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Introduction

This work concerns the study of perturbations of the dynamics of mean-field sys-
tems. A mean-field system is a many-body system that belongs to the class of
systems with long-range interaction, whose dynamics is governed by the Vlasov
equation and by kinetic equations like Landau and Lenard-Balescu equations.
The time-scale in which long-range interactions converge to equilibrium di-
verges on system size, N . The process which causes thermalization is governed
by energy exchange, such as collisions, and this process occurs on time-scales
depending algebraically on the size of the system. Consequently, the early dy-
namics of long-range interacting systems is ruled by the Vlasov equation and
in the N ! 1 limit this equation becomes exact. Vlasov equation shows an
infinity of stable and stationary solutions which are related to long-living states
for finite systems, called Quasi-Stationary States (QSSs).

Our interest in this work is to study the stability and the response with
respect to an external field which perturbs the dynamics of QSSs, as shown
in Chapters 3, 4 and 5. For finite Hamiltonian systems this study is usually
carried out by using Kubo linear response theory for the Liouville equation.
This theory describes the variation of observables due to the perturbation when
the unperturbed state is the thermal equilibrium. Such variation is related to
equilibrium fluctuations through the celebrated fluctuation-dissipation theorem.
Indeed, Kubo formula for the response shows that equilibrium statistical fluctu-
ations are proportional to the response to external perturbations.

Having in mind this procedure, in Chapters 3 and 4 we derive the analogue
of Kubo linear response theory starting from the Vlasov equation instead of the
Liouville equation. The non linear nature of Vlasov equation brings to a more
involved linear response formula. The external perturbation induces two sources
of response: the first one is the usual Kubo term which relates the variation
of the observable to statistical fluctuations, while the second term arises from
fluctuations induced in the mean-field interaction.
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4

Vlasov stationary solutions can be either homogeneous or inhomogeneous
and this property will play an important role in the solution of the linear re-
sponse theory. The dynamics of homogeneous states is the dynamics of free
particles because the mean-field interaction is zero. Actually, this property en-
sure a separations of modes of the systems and the theoretical description of the
linear Vlasov response can be carried out by using Fourier-Laplace technique,
shown in Chapter 3. In this framework Landau shown a form of relaxation of
the Vlasov dynamics, called Landau damping. However, modes of inhomoge-
neous states are coupled and their contribution can be easily separated only
for integrable interactions, as shown in Chapter 4. In this case the infinity of
constants of motion of the Vlasov dynamics, called Casimirs, constrain the time
evolution of the system. For generic interactions we consider an approximate
linear theory in which only some of these constants of motion are constrained.
However, the dynamics of states close to transition points is strongly affected
by the presence of Casimirs, i.e., critical exponents in the Vlasov regime of a
mean-field integrable system can be different to classical mean-field critical
exponents.

Finally, we will extend in Chapter 5 the linear response theory of the Vlasov
equation to different kind of perturbations, such as the action of a big system
to a small one.

This manuscript is organized as follows.
In Chapter 1 we will introduce the field of long-range interactions focusing

on both equilibrium and out-of-equilibrium features. Specifically, we will expose
the main properties of equilibrium states, for which the lack of additivity induces
phenomena absent for short-range interacting systems. Moreover, we will argue
about out-of-equilibrium features, such as the birth of Quasi-Stationary States.
These states motivate the present study, indeed we will perturb a QSS in order
to evaluate qualitatively and quantitatively the response of the system and its
stability. In the last Section of Chapter 1 we will describe a paradigmatic
mean-field model, the Hamiltonian Mean-Field model, which will be used in
the following Chapters to verify the theory introduced in our work.

In Chapter 2 we will present a brief survey of Kinetic Theory for long-range
interactions. We will justify the range of validity of this theory and the separa-
tion of time-scales that allows the definition and the study of QSSs. In detail,
we will show the standard procedure used to obtain the Vlasov equation for
mean-field systems. On top of that, we will describe the relaxation mechanism
which leads to Landau damping. After that, we will comment on the process
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which rules relaxation to equilibrium on time-scales that diverge with system
size and the properties of the Lenard-Balescu equation, the kinetic equation
which governs such process of equilibration.

In Chapter 3 we will discuss the linear response theory of the Vlasov equa-
tion for homogeneous initial conditions with respect to an external perturbation.
In the first part of this Chapter we will study the theory at the linear order in
the size of the perturbation and we will compare the theoretical results with
numerical simulations on some representative QSS. In the last part of Chapter
3 we will describe the theory at successive orders in the perturbation, with an
emphasis on the second order.

In Chapter 4 we will treat the linear response theory for inhomogeneous
states. For such states, the solution of the linear Vlasov equation becomes
more complicated due to the coupling of different modes of the system. Linear
response theory can be exactly performed for integrable systems, for which a
transformation of coordinates separates the contributions of different modes. In
this work we will introduce an approximation of linear response theory which
can be used for non-integrable systems. We will compare this linear response
theory with numerical simulations and with the exact one for an integrable
system. In the last Section of Chapter 4 we will discuss a feature of the exact
linear response theory for the Hamiltonian Mean-Field model: a broad class
of initial states settles down on perturbed QSSs where a conveniently defined
susceptibility diverges close to the instability threshold, similarly to second
order phase transitions at equilibrium. The study of critical exponents shows a
non trivial result induced by Vlasov dynamics.

In Chapter 5 we will discuss the coupling of two mean-field systems in-
teracting via a mean-field term. Specifically, we will study the evolution of a
small system coupled to a large one. This latter system will play the role of a
reservoir, in analogy with the thermal bath for short-range interactions.
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Chapter 1

Long-range interactions

This work concerns the study of many-body systems with Long
Range Interactions (LRI). A long range interaction is a two-body
conservative interaction whose amplitude goes to zero weakly as
the distance between the two bodies increases. This feature intro-
duces peculiar and counter-intuitive properties both in equilibrium
and in out-of-equilibrium statistical mechanics. Long range inter-
actions are common in different areas of physics, such as in plasma
physics, in astrophysics and in fluid dynamics. They can also ap-
pear as effective macroscopic interactions in elasticity, capillarity,
etc. While specific behaviors in these different areas seem unre-
lated, there are some universal features arising from the nature itself
of the long range interaction. The first Section is devoted to an in-
troduction to the equilibrium properties of LRI while in the following
Sections we discuss the non-equilibrium ones.

1.1 Overview on long-range interacting systems
Long-Range Interacting (LRI) systems are common in nature [32, 44, 97]. Exam-
ples come from different areas of study; electromagnetic [48, 72, 88] and gravi-
tational [17, 90, 94, 107] forces are fundamental interactions with a long-range
behavior in some regimes. Other kinds of LRI systems are given by coarse
grained interactions, such as mean-field [44], elastic [32] or hydrodynamic [24]
ones.

There are different definitions of LRI, depending on the properties on which

7



8 Long-range interactions

one focuses the analysis. For instance, in the context of statistical mechanics
it is useful to require that the energy is extensive. Extensivity implies that
for large systems the energy has to grow linearly with the number of degrees
of freedom. Therefore, the potential has to be an integrable function and one
assumes that for large distances between the two bodies the LRI decay with a
power-law behaviour.

Calling V (r) the potential describing the interaction and r = |r
1

� r
2

| the
distance between two bodies labelled 1 and 2 we have

V (r) ⇡ J

r↵
, (1.1)

where J is the coupling constant and ↵ � 0. This power-law decaying potential
determines the extensive properties of the energy of the system. Assuming
spherical symmetry. we can write, for a homogeneous system, the energy per
volume as

e =
E

V

= ⌦d�1

Z R

�

⇢
rd�1dr

r↵
=

⌦d�1

⇢

d� ↵ [Rd�↵ � �d�↵] (1.2)

where � is a cut-off at small distances, R is a cut-off at large distances and
V is the volume. d is the dimension of the embedding space for the motion
of the particles and ⌦d is the angular volume in such a d-dimensional space.
Moreover, ⇢ is a mass (or charge) density, which becomes a constant in the
usual thermodynamic limit. It is then straightforward to check that

• if ↵ > d then e! const when R!1,

• if 0  ↵  d then e ⇠ V

1�↵/d (V ⇠ Rd) .

In terms of the extensive energy E = eV, we find

↵ > d E ⇠ V (1.3)
↵  d E ⇠ V

2�↵/d , (1.4)

and the free energy

F = E � TS , S ⇠ V , (1.5)

with T the intensive temperature and S the entropy, that typically scales linearly
with the volume. Therefore, thermodynamic properties of long-range systems are
dominated by the energy E , which scales with volume V faster than linear.
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A way out from this energy dominance was proposed by Marc Kac. It
consists in scaling the coupling constant as

J ! JV↵/d�1 . (1.6)

In this way the free energy turns out to be extensive in the volume

F ⇠ V . (1.7)

However, this is a “mathematical trick" and doesn’t correspond to any physical
effect: no interaction that changes its strength when varying the volume is
known.

Kac’s trick can be adopted only for the sake of performing a meaningful
large volume limit. Once the free energy per particle is obtained, the physical
description can be retrieved by scaling back the coupling constant.

(M ,E )

M

E

1 1 2 2(M ,E )

Figure 1.1: Non convex shape of the region of accessible macrostates in the magne-
tization/energy plane for long-range systems.

Alternatively, one can rescale temperature

T ! TV1�↵/d (1.8)

and then the free energy scales superlinearly in the volume

F ⇠ V

2�↵/d . (1.9)

Although one can get an extensive energy using Kac’s trick, this is not
necessarily additive [111]. The violation of additivity is crucial in determining
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the thermodynamic properties of systems with long-range interactions [79, 80].
For instance, it determines a violation of convexity of the domain of accessible
macrostates. An example is shown in Fig. 1.1, where the boundary of the region
of accessible macrostates is represented by the thick line with the shape of
a bean. In standard thermodynamics, for short range interactions, all states
satisfying

E = �E
1

+(1��)E
2

, M = �M
1

+(1��)M
2

, 0  �  1 (1.10)

must be present at the macroscopic level, because additivity is satisfied. This
is in general not true for long-range interactions. This property could deter-
mine a violation of ergodicity in the microcanonical ensemble [84], where some
configuration cannot be visited.

�

1

2

d
1 2 3 4

mean-field exponents

non additive

short-range

exponents

long-range

exponents

Figure 1.2: Different behaviors of LRI depending on dimension d and the exponent
� = ↵� d.

Let us consider power-law potentials, such as (1.1). Defining ↵ = d + �

one can identify different regions in the d, � plane (see Fig. 1.2) [52]. The
non additive long-range region has �d  �  0. However, the long-range
behavior extends to � > 0, although the energy is here additive and Kac’s
trick is not necessary. It can be shown that, if 0 < �  d/2, the critical
behavior is characterized by mean-field (classical) exponents, exactly as for the
full region d > 4 (any value of �). Moreover, in a region � > d/2 and below a
given line which is only partially known, the system maintains some long-range
features, but with non classical �-dependent critical exponents. Some points
along this line are known. At d = 1 the line passes through � = 1: indeed in
the whole range 0  �  1 one can have phase transitions in one dimension.
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For d = 2, numerical simulations show that the line passes through � = 7/4.
Finally, renormalization group techniques suggest that the line reaches � = 2

from below at d = 4. Above this line and below d = 4 the system becomes
short-range.

Another way of implementing the V ! 1 limit is obtained by using Kac
potentials [65,99,115]. The length scale of the interaction is finite for any finite
system but it grows with the system size. In parallel, the magnitude of the
interaction decreases with system size, such as for the Kac’s trick. Calling �

the length scale, the Kac potential is defined as

V (q) = ��d�(�q), (1.11)

with � a smooth function. The thermodynamic limit is hence given by V =

�d !1 and leads to the mean-field description [99].
Another kind of definition of LRI comes from dynamical reasons: the force

has to be intensive in order to get a mean-field description of the dynamics [25].
For instance, power-law interactions with an exponent d � 1 < ↵ < d have a
long-range behavior of the energy, but a mean-field force which scales linearly
with the volume without any trick. Hence, requiring a mean-field dynamics is
different from requiring a mean-field statistical mechanics [54].

1.2 Equilibrium properties of LRI
Long-range interacting systems show intriguing equilibrium features that are
not present for short-range ones, such as ensemble inequivalence [113] that
implies, for example, negative specific heat [77] in the microcanonical ensemble.
Moreover, one-dimensional short-range models cannot have phase transition
[103], while LRI contradict this statement and allow phase transition in one
dimension [21, 47].

The use of canonical ensemble in system with long-range interactions is
doubtful, because its classical derivation from the microcanonical ensemble is
based on additivity. In the following, we will consider both the microcanon-
ical and the canonical ensemble. In order to justify the use of the canonical
distribution for systems with LRI, that are non additive, one must resort to an al-
ternative physical interpretation. For instance, one can consider that the system
is in interaction with an external bath of a different nature, e.g. stochastic.

Let us discuss ensemble inequivalence and its most notable feature related
to the negative specific heat in the microcanonical ensemble in the case of the
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gravitational interaction. In Section 1.4 we will discuss a model which presents
a second order phase transition in one dimension.

Ensemble inequivalence

For systems with long-range interactions statistical ensembles can be inequiv-
alent. For instance, the temperature-energy relation might not be the same in
the microcanonical and canonical ensemble. In the microcanonical ensemble
specific heat can be negative.

*

ε)

ε

slope=β∗

ε ββ* *

βφ(    )

LFT

s(

sβ ε −     (ε )**

∗

slope=

LFT

ε)

β*

ε∗

β ε* ε

βφ(    ) s(

β ε −φ(ε )
∗ ∗

Figure 1.3: Upper panel: Free energy from entropy by a Legendre-Fenchel transform.
Lower panel: Entropy from free energy.

Let us first illustrate the case in which ensembles are indeed equivalent.
It means that free energy can be obtained by a Legendre-Fenchel transform of
entropy and that entropy is itself the Legendre-Fenchel transform of free energy

�(�) = �f(�) = inf

"
[�"� s(")] , s(") = inf

�
[�"� �(�)] , (1.12)

where f(�) is the free energy and �(�) the Massieu potential. This involutive
property is shown graphically in Fig. 1.3.
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This relation is a consequence of a saddle-point limit N !1

exp(��Nf(�)) = Z(�) =

Z

dE

Z

dq3Ndp3N

h3N
�(H(p, q)� E) exp(��E)

=

Z

dE ⌦(E) exp(��E) = N

Z

d" exp (�N [�"� s(")]) ,

(1.13)

where Z(�) is the partition function.
At a first order phase transition, entropy has a constant slope in the energy

range ["
1

, "2] (the phase coexistence region), resulting into a free energy with
a cusp at the transition inverse temperature �t, see Fig. 1.4.

φ(β)

ε

LFT

ε ε1 2

slope=βε)

β β

different slopes

s(
t

t

Figure 1.4: Relation between entropy and free energy at a first order phase transition.

A system with a first order phase transition is an extreme case of ensemble
equivalence, since there is a continuum of microcanonical states with different
energy having the same temperature, specific heat is ill defined and one must
introduce the concept of latent heat.

If entropy becomes non concave, as shown in Figs. 1.5 and 1.6, microcanoni-
cal and canonical ensemble are not equivalent. The Legendre-Fenchel transform
is no more involutive: if applied to the entropy it returns the correct free energy.
However, the Legendre-Fenchel transform of free energy does not coincide with
entropy but rather with its concave envelope. This is the basic feature causing
ensemble inequivalence.

As a side remark, let us observe that Maxwell’s equal area condition
Z "2

"1

d"(�(")� �t) = 0 (1.14)

implies (and is a consequence of) free energy continuity at �t.
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In the case of a phase transition with symmetry breaking, entropy can have
two branches, a high energy and a low energy one. For instance, for a fer-
romagnetic system, the high energy paramagnetic phase with magnetization
m = 0 and the low energy ferromagnetic phase with m 6= 0, see Fig. 1.5.
The two branches of the entropy generically cross with two different slopes, i.e.
two different temperatures. At a given energy "t two different microcanonical
temperatures can coexist, we find a temperature jump. This is not conceptually
different from the energy jump (latent heat) found in the canonical ensemble. A
temperature jump can only appear in an energy range where entropy is globally
convex. In Fig. 1.5 we show a situation where also a region of negative specific
heat is present, but this is not necessary for the existence of a temperature
jump. The whole region where these peculiar phenomena appear is completely
washed out in the canonical ensemble. As shown in Fig. 1.5, after Legendre-
Fenchel transform, one obtains a free energy which has the same features as the
one modeling a first-order phase transition. It has indeed been conjectured that
a necessary condition in order to have negative specific heat and temperature
jumps in the microcanonical ensemble is the presence of a first-order transition
in the canonical ensemble.

t
ε

LFT

β βε1 ε2εt

V 0

slope=β

m

different slopes

m 0

=0

c

φ(β)εs( )

t

Figure 1.5: Left panel: Microcanonical entropy with negative specific heat and
temperature jump in a system with symmetry breaking. Right panel: Corresponding
free energy in the canonical ensemble.

In order to better understand the origin of negative specific heat, it is useful
to introduce the constrained entropy

s(",m) = lim

N!1

ln

P

{S
i

} � (E �H({Si})) � (Nm�M({Si}))
N

, (1.15)

where Si is a discrete spin variable (e.g. Si = ±1), M =

P

i Si is the extensive
magnetization and m = M/N the magnetization per spin. In terms of the
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constrained entropy, we define the corresponding free energy as

�f(�, ",m) = �✏� s(",m) . (1.16)

The microcanonical and canonical variational problems can be defined as follows

s(") = sup

m
s(",m) , f(�) = inf

m,"
f(�, ",m). (1.17)

In the canonical extremal problem we seek for values of " and m that realise
an extremum of f(�), while in the microcanonical problem we only maximize
over m. It can be easily checked that the extrema are the same for the two
problems. However, the stability is different. In the microcanonical problem the
only condition for stability is smm < 0 (the subscript mm indicates a double
derivative with respect to m), while in the canonical problem the trace and
determinant of the Hessian must be positive, implying that s"" and smm are both
negative and s2"m � s""smm > 0. The canonical problem is more constrained.
It can be shown that the specific heat has the following expression in both the
ensembles

cV =

�2smm

(s2"m � s""smm)
, (1.18)

which implies that specific heat is always positive in the canonical ensemble,
while it can be negative in the microcanonical ensemble at free energy saddles
s"" > 0, smm < 0.

Negative specific heat

The most notable and fundamental example of long-range interaction is gravity,
for which the potential energy is

U(

�!r
1

, . . . ,�!r N) = �Gm2

X

1i<jN

1

|�!r i ��!r j|
(1.19)

In order to get a finite microcanonical partition sum, one has to confine the self-
gravitating system in a box of volume V . This is necessary also when doing the
statistical mechanics of the perfect gas. Hence,

⌦(E) =

Z

V

Y

i

d�!r id
�!p i�(E�K�U) /

Z

V

Y

i

d�!r i(E�U)

(3N�2)/2 , (1.20)
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where K is kinetic energy and a first integration over momenta has been per-
formed. The integral in (1.20) behaves as r4�3N/2

ij when rij = |�!r i ��!r j|! 0,
i.e. when two bodies get close. Hence, it diverges for N � 3, determining a
divergence of microcanonical entropy S(E) = kB ln⌦(E) (similarly, the canon-
ical partition function diverges). There is no way to prevent this short-distance
divergence other than regularizing Newtonian potential. This can be done in
different ways: softening, hard-core, Pauli exclusion. Irrespective of the way
gravitational potential is regularized, the non-additive features related to the
long-range nature of the interaction persist. These are significantly represented
by the presence of negative specific heat. This phenomenon can be heuristically
justified using virial theorem, which for the gravitational potential reads

< K >= �1

2

< U > , < K >= �E (1.21)

where < · > denotes a temporal average. Since kinetic energy K is always pos-
itive, it is clear that this theorem can only be valid for bound states, for which E

2

ε

β(ε)

εεaε

slope=

1

βt

βt

s( )ε

ε2εbεaε1 ε3

A1

a) b)

ε3 2εbε

A

Figure 1.6: Schematic shape of microcanonical entropy per particle s = S/N as a
function of energy per particle " = E/N (solid line) showing a “globally" convex region
in the range ["

1

, "

2

], the thick dashed line realizes the “concave envelope". b) Inverse
temperature � as a function of ". According to the Maxwell’s constructions the areas
A

1

and A

2

are equal. The curve �(") represents states that are stable (solid line),
unstable (dotted line) and metastable (dashed lines).

is negative. Using equipartition theorem, average kinetic energy is proportional
to temperature and, hence, the second identity in (1.21) tells us that specific
heat cV , which is proportional to dE/dT , is indeed negative. However, this is
just handwaving and this type of argument uses plenty of hypotheses. More
rigorously, it can be shown that regularized self-gravitating systems confined
in a box have an entropy that is a non concave function of the energy, as shown
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in Fig. 1.6a. Since specific heat is related to the second derivative of entropy
with respect to energy

@2s/@"2 = �(cV T 2

)

�1 , (1.22)

it follows that in the energy range ["a, "b], where the entropy is convex, specific
heat must be negative. For short-range additive interactions all states within
the wider range ["

1

, "
2

] would have an entropy that is represented by thick
dashed line in Fig. 1.6a. In Fig. 1.6b, the inverse temperature � is plotted as
a function of ". In the negative specific heat region, temperature decreases as
energy increases.

1.3 Out of equilibrium properties: the phenomenol-
ogy

Numerical simulations for a simple mean-field model, the HMF model which
will be introduced in Section 1.4 [4, 117], have shown an unusual behavior of
the relaxation of the system towards the equilibrium predicted by statistical
mechanics. Further numerical experiments on other models have shown that
this property in not a peculiarity of the HMF model but, actually, it is a general
feature of LRIs. For instance, in plasma theory it has been known since many
years [45, 102] that the relaxation time-scale of systems for which the Vlasov
approximation is valid, grows with the system size. Actually, a one-dimensional
neutral plasma model, the plasma sheet model, shows that the relaxation time
grows as n2

d, where nd = ⇢�D is the number of particles inside a region with
a typical length of the order of Debye’s length. Inside this range the Vlasov
equation gives a good approximation of the dynamics. These phenomena have
led to the discovery of long-living states, called Quasi-Stationary States (QSS).

In figure 1.7 (such as in figure 3.5) we observe a typical behavior, here shown
for a prototypical long-range model, the HMF model, that will be discussed in
Section 1.4. The system is initially sampled in a homogeneous state called
Water-Bag1 and with an energy such that the homogeneous phase is not ther-
modynamically stable. However, the qualitative behavior shown in that figure
is representative of many different homogeneous initial states and it is not only
a peculiarity of the Water-Bag distribution. Since, the HMF model describes a

1See Section 3.2.1 for a precise definition of the Water-Bag distribution
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ferromagnetic system and we monitor the magnetization which probes the ho-
mogeneity of the state. In figure 1.7 we plot magnetization versus the logarithm
of time. Increasing system size N (here the number of particles), we observe
different phases, well represented by the following diagram:

Initial Condition

Quasistationary state

Boltzmann-Gibbs Equilibrium

⌧v = O(1)

⌧c = N �

Violent
relaxation

Collisional
relaxation

?

?

In the first step the system undergoes a fast evolution called violent relaxation,
in which the state might change brutally. This phase does not seem to depend
on system size and, moreover, it does not depend on the initial homogeneity of
the state. It can be shown rigorously [25, 46, 87] that for early times the system



1.3 Out of equilibrium properties: the phenomenology 19

is well described by Vlasov dynamics2, for which the time evolution is ruled by
mean-field effects.

Violent relaxation originates from the search at early times of a stable state.
Until now there isn’t a convincing theoretical description of this phenomenon.
Numerically it is confirmed that Vlasov dynamics fully describes violent re-
laxation. Whenever the initial datum is very close (in some sense) to a Vlasov
stable state violent relaxation is described by linear Landau damping [71]. How-
ever, when the initial state is not close to a stable state, the system should visit
others stable states and up to now it is not clear which one is preferred. A
mathematical work of Villani and co-workers [83] shows that an initial state at
a finite but small distance to a stable state, remains close to such stable state
and its marginal density3 converges exponentially in time to a limit distribution.
Unfortunately, both the relation between the initial datum and the the stable
state and how large can be the distance between them is not known. Using a
statistical mechanics approach, Lynden-Bell [76] proposed a trial description of
the relaxed state starting from the knowledge of the initial datum. He argued
that Vlasov evolution is conservative, hence each region of the single particle
phase space conserves its volume. This conservation induces an "exclusion" prin-
ciple on every region of the phase space. Partitioning the single particle phase
space in microscopic cells, one can use Fermi-Dirac statistic on the cells with
a weight given by the initial datum. That approach does not consider some
effects, such as strong oscillations in the mean-field, which change the energy
of each cell and change the initial weight. A more fine tuned approach is given
by Levin and co-workers [95].

After violent relaxation the system settles down in a state, the QSS, whose
life-time increases with system size; therefore it diverges in the thermodynamics
limit. On a much longer time-scale the system undergoes a process of colli-
sional relaxation in analogy with collisional relaxation of short-range systems.
Rigorously [25], the presence of a diverging life-time of QSS is due to Vlasov
dynamics and its growth is at least logarithmic in N . However, simulations show
that stationary states survive for longer time-scales whenever they are stable
under Vlasov dynamics, and their life-time ⌧c increases algebraically with N ,
thus ⌧c = N � . In principle the life-time exponent should depend on the partic-
ular choice of the initial condition. In the case of the HMF model and with a
water-bag initial condition, the one of figure 1.7, the scaling exponent � was first

2See Chapter 2 for the derivation of the Vlasov equation.
3Marginal density is the integral over the velocities of the phase-space distribution.
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evaluated as � ⇡ 1.7 [117]. That exponent was confirmed numerically by other
studies [33, 118], in which the number of particles of the system was increased
up to 10

3 � 10

4. An analytical approach to explain this non trivial exponent
was proposed in Ref. [49]. More recently, Ref. [51] provides strong numerical
evidence with simulations performed with N ⇠ 10

5, that the scaling exponent
might be � ⇡ 2. That result is compatible with Kinetic Theory, as shown in
Chapter 2, but should be confirmed by simulation performed with larger number
of particles. However, finer phase space effects reveal even larger time-scales
of the order eN in the process of the approach to the final state, as found by
Campa et al. [33] and Chavanis [35].

On a longer time-scale, compared to the QSS’ life-time, the system goes to-
wards Boltzmann-Gibbs equilibrium, which is described by standard statistical
mechanics. The way in which the system relaxes to equilibrium is ruled by col-
lective phenomena where the energy is exchanged between all the constituents
of the system.

How can we explain this behavior? A way to characterize it is given by
Kinetic Theory, which describes the evolution of a many particle systems without
any assumption of relaxation. Indeed, long-living out of equilibrium states can
be outlined in a general framework. In Chapter 2 we briefly describe that
theory, while in the next subSection we argue about a definition of long-range
interactions starting from out-of-equilibrium features instead of equilibrium ones.

1.3.1 Dynamical definition of long-range interactions
QSSs depend on the particular kind of long-range interaction, i.e. figure 1.7
shows the relaxation time-scale of a mean-field model. However, power-law
interactions (1.1) show a scaling in time that depends on the parameter � of
the power-law. Let us consider a different definition of long-range interactions,
valid for power-law potentials, based on the presence of QSSs and a finite virial
ratio [36, 54].

Actually, power-law interactions present a crossover from small to large
scales. Small scales are governed by collisions in which two particles scatter,
while large scales feel the truly long-range features, such as collective effects.
In figure 1.8 we summarize different regions in the (d, �) plane corresponding
to different scaling laws.

When the exponent � > 0, (↵ > d) the energy exchange is driven by
collisions, therefore, by the small scale behavior. No long-range features are
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Figure 1.8: Different dynamical behavior of LRI.

present, such as QSSs, and the relaxation, as for dilute gases, is ruled by
the Boltzmann equation. An example of such interaction is the Lenard-Jones
potential.

When � < �d, (↵ > 0) the interaction is not divergent on small scales and,
moreover, does not go to zero for large distances. An example of such power-law
interaction is the harmonic oscillator for which the potential energy is quadratic
with the distance. We do not consider these cases.

A critical exponent �c = �d+1

2

exists, below which the system is well de-
scribed by soft collisions and mean-field effects. Therefore, small scales can be
neglected and large scales dominate the dynamics. For instance, in this regime
the kinetic equation that describes the relaxation is Lenard-Balescu equation,
discussed in Chapter 2. The relaxation time-scale can increase even slower
than linear in the size of the systems, e.g., in figure 1.7 we find ⌧c & N1.7.

In the regime �d+1

2

< � < �1, both small and large scales contribute to
the dynamics of the system and the relaxation time-scale diverges algebraically
but with an exponent smaller then one.

Finally, in the range �1 < � < 0, dynamics strongly depends on the small
scales features and no general results exists to the best of our knowledge.

1.4 A paradigmatic model: the Hamiltonian Mean
Field model

Long-range interacting systems are systems in which the interaction is all to all.
This feature induces a difficulty in the numerical simulations of such systems,
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because the CPU time needed to perform an integration step increases with
the size of the system. Therefore, the time necessary to perform a simulation
increases generically as N2, preventing the study of big systems.

In this perspective, the study of mean-field interactions overcomes the prob-
lem of the wild increase of simulation time, because N-body molecular dynamics
simulations need a CPU time that grows only linearly with system size. We
focus in this Section on a paradigmatic mean-field model: the Hamiltonian
Mean-Filed (HMF) model [3,43,59]. This model has captured a lot of attention,
because it is a simple model showing a lot of peculiarities of long-range inter-
acting systems [32]. Moreover, the HMF model is relevant for the study of the
free electron laser [20, 39] and for recoil atomic systems [19].

The Hamiltonian function of the N particle HMF system is

HN =

N
X

i=1

p2i
2

+

J

2N

N⇥N
X

i 6=j

(1� cos(qi � qj)) , (1.23)

where the interaction among particles is ruled by a single mode cosine potential.
The coordinates qi are angles and their embedding space is the circle, hence
[�⇡, ⇡]. The momenta pj are the conjugate momenta of the angles and can take
any real value. The particles have unitary mass and J is the coupling constant.
The HMF Hamiltonian shows a global translational symmetry of the angles and
the dynamics conserves total momentum.

The HMF model can be seen in two different ways: from one point of view,
it is an isolated Hamiltonian system in which N particles move on a unitary
circle and interact with a strength that depends on their relative angle. From
another point of view, it can be seen as a system of N spins on a lattice without
any notions of distance. Here, two spins in two sites of the lattice interact via
an XY potential.

This analogy allows us to define the magnetization vector m = (mx,my),
where

mx =

1

N

N
X

i=1

cos(qi), my =
1

N

N
X

i=1

sin(qi). (1.24)

Using this vector the Hamiltonian function (1.23) becomes

HN =

N
X

i=1

p2i
2

+

JN

2

�

1�m2

�

, m2

= m2

x +m2

y, (1.25)
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for any N . The quantity m is the modulus of the magnetization vector (1.24).
A negative coupling constant, J < 0, gives a repulsive interaction (or anti-

ferromagnetic interaction) and the equilibrium state is homogeneous at all en-
ergies (temperatures). However, the dynamics induces the growth of biclusters
in the low energies phase [13]. These clusters are stable on some time-scale.

Hereafter, we are interested in the ferromagnetic case, where J > 0, since
this case presents both homogeneous and inhomogeneous phases at the thermo-
dynamics level where QSSs can be characterized more easily. The interaction
strength, J , can be set to J = 1 without loss of generality.

Let us discuss the equilibrium features and the continuum description of the
HMF model.

Equilibrium statistical mechanics of the HMF model

The HMF model is a system with a continuous phase transition from a disor-
dered (homogeneous) phase where magnetization is zero m = 0, to an ordered
(inhomogeneous) phase where magnetization is different from zero, m 6= 0.
Therefore, the modulus of the magnetization plays the role of the order pa-
rameter of a second order phase transition. Such a transition shows ensemble
equivalence: microcanonical and canonical ensembles are equivalent. Conse-
quently, we consider the simpler canonical ensemble to treat the equilibrium
statistical mechanics of the HMF model.

The partition function of the HMF model at a given inverse temperature �
and number of particles N is

Z(�, N) =

✓

2⇡

�e�

◆N/2 Z
 

N
Y

i=1

dqi

!

exp

8

<

:

�

2N

2

4

 

N
X

j=1

cos qj

!

2

+

 

N
X

j=1

sin qj

!

2

3

5

9

=

;

.

(1.26)

This integral can be computed using the Hubbard-Stratonovic transformation
and the saddle point method [32, 58]. The result is

Z(�, N) ⇡ e�N�(�), (1.27)

�(�) =

�

2

� 1

2

ln 2⇡ +

1

2

ln � + inf

x�0

⇢

�x2

2

� ln I
0

(�x)

�

, (1.28)

where I
0

is the modified Bessel function of order 0 and the value of x that mini-
mizes the term between the brackets in the formula above gives the equilibrium
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magnetization. Actually, the modulus of magnetization solves a self-consistence
equation

m =

I
1

(�m)

I
0

(�m)

, (1.29)

where I
1

is the modified Bessel function of order 1, the derivative of I
0

. The up-
per panel of Figure 1.9 shows the magnetization as a function of microcanonical
energy.

In the microcanonical ensemble the equilibrium state of the HMF model is
parametrized by the energy instead of the inverse temperature. The relation
between the two is the energy formula in the canonical ensemble

e(�) =
1

2�
+

1

2

�

1�m(�)2
�

, (1.30)

and inverting this one-to-one relation one gets the temperature as a function
of energy, as shown in the lower panel of Figure 1.9. At the critical energy
ec = 0.75 there is a phase transition and the magnetization becomes non zero
at lower energies. This critical energy corresponds to the critical canonical
temperature Tc = 0.5 and to the critical inverse temperature �c = 2.

Let us discuss the response to an external field in equilibrium. This will
be important for a comparison with the results of Chapters 3 and 4. The size
of the external field is h and the magnetic susceptibility, �, is the variation of
the magnetization for vanishing perturbations. The equilibrium magnetization
in presence of an external field, along the spontaneous magnetization direction,
is given by the solution of

m0
(�, h) =

I
1

I
0

⇣

�(m0
(�, h) + h)

⌘

. (1.31)

We develop this expression in Taylor series around the unperturbed state (h =

0)

m0
= m+ h�+O(h2

), (1.32)

to get the thermodynamic response

�can =

1/� + I
2

/I
0

�m2

m2 � I
2

/I
0

. (1.33)

This formula gives canonical susceptibility. It describes the response of the
system to an external field in the thermodynamic limit in the canonical ensemble.
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Figure 1.9: Upper panel: magnetization vs. energy. Lower panel: Caloric curve of the
HMF model (1.4). In the snapshot of the lower panel the behavior of the temperature
as a function of the energy shows a negative slope: historically, this was the first hint
to the presence of QSSs. The points are the results of numerical simulations, the full
lines are obtained analytically from statistical mechanics.

The microcanonical ensemble gives a different result. We must now consider
that the energy remains constant when the external field is coupled adiabati-
cally. As a consequence, inverse temperature changes as follows

� ! �0
= � + h�� +O(h2

). (1.34)

The energy is the sum of kinetic and potential energies. Hence, a variation of
the magnetization induces a variation of the temperature in order to maintain
the energy constant, as follows

1

2�
+

1

2

(1�m2

) =

1

2�0 +
1

2

(1�m02
). (1.35)
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Using expansion (1.34) and comparing order by order in h, one gets the relation

�� = �2m�2�, (1.36)

at linear order. The self-consistency equation of the equilibrium magnetization
becomes

m0
(�, h) =

I
1

I
0

⇣

�0
(m0

(�0, h) + h)
⌘

, (1.37)

and the thermodynamic response of magnetization reads

�micro = �
1/� + I

2

/I
0

�m2

1� �(1/� + I
2

/I
0

�m2

)(1� 2m2�)
. (1.38)

We call it microcanonical susceptibility of the system.

Continuum description of the HMF model

We discuss here the continuum limit of the HMF model. It consists in the
evaluation of the dynamics in the infinite-N limit, when the evolution of the
system is fully described by the Vlasov equation [114].

In such a limit sums becomes integrals over the single particle phase space
because the empirical density

fempirical(q, p, t|{qi, pi}) =
1

N

N
X

i=1

h�(qi � q)�(pi � p)i (1.39)

converges to the single particle distribution function f(q, p, t), solution of the
Vlasov equation (2.17). Here the brackets h· · · i stand for the average over the
N-particles phase space in the limit N !1. As a consequence, magnetization
components become

mx[f ] =

Z

dqdp f(q, p, t) cos(q), my[f ] =

Z

dqdp f(q, p, t) sin(q), (1.40)

which now are functions of the distribution itself. The Hamiltonian of the system
is

H[f ](q, p, t) =
p2

2

�mx[f ] cos(q)�my[f ] sin(q), (1.41)
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while the single particle energy is

e[f ](q, p, t) =
p2

2

� 1

2

(mx[f ] cos(q) +my[f ] sin(q)) . (1.42)

The mean value of the single particle energy is a constant of the motion, although
the mean value of the Hamiltonian is not, because it represents the energy of a
single particle which is not conserved.
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Chapter 2

Kinetic Theory

This Chapter gives a brief survey on Kinetic Theory. Kinetic theory
is a useful tool to analyze collective behavior and relaxation to equi-
librium in many-body systems. It relies on a rigorous construction
but is nevertheless often based on several uncontrolled approxima-
tions. The first part of the Chapter is devoted to the derivation of
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of
equations. In the second part we consider mean-field dynamics in
which the system evolves without correlations. In the last part we
consider the correlations as the source of the relaxation process to
equilibrium.

2.1 Introduction

Numerical simulations of isolated LRI systems [117] point out the existence of
long living out of equilibrium states, called Quasi-Stationary States (QSSs). As
discussed in Chapter 1, these states show a slow evolution towards equilibrium
with a lifetime that grows algebraically with system size. Kinetic Theory offers
a powerful tool to extract information on the relaxation problem and the equi-
libration process. It is a perturbation theory in which the small parameter for
long-range interacting systems is 1/N , where N is the number of the particles of
the system. Exact results [25,46] show that there is a time-scale that increases
at least logarithmically with N . For shorter times the Vlasov equation [114]
gives a reliable description of the dynamics of the system. Such equation is
the leading order in the small parameter 1/N and it has an infinity of station-

29
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ary solutions. Whenever these stationary solutions are stable, Vlasov dynamics
governs the evolution on even longer time-scales, as shown numerically [117]
and analytically [29, 30, 32]. The lifetime of QSS grows algebraically with N

and therefore these states can be observed in numerical experiments [64, 117].
On the contrary, when the initial state is not linearly stable the system goes
towards a new stable state on a time-scale growing logarithmically with system
size [62, 84], as predicted by the estimate of the kinetic theory.

The relaxation towards equilibrium is given by the next order term in the
small parameter. For short range interactions this term is the collisional term
of the celebrated Boltzmann equation [12], where relaxation is driven by two-
body encounters. Every particle feels the interaction with the neighbouring ones
and the exchange of energy occurs by collisions. On the contrary, for purely
long-range interactions, encounters play a negligible role and the relaxation is
described by the Lenard-Balescu equation [11, 73]. Here, relaxation is caused
by the exchange of energy between a given particle and all the others, due to
the long-range nature of the force. As a consequence, the typical time-scale of
relaxation depends on system size.

In this Chapter we present the derivation of Kinetic equations from the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, briefly discussing
some mathematical [75] and physical [12] problems. We consider only the Kinetic
equations of long-range interactions, therefore, we will not mention at all the
theory related to short-range interactions and the Boltzmann equation. More
detailed references, but not exhaustive about Kinetic Theory in general, can be
found in the bibliography.

For the sake of simplicity, we discuss only one-dimensional systems because
the main analysis presented in this Chapter does not depend on the dimension-
ality and the generalization to higher dimensions is trivial. The dimensionality
becomes important only in the last part of this Chapter for the Lenard-Balescu
equation discussed in Section 2.6, where the integral that appears in the col-
lisional term is zero for one-dimensional systems but in general not zero for
higher dimensions. We will argue about the importance of dimension in that
Section, in relation with the relaxation mechanism of long-range interacting
systems. However, that equation is not important for the successive Chapters.
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2.2 Liouville equation
Let us consider the following Hamiltonian system of N particles

HN =

N
X

i=1

p2i
2m

+

N
X

i=1

U(qi) +
1

2

N
X

i,j

V (|qi � qj|) , (2.1)

where U(q) is an external potential acting on particle i and V(|qi � qj|) is the
two-body potential between particles i and j . The coordinates qi 2 D are the
positions of the particles in the one dimensional embedding space and pi 2 R

are the conjugate momenta. The space D is assumed to be finite and with
periodic boundary conditions, while momenta extend to infinity. The particles
composing the system have the same mass and are identical.

It is usual to rescale time t with the number of particle N because the
dynamics is governed by collective effects. Such rescaling introduces the Kac’s
prescription [66], which consists in putting a factor 1/N in front of the potential,
making potential energy extensive. Let us define the new potential as

V (r)! 1

N
V (r), (2.2)

in order to apply the prescription.
Let us consider the distribution function of the system in the full phase space

fN(q1, p1, · · · , qN , pN , t). It gives the probability density that the particle i is
in the elementary volume with center in (qi, pi) 8i. Due to the identity of the
particles, the distribution is symmetric under a permutation of labels and the
initial state is a product state of single distribution functions

fN(q1, p1, · · · , qN , pN , t = 0) =

N
Y

i=1

f
0

(qi, pi). (2.3)

Indeed, factorizability of the initial state introduces the statistical approach
in Kinetic Theory [105]. The distribution evolves according to the Liouville
equation [68]

@tfN + LNfN = 0, (2.4)

where

LNfN =

N
X

i=1

pi@q
i

fN �
1

2N

X

i,j

@q
i

V (|qi � qj|)@p
i

fN , (2.5)
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is the Liouville operator which acts linearly on distributions. Equation (2.4)
describes the conservation of phase space volume which holds for Hamiltonian
systems. On one side, solving Liouville equation is a hard task, because it
corresponds to the knowledge of the full dynamical evolution. On the other
side, this information is too much for a macroscopic description of the system,
thus we can manipulate it in order to eliminate some details.

In the following we use the notation

" 1" = x
1

= (q
1

, p
1

), (2.6)

that identifies the phase space coordinates of particle "1" in different ways.
Whereas, we use a short hand notation for partial derivatives

@t =
@

@t
, @q =

@

@q
, @p =

@

@p
. (2.7)

2.3 BBGKY hierarchy
Kinetic theory is mainly interested in the evaluation of the time evolution of the
single particle distribution function [105]. Therefore, we use a coarse-graining
procedure in order to get such a distribution [75]. The single particle distribution
function f(x) is [34]

f(x) =
1

N

N
X

i=1

h�(x� xi)iN , (2.8)

where the brackets h. . . iN correspond to the average with respect to the solution
of the Liouville equation (2.4) in the N-particle phase space. Starting from this
definition, let us introduce the s-distribution function [12] as

fs(x1

, · · · , xs, t) =
N !

(N � s)!N s

X

i1,··· ,is
h�(x

1

� xi1) · · · �(xs � xi
s

)iN , (2.9)

where the factorial terms take into account the permutation symmetry of the N

particle distribution, while the N s factor is useful to get an intensive definition
of fs [86].

The evolution of the reduced distributions is generated by the Liouville
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equation and, using standard techniques, we get the BBGKY hierarchy

@tfs +
s
X

i=1

pi@q
i

fs �
1

N

s⇥s
X

i,j=1⇥1

@q
i

V (qi � qj)@p
i

fs =

s
X

i=1

Z

dqs+1

dps+1

@q
i

V (qi � qs+1

)@p
i

fs+1

. (2.10)

In appendix A.1 we shortly derive this hierarchy of equations. Mathematically,
this operator becomes exact in the N ! 1 limit, which coincides with the
Vlasov hierarchy [106].

The s-th equation of the hierarchy describes the evolution of the s-distribution
function and its dynamics is related to that of the (s + 1)-distribution. There-
fore, the BBGKY hierarchy (2.10) provides an exact description of the dynamics,
such as the Liouville equation, because we need the knowledge of fN in order to
treat the evolution of the reduced distributions at a lower order. The information
encoded in the BBGKY hierarchy is again too detailed and we have to use a
truncation of the hierarchy in order to obtain a coarse grained description.

Let us divide the reduced distribution functions in connected and non-
connected parts. We introduce the correlation functions gs [74] which derive
from the relations

f
2

(x
1

, x
2

, t) = f(x
1

, t)f(x
2

, t) + g
2

(x
1

, x
2

, t), (2.11)

f
3

(x
1

, x
2

, x
3

, t) =

1

3

f(x
1

, t)f
2

(x
2

, x
3

, t) +
1

3

f(x
2

, t)f
2

(x
3

, x
1

, t) +

1

3

f(x
2

, t)f
2

(x
3

, x
1

, t) + g
3

(x
1

, x
2

, x
3

, t), (2.12)

= f(x
1

, t)f(x
2

, t)f(x
3

, t) +
1

3

f(x
1

, t)g
2

(x
2

, x
3

, t) +

1

3

f(x
2

, t)g
2

(x
3

, x
1

, t) +
1

3

f(x
3

, t)g
2

(x
1

, x
2

, t) +

g
3

(x
1

, x
2

, x
3

, t), (2.13)
· · ·

and so on for the successive distributions. For practical reasons, we use here a
1

3

factor which is not used in literature. Actually this constant does not modify
the basic equations that we will use later.

Correlations, which are the connected parts of the s-distributions, take into
account the conditional probability among different particles, thus they carry
the information about energy exchanges among the particles. Invariance of the
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correlations under permutations is directly inherited from the invariance of the
solution of the Liouville equation under such permutations.

Using the decomposition of the distribution functions in connected and non-
connected parts, the first equation of the hierarchy (2.10) becomes

@tf+p
1

@q1f�@p1f@q1�[f ](q1, t) = @p1

Z

dx
2

g
2

(x
1

, x
2

, t)@q1V (q
1

�q
2

), (2.14)

where

�[f ](q
1

, t) =

Z

dx
2

f(x
2

, t)V (q
2

� q
1

) (2.15)

is the mean-field potential and we have set to zero the self-interaction of each
particle. The initial value of the distribution function is given by a smooth func-
tion which describes the initial state f

1

(q, p, t = 0) = f
0

(q, p). The connected
correlation evolves with an equation derived from the equation for f

2

, which
reads

@tg2 = �p
1

@q1g2 + @q1�[f ]@p1g2 +
1

N
f(x

2

)@q1V (q
1

� q
2

)@p1f +

1

N
@q1V (q

1

� q
2

)@p1g2 +

@p1f

Z

dx
3

g
2

(x
2

, x
3

, t)@q1V (q
1

� q
3

) +

3@p1

Z

dx
3

g
3

(x
1

, x
2

, x
3

, t)@q1V (q
1

� q
3

) + {1 ! 2}, (2.16)

where {1 ! 2} means the same terms with the indices 1 and 2 exchanged.

2.4 The Vlasov equation
Discarding correlations in the first equation of the BBGKY hierarchy (2.14) one
gets the Vlasov equation [50, 114]

@tf + p@qf � @pf@q�[f ] = 0, f(q, p, t = 0) = f
0

(q, p), (2.17)

where the potential is defined in Eq. (2.15) and it is a functional of the one-
particle distribution itself. Therefore, this equation is a non linear equation [83].
It is exact in the limit in which the number of particle goes to infinity and
correlations are negligible. This limit is called mean-field limit [25,69]. Although
its solution should be simpler than the solution of the Liouville equation Eq. (2.4),
the loss of linearity introduces some important features discussed below.
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From the physical point of view, the Vlasov equation is used to describe
the evolution of different systems, such as plasmas [88] or the dynamics of
galaxies [17].

Rigorous results [25,46] state that the Vlasov equation gives a good descrip-
tion of large systems when the pair potential is long-range and it is not too
pathological. For instance, a pathological potential is the 1/r one (electrostatic
and Newtonian potential) because the divergence at the origin gives diverging
integrals [1]. One can overcome such problem by introducing a cutoff at short
distances and by evaluating the quantities of interest in the limit in which the
cutoff goes to zero.

The Vlasov equation, Eq. (2.17), preserves the Lebesgue measure of the sin-
gle particle phase space dqdp (the Liouville measure). Therefore, the dynamical
evolution described by this equation does not show standard relaxation phenom-
ena. This feature is related to the time inversion invariance, a consequence of
the Hamiltonian structure of the Vlasov equation. Although the Vlasov equation
is endowed with an Hamiltonian structure, its analysis is more involved than
the one of the finite N equations, because it is an infinite dimensional system
and the symplectic form is defined on an infinite dimensional space [81, 109].
Furthermore, one can define a mean-field Hamiltonian

H[f ](q, p, t) =
p2

2

+ �[f ](q, t), (2.18)

which is a functional of the distribution which solves the Vlasov equation. The
mean-field potential �[f ] is given in Eq. (2.15).

Vlasov equation possesses an infinite number of stationary solutions [41,
81, 110]. For instance, a class of such solutions is the Jeans’ class [63], which
includes every integrable function of a single argument, the Hamiltonian (2.18)
of the system

f(q, p, t) = F(H(q, p, t)). (2.19)

Another important class of solution of the Vlasov equation is given by integrable
and smooth functions which depend only on the velocities,

f(q, p, t) = h(p, t). (2.20)

The Vlasov equation, which is defined in an infinite dimensional space, is
endowed with an infinite number of conserved quantities, which are integrals
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of motion. Indeed, for any smooth function c of a single argument there is a
related conserved quantity, called Casimir,

C[f ] =
Z

dqdp c(f(q, p, t)),
d

dt
C[f ] = 0. (2.21)

We will discuss the constraints of the Vlasov equation in relation to the lin-
earized dynamics in Chapter 4.4. Among all Casimirs, there is Boltzmann en-
tropy (also called mean-field entropy)

S[f ] = �
Z

dqdp f ln f. (2.22)

Its conservation in time is related to the iso-entropic evolution of the Vlasov
dynamics [81].

Others invariants are the mean-field Hamiltonian (2.18) and all the invari-
ants deriving from the symmetries of the N body system, such as momentum,
angular momentum, etc.

In the following, we will study the stability of the stationary solutions of the
Vlasov equation. Whenever a stationary solution is also stable there exists a
time-scale in which this solution can approximate quite well the dynamics of
the related finite system. This gives a theoretical foundation to QSSs.

2.5 Relaxation mechanism of the Vlasov dynamics
Vlasov dynamics is a time reversible dynamics and conserves Boltzmann entropy
(2.22). This dynamics determines a continuous evolution of the state of the sys-
tem, which is a priori incompatible with relaxation. Due to the incompressibility
of the single particle phase space, each elementary volume evolves in finer and
finer structures [83]. This filamentation is responsible for the difficulties in the
numerical simulations of the Vlasov equation on long time-scales [26].

From a macroscopic point of view one is often interested in evaluating val-
ues of some observable. Here, a question naturally arises: Is it possible to
find a stationary value of a generic observable for a system which evolves in
such finer and finer structures? Macroscopic observables are averages over the
phase space, and this introduces a weak form of convergence. The average
smooths out the small scales in phase space and can induce a convergence of
macroscopic observables to stationary values. Therefore, filamentation gives a
formal relaxation of the state of the system and can determine a relaxation of
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averaged quantities. Mathematically it is a weak convergence of the state that
induces a relaxation of the macroscopic level.

In the context of Vlasov equation a second important question concerns
the relaxation of macroscopic quantities when a stationary state is perturbed
by different sources. A pioneering work of Landau [71] has shown that there
exists a relaxation phenomenon in which small perturbations damp to zero. This
implies that an initial stationary state could be stable and well represent the
dynamics at the macroscopic level.

From the physical point of view, Landau damping is an effect in which the
perturbation produces waves of the mean field and those waves can provide or
remove energy from some part of the system [101, 104]. That energy exchange
induces a relaxation effect which decreases the amplitude of the waves them-
selves whenever the state is stable. Therefore, a typical time-scale of Landau
damping is the dynamical time-scale of the evolution of a single particle (here
O(1)) and not the relaxation time-scale of finite systems towards equilibrium
(here, O(N �

)).
In the first part of this Section we describe the filamentation process in the

case of non-interacting particles in order to introduce some mathematical tools
useful in the study of weak convergence to a steady state. In the following
Subsection we introduce Landau damping as discussed by Landau itself [71]
where an initial homogeneous state is perturbed by a small fluctuation.

2.5.1 Non interacting particles
The single particle distribution of a non interacting particle system evolves with
the following equation

@tf(q, p, t) = �p@qf(q, p, t), f(q, p, 0) = h(q, p), (2.23)

which is the equation of free transport and h(q, p) is the initial state. Let us
consider a system confined in a box in order to avoid technical problems. It is
possible to demonstrate that, when the initial distribution has some regularities,
the system relaxes to a given final state.

The solution of equation (2.23) is given by the formula

f(q, p, t) = h(q � pt, p). (2.24)

The state at time t is the initial state translated in space. Here, the only state
that does not evolve in time is the homogeneous one, where the distribution is
constant in q.
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Let us consider a generic observable a(q, p) of the single particle phase
space. Weak convergence demands that the following limit

lim

t!1

Z

dqdpf(q, p, t)a(q, p) = A1 (2.25)

exists and gives the asymptotic value A1. Whenever the coordinates (q, p) are
not correlated, weak convergence is required at least in one variable. For exam-
ple, we will show that weak convergence for homogeneous states is necessary
in the velocity space in order to compare the theoretical density of the system
with observations.

There are two ways of showing the decay of the time dependence of the
observable.

Fourier-Fourier transform

To obtain an estimate of the damping we perform the Fourier transform A.2 in
both the coordinate and the related momentum. The solution (2.24) becomes

˜f(k, ⌘, t) = ˜h(k, ⌘ + kt), (2.26)

therefore, the distribution is given by waves in mode space. We note that there
is only one static mode k = 0, which physically gives the normalization of the
system.

The spatial distribution of the system is the integral on the momenta of the
distribution function, and its modes are given by

⇢̃(k, t) =

Z

dp

Z

d⌘e�ı⌘p
˜f(k, ⌘ + kt) = ˜h(k, kt)

t!1���!
k 6=0

0. (2.27)

The Riemann-Lebesgue theorem states that when a function is smooth enough,
every mode different from zero vanishes. Consequently, from the macroscopic
point of view, the system experiences a relaxation and only the zero mode sur-
vives. This mode is not space dependent, therefore the system becomes uniform
in the spatial region in which it is constrained. However, to get a time-scale of
relaxation the modes of the initial distribution have to damp exponentially.

Fourier-Laplace transform

The other way to show the relaxation is to perform the Laplace transform A.2 in
time of the free transport equation (2.23), and the Fourier transform along the
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space direction. We get

ı! ˜f(k,!) =

˜h(k) + ıkp ˜f(k,!), (2.28)

˜f(k,!) = �ı
˜h(k)

! � kp
. (2.29)

Its inverse Laplace transform A.3 is

˜f(k, t) = �ı˜h(k)
Z ı�+1

ı��1

e�ı!t

! � kp
d!. (2.30)

where � is larger than all imaginary parts of the singularities of the integrand.
In that case � has to be positive because there is a single pole at kp on the real
axis. However, a path with positive imaginary part does not gives a convergence
of the integral but produces oscillations and a small divergence.

In order to study weak convergence, we look at the density, which is the
integral over the momenta of the distribution function. It reads

⇢̃(k, t) = �ı
Z ı�+1

ı��1
e�ı!t

Z

R
dp

˜h(k, p)

! � kp
. (2.31)

We perform an analytical continuation of the integral over momentum in order
to get damping. Since the integrand has a single pole, we use the principal
value integral (as explained in Appendix A.4) and we get

⇢̄(k,!) = �ı
Z

R
dp

˜h(k, p)

! � kp
Im(!) > 0,

= �ı�
Z

R
dp

˜h(k, p)

! � kp
� ⇡ sgn(k)

k
˜h
⇣

k,
!

k

⌘

Im(!) = 0,

= �ı
Z

R
dp

˜h(k, p)

! � kp
� 2⇡

sgn(k)

k
˜h
⇣

k,
!

k

⌘

Im(!) < 0,

(2.32)

where �
R

stays for the principal value integral and sgn is the sign function. Here,
the density function is an analytic function and the integral over momentum (the
imaginary part) has not poles. Therefore, its inverse Laplace transform gives a
vanishing contribution. The integration contour of the inverse Laplace transform
of the second term can be chosen in the lower half of the complex plane. Indeed,
after a rescaling of the frequencies, we get

⇢̃(k, t) =

Z ı�+1

ı��1
e�ık!t

˜h (k,!) ✓(�Im{!})d! = ⇢̃(k, kt), (2.33)
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and we recover the same result of the Fourier-Fourier approach.
When the initial distribution is an analytic function the Fourier transform

goes to zero exponentially fast. For instance, if the analytic function h is defined
in a strip of width �h, the amplitude of a mode Ak goes to zero exponentially as
e��hkt (see Appendix A.3). Moreover, when the system is not confined in a box
the wavelengths are not bounded from below, hence there are always modes
that do not decay and the system does not relax even in a weak sense.

Example: The equilibrium distribution

The equilibrium distribution is defined as the exponential of �H , where � is
the Lagrange multiplier representing the inverse temperature of the system and
H(q, p) is the Hamiltonian. For homogeneous systems the Hamiltonian is kinetic
energy only and the distribution becomes a Gaussian in velocities and uniform
in space. It is called the Maxwellian distribution. When the system experiences
a potential field �(q) the Fourier transform of the equilibrium distribution must
be performed in both coordinates and momenta, such that the density results
into

⇢̃eq(k, t) = ˜feq(k, kt) =
1

Z(�)

r

2⇡

�
e�2(kt)2/�F [e��]k. (2.34)

The Fourier transform of the potential part is supposed not to diverge faster
than exponentially. Therefore, the Gaussian converges to zero even faster than
exponential. This result is due to the fact that the Gaussian distribution cannot
be analytically continued in the whole complex plane, therefore one has to
consider a different path in the ! plane inside the analyticity strip . In that
case, this choice of path induces a different scaling and a faster decay.

2.5.2 Landau damping
In order to show Landau damping, one has to consider an initial state of the sys-
tem which is not stationary but close to a stationary state. When this stationary
state is stable the dynamics converges weakly to it.

One represents the single-particle distribution function via a perturbative
approach

f(q, p, t) = f
0

(q, p) + ⌘�f(q, p, t) +O(⌘2), (2.35)
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where f
0

(q, p) is the stationary distribution and ⌘ measure the smallness of the
distance to the stationary state. The function �f(q, p, t) gives the variation at
linear order in ⌘ of the distribution function with respect to the stationary state.

The evolution in time is given by a perturbative expansion of the Vlasov
equation. At order O(⌘0) one finds the unperturbed Vlasov equation, which
describes the evolution of the unperturbed state, here assumed stationary. For
instance, one finds

@tf0 = �p@qf0 + @q�[f0](q)@pf0 = 0. (2.36)

At the linear order in ⌘ one gets the evolution equation of the perturbation �f ,
so-called linear Vlasov equation, which reads

@t�f = �
⇣

p@q � @q�[f0](q)@p
⌘

�f + @q�[�f ](q, t)@pf0. (2.37)

This is a linear integro-differential equation, where the time variation of �f is
driven by two terms: the first one is the unperturbed dynamics, while the second
one takes care of the variation of the mean-field induced by the perturbation.

The solution of equation (2.37) is not a simple task when the initial state
is inhomogeneous, i.e. the distribution depends on space. There are only few
works about the solution of the linear Vlasov equation for such states [37, 93],
where the authors consider integrable models in order to simplify mathematical
and technical problems.

On the contrary, in the case of homogeneous states the solution can be
obtained using Fourier-Laplace techniques. In the following we describe ho-
mogeneous Landau damping and we shortly discuss the inhomogeneous case.

Homogeneous states

A homogeneous distribution is such that it does not depend explicitly on the
spatial coordinates of the system, but only on momenta. It has the following
properties:

• Constant in space: The distribution verifies

@qf0(q, p) = 0, (2.38)

⇢
0

(q) =

Z

dvf
0

(q, v) = (const.). (2.39)
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• Zero mean-field potential: the mean field potential is constant and can
be set to zero

�[f
0

](q) =

Z

f
0

(v)dv

Z

u(q � x)dx = 0, (2.40)

because the integral is a constant and the energy is defined apart from
constants.

• Free dynamics: At zero-th order in the perturbation the dynamics of
the system is free transport. For instance, the unperturbed distribution
function evolves as

f⌘=0

(q, p, t) = f
0

(q � pt, p), (2.41)

where f
0

(q, p) is the initial distribution. Hence, each stationary state
does not depend on the coordinate q.

We consider that at time t = 0 the system is close to a stationary stable
state. Some fluctuations should indeed be present and the stability of the state
requires that their size must become negligible at later times. For example, we
could consider the role of thermal fluctuations.

The linear equation becomes

@t�f = �p@q�f + @pf0@q�[�f ](q, t), (2.42)
�f(q, p, 0) = h(q, p), (2.43)

where h(q, p) is the initial datum of the fluctuations. Let us use the Fourier
transform in space and the Laplace transform in time. The modes are now
decoupled, so that a given mode k does not contribute to the dynamics of the
mode k0 6= k. The Fourier transform gives

@t� ˜f(k) = �ıkp� ˜f(k) + ıkũ(k)@pf0

Z

dv� ˜f(k) (2.44)

and in the equation only the single mode k appears, because the Fourier trans-
form of a convolution is the product of the Fourier transforms. Performing the
Laplace transform, we obtain the following equation

(ı! � ıkp)� ˜f =

˜h(k, p) + ıkũ(k)@pf0

Z

dv� ˜f. (2.45)
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To solve it, we extract the variation of the density by integrating over the ve-
locities. Therefore, we get

�⇢̃k(!) =

Z

dv � ˜f =

1

✏(k,!)

Z

R
dv

˜hk

! � kv
(2.46)

which is the variation of the density in Fourier-Laplace space at linear order.
It is important to stress that ! lies in the upper half complex plane, with-
out ever reaching the real line. This is a consequence of having performed a
Laplace transform, because the time integral with negative imaginary part of
the frequency does not converge (A.2). The function ✏ is called the dielectric
function [88], and it is defined as

✏(k,!) = 1� kũ(k)

Z

R
dv

1

! � kp
@vf0, Im{!} > 0. (2.47)

This function has a discontinuity on the real axis, where it is not defined at all.
Therefore, it is not an analytic function in C [42, 56].

To get the inverse Laplace transform we need to evaluate both the dielec-
tric function and the variation of the density in the lower half complex plane,
therefore we must analytically continue both of them. The analytic continuation
means that we have to remove the discontinuity preserving all the singularities.
We get the analytic continuation of the dielectric function as

✏(k,!) = 1� kũ

Z

R

dp

kp� !@pf0 Im(!) > 0,

= 1� kũ�
Z

R

dp

kp� !@pf0 � ı⇡ũ sgn(k)@pf0
�

�

�

!/k
Im(!) = 0,

= 1� kũ

Z

R

dp

kp� !@pf0 � 2ı⇡ũ sgn(k)@pf0
�

�

�

!/k
Im(!) < 0,

(2.48)

where �
R

is the principal value integral, shown in Appendix A.3. Using this trick,
the dielectric function, Eq. (2.48), is no more discontinuous.
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Also the integral in the momenta of the density has to be analytically con-
tinued with the same method, removing the discontinuity for real !

Z

R
dv

˜h(k, v)

! � kv
=

Z

R
dv

˜h(k, v)

! � kv
Im{!} > 0,

= �
Z

R
dv

˜h(k, v)

! � kv
� ı⇡˜h(k,!/k) Im{!} = 0,

=

Z

R
dv

˜h(k, v)

! � kv
� 2ı⇡˜h(k,!/k) Im{!} < 0.

(2.49)

The inverse Laplace transform can now be performed, and we get the vari-
ation of the density as a function of time

˜�⇢k(t) = 2⇡

Z

1

✏(k,!)

e�ı!t

kp� !d!✓(� Im{!})˜h(k,!/k)

�
Z

ı

✏(k,!)
e�ı!t

Z

dp
˜h(k, p)

kp� !d!, (2.50)

where the Laplace integral is computed on a contour which is closed on the
lower half complex plane. Therefore, there are here two terms: the first term
contains also singularities of the Fourier transform of the initial datum, while
the second term has singularities arising only from the zeros of the dielectric
function. These latter singularities determine Landau damping. The nearest
zero to the real axis of the dielectric function gives the slower decay of the
inverse Laplace transform, and we call �✏ its imaginary part. On the other
hand, we call �h the radius of analyticity of the initial datum, therefore the
system relaxes towards the stationary state with the law

e��t, � = min{�h,�✏}. (2.51)

The solution of the linear Vlasov equation in the Laplace-Fourier space then
reads

� ˜f =

1

ı! � ıkp



˜h(k, p)� ıkũ(k)@pf0
✏(k,!)

˜�⇢(k,!)

�

, (2.52)

where the dielectric function and the density are defined in the whole complex
plane.

An interesting feature is the stability of the initial state. For instance, one
can obtain unstable distributions where, e.g., zeros of the dielectric functions lye
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on the upper complex plane. Therefore, we can define some stability criteria
which tell us when a state is stable [31,57,91]. Here we discuss Penrose stability
criterion [98], which describes linear stability at all times.

Penrose stability criterion

Penrose criterion of linear stability of a state f
0

requires that the dielectric
function cannot be zero for real frequencies !. Along the real axis of the !-
plane, the imaginary part of the dielectric function could be zero only when the
derivative with respect to the momentum is zero. Therefore, Penrose criterion
reads

8! 2 R s .t . @pf0(!/k) = 0, Re{✏(k,!)} > 0. (2.53)

Many distribution function have a zero derivative only in the origin, thus this
statement corresponds to evaluate the dielectric function for ! ! 0.

Another stability criterion is the one of Nyquist, which states that a sta-
tionary distribution is stable when its dielectric function has zeros only in the
lower half complex plane.

Zeros on the real axis give marginally stable distributions (such as the
Water-Bag one, discussed in Section 3.2.1) and therefore the state does not
converge weakly towards the unperturbed one, but does not diverge either. The
system oscillates on a long time-scale, compared to the dynamical scale.

Inhomogeneous states

Inhomogeneous states bring in a more complicated treatment, because the
Fourier modes of the potential are coupled together and with the modes of
the unperturbed state.

In Chapter 4 we will find an approximated solution under the hypothesis
that there is a base of functions in which the modes can be decoupled. It is a
spectral analysis [42, 56]. For instance, in Ref. [93] the decoupling of the modes
is obtained for integrable systems using action-angle variables [6].

2.6 Lenard-Balescu equation
Let us consider the equation that governs the time evolution of the correlation
function, Eq. (2.16), and the order of magnitude of its terms. This equation
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contains the three body correlation function g
3

, the two body correlation g
2

and the products of single particle distribution function. First of all we set to
unity the order of f ⇡ 1 as a reference scale. The derivative of the distribution
function maintains the same order of magnitude because we assume that f

decays sufficiently fast at high momentum. Therefore the term that depends on
the two body long-range potential reads

�(N, q
1

� q
2

)(@p1 � @p2)f(x1

)f(x
2

), �(N, x) = �@xV (x)

N
. (2.54)

Its order of magnitude is � which goes as N�1 when the force is bounded in
space. For instance, a central potential such as the gravitational one, has a
singularity in the origin (or at infinity) which gives a different scaling [54]. For
the sake of simplicity, we now focus on non-singular forces such that the order
of magnitude of this term is N�1.

Let us suppose that the order of the three body function is negligible when
compared with the order of the two-body correlation function [74]. The time
evolution of g

2

is then driven for early times by the stronger term between
the initial condition g

2

(x
1

, x
2

, t = 0) and �(N, q
1

� q
2

). The initial datum of
correlations is of order 1/N or smaller; here we consider that it is negligible for
the sake of simplicity. Therefore, one gets the order of magnitude of g

2

⇡ N�1

and a hierarchy of relations

gs ⇡
1

N s�1

. (2.55)

Therefore, the inverse of the size of the system N is the small parameter on
which one can build Kinetic Theory for long-range interacting systems.

It is quite common in the study of Kinetic Theory that a hypothesis cannot be
checked a priori, but has to be self-consistent [12]. In our case, the hypothesis
that there exists a hierarchy of order of magnitudes of correlations is self-
consistent and allows a truncation and a closure of the BBGKY hierarchy at a
chosen order. For instance, we consider only the next to leading order (O(N�1

))
and we can rescale the two body correlation function such as g

2

! N�1g
2

. Then,
the time evolution of the two body correlation function is

@tg2 = �p
1

@q1g2 + @q1�[f ]@p1g2 + f(x
2

)@q1V (q
1

� q
2

)@p1f +

@p1f

Z

dx
3

g
2

(x
2

, x
3

, t)@q1V (q
1

� q
3

) + {1 ! 2}, (2.56)
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while the time evolution of the single particle distribution function reads

@tf + p
1

@q1f � @p1f@q1�[f ](q1, t) =
1

N
@p1

Z

dx
2

g
2

(x
1

, x
2

, t)@q1V (q
1

� q
2

).

(2.57)

Thus, the two equations, (2.57) and (2.56), form a set of two closed equations
coupled together [12]. A first important remark is that the evolution of the two
body correlation function is driven by the linear Vlasov operator (2.37). Each
solution of such equation for g

2

is therefore strongly related to the solution of
the linear Vlasov equation. In the following Chapters we will show how it is
possible to solve in general that equation and, moreover, which kind of questions
one gets in the case of inhomogeneous states. See, for instance, Chapters 3 and
4.

Equations (2.57) and (2.56) are not simple to solve even numerically, and
we need to assume more restrictions in order to get some useful equations.

Let us consider a stationary solution of the Vlasov equation, then it does not
depend on spatial coordinates. The two-particle correlation g

2

evolves on time-
scales of order one, whereas the one-particle distribution evolves on time-scales
of order N . Indeed, for large systems, one can assume a time-scale separation
where the distribution f is stationary when g

2

reaches its stationary form: this is
the Bogoliubov hypothesis [18], also called Markovianization assumption [105].
In order to verify this assumption the stationary solution of the Vlasov equation,
which corresponds to the initial state of f , has to be linearly stable.

Applying the Markovianization hypothesis one gets the Lenard-Balescu (LB)
equation [11, 12, 73]

@tf =

2⇡2

N

Z

dk(k@p)

Z

dp0
˜V 2

(k)

|✏(k, kp)|2 � (k(p� p0)) [k(@p � @p0)] f(p)f(p0).

(2.58)

The right hand side of this equation is called the collisional integral, having
in mind the right hand side of the Boltzmann equation. Actually, in the LB
equation the right hand side is not related to collisions, which are rare in LRI,
but rather to the energy transfer between each particle and the mean-field. A
derivation of the Lenard-Balescu equation can be found in many textbooks, such
as in Chapter 8 of [12] or in Appendix A of [88].



48 Kinetic Theory

2.6.1 Properties of the Lenard-Balescu equation
The LB equation has some properties analogous to the Boltzmann equation
[12], but it describes the relaxation of a QSS towards equilibrium of a long-
range interacting systems instead of the relaxation to equilibrium of a short-
range one. First of all, it conserves the mass, the kinetic energy and the total
momentum of the system [12]. Moreover, for positive initial distribution f

0

(q, p) >

0 (as required for a statistical and physical description [105]) the LB equation
conserves its positivity at all times.

A second remark is about the dependence of the collisional term of Eq. (2.58)
on dimensions of the physical space. For one dimensional systems the colli-
sional integral is zero because the delta function gives p = p0 for each non zero
mode, and the derivatives of the single particle distribution function are equal.
Indeed, for one dimensional systems the homogeneous phase converges towards
equilibrium with a time-scale longer than N [117]. Typically, this time-scale
is of order N2, which ensures the correctness of Kinetic Theory at the next to
leading order. On the contrary, for higher dimensional systems, the collisional
integral selects the velocities such that ~k · (~p � ~p0) = 0, where ~k, ~p and ~p0

are vectors. Accordingly, the collisional term gives a damping that brings the
system towards the equilibrium of Kinetic Theory one can prove that this is
Boltzmann-Gibbs equilibrium.

Inside the collisional integral one finds the Fourier transform of the long-
range potential divided by the modulus of the dielectric function. It describes
the effective potential of the theory which takes into account collective effects.
For instance, for plasmas, it describes Debye shielding [12, 88] and, therefore,
the behavior at large distances of the effective interaction.

The LB equation satisfies an H-theorem, which states that the mean-field
entropy

s(t) =

Z

dqdp f(q, p) ln f(q, p) + const., (2.59)

is a monotonously increasing function of time [12]. This feature is the same as for
the solution of the Boltzmann equation and ensures that the equilibrium distri-
bution exists from a physical point of view. Actually, the Maxwellian distribution
gives the distribution which maximizes s(t) when the system is homogeneous
and conserves the mass.

One of the main problems of the LB equation is its non linear nature. This
nature comes from both the ff term in the collisional integral and from the
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dielectric function, which depends itself on the single particle distribution func-
tion. This last term introduces a series of non linearities at any order fn: one
denotes this feature by "infinite" nonlinearity [88]. Whenever the dielectric func-
tion is close to one we can assume that the collisional integral is given by the
long-range potential, instead of the effective one. This assumption brings to the
Landau equation [72] which is quadratic instead of infinitely non linear, and
it is simpler to solve. Moreover, the Landau equation can be translated into
a Fokker-Planck equation in which the dynamical friction and diffusion coeffi-
cients depend on the single particle distribution function, therefore they depend
on the state of the system [12,88]. This dependence corresponds to a non-linear
Markov process [105].

A generalization of the Lenard-Balescu equation (2.58) to inhomogeneous
systems is given in Ref. [55,85]. The authors derive a Lenard-Balescu-like equa-
tion when the system is integrable. In that case the action-angle coordinates
allow for a separation of the contribution between the angle and the action in
a similar way as for the homogeneous case.

Furthermore, a generalization of the LB equation to finite space-time do-
mains is given in Ref. [7] in the case of electrostatic interactions. The authors
here shows that unstable states can be described until the linear theory is a
good approximation, thereby, in a first stage, unstable states evolve consistently
with the linear theory.
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Chapter 3

Linear response theory of
homogeneous systems

In this Chapter we describe the perturbation theory of a mean-field
system, the central issue of our work. Homogeneous QSSs can be
stable with respect to small fluctuations and in this Chapter we
answer the question about their stability against external pertur-
bations. In the first Sections we describe the linear theory of the
Vlasov equation and its solution. In the central part we discuss the
stability of the solutions and we compare the results with numerical
simulations of a simple model. In the last Section we consider to
what extent the theory at second order can be important.

3.1 Introduction
Stationary solutions of the Vlasov equation (2.17) can be QSSs when they are
stable. In Section 2.5.2 we have made a statement about the stability of an
initial homogeneous stationary state f

0

under small fluctuations around it. The
system evolves in time according to linear Vlasov theory and we have been able
to describe it by using Fourier and Laplace techniques. Linearly stable states
are attractive under such dynamics in a weak sense.

In this Chapter we perform the study of the stability and of the response to an
external perturbation of a given stationary solution of the Vlasov equation [96].
Inspired by Kubo linear response theory [70], we analyse the response of a
Vlasov-stable stationary state to the application of a small external perturba-
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tion described by a time-dependent term in the Hamiltonian. The perturbation
induces forced fluctuations around the stationary state that we treat to linear
order in the strength of the perturbation, and study their evolution in time by
using the linearized Vlasov equation. Such forced fluctuations are known to
be generically finite for Boltzmann-Gibbs equilibrium states. We show here
theoretically that they are finite and small, of the order of the perturbation, also
for Vlasov-stable stationary states. Moreover, the system reaches a new QSS
in the long-time regime, well described by the theory we develop. We support
our analysis with N-particle numerical simulations of the HMF model.

The Chapter is organized as follows. In the second Section, Sec. 3.2, we
present some remarks on the external perturbation and on some interesting
stationary solutions of the Vlasov equation. In Sec. 3.3, we develop the linear
response theory for a homogeneous QSS by using the Vlasov framework. In
Sec. 3.4, we describe the solution of the linear theory and we apply it to get
the response of different stationary states, as discussed above. Section 3.5 is
devoted to compare the results of N-particle numerical simulations of the HMF
dynamics with those of linear response theory. We also discuss the long-time
relaxation of the water-bag QSS to Boltzmann-Gibbs equilibrium under the
action of the perturbation. In the last Section, Sec. 3.6 of this Chapter we
analyse the second order theory and we apply it to the HMF model. We draw
our conclusions in Sec. 3.7.

3.2 Some introductory remarks
Let us consider an external perturbation of the form

Hext =

X

i

b(qi, t), b(qi, t) = hg(t)b(qi) (3.1)

where b(q) is a generic but smooth function while g(t) is the time dependence
of the external potential and has to be zero for times t < t

0

and positive definite.
The constant h is the size of the perturbation and in the following linear theory
it is the small parameter. For instance, linear theory requires that 1 � h in
order to ensure that the perturbation is small compared to the unperturbed state.
Moreover, for finite systems the size of the perturbation has to be larger than
the collisional terms, hence h� N�1.

In order to get a perturbation theory we ask that the Vlasov equation of the
modified dynamics does not change brutally. This implies that we can recover
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the unperturbed state in the limit h ! 0 at every time, thus we don’t get
divergences. For instance, the external action breaks the conservation of energy
doing some work on the system, but this work has to be smaller or comparable
with the size of the perturbation. This corresponds to the requirement that the
state of the system has to stable in order to obtain a qualitative and quantitative
description valid for long times. On the contrary, for slightly unstable states
linear theory looses validity on a short time-scale.

3.2.1 Initial homogeneous distribution
In the following we consider only some representative initial distributions in
order to guess the picture on the phenomenon.

Boltzmann-Gibbs distribution

The Boltzmann-Gibbs (BG) distribution corresponds to the state of thermal
equilibrium. In the homogeneous regime the state is uniform in the coordinate
and the distribution is a Gaussian in momentum. Therefore, the momentum
distribution is

fBG(p) =
1

2⇡

r

�

2⇡
e��

p

2

2
; p 2 [�1,1]. (3.2)

where � > 0 is the inverse temperature characterizing the state.
The analytical computation of the dielectric function (2.48) is not possible,

but there are some numerical results tabulated, for instance, in [53]. In the long
time limit we get

✏(k, 0) = 1� 2

�
(3.3)

whenever the stability criterion (in Section 2.53) is satisfied. This implies that
the homogeneous BG state is stable for � < 2.

Water-Bag distribution

The water-bag (WB) distribution is constant in a given domain of the single
particle phase space, and zero outside. In the homogeneous state coordinates
are uniformly distributed in [0, 2⇡] and momenta are uniformly distributed in
[�p

0

, p
0

],

fWB(p) =
1

2⇡

1

2p
0

h

⇥(p+ p
0

)�⇥(p� p
0

)

i

; p 2 [�p
0

, p
0

]. (3.4)
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where ⇥(x) denotes the unit step function or Heaviside function. The energy
density of that state reads

e =

p2
0

6

+

1

2

. (3.5)

The dielectric function may be obtained by using Eq. (2.48) to get

✏(1,!) = 1� 1

2(p2
0

� !2

)

, (3.6)

which is analytic in all the !-plane, except at the two points ! = ±p
0

.
This is a peculiar result because, on one side, the WB distribution is one

of the few distributions with a finite number of zeroes of the relative dielectric
function, while on another side these zeros are on the real axis. Real zeros
mean that the distribution shows oscillations which never damp in time. There-
fore, formally, the WB distribution is not a stable QSS. It is only marginally
stable. From kinetic theory, a marginally stable distribution could give some
divergences, and the LB equation 2.6 cannot be used.

Fermi-Dirac distribution

We now describe the Fermi-Dirac (FD) distribution. In the homogeneous state
the coordinate is uniformly distributed in [0, 2⇡], while the momentum distribu-
tion has the form:

fFD(p) = A
1

2⇡

1

1 + e�(p2�µ)
; p 2 [�1,1]. (3.7)

Here, � � 0 and µ � 0 are parameters characterizing the distribution, while
A is the normalization constant. We consider the state (3.7) in the limit of
large � in which analytic computations of various physical quantities are easier.
As � ! 1 the Fermi-Dirac state converges to the water-bag state (3.4) with
p
0

=

p
µ. As shown in Appendix B.1, to leading order in 1/�2, the normalization

is given by

A =

1

2

p
µ

⇣

1 +

⇡2

24�2µ2

⌘

, (3.8)

while the energy density is

e =

µ

6

⇣

1 +

⇡2

6�2µ2

⌘

+

1

2

. (3.9)



3.3 Linear Vlasov equation 55

Let us now investigate the conditions for the stability of the state (3.7). As
shown in the Appendix, to order 1/�2, we have

✏(1, 0) = 1� 1

2µ

⇣

1 +

⇡2

6�2µ2

⌘

. (3.10)

Therefore, the stability threshold is at a value of µ⇤ which corresponds to a zero
of the dielectric function. To order 1/�2, we get

µ⇤
=

1

2

+

2⇡2

3�2

, (3.11)

which gives the corresponding energy density

e⇤ =
7

12

+

⇡2

6�2

, (3.12)

such that at higher energies, the state (3.7) can be a QSS.

3.3 Linear Vlasov equation
The Vlasov equation describing the dynamics in presence of the external field
is

@tf � L(q, p, t)[f ]f = 0, (3.13)

where the new Liouville operator is

L[f ](q, p, t) = �p@q + @q�[f ](q, t)@p � hg(t)@qb@p, (3.14)

and �[f ](q, t) is the mean-field potential. It is defined as

�[f ](q, t) =

Z

dq0dp0 v(q � q0)f(q0, p0, t). (3.15)

As a first step, we investigate the response of the system to the external field
by monitoring the generic observable

ha(q, p)i(t) ⌘
Z

dqdp a(q, p)f(q, p, t). (3.16)

To obtain its time dependence, we need to solve Eq. (3.13) for f(q, p, t), with
the initial condition

f(q, p, 0) = f
0

(q, p). (3.17)
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Here, f
0

(q, p) is the initial state that characterizes a QSS, i.e., a stable and
stationary solution of the Vlasov equation for the unperturbed dynamics (2.17).
Thus, f

0

(q, p) satisfies

L
0

[f
0

](q, p)f
0

= 0, (3.18)

where

L
0

[f
0

](q, p) = �p@q + @q�[f0](q)@q, (3.19)

is the unperturbed Liouville operator, for instance, the generator of the dynamics
without the external field. �[f

0

] is the mean field potential of the unperturbed
state and does not depends on time.

To solve Eq. (3.13) for h⌧ 1, we expand f(q, p, t) to linear order in h. The
distribution function is decomposed in the following form

f(q, p, t) = f
0

(q, p) + h�f(q, p, t) +O(h2

), (3.20)

with the initial condition

�f(q, p, 0) = 0. (3.21)

The variation of the distribution function, �f , obeys a constraint because the
mass of the system must stay constant. This statement is translated in the
following equation

Z

dqdp �f(q, p, t) = 0, 8t. (3.22)

Substituting Eq. (3.20) in Eq. (3.13), we get, at O(1)

@tf0 � L
0

[f
0

](q, p)f
0

= 0, (3.23)

which corresponds to the unperturbed dynamics. At order h one obtains

@t�f � L
0

[f
0

](q, p)�f = L
ext

[�f ](q, p, t)f
0

, (3.24)

which is the linear Vlasov equation. The operator related with the external
perturbation reads

L
ext

[�f ](q, p, t) = @q�[�f ](q, t)@p � g(t)@qb@p. (3.25)
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It describes the effects of the external field, which are two-fold: (i) to generate
a potential due to its direct coupling to the particles which is a source of the
variation of the distribution, and (ii) to modify the mean-field potential (3.15)
from its value �[f

0

](q) in the absence of the field. Let us define the variation
of the Hamiltonian at linear order due to the perturbation

�H[�f ](q, t) = �[�f ](q, t)� hg(t)b(q), (3.26)

then the external operator becomes

Lext = @q�H @p, (3.27)

which shows a relation with the usual Kubo linear theory [70] of an N body
system.

Equation (3.23) is satisfied by virtue of the definition of f
0

that must be
a stable and stationary solution of the unperturbed dynamics. We thus solve
Eq. (3.27) for �f in order to determine f(q, p, t) at linear order from Eq. (3.20).
With the condition (3.21), the formal solution is given by the Duhamel formula,
and reads

�f(q, p, t) =

t
Z

0

d⌧ e(t�⌧)L0@q�H(q, p, ⌧)@pf0(q, p). (3.28)

Let us define the Poisson bracket between two dynamical variables a(q, p)

and c(q, p) in the single-particle phase space as

{a(q, p), c(q, p)} = @qa(q, p) @pc(q, p)� @qc(q, p) @pa(q, p) , (3.29)

thus, using Eq. (3.28) in Eqs. (3.16) and (3.20) one gets the change in the value
of ha(q, p)i(t) due to the external field:

h�ai(t) ⌘
Z

dqdp a(q, p)�f(q, p, t)

=

t
Z

0

d⌧
D

{a(t� ⌧), �H(⌧)}
E

0

. (3.30)

Here, angular brackets with 0 subscript denote averaging with respect to f
0

(q, p),
e.g.,

ha(q, p)i
0

⌘
Z

dqdp a(q, p)f
0

(q, p), (3.31)
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while

a(t� ⌧) = e�(t�⌧)L0a(q, p) (3.32)

is the time-evolved a(q, p) under the dynamics of the unperturbed system.
The above equation has a form similar to the Kubo formula for the response

to an external perturbation of a dynamical quantity defined in the full 2N-
dimensional phase space [70]. The main difference between the two equations
is that Kubo formula is a closed expression which defines self consistently the
response of the system, while, the average of the Poisson bracket with respect
to the initial distribution indicates that the response of the system depends on
properties of the initial state. Whenever the system is initially at equilibrium,
Kubo formula can be related to correlations and thus the response of the system
starting from equilibrium is driven by correlations. Moreover, correlations can
be related with other thermodynamics quantities, such as transport coefficients
and susceptibilities.

On the contrary, in the first formula (3.30) one sees that the response of
the system is a more involved expression because the potential that drives the
response, here, namely the variation of the Hamiltonian �H, depends itself on the
variation of the distribution function. It is a first hint that the full response of the
system has to be weighted with a resistance of the system itself. A perturbation
on the system determines a variation of the mean-field and, consequently, a
variation of the state. That variation absorbs a part of the energy injected into
the system, thus the response is dragged by the mean-field.

In the following Section, we show the consequences of this approach for
homogeneous QSS, i.e., when the distribution f

0

(q, p) = f
0

(p) is a function
solely of momentum, and we will be able to obtain an explicit form of the formal
solution (3.28).

3.3.1 Solution of the homogeneous state in the Fourier-Laplace
space

For homogeneous states the mean-field potential is a constant that we can put
equal to zero. In this peculiar regime the modes of the system are decoupled,
thus one can write down an equation for every mode. In order to obtain such
an equation we perform the Fourier transform.

The unperturbed operator Eq. (3.19) reduces to

L
0

(q, p)[f
0

] = �p@q, (3.33)
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so that the Duhamel formula, Eq. (3.28), becomes

�f(q, p, t) =

Z t

0

d⌧ e�(t�⌧)p@
q@q�H(⌧)@pf0(p). (3.34)

The spatial Fourier and temporal Laplace transform of �f(q, p, t) satisfies A.2
c�f(k, p,!) = @pf0(p)ıkL[e

�ıtpk
]

⇥
h

2⇡ev(k)

Z

dp0 c�f(k, p0,!)� bg(!)eb(k)
i

. (3.35)

Here, L denotes the Laplace transform:

L[e�ıtpk
] =

Z 1

0

dt eı!t�ıtpk
=

1

ı(kp� !) , Im{!} > 0 (3.36)

and the imaginary part of ! has to be positive in order to obtain a good con-
vergence of the time integral of the Laplace transform. Following the same
procedure in Chapter 2 one finds the solution, which is given by

c�f(k, p,!) = bg(!)
eb(k)

✏(k,!)

k

! � kp
@pf0(p). (3.37)

Here, ✏(k,!) is the dielectric function (2.48), analytically continued to the lower
half of the complex plane.

The variation of the Hamiltonian reads

�H(k,!) = bg(!)
˜b(k)

✏(k,!)
. (3.38)

This result states that the variation of the field felt by every single particle is
equal to the external field, but with a modulated amplitude. This modulation is
given by the dielectric function, which acts, in the Fourier space, as a resistance
of the system to the perturbation. Indeed, part of the energy injected into the
system serves to modify the mean-field and does not contribute to the dynamics
of the particles.

3.4 Solution for real times and the time asymptotic
regime

The solution in real space-time involves the inverse Laplace transform. It re-
quires the knowledge of all the zeros of the dielectric function and the poles of
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the Laplace transform of bg(!). Formally, the solution becomes

�f(q, p, t) = @pf0(p)

Z

dke�ıkq
eb(k)

Z

C

d!e�ı!t bg(!)

✏(k,!)

k

! � kp
. (3.39)

While the inverse Fourier transform is often doable analytically or numerically,
performing the inverse Laplace transform can be quite complicated. In general
this is a too complicated task but one can overcome that problem by focusing on
the asymptotic behavior of the response. We here use a theorem which states
that whenever the two following limits exist they are equal1

lim

t!1
F (t) = lim

!!0

�
! bF (!) (3.40)

where F (t) is a generic but integrable function. Hence, we can obtain the time
asymptotic response by evaluating its Laplace transform in the limit of vanishing
frequency !.

In the remaining part of this Section we will focus on the HMF model (see
Chapter 1.4). Here, we study the response of a QSS to an external perturbation
of the form

H
ext

= �hg(t)
N
X

i=1

cos qi, (3.41)

which corresponds to the choice

b(q) = cos q, (3.42)

in Eq. (3.26). The specific g(t) we choose is a step function:

g(t) =

⇢

0 for t < t
0

,

1 for t � t
0

.
(3.43)

and, for the sake of simplicity, we can consider the initial time t
0

= 0 thanks to
the time translation invariance of the unperturbed Vlasov equation.

We focus on a simple observable of the HMF model, its order parameter,
the magnetization. The change of the x-component of the magnetization due to
the field is

�mx(t) =

Z

dqdp�f(q, p, t) cos q

=

1

2

Z

C

d! e�ı!t

Z

dp
⇣

c�f(1, p,!) +c�f(�1, p,!)
⌘

, (3.44)

1see Appendix A.2
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and for the y-component

�my(t) =

Z

dqdp �f(q, p, t) sin q

=

1

2ı

Z

C

d! e�ı!t

Z

dp
⇣

c�f(�1, p,!)�c�f(1, p,!)
⌘

. (3.45)

These quantities correspond to the susceptibilities along the x and y directions,
since we extract the linear dependence of �mx,y on the size of the perturbation
h.

The Laplace and Fourier transforms of the long-range potential, the external
potential and the time dependence of the external perturbation are:

ev(k) =

h

�k,0 �
�k,�1

+ �k,1
2

i

, (3.46)

eb(k) =

�k,�1

+ �k,1
2

, (3.47)

bg(!) = � 1

ı!
, (3.48)

hence, Eqs. (3.44) and (3.45) give

�mx(t) =
1

2⇡

Z

C

d! e�ı!t 1

ı!

✏(1,!)� 1

✏(1,!)
, (3.49)

and

�my(t) = 0. (3.50)

Here, we have used the fact that, for the HMF model, there is the following
symmetry of the dielectric function

✏(1,!) = ✏(�1,!), (3.51)

as may be easily checked by using Eq. (3.46) in Eq. (2.48). It may also be seen
that

✏(k,!) = 1 for k 6= ±1. (3.52)

because the long-range potential is a cosine, so it has only the two symmetric
modes k = ±1.

Now, using the knowledge that the initial state is homogeneous, the initial
magnetization is zero mx = my = 0. Equations (3.49) and (3.50) imply that, at
linear order we get

mx(t) =
h

2⇡

Z

C

d! e�ı!t 1

ı!

✏(1,!)� 1

✏(1,!)
, (3.53)
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and

my(t) = 0. (3.54)

This result that the magnetization along the y direction is zero holds at every
order in perturbation theory when the momentum distribution is even, because
the y-magnetization observable is an odd function while the rest is even.

We are now led to evaluate these results for the different QSSs introduced
in Section 3.2.

3.4.1 The water-bag case
As discussed in Sec. 2, zeros of the dielectric function determine the temporal
behavior of the variation of the distribution function,

R

dp �f(q, p, t). The zeros
of (3.6) occur at !

p

= ±
p

p2
0

� 1/2. For p
0

< p⇤
0

= 1/2, (correspondingly,
e < e⇤ = 7/12), the pair of zeros lies on the imaginary-! axis, one in the upper
half-plane and one in the lower half. The one in the upper half-plane makes the
water-bag state linearly unstable for e < e⇤. As e approaches e⇤ from below,
the zeros move along the imaginary-! axis and hit the origin when e = e⇤.
At higher energies, the zeros start moving on the real-! axis away from the
origin in opposite directions. The fact that the zeros of the dielectric function
are strictly real for e � e⇤ implies that the water-bag state is marginally stable.
However, one can check that it is a QSS, since no observable diverges in time.

From the discussions in Sec. 3.3 and those following Eq. (3.53), one derives
that the result of linear Vlasov theory, Eq. (3.53), is valid and physically mean-
ingful only when p2

0

> 1/2. Using Eq. (3.6) in Eq. (3.53) and performing the
integral by the residue theorem gives

mx(t) =
2h

2p2
0

� 1

sin

2

⇣ t

2

r

p2
0

� 1

2

⌘

; p2
0

>
1

2

, (3.55)

while my = 0. Thus, linear Vlasov theory predicts that, in the presence of
an external field along x, the corresponding magnetization exhibits undamped
oscillations and does not approach any time-asymptotic constant value. This
prediction is verified in numerical simulations discussed in Sec. 3.5. The average
of mx(t) over a period of oscillation T is

hmxiTime average

⌘ 1

T

Z T

0

dt mx(t) =
h

2p2
0

� 1

p2
0

>
1

2

. (3.56)
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In Section 3.5, we will compare this average with numerical results.
We can consider an external perturbation acting on the system only for a

finite time. For instance, we consider the following time dependence of g

g(t) = ✓(t)� ✓(T
0

� t), (3.57)

thus when the time becomes larger than a given value T
0

> 0, the perturbation
vanishes. We can argue that the final state predicted by linear theory is the
initial state whenever f

0

is stable, but the WB distribution is only marginally
linear stable. If the parameter T

0

is such that the perturbation switched off when
the magnetization is at the maximum of an oscillation, the conservation law of
the unperturbed Vlasov equation, in the WB state, implies that the oscillation is
preserved. On the contrary we can destroy the oscillations by choosing T

0

such
that mx is at his minimum. Therefore, we define the destructive and constructive
times:

T d
0

=

2⇡n
p

p2
0

� 1/2
, (3.58)

T c
0

=

2⇡(n+ 1)

p

p2
0

� 1/2
, (3.59)

for n 2 N.
In Section 3.5 we will show numerical simulations in which a WB distribution

persists with an oscillating magnetization or not.

3.4.2 The long time regime
When the zeros of ✏(1,!) lie only in the lower-half complex-! plane, we get
the time asymptotic limit of equation (3.53), which reads

mx ⌘ lim

t!1
mx(t) = h

⇣

1� ✏(1, 0)
✏(1, 0)

⌘

. (3.60)

This equation implies a diverging magnetization at ✏(1, 0) = 0, which is clearly
not possible as the magnetization is bounded from above by unity. Therefore, in
such a case, linear response theory makes incorrect prediction. Thus, we rely
on formula (3.60) only when the result is much smaller than unity.

An interesting property of the dielectric function is its behavior in such a
long time regime. Let us consider � as an inverse energy scale, hence the
dielectric function reads as

✏(k, 0) = 1� �c(k)

�
, (3.61)
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where

�c(k) = 2⇡ṽ(k)

Z

@pf0(p)

p
dp, (3.62)

is the critical parameter below which the homogeneous distribution becomes
unstable. The variable p now is scale independent, because we consider p !p
�p. The response of the magnetization, namely the susceptibility, diverges as

a power law as a function of that parameter �. At equilibrium, the inverse energy
scale corresponds to the inverse temperature and therefore the divergence near
criticality follows a power law behavior as in the classical theory of second
order phase transitions.

Note that bg(!), given in Eq. (3.48), has a pole only at ! = 0. Following the
discussions in Sec. 3.4, we thus conclude that condition (3.6) only determines
the parameters characterizing the distribution f

0

(p) such that it is marginal
stable. For the HMF model, we need to consider only k = ±1. Since ✏(1,!) =
✏(�1,!), we can restrict ourselves to consider real frequencies !

re

, so that these
conditions become

1 + ⇡�
Z 1

�1

dp

p⌥ !
re

@pf0(p) = 0, (3.63)

@pf0(p)|!re
= 0. (3.64)

They define a stability criterion for the HMF model perturbed by an external
field.

The WB distribution is only marginally stable, hence the limit value of the
response becomes ill defined. For instance, for the WB the oscillations survive
forever for the linear theory.

The BG distribution shows a good time asymptotic limit and its dielectric
function is tabulated in [53]. The magnetization value at infinite times reads

mx =

2h

� � 2

; � < 2. (3.65)

For the FD distribution, following the discussions on the regime of validity
of the linear Vlasov theory, and using Eq. (3.10) in Eq. (3.60), we get

mx =

h
⇣

1 +

⇡2

6�2µ2

⌘

2µ� 1� ⇡2

6�2µ2

; µ > µ⇤. (3.66)
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3.5 Numerical results

In order to verify the analysis presented in Sec. 3.4, we have performed extensive
numerical simulations of the N-particle dynamics for the HMF model, (1.4),
for large N . The equations of motion were integrated using a fourth-order
symplectic scheme [78], with a time step varying from 0.01 to 0.1. In simulations,
we prepare the HMF system at time t = 0 in an initial state by sampling
independently the coordinate q of every particle uniformly in [0, 2⇡] and the
momentum p according to either the water-bag, the Fermi-Dirac, or the Gaussian
distribution. Thus, the probability distribution of the initial state is

FN(q1, p1, q2, p2, . . . , qN , pN) =
N
Y

i=1

f
0

(pi) (3.67)

where f
0

(p) is given by either of (3.4), (3.7), or (3.2). The energy of the initial
state is chosen to be such that the system is in a QSS. Then, at time t

0

, we
switch on the external perturbation, Eqs. (3.41) and (3.43), and follow the time
evolution of the magnetization along x, mx.

In obtaining numerical results, two different approaches were adopted. On
the one hand, we have followed in time the evolution of a single realization
of the initial state. These simulations are intended to check if our predictions
based on the Vlasov equation for the smooth distribution f(q, p, t) for infinite N

are also valid for a typical trajectory. Rigorous results due to Braun and Hepp
and further analysis by Jain et al. show that these typical trajectories stay close
to the trajectory of f(q, p, t) for times that increase at least logarithmically with
N [25,62]. When f

0

(p) is a stable stationary solution of the Vlasov equation, it is
known numerically [117] and analytically [30] that these times diverge as a power
of N , and are therefore sufficiently long to allow us to check even for moderate
values of N the predictions of our linear Vlasov theory for perturbations about
Vlasov-stable stationary solution f

0

(p).
On the other hand, we have obtained numerical results by averaging over

an ensemble of realizations of the initial state. The time evolution that we get
using this second method is different from the first one. This approach allows
us to reach the average and/or asymptotic value of an observable, here hmxi(t),
on a faster time-scale because of a mechanism of convergence in time, as we
describe below.
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3.5.1 Simulations for single realizations

Water-Bag distribution

 0
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Time t

(a)

t
0

= 25

Figure 3.1: mx(t) vs. time t for the water-bag QSS in the HMF model under the
action of the perturbation, Eqs. (3.41).

The oscillatory behavior of mx(t) predicted for the water-bag state, see
formula (3.55), is checked in Fig. 3.1. Oscillations around a well-defined average
persist indefinitely with no damping, as predicted by the theory. In the inset
of the same panel, the theoretical prediction is compared with the numerical
result for a few oscillations. While the agreement is quite good for the first two
periods of the oscillations, numerical data display a small frequency shift with
respect to the theoretical prediction. Moreover, an amplitude modulation may
also be observed. We have checked in our N-particle simulations that different
initial realizations produce different frequency shifts, which has a consequence
when averaging over an ensemble of initial realizations.

The numerical simulations are performed with the perturbation (3.43), with
h = 0.1 switched on at time t

0

= 25. The full line in the main plot shows
the result of an N-particle simulation, while the dashed horizontal line is the
theoretical time-averaged value of mx(t) given in Eq. (3.56). The system size
is N = 10

5, while the parameter p
0

, corresponding to energy e = 0.7, is
approximately 1.095. In the inset, the numerical result (full line) is compared
with the theoretical prediction (3.55) (dashed line).
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Figure 3.2: mx(t) vs. time t for the Fermi-Dirac QSS the HMF model. The left
panel shows the evolution of the magnetization of the Fermi-Dirac state with � = 10,
while the right panel shows the time evolution of the magnetization with � = 0.5.

Fermi-Dirac distribution

In Fig. 3.2, we show mx(t) for two numerical simulations of the Fermi-Dirac
QSS. The left panel of figure 3.2, shows a numerical simulation of a Fermi-Dirac
distribution with � = 10. For this high value of � , the Fermi-Dirac distribution
is very close to the WB one. In this case, we can calculate the theoretical
prediction only for the asymptotic value mx given in Eq. (3.66) in series of ��2.
The time evolution of mx(t) displays beatings and revivals of oscillations around
this theoretical value, shown by the dashed horizontal line in the figure. Indeed,
we cannot conclude that there will be damping in time, such as in the case of
single realization of the WB distribution. However, the mean of the oscillations
fits well to the linear theory predictions.

The right panel of figure 3.2 shows a numerical simulation of a Fermi-Dirac
distribution with � = 0.5. In this case the Fermi-Dirac distribution is very close
to the Gaussian one, and we have no prediction for the asymptotic response.
However, the blue dotted horizontal line shows the theoretical prediction of the
Gaussian distribution, which represents well the average value.

The numerical simulations in Fig. 3.2 were done with the system size N =

10

5 and µ = 1.2. In the left panel we have used � = 10, giving an energy
e ⇡ 0.7. The external perturbation of the HMF model is (3.43), h = 0.1 and
switched on at time t

0

= 25. The full line represents simulation results, while
the horizontal dashed line is the theoretical asymptotic value given in (3.66). In
the right panel of Fig. 3.2 we have used � = 0.5, giving an energy e ⇡ 1.2.
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Boltzmann-Gibbs distribution

Figure 3.3: mx(t) vs. time t for the BG state in the HMF model.

In Fig. 3.3, we show hmxi(t) for the Gaussian QSS. After the application
of the external field, the magnetization sharply increases and then fluctuates
around a value which is slightly below the theoretical prediction, Eq. (3.65). The
discrepancy between the asymptotic value of the response obtained analytically
and the one found in the numerical simulation of Fig. 3.3 is mainly due to finite-
size effects.

The numerical simulations were done using the perturbation in Eqs. (3.41)
and (3.43), with h = 0.025 switched on at time t

0

= 25. The red line represents
the result of the N-particle simulation, while the dotted horizontal line is the
theoretical asymptotic value given in Eq. (3.65). The system size is N = 10

5,
while � = 0.5, so that the energy e = 1.5.

3.5.2 Ensemble average over different realizations
In this Section, we present numerical results for the three initial QSSs (water-
bag, Fermi-Dirac, Gaussian), obtained after averaging the time evolution of
mx(t) over a set of realizations2 of the initial state. We define the average as

hmxi Ensemble average(t) =
1

Ns

N
s

X

n=1

mx

�

�

�

n
(t), (3.68)

where · · ·
�

�

�

n
labels the sample and Ns is the total number of different realiza-

tions.
2typically a thousand
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In all cases, we observe a relaxation to an asymptotic value. For the water-
bag distribution, this value compares quite well with the time-averaged magne-
tization given in formula (3.56), see Fig. 3.7 panels 1(a) and 1(b) found at the
end of this Chapter. The mechanism by which the relaxation to the asymptotic
value occurs in the water-bag case, in the absence of a true relaxation of a
single initial realization, is the frequency shift present in the different initial
realizations. This leads at a given time to an incoherent superposition of the
oscillations of the magnetization. For other distributions, the numerically de-
termined asymptotic value is compared with the theoretical value for the single
realization mx, given in formulas (3.66), and Fig. 3.7 panels 2(a) and 2(b), and
formula (3.65) and Fig. 3.7 panels 3(a) and 3(b). The agreement is quite good.

Figure 3.4: Oscillations of the magnetization for a WB distribution with a finite time
perturbation. The figure shows the constructive (red line) and the destructive (black
line) cases.

In this setting we focus our analysis on perturbations for finite times of the
WB distribution, as discussed in 3.3. The ensemble average allows a fast con-
vergence towards the unperturbed state destroying the incoherent oscillations.
Moreover, in a finite system we have a source of incoherence due the finite
N correction, thus we argue that whenever we remove the external field at T d

0

the state converges quickly towards the initial state. On the contrary, when
we consider T c

0

the oscillation persists for longer times. After that the system
relaxes towards the finite N QSS without oscillations, as shown in Fig. 3.4.
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3.5.3 Relaxation towards equilibrium

Time t

hm
x
i(
t)

Figure 3.5: Two-step relaxation of the WB QSS towards the BG equilibrium: mx(t)

vs. time t for increasing system size from N = 2000 to N = 64000 (left to right).

For finite values of N , the perturbed HMF system finally relaxes to the BG
equilibrium state. The presence of a two-step relaxation of the initial water-
bag QSS with energy e = 0.65, first to the perturbed Vlasov state and then
to equilibrium, is shown in Fig. 3.5 for increasing system sizes, Eqs. (3.41) and
(3.43), with h = 0.01. The relaxation to the first magnetization plateau with
value m ⇡ 0.125 predicted by the linear response theory takes place on a
time of O(1). The final relaxation to the equilibrium value of the magnetization
meq ⇡ 0.42 occurs on a timescale that increases algebraically with system size,
presumably with an exponent between one and two.

3.6 Perturbative theory at second order
Let us now consider the perturbation theory at second order in the size of the
perturbation h. We define the variation of the distribution function at second
order as follows

f(q, p, t) = f
0

(q, p) + h�f(q, p, t) + h2

�f(q, p, t) +O(h3

). (3.69)

We call it the second variation. The initial condition of the second variation is
zero, �f(t = 0) = 0, such as for the first variation.



3.6 Perturbative theory at second order 71

The equation that describes the time evolution of the second variation reads

@t�f + p@q�f = @q�[�f ] @pf0 + @q�H[�f ] @p�f, (3.70)

where �f is the solution of the first order equation (3.24). The solution at first
order appears on the right hand side of Eq. (3.70) and plays the role of a source
term.

Let us apply a Fourier-Laplace transform to equation (3.70)

(ı! � ıpk)c�f = ıkṽ(k)@pf0(p)

Z

dp0 c�f +

bS[�f ], (3.71)

where S is the source term which depends on �f . Using the same procedure
discussed in Section 3.3, we write the variation of the density at second order

c

�⇢(k,!) = � ı

✏(k,!)

Z

dp
bS[�f ](k, p,!)

! � kp
. (3.72)

Thereby, the variation of the distribution reads

c

�f(k, p,!) =
ı

! � kp

"

ıkṽ(k)@pf0(p)

✏(k,!)

Z

dp0
bS(k, p0,!)
! � kp0

� bS(k, p,!)
#

, (3.73)

and its Fourier and Laplace inverse transform gives the formal solution of the
Vlasov equation at second order.

Let us discuss how to implement the inverse analytic continuation on the
lower half of the complex plane of the frequencies !, in order to get the inverse
Laplace transform. First of all, we see that the source term couples different
modes. Using the definition of the variation of the Hamiltonian, Eq. (3.37), and
the definition of the variation of the distribution at first order, Eq. (3.38), we get

bS(k, p,!) = � ı

(2⇡)2d

Z

dl

Z

dm

Z

C1

d!
1

Z

C2

d!
2

˜b(l)

✏(l,!
1

)

˜b(m)

✏(m,!
2

)

⇥

ĝ(!
1

)ĝ(!
2

)(l · @p)
m · @p
!
2

� pm
f
0

(p)⇥
Z

dqeıq(k�l�m)

1

(2⇡ı)2

Z 1

0

dt eıt(!�!1�!2). (3.74)

The two contours C

1

and C

2

are such that the inverse Laplace transform is well
defined. In the last line of Eq. (3.74) we have an integral over the coordinate q,
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which gives a Dirac delta function, �(k� l�m). Furthermore, the integral over
time t gives 1/(! � !

1

� !
2

) with the constraint that the imaginary part of the
denominator has to be positive.

We have to evaluate the following integral

I(!) =
Z

C2

ĝ(!
2

)

✏(m,!
2

)

1

!
2

�mp

1

! � !
1

� !
2

d!
2

, Im{!�!
1

�!
2

} > 0.

(3.75)

The first ratio, ĝ/✏, has poles only in the lower half of the complex plane,
whenever the unperturbed state f

0

is linearly stable. The ratio 1/(!
2

�mp),
gives a pole that lies on the real axis, while the last ratio of (3.75) gives a pole
in the upper half of the complex plane. Therefore, we take a contour C

2

that
passes in the upper half complex plane in order to get only the residue of the
pole at !

2

= !� !
1

, as shown in Figure 3.6. As a drawback, this path induces

Re{!
2

}

Im{!
2

}

! � !
1

C

2

Figure 3.6: The integration path C

2

of !
2

in formula (3.75).

the constraint on the imaginary part of the other frequency Im{! � !
1

} > 0,
since Im{!

2

} > 0.
After the integration along C

2

, the source term, ˆS , reads

bS(k, p,!) = � 1

(2⇡)d+1

Z

dl

Z

C1

d!
1

˜b(l)

✏(l,!
1

)

˜b(k � l)

✏(k � l,! � !
1

)

⇥

ĝ(!
1

)ĝ(! � !
1

)(l · @p)
(k � l) · @p

! � !
1

� (k � l)p
f
0

(p). (3.76)

It is a double convolution in the frequencies and in the Fourier modes, with the
constraint on the frequencies Im{!} > 0.

We introduce the analytical continuation of the source term following the
discussion in Chapter 2. The variation of the density reads

c

�⇢(k,!) = � ı

✏(k,!)

Z

C

dp
bS[�f ](k, p,!)

! � kp
, (3.77)
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where C is the Landau contour, which continues analytically the solution in the
region of the complex plane with negative imaginary part.

We remark that the structure of the solution of the equations at any suc-
cessive order hs, with s > 2, is the same as (3.70) because the external field, b,
couples only at linear order. The difference between solutions at different orders
lies in the source term because it depends on all the solutions at lower orders.
However, the functional form of the solution is the one shown in equation (3.77).

3.6.1 The HMF case
Let us restrict the study to the HMF model (discussed in Section 1.4) in order
to get the second order solution for such a model. The solution at the first order
is shown in Section 3.3 in equation (3.37).

The external potential is a cosine and its Fourier modes are ˜b(k) = 1/2(�k,1+

�k,�1

). The zero mode, k = 0, is zero because the perturbation does not change
the normalization of the system. Thereby, the source term reads

bS(k, p,!) = � �k,2
4(2⇡)2

Z
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)
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where only the two modes k = ±2 give a non vanishing contribution. The
mean-field potential at second order is

�[�f ](q, t) =

Z

dk eıkqṽ(k)f�⇢(k, t) = 0, (3.79)

and it vanishes because ṽ has only two modes k = ±1, while the variation of
the distribution at second order has the modes k = ±2. Therefore, the second
variation of the order parameter m, namely the magnetization, is zero. Indeed,
only odd orders of the perturbative expansion give a contribution to the variation
of the magnetization. As a consequence, linear response theory turns out to be
quite robust because the first correction is of order h3, which is below the finite
N noise in many molecular dynamics simulations.
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3.7 Conclusions

In this Chapter, we have studied the response of a Hamiltonian long-range
system in a quasistationary state (QSS) to an external perturbation. The per-
turbation is characterized by an external field that couples to the canonical
coordinates of the particles. We pursued our study by analyzing the Vlasov
equation for the time evolution of the single-particle phase space distribution.
The initial QSSs are related to stable stationary states of the Vlasov equation
in the absence of the external perturbation. We have developed in a series
expansion the perturbed Vlasov equation around the QSS for a small size of the
external perturbation. At linear order, we have obtained a formal expression for
the response observed in a single-particle dynamical quantity. The perturbation
induces two different effects: the first one is directly related to the action of the
external field on each particle of the system. This kind of process is comparable
to Kubo response of Hamiltonian systems. The second effect is the variation of
the mean-field potential induced by the perturbation itself. Therefore, each par-
ticle feels an effective interaction modulated by both the effects. This introduces
a non-linear behavior in the response mechanism. This non linearity gives a
different response compared to the Kubo one although both of them show the
same formal definition.

For an initial homogeneous QSS, which is uniform in the coordinates, we
have derived a closed form expression for the response function. We have applied
this formalism to the Hamiltonian mean-field model and we have studied the
analytical prediction for three representative QSSs: the water-bag QSS, the
Fermi-Dirac QSS and the Gaussian QSS. For the Gaussian and Fermi-Dirac
distributions we have derived the time asymptotic value of the response and,
indeed, we have fully characterized the new QSS in which the system settled
down. On the other hand, in the case of the Water-Bag distribution we were
able to derive the finite time response and the time asymptotic one for the
ensemble in which we average different realizations. Moreover, we have derived
the variation at second order in the size of the perturbation of the response of
the system for which a coupling between different modes of the long-range
interaction appears.

We have compared the theoretical values of the response for the three differ-
ent QSSs with numerical N-body simulations for different sizes N of the system.
The theoretical prediction is in good agreement with numerical experiments on
the time-scale in which the Vlasov dynamics describes well the evolution of the
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system, as shown by kinetic theory (Chapter 2). We have also analysed the
long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium
state.
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Figure 3.7: Linear response of a water-bag QSS (panels 1(a), 1(b)), a Fermi-Dirac
QSS with � = 10 (panels 2(a), 2(b)), and the homogeneous equilibrium state (panels
3(a),3(b)) for the HMF model under the perturbation, Eqs. (3.41) and (3.43), with h =

0.01. All simulation data have been averaged over several realizations of the initial
state. In each case, panel (a) shows the time evolution of the averaged magnetization
hmxiEnsemble average(t) as obtained from N-particle simulations, and its asymptotic
approach either to the time average in Eq. (3.56) for the water-bag initial state or
to mx given in Eq. (3.66) for the Fermi-Dirac QSS, or to mx given in Eq. (3.65) for
the Gaussian QSS. In panel (b), we show the N-particle simulation results for the
asymptotic magnetization as a function of energy (the parameter µ in the Fermi-Dirac
case). The error bars denote the standard deviation of fluctuations around the asymptotic
value. The system size N is 16, 000 for panels 1(a), 1(b) , 2(a), 2(b), and 10, 000 for
panels 3(a), 3(b).



Chapter 4

Linear response theory of
inhomogeneous systems

In this Chapter we discuss the linearized Vlasov equation around
inhomogeneous QSSs. In the first Section we consider the equation
for the variation of the mean-field potential felt by every particle
instead of the evolution equation for the variation of the distribution
function, as it is usually done. The formal solution is given in the
second Section and in the central part of the Chapter we show the
difficulties behind the studies of inhomogeneous systems. In the
following part we compare the theoretical prediction with numeri-
cal simulations. In the last Section, we discuss the behavior of the
solution close to the points in which the distribution looses its sta-
bility. In some regime one can define critical exponents similarly to
equilibrium phase transitions.

4.1 Introduction
In this Chapter, we consider perturbations of the dynamics obtained by the ad-
dition of a conservative external field. As in previous Chapter 3, we restrict
ourselves to the study of small perturbations within linear response theory.
However, we do not use integrability as a requirement to derive the linear
response formula as done in Refs. [14, 15, 93]. This has a drawback, because
integrals of motion have to be imposed by hand in order to obtain the correct
result. The Vlasov equation has an infinity of conserved quantities besides

77
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those related to symmetries, the so-called Casimirs [82]. Since we are unable
to impose this infinity of constraints, we consider a finite number of them (e.g.
normalization of the single-particle distribution) and therefore derive an approx-
imate response formula. The advantage with respect to previous approaches is
that our response formula can be obtained in general also for non integrable
systems. Moreover, our method allows us to consider many different unperturbed
states, both homogeneous and inhomogeneous.

In order to illustrate the validity of our approach we explicitly derive the
response to an externally applied field for the Hamiltonian Mean-Field (HMF)
model (Section 1.4). This allows us to compare our approximate formula with
the exact one derived in Ref. [93]. We obtain a good agreement excluding a
region of energy close to the second-order phase transition of the model, where
the response diverges.

The stability threshold shows a critical behavior in analogy with second
order phase transitions with universal exponents independent of the chosen
distribution. We derive and analyse numerically the behavior close to those
critical points using the exact linear response theory in Ref. [93]. However,
the approximate linear response theory is not precise enough to describe the
divergence around the inhomogeneous side of the critical point because Casimirs
play an important role in this regime. Indeed, the approximate linear response
theory will get classical critical exponents and not the Vlasov one.

The Chapter is organized as follows. In Section 4.2 we derive our linear
response formula for generic inhomogeneous states. its time asymptotics is
studied in Section 4.3. Section 4.4 is devoted to the discussion of the constraints
of the dynamics. We apply our response formula in Section 4.5 to the HMF
model and, in Section 4.6, we demonstrate the agreement of our predictions
with numerical simulations realized for different unperturbed states of the HMF
model. The last Section 4.7 is devoted to the study of the critical behavior ruled
by the exact solution of the inhomogeneous distribution.

4.2 Derivation of the response formula

In the previous Chapter 3 we have obtained the linear Vlasov equation (3.24)
for a general initial distribution and, using Duhamel formula, we have derived
closed equations for both the variation of the distribution function �f and the
variation of the Hamiltonian �H. Since the variation of the Hamiltonian does
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not depend on velocity, it is convenient to develop a method based on it. The
corresponding equation, Eq. (3.26), is an inhomogeneous integro-differential
equation. Moreover, obtaining a solution of this equations allows one to derive
�f using the same Duhamel formula (3.28).

Laplace transforming (Appendix A.2) both sides of (3.26) yields

� ˆH(q,!) =

ˆb(q,!) +

Z

dxdv u(q � x)R(!){� ˆH(x,!), f
0

}, (4.1)

R = L[U ](s) =
Z 1

0

e�ı!tetL0dt =
1

ı! � L
0

, (4.2)

where the hat identifies Laplace transformed functions and the operator R is
the Laplace transform of the evolution operator etL0 . We consider Jeans’ distri-
butions (2.19) as initial states, which appear as the most natural ones.

The Hille-Yosida theorem [100] states that the Laplace transform of an oper-
ator, defining a semi-group by the generator L

0

, is the resolvent of the generator
itself. A general property of resolvents, such as (4.2), is that they satisfy the
identity

RL
0

= ı!R� I� [R,L
0

] . (4.3)

In the following, we will consider that the commutator between the Liouville
operator and its resolvent is zero in order to avoid technical problems. The
dependence of the initial distribution on the unperturbed Hamiltonian transforms
the Poisson bracket in Eq. (4.1) into the Liouville operator

{�H, f
0

} = �
0

f 0
0

L
0

�H, (4.4)

where

f 0
0

(q, p) =
dF

dx

�

�

�

x=�H0(q,p)
. (4.5)

With x we identify the argument of the Jeans’ distribution, which corresponds
to an adimensional quantity, x = �H, where � is an inverse energy scale that
can depend on some macroscopic parameter. For instance, at equilibrium the
inverse energy is equal to the inverse temperature, times some constants. The
equation for the variation of the Hamiltonian in the complex Laplace space can
be written in the following compact form

� ˆH(q,!) = ˆb(q,!) + �[� ˆH](q,!), (4.6)
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where the operator � is defined as

�['](q,!) =

Z

dxdv �
0

u(q � x)f 0
0

K(!)'(x), (4.7)

K(!) = �1 + ı!R(!), (4.8)

and '(x) is a generic function (test function).
A feature of homogeneous initial states is that Fourier modes are decou-

pled and equation (4.6) can be solved using the Fourier transform A.2. In this
framework, the modes of the variation of the Hamiltonian are

˜�H(k,!) =
˜b(k,!)

✏(k,!)
, (4.9)

where ✏(k,!) is the dielectric function (2.48).
On the contrary, inhomogeneous initial states have a coupling among all

the modes and equation (4.6) cannot be simplified using the Fourier transform.
Therefore, we are led to assume that there exists a base of eigenfunctions
'i(q), i 2 N, which solves the eigenvalue equation on �

�['i](q,!) = �i(!)'i(q) , i = 1, · · · , N (4.10)

where �i is the associated eigenvalue. This base plays the role of the Fourier
base in the inhomogeneous regime. Thereby, we consider external potentials
that belong to the subspace of functions spanned by these eigenfunctions

ˆb(q,!) =
X

i

ai(!)'i(q), qi(!) 2 C (4.11)

A basic tool to solve integral equations is to use the Liouville-Neumann se-
ries [67] which is a recursive formula. This allows us to obtain � ˆH and, in turn,
the response (3.30). The Liouville-Neumann series reads

� ˜H(q,!) = ˆb(q,!) +
1
X

n=1

�n
[

ˆb](q,!) , (4.12)

where �n is the nth iterate of �. Substituting the definition of the external
potential in terms of the eigenfunctions into Eq. (4.12) and resumming the geo-
metric series one gets

� ˆH =

X

i2N
ai(!)

'i(q)

1� �i(!)
, |�i| < 1 . (4.13)
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The variation of the Hamiltonian which solves Eq. (4.6) shows the same eigen-
functions of the external potential but with a different amplitude. That solution
has some properties related to the ones of the homogeneous regime. For in-
stance, by analogy, we can denote the denominator of (4.13) as

"i(!) = 1� �i(!), (4.14)

the dielectric-like function in the real space in the case of inhomogeneous
systems. Indeed, it plays the role of the dielectric function (2.48) of the homo-
geneous case, because whenever it is zero in the complex-! Laplace space, � ˆH
gets a pole. Therefore, zeros of (4.14) characterize the inverse Laplace trans-
form A.2, which gives the solution in real time. Moreover, when the system is
homogeneous, formula (4.14) converges to formula (2.48) and the eigenfunctions
'i become the Fourier modes with the indices i that map to the modes k.

Furthermore, we obtain a stability criterion because the geometric series
can be computed only when |�i| < 1. On the contrary, when the eigenvalue is
larger than one in modulus the state is unstable and linear theory cannot be
used.

We remark that integral equations can also be solved using Fredholm deter-
minants [116], but in this case the solution is more involved and more complicated
when the kernel of the integral is itself a non-trivial operator.

4.3 Time asymptotic behaviour
The Limit theorem relates the asymptotic value of a function g(t) at t ! 1
with the limit of its Laplace transform ĝ(!) for ! ! 0, see Appendix A.2.

Let us denote every quantity evaluated in this regime with the index1, e.g.,
the external potential

ˆb1(q) = lim

!!0

�
ı!ˆb(q,!) = lim

t!1
ˆb(q, t). (4.15)

The Liouville-Neumann series for asymptotic times reads

� ˆH1(q) = b1(q) +
1
X

i=1

�1[b1](q), (4.16)

and the limit of the eigenvalue equation (4.10) is

�i'(q) = ��
0

Z

dxdvf 0
0

(x, v)u(q � x)'(x),

+ı�
0

Z

dxdvf 0
0

u(q � x) lim
!!0

!R(!)'(x). (4.17)
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The first integral does not depend on the Laplace variable ! while the second
one depends on ! through the kernel operator !R(!). This latter integral
converges to zero when the initial state is homogeneous, because its Fourier
transform is !(✏(k,!) � 1) and in the limit ! ! 0 it results in a vanishing
contribution. On the contrary, when the initial state is inhomogeneous the
integral could converge to a finite value in the same limit.

Let us consider a function g(x, v): when it is in the kernel of the Liouville
operator (2.5) the action of the resolvent becomes trivial and the limit ! ! 0

gives the identity

lim

!!0

!R(!)g(x, v) = g(x, v). (4.18)

Consequently, the operator K(0) in the time asymptotics gives zero when eval-
uated on these functions.

The operator L
0

has an empty continuum spectrum also on some manifolds
in the phase space and these manifolds could give a finite contribution to the
response. The Fourier transform of the second integral of Eq. (4.17) is

J! =

Z

dxdvf 0
0

(H
0

)eıkx
!

! � ıL
0

'(x), (4.19)

and in the asymptotic time limit it gives a non zero integrand whenever the
larger (in modulo) eigenvalue of L

0

goes as !. We call M the manifold in
which the Liouville operator is identically zero, thus the manifold where the
integrand could get a contribution in our limit. Unfortunately we don’t know
how to obtain this manifold in general and even if it really exists. We will
discuss in more detail formula (4.19) in Appendix C.1 and hereafter we assume
that its contribution can be negligible, since in the homogeneous phase it is
indeed zero.

Discarding the second integral in Eq. (4.17), the operator K becomes pro-
portional to the identity and the other quantities become

K(0) = �1 (4.20a)

�i'i(q) = �
0

Z

u(q � x)f 0
0

'i(x) (4.20b)

� ˆf1(q, p) = �
0

� ˆH1(q)f 0
0

(q, p) (4.20c)

Let us make two short remarks:



4.4 Constraints 83

The first remark is that the response (3.30) at every time becomes ill defined.
Let us introduce the integrated response for asymptotic times, defined by

�ā = lim

t!1
@

@h

⇣

hait � hai0
⌘

�

�

�

h=0

, (4.21a)

=

Z

dpdq �f1(q, p)a(q, p). (4.21b)

This formula describes the finite variation of a single-particle observable a(x, v)

at the linear order in the perturbation parameter h.
The second remark is about a stability criterion of the initial state. From the

geometric series, we get a criterion to perform the resummation of the series: it
reads |�i| < 1 for each i. In the asymptotic time regime this inequality can be
seen as a criterion for which the initial state is stable because otherwise the
series diverges. It can be compared with other stability criteria [91, 98].

4.4 Constraints
Vlasov dynamics is characterized by the existence of constraints of different
nature [57]. We will here restrict to discuss those constraints that play a relevant
role in the derivation of our response theory. The first constraint derives from
mass conservation, which is a consequence of considering a closed system.
However, our system can exchange energy with the environment, hence we can
evaluate the work done on the system by the external perturbation. The entailed
generalized energy conservation relation imposes, as we will see, a constraint
on the dynamics. Isolated systems also conserve total momentum. However, one
can choose perturbations of the dynamics which determine variations �f(q, p, t)
that are even functions of p. This in turn implies that momentum is necessarily
conserved and can for convenience be set to zero. The effect of the conservation
of other global invariants associated to symmetries, like angular momentum,
will not be discussed in this paper, since the systems we will consider are
one-dimensional.

On top of that, the Vlasov equation is endowed with an infinity of conserved
quantities, the so-called Casimirs [57,82]. They all take the form

R

c(f(x, v))dxdv,
with c a smooth function. For instance, mass is one of such Casimirs. We will
assume that the effects induced by all these conservations, besides mass, are
negligible. However, in Section 4.7 we will show that Casimirs are not always
negligible and they will play an important role in some region of the phase
diagram.
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4.4.1 Mass constraint
The mass of the system is given by

M(t) =

Z

f(x, v, t) dxdv . (4.22)

At first order in the size of the perturbation h we get

M(t) = M(0) + h

Z

�f dxdv +O(h2

). (4.23)

For a closed system mass is conserved M(t) = M(0), hence
Z

�f(x, v, t) dxdv = 0 . (4.24)

In the following we will set the total mass to one, M = 1.

4.4.2 Energy constraint
The system is perturbed by an external field, hence the total energy

E(t) =

Z

E[f ](x, v, t)f(x, v, t)dxdv (4.25)

E[f ](q, p, t) =

p2

2

+

1

2

�[f ](q, t) + hb(q, t) . (4.26)

is not a conserved quantity. However, since the time evolution of the distribution
function is determined by the full perturbed Hamiltonian (the external forces are
conservative), the variation of the total energy is equal to the work W (t) done
by the external forces on the system

E(t)� E
0

= W (t) , (4.27)

where

W (t) = h

Z

f(x, v, t)b(x, t)dxdv . (4.28)

This is a generalized energy conservation law, in analogy with mechanics.
Let us remark that the functional E[f ] is the phase-space observable asso-

ciated with the total energy and differs from the Hamiltonian H[f ] by the factor
1/2 in front of the mean-field potential. This avoids the double counting of the
interaction energy between two separated regions in phase-space.
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At linear order in h one gets the following constraint on the variation of the
distribution function

Z

H
0

[f
0

](x, v)�f(x, v, t)dxdv = 0, 8t > 0, (4.29)

where we have used the identity
R

f�[�f ]dqdp =

R

�f�[f ]dqdp.

4.4.3 Implementation of the constraints
The final stationary state is described by the stationary linear Vlasov equation

✓

p
@

@q
� @�

0

@q

@

@p

◆

�f1 +

@�H
@q

@

@p
f
0

= 0. (4.30)

The formal solution of this equation is

�f(q, p) = f 0
0

(q, p)�x(q, p), (4.31)

and it corresponds to the Duhamel formula (3.28) for large times. The variation
�x cannot a priori be defined because the kernel of the Liouville operator (2.5)
is not null. For example, the function

�x = �
0

�H +H
0

�� + �M, (4.32)

with �M, �� 2 R two arbitrary constants, gives a solution of the linear stationary
Vlasov equation. These new terms are useful to implement the constraints of
the system. For instance, the two equations (4.24) and (4.29) become

Z

f 0
0

(�
0

�H +H
0

�� + �M)H
0

dqdp = 0, (4.33)
Z

f 0
0

(�
0

�H +H
0

�� + �M) dqdp = 0, (4.34)

where the phase space dependencies are dropped out to derive more concise
equations. In order to solve this linear problem we define

JH2
0

=

Z

f 0
0

H2

0

dqdp, (4.35a)

JH0 =

Z

f 0
0

H
0

dqdp, (4.35b)

J
1

=

Z

f 0
0

dqdp, (4.35c)

J = JH2
0
J
1

� J2

H0
, (4.35d)
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then equations (4.33) and (4.34) give the following functional relations

�M [�H1] = ��
0

JH2
0

R

f 0�Hdqdp� JH0

R

f 0H
0

�Hdqdp

J
, (4.36)

��[�H1] = ��
0

J
1

R

f 0H
0

�Hdqdp� JH0

R

f 0�Hdqdp

J
. (4.37)

These parameters, �M and ��, take into account the variation of the mass of the
system and the variation of the inverse energy scale, due to the perturbation.
They are linear functionals with respect to their arguments, here the variation
of the Hamiltonian, and add more terms to equation (4.1). Therefore,at infinite
times the equation for the variation of the Hamiltonian with two constraints
becomes

�H1(q) = b+ �
0

Z

u(q � x)f 0
0

�H1 +

��[�H1]

Z

f 0
0

u(q � x)H
0

+

�M [�H1]

Z

f 0
0

u(q � x). (4.38)

The linearity property of these new terms preserves the Liouville-Neumann form
of the solution, but with a modified eigenvalue equation, which reads

�i'i(q) = �
0

Z

u(q � x)f 0
0

'i +

��['i]

Z

u(q � x)f 0
0

H
0

+

�M ['i]

Z

u(q � x)f 0
0

(4.39)

Although the form of the solution (4.13) is the same, the eigenvalues change
their value by imposing the constraints (4.33) and (4.34). We show in the next
Section 4.5 this property for the HMF model.

The case in which the system has only the mass constraint can be computed
with �� = 0. The linear functional �M related to the variation of the mass is

�M [�H] = ��
0

R

f 0�H
J
1

(4.40)

and the eigenvalue equation reads

�i'i = �
0

Z

u(q � x)f 0
0

'i + �M ['i]

Z

u(q � x)f 0
0

(4.41)
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On top of that, for homogeneous initial states, the mean field �
0

is zero and
both the unperturbed Hamiltonian H

0

and the initial distribution function f
0

do
not depend on space. In equations (4.33) and (4.34) only the variation of the
Hamiltonian �H depends on the space variable q and usually its integral over
space is zero. Thus, the two equations of the constraints can be satisfied only
with �� = 0 and �M = 0, independently of the initial distribution f

0

. Therefore,
both the constraints are automatically fulfilled in homogeneous systems.

4.5 Application of the response formula
Let us consider the eigenvalue equation (4.10) of a system that is initially at
equilibrium or in a Fermi-Dirac QSS. The long-range potential is a cosine,
then, using the addition formula of trigonometries functions, we obtain that the
eigenfunctions 'i must be sums of sines and cosines. We consider the base
composed by the two parallel and perpendicular directions with respect to the
spontaneous unperturbed magnetization ~m

'
1

(q) = ↵
1

✓

cos(q) +
my

mx

sin(q)

◆

, (4.42)

'
2

(q) = ↵
2

✓

my

mx

cos(q) + sin(q)

◆

, (4.43)

where ↵
1

,↵
2

2 R are two constants defined by the orthogonality relations
Z

dxdv 'i(x)'j(x)f
0
0

(x, v) = �i,j, i, j = 1, 2. (4.44)

Invariance under angle translations of the HMF model in the unperturbed
state allows us to define arbitrary x and y directions. We identify with x the
direction of the spontaneous magnetization; the magnetization components then
become my = 0 and mx = |~m| = m and the two eigenfunctions are

'
1

(q) = ↵
1

cos(q), '
2

= ↵
2

sin(q). (4.45)

Without loss of generality, we put the external field in the direction of the
spontaneous magnetization x, because we are not interested in the Goldstone
modes. For instance, an external field applied perpendicularly to the sponta-
neous magnetization direction excites modes that persist for indefinite time, due
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to the rotational symmetry of the unperturbed Hamiltonian. With ↵
1

= 1 the
eigenvalue equation is transformed into the following integrals

�
1

= ��[f 0
0

'
1

], (4.46)

�[r] = �
Z

dxdv '(x)r(x, v). (4.47)

In the next Subsections we will consider the solution of the eigenvalue
equation for the equilibrium state in three cases: zero constraints, the mass
constraint and both the energy and mass constraints. Later, we will discuss the
eigenvalue equations for the Fermi-Dirac distribution with the same constraints.
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Figure 4.1: Different eigenvalues �

1

versus the energy E of an unperturbed system at
equilibrium with different constraints. The full red line is the eigenvalue when both the
energy and the mass constraints are imposed, given by the formula (4.55). The dash-
dotted blue line is the eigenvalue when the system verifies only the mass constraint
given by the formula (4.51), and the dotted green line is the unconstrained case, given
by (4.48). From high energies the eigenvalue �

1

converges to the one of the critical
energy Ec = 0.75, which is the phase transition point.

4.5.1 Equilibrium without constraints
The eigenvalue of the sine function is zero, �

2

= 0, because the distribution is
even in q. On the contrary, along the x direction we get

�
1

= �
I
1

(�m) + �mI
2

(�m)

�mI
0

(�m)

, (4.48)
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Figure 4.2: Different responses �m vs. energy E of an unperturbed system at
equilibrium with different constraints. The full red line corresponds to the system with
the energy and mass constraint given using the formulas (4.49) and (4.55). The dash-
dotted blue line corresponds to the system with the mass constraint given by (4.52). The
unconstrained case is not shown because it is equal to the others in the homogeneous
regime and it diverges in the inhomogeneous one because �

1

< 1.

where I
0

, I
1

, I
2

are the modified Bessel’s functions of order 0, 1, 2, respectively.
In the homogeneous region the r.h.s. is equal to �/2, because the magnetization
is zero, and it is consistent with the result obtained in Ref. [96]. Using formula
(4.21) we find the integrated response of the magnetization

�m = '
1

(0)

�
1

1� �
1

, (4.49)

where '
1

(0) = 1. The Liouville-Nemuann series converges when the eigenvalue
is, in modulo, less than one. Formula (4.48) gives an eigenvalue larger than one
for every E < Ec, in the inhomogeneous phase. As a consequence, equilibrium
without constraints is unstable in linear theory. This result can be consistent
because the system could evaporate or concentrate in a point and the response
of the system then becomes undefined here. This result was previously obtained
in Ref. [31].

The green dotted line in figure 4.1 shows the eigenvalue as a function of E .
In the inhomogeneous region (E < Ec) it becomes undefined.
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4.5.2 Equilibrium with the mass constraint
The mass constraint imposes a different kernel of the integral (4.41). The eigen-
value has the same eigenfunctions (sine and cosine), but it is described by

�i = ��['if
0
eq]� �0

(q)�[f 0
eq]. (4.50)

where �
0

(q) = m cos(q). The two eigenvalues �
1,2 are

�
1

= �
I
1

(�m) + �mI
2

(�m)

�mI
0

(�m)

� �m2, �
2

= 0. (4.51)

The dotted blue line of figure 4.1 shows the eigenvalue in both the homoge-
neous and inhomogeneous regions. Inserting it in formula (4.49), the response
magnetization becomes

�m =

1 + �I
2

/I
1

� �m2

�m2 � �I
2

/I
1

, (4.52)

which is equal to the canonical susceptibility (1.33).
In this case the eigenvalue �

1

is equal to one only at the critical energy
Ec. Below this point it is smaller than one, which ensures an asymptotic linear
stability in the canonical ensemble.

4.5.3 Equilibrium with both energy and mass constraints
The equilibrium case with both the energy and the mass constraints is described
by the following eigenvalue equation

�
1

= ��[f 0'] + ��[']�[f 0H
0

] + �M [']�[f 0
] . (4.53)

Denoting the term

c
2

=

I
1

(�m) + �mI
2

(�m)

�mI
0

(�m)

, (4.54)

and performing some algebraic manipulations, we obtain the formula for the
eigenvalues

�
1

= �

✓

c
2

�m2

1 + 2�2c
2

(c
2

�m2

)

1 + 2�2m2

(c
2

�m2

)

◆

, �
2

= 0. (4.55)
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The red line of figure 4.1 shows the value of �
1

for different energies. That
eigenvalue is again equal to one only at the critical energy Ec. Moreover, the
integrated response of the magnetization (4.49) gives the same expression as
the microcanonical response (1.38).

The full red line of figure 4.2 shows the response of magnetization in both
the homogeneous and inhomogeneous regions for the two cases corresponding
to different constraints. The response of the system with more constraints is
smaller, consistently with the result known for the equilibrium response [31,32].

The purple line in figures 4.1 and 4.2 reproduces the exact eigenvalue and
the exact susceptibility of Ref. [93], where action-angle variables are used. As
expected, the response of the system with all the Casimir constraints gives a
smaller response when compared to equilibrium.

4.5.4 The Fermi-Dirac initial distribution
The Fermi-Dirac (FD) distribution is defined as (see Section 3.2.1)

ffd(x) =
1

Z

1

1 + ex
, (4.56)

where Z is the normalization. This distribution is useful because it gives a
mapping between different QSSs often studied in the framework of the long-
range interacting systems: the BG equilibrium and the Water-Bag states. The
eigenvalue equation uses the first derivative of the distribution with respect to
its argument, which is

f 0
fd = �

1

4Z

1

cosh

2

(

x

2

)

. (4.57)

At variance with equilibrium, the eigenvalue equation for the FD distribution
does not show simple physical terms like the unperturbed magnetization. There-
fore, we have to solve numerically the equation for �

1

.
Figure 4.3.a shows the dependence of the eigenvalue �

1

on energy E . It
grows to 1 at the critical energy Ec ' 0.7, which corresponds to the critical
energy where the system changes its phase: below Ec the state is clustered,
while above it is homogeneous. Although it is an out-of-equilibrium distribution,
it shows a continuum transition between the two regions, mimicking equilibrium
phase transitions. The eigenvalue at the critical energy in figure 4.3 is smaller
than one, because the algorithm used to get that value is an iterative algorithm.
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Figure 4.3: Eigenvalue �

1

(panel a) and response �m (panel b) for the Fermi-Dirac
initial distribution with both energy and mass constraints. The value of E where �

1

is
equal to one corresponds to the critical energy Ec ' 0.7.

It does not converge at Ec but it gives a closer and closer value by increasing
the number of iterations. It is intriguing that the zero constraint case gives an
eigenvalue smaller than one in the inhomogeneous phase. For instance, the FD
state is more compact if compared to equilibrium and therefore it is probably
more stable under evaporation. Panel (b) shows the response of magnetization
�m versus the energy E .

4.6 Numerical comparison
In order to verify our theoretical analysis we have implemented numerical simu-
lations with the distributions described above. In this Section we briefly discuss
the method used to implement the numerical simulations. Afterwards, we discuss
some results in a range of energies in which linear theory works approximately
well.

4.6.1 Methods
We use the weighted particles algorithm, described in Ref. [15], to simulate
the HMF model. We prepare N particles on a regular lattice in q and p and
we associate a weight to each site with the chosen initial distribution. Vlasov
dynamics conserves the support of every distribution at constant weight [82]. The
time evolution is realized using a symplectic integrator and every observable is
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evaluated with the weighted average.
The phase-space is compact in the q direction, then errors depend on the

lattice parameter. On the contrary, in the p direction we have another source
of errors: for every distribution with a non compact support we have to use a
cutoff on the weightless part of the momentum space. We choose a pmax, as
a maximum value of the velocity spanned by the lattice, which must be large
enough in order to avoid important errors. This procedure and the scale of pmax

depend on the particular distribution considered.
The initial state is prepared at a given inverse energy scale �. Solving an

implicit equation we get the magnetization and the energy values associated
with the chosen energy scale. The perturbation starts at time t

0

> 0, after a
relaxation of the system to the stationary state. We perturb along the direction
of the spontaneous magnetization, x, thanks to the invariance under rotations of
the unperturbed system. Therefore, mx = m, my = 0.

Linear theory does not show a well precise limit where it can be used as
a good approximation. Whenever a solution exists there will be a sufficiently
small h which gives a reasonably good result. In general we know empirically
that in the homogeneous regime the amplitude of the perturbation must verify
the relation

�h⌧ 1. (4.58)

In the inhomogeneous phase we have another scale, which is related to the
magnetization. It is quite reasonable to assume that

h

m
⌧ 1, (4.59)

in order to avoid that the external field gives dominant contributions to the
energy as compared with the magnetization.

A first numerical check of the validity of the linear regime is that the variation
of the magnetization must be smaller than the magnetization itself

h�m

m
⌧ 1, (4.60)

for every time in which the Vlasov picture is a good approximation of the finite
N dynamics.
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4.6.2 Equilibrium
The panels of figure 4.4 show two plots with the comparison between numerical
simulations and the asymptotic values of the equilibrium magnetization (3.2.1).

Figure 4.4.a shows a simulation of a system initially at an inverse energy
scale � = 7, which corresponds to an energy E ' 0.14 and a modulus of the
magnetization m ' 0.92. At t

0

= 50 the perturbation is applied and the system
begins to oscillate with a damping, a behavior that can be described within the
theory of Landau damping [71]. After some time, which depends principally on
the initial energy and on the distance between the energy of the state and the
critical one, the system relaxes to a stationary state whose magnetization is in
agreement with theoretical predictions.

Figure 4.4.b shows a simulation at an inverse energy scale � = 5, which
corresponds to an energy E ' 0.22 and a magnetization m ' 0.88. As in the
previous case, after damping, the system relaxes to a state with a magnetization
close to the value predicted by linear response theory.

4.6.3 Fermi-Dirac distribution
The panels of figure 4.5 show the comparison between the numerical simulations
and theoretical predictions for the magnetization of the Fermi-Dirac distribu-
tion (4.56). In this case eigenvalues cannot be related in a simple way to phys-
ical parameters, and are evaluated numerically by integrating equation (4.53).

Figure 4.5.a shows the time evolution of the magnetization at an inverse
energy scale � = 8, which corresponds to an energy E ' 0.45 and the mag-
netization m ' 0.69, while figure 4.5.b shows what happens for an initial state
at the inverse energy scale � = 9. This latter value corresponds to an energy
E ' 0.44 and a magnetization m ' 0.70. The system relaxes to an unperturbed
stable state and, after t

0

= 10, the magnetization begins to oscillate and damps
to a final stationary state which coincides with the prediction of linear response
theory.

4.7 Critical exponents of a mean-field system
Linear response theory of integrable systems is derived in Ref. [93], and the
authors obtain the correct response function for the HMF model. We can use
that solution to study the behaviour of different initial configurations in different
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(a) (b)

Figure 4.4: Variation of the magnetization �m in time t obtained in numericals
simulations of a system starting in inhomogeneous equilibrium. Panel (a) shows the
simulation of the system at an energy E = 0.14955 and magnetization m = 0.91856,
which corresponds to the inverse energy scale � = 7. The full red line is the numerical
evolution of the magnetization along the x axis and the blue dashed line is the theoret-
ical prediction for asymptotic time. Panel (b) shows the simulation of the system at an
energy E = 0.21559 and magnetization m = 0.87682, which corresponds to an inverse
energy scale � = 5. The full red line is the numerical evolution of the magnetization
along the x axis and the blue dashed line is the theoretical prediction for asymptotic
time.

regimes. An interesting regime is the one where a given distribution looses its
stability. Having in mind the equilibrium distribution as a reference state, we
will show here that there is an instability in the Vlasov regime which corre-
sponds to a second order phase transition in statistical equilibrium. Close to
the second order phase transition point the response of the system to the action
of an external field, namely susceptibility, diverges with a power-law. In the
case of mean-field systems, one gets the celebrated Curie-Weiss law, discussed
in many textbooks on phase transitions.

These results pose the following question: is it possible to find some common
features in the behavior of the Vlasov dynamics when a given state reaches a
stationary regime?

For instance, we know that in the homogeneous phase, the time asymp-
totic response (3.60), ruled by the dielectric function (3.61), shows a power-law
dependence on the inverse energy scale �, independently of the particular dis-
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(a) (b)

Figure 4.5: Susceptibility �m as a function of time t in numerical simulations
of a system starting in the inhomogeneous Fermi-Dirac state. Panel (a) shows the
simulation of the system at an energy E = 0.44812 and a magnetization m = 0.6877 ,
which corresponds to an inverse energy scale �

0

= 8. The full red line is the numerical
evolution of the magnetization �hmxit along the x axis and the blue dashed line is the
theoretical prediction for asymptotic time. Panel (b) shows the simulation of the system
at an energy E = 0.44016 and a magnetization m = 0.6977 , which corresponds to
the inverse energy scale �

0

= 9. The full red line is the numerical evolution of the
magnetization �hmxit along the x axis and the blue dashed line is the theoretical
prediction for asymptotic time.

tribution function. Each distribution gives a different critical threshold �c[f0],
but the power-law behavior is the same.

A study of critical exponents in the Vlasov context was first proposed in
Ref. [40]. Here, the authors consider a homogeneous unstable Maxwellian
plasma slightly below the stability threshold and obtain critical exponents that
differ from the ones of classical theory. Moreover, numerical simulations [60,61]
display such exponents in the general setting of the Vlasov equation for singular
potentials around unstable homogeneous states. Contrary to these studies, we
are here interested in stable states.

We analyse Vlasov response and the associated critical exponent of suscep-
tibility using the solutions found in Refs. [93,96]. We focus on the HMF model,
due to its simplicity, but we remark that this result is generalizable to uniform
configurations of generalized HMF models, such as the ↵-HMF model [2, 8].
The results contained in this Section are reported in Ref. [92].
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The approximated linear theory of the first part of this Chapter, cannot
be used because the presence of infinite conserved quantities plays a crucial
role when evaluating the behavior of the system close to the transition point.
Moreover, in Section 4.3 we obtain that magnetic susceptibility is equal to
microcanonical and canonical ones, hence their critical exponents are given by
classical theory.

4.7.1 Dielectric function for inhomogeneous states
The dielectric function (DF) for asymptotic times of Ref. [93] (formula 102) is

Dx = 1� C
2

[f
0

](�)� A[f
0

](�), (4.61)

where � is the inverse energy scale, that parametrizes the distribution, while
the functionals are

C
2

[f
0

](�) = �
Z

dqdp
1

p

@

@p
f
0

cos

2

(q), (4.62)

A[f
0

](�) =
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0

Z

1

0
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✓
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E(x)

K(x)
� 1

◆

2 df
0

dx
dx (4.63)

+

4p
m

0

Z 1

1

K(1/x)
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✓

2x2

E(1/x)

K(1/x)
+ 1� 2x2

◆
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0

dx
dx.

The variable x depends on the unperturbed single particle Hamiltonian H
0

through the relation

x =

r

m
0

+H
0

m
0

. (4.64)

As before, � is an inverse energy scale and m
0

is the spontaneous magnetization
assumed to be parallel to the x axis. The two functions

K(x) =

Z

1

0

dt
p

(1� t2)(1� xt2)
, (4.65)

E(x) =

Z

1

0

r

1� xt2

1� t2
dt, (4.66)

are the complete elliptic functions of first and second kind.
Vlasov susceptibility in the stationary state does not depend on time and

reads

�(�) =
1�Dx(�)

Dx(�)
. (4.67)
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Therefore, the DF contains all the information about the divergence when the
unperturbed state f

0

approaches critical stability. We restrict our analysis to
initial states that belong to the Jeans’ class (2.19).

Let us define �± the two critical exponent with which susceptibility diverges,
hence

� ⇠ |� � �c|�
V
± , D ⇠ |� � �c|��

V
± . (4.68)

The critical exponent of the homogeneous phase is given by the relations (3.61)
of Chapter 3

�V
+

= �1. (4.69)

This exponent does not depend on the choice of the distribution.
As a consequence of the use of Jeans’ distributions, the derivative that ap-

pears in the evolution of A takes the form
df

0

dx
= [4m

0

x]
df

0

dH . (4.70)

Hence, we get an extra magnetization factor which influences the critical be-
havior.

The dielectric function (4.61) and the relative response (4.67) derive their
peculiarities from the properties of A. Actually, this is due to the presence of an
infinity of Casimirs, which are invariants of the Vlasov dynamics, as discussed
in Chapter 2. Any Casimir introduces a conservation law and the last term of
the dielectric functional takes care of all of them. Let us discuss this feature
using action-angle, (J, ✓), variables.

The variation of the distribution �f = fh � f
0

satisfies

0 =

Z

[c(f
0

+ �f)� c(f
0

)]dqdp =

Z

c0(f
0

(J))f�f
0

(J)dJ, (4.71)

up to linear order, where f�f
0

(J) is the zero Fourier mode of �f with respect
to the angle ✓. This constraint must hold for any smooth function c, and hence
f�f

0

(J) = 0 [91]. Let us derive fh from the trial function

gh(q, p; �) =
F (�Hh(q, p))

R

F (�Hh(q, p)) dpdq
, (4.72)

which corresponds to the Jeans’ distribution with the perturbed Hamiltonian
instead of the unperturbed one. We guess that it describes the final QSS in



4.7 Critical exponents of a mean-field system 99

which the system settles down after the perturbation is switched on, since the
Casimirs do not evolve on a short time-scale.

By the definition of susceptibility �V, the magnetization hmih is written as
hmih = hmi

0

+ h�V

+O(h2

). Subtracting the zero Fourier mode from gh � f
0

,
the variation must satisfy �f = gh � f

0

� hgh � f
0

iJ = gh � hghiJ and

fh = f
0

� h(�V

+ 1)

R

F dqdp
F 0

(�H
0

) (cos q � hcos qiJ) . (4.73)

Multiplying by m(q) and integrating in the µ space, we get Vlasov susceptibility
(4.67) and the dielectric functional (4.61).

4.7.2 Jeans initial distribution functions
We study the behavior of the dielectric function for Jeans’ distributions. When
the energy is conserved or the external perturbation is switched on adiabatically
the inverse energy scale � depends on the initial energy, � = �(E). In the HMF
model there is a one to one correspondence between � and E when the critical
point corresponds to a second order phase transition for which magnetization is
a continuous function of energy. Otherwise, we get two critical points, one for
the homogeneous state and the other for the inhomogeneous state.

Magnetization is given by the self-consistency equation

m(�) =

R

f
0

cos(q)dqdp
R

f
0

dqdp
. (4.74)

We want to evaluate this relation close to the critical point, then for � & �c.
Let us denote fc as the unperturbed distribution at the critical energy, which
corresponds to a homogeneous distribution (m(�c) = 0). Above the critical
energy magnetization is zero, therefore, we expand in Taylor series in the small
parameter �m(�) and around the critical state

m '
R

fc cos(q) + �m
R

f 1

c cos
2

(q) + �2m2

R

f 2

c cos
3

(q) + · · ·
R

fc + �m
R

f 1

c cos(q) + · · · . (4.75)

Here, f (n)
c is the n-th order derivative of the distribution at the critical point.

That distribution is homogeneous and all the integrals with an odd number
of cosines are zero by parity, and we get only even terms. For instance, the
leading terms in the numerator are the powers 1 and 3 of �m. Thereby, Jeans’
distributions have the magnetization which grows with the exponent � = 1/2.
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This exponent does not depend on the particular distribution, since this latter
changes only the critical value of the inverse energy scale �c[f0]. In formulas,
we get

m ' �mG
1

+ �3m3G
3

+O(m5

), (4.76)
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, (4.78)
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, (4.79)

fn
c (p) =

dn

d(�cH)

n
F (�cH). (4.80)

The distributions and their derivatives become functions of the velocities p, with
no dependence on q. We integrate in q to get the coefficients in front of these
formulas.

Whenever the third moment is zero (G
3

= 0) the exponent goes to the
successive order and, e.g., we get � = 1/4 when G

5

is not vanishing.
Let us compute the dielectric function (4.61) term by term. We find that the

exponent of C
2

is twice the exponent of the magnetization

1� C
2

⇠ �2

4
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Z
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(q) ⇠ (� � �c)2�, (4.81)

close to criticality. The successive terms of the DF read

A[f ](�) =

p
m
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↵[f ](�), (4.82)
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We obtain the exponent �V� = �1/4 because the first ratio goes as the square
root of the magnetization and the functional ↵[fc] is a continuous function of �
and does not diverge. In formula, it behaves as

A[f ]
�!�

c���! (� � �c)�/2
Z(�c)

↵[fc]. (4.84)
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Any term which diverges with a smaller exponent determines the behavior, be-
cause there always exists a region near the critical point in which it dominates
over the others.

On top of that, all Jeans’ distributions have the same critical exponent equal
to

�V� = ��
2

= �1

4

, (4.85)

unless the coefficient G
3

becomes zero, in which case one would get �V� = �1/8
if G

5

6= 0.
Although different initial conditions, hence different initial states, bring to

different critical stability points �c[f0], the behavior of Jeans’ states close to
the transition does not depend on f

0

. Actually, Vlasov critical exponents don’t
depend on the initial condition.

We remark here that the existence of further invariants may affect these
equilibrium properties. Indeed, local temperature in isolated crystalline clusters
is not uniform because of the conservation of momentum and angular momentum
[89]. Moreover, it is known that conservation laws change the behavior near
phase transitions also at equilibrium [108].

It is not surprising that in the Vlasov regime the existence of an infinity of
conserved quantities changes critical exponents. The surprise it the existence,
at least for particular systems, of well defined and quite general exponents in a
theory that, to the best of our knowledge, does not possess any thermodynamic
functional, such as entropy and free-energy. For instance, scaling arguments
fail in standard formulations built on the free-energy.

4.7.3 Numerical comparison for the equilibrium distribution
Let us now consider the case of the equilibrium Boltzmann-Gibbs distribution

feq =
e��(p

2/2�m0 cos(q))

Z(�)
, Z(�) = 2⇡

r

2⇡

�
I
0

(�m
0

), m
0

=

I
1

I
0

(�m
0

).

(4.86)

Its critical point corresponds to the second order phase transition, which al-
lows us to obtain a comparison between the classical theory of the mean-field
universality class and Vlasov prediction.

Following our analysis, we propose a scenario of relaxation as follows: the
system starts from a QSS, here the equilibrium at a given temperature. When
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Figure 4.6: Vlasov susceptibility �

V for the equilibrium initial distribution (red solid
line) and for the Fermi-Dirac initial distribution (Blue solid line). The parameter b

of the x-axis corresponds to the inverse energy scale; at equilibrium it is the inverse
temperature. The canonical susceptibility �

T (green broken upper line) and the micro-
canonical susceptibility �

S (blue dashed middle line) are reported for comparison. The
black straight lines are guides to the eyes for the slopes �1/4 and �1. Purple square
and cyan cross points are computed by time averages over the period 0  t  500 in
N-body simulations with N = 10

6 and a time step 0.1. For each T , 10 points are
plotted corresponding to 10 realizations.

an external field is switched on, the system gets trapped into a new QSS on
a time-scale of the order of the dynamical time-scale. This happens whenever
the initial state is stable. To keep Casimir’s invariants constant in time, the
system responds with the anomalous critical exponent �V� = ��/2. This result
is summarized in figure 4.6. The red full line is the numerical solution of Vlasov
equation for equilibrium and purple points are numerical simulation of a finite
system in the Vlasov regime. Blue full line and cyan points show the Vlasov
critical exponent for the Fermi-Dirac distribution, which is taken as a prototype
of an out-of-equilibrium state. The green dotted and yellow dashed lines show
the canonical and microcanonical susceptibilities at equilibrium, while the black
straight lines are guides to the eyes for the classical and the Vlasov slopes.
Such numerical result shows that for early times the response of the system
for inhomogeneous Jeans’ states is in a good accordance with the theoretical
predictions of Vlasov dynamics.

However, Vlasov dynamics is not the true dynamics for the finite system,
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thus Casimirs are not exactly conserved but evolve on a time-scale which di-
verges with N . Consequently, the system goes towards Boltzmann equilibrium
recovering the classical exponent when relaxation to equilibrium is completed.
Actually, such a scenario can be examined by direct N-body simulations, shown
in figure 4.7. For t < 0, the system is at equilibrium with a temperature
T = 0.499 < 1/2 = T

c

. An external field with a small size h = 0.01 is switched
on at t = 0, and the system jumps to the QSS predicted by linear response the-
ory. In the long time regime Casimirs are no more conserved due to the presence
of "collisions" [12], and the system goes towards the new equilibrium with the
external field. Simulations indicate that the time-scale of relaxation from the
QSS to equilibrium grows linearly with N , as found for isolated inhomogeneous
QSSs [28].
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Figure 4.7: N-body simulations of the HMF model with external field. N =

10

3

(100), 104 (10) and 10

5

(1), where the numbers within brackets are the num-
bers of realizations over which the orbits are averaged. The system is initially at
equilibrium with a temperature T = 0.499 and the external field is turned on with
h = 0.01 at t = 0. In each panel, the three horizontal lines represent equilibrium lev-
els with the microcanonical susceptibility (upper), the QSS level predicted by Vlasov
linear response theory (middle) and the initial equilibrium (lower). (a) Short time evo-
lution of the magnetization. (b) Long time evolution. The x-axis is in logarithmic scale,
which is scaled as log

10

(t/N) in the inset.

4.8 Conclusions
In this Chapter we have discussed linear response theory of the Vlasov equation
for inhomogeneous initial states. The linear response theory in such a regime
has been obtained for integrable systems in Ref. [93]. Here, we discuss an
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approximative method which is applicable to non-integrable systems. We face
problems arising when the initial state is inhomogeneous, hence the Fourier
modes of the distribution function are coupled with the modes of the mean-
field potential. In order to get a solution we assume the existence of a base
of functions which decouples the system, such as the Fourier base does for
homogeneous states.

Moreover, we discuss the presence of infinite integrals of the motion for
Vlasov dynamics. The linear theory that we derive does not conserve any
constraint and we must take care of them by hand. To impose an infinity of
constraints is an hard task and in general it is not possible. Thereby, we
consider the case of few of them and we apply the derived formulas to an
integrable system: the HMF model. To get the solution of the problem for
all times we need to know the analyticity properties determined by the initial
state. Therefore, we are led to evaluates the response of the system at long
times when the state of the system reaches a new stationary state.

The comparison between the correct solution and the approximate one gets
better as the number of constraints is increased and, for instance, at low ener-
gies they are not distinguishable by using just a few constraints. A numerical
comparison in a range of energies in which the two theories agree is discussed
in order to analyse the correctness of both of them. It shows an accuracy of the
value of the response similar to the one found in the homogeneous phase (see
Chapter 3).

Afterwards, we study the behavior of the HMF model close to the stabil-
ity thresholds. Each stationary solution of the Vlasov equation has a different
threshold point but for a wide class of solutions, the Jeans’ distributions, the be-
havior approaching such critical point is universal. We obtain analytically from
the correct solution the value of the critical exponent of magnetic susceptibility
and we discuss the nature of the anomalous behavior arising in comparison with
the statistical mechanics of mean-field systems. For instance, even equilibrium
states go to a QSS with a non-classical exponent when they are perturbed
by an external field. The presence of infinite conserved quantities modifies the
classical behavior for the time-scale in which the Vlasov equation is a good
approximation of the dynamics. Finally, we perform numerical N-body simu-
lations around the critical point at equilibrium, which illustrates our results for
the HMF model.



Chapter 5

Small systems interacting with
bigger systems

Perturbation theory can be used to discuss the interaction between
a big and a small mean-field long-range interacting systems. It is
known in the literature that the classical definition of thermal bath
fails for long-range interacting systems because the nature of the
force does not allow the distinction between bulk and surface inter-
actions. In the first part of this Chapter we analyse a linear theory
where the small parameter is the relative size of two subsystems of
an isolated mean-field system. The evolution equation of the small
subsystem is driven by the evolution of the bigger one.

5.1 Introduction
Until today, the large majority of studies aimed at elucidating the fundamental
properties of LRI’s have been carried out for isolated systems, i.e. under the
assumption that the system properties are not influenced by the external envi-
ronment. However, recognizing whether a non-equilibrium QSS is stable to an
external perturbation is of great importance [86], both from a theoretical and an
experimental point of view. A related fundamental problem concerns the mech-
anism through which a LRI system exchanges energy with the surroundings.

The out-of-equilibrium dynamical properties of LRI systems in contact with
a thermal bath have been studied for the first time only recently [9, 10, 38].
As a possible realization of thermal bath, these authors considered a large

105
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Hamiltonian system with nearest-neighbour interactions, coupled to a fraction
of the spins in the system. They concluded that the coupling with the bath
introduces a new time scale in the evolution of the system: the weaker the
coupling strength, the longer the system remains trapped in a QSS before
relaxing to equilibrium.

At variance with the above studies, we investigate here the dynamics of a
LRI in long-range contact with an additional large system trapped in a QSS [27].
This defines an interaction scheme that can be regarded as more realistic, open-
ing the way to applications in several fields, from cosmology to plasma physics.
For example, one may think of the collisionless mixing between plasmas, or the
operation of magnetic fusion devices for energy production or the merging of
globular clusters to a self-gravitating galaxy.

We construct a perturbation theory around the Vlasov equation where the
small parameter is the relative mass of two subsystems of an isolated system.
Isolated short-range systems can be described by a statistical mechanics ap-
proach in which one obtains the thermodynamic laws. A statistical mechanics
approach, inspired by the seminal work of Lynden-Bell [76], can be done also
for long-range interacting systems. This theory can be used to characterize
analytically some QSS features but it is not known if it can capture statistical
laws, such as in the short-range case. Lynden-Bell’s approach is based on the
definition of a locally-averaged (“coarse-grained”) distribution, yielding an en-
tropy functional defined from first-principle statistical-mechanics prescriptions.
By constrained maximization of such an entropy, one obtains closed analytical
expressions for the single-particle distribution in the QSS regime [4, 5]. As a
natural consequence, the QSSs can be equally interpreted as equilibrium con-
figurations of the corresponding continuous description. In this setting the study
of a coupling between big and small systems is a parallel with the study of the
canonical ensemble in statistical mechanics.

In Section 5.2 we describe the model and the perturbation procedure and
we make some preliminary remarks. In Section 5.3 we develop the theory at
the leading-order for a generic model and we focus on the particular case of
the HMF model (see Section 1.4). In Section 5.4 we discuss the successive
orders, while in the last Section 5.5, we compare numerical simulations with
the theoretical analysis.
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5.2 The model
Let us consider a long-range isolated system divided in two parts, one bigger
than the other. We label B the bigger subsystem and S the smaller one. We
restrict the analysis to periodic systems and in particular we perform both the
numerical simulations and the analytical evaluation on the HMF model, in order
to simplify the calculations.

Let fB(✓, p) be the normalized single-particle distribution that character-
izes the larger subsystem. The QSS of the big subsystem that we consider
here corresponds to the stationary and stable solution of the underlying Vlasov
equation (2.17). In the simulations presented, we obtain such a function corre-
sponding to an inhomogeneous Water-Bag initial distribution (the homogeneous
one is defined in Chapter 3),

f
0

(p, ✓) = 1/[4�✓B�pB], ✓ 2 [��✓B,�✓B], p 2 [��pB,�pB], (5.1)

and zero elsewhere. The QSS in which the big system gets trapped is very well
described by the Lynden-Bell theory. We stress anyway that small discrepan-
cies are present, and we address the reader to [16, 64] for a careful discussion
on the accuracy of the Lynden-Bell theory.

At a given time, t = 0 in our discussion, another HMF system with water-
bag profile is coupled and let evolve consistently with the big subsystem. This
system, S in the following, is described in terms of its associated single-particle
distribution fS(✓, p). Clearly B should be significantly larger than the system
to which it is coupled. This can be accomplished through the following normal-
ization condition

Z

fS(✓, p, t) d✓ dp = 1�
Z

fB(✓, p, t) d✓ dp = ✏ (5.2)

where ✏⌧ 1 sets the relative size of the two mutually interacting S and B HMF
systems. We are interested in tracking the time evolution of the distribution
f(✓, p, t) ⌘ fB(✓, p, t)+fS(✓, p, t) under the constraints (5.2). From the physical
point of view, we are reproducing the microcanonical dynamics of one isolated
HMF system (S+B), composed of two subsystems supposed as distinguishable:
the larger subsystem B has already relaxed to its QSS. The subsystem S is
initially confined in a generic water-bag type configuration.

To monitor the evolution of both subsystems, we follow the kinetic temper-
atures T↵(t) ⌘ �↵

R

p2f↵(p, ✓, t) d✓ dp, with ↵ = B, S and the corresponding
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magnetizations M↵. Here, �S = 1/✏ and �B = 1/(1 � ✏). A typical time
evolution of these observables, obtained by numerical integration of the Vlasov
equation (2.17), is illustrated in figure 5.1. After a short transient, the subsys-
tem S reaches a quasi-stationary state where the mean value of the kinetic
temperature is different from the one of B. In other words, the big subsystem
and the small one do not reach the same kinetic energy; the two subsystems do
not thermalize in the usual sense. Similarly, the two magnetizations converge
to different values. Importantly, we note that the specific values of temperature
and magnetization attained by the system spotlight a non-trivial interaction
with the two subsystems. TS and MS are indeed substantially different from
the values that the system would reach when evolved microcanonically from the
same initial condition. We obtain equivalent results upon simulating the discrete
N-body dynamics (5.3). In this case, after a time scale that gets progressively
longer as the system size N = NS + NB is increased, �T = TB � TS and
�M = MB �MS tend to zero. Thus, granularity causes thermalization, which
is instead prevented in the continuum (N ! 1) limit, as shown in Chapter 2.
We call canonical QSS the quasi-stationary configurations that the system S

explores when it is in a long-range contact with a QSS. This peculiar regime
is attained when the observables of both the subsystems do not evolve in time.
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Figure 5.1: Time evolution of temperature and magnetization for both the large, B,
and small, S , QSSs. The large QSS originates from a water-bag with energy 0.54

and initial magnetization 0.6. The system is initially homogeneous in space (zero
magnetization) and its energy is set to 0.65. The coupling constant ✏ = 0.024.
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In the N ! 1 limit, when S is trapped in a canonical QSS, we find that
the average energy flux between the big and small subsystems indeed van-
ishes, making the two subsystems by all means decoupled and thus preventing
thermalization. It is remarkable that a zero-flux state is reached for TB 6= TS

in the non-collisional regime, at variance with what is normally found in most
collisional systems.

Even more surprising is the behaviour of the system during the “violent
relaxation” stage towards the canonical QSS, which is characterized by a net
energy flux from the (cold) subsystem B to the (hot) one S . We stress that this
behaviour is not related to the negative specific heat, a feature present in some
LRI at microcanonical equilibrium [32]. To better illustrate the scenario, we plot
TB and TS versus time in fig. 5.2. Note that TS is larger than TB at t = 0, the
time of injection which is when the two subsystems become coupled. As time
progresses, the difference �T increases even further, resulting in a counter-
intuitive energy transfer from B to S . In short, the hot system gets hotter when
placed in contact with a large long-range QSS reservoir. This observation,
although fighting intuition, does not violate any laws of physics, as the second
law of thermodynamics is only expected to hold at thermal equilibrium.

Once the system has settled down in its canonical QSS at zero average
energy flux, �T and �M are found to be different from zero. In order to pinpoint
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the relation between �T and �M , we performed a series of simulations for the
big subsystem conditions as specified in the caption of fig. 5.1, and varying the
initial energy of the system S . Different initial energies of S lead to distinct
canonical QSS’s, as it happens to isolated systems trapped in microcanonical
QSS’s. At first glance, it is tempting to speculate that canonical QSS might
originate from a net balance of two opposing thermodynamic forces, presumably
related to �T and �M . However, we find that the dynamical evolution of S is
not influenced by the temperature of the big subsystem TB , at least for ✏⌧ 1,
but only responds to its magnetization MB . Therefore, provided MB is kept
fixed, TB can be set to an arbitrary value, without significantly altering the
system dynamics. This is illustrated by the data collapse reported in fig. 5.4.

5.3 Leading-order dynamics
Let us consider an Hamiltonian long-range system, made of two subsystems S

and B, which is described by the Hamiltonian:

HT =

N
S

X

i=1

p2i
2

+

N
B

X

i=1

P 2

i

2

+

1

2N

N
S

X

i,j=1

v(qi�qj)+
1

2N

N
B

X

i,j=1

v(Qi�Qj)+
1

N

N
S

X

i=1

N
B

X

j=1

v(qi�Qj) ,

(5.3)

where the variables for S are in lower case where those for B in upper case.
The energy of the i-th particle of S with position qi and momentum pi is hence
given by

Ei =
p2i
2

+

1

2N

N
S

X

j=1

v(qi � qj) +
1

N

N
B

X

j=1

v(qi �Qj) . (5.4)

In the Vlasov limit we obtain that B is described by some distribution
function fB(q, p, t) which is normalized to unity and obeys

@tfB(q, p, t) + p@qfB � @pfB@q�[fB + fS] = 0, (5.5)

where � is the usual mean field potential, defined as

�[f ](q) =

Z

dq0dp0 f(q0, p0, t)v(q � q0) , (5.6)

and fS(q, p, t) is the distribution function of the subsystem S , and it is nor-
malized to ✏. This can be obtained thinking that a particle of the system with
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position q and momentum p has, considering the whole system S + B in the
Vlasov limit, an energy given by:

HS(q, p, t) =
p2

2

+ �[fS](q) + �[fB](q) , (5.7)

which is nothing else but the single-particle Hamiltonian.
We will suppose ✏ ⌧ 1, which is the analogous to NB � NS � 1 in the

Vlasov approach. The evolution of fB is coupled to the evolution of fS

@tfS(q, p, t) + p@qfS � @pfS@q�[fB + fS] = 0 . (5.8)

The kinetic temperature of B, of S and of B+S = T , as well as other observables
like magnetization etc.., are defined in the Vlasov picture as

TB =

1

1� ✏

Z

dpdq p2fB(q, p, t), (5.9)

TS =

1

✏

Z

dpdq p2fS(q, p, t), (5.10)

TT =

Z

dpdq p2[fB + fS], (5.11)

where one should observe that the factors in front of the integrals come from the
normalization of the distribution functions. This is important for the following
approximations.

The coupled evolution of fS and fB is very hard to handle analytically.
However, as far as we are interested only in observables of the system S we
can use a very simple approximation which should bring us to solve the problem
analytically.

First of all, let us observe that the term @pfS@q�[fB] in Eq. (5.8) gives
a modification of order ✏ to fS and hence a modification of order one of the
observables, such as kinetic temperature. This is the most important term. On
the other hand, remembering that fS ⇠ ✏, we obtain that @pfS@q�[fS] in Eq.
(5.8) is of order ✏2, hence negligible.

Let us now consider the term @pfB@q�[fS] in Eq. (5.5), which gives a
modification of order ✏ to the evolution of fB . In turn this implies, from Eq. (5.8), a
modification of order ✏2 to the evolution of fS . This term implies a modification to
order ✏ of kinetic temperature (or of any other observable) of the big subsystem.
Neglecting this effect corresponds to say that the leading subsystem B does
not change kinetic temperature when coupled to the subsystem S .
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Let us also observe that observables of the total system, such as TT , evolve
following a value driven by the reservoir. Therefore, neglecting @pfS@q�[fS] is
still a valid approximation (plus terms of order ✏2). On the other hand, in this
case, the two terms @pfB@q�[fS] and @pfS@q�[fB] both give a contribution of
order ✏ and hence none of them is negligible.

The above reasoning leads us to the two following coupled equations:

@tfB(q, p, t) + p@qfB � @pfB@q�[fB] = 0, (5.12)
@tfS(q, p, t) + p@qfS � @pfS@q�[fB] = 0 . (5.13)

Solving the first one means only that the bath is in a QSS, hence in the Vlasov
picture:

fB(q, p, t) = fB(q, p, t = 0), (5.14)

for all times t. The equation for fS is now extremely simple, because it corre-
sponds only to the Liouville equation for a single particle moving in an external
potential (fB is fixed in time).

5.4 Next-to leading order dynamics
Let us briefly discuss the next-to leading order dynamics in the perturbation
parameter. The evolution equation of both distributions in the N !1 limit is
described jointly by the pair of Eqs. (5.12) and (5.13). Here, we have to consider
the collisional integral of size 1/N . The perturbative parameter is the same of
Kinetic Theory and, indeed, we must consider both the equations for the single
distributions and the equations for the correlation, because there should be a
mixing between the two terms. Following the discussion of Chapter 2, we get

@tfB � p@qfB � @q�[fB]@pfB = @q�[fS]@pfB +

1

N

X

↵=S,B

Z

dx0V 0
(q � q0)gB↵,

(5.15)

@tfS � p@qfS � @q�[fB]@pfS = @q�[fS]@pfS +

1

N

X

↵=S,B

Z

dx0V 0
(q � q0)gS↵,

(5.16)

where we use standard notations, as discussed in Chapter 2. The r.h.s. of
Eq. (5.15) shows two terms: the first term is of order ✏, while the second term
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is a sum on the label ↵ = S,B with size 1/N . Actually, the part with label
↵ = B is of order ✏

N
while the part with label ↵ = S is of order ✏2

N
, following

the assumptions of Section 2.6 and the size of the relative distributions fB,S .
Our hypotheses are that both systems can be described by a continuum theory,
therefore the number of particles of both the systems go to infinity. There are
two possibilities: the first case is that ✏ is vanishing in the N !1 limit, and
we obtain the description of a single particle in a QSS reservoir. This case is
well discussed in [22,23,101] where the authors show the presence of anomalous
diffusion with algebraic time behavior of autocorrelations.

We are here interested in the second case, namely, when there is a sep-
aration between the two perturbative constants. We get ✏ � 1

N
, actually, we

consider ✏ small but finite. We solve formally Eq. (5.15) using linear theory
around the solution of (5.13), described in Chapter 3 and 4. Thereby, we put
such solution in Eq. (5.16) and we solve it using again the same linear theory.

Although linear theory is known, at least for integrable systems, the solution
above is mathematically quite complicated. It is not within the scope of this
work to give that analytical solution, but it is still an interesting question. For
instance, we can argue which is the relaxation process of both the systems. On
a short time-scale, system S relaxes to the stationary solution of Eq. (5.13) and
B does not evolve from its QSS. On a time-scale of order ✏�1, both the systems
slightly evolve, as described by linear theory, but this evolution is iso-entropic
and does not converge to some preferred state. On a time-scale of order N

there are two different cases: when B is homogeneous then S relaxes to the
state of B and both take a time-scale of order N2 to equilibrate. When B is
inhomogeneous the whole state B + S relaxes to equilibrium on a time-scale
of order N , forgetting the initial states.

5.5 Application to the HMF model and correspond-
ing numerical experiments

In the case of the HMF model, supposing the magnetization MB of the bath to
be along the x axis, we have

@tfS(q, p, t) + p@qfS �MB sin(q)@pfS = 0 , (5.17)

where one can already see the remarkable prediction that the evolution of fS
depends only on MB . Observe that the solution of the equation for fs strongly
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Figure 5.3: Kinetic energy (left panel) and magnetization along x (right panel) of
the initial WB distribution.

depends on the initial condition (QSS in which the system is prepared). It
is an evolution of the initial conditions where each phase space point evolves
independently with respect to the other points.

First of all, we consider the relaxation of the small subsystem towards a
stationary state, as shown in the non interacting gas of particles in Chapter 2.
The big subsystem is in a generic distribution which produces a magnetization
along the x axis equal to MB = 0.2. At the coupling time, here t = 0, the
subsystem S is in a homogeneous Water-Bag state (see Section 3.2) with three
different initial widths p

0

= {0.71, 0.9, 1.0}. Moreover, the initial distribution is
built on a regular lattice to avoid finite N fluctuations. The system is evolved
using a symplectic algorithm of fourth order [78]. Figure 5.3 shows the time
dependence of kinetic energy and magnetization along the x axis. They relax
to a stationary value which depends only on the external field produced by the
big subsystem.

As discussed above, the leading-order evolution of fS depends only on MB

and not on TB . The phase space of the pendulum is foliated in trajectories with
constant energy

e =
p2

2

�MB cos ✓ , (5.18)

hence, p(✓) =
p
2 [e+MB cos ✓]1/2. We want to discuss an analytic estimate of

the difference between the kinetic temperature of the small subsystem (TS,f �
TS,i)/MB for �pS = 0 and for an initial homogeneous system, MS(t = 0) = 0.
This analysis can be extended to cover the case �pS 6= 0, and also MS(t =

0) 6= 0. We note that TS,i = 0 for �pS = 0. To evaluate TS,f , we first consider
the average kinetic temperature of the particles which are assigned a given
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energy e. In formulae

hp2ie =
1

T (e)

Z T (e)

0

˙✓2 dt, (5.19)

where h·ie indicates a time average over one period

T (e) =
4p
MB

K

✓

e+MB

2MB

◆

, (5.20)

and K(·) being the complete elliptic integral of the first kind. Expression (5.19)
takes the equivalent form

hp2ie =
2

T (e)

Z

¯✓(e)

�¯✓(e)

p(✓) d✓, (5.21)

where ¯✓(e) = cos

�1

(�e/MB) is the angle of inversion of the selected (closed)
trajectory. By performing the integral, one eventually gets

hp2ie
MB

=

2

p

2(MB + e)
p
MBK

⇣

e+M
B

2M
B

⌘E

✓

¯✓(e)

2

,
2MB

e+MB

◆

, (5.22)

where E (·, ·) is the incomplete elliptic integral of the second kind. The final
temperature of the system can now be evaluated as

TS,f ⌘ hp2i =
Z M

B

�M
B

hp2ie⇢(e) de, (5.23)

where ⇢(e) is the density of states of the system, which is univocally fixed by
the initial condition. The integral in eq. (5.23) extends from �MB to MB , i.e.
the energies that identify the separatrix of the pendulum. In fact, the system
is trapped inside the separatrix |e| = MB , given the specific condition selected
here (�pS = 0, hence no particle lies outside the resonance at t = 0). Recalling
eq. (5.18), the distribution ⇢(e) can be calculated easily, as

⇢(e) =
1

⇡

�

�

�

�

de

d✓

�

�

�

�

�1

=

1

⇡

1

p

M2

B � e2
. (5.24)

Plugging eq. (5.24) into eq.(5.23) and recalling eq. (5.22), one eventually obtains

TS,f

MB

=

p
⇡

Z

1

�1

E
⇣

cos

�1

(�y)/2, 2

1+y

⌘

K
�

1+y
2

�

dy
p

1� y2
. (5.25)
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Figure 5.4: Difference between final and initial temperature of the subsystem S

versus width of its initial water-bag, in reduced units. Data refer to different choices of
the reservoir parameters and to different initial energies of the (initially homogeneous)
system S . Symbols: direct integration of eqs. (5.8) for MB 2 [0.1, 0.55], TB 2 [0.3, 0.4].
Solid line: numerical solution of eq. (5.17). Inset: TS,f vs. MS,f for the same choice
of parameters for B as in fig. 5.1. Circles: N-body simulations (average over 100

independent realizations), NB = 4⇥ 10

3

, NS = 10

2. Crosses: direct integration of the
Vlasov equations. Solid line: integration of eq. (5.17). All quantities are dimensionless.

Numerical integration gives TS,f/MB ⇡ 0.751, in excellent agreement with the
data reported in fig. 5.4. In the general case (�pS 6= 0), e / �p2S . The scaling
suggested by eq. (5.25) implies that �p scales as

p
MB .

Consistently with the above scaling arguments, we plot in fig. 5.4 (TS,f �
TS,i)/MB as a function of the rescaled width of the initial water-bag �pS/

p
MB ,

for different values of the big subsystem magnetization and kinetic temperature.
The data refer to the direct integration of the (constrained) Vlasov equations (5.5)
and of eqs. (5.17). In all cases, the data collapse nicely on a single master
curve, which confirms the validity of our reasoning. An analytical calculation of
(TS,f � TS,i)/MB for �pS = 0 yields (TS,f � TS,i)/MB ⇡ 0.751, in excellent
agreement with the result of direct integration of eq. (5.17) (see also Ref. [28]).
The inset further shows that N-body simulations agree with all results obtained
in the N !1 limit.
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5.6 Conclusions
We have shown that a small subsystem of a long-range interacting system and
in long-range contact with a large one reaches a zero-flux steady state, that we
denote as canonical quasi-stationary state. These are stationary states of the
associated coupled Vlasov equations, and are quasi-stationary solutions of the
N-body problem. Remarkably, in the explored range of parameters, we find that
hotter-than-reservoir subsystems become even hotter in canonical QSS’s. In the
context of the HMF model, based on simple scaling arguments, we have shown
how the system anomalously increases its kinetic temperature as the fraction
of its particles trapped in the resonance set by the reservoir magnetization
gain energy. The kinetic energy gain is proportional to the value of MB and
independent of the reservoir temperature at the leading order in ✏.

We stress here, that this observation does not violate any fundamental law of
physics. Indeed, the average kinetic energy of the system does not coincide with
its thermodynamic temperature. In this respect, our work raises the following
central, yet unanswered, question: which is the correct thermodynamic measure
of temperature for a system frozen in a QSS? Notice that in the present work, the
energy of the thermal bath was chosen to lie in the part of the (microcanonical)
phase diagram corresponding to a magnetized QSS. As far as the system is
concerned, we have considered initial energies leading to both magnetized and
non magnetized (microcanonical) QSS’s.

In conclusion, and based on the theoretical analysis that we have carried
out, we argue that the results illustrated in this Chapter are general and extend
beyond the HMF case-study, whenever the collisionless Vlasov picture is a
good description of the dynamics.
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Chapter 6

Conclusions

This Chapter summarizes the contributions of this Ph.D. work and discusses
avenues for future research.

6.1 Summary of contributions
This work concerns the study of perturbed N-body mean-field interacting sys-
tems. Mean-field interactions belong to the general class of long-range in-
teractions and show intriguing equilibrium and out-of-equilibrium features, as
discussed in Chapter 1. One of the most peculiar out-of-equilibrium feature
is the fact that these systems get trapped in long-living states, called Quasi-
Stationary States (QSSs). Their lifetime diverges algebraically with the size
of the system, N . We are here interested in studying the influence of a small
external perturbation acting on a stable QSS.

The time evolution of QSSs is well described in the large N limit by the
Vlasov equation, and Chapter 2 is devoted to the presentation of Kinetic Theory
for QSSs. In the mean-field limit (N ! 1), Vlasov dynamics fully describes
the time evolution of the system, in absence of singular interactions. This
equation possesses an infinite number of stationary solutions that can be either
homogeneous or inhomogeneous in space. In the last part of Chapter 2 we have
focused our analysis on the properties of the Lenard-Balescu equation, which
describes the relaxation to equilibrium of homogeneous long-range systems.

We have developed, in Chapter 3, a linear response theory for homogeneous
QSSs using Fourier-Laplace techniques, analogous to the ones used in the the-
ory of linear Landau damping. The theory allows us to compute the variation of
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any observable when a small perturbing field is added to the Hamiltonian of the
system. Both the time dependent and the asymptotic response are accessible
to the theory. The Hamiltonian Mean-Field (HMF) model is a paradigmatic
model for mean-field and long-range interactions. It describe the motion of
particles on a unitary circle which interact all-to-all with an attractive or repul-
sive potential. Alternatively, the model can be interpreted as representing XY

spins with global coupling. Within this interpretation attractive (repulsive) in-
teractions correspond to ferromagnetic (anti-ferromagnetic) couplings. We have
shown that when an external field is applied to a stable QSS, magnetization
changes as a result of both the variation of the distribution function and of the
mean-field. Comparing our theoretical prediction with numerical simulations we
have obtained a good agreement at linear order for three different representative
QSSs: the Water-Bag, the Fermi-Dirac and the Gaussian QSSs. Second order
corrections are also calculable and can affect the variation of the observables.

The theory for homogeneous states can be obtained without taking into ac-
count a peculiar feature of the Vlasov equation, the presence of an infinity of
conserved quantities, called Casimirs. This fact cannot be neglected when fac-
ing the problem of inhomogeneous states. Moreover, inhomogeneity introduces
a coupling between the mean-field modes and the modes of the distribution.
The treatment of Landau damping for inhomogeneous states is still an open and
difficult problem. However, something can be done within our linear response
theory approach, discussed in Chapter 4. Indeed, we have developed an "ap-
proximate" linear response theory imposing by hand the constancy of a finite
number of Casimirs, besides the usual conserved quantities related with sym-
metries. Other authors have been able to derive an exact linear response theory
for integrable systems, including the HMF model when restricted to stationary
states. In order to check the validity of our approximate linear response theory
we compare our result for the response of an observable to the exact result ob-
tained using this second type of linear response theory. Overall, the agreement
between the two theories is good. However, close to the phase transition of the
second order of the HMF model, the disagreement can become quite sharp, be-
cause the presence of additional conserved quantities here plays a crucial role.
This is why our approximate theory in unable to produce the correct values of
the critical exponents, which we instead have obtained using the exact inte-
grable theory in the last part of Chapter 4. It is interesting to remark that the
exponent in the inhomogeneous phase is not the "classical" mean-field exponent,
but depends on the chosen class of distribution, here the one of Jeans’ states.
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Our perturbative approach can also be used to discuss the mean-field in-
teraction between a small system and a big one, considered as a reservoir in
canonical ensemble theory. In Chapter 5 we have studied in particular how a
kinetically-defined temperature changes by this contact and found a non-trivial
result that a hotter system can become even hotter by the contact.

6.2 Directions for future work

The study of linear response theory of the Vlasov equation results to be im-
portant for different areas of physics. For instance, such a linear theory is
fundamental for kinetic equations that rule the time evolution of many-particle
systems towards Boltzmann equilibrium. In Chapter 2 we have shown how the
linear theory for homogeneous states, together with the Markovian hypothe-
sis, brings to the Lenard-Balescu equation, which describes the relaxation of
homogeneous state to equilibrium and when the interaction is long-range and
non singular. The analogue of this equation for inhomogeneous states is known
only for integrable interactions. Indeed, here it becomes interesting to obtain
a kinetic equation using the "approximate" linear response theory, developed in
Chapter 4, but valid for more general interactions.

Actually, it is relevant to study the validity of the approximate linear response
theory and to characterize the importance of the infinite number of conserved
quantities in relation to the time evolution of the state. Models with dimension
higher than one and non-integrable interactions are also fundamental in plasma
physics and astrophysics. For example, the study of the behavior of gravitational
systems, which are intrinsically inhomogeneous, is a big challenge for galactic
dynamics and cosmology and, nowadays, it is far from been completed.

Although the linear response theory for homogeneous states of Chapter 3
is more developed, there are however open directions also in this field. An
intriguing problem is the one of characterizing the time evolution of the re-
sponse; for instance for the Gaussian distribution in momenta, for which the
dielectric function has an infinity of zeros in the lower half complex frequency
plane. Moreover, time dependence can be imposed by hand when the external
field depends itself on time in a non-trivial way. Indeed, one can study the
action of impulsive perturbations on some frequencies and wavelength in order
to characterize the energy cascade, in analogy with what has been done for
turbulence.
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Finally, an interesting direction for future work results from the perturba-
tion theory developed in Chapter 5. Following an analogy with short-range
interacting systems, one can evaluate whether a relation of that theory with
Lynden-Bell theory exists. In the affirmative case, one can study the Legendre-
Fenchel transform of Lynden-Bell entropy in analogy with what is done within
the canonical ensemble in equilibrium statistical mechanics.



Appendix A

This appendix is devoted to some mathematical results that we use in the Kinetic
Theory of long-range systems, discussed in Chapter 2.

A.1 BBGKY Hierarchy
The BBGKY hierarchy of equations (2.10) is obtained integrating by parts.
Therefore, it depends on the boundary conditions. For the sake of simplicity
we consider periodic boundary conditions in space and that the distribution
vanishes when momenta reach infinity in modulus.

The time variation of the s-reduced distribution function (2.9) depends on
the time variation of the solution fN of the Liouville equation by the following
relation

@tfs ⇠
Z N
Y

i=s

dxi@tfN =

Z N
Y

i=s

dxiLNfN , (A.1)

where LN is the Liouville operator (2.5). This linear operator can be separated
in different terms: the first one reads

Z N
Y

i=s

dxi

N
X

j=1

pj@q
j

fN =

s
X

j=1

pj@q
j

fs, (A.2)

and is called the inertial part of the Liouville equation. All the coordinates
from 1 to s are integrated and give a zero contribution thanks to the boundary
conditions.

The second term of Eq. (2.4) is the one containing the two-body potential
and can be separated in two different contributions. The first contribution is
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given by the interaction between two particles of the s set, hence one gets

1

N

s
X

j=1

@q
j

V (qi � qj)@p
j

fs. (A.3)

Again, integration of the variables in the set {(qi, pi)|i = 1, . . . , s} is zero due
to the boundary conditions. The second contribution is given by the interaction
between a particle of the s set and a particle outside this set. The associated
operator reads

s
X

j=1

@q
j

Z

dx
3

V (qi � q
3

)@p
j

fs+1

. (A.4)

This last term gives the non-linearity which relates the s particle distribution
function with to s + 1 distribution function, and takes care of the long-range
nature of the interaction.

A.2 Fourier and Laplace transform
Fourier Transform

The Fourier transform of a generic function f 2 L1, is defined by the formula

˜fk = ˜f(k) =
1p
2⇡

F [f ]k =

Z

R
dxf(x)ek(x), (A.5)

where we consider

ek(x) = eıkx, e⇤k(x) = e�ıkx. (A.6)

The Fourier transform ˜f(k) is also called the k-th mode in the text.
The inverse transform is given by

F�1

[

˜f ]x =

1p
2⇡

Z

R
dk ˜f(k)e⇤k(x). (A.7)

The Fourier transform has some useful properties: first of all it is a lin-
ear transformation. Moreover, the Fourier transform of the convolution of two
functions is the product of the Fourier transforms

F [f ⇤ g]k = ˜f(k)g̃(k). (A.8)
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This formula is very useful in many problem of Kinetic theory, where the mean-
field potential is a convolution between the two-body potential and the distri-
bution. Therefore, the Fourier transform of the integral of two distributions is
an integral itself

F


Z

dxf(x)g(x)

�

=

Z

dk ˜f(k)g̃⇤(�k), (A.9)

which is called the Plemelj formula.
A third property is that the Fourier transform of a real and even function, is

itself real and even.

Laplace Transform

The Laplace transform is defined in two different ways, one for "Mathematician"
and the other one for "Physicists". They are related by a rotation of the complex
plane. Mathematicians write the transform as

ˆfm(s) = L[f ]s =
Z 1

0

+

e�stf(t)dt, s 2 R+, (A.10)

where s 2 R⇤. On the other hand, for Physicists the transform is

ˆf(!) = L[f ]! =

Z 1

0

+

eı!tf(t)dt = ˆfm(�ı!), (A.11)

=

Z

R
⇥(t)eı!tf(t)dt, Im{!} > 0, (A.12)

where ⇥(t) is the Heaviside step function and Im{!} > 0 in order to have a
convergent integral. We use in the text the formalism of Physicists.

The inverse of the Laplace transform is more complicated compared to the
Fourier transform. Formally, it is defined by the formula

f(t) = L�1

�

[

ˆf ](t) =

Z

�

eı!t ˆf(!), (A.13)

where � is the Bromwich contour which pass over all the poles or singularities
of the function ˆf(!) (see Figure A.1). Defining � a real value such that ı� is
above all the singularities of the integrand ˆf(!), the inverse transform reads

f�(t) =

Z ı�+1

ı��1
ˆf(!)e�ı!td!. (A.14)
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Figure A.1: The scheme of the Bromwich contour used to calculate the inverse
Laplace transform.

It is clear now that the inverse transform is well defined only in the case in
which the function f� does not depend on � itself. For example, this is true for
holomorphic functions that go to zero at large values of !, because the integral
is equal to the sum of the residues at each singularity.

The Laplace transform has many properties:

• Derivative: the LT of a derivative of a function gives

L[f 0
](!) = ı!L[f ](!)� f(t = 0). (A.15)

• Convolution: the LT of the convolution of two functions gives

L[f ⇤ g](!) = L[f ](!)L[g](!). (A.16)

• Limit theorems: whenever the limits on the l.h.s and on the r.h.s of the
following expressions exist, then

lim

t!1
f(t) = lim

s!0

s ˆf(s), (A.17)

lim

t!0

f(t) = lim

s!1
s ˆf(s). (A.18)

A.3 Riemann-Lebesgue lemma
The Riemann-Lebesgue theorem states that the k-th mode of the Fourier trans-
form of a differentiable function f goes to zero in the limit |k|!1.
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However, the way in which the modes go to zero depends crucially on the
analyticity properties of the function. When f 2 L1 we have

lim

|k|!1
˜f(k) = lim

|k|!1

Z

dxek(x)f(x) = lim

|k|!1
1

ık

Z

dxek(x)
d

dx
f(x),(A.19)

lim

|k|!1
| ˜f(k)|  lim

|k|!1
1

|k|

Z

�

�

�

d

dx
f(x)

�

�

�

dx. (A.20)

Then higher modes go to zero at least as k�1. Also the Laplace transform is
endowed with the same property when the integrand is an even function.

Moreover, we can invert the reasoning: the regularity of a given function
f results from the asymptotic behavior of its Fourier transform. For example,
consider a distribution f 2 L1 well defined in x = 0. Its continuity assures that

f(0) =

Z

dk ˜f(k) = lim

⌘!0

Z

dk
e�ıky

⌘
˜f(k/⌘), 8y, (A.21)

and the same is true for its derivative

f (n)
(0) =

Z

dkkn
˜f(k) = lim

⌘!0

Z

dkkn e
�ıky

⌘n+1

˜f(k/⌘), 8y. (A.22)

Therefore, for analytic functions, that are infinitely differentiable, Fourier modes
go to zero faster then each power, hence exponentially.

A.3.1 Analytic functions
Let us now give a more rigorous statement about the behavior of the modes
of analytic functions. When a function f(x) is analytic on the real axis it is
analytic in a strip in the complex plane around the real axis. The width of this
strip is the smallest radius of convergence of the analytic function, and it is not
zero by assumption. This radius correspond to the imaginary part of the nearest
singularity to the real axis of the function in the complex plane (the smallest
imaginary part of the singularities) and we call it � < 0. Let us consider a
closed rectangular contour � as in figure A.2 defined by

• �

1

is x 2 [�R,R]

• �

3

is x 2 [�R + ı�, R + ı�]

• �

2

is x 2 [R,R + ı�]
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Figure A.2: The path � that shows the exponential damping for Fourier modes
of analytic functions

• �

4

is x 2 [�R,�R + ı�]

and � < � < 0. Since there are no singularities inside the closed path � and
the function f is analytic, the integral is zero for the Cauchy theorem. The two
integrals along the paths parallel to the imaginary axis are

Z

�2

f(x)eıkxdx = eıkR
Z �

0

f(R + ıy)e�kydy, (A.23)
Z

�4

f(x)eıkxdx = e�ıkR

Z

0

�

f(�R + ıy)e�kydy, (A.24)

= �eıkR
Z �

0

f(�R� ıy)ekydy. (A.25)

We have extracted in both the integrals the oscillating part due to the term with
R. In the limit of R!1 the function f goes to zero distributionally since both
integrals are defined on a compact domain. The integrals along the two paths
�

1

and �

3

read
Z

�1

f(x)eıkx =

Z R

�R

f(x)eıkx, (A.26)
Z

�3

f(x)eıkx = e�k�

Z �R

R

f(x+ ı�)eıkx, (A.27)

and are equal in modulus. In the integral along �

3

we have extracted the
constant term e��k . In the limit of R ! 1 the first integral along �

1

is the
Fourier transform of f , while the other is bounded by analyticity.
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This result states that for any analytic functions the Fourier mode k goes to
zero exponentially and the wave-length scale is given by the nearest singularity
to the real axis of f in the complex plane.

A.4 Principal Value integral
The following divergent integral

Z

dx
f(x)

x� y
, (A.28)

appears many times in the study of Laplace and Fourier transforms. Let us
define the Cauchy principal value part

�
Z

= lim

a!0

✓

Z �a

�1
+

Z 1

a

◆

= P

Z

, (A.29)

which corresponds to the non singular part of such integral. Therefore, we define
the Plemelj formula

lim

a!0

+

1

x± ıa
= P

1

x
⌥ ı⇡�(x), (A.30)

used to evaluate the integral above in a distributional sense.
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Appendix B

This appendix is devoted to some mathematical results that we use for the
Fermi-Dirac distribution in Chapter 3.

B.1 Normalization, energy density, and stability cri-
terion for the Fermi-Dirac distribution (3.7)

Normalization: Consider the distribution (3.7). The normalization A satisfies

A

Z 1

�1

dp

1 + e�(p2�µ)
= 1. (B.1)

Changing variables and doing an integration by parts, we get

2�A

Z 1

0

dx

p
x e�(x�µ)

h

1 + e�(x�µ)
i

2

= 1. (B.2)

The left hand side may be written in terms of the derivative @f
FD

(x)/@x of the
Fermi-Dirac-like function f

FD

(x) = 1/[1 + e�(x�µ)
]. We get

2A

Z 1

0

dx
p
x
⇣�@f

FD

(x)

@x

⌘

= 1. (B.3)

In the limit of large � , the derivative @f
FD

(x)/@x approaches the Delta
function: lim�!1 @f

FD

(x)/@x = ��(x � µ). In this limit, we may expand
p
x

in a Taylor series about µ,

p
x =

p
µ+

x� µ

2

p
µ
� (x� µ)2

8µ3/2
+ . . . , (B.4)
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which on substituting in Eq. (B.3) gives

A
⇣
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µI
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1

�
p
µ
I
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� 1

4�2µ3/2
I
2

+ . . .
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Here,
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Thus, to order 1/�2, we find from Eq. (B.5) that

A
⇣

2

p
µ� ⇡2

12�2µ3/2

⌘

= 1, (B.9)

which gives

A =

1

2

p
µ

⇣

1 +

⇡2

24�2µ2

⌘

. (B.10)

Average energy: The average energy density is obtained from Eq. (??) as

e = A

Z 1

�1
dp

p2/2

1 + e�(p2�µ)
+

1

2

. (B.11)
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Changing variables and doing an integration by parts, we get

e =
A
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Z 1

0

dx x3/2
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1

2

. (B.12)

Expanding x3/2 in a Taylor series about µ and substituting in Eq. (B.12)
gives

e =

A
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Using Eq. (B.10), we find that to O(1/�2

), the energy density is

e =
µ

6

⇣

1 +

⇡2

6�2µ2
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+

1

2

. (B.14)

Dielectric function: Using Eqs. (3.7) and (2.48), we get

✏(1, 0) = 1� A

Z 1

0

dx
1p
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⇣�@f
FD
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. (B.15)

Expanding 1/
p
x in a Taylor series about µ, and substituting in Eq. (B.15)

gives

✏(1, 0) = 1� A
⇣ I

0p
µ
� I

1
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3I
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, (B.16)

so that to O(1/�2

), we get

✏(1, 0) = 1� 1

2µ

⇣

1 +

⇡2

6�2µ2

⌘

, (B.17)

where we have used Eq. (B.10).
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Appendix C

This appendix is devoted to a discussion about some approximations that we use
in the study of linear response theory of inhomogeneous states in Chapter 4.

C.1 Asymptotic time limit of J!
We have to evaluate the integral (4.19) in the limit ! ! 0. The idea is that the
limit is not trivially zero, but is determined by terms arising from any singularity
in manifolds where the Liouville operator is zero.

The motion of a particle in an external potential  (x) can be bounded or
unbounded. One of the main differences between this two kind of motion comes
from the spectral properties of the generator of the dynamics. For instance, the
manifold in which the motion changes from bounded to unbounded could show
a "zero" dynamics, i.e. the Liouville operator constrained to such manifold is
strictly zero. Therefore, the limit of equation (4.19) gets a divergence on such
manifolds and could introduces a new term in the eigenvalue equation. For
example, the dynamics of the unperturbed HMF system is the dynamics of the
pendulum which shows stable and unstable points generating the separatrix
between bounded and unbounded motion. Along the separatrix the frequency
of the bounded motion diverges and the Liouville operator is zero.

We have to evaluate the following integral

J! =

Z

dxdvf 0
0

(H
0

)'(x)
!

! � ıL
0

eıkx, (C.1)

in the ! ! 0 limit, while the operator

L
0

g(x, v) = �v@xg +m@x (x)@vg. (C.2)
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is the Liouville operator of the unperturbed dynamics. The parameter m is the
size of the unperturbed mean-field potential, in analogy with the modulus of the
magnetization of the HMF model. First of all, we separate the two regions of
positive and negative velocities. The Liouville operator in the two regions has
the symmetry property

L+

0

= �L�
0

. (C.3)

Let us now introduce the following transformation of coordinates

(x, v)! (x,E), mE =

v2

2

�m (x). (C.4)

The Liouville operator becomes

L+

0

=

p
m
p

2(E +  )@x @E. (C.5)

The integral (C.1) becomes

J! =

p
m

Z

dxdE
f 0
0

(E + 2 )
p

2(E +  )
'(x)

!2

!2

+ L2

0

eıkx. (C.6)

The square of the operator acting on a function g(x) of the spatial variable x

gives

L
0

g(x) = 0, L2

0

g(x) = m(@x (x))
2g(x), (C.7)

and, consequently, the integral looses its operatorial form

J! =

p
m

Z

dx
'(x)eıkx

1 +m
�

@
x

 
!

�

2

Z

dE
f 0
0

(m(E + 2 ))
p

2(E +  )
. (C.8)

This integral does not depend on ! only in the manifold where the deriva-
tive of the mean-field potential @x is zero. When the Lebesgue measure of
that manifold is not zero, integral (C.1) gives a contribution to the eigenvalue
equation.

For instance, in the homogeneous case the mean-field potential is zero
and the integral above converges to zero in the limit of vanishing frequencies,
because the manifold of vanishing mean-field force is of zero measure. This is
consistent with the results shown in Chapter 4.3.
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C.2 Energy-Casimir considerations
The theory of Casimirs allows one to obtain stationary solutions of the Vlasov
equation from a variational principle [31, 57, 82, 91]. It is also useful to compare
the functional form of different distributions.

Calling c(y) a generic invertible and differentiable function, the Casimir
functional is

C[f ] =
Z

c(f(x, v))dxdv, (C.9)

The function c is referred to the generator of the Casimir. The Vlasov equa-
tion describes isolated systems, therefore, it conserves both energy and mass.
Thereby, it is possible to write the variational equation

max

f

n

C[f ]
�

�

�

Z

f(x, v)E(x, v) = E,

Z

f(x, v) = 1

o

, (C.10)

and its extremal distribution

f(q, p) = (c0)�1

(�H(q, p)). (C.11)

The function c0 is the first derivative of the function and the label �1 stands
for the inverse. Distribution (C.11) is stationary as stated by Jeans, because it
depends only on functions such as the Hamiltonian. The value of the Casimir
can be written as a function of the distribution

C[f
0

] = �hH
0

i
0

+ h
Z �H0

z⇤

f
0

(y)

f
0

(�H
0

)

dyi
0

(C.12)

where f(z⇤) = 0. This variational approach, in analogy with the thermodynamic
one, is related to a form of stability analysis because the solution must maximize
the Casimir functional [82].

Inverting this procedure, we consider a known initial distribution function
f
0

which can be generated by a Casimir with generator c(y). Moreover, let
us consider that the final state satisfies the Casimir variational principle but
with a different generator t(y). Linear response theory requires that in the limit
of vanishing perturbation h ! 0 the Casimirs coincide, hence we develop the
Casimir T around the unperturbed state f

0

T [f ]!
Z

c(f
0

) + h

Z

c0(f
0

)�f + h

Z

g(f
0

) +O(h2

). (C.13)
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The function g represents the variation of the generating function of the Casimir
due to the perturbation. Using equation (C.11), the first part of that variation is
the variation of the Hamiltonian

R

H
0

�f and it is zero when the system conserves
the energy constraint. Therefore, the variation of the Casimir depends only on
the function g, which corresponds to a variation of the generator of the Casimis
induced by the perturbation. Indeed, the presence of a variation of the generator
implies a different functional form of the final state compared to the initial one.
The corresponding equation arising from the variational principle reads

�fc00(f
0

)� ��H
0

� ��H � �M + g(f
0

) = 0. (C.14)

This equation relates the variation of the distribution function �f to the variation
of the Hamiltonian and corresponds to the Duhamel formula at infinite times.

From a numerical point of view a variation of the generator of the Casimir
generator induces a variation in the value of the Casimir in time as can be easily
checked.

Moreover, the variation of the energy in perturbed systems, when the pertur-
bation is instantaneously switched on, is zero. In analogy, the variation of the
generator of the Casimir is zero with perturbations instantaneously switched on.
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