�ow chart that implements a controller

The diagram is rather simple: it includes many of the components seen

in the previous paragraphs; the system is composed, at the top level of the

hierarchy, by two exclusive (OR) states; once started, the system goes in the

state corresponding to the operating mode in which the system is o� (PowerO� ),

which is achieved by the default transition. If the event SWITCH occurs, the

system goes in the opposite state with respect to the current one (therefore will

turn on if it was o�, and vice-versa). The state PowerOn is composed of three

substates, and all of them execute in parallel (AND). The states are:

• SpeedValue, which takes care of calculating at each instant (thanks to

the keywords du in the state label) the air �ow output from the diagram

(air�ow);

• FAN1, which implements the control logic of the �rst fan: when the tem-
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perature exceeds 120 degrees, the fan turns on, otherwise it is turned o�;

• FAN2, which implements the control logic of the second fan: in this case,

the threshold temperature is 150 degrees.

State�ow Coder: code generation starting from a model

As already introduced, State�ow provides the ability to generate code from mod-

els, thanks to the instrument State�ow Coder [81]. State�ow Coder is able to

generate code from all objects and semantics State�ow, allowing to realize stand-

alone applications or code that will be inserted into existing applications.

Once you have created a state machine using State�ow, you can generate code

using the Model Explorer, a user interface that provides a variety of information

on a Simulink model and its components, including the State�ow chart. The

language in which code is generated is the ANSI-C [2] standard issued in 1990

by the American National Standards Institute, and extremely used, along with

Ada [40], in many industrial �elds that require safety standards.

To complete the overview is shown in Fig. 2.13, a code listing generated from a

simple State�ow diagram, also shown in the same �gure.



Chapter 2. Model Based Design and Code Generation 29

Figure 2.13: Code generated by a diagram consisting of multiple states, both parallel

and exclusive



CHAPTER 3

MBD in the GETS Safety Critical Systems Development

General Electric Transportation Systems develops embedded platforms for railway

signalling systems and, inside a long-term e�ort for introducing formal methods

to enforce product safety, employed modelling �rst for the development of pro-

totypes [6] and afterwards for requirements formalization and automatic code

generation [24]. Within the new development context also the veri�cation and

validation activities have experienced an evolution toward a more formal ap-

proach. In particular, the code-based unit testing process guided by structural

coverage objectives, which was previously used by the company to detect errors

in the software before integration, has been completely restructured to address

the new model-based paradigm. The process refactoring has been driven by three

main reasons:

• the traditional approach based on exercising the code behaviour resulted

in being too costly to be applied to a code that saw a size increment of

four times for the same project within two years. This fast growth was

partly due to the increase of the actual projects size and partly to the code

generators that, as known, produce more redundant code than the one

that could be produced by manual editing;

• when an automatic tool is used to translate from a model to software, it

30
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has to be ensured that the latter is actually compliant with the intended

behaviour expressed by the model;

• unit testing alone, whether model-based or code-based, cannot cover all

the possible behaviours of the code in terms of control �ow and data �ow.

Most notably, it lacks in detecting all those runtime errors, such as division

by zero and bu�er over�ow, that might occur only with particular data

sets.

The restructured unit level veri�cation process is based on two phases, namely

model-based testing and static analysis by means of abstract interpretation. The

�rst phase is used to exercise the functional behaviour of models and code,

and, at the same time, to ensure that the synthesized code conforms to the

model behaviour. The second phase is used to ensure that the code is free from

runtime errors. Unit level veri�cation costs were in the end reduced of about

70%, while decreasing the man/hours required for bug detection and correction.

During the research, particular focus has been given to the strategies followed to

address formal weaknesses and certi�cation issues of the adopted tool-suite. In

previous projects, experimentation with the code generator led to the de�nition

of an internal set of modeling rules in the form of an extension of the MAAB

guidelines [44], a stable and widely accepted standard developed by automotive

companies. The guidelines concept is presented in �3.1.1. Concerning veri�cation

of models and generated code, an enhancement of the two-phase approach has

been adopted: control-�ow and functional properties have been veri�ed through

model-based testing, presented in �3.2, while static analysis by means of abstract

interpretation (this issue has been studied wthin another PhD research activity

[34]) has been used to check data-�ow properties. The model-based testing

activity has been performed through a code validation framework that executes

the same test cases both at model level and at code level. The framework

automatically veri�es consistency of the test results for each model unit. This

idea basically settles the problem of having a quali�ed code generator, since

certi�cation of conformity can be ensured each time the code is synthesized from

a model.
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3.1 MBD in the development process

The MBD process adopted represents an application of model-based practices to

a V based life-cycle, and it is the result of the collaboration between GETS and

University of Florence [28]. Four phases are considered as the core of the sys-

tem development: architecture, design, module veri�cation and system integra-

tion/veri�cation. Also formal veri�cation has been introduced as experimental

veri�cation activity, although not yet consolidated into the currently practiced

development process. Architecture and design activities concerning the project

have been reported in [25], while the veri�cation steps represent an enhancement

of the approach presented in [8].

As stated before, the tool that GETS uses for the creation of the models is

State�ow, by The MathWorks. The choice of using this tool rather than others

was dictated by a number of considerations accrued as a result of numerous as-

sessments of the potential environmental State�ow, many of them carried out in

collaboration with the University of Florence [6].

Figure 3.1: Process Overview

Fig. 3.1 summarizes the overall process structure. Starting from system re-

quirements and using domain knowledge, a functional architecture in the form

of a UML component diagram is de�ned consisting of independent functional

units. According to this decomposition, system requirements are partitioned into

disjoint sets of unit requirements to be apportioned to the functions. The UML



Chapter 3. MBD in the GETS Safety Critical Systems Development 33

architecture is then translated into a Simulink architecture and the unit require-

ments are formalized in terms of State�ow �nite-state automata.

State�ow models are designed using a safe subset of the language in order to en-

sure proper code synthesis [28]. Already in previous projects an extension of the

MAAB guidelines was used, aimed at enhancing the readability, maintainability

and structuring of the code. Additional restrictions have been introduced to fur-

ther constrain the State�ow semantics to an unambiguous set of constructs (see

�3.1.1). Concerning code generation, the company adopted the more customiz-

able RTW Embedded Coder in place of the previously used State�ow Coder: the

transition was basically painless, since all the modeling rules developed for the

previous tool resulted in being applicable also for the new one.

Unit tests have been de�ned in the form of scenarios at the State�ow model

level (�3.2). To this end, an internally developed framework has been used that

automatically executes the test suite on the State�ow automaton and on the

generated code to ensure functional coherence between model and software be-

havior. The con�dence on the correctness of the generated code is increased

with the Polyspace tool for abstract interpretation [34], which completes the

unit-level veri�cation activities. Finally, system tests are performed on an ad-hoc

train simulator with hardware in the loop.

During the research, formal veri�cation (�3.2.2) has been experimented at module-

level using Simulink Design Veri�er (DV), a property proving engine that uses

Simulink/State�ow both as modeling and as property representation language.

Unit requirements have been translated into Simulink formulae against which

State�ow models have been veri�ed.

3.1.1 Modeling guidelines

The quest for ever higher quality models, geared to increase the quality of the

generated code as required by the speci�cation as CENELEC EN 50128, has

led GETS to the creation of corporate guidelines, called Istruzioni di Ente, which

must be applied in modeling stage by the designers, in order to achieve the above

mentioned qualities.

As stated before, the use of modeling guidelines can bring many improvements

both in the model and in the generated code starting from the model itself. It
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is also important to adopt a standard that describes the modeling rules, so that

they can be understood by everyone involved in creating diagrams and anyone

concerned to verify them. One of the available templates for the statement

and the description of the guidelines is created by the MathWorks Automotive

Advisory Board (MAAB, [44]) for Simulink and State�ow models and used in

the document Control Algorithm Modeling Guidelines Using MATLAB, Simulink

and State�ow [44]; the template, adopted also for the Istruzioni di Ente GETS

and shown in Figure 3.2, is thus formed:

Figure 3.2: Template for the statement and the description of guidelines

• ID: the ID of a rule must be composed of two lowercase letters and four

numbers separated by an underscore symbol (i.e.,�_�). An ID is unique,

and once assigned to a guideline should not be changed anymore.

• Title: the title should provide a brief description of the rule, and which

aspects of the model it covers.

• Priority: priority has a dual function, that indicates the importance of the

rule and determine the consequences of violations. Must be selected from

the following:
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� Mandatory: are the rules considered essential, and those for which

the company guarantees full compliance of its models. If violated,

the model may not work according to speci�cation. If the guideline

is ignored, both in design and in testing phase, the reason must be

documented.

� Strongly recommended: a rule that has this priority must be respected

as long as there are corporate policies that prevent or limit its appli-

cability. It is not necessary that the models conform to these rules

100%, therefore a violation of the same translates, for example, in

a deterioration of the model or problems regarding reusability and

maintainability, but does not a�ect the operation of the system.

� Recommended: the guidelines that this priority is used to improve

the look and feel of the model, but they are absolutely critical with

respect to the operation or other important aspects.

• Visibility: it represents the scope of the rule, i.e., if the rule has been

integrated from external rules (e.g., MAAB [21]) or it has been developed

internally to the company.

• MATLAB version: represents the version for which the rule applies. If

a guideline contains the special features that limit its application in all

versions of the software, this should be speci�ed in this �eld.

• Prerequisites: this �eld points to those rules that are a prerequisite for

the rule in question, in the sense that in order to satisfy the rule in question,

the model should �rst satisfy the prerequisite ones.

• Description: Here is a description of the rule in natural language. If

necessary, images and tables can be added.

• Objective: the goal is the reason why the guideline was designed:

� Readability: it concerns the documentation, the appearance of the

model (and hence the visual comprehension), the design of usable

interfaces;
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� Work�ow: it concerns the ease of development, maintainability, reuse

of model, and portability;

� Simulation: a rule that has this target is proposed to increase the

execution speed of the simulation of the system, and to decrease the

required memory;

� Veri�cation and validation: conformity with a rule that has this goal

improves the traceability of requirements and testing;

� Code Generation: it concerns the quality and the robustness of the

generated code.

• Last change: in this �eld is speci�ed in which version of the document

has been made the last change to the guideline.

3.2 Generated code veri�cation and MBT

Traditionally GETS has used, as the main approach to veri�cation of code units,

white-box testing based on path coverage. This approach has revealed to be

almost unfeasible due to the high structural complexity of the automatically gen-

erated code. A two phase veri�cation process [8] was de�ned to address this

shortcoming: the �rst phase implements model-based testing to verify the func-

tional requirements coverage, the second phase employs abstract interpretation

[18] to statically enforce runtime errors detection. The �rst phase has been later

improved to obtain an implicit validation of the code generator as well.

The adopted approach for MBT comprises two steps. The �rst one is a form

of model/code back-to-back (B2B) testing [76], where both the model and the

related generated code are tested using the same stimuli as inputs, and the nu-

merical results obtained as output are checked for equivalence. The second one

consists of an additional evaluation to grant the absence of unwanted and un-

expected behaviours introduced by the model-to-code translation process. This

evaluation is basically the comparison of the measures of structural coverage

reached on both the code and the model. The two phases could be seen respec-

tively as a duplicated black-box testing (output comparison) and a duplicated
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white box testing (coverage comparison).

The B2B testing step is depicted in Fig. 3.3 (a). First, a State�ow model

is created starting from the unit requirements. This model represents the be-

havioural view of the system. In order to verify if this behaviour is compliant

with the speci�cation, a test suite for the model is manually derived from the

speci�cation, according to the full requirement coverage criterion (i.e., at least

one test for each functional requirement). The outputs given by the simulation

with the given test data are visually checked to assess those behaviours which

do not comply to the speci�cations.

A tool called Test Observer was developed and used to automatically translate

the functional unit tests written for the State�ow model into an appropriate form

to be used as tests for the generated code. Test Observer records both input

and output sequences of the model during the simulation in the form of Simulink

time series, that are Simulink data objects composed by pairs (time, value), and

then translates the time-series into given input/expected outputs matrices for

the generated module. C code is then generated starting from the model, using

RTW Embedded Coder. For each test case another tool, called Test Integrator,

produces an executable �le that embeds the given input/expected output ma-

trices, together with a set of functions to check if the output of the generated

code matches the expected output. If the code executes without errors, then it

can be stated that, for the given functional unit test, the generated code shows

the same behaviour of the model [33].

The B2B testing task has been improved during the research activity and inte-

grated in a new framework, called 2M-TVF (Matlab Model to Validation Frame-

work), whose work�ow is depicted in Fig. 3.3 (b). The 2M-TVF framework o�ers

functionalities of validation of the code generation process and of the generated

code itself, and it is further detailed in the next paragraphs.

3.2.1 2M-TVF and the translation validation

As stated in the previous chapters, products traditionally developed by GETS,

like any railway signalling application developed for Europe, shall comply with the

CENELEC standards [10]. The CENELEC EN 50128 considers two alternative

strategies to assure the correctness of the tools that produce the code that is
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Figure 3.3: Approaches of the automation of MBT

�nally embedded in the product, such as compilers or automatic code generators:

the �rst one requires the code generator to be validated, and the second one is

based on the so called proven in use property. However, both strategies could

not be applied for the adopted code generator: the validation of the generator is

unfeasible, since the source code is proprietary and no information is given about

its development process; also the translator could not be considered as a proven

in use tool. Furthermore, the creation of a specialized tool, and its validation, is

not in line with the company strategy, which completely resorts to the usage of

commercial tools.

The problem has been addressed for the �rst time in the context of the Metrô Rio

project1, using an approach that is inspired to the one presented in [17], called

Translation Validation2: this approach is not focused on the code generator

itself, but on the inputs and the outputs of code generation process and on their

comparison. The validation of the generated code is performed through two

phases:

1. Dynamic testing (running the model through simulation and generated

1Metrô Rio is a project started in 2008 that concerns an ATP (Automatic Train Protection)

platform for the metro of Rio de Janeiro
2Translation Validation refers to a process that involves the comparison between code and

models behavior as a model-based conformance testing. The term Translation Validation has

been previously used in literature to address a similar problem in [60]
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code and compiled) and subsequent comparison of the results obtained.

This phase is analogous to the B2B phase in its �rst form (see �3.2). The

tests shall be extensive, de�ned starting from the modeled requirements,

with a 100% requirements coverage. In the �rst phase of the validation

of the generated code, a functional/black box testing is performed, where

both model and code are stimulated with the same inputs, and their out-

puts are compared for equality. If there are di�erences between the model

outputs and the code outputs, they shall be assessed.

2. Additional assessments to ensure the absence of unexpected functions in-

troduced during the translation process model code (e.g., comparison of

the measurements of the model and code coverage). In order to perform

this evaluation, it is necessary to use comparable metrics for model and

code coverage [4]. In our case we chose to use decision coverage for the

model and branch coverage for the code3. Since a branch is the outcome

of a decision, branch coverage is de�ned as the ratio between the number

of decision outcomes that have been exercised by a test suite and the total

number of decisions in the code. The choice of those metrics is due to

the fact that the CENELEC EN 50128 requires at least statement cover-

age, that is automatically implied when full branch coverage is achieved;

furthermore, since no continuous dynamic Simulink blocks are used in our

modeling approach, the decision for those metrics is appropriate. As stated

in [17], if the code coverage obtained after test execution is less than the

model coverage, then some unwanted functionality might have been intro-

duced by the translator.

2M-TVF, which stands for Matlab Model Translation Validation Framework, is a

framework that has been developed to perform the model-based testing and the

code validation process. The framework works under the Simulink environment,

and in order to carry out the validation process, allows for the de�nition of a

validation model that includes both the Matlab model to be tested and the

related generated code, embedded in a Simulink block. The code is previously

3Decision coverage and branch coverage are synonymous. It was decided to maintain both

de�nitions since the former is used in code-testing context, while the latter is used in model-

testing contexts
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instrumented to permit the evaluation of the coverage after the tests execution,

and then it is compiled and linked to obtain the executable.

The validation of the translation process is divided into two phases:

The approach described above is shown schematically in Fig. 3.4.

Figure 3.4: Stages of the process validation of the code generation

To be able to perform the described evaluations is thus necessary to have

a well-structured model, which is corresponding to what is reported by the re-

quirements, and a series of tests to be run on the model. It is also necessary to

choose a metric of adequate coverage, both for the model and, in congruence,

for the code.

After performing the tests, any di�erence in the results, be it in the numerical

comparison of the outputs or in the coverage of the model and the code must

be justi�ed by identifying any systematic behavior of the code generator or real

errors in the translation from model to code.

It is important to emphasize that the process of validation concerns the pro-

cess of generating code and the generated code, but not the generator itself: to

demonstrate the ability of the generator to correctly translate, it is necessary to

repeat the activity on �many� projects without replacing the generator (ref. EN

50128, B.65 [Ref 2]). The code generated for a single application, however, is

valid.

In order to perform the validation process of the translator is thus required to

have:

• The model (State�ow Chart) on which to perform the tests. The chart

must be well-formed (i.e., designed according to the requirements and the

modeling guidelines).

• An interface model that refers to the original model. The interface model

shall be composed of a part of input processing, the reference block and a
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part of outputs processing, as represented in Fig. 3.5.

• A set of test vectors (de�ned as MATLAB arrays) that will be inputs for

the interface model and processed by the referred model. The tests should

be designed for:

� full coverage of the requirements;

� full coverage of the model: the metric for coverage (e.g., decisions,

conditions) will be evaluated separately for each project depending on

the complexity of the project itself.

The de�nition of the test suite is a manual activity: the tests are origi-

nated starting from the models and the unit requirements de�ned during

the design phase of the system development, according to the requirement

coverage criterion. Automatic functional test generation techniques were

not used due to the fact that they generally require models with a higher

level of abstraction than the ones we use to generate code. The time

needed to devise the tests, by a domain expert, is of the same order of

magnitude than the time needed to model the system.

Figure 3.5: Reference model for testing through 2M-TVF

The 2M-TVF aims to provide functionality to validate the process of code

generation and code itself. Once the interface model and State�ow model that

represents the system have been provided, the Framework proceeds according to

the following steps:

1. Create a reference model from which to generate the code.
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2. Generate the code from the reference model.

3. Compile and instrumentat the code for the calculation of the coverage.

4. Create a validation model composed by interface model and generated and

compiled code.

5. Run tests on validation model and.

6. Generate a report containing the results of the tests on the model.

It is important to note that:

• The syntax errors are not subject to evaluation by the 2M-TVF Framework,

despite the dynamic behavior of the validation process can report them if

they are present. The syntax errors anyway shall be taken care of in an

earlier phase of the development.

• The model that represents the system is never changed during the whole

process, but always used by means of a reference model; the reference

model is a special Simulink/State�ow model that incapsulates the original

model allowing to perform operations on the inputs and the outputs of the

original model without changing it.

The 2M-TVF execution steps are better detailed in the following.

Reference model creation: the reference model is created with the purpose

of generating code both from the reference model itself than from the

State�ow Chart to which the reference model refers. The reference model is

a �copy� of the model used for the testing from which have been eliminated

the structures for the input pre-processing and ouptut post-processing.

Code generation from the reference model: the code is generated from the

reference model by means of RTW Embedded Coder [80]. The generator

con�guration must be the same used every time it generates the code to

be compiled and installed on the target.
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Code instrumentation and compiling: the code is compiled and instrumented

in such a way as to obtain information on the coverage once it is executed.

The choice of the compiler and the linker has fallen on gcc v3.4.3 [31],

which holds the proven-in-use property and provides also built-in function-

alities for code coverage measurements.

Validation model creation: the validation model is created starting from the

reference model, which is copied and enriched with additional features,

such as a Simulink block that allows to integrate and run binary code into

the Simulink environment; to the �binary code block� are given the same

inputs that are passed to the reference model (and thus to the model it-

self). The outpus of the �binary code block� will be processed exactly as

the ones of the reference model.

The structure of the model validation is shown schematically in Fig. 3.6.

Figure 3.6: Structure of the validation model

Tests on validation model: the tests are de�ned as matrices in MATLAB and

designed to achieve the requirements coverage and full coverage of the

model according to the metric choice, are stored on the basis of MATLAB
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Workspace and from there sent to the model during the validation phase

of simulation. The data is then taken from the Workspace and passed in

input to the model of the system (via the reference) and code. In this way

both the high-level representation of the system and the generated code

are exercised.

At the end of the simulation results are stored in the Workspace and com-

pared. In case of discrepancies it will be necessary to justify the di�erent

behavior between the model and run the code.

Report generation: after execution of the tests it will be automatically gen-

erated a report containing information about the validation model, the

simulation results and coverage .

Figure 3.7: 2M-TVF structure

The major advantage of the adoption of 2M-TVF is that the whole veri�cation

process is conducted internally to the Simulink environment, and it is completely

automated.

3.2.2 Formal veri�cation of model properties

The CENELEC EN 50128 norm states that formal veri�cation techniques, such

as model checking [14] and theorem proving [13], are highly-recommended prac-

tices for safety-related software. Despite the norm guidelines and the successful

history of formal veri�cation in academia, the adoption of these technologies

by companies is still more the exception than the rule. For example, in 2006,

Honeywell started de�ning an approach for the translation of Simulink models

into the input language of the SMV model checker [45], or the Rockwell Collins
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methodology [47], that starts from Simulink/State ow models to derive a repre-

sentation into the Lustre formal language, and then perform code generation (in

C and ADA) and formal veri�cation through di�erent engines such as NuSMV

and Prover.

Formal veri�cation tools are still perceived as too much complex, requiring highly

specialized personnel that is able to deal with formal languages and temporal

logic. Furthermore, there is still no clear evidence on the actual bene�ts in terms

of cost reduction given by this technology with respect to traditional testing.

With the Metrô Rio project, GETS decided to perform a systematic experimen-

tation with formal veri�cation by means of Simulink Design Veri�er (DV), a test

generation and property proving engine based on Prover Technology [1], which

uses a proprietary algorithm based on Bounded Model Checking (BMC) with

SAT-solvers [16] combined with K-induction [72] techniques. It was not the �rst

time that the company practiced formal veri�cation. In previous projects, the two

open source model checkers SPIN and NuSMV were evaluated for the veri�cation

of railway interlocking equipments [25], and Statemate ModelChecker was used

in the development of a system for object detection in level crossing areas [6].

In this case the choice fell upon DV, since the tool uses Simulink/State�ow as

modeling languages and it is fully integrated in the Matlab environment. These

aspects have been considered as favorable elements to disrupt the reluctance of

the developers towards formal veri�cation.

Requirement

1 If an information point with authorized speed equals to zero is received, the system shall raise

the Train Trip (TT) event

2 If the TT event is raised, the TT procedure shall be activated

3 If the TT procedure is active, it shall remain active until the train is not standing

4 If the TT procedure is active, the brake shall be activated

5 If the TT procedure is active and ICO_TT is invisible, ICO_TT shall start blinking

Table 3.1: Extract of unit requirements for Metrô Rio project

The focus is again on units, and veri�cation is performed at the level of the

State�ow models. The main objective was to understand if, with the new formal

development process, the formal veri�cation task could replace the costly unit

testing task.
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Veri�cation through DV is performed by translating the property that one wishes

to verify into a formula expressed in the Simulink language. In the case of Metrô

Rio, the properties are the unit requirements we obtained through the system

functional requirements decomposition. The formula derived from the property

has the form of a graphical circuit where the variables considered by the property

are connected by Simulink blocks implementing logical (AND , OR, NOT , etc.),

arithmetic (+, −, ×, etc.) and time delay operators. The engine veri�es that

the formula is globally true for every execution path of the Simulink/State�ow

model. The property is interpreted as if both the A and G operators of the

popular CTL (Computation Tree Logic) paradigm would be pre�xed to it: it is

basically an invariant. If the property is violated, a counterexample showing a

failing execution is given in the form of a test case for the model.

As an example of property representation, consider the �fth unit requirement of

Table 3.1, related to the Train Trip function4 of the system. This requirement can

be represented in the form of a Simulink circuit as depicted in Fig. 3.8. Following

Figure 3.8: Fifth requirement of Table 3.1 represented in the form of a Simulink circuit

the terminology of DV, the �rst part of the formula represents the assumption,

which is a set of hypotheses on the state of the model (i.e., the value assumed

by the input or output variables of the module). The second part of the formula

represents the proof, which is a set of expected values on the output that one

wants to hold whenever the hypotheses are met. The time delay operator of

the assumption is used to ensure that the proof is checked one execution step

after the veri�cation of the assumption. The requirement has an equivalent

CTL representation: AG((in_train_trip_status = 1∧ out_ico_TT = 0)→
AX(out_ico_TT = 2)). Such an equivalent CTL representation is not easy to

4Train Trip is the normally the function concerning the control over the unauthorized passing

of a red signal
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give for more complex requirements, which can however be represented in the

Assumption/Proof form. Consider again the Train Trip function: once the train

comes to a standstill after the emergency brake issued by the system, the Train

Trip icon is supposed to stop blinking. Then, the driver pushes the icon for at

least one second, the icon disappears, and the system releases the brake so that

the train can leave again. We evaluate the following sub-requirement involved in

this function: If the Train Trip icon (ICO_TT) is visible and not blinking, the

train is standing and ICO_TT is pressed for at least one second, ICO_TT shall

become invisible. The corresponding Simulink circuit is represented in Fig. 3.9.

In this requirement a timer variable is involved: the button associated to the icon

shall remain pressed for at least one second before ICO_TT can change its state.

In the assumption part of the formula, two subsystems are used to evaluate the

duration of pressure. This is supposed to be more than 84 main cycles (each

main cycle has a minimum duration of 12ms, therefore 1000ms/12ms ≈ 84) to

enable the proof part of the formula. The CTL representation of this property

is in principle feasible, but requires the usage of 84 nested sub-formulae, each

using the next operator.

Figure 3.9: Unit requirement with timer in the form of a Simulink circuit

As one can infer from Table 3.1 and from the examples, all the unit requirements

used in this context have the form if < Φ >,< Ψ >. Φ is a condition sentence

that might involve entities related to input and output variables in the model,

while Ψ is an action sentence that involves entities related to output variables

only. The translation of these requirements into the Assumption/Proof form

is rather natural, and, in our requirements set, we have identi�ed three classes

of requirements, according to the structure of the formula resulting from the
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translation:

• class 1 requirements where Φ involves input variables only. These can be

translated into a formula assumption(I)/proof(O), where I and O are

(possibly empty) subsets respectively of the input and output variable sets

of the State�ow model to be veri�ed. This class of requirements includes

requirements 1, 2 and 4 of Table 3.1. Invariants that are independent from

the input also belong to this class.

• class 2 requirements where Φ involves both input and output variables.

These can be translated into a formula assumption(I, Oi)/proof(Oj)

where Oi and Oj are (possibly disjoint) sub-sets of the output set. This

class includes requirements 3 and 5 of Table 3.1.

• class 3 requirements having any of the previous forms, but where the Φ or

Ψ require some value to hold for a certain amount of time. These can be

translated into a formula assumption(∗, Ti)/proof(∗, Tj), where Ti is a

set of timers on the variables of Φ, and Tj is a set of timers on the variables

of Ψ. The requirement associated to the circuit of Fig. 3.9 belongs to this

class.

Requirements that do not belong to any of the classes are not veri�able with DV.

Among these requirements we consider both non functional requirements, nor-

mally veri�ed through model inspection also when model-based testing is applied,

and requirements that involve adherence of the output to complex mathematical

functions, such as the ones related to the computation of the braking curve (a

braking curve is used to calculate how long it will take a train to stop from a

given speed). In this case, the veri�cation approach adopted has been model

duplication: a continuous model of the curve has been created, and its behavior

has been simulated and compared to the discrete model used for code generation.

We have translated and veri�ed 80 out of the 377 veri�able unit requirements.

Our experiments have shown that requirements belonging to the �rst class need

10 minutes of set-up time on average, while for the second class we reach 15

minutes. The veri�cation time is in both cases negligible (less than one minute).

The third class requires longer set-up time, around 40 minutes for each require-

ment, mostly due to the complexity of expressing relationships between events in
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the timeline through memory blocks or time delay operators. In many cases the

formal veri�cation incurs state space explosion problems and fails to terminate,

hence these requirements are likely to need to be veri�ed through testing.

Table 3.2 reports the number of requirements belonging to each class for the

Metrô Rio project. It can be noticed that most requirements belong to the �rst

two classes, which required limited set-up and veri�cation time. Requirements

belonging to the third class are limited and are mainly related to human-machine

interaction (button pressure, icon display timers, etc.).

class 1 class 2 class 3 n.v.

# requirements 285 73 19 113

Table 3.2: Classi�cation of requirements according to the associated formula

According to these results, a new veri�cation process based on formal veri�cation

can be foreseen. Requirements belonging to the �rst two classes can be formally

veri�ed with a cost that is 50% to 66% lower than the one required for testing

(each test needs 30 minutes in average). Requirements of the third class and non

veri�able cases can be treated with the previously used approaches: model-based

testing or inspection. Unfortunately, except for the time elapsed in the veri�ca-

tion and the results of the tests, DV does not give any further information about

the process, and thus the user is unable to estimate which is the e�ective cost

of the veri�cation, for example in terms of memory consumption.

The main threat to validity of our evaluation is given by the fact that the models

were already veri�ed by means of testing: no further error was discovered during

the formal veri�cation phase. Our estimates do not consider the iterative task of

adjusting models or formulae whenever a counterexample is issued. Nevertheless,

we believe that the cost of these adjustments can be compared to the cost of

�xing a bug detected by testing.

Introduction of formal veri�cation in the established development process is still

at the evaluation stage. Despite the encouraging results in terms of costs, there

are other issues that have to be addressed, such as the quali�cation of the tools

and the integration of the approach with the other process tasks. The company

is currently de�ning solutions in these directions.
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3.3 MBD and safety-critical systems develop-

ment: a case study

In this section is detailed an example of development with MBD and formal veri-

�cation performed during the experimentation in order to be evaluated by GETS,

starting from natural language requirements provided by RFI (Rete Ferroviaria

Italiana) in the context of SCMT project [62].

SCMT is the system of Automatic Train Protection (ATP), which was adopted by

the Italian railways over most of the territory, which lets you control the running

of the train basing on the aspect of the railway signals, to slow down and respect

speed limits imposed for given rail sections. The information submitted by the

Trackside sub-system (Sotto Sistema di Terra, SST) are received and processed

by the Board subsystem (Sotto Sistema di Bordo, SSB).

The function Presenza Personale di Macchina (PdM) [63] checks the behavior

of the drivers and starts emergency procedures if not-safe conditions occurs.

The function is modeled as a �nite state machine according to the speci�ca-

tions of the system. Is then tested and veri�ed in a formal way through the tool

Simulink/State�ow to verify that the requirements expressed by the functional

speci�cations [62] [63] are indeed satis�ed.

3.3.1 Model requirements and implementation

The system SCMT is composed by a Trackside sub-system (SST) and a Board

subsystem (SSB). The SST transmits to the SSB information about the current

speed of the train and current signal status. The SSB veri�es that the train

travel in safety, otherwise it noti�es to the driver any violation of a speed limit

or active automatically a the braking procedure. In the case of the function

Presenza PdM, the purpose is to verify that the driver is behaving correctly from

a safety point of view, checking its physical status through acoustic interfaces

(sound signals) and mechanical interfaces (buttons). The acoustic signals are

activated due to the loss of stationary condition (train is moving without permis-

sion) or in response to violations of speed limits. After the acoustic signal has

been activated, if there is no action on the mechanical interfaces within a given
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amount of time, the system requires the emergency braking.

RFI provided requirements to the GETS company in order to implement the de-

sired functionalities.

The implementation of the module Presenza PdM has been made using Simulink/S-

tateow starting from the given requirements. Each requirement can be part of

one of the following categories:

• [E], Essenziale: a prerequisite for the proper functioning of system.

• [D], Di�erito: essential requirement but delayed in time.

• [F], Facoltativo: no mandatory requirement.

• [U], Instabile: requirement that needs further study or more accurate de-

tails.

The requirements speci�ed for the module Presenza PdM belong to the [E]

type, and then they are essential in the implementation.

The functional requirements regarding Module Presenza PdM are divided into

requirements capture inputs and requirements management.

Input requirements

The input requirements are summarized in the state diagram in Figure 3.10. The

requirements describe the interaction between the module Presenza PdM and

the other modules composing the SSB.

A subset of the requirements is listed below.

1. The function shall acquire periodically from the Odometry the train stop

condition (Treno fermo, TF ) in order to compute its functioning status.

2. The function shall acquire periodically from the Odometry the current train

speed (v) in order to evaluate the activation of the emergency braking.

3. The function shall acquire periodically from the Odometry the space (s) in

order to compute when to require the actions of the drivers (PdM).

4. The function shall acquire periodically from the Clock the current time

(RTC ) in order to compute when to require the actions of the drivers

(PdM).
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Figure 3.10: Function context diagram

5. The function shall acquire periodically from mechanical interfaces (Pul-

santi_X, Pedale_X with X = A o B according to which Cab is activated),

the intervention of mechanical interfaces by the driver in order to check

the driver's activity.

6. The function shall acquire from the Con�guration Data the speed threshold

(S_vvig) for deciding the changing of control of driver actions from time-

based algorithms to speed-based algorithms (�rst hypotesis value for the

threshold is 100 Km/h).

7. The function shall acquire from the Con�guration Data the time T_vig_min

to set, when the train has speed v > S_vvig, the driver's intervention
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minimum time threshold for button pressing (�rst hypotesis value for the

threshold is 2.5s).

8. The function shall acquire from the Con�guration Data the time T_vig_max

to set, when the train has speed v > S_vvig, the driver's intervention

maximum time threshold for button releasing (�rst hypotesis value for the

threshold is 30s).

9. The function shall acquire from the Con�guration Data the space S_vig_min

to set, when the train has speed v <= S_vvig, the driver's intervention

minimum space threshold for button pressing (�rst hypotesis value for the

threshold is 70m).

10. The function shall acquire from the Con�guration Data the space S_vig_max

to set, when the train has speed v <= S_vvig, the driver's intervention

maximum space threshold for button releasing (�rst hypotesis value for the

threshold is 830m).

11. The function shall acquire periodically from the Emergency Procedure mod-

ule the information about the current status of emergency braking proce-

dure (active / not active) in order to be able to suspend driver's control

activities and re-initialize itself.

Starting from the requirements, the model in �gure 3.11 has been designed.

In the model were included inputs, which are received by the module Presenza

PdM from other modules, and the outputs that the module provides to the other

ones. Concerning the con�guration data, they represent �xed parameters and

therefore were modeled as constants, whose values are those of the �rst hypotesis

speci�ed in the requirements.

It is important to notice that in the model were also added outputs not given

by the requirements in order to be able to verify properties through the Simulink

Design Veri�er tool.
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Figure 3.11: Simulink model

Management requirements

The management requirements details how the model shall react basing on the

inputs and the internal state. In the case of SCMT the requirements were already

in the form of a Finite State Machine (FSM), represented in 3.12.

The Model-Based Design is particularly suitable in case of FSM-like require-

ments, since it is possible to have a one-to-one corrispondence between the

states de�ned by the requirements FSM and the designed model (depicted in

�gure 3.13).

In order to better understand the development process, a list of requirements

and their implementation are listed below.

Req 1: The function shall behave as the FSM represented in Fig. 3.12.

Req 2: At the activation, the function shall be in state INIZIALIZAZZIONE.(Fig.

3.14)
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Figure 3.12: Requirements FSM

Req 3: Independently on the current state except for the state FRENATURA,

the function shall return in the state INIZIALIZZAZIONE if it is restored

the train stop (TF) condition or if it is currently happening an emergency

braking requested by another function(Fig. 3.15).

Req 4: In state INIZIALIZZAZIONE, the function shall disable all the currently

active timing checks and every acoustic noti�cation (Fig. 3.16).

Req 5: From state INIZIALIZZAZIONE the function shall transit to state EMER-

GENZA (Fig. 3.17) if:

• No emergency braking has been requested by other functions.

• The train stop (TF) condition is lost.

Req 6: When the function transits into state EMERGENZA, it shall activate a

timer equal to T_vig_min and an acoustic noti�cation.
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Figure 3.13: PdM Model chart

Figure 3.14: Activation of the SSB

It was decided to de�ne three sub-states inside the state EMERGENZA:

Emergenza_init, Emergenza_p_premuto ed Emergenza_p_rilasciato. The

�rst one activates the acoustic noti�cation (Suon_5=1) and starts com-

puting elapsed time and travelled space, while the other two states are

consequence of the Req. 8 and will be detailed later.

Req 7: The function shall transit from state EMERGENZA to state FRENATURA

if the timer T_vig_min elapses (Figure 3.19), activating the emergency

procedure Procedura di Emergemza, Proc_Emerg, deactivating the acousitc

noti�cation Suon_5 and activating the recover emergency procedure (Pro-

cedura di Recupero Emergenza, Rec_Proc_Emerg) in order to permit the

re-enabling of the braking functionalities once the train has stopped (Fig-

ure 3.20). Once the T_vig_min elapsed (i.e., when T_ultima_pressione

>= T_vig_min), the system transits from state EMERGENZA to state

FRENATURA(Figure 3.19).
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Figure 3.15: Return to state INIZIALIZZAZIONE

Figure 3.16: State INIZIALIZZAZIONE
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Figure 3.17: From state INIZIALIZZAZIONE to state EMERGENZA

Req 8: the function shall transit from state EMERGENZA to state INTER-

FACCE AZIONATE and disable the acoustic noti�cation if the mechanical

interfaces provided to the driver (e.g., button) are pressed and released

within T_funzione time (Figure 3.21).

In this requirement resides the explanation of the second and third sub-state

(Emergenza_p_pulsante ed Emergenza_p_rilasciato) inside the parent

state EMERGENZA: in fact once a button is pressed when the system is

in the parent state, the second sub-state activates and the check for the

pressure time starts. When the button is released, if the pressure time is

within T_funzione, the system transits into the third sub-state which will

make the system evolve into the state INTERFACCE AZIONATE.

3.3.2 Model veri�cation

Once the Simulink model and the contained charts have been designed, the

properties that the system has to hold can be veri�ed through the integrated

tool Simulink Design Veri�er [83]. The tools represents an extension of the

Simulink tool and permits to verify and validate formally the properties on a

model.

The properties to verify are detailed through two blocks in the model:

• Assumption: it is placed on the inputs of the model. It determines the

domain of interest for the test and it expresses concepts such as �If the

input x assumes the value x0...�

• Proof: it is placed on the outputs of the model. it determines the expected
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Figure 3.18: State EMERGENZA

Figure 3.19: From state EMERGENZA to state FRENATURA
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Figure 3.20: State FRENATURA

Figure 3.21: From state EMERGENZA to state INTERFACCE AZIONATE
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value for the test. expresses concepts like �...then the output y is y0.�.

The tool checks if the property is true in the model and otherwise generates

a counterexample. There are also two di�erent strategies for the veri�cation of

the test:

• Prove: translate the model into a formal language and perform a formal

veri�cation on the translated model.

• Find Violations: limits the previous technique to a limited number of steps

established by the user.

Usually the technique that is preferred to use is the Prove one. In cases

where the complexity is too high and the execution of tests fails, the Find Viola-

tion technique can be used as a sort of �debug�, increasing the con�dence on the

model behavior, but without any formal proof on the properties of the model.

A simple requirement is representable with a series of blocks Assumption/Proof

placed on the arcs of the input/output; in more complex cases must instead

ensure that the system is already in a certain state, and this requires further

instrumentation of the model.

The complexity in the veri�cation of a requirement is determined by two charac-

teristics:

• The structure of the hypothesis. A requirement may relate to a simple

combination input and / or a particular state of the system (or a subset

of states). In order to model the hypotesis the adopted technique involves

the creation of special blocks that takes as input the current state of the

system (or other information useful for the property to prove) and bounds

the veri�cation only to the right cases.

• The structure of the thesis. The veri�cation may require the outputs to

observe only the value of output (e.g., �the acoustic noti�cation is 'on� ')

or to observe a change in the value of the output (e.g., �the machine goes

from state A to state B�) .

A subset of the management requirements that have been veri�ed through

Prove properties functionality of Simulink Design Veri�er is listed below. Note
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that, in order to speed up the veri�cation process, the timing constraints have

been scaled by the same factor (e.g., in the case of the veri�cation of Presenza

PdM, the timing constants have been scaled by a factor 10). Requirements have

been veri�ed both through Assumption/Proof constructs (if requirements were

�simple enough�) or through a more complex Simulink circuit, when some check

are needed to enable the veri�cation or not.

3.3.3 Simple requirements veri�cation

The �rst requirement is a simple one, which does not need any elaboration in

order to be veri�ed. This requirement belongs to the �class 1� (see �3.2.2).

Req 1: At the activation, the function shall start from state INIZIALIZ-

ZAZIONE

The Simulink model that follows simulate the requirement considering an As-

sumption block with value 1 on the TF input (train stopped), in order to model

the fact that at the activation of the system the train is not moving, and a

proof block with value 0 on the exit �State�, where 0 is the value for the state

INIZIALIZZAZIONE.

3.3.4 Complex requirements veri�cation

This requirement is complex enough to require the creation of a Simulink circuit

to check the current status of the system before the veri�cation can be actually

performed. This requirement falls in the �class 2� requirements (see �3.2.2).

Req. 2: Independently on the current state except for the state FRE-

NATURA, the function shall return in the state INIZIALIZZAZIONE if it

is restored the train stop (TF) condition or if it is currently happening an

emergency braking requested by another function.
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Figure 3.22: Req. 1 veri�cation
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The following Simulink model is used to perform the veri�cation.

Figure 3.23: Req. 2 veri�cation

According to the requirement, the state FRENATURA shall not be involved;

furthermore the two inputs on which the Assumption blocks are places shall

be bonded through the OR logical operation. For this motivation a Simulink

circuit has been designed in order to perform the veri�cation: the EnableProof

block implementes the check for the current state (di�erent from FRENATURA)

and the logical OR between the two inputs that represents the current state of

the braking operation and the train stop (TF) condition. In the Proof block is

modeled the check for the transition to the state INIZIALIZZAZIONE.
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Figure 3.24: Link between EnableProof and Proof blocks for veri�cation of Req. 2

Figure 3.25: EnableProof block for veri�cation of Req. 2

Figure 3.26: Proof block for veri�cation of Req. 2
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3.3.5 Timed-related requirements veri�cation

The following requirements are time related, and thus fall in the �class 3� require-

ments (see �3.2.2). Both veri�cation presented below require the creation of a

Simulink circuit to check the current state of the system before the veri�cation

can be enabled, and a more complex check that the system remains in that state:

• for at least a certain amount of time (Req. 6);

• within a certain amount of time (Req. 7).

Req.6: the function shall transit from state EMERGENZA to state FRE-

NATURA if the timers T_vig_min elapses, activating the emergency pro-

cedure Procedura di Emergemza, Proc_Emerg, deactivating the acousitc

noti�cation Suon_5 and activating the recover emergency procedure (Pro-

cedura di Recupero Emergenza, Rec_Proc_Emerg) in order to permit the

re-enabling of the braking functionalities once the train has stopped.

The Simulink model in Fig. 3.27 implements the requirement.

Also for the veri�cation of this requirement the additional two blocks En-

ableProof and Proof have been used in order to model the conditions for veri�-

cations.

In the EnableProof block there is implemented the checks for the current state

to be EMERGENZA and the check for the elapsed time from the last action

of the driver is greater or equal than the requested one T_vig_min. Then the

Proof block implements the check if the current state has become FRENATURA,

and the disabling of the acoustic noti�cations and the enabling of the emergency

procedure has occurred according to what stated by the requirement.
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Figure 3.27: Req. 6 veri�cation

Figure 3.28: Link between EnableProof and Proof blocks for veri�cation of Req. 6
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Figure 3.29: EnableProof block for veri�cation of Req. 6

Figure 3.30: Proof block for veri�cation of Req. 6
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Req. 7: the function shall transit from state EMERGENZA to state INTER-

FACCE AZIONATE and disable the acoustic noti�cation if the mechanical

interfaces provided to the driver (e.g., button) are pressed and released within

T_funzione time.

Figure 3.31: Veri�ca Requisito 7

For the veri�cation of this requirement the block EnableProof (Fig. 3.33) is

in charge to check that the button is hold pressed for the right amount of time

([0, T_funzione]); furthermore the block shall also check the current state, that

shall be EMERGENZA. In the Proof block (Fig. 3.34), if the proof is enabled,

it is veri�ed that the transition between state EMERGENZA to INTERFACCE
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AZIONATE and the subsequent disabling of the acoustic noti�cation is performed

accordingly to the requirement speci�cation.

Figure 3.32: Link between EnableProof and Proof blocks for veri�cation of Req. 7

Figure 3.33: EnableProof block for veri�cation of Req. 7
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Figure 3.34: Proof block for veri�cation of Req. 7



CHAPTER 4

Formal Methods for Requirements Speci�cation

GETS has recently introduced formal modeling and code generation by means of

the Simulink/State�ow platform, and has de�ned a model-based process com-

pliant with the CENELEC standards, the set of norms and methods to be used

while implementing a railway product for the European market. Simulink/State-

�ow are powerful languages for formalizing low-level requirements, while they are

less suitable for high-level system requirements speci�cation and analysis.

These activities were normally performed by GETS using a paper-based approach,

with natural language documents completed by informal diagrams. Natural lan-

guage is inherently ambiguous and a more formal means to express requirements

was desirable.

So the needs of GETS have moved from the MBD approach, which already

became part of the development process, to another level of the development

process, the requirement speci�cation.

The company aimed for:

• A formal notation in requirement and architecture speci�cation;

• Tarceability enforcement;

• Cross-phase integrated documentation;

72
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In order to ful�ll the company requests, the OMG SysML [55] language was

seen as the solution to substitute the traditional text-centric speci�cations with

a formal notation.

This chapter will report the experience of the experimentation of SysML for a

small-medium project and the lesson learnt during the experimentation.

4.1 The SysML Language

SysML is a graphical modelling language, developed by the OMG [53] and IN-

COSE [39], born in response to the UML for Systems Engineering. It is composed

by a UML Pro�le that represents a subset of UML 2 [54] with extensions (Fig.

4.1). It supports the speci�cation, analysis, design, veri�cation, and validation

of systems that include hardware, software, data, personnel, procedures, and fa-

cilities.

SysML is a visual modeling that provides semantics and notation, but it shall

not be confused with a methodology or a tool: SysML is methodology and tool

independent.

Figure 4.1: Relationship between SysML and UML

The taxonomy of SysML diagrams with respect to the UML2 one is depicted

in Fig. 4.2.

Each diagram in SysML represents a model element. The Diagram context is

speci�ed in the header, as shown in the Fig. 4.3. The header is thus composed

by:
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• the diagram kind;

• the model element type (package, block, activity, ..);

• model element name;

• user de�ned diagram name.

Figure 4.2: SysML Taxonomy

Figure 4.3: SysML diagram header

In the following sections we will detail the basic types of diagram provided by

SysML that have been used during the experimentation of the SysML language

applied to the development of safety-critical systems in GETS.

4.1.1 Structural diagrams

Structural diagrams are used in SysML to describe the �structure�, i.e., the static

part of a system that is intended to be modeled. The structure diagrams are not
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suitable for describing the data �ow between parts, but only which are the parts

involved in the system construction.

Structural diagrams are:

• package diagrams;

• block de�nition diagrams (BDD);

• internal block diagrams (IBD).

Package diagram

A Package diagram is used to organize the model, since it groups the model ele-

ments into a name space, allowing to organize the model as a hierarchy or to use

viewpoints to augment model organization (see Fig. 4.4). The viewpoints repre-

sent the view of a certain user of the system, from the stakeholder to the designer.

Figure 4.4: Package diagram - model organization
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Block de�nition diagrams and Internal block diagrams

The blocks are basic structural elements based on the concept of UML Class.

They provide an unifying concept to describe the structure of an element or a

system. The blocks have associated multiple standard compartments that can

describe the blocks characteristics (e.g., properties, operation, constraints..) as

shown in Fig. 4.5.

Figure 4.5: Block example

The Block de�nition diagram (BDD) describes the relationship among blocks,

such as composition, association and specialization; di�erently, the Internal block

diagram (IBD) describes the internal structure of a block in terms of its properties

and connectors as shown in Fig. 4.6.

Figure 4.6: BDD vs IBD

The Internal block diagram speci�es how the blocks are interconnected,

through the usage of connectors and ports as shown in Fig. 4.7. The ports

specify interaction points on blocks and parts, and belongs to two classes (see

Fig. 4.8):
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• standard UML port: speci�es a set of required or provided operations

and/or signals;

• �ow port: speci�es what can �ow in or out of block/part.

Figure 4.7: Internal block diagram

Figure 4.8: Classes of ports

4.1.2 Behavioral diagrams

The Behavioral diagrams detail the behavior of the system, i.e., the dynamic part

of the system in terms of interaction between the blocks and the parts of the

system.
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Among the behavioral diagrams, widely used are the Activity diagrams, which

specify the activities, i.e., the transformations of inputs to outputs through con-

trolled sequence of actions (see Fig. 4.9).

The Behavioral diagrams includes also the following UML2 diagrams:

• use cases diagrams, which provide means for describing basic function-

ality of a system in terms of usages/goals of the system by actors;

• sequence diagrams, which provide representations of message based

behavior, representing �ow of control and describing interaction between

parts;

• state machine diagrams, that are typically used to represent the life

cycle of a block, through transition between state (modes of operation)

and events (also timed events, unavailable in other types of diagrams).

Figure 4.9: Activity diagram

4.1.3 Cross-cutting constructs

The Cross-cutting constructs available in SysML belong to:

• Allocations
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• Requirements

The Allocations represent general relationship that map one model element

to another. Allocations can be of di�erent types, such as behavioral (function is

allocated to a component), structural (logical is allocated to physical), software

to hardware (see Fig. 4.10), and so on.

Figure 4.10: Software to Hardware allocation example

The Requirements are based on the �requirement� stereotype that rep-

resents a text based requirement. The stereotype assign an unique identi�er

to each requirement among all Requirement diagrams. For each requirement

is also possible to add user de�ned properties such as veri�cation method for

that requirement, or add user de�ned requirements categories (e.g., functional

requirement, interface requirement of performance requirement).

SysML de�nes a visual and graphical representation of textual requirements, spe-

cialised associations between themselves or with other elements of the model, and

how they can be managed in a structured and hierarchical environment. SysML

de�nes new types of associations (stereotyped dependencies, Fig. 4.11):

• Derivation (DeriveReqt) for requirements that are introduced in conse-

quence of another requirement;
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• Satis�ability (Satisfy) for components (e.g., blocks) that ful�ll require-

ment requests;

• Veri�cation (Verify) for diagrams (e.g., activity) that details the veri�ca-

tion procedure for a given requirement;

• Re�nement (Re�ne) for requirements that re�ne in greater level of detail

the parent requirement;

Figure 4.11: Requirements breakdown

4.2 The TOPCASED experience

TOPCASED version 3.0.13 [85] was introduced during the experimentation for

the requirements speci�cation of the Failsafe Data Transmission (FDT) system,

a platform that manages the switching of adjacent stations. When two stations

share a single track for a variety of causes (e.g., the other tracks are busy or not

available at the time), the sta� of the stations may decide to reverse the direction
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of the track from station A to station B, and vice versa (Fig 4.12) to enable trains

to pass in both directions, once at time. The reversal of the direction requires

that the personnel of the two stations perform a safe procedure; for the whole

duration of the procedure they must keep in phone contact. The FDT system

allows the exchange of the data necessary to complete this procedure between the

two stations, among which is the current occupancy of the track or the current

travel direction.

Figure 4.12: FDT System

The project was small enough (6 persons for 7 months) to introduce a new

technology, and the tool was perceived as the right candidate to practice SysML,

given TOPCASED's claimed orientation to safety-critical systems development.

As an example of such orientation, the tool provides a model validation feature,

that allows the internal consistency of the produced model and its compliance to

the SysML standard to be checked.

A subset of the SysML diagrams was chosen which was considered su�cient to

specify the system with a proper degree of detail. This subset was composed

by use case, requirement, sequence and structure diagrams (i.e., package, block

de�nition and internal block). The approach planned for the structuring of the

di�erent diagrams was aimed at following the CENELEC V-process phases (Fig.
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4.13), in order to give a graphical evidence of the adherence to this standard.

For this purpose, a single model structured into packages was de�ned: each

package corresponds to a CENELEC phase and includes the diagrams to ful�ll

the norm prescriptions for that phase. For example, the requirements phase in-

cludes mainly use case and requirement diagrams, while the architecture phase

is essentially documented with block de�nition and internal block diagrams. The

model was built incrementally, and each artifact of each phase was traced to the

elements coming from the previous one.

Figure 4.13: TopCased packages for FDT project

The SysML language appeared rather intuitive to users with a UML back-

ground, and the tool was easy to learn for people with con�dence with the Eclipse

platform. In general, electronic/telecommunications engineers encountered more

hurdles than software engineers, since some basic principles of the model-view-

controller pattern are required for a pro�cient usage of the technologies. These

problems were increased by the absence of a proper documentation for the tool.

Despite the large literature on SysML, there was no complete tutorial to guide

people that were new to both the tool and the language. Furthermore, the no-

tation of internal block diagrams supported by the tool was not compliant to the

one presented by the text chosen as a reference [55], and this caused a limited
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use of these diagrams.

Another issue was the stability of the tool. While the model was growing in size,

the tool became slower and more prone to crashes, especially with the increasing

number of traceability links between di�erent diagrams. Though this drawback

could be associated to the usage of a single model to formalize the whole process,

this situation was felt as really frustrating, and led the team to mistrust the tool.

As a consequence, many advanced features, such as the collaborative usage, were

not experimented. The initial plan was indeed to allow the independent update

of the model by di�erent actors in di�erent process phases, but ultimately it was

the project leader that took care of the integration of the whole model, according

to the input of the other participants.

The �nal step has been the generation of the documentation. HTML was the

preferred format, since with a plain document one would have lost the traceability

among artifacts, instead preserved by the hyperlinks. Nevertheless, this choice

was criticized by the validation team, on the basis that the format would not have

been accepted by the assessors 1: with a structured document one has a guided

direction of reading and understanding, while with HTML one has to choose

the navigation path, with the consequent problems of overall uptake. Since the

plain document generation capability of the tool was found insu�cient, the team

had to re-write the documentation by hand, including the SysML diagrams as

�gures. At this point there were two document sets to maintain, with imaginable

versioning problems, and since the SysML models already had their role for the

development of the platform, it was decided to keep the textual documentation

as the main reference for further changes.

Despite the goal of a complete renewal of the speci�cation and documentation

approach was not achieved, the experience did not result in a total failure. The

SysML requirement diagrams, used for structuring natural language requirements,

have a poor semantics with few connectors (it is not even possible to de�ne re-

quirements with boolean logic relations), and do not give too much added value

in themselves with respect to structured paper requirements. However, the pos-

sibility to clarify these requirements with other formal diagrams, and to perform

mutual tracing, gave a consistent support in requirements disambiguation and

1Third-part companies that certify compliance to the CENELEC standard
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early discovery of underspeci�cation. The participants agreed that the aid of

use case and sequence diagrams as a mean for communication between the re-

quirements manager and the developers simpli�ed the understanding of natural

language requirements and increased the level of con�dence on the intended

behaviour of the system during the implementation. Furthermore, the SysML

model worked as a centralized reference for the other activities (e.g., sw/hw de-

velopment, tests) during the whole project, representing a useful process control

tool for the project leader. For these reasons the SysML language survived within

the development process of the company, while the TOPCASED tool was soon

abandoned in favor of the commercial tool MagicDraw [52].

4.3 The adoption of SysML formal language

As stated before, the need for SysML support came when the systems produced

by the company started to radically increase in terms of complexity (to have an

idea, when the number of lines of code exceeded 100.000).

SysML have been thus introduced in the initial phases of the development pro-

cess. The company has de�ned the current role of SysML in the process, shown

schematically in �gure 4.14, as follows.
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Figure 4.14: SysML role in the requirements de�nition process

Right after requirement elicitation, requirements appear like unstructured

post-it notes in the blackboard of the requirements manager. High-level sys-

tem requirements are identi�ed among this initial set, and are expressed in the

form of SysML requirement diagrams. These diagrams allow specifying hierarchi-

cal relationships and dependencies among single requirements, and the chaotic

post-it view is replaced by a structured graph-like model.

Then, block diagrams are employed to specify the interfaces of the system mod-

ules that are supposed to implement the requirements. An approach based on de-

composition is adopted, which allows specializing each module into sub-modules

towards the actual implementation. Each module has some high-level require-
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ments apportioned to it. If needed, requirements are also re�ned into lower-level

requirements when modules are specialized.

The SysML models are structured into packages residing in a single root model.

Each package corresponds to a phase of the V-based development process pre-

scribed by the CENELEC norm for railway safety-critical systems [10]. Therefore,

there is a well de�ned mapping between process phases and the diagrams that

have been used in each phase. SysML could be in principle employed also to de-

�ne the behaviour of the actual implementation and to generate code. However,

modelling and simulation at behavioural level is much faster and more �exible

with Simulink/State�ow, and the generated code has higher quality. Therefore,

the role of SysML ends at the software architecture level.

4.4 Lesson learned

At the end of the project the general opinion was that using an open-source

tool to perform core activities in a company with time-to-market pressure and

certi�cation constraints was not a good option for two main reasons:

• Companies prefer products with a limited but stable number of function-

alities, while lively maintained opensource tools such as TOPCASED tend

to have several experimental features that are progressively tuned by the

community according to the users feedback.

• Companies require a direct interface with the tool providers that takes the

responsibility if a problem occurs with the tool usage. The choice of Magic

Draw was driven by these considerations, and the tool actually con�rmed

the expectations of a more stable, documented and customer-supported

platform.

Nevertheless, the initial goal of passing from text-centric speci�cations, with

diagrams clarifying the text, to diagram-centric ones, with notes accompanying

the models, was missed again. Today the company is pro�ciently employing the

Magic Draw platoform on large projects, intensively exploiting collaborative us-

age features and with a generally good opinion of the tool maturity level, but still

all the o�cial speci�cations required by the CENELEC norms are manually edited
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natural language documents. Assessors normally enter at the end of the develop-

ment process to validate compliance with the standards, and require paper-like

documents in order to have a complete picture of the activities performed by the

company. While this implies a major e�ort in terms of production and mainte-

nance of the documentation, it turns out that the investment on SysML pays o�

in terms of increased con�dence on the quality of the speci�cations.



CHAPTER 5

The Renewed Development Process

This chapter is a critical review of the introduction of advanced software design

and veri�cation technologies inside GETS, within a collaboration with the Uni-

versity of Florence. This introduction included the experiences reported in the

previous chapters, as well as other PhD experiences, which contributed to the

renewal of the development process of General Electric Transportation Systems

that is described below.

The transition from a code-based process to a model-based process is not easy.

This is particularly true for a company that operates in a safety-critical sector,

where the products shall be developed according to international standards, with

certi�ed tools and controlled processes.

In this chapter, it will be summarised the experience of a railway signalling

manufacturer that decided to adopt general purpose model-based tools, namely

Simulink/State�ow and SysML, for the development of its products. The faced

challenges primarily concerned the veri�cation of the software and the integration

of the tools within the existing process. Structured development solutions and

formal/semi-formal approaches (i.e., semantics restrictions, model-based testing,

and abstract interpretation) were adopted to tackle the challenges. The chapter

summarise the lessons learnt during this paradigm-shift, with particular focus on
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the bene�ts and drawbacks of automatic code generation.

General Electric Transportation Systems (GETS), signalling division of Florence,

is a medium-size railway signalling manufacturer. About ten years ago, given the

rising interest of safety-critical industries in formal methods[77], the company de-

cided to start experimenting with formal modelling and veri�cation. To this end,

experts were contacted from the university to support the initial experiments,

and a strict collaboration have been established in order to develop further the

topic of formal methods applied to development process.

Several formal tools were evaluated, but the preference of the developers fell on

a semi-formal toolsuite, namely Simulink/State�ow [82]. The Simulink language

uses a block notation for the de�nition of continuous-time dynamic systems. The

State�ow notation is based on Harel's Statecharts [36] and supports the mod-

elling and animation of event-based discrete-time applications. Simulink block

diagrams can be used as a framework to compose State�ow statecharts, as it

is mostly the case for the systems developed by GETS. The main reasons that

drove the choice were:

• the large amount of packages available with the toolsuite - packages that

could be employed throughout the whole development process;

• the widespread knowledge about the tools found within the company and

the corporation.

Initially, the models designed through Simulink/State�ow were used solely for

requirements elicitation. In 2007, the company was attracted by the possibility of

using such models also for code generation. One year after, this technology was

already part of the development process. However, changing the development

paradigm from code-based to model-based required changes also in the veri�ca-

tion activities. Model-based testing and abstract interpretation were adopted in

the following projects, and strict language restrictions were introduced to con-

strain the semi-formal semantics of the toolsuite to a formal semantics [26].

The new model-based approach allowed to speed-up the development, and, most

of all, gave the possibility to handle more complex systems. As the projects

grew in size, new technologies were required to rigorously handle the system

requirements and the architecture level of the development. SysML, a uni�ed
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modelling language for system development, was selected as the proper tech-

nology to address this issue. After three years of experience with SysML, the

company has established a formal development approach that integrates SysML

and Simulink/State�ow.

5.1 Challenges

During the story brie�y summarized and the experimentation of new formal meth-

ods applied to the development of safety-critical systems in GETS, several chal-

lenges have been faced that deserve some attention.

Modelling Language Restriction

The code used in safety-critical systems shall conform to speci�c safety stan-

dards, and normally the companies use coding guidelines to avoid usage of im-

proper constructs that might be harmful from the safety point of view. When

modelling and auto-coding are adopted, the generated code shall conform to the

same standard asked to the hand-crafted code. The adopted code generator,

named Simulink Coder, induces a tight relation between the generated code and

the modelling language constructs employed. Hence, the identi�cation of a safe

subset of the modelling language is required to enable the production of code

that is compliant with the guidelines, and that can be succesfully integrated with

the existing one. The approach adopted by the company was �rst to de�ne an

internal set of modelling guidelines for Simulink/State�ow. The guidelines were

practical recommendations on the usage of the language constructs. The idea

was that the C code generated from models following the guidelines would be

compliant with the coding standard of the company. The initial guidelines were

based on the analysis of the code that was generated from a model previously

designed for requirement elicitation. This preliminary set had the limit of being

derived from a speci�c model, and could lack of generality. Therefore, in the

projects that followed, the set was extended with other recommendations bor-

rowed from the automotive domain (i.e., the MAAB guidelines) [24].

In order to ease formal analysis, it was �nally decided to complete the modelling

style guidelines by restricting the State�ow language to a semantically unambigu-
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ous set. To this end, the studies of Scaife et al. [67], focused on translating a

subset of State�ow into the Lustre formal language, have been used [28]. Models

currently developed by the company are therefore independent from the simu-

lation engine, and this choice has actually open the door to formal veri�cation

[26].

Generated Code Correctness

Safety-critical norms, such as the CENELEC EN 50128, the European standard

for railway software [10], ask for a certi�ed or proven-in-use translator. In absence

of such a tool, like in the case of the available code generators for Simulink/S-

tate�ow, a strategy has to be de�ned to ensure that the code behaviour is fully

compliant to the model behaviour, and no additional improper functions are

added during the code synthesis phase. The objective is to perform the veri�ca-

tion activities at the level of the abstract model, minimizing or automating the

operations on the code.

The company has adopted a model-based testing approach called translation

validation [17], completed by static analysis by means of abstract interpretation

[18]. With translation validation one executes test scenarios based on functional

objectives at the model level. Then, he repeats the same tests on the generated

code, checking that the outputs of model and corresponding code are consistent.

As a �nal step, in order to ensure runtime error freedom, the Polyspace tool is

employed to perform abstract interpretation (see [27] [34] [28] for the details).

This technology veri�es the correctness of a program on an overapproximation

of the range of the program variables.

The certi�cation authorities have considered the overall approach suitable to by-

pass the tool quali�cation required by the safety regulations. It should be noticed

that the railway norms are not as speci�c about tool quali�cation as, for example,

the avionic ones [42]. Therefore, companies in the railway sector are required to

agree upon possible strategies with the certi�cation authorities.

Multiple Formalisms

Safety-critical systems are normally large, complex platforms with several inter-

acting units and architectural layers. To manage such complexity, their devel-
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opment is based on multiple levels of abstraction, and di�erent models with

di�erent granularities are required. Indeed, a model that is used for code gen-

eration is hardly usable to reason at system design level. Simulink/State�ow do

not support a �exible hierarchical development approach, and system designers

need to adopt other modelling languages that can express the higher abstractions

inherently required by the process.

In the experience of the company, this issue has been addressed through the

adoption of the SysML language [55].

Process integration

Product development is performed by companies by means of processes, which

de�ne a framework made of tasks, artifacts and people. Introduction of new

technologies in an established process requires adjustments to the process struc-

ture, which shall maintain its coherence even if changes are applied. This is

particularly true in the case of safety-critical companies, whose products have

to be validated according to normative prescriptions. Hence, a sound process

shall be de�ned in order to integrate modelling and code generation within the

existing framework.

An enhanced V-based process has been de�ned, as depicted in Fig. 5.1. The

process embeds two veri�cation branches: one for the activities performed on

the models, and the other for the tasks concerning source code and system. In

the �gure, we highlight the parts that strictly concern software development -

based on Simulink/State�ow modelling - and the parts that are related to system

development - based on SysML modelling. The two process fragments overlap in

the SW Requirements phase and in the SW Model Architecture phase. Indeed,

software requirements are expressed in SysML, as well as the software architec-

ture. An equivalent architecture is expressed through Simulink in the form of

interacting blocks, which are the functional modules (i.e., the components) of

the model. SysML requirements are manually traced to the Simulink model. In

the Model Module Design phase, the Simulink blocks are re�ned into State�ow

statecharts.

It is worth noting that the process is somehow adaptable to both manual coding

and to auto-coding. After the SysML modelling activities, one can decide to
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Figure 5.1: The renewed development process

adopt either hand-crafted code or Simulink/State�ow modelling to develop the

application. Indeed, in some applications (e.g., �rmware, systems with limited

software, platform with strong dependencies from legacy code), the code gener-

ation technology is considered not convenient, and hand-crafted code is normally

employed.

5.2 Lesson learnt

Facing the challenges of model-based development and formal methods adoption

for the overall development process, made the company learn some important

lessons, detailed in the following paragraphs.
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Abstraction

Models allow working at a higher level of abstraction, and they can be manip-

ulated better than code. The company experienced the actual relevance of this

statement in the transition from code-based to model-based testing. The model-

based testing approach adopted has allowed de�ning behavioural test scenarios

at component level without disrupting the model structure. This approach would

have been impracticable on hand-crafted code. Indeed, with hand-crafted code,

it is common to perform tests on single functions, while it is more complex to

identify the functions that participate to the behaviour of a software component.

With models, one builds the system already in terms of components. Therefore,

identi�cation and testing of components comes in a natural way.

The company learnt also that abstraction is a delicate concept that has to be

carefully handled. The proper degree of abstraction has to be identi�ed in order

for an artifact to be useful. For example, in the initial experience with SysML,

requirement diagrams with natural language requirements were adopted through-

out the process until the lowest level of model detail. At this point, their content

was basically equivalent to the Simulink/State�ow models. The level of abstrac-

tion of such requirements had to be raised, since they appeared to be redundant

and any slight modi�cation to the models would have implied a modi�cation to

the requirements.

Expressiveness

Graphical models are closer to the natural language requirements. At the same

time, they are an unambiguous mean to exchange or pass artifacts among devel-

opers. This observation has been enlightened by the main model-based develop-

ment experience of the company reported in [26], where the project passed from

the hands of its �rst main developer to another developer within one month only

and with very limited support.

The previous experience of the company was that, if someone was the father

of a piece of software, he would have remained the one and only repository of

the knowledge for that software. This is a common problem in many small and

average size companies. It negatively a�ects both the company itself, which has

to rely on a single person to actually modify and reuse the software, and the
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developer, who normally wish to extend his competencies to go beyond his initial

fragment of code.

Cohesion and decoupling

The automatically generated software is composed by modules with higher in-

ternal cohesion and better decoupling with respect to manual coding. Interfaces

among functionalities are based solely on data, and the control-�ow is simpli�ed

since there is no cross-call among di�erent modules. Decoupling and well-de�ned

interfaces have helped in easing the outsourcing of the modelling activity, which

is a relevant aspect in the development of products that have to tackle time-to-

market issues.

Uniformity

The generated code has a repetitive structure, which facilitates the automation

of the veri�cation activities. When strict modelling guidelines are de�ned, one

could look at the generated code as if it would be the software always written

by the same programmer. Therefore, any code analysis task can be tailored

on the arti�cial programmer's design habits. As a witness for this observation,

consider that the abstract interpretation procedure adopted to reveal runtime

errors resulted actually pro�table on the generated code only, since systematic

analysis on hand-crafted code was made harder by its variable structure and

programming style.

Uniformity is guaranteed also at the process level with the support of SysML.

Employing a uni�ed modelling language - and a single tool - in great part of the

development phases eases all those activities that involve the interfaces among

the phases. Indeed, in a V-based process, the output artifact of a phase is

the input artifact for the following one. The use of SysML has somehow made

rigorous this handing over.

Traceability

Software modules are directly traceable with the corresponding blocks of the

speci�cation modelled with Simulink/State�ow. Traceability is a relevant issue

in the development of safety-critical systems, since any error has to be traced
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back to the process task, or artifact defect, that produced it. The structured

development approach introduced, with the support of the Simulink/State�ow

toolsuite, has allowed de�ning navigable links between the single code statements

and the requirements.

At the SysML level, traceability involves the links between requirements diagrams

and related SysML diagrams. Traceability links are manually de�ned through sim-

ple drag and drop operations, and traceability matrixes are automatically gen-

erated. In a traditional process, traceability matrixes are manually edited, with

no tool support and consequent maintainability issues. In the experience of the

company, when change requests are issued by a customer, they normally involve

system-level requirements. The tool support available with a model-based ap-

proach allows tracing the changes from such requirements to the module-level

requirements and the corresponding models. Therefore, both the developers and

the requirements managers have a complete view of the impact of the change

requests. Instead, in a traditional process, one would have to inspect the trace-

ability matrix and check the artifacts that are a�ected by the change request, an

activity that can be rather time consuming and error prone (unless supported by

proper automated tools).

Automatic traceability support between SysML and Simulink/State�ow models

is still an open issue, since there is currently no tool that implements such a

feature.

Documentation

For safety-critical systems, the o�cial documentation associated to each process

phase and artifact is as important as the actual system. The certi�cation of

these product is mainly based on the inspection of such a documentation by an

external authority. It is therefore important to have a documentation that is

formal, expressive and up-to-date with the product status. In the process cur-

rently implemented by the company, both SysML and Simulink/State�ow models

are used to provide documentation for the process artifacts. Simulink/State�ow

models with proper comments are used to automatically generate the software

documentation. Hence, documentation and software are totally aligned. On

the other hand, SysML diagrams are integrated into the manually edited docu-
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mentation. Documents can be automatically generated from SysML as HTML

pages, but certi�cation authorities normally require to have paper-like documents

focused on text, rather than navigable HTML documents with SysML models.

The main reason is that the certi�cation authority normally enters at the end of

the development process to validate compliance with the standards, and wants

to analyse the process as a sequential history - a paper-like document - and not

as an interwoven graph of HTML pages.

The integration of the SysML models into the documents poses maintainability

issues. Indeed, if the model changes, the change is not automatically re�ected

by the documentation. However, the one-to-one correspondence between SysML

packages and process phases - and associated documents - eases the manual up-

date of the documentation. Furthermore, the traceability links between models

in di�erent packages helps the maintenance of the cross dependencies among

documents. When a model is changed, the model package clearly identi�es the

document that has to be modi�ed. Then, one can follow the traceability links to

retrieve the other models that are a�ected by the change. Such models belong to

packages with associated documents. Hence, the link among models indirectly

create a relationships among documents, and the overall SysML model becomes

a sort of navigable index for the process documentation.

Veri�cation cost

The introduction of the new development process has allowed the reduction of

the cost of the veri�cation activities, while ensuring greater con�dence on the

product safety. When passing from traditional code unit testing based on struc-

tural coverage objectives, to testing based on functional objectives aided with

abstract interpretation, it was possible to reduce the veri�cation cost of about

70%. The new approach was comparable to the previous one in terms compli-

ance to the CENELEC EN 50128 requirements on veri�cation, but resulted much

more cost-e�ective [27].

Though consistent cost improvements have been achieved, manual test de�nition

is still the bottleneck of the process, requiring about 60-70% of the whole unit-

level veri�cation cost. Preliminary experiments with formal veri�cation applied

at unit-level have shown that this technology might considerably reduce the veri-
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�cation cost for the majority of the requirements. Indeed, the recent experiments

with formal veri�cation by means of Simulink Design Veri�er have shown that

the veri�cation cost can be further reduced by 50-66% [26].

Control

The structured development has allowed achieving greater control over the com-

ponents and, �nally, to produce software with less bugs as the input to the

veri�cation activities. This is witnessed by the number of bugs found by ver-

i�cation, which decreased from 10 to 3 bugs per module when the company

introduced a rigorous model-based process.

Complexity

The main drawback encountered in introducing code generation has been the

size and overall complexity of the resulting software. Though these aspects

were not complicating the veri�cation activities, they posed challenges from the

performance point of view.

Real-time constraints for railway signalling systems are not so demanding as

are for other kinds of embedded systems, and the typically required response

times are in the range of hundreds of milliseconds. However they are reactive

systems that, might a failure occur, shall activate failure recovery procedures in

a limited amount of time in order to reach the safe state. The reaction time

is in�uenced by the main execution time. In the �rst experiments with code

generation this execution time resulted four times higher compared to the time

required by the execution of the corresponding hand-crafted code. In order not

to abandon the advantages of auto-coding, in the discussed case an hardware

upgrade actually solved the problem. However, during the design of new, more

complex systems, this issue has to be taken into account while de�ning the

hardware architecture. The hardware designer shall consider that the code is

larger in size, and there is less �exibility in terms of optimizations at source

level (we recall that optimizations at compiler level are not recommended for the

development of safety-critical systems): when designing the platform, a larger

amount of memory has to be planned if one wants to employ automatic code

generation.
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Knowledge Transfer

Some lessons have been learned also from the knowledge transfer point of view.

The research activity has been performed according to the following research

management model. On one side there is a research assistant who comes from

the university and is fully focused on the technology to be introduced. On the

other side there is an internal development team, which puts the research into

practice on real projects when the exploratory studies are successful.

The results obtained during this experience would have not been possible through

intermittent collaborations only. Moreover, they would have been hardly achieved

if just an internal person would have been in charge of the research. In order

to separate the research from the time-to-market issues, the independence of

the research assistant from the development team has to be preserved. Large

companies can pro�t from dedicated internal research teams, or even entire re-

search divisions. Instead, medium-size companies often have to employ the same

personnel for performing research explorations, which are always needed to stay

on the market, and for taking care of the day-by-day software development. We

argue that the research management model adopted in the presented experience,

based on an academic researcher independently operating within a company, can

be adapted to other medium-size companies with comparable results.

5.3 Remarks

General Electric Transportation Systems was able to understand the bene�ts of

a model-based process aided with formal methods especially thanks to the initial

enthusiasm associated to code generation. Such technology showed its potentials

in few months, and its adoption was straightforward. Then, a butter�y-e�ect in

the process occurred that brought to the adoption of other techniques, such as

model-based testing, abstract interpretation and system modelling with SysML.

Formal veri�cation is not part of the GETS development process yet. We can

observe that nevertheless formal veri�cation with model checking is often the

subject of the �rst experiments of companies with something formal, especially

in the safety-critical systems domain. In many cases, they did not go much

further than these initial experiments, notwithstanding the achieved evidence
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of lower veri�cation costs. Indeed, the adoption of formal veri�cation without

intermediate steps is not common: the di�culties related to the steep learning

curve required by formal methods often tend to discourage industrial practitioners

and managers, who need to see the evidence of productivity gains within short

time. The reported experience shows that may be more e�ective to start with

less formal tasks (i.e., code generation), and later adopt more formal tasks, such

as veri�cation, when the company has matured a full awareness of the actual

bene�ts of �being formal�.



Conclusions

The work presented in this dissertation is the result of a research activity aimed

to introduce formal methods and code generation techniques in the development

process of a railway signalling manufacturer, the General Electric Transportation

Systems (GETS) [30], Intelligent Control Systems, division of Florence.

The introduction of new development methodologies in a consolidated process is

not a straightforward step: GETS operates in a CENELEC [9] regulated context,

and every modi�cation in the development process is likely to be followed by

modi�cations in the veri�cation and validation activities.

At the beginning of the research activity GETS was already experimenting the

Model-Based Design (MBD) and code generation by means of Simulink/State-

�ow, as result of another PhD research [28]. The issue that the company was

facing at that moment was mostly related to the validation of the generated code,

and to the integration of the MBD in the existing development process. In order

to address this issue, GETS required the support of the Computer Engineering

department of the University of Florence.

The code generator provided by the Simulink/State�ow tool-suite is not certi-

�ed according to the CENELEC EN 50128 [10]; since the norms ask for a certi�d

or proven-in-use translator, a strategy has to be de�ned in order to assess the

equivalence between the model and generated code behaviour. The proposed

strategy was to ful�ll the requirements of the proven-in-use criterion. As a core
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part of the process to achieve the proven-in-use property for the translator, it was

useful to introduce a technique named translation validation [17]: this technique

consists in verifying the functional equivalence between models and generated

software by executing the same tests on the model and the code, and afterwards

performing further structural analysis to ensure that no additional functionality

has been introduced [4]. The Model-Based Testing (MBT) approach that was

�nally adopted as part of new veri�cation process was an implementation of the

translation validation technique. A framework called 2M-TVF, that stands for

Matlab Model Translation Validation Framework, fully automated and integrated

with the Simulink/State�ow environment was developed during the experimen-

tation to perform the MBT and the code validation process.

The introduction of abstract interpretation [34] led to a further improvement in

terms of development time and veri�cation accuracy.

According to the experience, the cost of formal modeling is slighty higher than

manual coding (aboout 30%). This workload increase is partly due to the fact

that graphic editing is inherently slower than textual editing, and partly to the

training cost required by the technological shift. Nevertherless, the case study

shows that this greater e�ort is payed back by the cost reduction of the code

veri�cation activities (about 70% in total, with respect to a manual coding based

process) and by the increased con�dence on the product safety and quality.

Simulink/State�ow are suitable for formalizing low-level requirements, but they

are less usable for high-level system requirements speci�cation and analysis.

GETS decided to introduce modeling techniques also at a higher level of the

development process, in order to substitute the paper-based approach, with nat-

ural language documents, inherently ambiguous, completed by informal diagrams,

with a more formal one. The OMG SysML language [55] was seen as the solution

to substitute the traditional text-centric speci�cations with a formal notation.

The opensource tool TOPCASED was chosen to perform the �rst experimen-

tation with SysML in a real project, namely the FDT project. SysML model

revealed to be a useful process control tool for the project leader. Anyway using

an open-source tool to perform core activities in a company with time-to-market

pressure was not considered the best choice, mostly for the absence of support

and problems related to the tool stability. For these reasons the SysML language
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survived within the development process of the company, while the TOPCASED

tool was soon abandoned in favor of the commercial tool MagicDraw [52].

The new development process [29] is the result of a long-term e�ort in in-

troducing formal methods within the company. All the technologies used in

the development of the various projects (Metrô Rio project (2009-2011), FDT

project (2010-2011)), namely formal modeling, code generation, model-based

testing and abstract interpretation, passed a three-stage exam before becoming

an internal standard. First, they have been evaluated on an actual product, but

o�ine with respect to the development process, then they have been introduced

as part of pilot projects and �nally they have been re�ned and adopted. Formal

veri�cation, experimented in the context of Metrô Rio project, is still at the �rst

stage. The possibility of a further reduction of the unit-level veri�cation costs

encourages the company to invest in this direction, and activities are currently

performed to prepare the subsequent stages. Concerning the formal methods ap-

plied to the requirements and architecture speci�cation, the experience of GETS

has shown that SysML is an appropriate speci�cation mean in a safety-critical

context, but informal natural language is still fundamental to support the evi-

dence that a formal process has been followed.
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