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Chapter 1

Introduction and Motivation

Observing people is one of the most important topic across all disciplines.

Putting aside for the moment the technological fields, which is the aspect con-

sidered by this thesis, also social and psychological sciences have remarked

on the importance of people and their interactions [143]. Among all the sci-

ences, if we consider technological fields [47], there are plenty of applications

of “person analysis”. In general we can define the term person analysis as

non-intrusive methods and processes that extract and pool co-

herent statistics per subject and then additionally infer a pattern

that represents a behavior connected with a group of people or

with the single subject.

This thesis focuses on ways of observing people which are performed con-

sidering three factors. Firstly, the analysis should be performed automati-

cally without relying on consistent and constant human-interaction. Con-

sidering this, we can claim that this thesis aims to program machines that

automatically observe people and then, of course, humans must only inspect

the final results. This automation is reached by observing people at different

levels using regular visual sensors such as fixed or moving cameras. Secondly,

a more subtle aspect is that this machine-vision analysis should be assisted

by 3D reasoning. Even if regular passive sensors such as CCTVs (Closed-

Circuit Televisions) passively observe through media like images or video, we

argue that the use of 3D information could enhance the performance of this

automation. Finally, the analysis is performed interpreting visual content

1
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with a computer, i.e. pixels in the image; and the science that has the role

of understanding what is happening in imagery is computer vision.

Some interesting use cases of person analysis can be given if we consider

our current daily life: for example think of what a security company could

do if it were possible to automatically monitor a wide area without employ-

ing watchmen or anti-theft devices; or if it were possible to prevent theft

before it happens by simply observing people through regular CCTVs. If

it is impossible to prevent crimes, “analysis of people” could also be used

to passively record interesting parts of videos for post-mortem analysis of

events, in case someday this important data might be useful. Note that

this automatic approach is not concerned with passively saving all the data,

which is already performed by NVRs (Network Video Recorders), but with

automatically keeping only the relevant ones.

However, “analysis of people” is not just a matter of security: it could

also enhance our daily life when we shop. Imagine a supermarket that,

respecting the privacy of users1, is able to accumulate coherent statistics per

subject about the places and items that have received interest. This could

be in principle used to improve the way we shop in a two-fold manner: (1)

the seller could have a statistics about person behavior in buying things, the

physical places that they often visit, etc. (2) it could change the relationship

between consumer and shop with respect to how the customer shops. We

can imagine a future system suggests products to the customer, not only

on his PC or smartphone, but directly in place in the supermarket. This

latter use case provides a parallelism about how we are nowadays constantly

monitored and observed by internet companies through the web in order to

better improve their advertisement algorithms and, hopefully, the customer

approach to their products.

In a near future, we can imagine that this non-intrusive way of observing

people could also be extended not only to the virtual world of the web, but

also to our physical daily life, observed not through protocols or clicks but

using visual sensors such as visual cameras, IP and robotic cameras, depth

sensors and robots that walk among us.

1This important topic and issues of privacy are beyond the scope of this thesis.
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1.1 Objectives of this Thesis

What is the practical meaning of visual analysis of people? To have an idea,

we present some questions that a machine must deal with when it is subject

to analyze a video stream or still images. The following questions encompass

some notoriously difficult tasks if we think that they need to be performed

automatically by a machine: are there people present in the image? If yes,

where are they located? Can you extract their trajectories in an absolute

reference system? Are you able to guide the sensor in order to follow them

and to focus on biometrics details such as the face? If I give a person image

from camera A, can you please tell me who is this person when viewed from

camera B? Can you recognize a face captured in the wild from a surveillance

camera over a large set of candidates? How long does it take to recognize

the person?

Considering this tasks, the objectives of this thesis are the following:

we present a number of principled methods to answer these questions. In

general, we analyze the motion of people in dynamic scenes, and considering

that the sensors we employ is moving one, we can also think to steer the

sensor in order to follow the people; then we propose a way to coarsely

retrieve the path of a person by providing a method to link its path through

multiple non-overlapping fixed cameras; we consider two cameras in this

thesis, but extension to multiple cameras is straightforward; then, focusing

faces the most non-intrusive biometric of all, we present two novel methods

to recognize faces in the wild. These break the proposed thesis in two parts:

1. the first part concerns “motion analysis”, and deals with the topic of

person tracking and re-identification with the aim of extracting the mo-

tion and moving the sensor towards important details. An illustration

of these topics is shown in Fig. 1.1.

2. the second part is about “face analysis” in term of face recognition and

3D face modeling and assumes that the method proposed in the first

part has succeeded in the task of focusing on the face. An illustration of

these issues are shown in Fig. 1.2.

This gives a rough idea of the topics and the organization of this thesis.

Regarding the latter, more details will be given in the next Section.
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(a) Trajectory Extraction (b) Person Re-identification

Figure 1.1: Analysis of people through motion encompasses trajectory ex-

traction and person re-identification.

(a) Face Logs (b) 3D Face Pose Estimation

Figure 1.2: Analysis of people through faces deals with face logging, face

recognition and face pose estimation.

1.2 Organization of this Thesis

As reported in the previous section, this thesis is organized in two parts: the

first part concerns with the topic of motion analysis while the second part

deals with face analysis in term of face modeling and recognition. In the all

the chapters we first introduce and define the problem we are addressing and

then we proceed to review the literature for that topic. In Fig. 1.3 we show

a schematic viewpoint of the organization of this thesis: from the input that

is a generic person, to the output of this work, in form of trajectories or an

identity derived from a recognized face.

Moreover, in Table 1.1 we summarize the organization of this thesis in

terms of how 3D data assist the method, specifying if the 3D is inferred from

the 2D imagery or it it is provided a priori.
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Chapter # 2D data 3D data 3D source

Part I: Motion Analysis

Motion Analysis from a PTZ Camera 2 3 3 Inferred from 2D

Matching People across Views 3 3 7 7

Part II: Face Analysis

Logging of Face Imagery 4 3 7 7

2D/3D Florence Faces Dataset (DB) 5 3 3 Manual acquisition

Matching Face Imagery with 3D Textured Models 6 3 3 Prior from DB

3D Assisted Pose Independent Face Recognition 7 3 3 Prior from DB

Table 1.1: The use of 2D/3D information in the chapters of this thesis along

with the procedure that gives the 3D data.

Motion analysis

The topic of trajectory extraction and the task of focusing on biometric

details is covered in Chapter 2. This is addressed in term of joint camera

calibration and multi-person tracking. A key task in person analysis is the

extraction of meaningful trajectories of people that are moving in a wide

area while the sensor is zooming on biometric details. The term “meaningful

trajectories” means a group of trajectories that lies in a space in which they

can be compared. Considering that we are employing a moving sensor, if

we directly extract a trajectory of a person on the image, the extracted

2D motion will make no sense. Instead, our approach is to calibrate and

compensate the motion of the camera in order to extract world coordinate

trajectories that could be even measured in meters.

In Chapter 3 instead we look at the problem of linking target paths

across cameras. This problem is addressed in the literature as a problem

of matching people across views. So, we assume that we have detected or

tracked the target in a camera and that we have a blind-zone in which the

target is not visible; then he will reappear in a different camera and must

be associated with the previous instance. This problem is called person

re-identification by the computer vision community.

Face analysis

With the methods reported in Chapters 3 and 4 we are able to follow groups

of people and recover world coordinate trajectories. In this part we exploit

the results of these methods to perform face analysis. In Chapter 4 we

argue that face detection alone cannot provide a sufficient statistic since each

detection is not unambiguously associated with one subject. Considering
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Motion Analysis 

from a PTZ camera

Chapter 2

Matching People 

across Views

Chapter 3

Motion Analysis

Automatic 

Person Analysis

Matching Face Imagery 

with 3D Textured Models

Chapter 6

Logging of Face Imagery

Chapter 4

Face Analysis

3D Assisted Pose 

Independent 

Face Recognition 

Chapter 7

2D/3D 

Florence 

Faces DB

Chapter 5

+
Y

X

Figure 1.3: Schematic view of the organization of this thesis. From top to

bottom, we can see that by observing the subject we analyze the motion and

then focus on his face. Each block in the figure corresponds to a chapter

of this manuscript. The final output is the extracted motion in term of

trajectories and the labels that arise when a face recognition algorithm is

applied to multiple faces.
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this, in Chapter 4 we propose a novel method to detect frontal and non-

frontal faces and to track them in order to log only the most useful face

images. We call this procedure face logging and its output is a set of grouped,

relevant and high quality face images.

In Chapter 5 we explain the procedure that we use to collect a database of

2D imagery and 3D models, namely the “2D/3D Florence Faces Database”,

which provides a set of real 3D models that establish a prior that is further

used in Chapters 6 and 7 to perform 3D-assisted face recognition.

In Chapter 6 we consider the problem of face recognition in imagery cap-

tured in uncooperative environments from a PTZ camera. For each subject

enrolled in the gallery, we acquire one high-resolution 3D model from which

we generate a series of rendered face images of varying viewpoint. The result

of regularly sampling face pose for all subjects is a redundant basis that over

represents each target that is used to classify the 2D probe face image.

In Chapter 7 we look at the problem of pose invariant face recognition

with a gallery set containing one frontal face image per enrolled subject while

the probe set is composed by just a face image undergoing pose variations.

Differently from current methods, we solve this problem in a fully automatic

way without any manual labeling. In Chapter 7 face recognition is also

assisted by 3D information.

Finally, in Chapter 8 we draw some conclusions and provide a summary

of the contributions; in Appendix A we summarize some details on other

datasets collected during the PhD and in Appendix B we report the publi-

cations associated with this work.

1.3 Contributions

The main contributions of this thesis are reported separately for each chapter

and are the following:

1.3.1 Motion Analysis

Chapter 2: Motion Analysis from a PTZ Camera

In Chapter 2 we present a novel system that, under reasonable assumptions

holding in many real contexts, allows continuous, adaptive, real-time self

calibration of a PTZ camera. This enables tracking of multiple targets in

wide areas with a single camera, even in the presence of changes of the scene
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appearance and for long periods of operation. The approach is thus able

to extract world coordinate trajectories of people even if the PTZ camera

is moving. The approach provides an adaptive representation of the scene

under observation in order to continuously localize itself in the scene. Land-

marks are continuously updated in the scene map to account for the changes

of the environment due to illumination changes and objects entering/exiting

or changing position in the scene. This permits continuous camera calibra-

tion over hours of activity as discussed in [45].

From the estimation of camera pose we can compute the relationship

between target positions in the 3D world plane and positions in the 2D image

and infer the expected imaged height of a target at any image location. This

improves both precision/recall performance of human detector algorithms

as well as execution time by searching for targets exactly where they are

expected to be found.

Finally, since camera motion is compensated, an absolute reference sys-

tem can be used and tracking can be performed in the world plane, instead

of in the image plane. This allows real-time tracking with high and stable

accuracy also at large distances and high zoom levels.

Chapter 3: Matching People across Views

The method covered by Chapter 2 is essential for extracting long trajectories

but it can not handle with a target that walks around a corner and it cannot

link two trajectories between two non-overlapping cameras. To this end, in

Chapter 3, we present several approaches solving this problem of matching

people across view. We introduce a novel feature descriptor which is shown to

be robust for use in person re-identification problems without the additional

complexity of feature descriptions that rely on background models or parts.

We show how to use an iterative approach to extend sparse discriminative

classifiers to rank a large number of candidate individuals. To the best

of our knowledge, we are the first to formulate person re-identification as

an iterative process of sparse classification, refinement, and ranking. We

show through extensive experimental evaluation how our approach is suitable

for all re-identification modalities, that it outperforms most approaches at

the state-of-the-art, and that it is very competitive with metric learning

techniques without requiring labeled training data for learning.
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1.3.2 Face Analysis

Chapter 4: Logging of Face Imagery

The main contribution of Chapter 4 is a principled method to associate and

group face detection responses from a video stream. The result is a set of

clustered, high quality face images. The other contributions are the develop-

ment of a multi-pose face detector, based on the AdaBoost face detector of

Viola and Jones [87,123], that incorporates the outputs of lateral and frontal

face detectors to improve robustness to face pose variations and provides a

rough estimate of face pose usable as a facial quality measure; the definition

of a multi-target tracking and data association module handling multiple

intrusions over long periods of time; and the proposal of two distinct facial

quality measures, in addition to resolution, which are compared against the

brute force approach that logs each detection associated with a track.

The integration of these novel components, along with state-of-the-art

components for object detection and tracking, outperforms other face logging

methods described in the literature.

Chapter 5: 2D/3D Florence Faces Dataset

The novelty of Chapter 5 is that we are the first to propose, collect and share

a dataset that jointly collect 2D face imagery information along with high

resolution 3D models. A preview of this dataset is available under request

at http://www.micc.unifi.it/vim/datasets/3d-faces/2.

Chapter 6: Matching Face Imagery with 3D Textured Models

The key contribution of Chapter 6 is a new method to perform face recog-

nition between 2D and 3D data. In this way a subject is enrolled with a

single-shot procedure that captures a 3D model and thus enrollment be-

comes very quick. Then, by leveraging the 3D models, the method is able to

synthesize poses for the subjects that are used to recognize faces in uncoop-

erative environments using PTZ cameras. While directly collecting images

over varying pose for all enrolled subjects is prohibitive at enrollment, the

use of high speed, 3D acquisition systems allows our face recognition system

to quickly acquire a single model and generate synthetic views offline.

2Many thanks to Andrea Ferracani who designed and developed the website.

http://www.micc.unifi.it/vim/datasets/3d-faces/
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Chapter 7: 3D Assisted Pose Independent Face Recognition

In Chapter 7 our effort is to improve the performance of standard face recog-

nition algorithms across pose. The novel aspects are the following: we are the

first to propose a way to automatically label and semantically align a set of

3D face models without any manual intervention. This solves the landmark

ambiguity problem reported previously [7, 134]. We further propose a novel

strategy to fit a non-rigid transformation on a face image which exploits

the face modeling power of the 3D Morphable Model (3DMM). Similarly

to [134], the 3DMM is efficiently fit on a image using a Ridge Regression,

that globally preserves the face shape while locally minimizing the landmark

reprojection error. By exploiting the fitting, instead of computing LBP on a

uniform grid [4], we localize the LBP histograms on the deformed vertices.

This gives more precision to the method and obtains feature vectors of the

same dimension irrespective of the image size.
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Motion Analysis
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Chapter 2

Motion Analysis from a PTZ

Camera

Pan-tilt-zoom (PTZ) cameras are powerful to support object

identification and recognition in far-field scenes. In this chapter,

we present a solution that provides continuous estimation of the

camera pose and mapping from scene landmarks, which is robust

to rapid camera motion, changes of the environment due to illu-

mination or objects, and scales beyond thousands of landmarks.

The estimation of camera pose permits to compute the relation-

ship between the positions of the targets in the 3D world plane

and their corresponding positions in the 2D image, and to per-

form real-time tracking of multiple targets in world coordinates.

Since camera motion is compensated, an absolute reference co-

ordinate system can be used and targets can be tracked in the

world plane with high and stable degree of accuracy also at large

distances and any zooming level. We provide experimental evi-

dence that the solution proposed is capable of supporting effective

real-time tracking of multiple targets with PTZ cameras.1

1This chapter has been published as “Device-Tagged Feature-based Localization and

Mapping of Wide Areas with a PTZ Camera” in in Proc. of CVPR Int’l Workshop on

Socially Intelligent Surveillance and Monitoring, San Francisco,USA, 2010.

13



14 Motion Analysis from a PTZ Camera

2.1 Introduction

Pan-tilt-zoom (PTZ) cameras are powerful to support object identification

and recognition in far-field scenes. They are equipped with adjustable optical

zoom lenses that can be manually or automatically controlled to permit both

wide area coverage and close-up views at high resolution. This capability is

particularly useful in surveillance applications to permit tracking of multiple

targets in high resolution and zooming in on biometric details of parts of the

body in order to resolve ambiguities and understand target behaviors.

However, their practical use in automated video surveillance is compli-

cated by the fact that with this type of camera real time localization and

tracking of targets is challenging. On one hand, due to panning, tilting and

zooming, the geometrical relationship between the camera view and the 3D

observed scene is time-varying. So, in order to provide precise localization

and tracking of moving targets, at each time instant this relationship must

be estimated and camera motion compensated. This is a complex and time

consuming operation. Values from the PTZ camera motor encoders can

be exploited but these measurements are too inaccurate to be used effec-

tively [130].

On the other hand, due to the mode of operation we cannot assume

any fixed background for target detection. Besides, over long periods of op-

eration, real world scenes also exhibit changes either due to objects or to

context variations (Fig. 2.1). According to this, well known detection meth-

ods based on background subtraction cannot be used, and some adaptive

representation of the scene under observation is also necessary.

Moreover, since we must expect that the imaged targets undergo frequent

scale changes, classical target detectors that use specialized classifiers [40,49,

54] are inadequate, since they would require too much computational effort

to permit real-time operation.

In the following, we present a solution that provides continuous adaptive

calibration of a PTZ camera and enables effective real-time tracking of mul-

tiple targets, so to fully exploit the superior capabilities of PTZ cameras for

surveillance applications in large areas. In an offline stage, we collect scene

landmarks from a finite number of keyframes taken from different viewpoints.

At run time, at each time instant, we estimate the homographic transfor-

mation between the camera view and the 3D world plane by matching the

keypoints in the current view with those extracted from the keyframes in the

offline stage. As a result, camera motion is compensated and the relation-
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ship between target positions in the 3D world plane and positions in the 2D

image is continuously maintained. Changes in the scene that have occurred

over time due to illumination or objects are accounted for with an adaptive

representation of the scene under observation that models and updates the

uncertainty in landmark localization. Tracking of targets is performed in

real world coordinates with a high and stable degree of accuracy, as well as

with continuity in the presence of occlusions when targets exit the scene for

a few frames.

Figure 2.1: Real world scene with changes due to objects and illumination

variations. Planar mosaics from a PTZ camera.

2.2 Related work

In the following, we review research papers that are relevant to the scope of

this work and have connections with the method proposed. In particular,

we review solutions for self-calibration and target tracking with moving and

PTZ cameras.
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PTZ camera self-calibration

Self-calibration of moving cameras has been the subject of several research

papers. Both offline and online methods have been proposed, some of which

have specifically considered PTZ cameras.

A paper by Hartley [67] first demonstrated the possibility of perform-

ing offline camera self calibration based on only image content for moving

cameras undergoing pure rotation. This method was later extended in many

different ways (see [41]) and has also been assumed as the central build-

ing block of mosaicing [31, 112]. More recently, Sinha and Pollefeys [113]

used the same method to perform offline self-calibration of PTZ devices in a

camera network. For each camera, they used feature matching and bundle

adjustment to compute the approximate values of the intrinsic parameters

of a set of view images taken at different pan and tilt angles and the lowest

zooming level. Afterwards, other view images at increasing zooming levels

are acquired and processed in the same way to estimate the intrinsic cam-

era parameters for the full range of zooming. The mosaics of the camera

views are hence matched each other, and the extrinsic camera parameters

are estimated for each camera.

Solutions to online estimation of camera pose for moving and PTZ cam-

eras were proposed respectively in [80, 127] and [38, 90]. In [80], Kleyn and

Murray presented a method for real time pose estimation of a moving camera,

where they applied online bundle adjustment to the five nearest keyframes

sampled every ten frames of the sequence. Unfortunately, this approach can-

not be used with PTZ cameras when applied to monitor large areas, since it

is likely to produce over-fitting in the estimation of the camera parameters.

In [127], re-localization of the camera was performed by using a randomized

lists classifier to find the correspondences between the features in the current

image and pre-calculated features from all the possible views of the scene,

and hence applying RANSAC to obtain the correct camera pose. However,

their experiments were performed in indoor environments and the scene un-

der observation was restricted to a relatively small area. Civera et al. [38],

proposed a method to perform real-time sequential mosaicing of a scene with

a rotating camera. They used Extended Kalman Filter (EKF) and SLAM to

estimate the location and orientation of the camera. They only considered

the case of camera rotations, and did not account for any zooming opera-

tions. The landmarks extracted from the scene were included in the filter

state. Due to this, this solution cannot scale with the number of features, and
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is likely to show very poor accuracy as the number of features grows beyond

a few hundred. Lovegrove et al. [90] claimed to provide full PTZ camera self-

calibration but didn’t demonstrate self-calibration with variable focal length.

As an alternative to using EKF sequential filtering, these authors suggested

to use keyframes to achieve scalable performance. The camera parameters

between consecutive images were obtained by simple image alignment.

The main limitations of these approaches are that they all assume that the

scene is almost stationary that changes are only due to camera motion and

there is no zooming operation. These assumptions are clearly inappropriate

for tracking with PTZ cameras in real applications.

A few authors have attempted to solve the so-called hand-eye calibration

problem [121] using the information provided by the built-in motor actuators

of PTZ cameras. The authors of [130] defined a PTZ camera model that

explicitly accounts for the drift of camera calibration over many hours of

operation by reflecting how focal length and lens distortion vary as a function

of zoom scale. A few images were used for initialization, followed by a

nonlinear optimization. Results have shown a better calibration accuracy

with respect to [113], especially at high zoom scales. However, as reported

by the authors, the system fails when a large component in the scene has

been moved or when the background is changing slowly. A similar hand-eye

calibration strategy was also applied in [114], but accounted for pan and tilt

camera movements only.

Tracking with PTZ cameras

General tracking methods cannot perform well on sequences from PTZ cam-

eras. This is mainly due to the fact that with moving sensors targets undergo

large and abrupt scale changes that cannot be handled unless the method

exploits some prior knowledge or calibration on the scene under observation.

Moreover, if camera motion is not compensated, the motion of targets cannot

be distinguished from the motion of the camera. Due to this and because

of the difficulty of granting at the same time precise online camera self-

calibration and real-time tracking, most of the solutions proposed for PTZ

camera tracking that have appeared so far were limited to either unrealis-

tic simplified contexts of application or restricted special domains. Several

authors assumed scenarios with a single moving target [68, 120]. In [68],

Hayman et al. used the affine transform applied to lines and points on a

fixed scene background to adapt the PTZ camera focal length so to com-
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pensate the changes of size of targets. In [120], Tordoff et al. adjusted the

PTZ camera focal length by considering the relative depths of new and old

camera poses, estimated according to geometrical constraints.

Other methods were targeted to a specific domain of application [16, 97,

110,135] or exploited context-specific fiducial markers to obtain an absolute

reference and compute the time-varying relationship between the target po-

sitions in the 2D image and the positions in the 3D world plane [16,110,135].

In [97], hockey players were tracked in a PTZ camera sequence using a detec-

tor specialized for hockey players trained with Adaboost and particle filter-

ing based on the detector’s confidence. The changes in scale of the targets

was managed with simple heuristics using windows slightly larger/smaller

than the current target size. This solution was improved in [135] by ex-

ploiting motion compensation of the PTZ camera. The authors used the

a-priori known circular shape of the hockey rink and playfield lines to locate

the reference points needed to estimate the world-to-image homography and

compute camera motion compensation. Beyond the fact that these solutions

are domain-specific, fiducial markers are likely to be occluded and impair

the quality of tracking.

A PTZ camera tracking solution based on motion compensation was pro-

posed in [117] by Kumar et al.. They introduced a layered representation in

which spatial and temporal constraints on shape, motion, and layer appear-

ance are modeled and jointly estimated. However, adaptation to the changes

of the size of the moving targets was simply modeled by allowing the variance

to change according to the target shape. This approach is therefore likely to

fail in the presence of abrupt scale changes.

2.2.1 Contributions

In this chapter we present a novel solution that, under reasonable assump-

tions holding in many real contexts, allows continuous adaptive, real-time

self calibration of a PTZ camera, so to permit tracking of multiple targets

in wide areas with a single camera, even in the presence of changes of the

scene appearance and for long periods of operation. We provide several

contributions:

• We develop a Bayes-optimal algorithm for estimating PTZ camera pose

(including focal length) and mapping from scene landmarks. This results

in a principled approach which is robust to rapid and unpredictable

camera motion and scales beyond thousands of landmarks.
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• We provide an adaptive representation of the scene under observation.

Landmarks are continuously updated in the scene map to account for

the changes of the environment due to illumination changes and objects

entering/exiting or changing position in the scene. This permits contin-

uous camera calibration over hours of activity as discussed in [45].

• From the estimation of camera pose we can compute the relationship

between target positions in the 3D world plane and positions in the 2D

image and infer the expected imaged height of a target at any image

location. This improves in both precision/recall performance of the de-

tector as well as execution time by searching for targets exactly where

they are expected to be found.

• Since camera motion is compensated, an absolute reference system can

be used and tracking can be performed in the world plane, instead of the

image plane. This allows real-time tracking with high and stable degree

of accuracy also at large distances and zooming levels.

Experimental results are presented that validate the method in compar-

ison with other solutions and demonstrate that it improves with respect to

the state of the art in tracking with PTZ cameras.

Some of the ideas for calibration and tracking were also used under sim-

plified assumptions in [46]. In this paper, differently from the solution sub-

sequently described, targets were detected manually in the first frame of

the sequence and the scene was assumed not to change through time. The

method proposed was not robust to rapid camera motion and could not

maintain camera calibration over hours of activity.

2.3 Camera Pose Estimation and Mapping

In the following, we introduce the scene model and define the variables used.

Then we discuss the offline stage, where a scene map is obtained from the

scene landmarks of the keyframes, and the runtime operation, where we

perform continuous camera pose estimation and updating of the scene map.

Target localization in 3D world coordinates and multiple target tracking are

hence discussed in Sect. 2.4.
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Figure 2.2: Target localization in world coordinates from a PTZ camera,

main relationships and elements: the current frame and the landmark obser-

vations extracted; the view maps including the scene landmarks; the initial

scene map obtained from the union of the view maps; the 3D scene.

2.3.1 Scene model

We consider an operating scenario where a single PTZ camera is allowed to

rotate and zoom around its nodal point, observing persons that move over a

planar scene. The following entities are defined as random variables:

• The camera pose c. Camera pose is time varying, i.e. c(t). Follow-

ing [31, 82], we have defined the camera pose only in terms of the (time

varying) pan and tilt angles (ψ and φ, respectively), and focal length f

of the camera. In fact, the principal point is a poorly conditioned pa-

rameter, and more precise calibration is obtained if it is assumed to be

constant when pan, tilt and focal length are allowed to vary.

• The scene landmarks u. These landmarks account for salient points

of the scene background and are initially detected in keyframe images

in the offline stage using SURF [17]. Keyframes are sampled at fixed

intervals of pan, tilt and focal length. The SURF descriptor is maintained

associated to each landmark. During online camera operation, since the

scene background will modify due to content or illumination variations,

new landmarks will be detected while others will be dropped. According

to this, we should assume u(t) = [x(t), y(t)], during runtime camera

operation.

• The view map m and scene map M. A view map is created for each
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keyframe that collects the scene landmarks detected (i.e. m = {ui}).
The scene map is obtained as the union of all the view maps and collects

all the scene landmarks that have been detected in the entire scene at

different pan, tilt and focal lengths values (i.e. M = {mk}). Since the

scene landmarks change through time, these maps will change accord-

ingly. Due to this, we assume m(t) and M(t), during runtime camera

operation.

• The target state s. The target state is represented in 3D world coor-

dinates and includes both the position and speed of the target. It is

assumed that targets move on a planar surface, i.e. Z = 0, so that

s = [X,Y, Ẋ, Ẏ ].

• The landmark observations v. These landmarks account for the salient

points that are detected at the current frame. They can either belong

to the scene background or to targets. The SURF descriptors of the

landmark observations v = [x, y] are matched with the descriptors asso-

ciated to the scene landmarks u registered in the scene map, in order to

estimate the camera pose and derive the correct transformation between

the current view and the 3D scene.

• The target observations in the current frame, p. This is a location in the

current frame that is likely to correspond to the location of a target. At

each time instant t there is a non-linear function g relating the position

of the target in world coordinates to the location p = [x, y] of the target

in the image. Its estimation depends on the camera pose c and the scene

map M at time t.

Figure 2.3: Use of bundle adjustment for the estimation of the camera focal

length in a sample sequence of a PTZ camera monitoring a large area with

right panning and progressive zooming-in. The focal length is estimated

at the last frame of the sequence (evidenced with a small square box on the

scene mosaic). Left : with focal length estimated by online bundle adjustment

taking 1 frame every 10 of the sequence (741.174 pixels). Right : with focal

length estimated by offline bundle adjustment (2097.5 pixels). The true focal

length of the last frame of the sequence is 2085 pixels.
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Camera localization and mapping requires inference of the joint probabil-

ity of the camera pose c(t) and scene landmark locations in the map M(t),

given the landmark observations v until time t and the initial scene map:

p
(
c(t),M(t)|v(0 : t),M(0)

)
. (2.1)

In order to make the problem scalable with respect to the number of

landmarks, Eq. (2.1) is approximated by decoupling camera pose estimation

from map updating:

p
(
c(t)|v(t),M(t− 1)

)
︸ ︷︷ ︸
camera pose estimation

p
(
M(t)|v(t), c(t),M(t− 1)

)
︸ ︷︷ ︸

map updating

(2.2)

We use this model to derive a relationship between the target position in

the 2D image and its position in the 3D world plane. Fig. 2.2 provides

an overview of the relationships between the main entities used to perform

runtime target localization in the 3D world plane.

2.3.2 Scene Map Initialization

Scene map initialization is done in an offline stage. We perform a uniform

sampling of pan and tilt angles and focal length and take a keyframe at each

sample so to have a complete representation of the scene under observation.

We also register the coarse values of the pan, tilt and focal length, as provided

by the camera actuators. For each keyframe we extract SURF keypoints [17],

and create a view map m that collects all the scene landmarks detected in it,

and the camera parameters estimated. The scene map M is hence obtained

as the union of the view maps m.

According to [31], we estimate the optimal values of the external cam-

era parameter matrix Rk and the internal parameter matrix Kk at the k-th

keyframe, by applying offline bundle adjustment to the sampled keyframes.

Differently from [80], where bundle adjustment is performed online applied

to a small subset of the frame sequence, this solution exploits the complete

scene representation and avoids over-fitting camera parameters, that is a par-

ticularly critical phenomenon when the PTZ camera is used in large areas.

Evidence of this fact is clearly visible in Fig. 2.3.

Given a reference keyframe and the corresponding view map mr, the

homography that maps each mk to mr can be estimated as in the usual way

for planar mosaicing:

Hrk = KrRrR
−1
k K−1

k (2.3)
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2.3.3 Continuous Homography Estimation

When the PTZ camera is in operation, at each time t we use the absolute

pan tilt and zoom positional values provided by the camera actuators in or-

der to retrieve the keyframe closest to the current view. These values do not

have the required accuracy for the estimation of the camera pose. They are

not synchronized with the video stream and non-repeatable controls, small

changes in camera pose during operations or lack of stability of the lens

system at high zoom typically affect the precision of the measures. Nev-

ertheless, the view map mk⋆ with the closest values of pan, tilt and focal

length, is likely to contain most of the scene landmarks that are also visible

in the current view.

Following this step, the descriptors of landmark observations v detected

in the current view are matched against the descriptors of scene landmarks

u in mk⋆ , according to the distance ratio criterion of [91]. The homography

H(t) from the current view to mk⋆(t) is hence estimated with RANSAC. The

homography Hr(t) between the current and the reference view is calculated

as:

Hr(t) = Hrk⋆ · H(t). (2.4)

It includes the information on camera pose with respect to the reference

view.

2.3.4 Scene Map Updating

Changes of the visual environment due to illumination or objects entering,

leaving or changing position in the scene, will modify the original map as

time progresses. They will determine drifting of camera pose estimation

and consequently will affect tracking performance. However, while some of

these elements will permanently change the scene content, others will only

determine temporary changes. In order to have a continuous updated map

of the scene content and not account for temporary elements, we introduce

a landmark birth-death process, and perform a recursive optimal estimation

of landmark locations at each time instant.

Landmark birth-death process

Landmarks that have been discarded as outliers in the computation of H(t)

are included into mk⋆ as new landmarks, according to a likelihood function.
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For each outlier, the likelihood is defined as the ratio between the area of

the bounding box of the landmarks that were matched and the area of the

new bounding box that also includes the outlier. Scene landmarks that have

not been matched for a number of frames are assumed to correspond to

temporary elements and are therefore removed from the map. The updated

map is used to estimate the camera pose at the next time step.

Figure 2.4: The transformation from the 2D mosaic plane (Left) to the 3D

world plane (Right). The vanishing points and the vanishing lines are used

for the computation of matrix Hp. A pair of corresponding points in the

mosaic and world plane is shown.

Landmark uncertainty modeling and updating

A precise localization of landmarks is obtained by applying the Extended

Kalman filtering to the observation model and considering all the possible

sources of error that might affect landmark observations.

According to the process described above, at each time t only the view

map mk⋆ is updated. Therefore, the map updating factor in Eq. (2.2) can

be rewritten as:

p
(
mk⋆(t)|v(t), c(t),mk⋆(t− 1)

)
(2.5)

By applying Bayes theorem to Eq. (2.5), and assuming that landmark

observations v that match the scene landmarks in mk⋆(t) are independent

of each other, given the scene landmark locations and camera pose, i.e.:

p
(
v(t)|c(t),mk⋆(t)

)
=

∏

i

p
(
vi(t)|c(t),ui(t)

)
, (2.6)

it results:

p
(
mk⋆(t)|v(t), c(t),mk⋆(t− 1)

)
=

∏

i

p
(
vi(t)|c(t),ui(t)

)
p
(
ui(t)|ui(t− 1)

)
(2.7)
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where p
(
ui(t)|ui(t− 1)

)
is the prior pdf of the i-th scene landmark at time

t given its state at time t− 1.

Under the assumptions that: scene landmarks ui(t) have a Gaussian

pdf, the Direct Linear Transform (DLT) is used to compute H(t) and land-

mark localizations error have a Gaussian distribution, the observation model

p
(
vi(t)|c(t),ui(t)

)
corresponds to a linear measurement function of the form:

vi(t) = Hi(t)ui(t) + λi(t) (2.8)

where Hi(t) is the 2× 2 matrix obtained by linearizing the homography H(t)

at the matched landmark observation vi(t) and λi(t) is an additive Gaussian

noise term with covariance Λi(t).

The covariance of the observation model Λi(t), can be defined to include

all the sources of error that may affect landmark observations, namely: the

landmark transfer error (arising from landmark spatial distribution and the

DLT method), the landmark uncertainty in the map and the keypoint detec-

tion error (originated by the detector). In homogeneous coordinates, Λi(t)

can be expressed as:

Λi(t) = Bi(t) Σi(t)Bi(t)
⊤ + H(t)−1 Pi(t)H(t)

−⊤ + Λ′i , (2.9)

where:

• Σi(t) is the 9×9 homography covariance matrix that has closed-form ex-

pression according to [39] and Bi(t) is the 3×9 block matrix of landmark

observations (in homogeneous coordinates).

• Pi(t) is the covariance (in homogeneous coordinates) of the estimated

landmark position on the nearest view map through H(t).

• Λ′i is the keypoint detection error.

The Bayes optimal updating of Eq. (2.7) can be obtained in closed form

through multiple applications of the Extended Kalman Filter to each land-

mark.

The effect of Eq. (2.9) on the estimation of the i-th landmark position is

propagated through the Kalman gain, computed as:

Ki(t) = Pi(t|t− 1)Hi(t)
−1
[
Hi(t)

−1Pi(t|t− 1)Hi(t)
−⊤ +Λi(t)

]−1

. (2.10)

2.4 Application to Multiple Target Tracking

In this section, we demonstrate how camera pose estimation can be exploited

to perform effective target detection and tracking in 3D world coordinates
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with PTZ cameras.

The reference plane of the mosaic (i.e. the image plane of the refer-

ence keyframe) is related to the 3D world plane according to a stationary

homography:

HW = HsHp, (2.11)

where Hp is the rectifying homography obtained by exploiting the single

view geometry between the planar mosaic and the scene plane2, and Hs is

a transformation from pixels in the mosaic plane to 3D world coordinates.

The transformation Hp is obtained from the projections of the vanishing

points [86]. The transformation Hs is estimated from the projection of two

points at a known distance L in the world plane onto two points in the mosaic

plane (Fig. 2.4).

The function g mapping the position of a generic target in the world

plane onto its position p in the current frame can be represented through

the time varying homography matrix G(t), in homogeneous coordinates, (see

Fig. 2.2):

G(t) =
(
HW Hr(t)

)−1
=

(
HsHpHrk⋆H(t)

)−1
. (2.12)

2.4.1 Context-based Target Detection

Camera pose c(t) and the homography G(t) calculated at each time instant

can be exploited to perform efficient and effective detection of moving targets

under reasonable assumptions.

Image Slicing using Geometric Constraints

Assuming that targets remain nearly vertical in the scene, the position h of

the head of the target can be estimated from the feet position p according

to the homology relationship:

h = Wp (2.13)

W being defined as:

W = I+ (µ− 1)
v∞ · l⊤∞
v⊤
∞ · l∞

, (2.14)

2In the case of a PTZ sensor, the homography between each keyframe and the reference

keyframe is the infinite homography H∞ that puts in relation vanishing lines and vanishing

points between the images.
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where I represents the identity matrix, l∞ is the world plane vanishing line,

v∞ is the vanishing point of the world normal plane direction, and µ is the

cross-ratio. The vanishing point v∞ is computed as v∞ = KK⊤ · l∞, with

l∞ = G · [0, 0, 1]⊤ and K can be derived from H(t) as in [46] (the dependency

on t has been omitted for the sake of clarity in all the expressions above).

Using this information, for each frame, we consider horizontal slices at

different vertical positions, such that their height is calculated according to

Eq. (2.13)±10% (Fig. 2.5). The HoG template of [40] is hence applied to each

slice appropriately rescaled. Variations of scale of ±10% have insignificant

influence on the recall of the detector [122] as shown in Fig. 2.6. This solution

allows detection of targets at a single scale with constant rate for each slice,

so resulting in computational savings.

h

Figure 2.5: A sample image (Left) and three horizontal slices (Right). Ad-

jacent image slices have been defined with overlapping regions.
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Figure 2.6: Recall performance with image re-scaling using the fixed scale

HOG template of [40] on the MICC UNIFI PTZ dataset, with SVM confi-

dence values of 0 and -1. Variations of ±10% in scale don’t affect the recall

performance substantially.
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Since in our case background regions are clearly identified by the presence

of matches between scene landmarks and landmark observations, we have

exploited this fact and used the probability of false target presence in a

window W to discriminate between targets and background regions with

human-like patterns:

p(target = false | W ) =

∫

W

1

m

m∑

i=1

K
( ||w − vi||

σvi

)
dw (2.15)

where W is the target detection window, w = [x, y] ∈ W are the locations

in the detection window, vi are the landmark observations matched in W ,

σvi
is the scale of vi, and K(·) is a Gaussian kernel.

This improves the precision of the detector and reduces the presence of

false positives with respect to previous approaches [40] where it is assumed

that false positive detections are distributed uniformly in the image [21].

Fig. 2.7 shows an example of detection using Eq. (2.15).

Figure 2.7: Target detections using probabilities of Eq. (2.15): blue regions

indicate zones where scene background is highly probable and red regions

where targets are more likely to be found.

2.4.2 Multiple Target Tracking in World Coordinates

The relationship of Eq. (2.12) permits target detections in the image plane

be in correspondence with their real positions in the world plane at each

time instant t. Similarly, the target predictions in the world plane can be

put in correspondence with the target observations in the image. Tracking

can therefore be performed in an absolute reference coordinate system in
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world coordinates with precise separation of the motion of the targets. In

order to perform multiple target tracking we follow a two-stage association

process using both appearance and motion information.

Greedy Update of Target Track Templates

Active target tracks in the world plane are represented with the color spa-

tiogram of the template of the last target detected. New detections update

the track representations according to a greedy, threshold-based approach,

using the likelihood function:

γij = γaij · γmij , (2.16)

where for each target detected i and active track j are considered both the

Mahalanobis-Bhattacharyya distance [25] γaij between the color spatiograms

of the target detected and the active track, and the Mahalanobis distance

γmij between the position of the target detected and the predicted position

for the track calculated in the image plane. As a new detection is associated

to an active track, the track template is updated with the template of the

detected target. If a new detection is not associated to any active target

track, a new track is initiated. If an existing active track has not been linked

with any new detections, it is terminated.

Soft Association of Observations to Target Tracks

For each active target track we use the Extended Kalman Filter to estimate

the new position of the target in the world plane. The observation model for

each target is defined as:

p(t) = g
(
s(t)

)
+ ζ(t), (2.17)

where s is the target state, represented in 3D world coordinates, and g :

R
4 7→ R

2 is a measurement function from the world space to the image

space defined as:

g
(
s(t)

)
=

[
G(t) O2×2

]
s(t), (2.18)

withG(t) being the linearization of Eq. (2.12) andO2×2 the 2×2 zero matrix.

ζ(t) is a Gaussian noise term with zero mean and diagonal covariance that

models the target localization error in the current frame.
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Assuming constant velocity, the motion model in the 3D world plane is

defined as:

p(s(t)|s(t− 1)) = N (s(t);As(t− 1),Q), (2.19)

where A is the 4× 4 constant velocity transition matrix and Q is the 4× 4

process noise matrix. The predicted target positions in the image plane

are directly obtained from the target positions predicted in the world plane

according to the transformation of Eq. (2.12).

In order to achieve better discrimination between targets that are very

close each other, n points are randomly sampled in the neighbourhood of the

predicted position and the rectangular template of height given by Eq. (2.13)

is extracted at each sample. The three templates with the most similar color

spatiograms are used to calculate the probability of association between the

k-th observation and the j-th active track. Cheap-JPDAF [55] is used in

order to provide an efficient and effective data association:

βkj =
γkj∑

k γkj +
∑

j γkj − γkj + κ
, (2.20)

where k is the index of the selected samples, κ is a parameter that models the

probability that a target observation is generated by some spurious element

and γkj is computed as in Eq. (2.16). These probabilities are hence used

as weights to compute the innovation νj of each active track and update

the covariance. Innovation is calculated as the weighted combination of the

innovations νkj :

νj =
∑

k

βkjνkj . (2.21)

Updating of the target covariance Pj is obtained as:

Pj(t|t) = (1−
∑

k

βkj)Pj(t|t− 1) + (
∑

k

βkj)P̄j(t|t) + P̃j(t) (2.22)

where the components respectively account for the uncertainty Pj(t|t − 1)

derived from the association between the predicted target position and the

sampled location, the uncertainty P̄j(t|t) propagated by Kalman Filter state

update and the uncertainty P̃j(t) that models erroneous associations.

2.5 Experimental results

The method described above permits continuous real-time self calibration

of a PTZ camera and effective real-time tracking in world coordinates of
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multiple targets with no fiducial markers. It supports very high and constant

precision of target localization even at large distances and any zooming level

and operates under assumptions that are verified in most real world contexts.

In the following, we present a comparative analysis showing that the state of

the art tracking methods do not offer solutions for PTZ cameras with similar

characteristics and performance.

A comparative analysis of tracking solutions for PTZ cameras is compli-

cated by several facts. On one hand, the UBC Hockey sequence [97] is the

only publicly available dataset recorded from a PTZ camera. It is very short

and includes frames of a hockey game. So longer and more complex PTZ

camera sequences are needed in order to provide meaningful performance

assessments. According to this, we have created a new dataset, the MICC

UNIFI PTZ dataset [1] including longer PTZ sequences, with several differ-

ent critical conditions and calibration data associated to each frame. On the

other hand, among the few methods that have reported tracking performance

figures on the UBC Hockey sequence, the method of [97] uses context-specific

fiducial markers and the methods in [29] and [132] don’t make their code

publicly available. So they cannot be assessed on other datasets. Tracking

methods that are claimed to have general application can eventually be ap-

plied to PTZ camera sequences. Among the most recent and best performing

methods we could select only three of them, namely [101], [36] and [133], as

their authors were available to a comparative verification.

Considering these facts, we have assessed our method on both the UBC

Hockey sequence, and the MICC UNIFI PTZ dataset. On the UBC Hockey

sequence we have compared the performance of our method against the per-

formance reported by [97], [29] and [132]. We also ran the author imple-

mentations of [101]3 and [36]4 and reported the performance measured. On

the MICC UNIFI PTZ dataset we compared our method against [133], [101]

and [36].

2.5.1 Sequences tested

The UBC Hockey sequence includes 101 frames of a hockey game. Targets

have small size and move erratically and have frequent occlusions. All the

targets remain in the scene during the sequence. The scene is observed from

a far distance with a large initial tilt angle with respect to the ground plane.

3http://www.ics.uci.edu/~hpirsiav/
4http://www.eecs.umich.edu/vision/mttproject.html

http://www.ics.uci.edu/~hpirsiav/
http://www.eecs.umich.edu/vision/mttproject.html
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The PTZ camera is steered to follow the scene while continuously zooming-in

with little pan and tilt.

The MICC UNIFI PTZ dataset contains four PTZ sequences with a total

of 3,662 frames and 9,685 annotations of labeled targets. For more details,

please see Appendix A.

2.5.2 Characteristics of the methods compared

The authors in [97] use a particle filter to perform tracking in the image

plane and a specialized detector trained with Adaboost to detect the hockey

players in the sequence.

The methods in [29] and [132] are general tracking methods in the image

plane that have reported performance figures on the UBC Hockey sequence.

Both methods perform target tracking with a particle filter based on detector

confidence. The method reported in [29] has been used with the detectors

of [40] and [83]. In [132], the authors used Felzenszwalb’s part-based detec-

tor [54]. Tracking requires learning of a weighting parameter from part of

the sequence, and complex hierarchical data association is applied to track

multiple targets.

The method by Yang et al. [133] uses the detector of [73] and learns a dis-

criminative part-based appearance model for each target that is continuously

updated. Tracking is performed in the image plane by creating tracklets from

the association of the detector responses and combining tracklets according

to MHT [104].

In the method by Pirsivash et al. [101], detections are performed accord-

ing to [54]. Target tracking in the image plane is performed by computing

the shortest path in a path graph. A greedy algorithm that performs non-

maximum suppression of the detector responses is applied to boost tracking

performance.

The method by Choi et al. [36] performs multiple target tracking in the

world plane with a moving sensor. Target detections are extracted using [54]

and target tracking is performed using the MCMC algorithm [75]. The

camera pose estimation only accounts for slight variations of the focal length

from frame to frame. This method requires that camera pose with respect

to the ground plane is available for the first frame. Then camera calibration

in the following frames is obtained by sequentially tracking the features with

KLT [119]. Camera parameters are hence used to obtain the transformation

that relates the target position in the 2D image to its corresponding location
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on the ground plane.

2.5.3 Parameter Settings and Metrics

Tests were performed under the following settings:

Camera Pose Estimation and Map Updating Parameters

The interest points were detected and represented using SURF. The RANSAC

threshold was set to 3 pixels. The new landmarks observed were tracked for

20 frames and then added to the map. The scene landmark lifetime with no

inlier matching was set to 40 frames.

Detection Parameters

Detection is performed using a HoG-based person detector [40]. The detec-

tor was forced to optimize recall. A detection is signaled if the confidence is

higher than−1.0. New target tracks are initialized for p(target = false |W ) <

0.05.

Tracking Parameters

For the outdoor sequences of the MICC-UNIFI PTZ dataset we set the

threshold of Mahalanobis-Bhattacharyya distance between the color spa-

tiograms to 0.65 and used a 8-bin spatiogram quantization. For the indoor

sequence we used a 0.6 threshold and 16 bin. 100 samples were taken in

the neighbourhood of the predicted target position. The lifetime of a track

before being terminated was set to 80 frames. Detections are assigned to

tracks if the probability of association of Eq. (2.20) is higher than 0.7.

Performance metrics

The accuracy for target detection was evaluated using Recall/FPPI curves

and the precision was estimated according to the Multi-Object Detection

Precision (MODP) metric, as the average VOC score (the intersection over

the union of bounding boxes of ground truth and detection) over all the true

positives.
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Seq.#4 “Rapid Motion”Seq.#2 “Focus” Seq.#3 “Dense”Seq.#1 “Long” 

Figure 2.8: Target detections in sample frames of the MICC UNIFI PTZ

dataset: (a) our method; (b) Dalal-Triggs’ method; (c) Felzenszwalb’s

method.

The performance for multiple target tracking was evaluated according to

the CLEAR MOT metrics [22]5. The MOTA accuracy index is calculated

as:

MOTA = 1−
∑

t(TFNt +TFPt + ID SWt)∑
t nt

(2.23)

where TFNt is the number of tracking false negatives, TFPt is the number

of tracking false positives, ID SWt is the number of identity switches and nt
represents the true number of targets, in the frame at time t. The precision

index MOTP is defined as:

MOTP =

∑
i,t VOCi,t∑
t TTPt

(2.24)

where VOCi,t is the VOC score calculated for the i-th target and TTPt is

the number of tracking true positives, at time t.

5We implemented the metrics and we made it publicly available at https://github.

com/glisanti/CLEAR-MOT.

https://github.com/glisanti/CLEAR-MOT
https://github.com/glisanti/CLEAR-MOT
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Figure 2.9: Recall/FPPI plots of our method, the Dalal-Triggs’ method and

the Felzenszwalb’s method. Plots obtained from the 3,662 frames of the

MICC UNIFI PTZ dataset at low resolution (Top) and high resolution (Bot-

tom).

2.5.4 Target Detection

Fig. 2.8 displays examples of target detection on sample frames with our

method as expounded in Sect. 2.4.1, in comparison with detections obtained

with the direct application of the the Dalal-Triggs’ detector [40] (SVM+HoG)

and Felzenszwalb’s part-based detector [54] (LSVM+HoG).

Fig. 2.9 compares the Recall/FPPI plots evaluated at the original low

resolution (top row) and at two-times magnified resolution (bottom row).

The average MODP scores are shown in Table 2.1.

It is possible to notice the improvement of detection performance due

to the exploitation of camera pose information. The only exception is in

Seq.#4 where a target has several partial occlusions. In this case, a better

performance is obtained with the LSVM-HoG detector that permits to detect

body-parts.
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(a) Qualitative results on Seq.#1 “Long”.
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(b) Qualitative results on Seq.#2 “Focus”.

Figure 2.10: Tracking with our method on Seq.#1 (Top) and Seq.#2 (Bot-

tom) MICC UNIFI PTZ dataset. (Left) Sample frames with tracked targets.

(Right) Target trajectories.

0 5 10 15 20 25 30 35 40 45

10

8

6

4

2

0

Meters

M
e
te

rs

#343 #453 #701 #828

#343

#453

#475

#701

#828

#475

Figure 2.11: Tracking with our method on Seq.#3 MICC UNIFI PTZ dataset

(frames from 1 to 900). (Top) Sample frames with tracked targets. (Bottom)

Target trajectories. In this sequence, targets move quite randomly with

frequent occlusions between targets and make sudden turns and changes of

directions.
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Seq. Res. SVM+HoG LSVM+HoG Our Detector

Seq.#1
Low 61.73 63.63 67.35

High 69.09 65.86 69.19

Seq.#2
Low 66.89 62.24 69.18

High 64.40 64.04 65.68

Seq.#3
Low 68.19 73.87 74.95

High 65.50 74.54 82.17

Seq.#4
Low 71.26 76.39 79.68

High 71.85 75.95 73.58

Table 2.1: MODP% of people detection methods evaluated over the MICC

UNIFI PTZ dataset at low and high resolution for each sequence.

2.5.5 Multiple-Target Tracking

MICC-UNIFI PTZ Dataset

Figs. 2.10, 2.11, 2.12, 2.13 show the target trajectories obtained from our

tracking for the four sequences of the MICC UNIFI PTZ dataset. In Ta-

ble 2.2 we report the CLEAR MOT metrics computed on these sequences in

comparison with the methods in [36,101,133]. For a more complete investiga-

tion we also report the tracking false positives (TFP%) and false negatives

(TFN%) rates, the number of identity switches due to exchange of target

identities (ID SW) and the number of trajectory fragmentations (TR FR)

(typically when a target exits the camera field of view for several frames

either due to camera zooming in or random movements of a target with

respect to the camera).

The experiments show that our method has the highest accuracy than the

other methods with all the sequences. It scores very good accuracy (MOTA)

on Seq.#1 and Seq.#2 and has good accuracy also in the more complex

scenes of Seq.#3 and Seq.#4.

Our method has the highest precision (MOTP) on Seq.#3 and almost

the same precision as [101] on Seq.#1 and Seq.#2. In Seq.#4 The higher

precisions of [101], and [36] should be ascribed to the use of the Felzenszwalb’s

detector [54]. In fact, in this sequence, the camera movements determine

frequent partial occlusions of the targets that cause misses with the full

body HoG detection of our method.
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Figure 2.12: Tracking with our method on Seq.#4 MICC UNIFI PTZ

dataset. (Left) sample frames with tracked targets. (Right) Target trajecto-

ries. In this sequence, targets move quite randomly with frequent occlusions

between targets.

Our method scores the lowest trajectory fragmentation score, showing

that it can support continuous tracking much better than the others. Track-

ing in world coordinates permits recovery from critical cases such as when a

target exits the field of view for a few frames with no identity switches (see

f.e. frames #479 and #498 of Seq.#2 in Fig. 2.10(b)). Trajectory fragmen-

tations occur only in those cases where targets exit the field of view for long

periods as in Seq.#3. In these cases they originate a new track when they

reenter in the scene.

With our method, tracking false negatives occur when targets have small

size (see f.e. frame #475 in Seq.#3 in Fig. 2.11) or are very close to the

camera (see f.e. frame #34 of Fig. 2.12). The TFN score is much lower than

the methods by [36, 101] in all the sequences. Lower TFN rates of [133] in

Seq.#2 and in Seq.#3 are counterbalanced by very high TFP rates in the

same sequences. Tracking false positives are likely to occur when the tracker

drifts on the background or when a target exits the field of view for a few

frames (see frame #254 of Seq.#4 in Fig. 2.12 f.e.). The methods of [36,101]

have a lower TFP rate only apparently. Indeed in these methods, differently

from our case, when the detector misses the target for several frames, the

tracker doesn’t try to recover the track, but terminates the current track and

initiate a new one. As a result, an unreasonably high number of trajectory

fragmentations is generated.

All the methods show a very low number of identity switches.
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MOTA% MOTP% TFN% TFP% ID SW TR FR

Seq.#1

Our approach 92.0 66.2 5.0 4.4 0 0

Pirsiavash [101] 84.7 66.7 13.42 0.92 0 21

Choi [36] 56.0 63.4 41.1 0.94 1 46

Yang [133] 66.7 58.2 7.4 25.2 0 18

Seq.#2

Our approach 77.3 66.8 15.0 6.5 0 0

Pirsiavash [101] 74.8 67.3 22.1 0.85 0 33

Choi [36] 50.5 60 47.1 0.69 1 31

Yang [133] 74.7 54.4 3.5 20.7 2 18

Seq.#3

Our approach 67.5 67.8 28.3 3.5 1 19

Pirsiavash [101] 63.3 66.8 34.6 0.42 0 55

Choi [36] 21.6 65.4 75.6 1.34 2 51

Yang [133] 51.0 65.6 4.52 41.4 2 122

Seq.#4

Our approach 63.4 67.3 26.8 9.5 1 4

Pirsiavash [101] 51.1 74.1 48.2 0.63 0 20

Choi [36] 48.2 71.3 48.1 1.82 0 32

Yang [133] 45.6 66.7 50.17 2.85 1 24

Table 2.2: Tracking performance on MICC UNIFI PTZ dataset.

UBC Hockey Sequence

The performance figures obtained with the UBC Hockey sequence are re-

ported in Table 2.3, in comparison with the other methods.

In our method we used the detector of Okuma et al. [97] to detect targets.

The camera calibration data, needed to build the scene map M(0), were

taken directly from the sequence, sampling a keyframe every ten frames. It

is apparent that our method largely outperforms the methods of [29] and [97]

in both precision and accuracy. A lower precision is instead observed with

respect to [132]. This is determined by a special unique situation (see frame

#38 of Fig. 2.13), where a target track remains stuck to the scene background

for five frames, so generating several false positives. The method of [36] did

not provide significant results mainly because that method requires that the

scene horizon is in the initial image of the sequence, which is a condition

that is not satisfied in the UBC Hockey sequence.
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Figure 2.13: Tracking with our method on the UBC Hockey sequence (Left):

sample frames with tracked targets. (Right) Target trajectories.

MOTA% MOTP% TFN% TFP% ID SW

HOCKEY

Our approach 91.6 61.3 6.3 2.0 1

Breitenstein [29] 76.5 57.0 22.3 1.2 0

Okuma [97] 67.8 51.0 31.3 0.0 11

Yan [132] 91.7 71.6 1.76 6.49 0

Pirsiavash [101] 16.4 74.4 82.9 0.19 5

Choi [36] Tracks targets occasionally

Yang [133] * – – – – –

Table 2.3: Tracking performance on UBC Hockey dataset. *Code not made

available by authors.

Operational Constraints and Computational requirements

The solutions in [101], [133] and [132], although having good performance

figures in terms of accuracy and precision, nevertheless all require that target

detections be available beforehand. So they cannot be employed for real-

time tracking with PTZ cameras in real applications. In their experiments

on the UBC Hockey sequence, the authors of [29] have reported a variable

performance between 0.4 and 2 fps on a Dual-core@2.13GHz. On the same

dataset, the method in [97] has reported 1fps on a Dual-core@2.66 GHz. The

authors of [36] have reported that their method is capable to operate at 5

fps, not accounting for detection. Therefore, we can presume that the total

rate of the complete system is less than 2 fps, that is too slow for effective

tracking.
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Our method has been verified to perform real-time multiple target track-

ing in sequences from PTZ cameras at 12 fps on Intel Xeon™ Dual Quad-

Core at 2.8GHz and 4GB of memory, with no GPU processing. The current

implementation of the method exploits multiple cores and was developed

in C/CC++. Frame grabbing, camera calibration and context analysis are

calculated in one thread and sent to the other threads where detection and

tracking are performed. Extraction of target measurements was implemented

using the Intel© Threading Building Block library.

2.6 Conclusions

In this chapter, we have presented an effective solution for real-time multiple

target tracking from a single PTZ camera observing a planar scene. The so-

lution integrates a complex unified framework for on-line camera calibration,

context-based target detection, tracking in world coordinates and multi-stage

data association. It maintains a continuous relationship between the target

observations in the image plane and the corresponding positions in the world

plane, as estimated with online continuous calibration of the camera during

operation. This permits improvement of the performance of the detector

and allows more effective tracking of multiple targets in world coordinates

with camera motion compensation. As a result, the solution proposed allows

tracking of multiple targets with PTZ cameras in real-time with high and

stable degree of accuracy, also at large distances and any zooming level. It

achieves the state of the art performance of tracking with these cameras.
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Chapter 3

Matching People across Views

In this chapter we introduce a method for person re-identification

based on discriminative, sparse basis expansions of targets in

terms of a labeled gallery of known individuals. We propose

an iterative extension to sparse discriminative classifiers capa-

ble of ranking many candidate targets. The approach makes use

of soft and hard re-weighting to re-distribute energy among the

most relevant contributing elements and to ensure that the best

candidates are ranked at each iteration. Our approach also lever-

ages a novel visual descriptor which we show to be discrimi-

native while remaining robust to pose and illumination varia-

tions. An extensive comparative evaluation is given demonstrat-

ing that our approach achieves state-of-the-art performance on

single- and multi-shot person re-identification scenarios on the

VIPeR, i-LIDS, ETHZ, and CAVIAR4REID datasets. The ap-

proach is additionally quite efficient, capable of single-shot person

re-identification over galleries containing hundreds of individuals

at about 30 re-identifications per second.1

1This chapter has been submitted to the journal IEEE Transaction on Pattern Analysis

and Machine Intelligence as “Person Re-identification by Iterative Re-weighted Sparse

Ranking” and is currently under major revision.
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3.1 Introduction

Person re-identification is the task of recognizing a person, captured by one

or more cameras, over a range of candidate targets represented as a gallery

of already-labeled subjects. This gallery may contain imagery of known

subjects from one or more sensors, and there may be no guarantee that an

unknown subject has already been imaged from the same point of view as

the images to be re-identified. In fact, some of the main issues in person

re-identification are due to the fact that the same person is usually acquired

at different times, by different disjoint cameras, and this can result in large

variations in target appearance because of different illumination conditions,

different poses or partial occlusions.

Considering the large number of cameras in typical modern surveillance

networks, person re-identification is critical as it is a way of maintaining

identity information about targets in multiple views over potentially long

periods of time. This matching across cameras is traditionally cast as a

retrieval problem, and its formulation as such has a strong impact on how

re-identification problems are defined and how performance is evaluated:

given one or more images of an unknown target, the re-identification task

is to rank all individuals in a gallery of known target images in terms of

similarity to the person to be recognized.

Much of the research on person re-identification has concentrated on hu-

man appearance modeling. A number of descriptors of image content have

been proposed to discriminate identities while compensating for appearance

variability due to changes in pose, illumination and camera viewpoint. Su-

pervised metric learning methods have also been applied to ameliorate the

problems of multi-view appearance changes. Metric learning approaches

require labeled training data and most of them also require new training

data when camera settings change. Discriminative models, in contrast to

appearance-based ones, can suffer from lack of training data in small gallery

image sets and are often unsuitable for ordering large numbers of candidates

due to their inability to reliably rank all but a few of the best ones.

The literature on person re-identification focuses on several different

modalities or scenarios that are recognized as de facto standards for perfor-

mance evaluation of re-identification algorithms [18,19,52]. These modalities

are characterized in terms of how many images of each individual are known

a priori to be in the gallery and probe sets, and according to whether or

not it is known that multiple images in the probe set correspond to a single
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Figure 3.1: Re-identification modalities. Each column represents a modality

and each row illustrates the probe, gallery and result sets for each modality.

For clarity we illustrate MvsS and MvsM modalities only for the N = 2 case.

Colored frames in the last row are used to represent groups of images of the

same person in the query and result sets.

target. The three most common are: the single-versus-single (SvsS) modal-

ity in which a single probe exemplar is matched against individual gallery

exemplars; the multi-versus-single (MvsS) modality in which a single probe

exemplar is matched against a gallery of groups of multiple exemplars; and

the multi-versus-multi (MvsM) modality in which a group of probe exemplars

is matched against a gallery of grouped exemplars. These three experimental

modalities are illustrated in Fig. 3.1.

In this article we propose a robust and efficient approach to person re-

identification that is applicable to all the modalities described in Fig. 3.1.

Building on ideas developed for sparse discriminative face recognition [128],

our approach uses ℓ1-regularized sparse basis expansions of queries in terms

of a basis of gallery images. Through analysis of reconstruction error we

partially rank the gallery in terms of similarity to the query probe, and then

re-weight this initial solution in order to mute the response of vectors con-

tributing little to the initial expansion. Through the use of a novel, iterative

re-weighting algorithm, we then proceed to rank the remaining gallery in-

dividuals through analysis of re-weighted sparse basis expansions. By using

sparse reconstruction, rather than learning discriminative models, we are

able to preserve multiple aspects of each gallery individual and leverage this

information at re-identification time. This also has the advantage that new

gallery data can be effortlessly added with no re-training.

The contributions of this work are the following:

• We introduce a novel feature descriptor which is shown to be robust for
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use in person re-identification problems without the additional complex-

ity of feature descriptions that rely on background models or parts.

• We show how to use an iterative approach to extend sparse discriminative

classifiers to rank a large number of candidate individuals. To the best

of our knowledge, we are the first to formulate person re-identification

as an iterative process of sparse classification, refinement, and ranking.

• We show through extensive experimental evaluation how our approach

is suitable for all re-identification modalities, that it outperforms most

approaches at the state-of-the-art, and that it is very competitive with

metric learning techniques without requiring labeled training data for

learning.

In the next section we review the literature related to person re-identification.

Our approach to describing the visual appearance of persons is given in

Sec. 3.3, and in Sec. 3.4 we show how to perform re-identification with

sparse basis expansions. In Sec. 3.5 we describe our approach to person re-

identification using sparse iterative ranking. In Sec. 7.7 we give an extensive

comparative evaluation of our technique with respect to the state-of-the-art

on four publicly available datasets used in the literature. Finally, in Sec. 4.4

we draw some conclusions and discuss new directions for research.

3.2 Related work

Many recent works have addressed the problem of person re-identification.

The majority of techniques are principally divided into appearance based and

learning based approaches.

Appearance-based re-identification: The first work that considered the

problem of appearance models for person recognition, reacquisition and track-

ing was that of Gray et al. [61]. The authors argue that until then these prob-

lems had been evaluated independently and that there is a need for metrics

that apply to complete systems [59,60]. They proposed a standard protocol

to compare results2 and introduced the VIPeR dataset for re-identification.

The first paper to follow Gray’s guidelines was [62]. In this work the authors

propose an algorithm that learns a domain-specific similarity function using

an ensemble of local features and AdaBoost. Features are raw color chan-

2They proposed the Cumulative Matching Curve (CMC) on a standardized dataset

and showed that this one curve can be converted to a Synthetic Disambiguation Rate

(SDR) for a single camera.
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nels in many color spaces and texture information captured by Schmid and

Gabor filters.

Descriptors of visual appearance for person recognition can be highly sus-

ceptible to background clutter, and many approaches to person re-identification

use background modeling [18, 19, 52] or part-based person appearance mod-

els [34, 52] to separate foreground from background signals. In [52] the au-

thors use a sophisticated appearance model, the Symmetry-Driven Accumu-

lation of Local Features (SDALF) descriptor that models human body parts

by estimating the axis of symmetry of a person and obtaining the head,

torso, and legs positions. Each part is then represented by weighted HSV

color histograms, maximally stable color region descriptors [56], and recur-

rent highly-structured patches. This work also applies a strong, generative

background prior that enhances the discriminative power of the descriptor

by segmenting the person from the background [76]. In [18] and [19] a

multi-shot appearance-based method similar to [52] is proposed in order to

condense a set of frames of the same individual into a highly informative

signature, which they call the Histogram Plus Epitome (HPE). In [34] the

authors employ an estimate of body pose to guide the process of feature

extraction. They extend the pictorial structure model [53] with their Cus-

tom Pictorial Structure (CPS), which is a two-step iterative process that

alternates between estimating pose and updating the appearance model.

Another state-of-the-art approach with performance similar to [34] is

proposed in [14]. The authors use an appearance model that, in contrast

with [52] and [34], does not rely on body parts. The approach is based on

a descriptor called the Mean Riemannian Covariance Grid (MRCG) [14],

which is an extension of Spatial Covariance Regions (SCR) [15], that is the

covariance of a vector of eleven cues derived from equalized RGB colors.

The MRCG descriptor is computed as a mean of gallery examples and is

only applicable to multi-shot re-identification modalities. The person re-

identification problem was extended to groups in [140]. The authors show

that groups represent a contextual cue that can be exploited to improve

person re-identification.

A problem with many appearance-based methods is that they must com-

pute average representatives of individuals over multi-shot gallery sets. Our

approach, on the other hand, is able to exploit multiple gallery examples and

in contrast to many appearance-based approaches does not require sophis-

ticated background modeling. Re-identification problems are often charac-



48 Matching People across Views

terized by poor and variable image quality on which it can be hard to fit

background or part-based models without relying on scene-specific informa-

tion.

Learning-based re-identification: Re-identification can also be cast as

as a learning problem in which either metrics or discriminative models are

learned. The authors of [109] propose a discriminative model created us-

ing Partial Least Squares (PLS) which weights features according to their

discriminative power for each different gallery instance. In [48], a metric

learning framework is used to obtain a robust Mahalanobis metric for large

margin nearest neighbor classification with rejection (LMNN-R). The ap-

proach in [103] is a supervised technique that uses pairs of similar and dis-

similar images and a relaxed RankSVM algorithm to rank probe images.

Another metric learning approach is that of [81] in which learns a Maha-

lanobis distance from equivalence constraints derived from target labels.

The Probabilistic Distance Comparison (PRDC) approach [139] intro-

duces a novel comparison model which aims to maximize the probability

of a pair of correctly matched images having a smaller distance than that

of an incorrectly matched pair. The same authors in [125] model person re-

identification as a transfer ranking problem where the goal is to transfer sim-

ilarity observations from a small gallery to a larger, unlabeled probe set. A

set-based discriminative ranking approach was also recently proposed which

alternates between optimizing a set-to-set geometric distance and a feature

space projection, resulting in a discriminative set-distance-based model [129].

Camera transfer approaches have also been proposed that use images of the

same person captured from different cameras to learn metrics [9,72]. In [13]

the authors apply learning in a covariance metric space using an entropy-

driven criterion to select the most descriptive features for a specific class of

objects. Recently saliency has been considered when matching people across

views and a novel method eSDC [107] has been proposed in order to learn

saliency parts of a human in a unsupervised fashion.

Learning-based approaches have recently reported higher re-identification

accuracy with respect to the state-of-the-art, but usually at the cost of setting

aside a portion of available labeled data for learning metrics or requiring large

gallery sets for fitting discriminative models. Our approach outperforms the

state-of-the-art at rank-1 in all modalities without resorting to learning met-

rics or fitting discriminative models to gallery image sets. Re-identification

problems are often also characterized by a lack of reliably labeled data, and
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the need to label image data for each scenario, camera configuration and

parameter settings is a disadvantage of metric learning approaches.

Hybrid classification approaches: Though not applied specifically to

ranking problems like re-identification, classification methods based on reg-

ularized, sparse basis expansion of test samples can be considered hybrid

methods that exploit appearance and discriminative modeling at recogni-

tion time. The appearance of each gallery exemplar is maintained in a basis,

and the residual error of sparse reconstructions is used for discrimination.

Wright et al. [128] show how this can be a powerful tool for face recognition.

This approach has been extended several times, integrating correntropy [69]

and kernel-based sparse reconstruction [78].

In this chapter we propose a way to extend sparse discriminative classi-

fiers to person re-identification problems. Such approaches do not directly

generalize to ranking problems like re-identification because ℓ1-regularized

basis expansions, by there very nature, can only support ranking of a small

number of individuals. We show how regularized basis expansions can be

iterated in order to improve the quality of re-identification and to rank a

large number of samples.

3.3 A descriptor for re-identification

We employ a feature representation that requires no foreground/background

segmentation and does not rely on body-part localization. The descriptor is

designed to be discriminative and at the same time very efficient.

Given an input image of a target (that is a rectangular sub-image of

an image containing the target), it is scaled to a canonical size W × H

(64 × 128 pixels in all our experiments). A spatial pyramid is built by

dividing the person image into overlapping horizontal stripes of 16 pixels

in height. From each stripe we extract a Hue-Saturation (HS) histogram

and an RGB histogram. The use of horizontal stripes allows us to capture

information about vertical color distribution in the image, while overlapping

stripes allow us to maintain color correlation information between adjacent

stripes in the final descriptor. The use of HS histograms results in a portion

of the descriptor that is invariant to illumination variations, while the RGB

histogram from each stripe captures more discriminative color information

especially for targets whose visual appearance tends toward the black or

white regions of the color cube. We equalize all RGB color channels before
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extracting the histogram.

To eliminate background information we use a straightforward approach

that weights a pixel’s contribution to its corresponding histogram bins ac-

cording to an Epanechnikov kernel centered on the target image:

K(x, y) =

{
3
4 (1− ( x

W
)2 − ( y

H
)2) if |( x

W
)2 + ( y

H
)2| ≤ 1

0 otherwise
(3.1)

where W and H are the image width and height, respectively, and are the

only parameters of the Epanechnikov kernel. This discards (or diminishes

the influence of) background information and avoids the need to learn a

background model for each scenario. This renders our method more general

and more efficient, while maintaining simplicity with respect to techniques

that use complex background or part-based models.

Color is only one aspect of target appearance. To the HS and RGB

histograms we concatenate a set of Histogram of Oriented Gradients (HOG)

descriptors computed on a grid over the image as described in [40]. The

HOG descriptor captures local structure and texture in the image that are

not captured by the color histograms. In order to extract only gross details

of target appearance (e.g. vertical, horizontal and diagonal patterns) we only

use 4-bin gradient orientation histograms for each HOG block.

As the final stage of descriptor computation, we take the square root of

all descriptor bins. This is a well-known technique in the image classification

community [37] and helps reduce the “burstiness” phenomenon of features

by discounting the effect of small changes in bins that already have signifi-

cant weight in them. In preliminary experiments we found this to improve

robustness of Euclidean distances between descriptors.

HS histograms contain 8 × 8 bins, while RGB is quantized to 4 × 4 × 4

bins. Both the HS and RGB histograms are computed for the 15 levels

of the pyramid (8 stripes for the first level plus 7 for the second level of

overlapping stripes). The result is a total of 1, 920 color histogram bins.

To this we concatenate a HOG descriptor in which each block consists of a

grid of 2 × 2 cells of 8 × 8 pixels. We extract the HOG descriptors from a

sub-image obtained by removing 8 pixels from top, bottom, left and right of

the original in order to remove background details. For each 8 × 8 cell we

compute the gradient histogram over only 4 angular bins as described above

(instead of the usual 9 angular bins). Given the canonical size of 64 × 128

pixels, the dimension of the HOG descriptor is 1, 040 bins, and the final
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Figure 3.2: The feature extraction process. (a) An Epanechnikov kernel is

used to weight the contribution of each pixel to the HS and RGB histograms

computed on overlapping stripes (b) and (c). These weighted histograms are

concatenated with a grid of overlapping HOG descriptors (d).

descriptor dimensionality of each person image is thus 2, 960. The entire

descriptor construction process is illustrated in Fig. 3.2 and an extensive

evaluation of descriptor performance is given in Sec 3.6.1.

3.4 Sparse discriminative basis expansions

In this section we describe an approach to using basis expansions for classi-

fication and show how this basic approach does not generalize in a straight-

forward way to problems like re-identification due to its inability to rank

all but a few confidently classified individuals. In Sec. 3.5 we introduce an

iterative algorithm for ranking with sparse basis expansions that addresses

these shortcomings.
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3.4.1 Sparse basis expansions for classification

The main idea behind the use of basis expansions for building discriminative

classifiers is that, given sufficient training samples ti,1, . . . , ti,ni
from some

class i, a test sample y of the same class should approximately lie in the

linear span of the training samples:

y ≈ αi,1ti,1 + αi,2ti,2 + . . .+ αi,ni
, ti,ni

(3.2)

=

ni∑

j=1

αi,jti,j (3.3)

= Tiαi (3.4)

for some optimal choice of scalar coefficients of reconstruction αi,j , for j =

1, . . . , ni. We use Ti to represent the matrix of basis vectors for class i, and

αi = [αi,1, . . . , αi,ni
]T to represent the vector of reconstruction coefficients

for the same class.

The general, multi-class basis expansion for C individuals in the gallery

then becomes:

y ≈ [T1 T2 · · · TC ]
[
αT

1 αT
2 · · · αT

C

]T

= Tα. (3.5)

The basis T can be highly overcomplete, but if y is an instance of a person

in the gallery we desire that the energy in the basis expansion be concen-

trated in the relatively few coefficients corresponding to the probe examples

corresponding to y. We can impose this sparsity constraint on the solution

by formulating it as an ℓ1-regularized least squares problem:

α̂ = argmin
α

‖y −Tα‖22 + λ‖α‖1, (3.6)

where λ controls the tradeoff between minimization of the ℓ2 reconstruc-

tion error and the ℓ1 norm of the coefficients used to reconstruct y. This

formulation is known as Lasso Regression in the statistics literature [118].

Regularized basis expansions of this type are generally referred to as

sparse because the ℓ1 regularization term, depending on the sparseness factor

λ, tends to cause the coefficients of reconstruction to collapse to zero except

for a few important basis vectors. The form of Eq. (3.6) is particularly

convenient because it represents a whole class of solutions to the approximate

reconstruction problem of Eq. (3.5). When λ = 0, Eq. (3.6) results in a
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Figure 3.3: Basis-expansion results for MvsS (N = 2) re-identification on

ETHZ1. Top: (left) probe sample, (right) the first 15 samples in the gallery.

Each color represents a single subject which has two instances. Bottom:

reconstruction coefficients for least squares (λ = 0), sparse (λ = 0.2) and

nearest neighbour (λ = 0.6).

standard least squares solution. For λ > 0, we obtain solutions of increasing

sparseness with increasing λ. Eventually, as λ → ∞, only a single non-zero

coefficient will be admitted in the solution of Eq. (3.5). We refer to this

last solution, with λ → ∞, as the nearest neighbor solution since only the

ℓ2-closest training sample to y will have a corresponding non-zero coefficient

in α̂. In Fig. 3.3 we illustrate these three types of solutions for a MvsS

re-identification problem. The top row of Fig. 3.3 illustrates the probe and

gallery images for a re-identification query. The plot in the second row

shows the coefficients of a least squares solution (λ = 0), followed by a

sparse solution (λ = 0.2), and finally the nearest neighbor solution (λ = 0.6

for this example).

We can derive a decision rule for classification by analyzing the recon-

struction error for solutions to Eq. (3.5) restricted to basis vectors corre-

sponding to individual gallery subjects. The normalized reconstruction error
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Figure 3.4: Ranking with limited information from a single basis expansion.

A more detailed view of two problems that arise: ranking decisions must

be made on the basis of little information (low coefficient energy) or no

information (zero coefficient energy). Sparse reconstruction can only support

ranking up to a certain rank for a non-zero value of λ. On the left are

coefficients, on the right the corresponding normalized reconstruction error.

corresponding to the i-th subject is:

ei =
‖y −Tiα̂|i‖2
‖y‖2

, for i ∈ {1, . . . , C}. (3.7)

where α̂|i represents the sparse solution of Eq. (3.6) restricted to the coeffi-

cients corresponding to gallery examples of class i. That is, α̂|i is equal to α̂

at coefficients corresponding to gallery examples from individual i and zero

elsewhere.

Our decision rule is:

class(y) = argmin
i
ei. (3.8)

This type of residual-based decision rule has been shown to be very effective

for frontal face recognition [128].

3.4.2 Ranking with sparse basis expansions

The decision rule based on sparse discriminative basis expansion described

in the previous section performs very well for classification problems. How-

ever, for re-identification it is also important to be able to rank the entire

set of gallery individuals. We can extend the decision rule of Eq. (3.8) in

a straightforward manner to rank candidate individuals using their corre-

sponding residual ei.
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In Fig. 3.4 we show two views of ranking gallery individuals according to

the normalized reconstruction error ei with respect to the probe y. On the

left are illustrated the reconstruction coefficients α̂ of a probe image recon-

struction in terms on a multi-shot gallery. On the right are illustrated the

normalized reconstruction errors ei corresponding to each gallery individual.

The fundamental problem with using discriminative sparse basis expansions

derived from solutions to problems like Eq. (3.6) is that, for many reasonable

values of λ, we are deliberately forcing the majority of coefficients to zero.

This severely limits the number of ranks the basis expansion can support.

In Fig. 3.4 we see that after the first few individuals (ranks), the coefficient

energy collapses and we have no more information upon which to base sub-

sequent ranking decisions. The result is that beyond this point we cannot

rank the remaining gallery individuals.

A more subtle problem is that in many cases we may be basing ranking

decisions on inadequate evidence from the basis expansion. After the first

eight individuals in Fig. 3.4, even before collapsing to zero, there is very

little coefficient energy upon which to base individual ranking decisions. In

the next section we introduce an iterative sparse basis expansion technique

that addresses these problems of lack of sufficient ranking support in sparse

reconstructions.

3.5 Ranking via iterative sparse re-weighting

In this section we develop an iterative technique to address the problems with

applying sparse discriminative classifiers to ranking, arriving in the process

at an algorithm that is able to robustly perform re-identification up to all

ranks. Our approach is an iterative extension of the weighting described

in [32] which we use to first re-weight basis vectors in the sparse solutions

to Eq. (3.6) and arrive at a more robust solution that does not rely on

basis vectors contributing little to the reconstruction. A similar weighting

approach is then be used to proceed with ranking after damping the influence

of basis vectors that have already contributed to ranking.

We first re-write Eq. (3.6), adding weights to the coefficients in the ℓ1-

regularized minimization problem:

α̂ = argmin
α

‖y −Tα‖22 + λ‖diag(w)α‖1, (3.9)

where w = [w1, . . . , wN ] is a vector of positive weights, with N =
∑C

i=1 ni
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so that there is one wi > 0 for each αi,j in the basis expansion. Just like

the unweighted counterpart in Eq. (3.6), this convex problem can also be

efficiently solved as a linear program. The weights wi are free parameters in

the convex relaxation, whose values can be used to penalize or favor specific

basis vectors in the regularized expansion.

3.5.1 Soft weighting for robust ranking

Our first refinement step is designed to address the problem of ranking indi-

viduals based on normalized reconstruction error ei resulting from very low

coefficient energy, as can be seen in detail in Fig. 3.4.

Assume we have computed sparse reconstruction coefficients α̂ for a given

instance of a re-identification problem. The first refinement step we perform

is a sort of soft-weighting that is used to remove those coefficients that weakly

contribute to the reconstruction of the given test sample. At each iteration

we weight each element in the basis according to:

wi,j =
1

|αi,j |+ ε
for i ∈ {1 . . . C} and j ∈ {1 . . . ni}, (3.10)

where ε is chosen to be slightly smaller than the minimum nonzero coefficient

of α̂ to avoid division by zero and to not influence the solution with respect to

the other coefficients. We then solve a weighted Lasso problem by weighting

the regularization magnitudes using the wi,j defined above:

α̂
′ = argmin

α

‖y −Tα‖22 + λ
C∑

i=1

‖diag(wi)αi‖1, (3.11)

where wi = [wi,1, wi,2, . . . , wi,ni
] are the weights from Eq. (3.10) correspond-

ing to the basis vectors for individual i. The new solution α̂
′ is the refined

solution that is used to rank individuals with respect to probe y.

Fig. 3.5(b) graphically illustrates this soft weighting procedure. The ini-

tial solution contains a few dominant coefficients that contribute most to

the reconstruction of the probe image y. It also contains a number of basis

vectors that contribute very little to the overall reconstruction, as indicated

by very small coefficients in the initial solution shown in Fig. 3.5(a). The re-

fined solution using the weights from Eq. (3.10) is shown in Fig. 3.5(b). Note

that this refinement eliminates small coefficients from the solution and redis-

tributes their energy among more relevant basis vectors. It is not equivalent

to a simple thresholding of coefficients.
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Figure 3.5: Soft and hard weighting of regularized reconstructions. (a) Re-

construction coefficients from the first solution α̂
s at iteration s. (b) Refined

reconstruction coefficients after soft weighting α̂
′s. (c) Coefficients α̂s+1 at

iteration s+ 1 after hard weighting.

3.5.2 Hard re-weighting for ranking completeness

A more serious problem related to using a sparse discriminative classifier for

re-identification is the lack of sufficient non-zero support in sparse solutions.

It is often the case that only a few gallery individuals can be ranked by

analyzing the initial, refined sparse solution. On the VIPeR dataset, for

example, it is common to report results up to rank 50 since it contains over

600 individuals. However, the sparse solution for λ = 0.2 only contains

enough non-zero support to rank fourteen individuals (on average).

To address this problem we use a weighting scheme similar to the soft

weighting described in the previous section. A set of hard weights are main-

tained that are used to exclude those elements that have already contributed

to ranking an individual against the probe y:

wh
i,j ←

{
∞ if α′

i,j > 0

1 otherwise
(3.12)
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Algorithm 1: Sparse iterative ranking

Input: T = [T1 T2 · · · TC ], the gallery templates;

y, the probe template; and

λ, the regularization factor.

Output: R, the ranked gallery.

1 Initialize hard weights: wh
i,j ← 1.

2 Initialize iteration count: s← 1.

3 Initialize set of gallery individuals: R← ∅.
4 while |R| < C do

5 α̂← argminα ‖y −Tα‖22 + λ‖diag(wh)α‖1
6 wi,j ← 1

|αi,j |+ε
for i ∈ {1 . . . C} and j ∈ {1 . . . ni}

7 α̂
′ ← argminα ‖y −Tα‖22 + λ‖diag(w)α‖1

8 for α̂i 6= 0 do

9 R← R ∪ {(i, s, ei)} (ei from Eq. 3.7)

10 end

11 s← s+ 1

12 wh
i,j ←

{
∞ if α′

i,j > 0

wh
i,j otherwise

13 end

14 return R ordered by (i, s, e) ≤ (i′, s′, e′) iff s < s′ ∨ e ≤ e′

where α′
i,j are the coefficients from the soft-weighted solution α̂

′. The hard

weights vector wh is used in the next step of an iterative process that re-

peats the soft weighting and ranking procedure. In Fig. 3.5(c) is shown the

solution to the weighted Lasso problem using these weights. The difference

in the distribution of coefficients between the hard weighted solution and the

original solution in Fig. 3.5(a) is quite noticeable.

3.5.3 Ranking by iterative re-weighted ℓ1 regularization

The process we use for person re-identification up to arbitrary ranks uses

an iterative process of both soft- and hard-weighting of the ℓ1 regularized

reconstruction of probe images using gallery examples:

1. Reconstruct a probe image using Eq. (3.6).

2. Use soft weighting to eliminate coefficients that contribute little to the

reconstruction of the probe and distribute their energy among more rel-
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Figure 3.6: Descriptor robustness and the contribution of each descriptor

component on the VIPeR dataset.

evant basis vectors.

3. Rank the gallery individuals who have non-zero energy in their corre-

sponding coefficients (i.e. those individuals who have normalized recon-

struction error ei < 1).

4. Eliminate basis vectors contributing to ranking in the current round via

hard weighting in subsequent iterations.

5. Repeat until all gallery individuals are ranked.

It is important to note that individuals are not ranked by their overall

normalized reconstruction error alone. The normalized reconstruction error

is used for ranking within iterations, but those individuals ranked in the

first iteration will always be ranked higher than those in subsequent itera-

tions. Algorithm 1 formalizes each of these steps performed and how they

fit together to rank all individuals in the gallery.

Algorithm 1 is valid for both single- and multi-shot modalities. In the case

of multi-shot modalities, a single gallery individual may appear more than

once in the list of ranked results due to there being more than one exemplar

in the gallery. In such cases, we use only the highest-ranked exemplar of each

person and ignore any subsequent instances of that person in the ranked list

of results.

3.6 Experimental Results

In this section we report results from an extensive set of experiments per-

formed to evaluate our approach and to compare it with the state-of-the-

art. All experiments were conducted on standard, publicly available datasets

(VIPeR, i-LIDS, ETHZ and CAVIAR4REID), and we compare our results
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with the following state-of-the-art approaches: SDALF [52], HPE [18], AHPE [19],

SCR [15], ELF [62], CPS [34], MRCG [14], ContextB [140], PRDC [139],

PRSVM [103], SBDR [129], EIML [71], COSMATI [13], RPLM [72] and

eSDC [107].

We evaluate performance on all of the commonly used re-identification

modalities found in the literature. The SvsS modality corresponds to when

there are one or more (considered independently) exemplars for each person

in the test set, and a single exemplar for each person in the gallery. The

MvsS modality, on the other hand, is when there is a single exemplar of

each person in the probe set, but one group of multiple exemplars for each

person in the gallery. The MvsM modality is when there is a single group of

multiple exemplars for each person in both the gallery and test sets.

The principal metric used for evaluating person re-identification is the

Cumulative Match Characteristic (CMC) curve which summarizes overall

performance by reporting recall over a range of cutoff points. A CMC curve

represents the expectation of finding the correct match in the top r matches,

where r is the rank considered in the final ranking result. For each ex-

periment we split the dataset into probe and gallery sets for the various

modalities. Each curve presented here was computed by averaging over 50

random, independent splits of dataset into gallery and probe sets.3 We also

report, and compare with the state-of-the-art when available, the normalized

Area Under the Curve (nAUC). The nAUC is calculated as the total area

under a CMC divided by 100 × N , where N is the total number of gallery

individuals. It gives an overall score of how well a method performs over

all ranks. For most applications, the most important cutoff rank is one (i.e.

the first returned identity should be the correct one). We thus also report a

comparison of our rank-1 performance compared to the state-of-the-art on

all datasets.

In the next section we analyze a number of aspects of our approach,

from the feature descriptor components to the contribution of our sparse

approach with respect to baselines. Then in Sec. 3.6.2 through Sec. 3.6.5 we

detail the performance of our algorithm with respect to the state-of-the-art

on each dataset and for each modality. Finally in Sec. 3.6.6 we summarize

our results and discuss computational requirements.

3Except for VIPeR where we use the ten splits from [52].
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3.6.1 Descriptor robustness and sparse ranking

In this section we provide an analysis of each component of the descriptor

proposed in Sec. 3.3. We also give some illustrative examples motivating the

advantages iterated, sparse basis expansions have over other techniques.

Descriptor robustness: We performed an experiment on the VIPeR dataset

to show the robustness of our descriptor to pose and illumination variations.

We used this dataset since it provides pose information for each image. To

estimate illumination variation for each pair of images we filtered the value

channel in the HSV color space with a Gaussian kernel, weighted this filtered

intensity channel with the Epanechnikov kernel, and then computed the av-

erage intensity. To evaluate how sensitive our descriptor and approach is to

these variations we performed a leave-one-out experiment in which use each

VIPeR image in sequence as a probe. We then recorded the rank at which

the correct corresponding gallery image is returned as a function of pose and

illumination variation.

In Fig. 3.6(a) and Fig. 3.6(b) each color represents 1/16-th of the possible

ranks, ranging from dark blue for the first

The contribution of descriptor components: In Fig. 3.6(c) we report

results from a series of experiments performed to evaluate the contribution

of each component of our descriptor. These experiments were performed on

the VIPeR dataset and averaged over ten trials. Results show that the ad-

dition of each component increases performance. We obtain the best results

by adding the Epanechnikov kernel to weight the contribution of each pixel

in the final HS and RGB histograms (in order to remove background infor-

mation) and by taking the square root of each dimension of the descriptor.

The contribution of sparse ranking: In Fig. 3.7(a) we show the rank-1

re-identification accuracy for a variety of solutions of the regularized least

squares problem of Eq. (3.6) over 10 trials on the VIPeR and i-LIDS datasets.

Rank-1 accuracy is the percentage of probe images whose correct correspond-

ing gallery image is ranked first by the re-identification algorithm. Shown

are the least squares (λ = 0) solution, sparse solutions for a range of λ > 0,

and the nearest neighbor solution when λ is sufficiently high to constrain the

solution to a single non-zero coefficient. The sparse approach, for appropri-

ate λ, outperforms the nearest neighbor and least squares solutions in terms

of rank-1 accuracy. In fact, using our descriptor on the VIPeR dataset in

combination with a nearest neighbor or least-squares approach, we arrive at
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Figure 3.7: (a) Rank-1 re-identification accuracy on the VIPeR and i-LIDS

datasets for the SvsS modality (10 trials). Accuracy is plotted for varying

sparseness (λ), including the least squares solution when λ = 0 and the

nearest neighbor solution for λ sufficiently large (λ ≈ 0.6 for these datasets).

Comparison of our sparse ranking approach with the Nearest Subspace Clas-

sifier on: (b) ETHZ1; (c) ETHZ2; (d) CAVIAR4REID. In the legend of each

plot we report the number of instances per person (N) and the number of

learnt subspaces (k).

a rank-1 recognition rate of only 20%, significantly lower than the state-of-

the-art on VIPeR. We found λ = 0.2 to perform well and fixed this value for

all subsequent experiments.

In Fig. 3.7(b,c,d) we provide a comparison of our approach with the

Nearest Subspace Classifier (NSC) [89] on the MvsS and MvsM modalities

on datasets with a large number of images per person (ETHZ1, ETHZ2

and CAVIAR4REID). We chose NSC as a baseline to motivate the use of a

linear, sparse approach against a standard, non-sparse linear one. Briefly,

the Nearest Subspace Classifier (NSC) learns a subspace for each gallery

individual in feature space using PCA. Then, given one or more probes,

it ranks the gallery considering the re-projection error over all the learnt

subspaces. The drawback of the NSC is that it cannot robustly learn a

subspace if the number of instances per person is low, while our method

can robustly perform re-identification with as few as two or three gallery

examples per person. We observe this in Fig 3.7(b,c) by how our approach

outperforms NSC for small gallery sizes (N = 5), while the performance is

more comparable when there are enough gallery images per person (N = 10)

on which to learn more meaningful subspaces. The difference is especially

noticeable in Fig. 3.7(d) on CAVIAR4REID, which has very poor image

quality compared to ETHZ, when few images are used to learn subspaces.
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Figure 3.8: Examples of coefficient distribution for various techniques. Left

to right: our approach, the method of [128], Least Squares and Nearest

Neighbor. Examples are from the MvsS (N = 3) modality on i-LIDS and

CAVIAR4REID datasets. Coefficients corresponding to true positives are in

green while those in red correspond to false positives. Images on the plots

show the rank-1 selected gallery set.

In Fig. 3.8 we show three example MvsS re-identifications on the i-LIDS

and CAVAIR4REID datasets for N = 3. In the figure is given a comparison

between our approach, Least Squares, Nearest Neighbor, and the technique

of [128]. The first example demonstrates that methods like least squares

and nearest neighbor are driven by the dominant color in the probe im-

age. The other two examples demonstrate how our soft-weighting process

re-distributes coefficient energy by adding more energy to the coefficients

of other samples in the target basis. In this way our approach is able to

leverage multiple aspects when more samples are available for each target.

3.6.2 Performance on the VIPeR dataset

The VIPeR dataset was the first standardized dataset proposed in the litera-

ture for the person re-identification task. It consists of 632 people imaged by

two non-overlapping cameras. Image pairs exhibit viewpoint changes of up

to 180 degrees and illumination changes that result in large intra-class varia-

tions. The dataset contains only two samples of each person (one from each

view), and thus is only appropriate for the single-shot SvsS re-identification

modality.

In order to fairly compare our results with other techniques, we use the

publicly available splits into gallery and probe sets provided by the authors

of SDALF [52]. Fig. 3.9(a) gives the CMC curves up to rank 50 comparing
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Figure 3.9: Comparative performance evaluation on VIPeR and i-LIDS

(nAUC in parenthesis, when available). (a) The VIPeR SvsS modality. (b)

The i-LIDS SvsS modality. (c) The i-LIDS MvsS (N ∈ {2, 3}) modality (d)

The i-LIDS MvsM (N ∈ {2, 3}) modality. The dashed curves distinguish

techniques that set aside a portion of the dataset for learning.

our approach with the many methods evaluated on VIPeR. We outperform

all state-of-the-art techniques that are not based on metric learning up to all

but the highest ranks. After about rank-5, techniques that learn on a part

of the data like EIML [71], RPLM [72], and eSDC [107] begin to outperform

our approach. Note that such techniques are not strictly comparable with

ours since they set aside a portion (up to half) of the dataset on which to

learn metrics. The gallery and probe sets are drawn from the remaining data

and thus the standard splits cannot be used.

Table 3.1 gives the rank-1 performance of our approach with respect

to the state-of-the-art on VIPeR. From this table we see that our method

improves by about 6% over the state-of-the-art performance on the VIPeR

dataset except for learning-based methods like RPLM [72] and eSDC [107],

which perform similarly to ours at rank-1.

3.6.3 Performance on the i-LIDS dataset

The i-LIDS dataset was created by authors of [140] using images taken from

the i-LIDS Multiple-Camera Tracking Scenario dataset of multiple camera

views from a busy airport arrival hall. It contains 119 people with about four

images of each person. As shown in Fig. 3.9(b), our approach outperforms

the state-of-the-art at low ranks. After about rank-4, however, techniques

based on metric learning begin to outperform us. Note that, due to having to

use a portion of available data for learning, the SBDR [129] and PRSVM [103]

methods only consider, respectively, 80 and 108 out of the 119 people in the
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Methods ↓ VIPeR iLIDS

Modality → SvsS SvsS MvsM (2)

HPE [18] – – 18.5

AHPE [19] – 21 32

SCR [14,15] – 34.5 36

MRCG [14] – – 46

ContextB [140] – 24 –

SDALF [52] 19.9 28 39

ELF [62] 12 16 –

CPS [34] 21.8 29.5 44

PRSVM* [103] 15 32 –

PRDC* [139] 15.7 32.6 –

SBDR* [129] – 37.75 –

EIML* [71] 22.0 – –

COSMATI* [13] – – 44

eSCD (ocsvm)* [107] 26.7 – –

RPLM* [72] 27.0 – –

Our 27.0 39.5 62.9

Table 3.1: Comparative performance analysis at rank-1 with respect to the

state-of-the-art on VIPeR and iLIDS. Techniques indicated with a “*” set

aside a portion of the dataset for learning and splits are generated from the

remaining data.
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Figure 3.10: Performance of our approach on the ETHZ dataset compared

to state-of-the-art methods. The first row shows results on ETHZ1, the

second row ETHZ2, and the third row ETHZ3. Each column represents a

re-identification modality: the first column SvsS, the second column MvsS

for N ∈ {2, 5, 10}, and the third column MvsM for N ∈ {2, 5, 10}.

dataset.

In the MvsS and MvsM modalities, where our technique is able to exploit

multiple images of each gallery individual, our improvement over the state-

of-the-art is even more dramatic. In particular, as seen in Fig. 3.9(c) for

MvsS (N = 2) we exceed the state-of-the-art at rank-1 by nearly 20%. We

similarly improve for MvsS (N = 3) where we outperform SDALF by nearly

15% at rank-1. For the MvsM case we report results for N ∈ {2, 3} in

Fig. 3.9(d) along with results of other methods tested on this dataset. We

outperform the state-of-the-art at all ranks for the MvsM scenario.

Table 3.1 also summarizes the rank-1 performance of our technique with
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Methods ↓ ETHZ1 ETHZ2 ETHZ3 CAVIAR4REID

Modality → SvsS MvsM (5) MvsM (10) SvsS MvsM (5) MvsM (10) SvsS MvsM (5) MvsM (10) SvsS MvsM (3) MvsM (5)

HPE [18] – 84 85 – 81.5 79.3 – 87.3 82.6 – – –

AHPE [19] – 91 – – 90.6 – – 94 – 7.5 7.5 7.5

MRCG [14] – – 96 – – 97 – – 98.3 – – –

PLS [109] 79 – – 74.5 – – 77.5 – – – – –

SDALF [52] 64.8 90.2 89.6 64.4 91.6 91.5 77 93.7 94.1 7 8.5 8.3

CPS [34] – 97.7 – – 97.3 – – 98 – 8.5 13 17.5

EIML* [71] 78 – – 74 – – 91 – – – – –

RPLM* [72] 77 – – 65 – – 83 – – – – –

eSDC* [107] 80 – – 80 – – 89 – – – – –

Our 79.5 99.8 99.9 76.1 99.7 100 86.2 99.9 99.9 29 75.1 90.1

Table 3.2: Comparative performance analysis at rank-1 with respect to the

state-of-the-art on the ETHZ and CAVIAR4REID datasets. The EIML,

RPLM, and eSDC techniques (indicated by “*”) set aside a portion of the

data for metric learning.

respect to the state-of-the-art for the SvsS and MvsM modalities on the

i-LIDS dataset. From this table we see that we slightly outperform other ap-

proaches on the SvsS modality, while we significantly outperform competing

methods by about 20% for MvsM.

3.6.4 Performance on the ETH Zurich datasets

The ETH Zurich dataset consists of three sequences used for tracking, from

which Schwartz and Davis [109] extracted a set of samples of each person

in the videos. They extracted 83 people from the first sequence (ETHZ1),

35 from the second (ETHZ2), and 28 from the third (ETHZ3). For each

sequence they identified about 10 images per person. We performed SvsS,

MvsS and MvsM experiments, varying the number of elements in both the

probe and the gallery.

As can be seen in Fig. 3.10, the recognition rate of our method and

state-of-the-art methods is very high (about 75-80% at first rank) for each

modality. This is due to the fact that images in both the probe and gallery

sets are taken from tracking sequences and thus from the same camera.

In this figure, each row represents one sequence of the dataset, while each

column represents a modality. The first column reports the SvsS case, the

second reports results for the MvsS modality for N ∈ {2, 5, 10}, and the

third reports the MvsM case for N ∈ {2, 5, 10}. Our approach outperforms

current methods in all three modalities, with the improvement particularly

acute in multi-shot scenarios MvsS and MvsM. In Table 3.2 we also report

rank-1 results for each sequence of the ETHZ dataset for the SvsS and MvsM
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(N ∈ {5, 10}) modalities. Results on these datasets are quite saturated.

3.6.5 Performance on the CAVIAR4REID dataset

The CAVIAR4REID dataset4 contains 72 unique individuals captured in a

shopping center scenario: 50 are extracted from two camera views (and so

are imaged from two distinct, but overlapping cameras), while the remaining

22 are extracted from a single view. This dataset was designed to maximize

variability with respect to resolution changes, illumination conditions, occlu-

sions, and pose changes.

In Fig. 3.11(a) we report the CMC curves for our approach and the state-

of-the-art on the SvsS modality. Our approach outperforms current methods

up to about rank-20. The improvement over the state-of-the-art at first rank

is particularly noticeable: there is a difference of 22.5% at rank-1 between

our performance and competing methods. In the legend we also report the

nAUC for each method, which gives an idea of the trend of the curve across

all ranks. Fig. 3.11(b) reports CMC curves for the MvsM modality on the

CAVIAR4REID dataset for N ∈ {3, 5}. In the MvsM modality, as for i-

LIDS, we significantly outperform the state-of-the-art at all ranks.

We report the rank-1 recognition rate of our approach on CAVIAR4REID

compared to the state-of-the-art in Table 3.2. Our approach significantly

outperforms competing methods at rank-1 in all modalities on this dataset.

On the MvsM modality we improve on the state-of-the-art by nearly 62%

for MvsM (N = 3) and by 73% for MvsM (N = 5).

3.6.6 Discussion

In this section we summarize the contributions of our approach in terms of

performance with respect to the state-of-the-art and in terms of computa-

tional efficiency.

General performance considerations: The trend that emerges from the

experimental evaluation in the previous sections is that, generally, our ap-

proach exceeds the state-of-the-art in terms of rank-1 accuracy. This can be

seen in the SvsS modality on all datasets, but the increase in performance

is particularly noticeable in the multi-shot MvsS and MvsM modalities on

i-LIDS, ETHZ and CAVIAR4REID. In these multi-shot cases our approach

exceeds the state-of-the-art at all ranks on these three datasets.

4http://www.lorisbazzani.info/code-datasets/caviar4reid/

http://www.lorisbazzani.info/code-datasets/caviar4reid/
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Figure 3.11: Performance on the CAVIAR4REID dataset with respect to the

state-of-the-art. (a) The SvsS modality. (b) MvsM for N ∈ {3, 5}. In the

legends we report the normalized area under the CMC curve (nAUC), when

available.

Our method fully exploits the robustness of our descriptor with sparse

reconstruction in order to achieve highest performance at the rank-1 for

all scenarios, including SvsS. Our ranking based on sparse, ℓ1-regularized

basis expansions allows our approach to exploit multiple aspects of person

appearance in the multi-image gallery sets of the MvsS and MvsMmodalities.

This can be appreciated from the trend of the curve on the i-LIDS dataset

in Fig. 3.9(d) where we quickly reach a 90% recognition rate at around rank-

15 and on CAVIAR4REID in Fig. 3.11(b) where we reach 100% accuracy

around rank-20. On the ETHZ datasets we reach between 99.7% to 100% in

the first seven ranks as shown in Fig. 3.10.

Comparison with metric learning: Some metric learning approaches

outperform our method at higher ranks for the SvsS modality on the VIPeR

and i-LIDS datasets. By setting aside a portion of the labeled data they

are able to learn a metric that better captures the intrinsic properties of

the scene, of the cameras used, and of the camera positioning and imaging

conditions. This increase in high rank performance comes at a cost, however.

On VIPeR, for example, as much as half of all the available labeled data (that

is 316 image pairs) is used for metric learning and this limits the availability

of data for actual testing. Not only does this render experimental results not

strictly comparable, it is also a severe limitation in real application scenarios

where no labeled data may be available a priori. An important advantage
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Figure 3.12: Time required for re-identification. (a) Time as a function of

the number of iterations of sparse re-weighted ranking on the i-LIDS dataset.

(b) Time for a desired nAUC on the i-LIDS dataset. (c) Time as a function

of the total number of gallery images on the ETHZ1 dataset for the MvsS

N = 10 modality. Timings are averaged over all probes in fifty random

splits.

of our method with respect to learning-based ones is that learned distance

metrics cannot be easily updated if the camera settings or positions change,

while for our approach it is straightforward to integrate new instances per

person and to discard old gallery images.

We also note that our approach is complementary to metric learning. Our

core algorithm for iterative sparse ranking is feature agnostic and could be

applied to any underlying feature space, including those induced by learned

metrics like the one proposed in [72]. We expect additional improvements

from such a combination.

Computational efficiency: Our approach is implemented in MATLAB

and makes extensive use of the optimized SPAMS library for sparse model-

ing [92]. All tests were performed on an Intel Xeon@2.67GHz (8-core) with

12 GB RAM.5 Descriptor extraction in MATLAB requires about 0.016s per

person image and is included in all timing numbers reported here.

In Fig. 3.12 we report three views of the computational requirements of

our approach. In Fig. 3.12(a) we vary the number of iterations of sparse re-

weighted ranking we perform in order to quantify how computational require-

ments change with increasing iterations (and increasing accuracy at higher

ranks). Fig. 3.12(b), on the other hand, quantifies the relationship between

the time required for performing a single re-identification and the area under

5The source code for our approach is available at http://www.micc.unifi.it/lisanti/

source-code/re-id/

http://www.micc.unifi.it/lisanti/source-code/re-id/
http://www.micc.unifi.it/lisanti/source-code/re-id/
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the curve. From these curves we can observe that, if we are interested only

in first rank, with our approach we can perform re-identification of a single

probe in about 0.036s. In real application scenarios our approach can thus

perform rank-1 SvsS person re-identification at about 30 re-identifications

per second.

If we are interested higher ranks, for example in an interactive application

in which a human operator will sift through re-identification results, our

approach might require more than one iteration. From Fig. 3.12(b) we see

that after 7 iterations we arrive at a nAUC of about 88%, requiring 0.08s

to compute this result (which works out to about 12 re-identifications per

second). In the MvsM modality our approach requires about 0.14s (7 re-

identifications per second), but yields a nAUC of more than 94%. This first

two tests are carried out on the i-LIDS dataset.

In Fig. 3.12(c) we show how our approach scales as a function of the

gallery size. In particular, we see that the time for a single re-identification

increases approximately linearly when increasing the number of images in

the basis up to 600 images; then the trend becomes superlinear from 600 to

900. It is interesting that this non-linearity is more pronounced with increas-

ing number of iterations. This test was carried out on the ETHZ1 dataset

which contains the biggest number of images. All the timing measurements

are obtained by averaging over all probe samples from 50 random splits of

gallery/probe image sets.

3.7 Conclusions

In this chapter we described an approach to person re-identification that is

based on sparse, ℓ1 regularized basis expansions of probe images in terms

of gallery images used as basis vectors. We showed how to extend, through

iteration and re-weighting, the concept of a Sparse Discriminative Classi-

fier to problems requiring ranked output. Our algorithm is efficient and

obtains state-of-the-art performance on both multi- and single-shot person

re-identification modalities. Our results demonstrate how sparse reconstruc-

tion generally leads to higher performance at first rank, while also yielding

higher nAUC using the proposed iterative ranking. Our method is also com-

petitive with respect to metric learning based methods which set aside a

portion of available data for training.

Our approach makes use of a simple, yet discriminative descriptor of per-
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son appearance. It requires no foreground/background separation or body

part segmentation. It is simple and extremely efficient to calculate, and the

performance of our approach demonstrates that simple descriptors can be

successfully applied in re-identification scenarios.

Iterative sparse ranking is a general approach and can be applied to re-

trieval problems beyond person re-identification. Additionally, we note that,

though all of the experiments in this article were performed using the pro-

posed descriptor, our sparse basis expansion approach is complementary to

the feature representation used. It is feature agnostic and it can be similarly

applied to any feature that is encoded as a fixed-length vector.
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Chapter 4

Logging of Face Imagery

Faces, particularly high-quality imagery of faces, can be a pow-

erful semantic cue for forensic analysis of video footage. In this

chapter we present a real-time solution for posterity logging of

face images in video streams. Our system detects and tracks

multiple targets in real time, grabbing face images and evaluat-

ing their quality to store only the best for each detected target.

We propose two quality measures for face imagery, one based on

symmetry and the other on face pose. Extensive qualitative and

quantitative evaluation of the performance of our system is pro-

vided on many hours of realistic surveillance sequences.1

4.1 Introduction and Related Work

Modern surveillance systems are designed to record what happens, twenty

four hours per day, every day. These video streams must be laboriously and

manually searched by forensic investigators for evidence in the case of an

incident. The result of this is enormous quantities of archived surveillance

video that is largely inaccessible due to the lack of high-level, semantically

meaningful annotations. What is needed are tools for filtering through this

massive amount of video for data, events and features that might be useful in

the future for the purposes of forensic reconstruction of an event. To this end,

a log of interesting events, or a posterity log of interesting details, would be

1This chapter has been published as “Posterity Logging of Face Imagery for Video

Surveillance” in the journal IEEE Multimedia, October 2012.
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a tool of great utility to forensic investigators engaged in the post mortem

analysis of video events. Face logging, in particular, can unambiguously

associate an “identity” in the form of a high-resolution face image with each

individual entering an area of surveillance.

The main operating principle of surveillance systems does not change:

cameras continue to record and archive multiple streams of video, but these

streams are now augmented with a log annotating the faces of individuals

entering the scene. These logs should satisfy three primary requirements to

be useful to forensic investigators:

• logs should be brief and summarize the event in a convenient format

that does not overload downstream investigators with redundant images

of the same target;

• logs should be high-quality and provide some guarantee about the

quality of face imagery they extract; and

• logs should be accurate and provide the minimum amount of false

positives (i.e. logs not corresponding to faces) as well as false negatives

(i.e. faces not logged).

A few works address the problem of face tracking in video with a focus

on image quality. The work of Fronthaler et al. [58] is focused on image

quality estimation using the orientation tensor with a set of symmetry de-

scriptors to estimate the quality of acquired fingerprints or faces. Subasic et

al. [116] propose a quality evaluation technique that checks several low and

high level image parameters, according to the requirements proposed by the

International Civil Aviation Organization.

To the best of our knowledge, Fourney and Laganière [57], and Nasrollahi

and Moeslund [96] are the only works explicitly addressing the face logging

problem by building sequences of increasing quality face images. In par-

ticular, the technique described in [96] is similar to the system proposed

by Fourney and Laganière, but instead of a linear combination uses a fuzzy

combination of primitive quality measures. Note that the main focus of their

approach is to establish a measure of facial image quality given a set of face

images, and not to describe an entire face logging system performing detec-

tion, multi-target tracking and evaluation of facial image quality. Neither

approach has been evaluated on significant quantities of realistic surveillance

video footage.

The novel aspects of our contribution are:

• the development of a multi-pose face detector, based on the AdaBoost



4.1 Introduction and Related Work 77

Figure 4.1: A schematic diagram of our proposed system. A robust, multi-

pose face detector feeds multi-target tracking and data association modules,

and a quality filter ensures compact, high-quality logs are saved in the final

stage.

face detector of Viola and Jones [87,123], that incorporates the outputs

of lateral and frontal face detectors to improve robustness to face pose

variations and provides a rough estimate of face pose usable as a facial

quality measure;

• the definition of a multi-target tracking and data association module

handling multiple intrusions over long periods of time;

• the proposal of two distinct facial quality measures, in addition to res-

olution, which are compared against the brute force approach that logs

each detection associated with a track.

The integration of these novel components, along with state-of-the-art com-

ponents for object detection and tracking, outperforms other face logging

methods described in the literature. An extensive evaluation of our face log-

ger on more than ten hours of diverse and realistic surveillance videos, with

both quantitative and qualitative analysis, is provided. These videos have

been released as a new publicly available dataset to support and encourage

comparative evaluation of face logging systems. The dataset is available at

http://www.micc.unifi.it/datasets/logging-of-face-imagery/ and con-

tains fourteen sequences of more than ten hours of videos and 74,871 anno-

tated faces. For more details about the dataset please see Appendix A.

http://www.micc.unifi.it/datasets/logging-of-face-imagery/
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4.2 The face logging system

Our face logging system is designed using a pipelined architecture (see fig-

ure 4.1) where each frame is passed through a pipeline of several stages,

each devoted to a specific function. The pipeline is composed of the follow-

ing components:

• the multi-pose face detectors are responsible for detecting all targets

in newly grabbed frames (described in section 4.2.1);

• face fusion is then used to fuse the results of the multi-pose detectors

into confidence-scored detections with a rough estimate of face pose (also

described in 4.2.1);

• face trackers based on a particle filter are responsible for the tracking

of each target in a sequence (described in section 4.2.2);

• data association is responsible for matching the set of detected faces

with the set of targets already being tracked (described in section 4.2.3);

and

• finally the quality filter evaluates the quality of extracted faces in order

to build a reliable log of each target (described in section 4.2.4).

In the following sections we describe each component of our system in detail.

4.2.1 Multi-pose face detection

The face detection stage plays a critical role in the system since its results are

used for tracker initialization, the measurement process which keeps track-

ers fixed on their targets, and quality evaluation for the construction of

logs. The detection approach we propose exploits the well known AdaBoost

technique [123] to implement a robust detector capable of detecting not

only frontal faces, but left and right lateral profile ones as well. Differently

from [43], we use the outputs of three independent detectors. Most other

multi-pose detectors use a single cascade trained for multi-pose detection.

For example, [131] concentrates on robustness to in-plane rotations and

expansion of the Haar basis to improve multi-pose detection using a single

cascade, while [106] uses skin color and landmark to pre-filter and group face

candidates with similar poses. Our approach allows us to fully exploit mod-

ern, multi-core architectures and to extract a facial quality measure based

on how “close-to-frontal” a candidate face is.

Given that detector performance gracefully degrades in the neighborhood

of the face location, each component classifier outputs more than one hypoth-
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esis for an object. Considering this, for each putative detection a weighted

confidence is obtained as a linear combination of the number of neighbor

hypotheses suppressed through non-maximum suppression.

The N detection responses from all three detectors are collected together

into a set D = {di}Ni=1. Each detection is represented by its bounding

box geometry and a vector indicating which type and number of cascade

responses it represents:

di = {b,n}, i = 1 . . . N, (4.1)

where b = [x, y, w, h]T represents the geometry of the bounding box of the

detection, and n = [nf , nl, nr]
T where exactly one of nf , nl, nr is non-zero

and indicates whether detection di represents a frontal, left lateral or right-

lateral detection and the number of cascade responses merged through non

maximum suppression.

Our approach then merges the candidate detections in D that are spa-

tially overlapping, and thus come from different detectors. In the end, each

n will be a histogram counting the number of frontal, left lateral and right

lateral detections that overlapped with b before being suppressed by non-

maximum suppression in the AdaBoost detection algorithm. We iteratively

select the two nearest detections in D. If these two detections, denoted by

d = {b,n} and d′ = {b′,n′}, overlap by at least 70%, they are removed

from D and replaced with a new detection having a rectangle corresponding

to a weighted average of b and b′. Letting n = nT1 and n′ = n′T1, the new

detection is:

d∗ =

{
nb+ n′b′

n+ n′
,n+ n′

}
. (4.2)

In this way, each original detection rectangle is weighted by its confidence as

represented by the number of detections contributing to it. This procedure

is iterated until the two nearest detections in D overlap by less than 70%.

The resulting detections contain, in the vector of detector response counts, a

measure of how confident each of the component detectors was at that point

in the image.

To obtain a rough estimate of a 1D face pose φ̄ from the detector re-

sponses we exploit the number of candidate neighbors ni using a set of

weights p = [α, β, γ]T and consider angles corresponding to the three poses

of the detectors (determined by the training data used for training each de-

tector) φ = {φf , φl, φr}. Given a merged detection d∗ = {b∗,n∗}, where



80 Logging of Face Imagery

n∗ = [nf , nl, nr]
T, the pose is estimated as:

φ̄ =
φT[αnf , βnl, γnr]

pTn∗
. (4.3)

For the frontal, left lateral and right lateral detectors we use the corre-

sponding angles φf = 2π, φl = −π
2 , φr = π

2 . The weights used are α = 1.3,

β = γ = 0.5 and were determined by empirical evaluation. Once the detec-

tions are merged and the pose estimated, a detection is signaled if and only

if its confidence c∗ = pTn∗ is greater than 10.

4.2.2 Face trackers

A multiple face tracker must be robust to partial and complete occlusions,

to appearance changes due to changing expression, to illumination changes

and noisy, chaotic scenes in general.

# of Adaptive CAM-shift Zhou’s Stalder’s

Seq frames Particle Filter (ours) [42] tracker [5] tracker [141] tracker [115]

1 96 79 (82.2%) 90 (93.7%) 3 (3.1%) 10 (10.4%)

2 49 33 (67,3%) 43 (87.7%) 8 (16.3%) 22 (44.8%)

3 191 185 (96.8%) 191(100.0%) 47 (24.6%) 47 (24.6%)

4 116 115 (99.1%) 114 (98.2%) 91 (78.4%) 104 (89.6%)

5 115 86 (74.7%) 3 (2.6%) 38 (33.0%) 34 (29.5%)

6 97 89 (91.7%) 1 (1.0%) 39 (40.2%) 53 (54.6%)

7 1283 1204 (93.8%) 1272 (99.1%) 6 (0.4%) 56 (4.3%)

8 937 925 (98.7%) 2 (0.2%) 87 (9.2%) 262 (27.9%)

9 933 794 (85.1%) 578 (61.9%) 12 (1.2%) 13 (1.3%)

10 1188 761 (64.0%) 321 (27.0%) 4 (0.3%) 52 (4.3%)

Table 4.1: Comparative performance analysis of the tracker we use against

state-of-the art tracking methods (table from [42]). These sequences test

the trackers over a range of common, difficult situations: full and partial

occlusion, out of plane rotations, long sequences and aspect ratio changes.

Performance is measured by tracking success rate and the best results on

each sequence are highlighted in bold.

Due to the difficult nature of face tracking in real scenes, careful uncer-

tainty estimation is needed. The tracker we use as a basis for multiple face

tracking is described in detail in [42]. An adaptive particle filter–based al-

gorithm tracks position and velocity of each target using a normalized color

histogram to describe target appearance. Measurements are provided to

each particle filter from detections resulting from the robust, multi-pose face
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(a) Tracker from [105] on a sequence from Dataset #1.

(b) Our face tracker on a sequence from Dataset #1.

(c) Our face tracker on David Indoor sequence from [105].

Figure 4.2: A comparison of our face tracker with the one described in [105].

We superimpose on the tracked face a circle with an indicator that shows

the responses of the three learned detectors that coarsely indicate the face

pose of the subject.

detector described in the previous section. When detections are not avail-

able the normalized color histograms are used due to their scale invariance

and robustness to illumination changes. Table 4.1 reproduces some of the

results of the comparative evaluation performed in [42]. Though the CAM-

shift tracker [5] sometimes outperforms the adaptive particle filter on short

sequences, the noise-adaptive capability of our tracker yields consistently

better tracking results on longer sequences. Robust tracking over long se-

quences is essential for face logging in order to extract the best quality face

imagery possible, to associate it with the correct log and to avoid creating

new logs from broken tracks.

To determine its suitability for tracking multiple faces, we conducted a

number of experiments with another state-of-the-art tracking-by-detection

tracker [105] (shown in figure 4.2). In this figure we illustrate how each

tracker performs in critical situations occurring frequently in face logging
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scenarios. For the comparison we use one of our videos with a single intrusion

from the first dataset and the David Indoor sequence from [105], in which

a person moves from a dark to a bright area, undergoing large illumination

and pose changes. We can see in figure 4.2(a) that the tracker of [105] on our

sequences drifts after a few frames and remains fixated on the door in the

background. Our tracker performs very well both on our sequence, as shown

in figure 4.2(b), and on the David Indoor sequence from [105], as shown in

figure 4.2(c).

4.2.3 Data association

The data association module is a critical component of the face logging

application, as it associates trackers and their target’s measurements in video

frames. Firstly, it makes it possible to assign a detected face to an already

running tracker. Secondly, it allows the face logger to deal with the target

birth process. At every frame, the position of each target is predicted one

time step ahead, and the result is compared with the set of all detections

obtained on that frame. A matrix of the score of each tracker against each

candidate face is then computed using the VOCscore criterion:

VOCscore(Ti, Fj) =
|Ti ∩ Fj |
|Ti ∪ Fj |

, (4.4)

where Ti and Fj respectively represent a bounding box of a tracked target

and a detected face and |·| is the area of the resulting rectangle. Once this

matrix is available, data association proceeds iteratively by selecting the

maximum non-zero value and removing the corresponding tracker–face pair

from the pool. This process continues until all trackers have been assigned

a face or all faces have been assigned to a tracker, whichever comes first. If

a face was not assigned to any tracker, a new tracker is initialized with that

face as a target.

The data association module also handles target death by implementing

a number of criteria to decide whether or not a tracker should be stopped.

The first is based on a measure of tracking quality estimated from histogram

similarity as described in [42]. A tracker that is not capable of accurately

locating its target any more is stopped. If the lost target is detected again,

it will be assigned a new identity and a new tracker will be started (and

consequently a new log created). The second criterion concerns the number

of iterations elapsed since the last time the tracker received a measurement
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from the our multi-pose face detector. By counting the tracker iterations

since the last received face observation, the system can decide to stop a

tracker which has not received information from the face detector for too

long. The final death criterion handles the situation in which two trackers

collide. In this case, the short distance between targets may lead to undesir-

able consequences such as an identity mismatch or identity switch. In order

to reduce the probability of this, when a collision occurs the system stops

the tracker that has not received measures from the face detector for the

longest time.

4.2.4 Quality filters

The concept of image quality is strongly dependent on the purpose an image

is intended for. In [57] and [96], face quality estimation is performed using

measures such as sharpness, illumination, image resolution and pose. Sharp-

ness and illumination can be subjective indicators of facial image quality

and additionally require careful tuning to accommodate varying illumina-

tion and background clutter conditions. In our experience, the AdaBoost

face detector, and subsequently our multi-pose face detector based on it, de-

liver reasonably sharp imagery across a range of illumination conditions when

supplied with high-quality face images when training the cascades. Thus we

propose propose here two quality measures based on image symmetry and

face pose to aid in the filtering of face images.

For each detection associated with a tracked target that passes the stage

described in section 4.2.1, three quality scores are computed: one for resolu-

tion, one for symmetry and one for face pose. Symmetry and face pose are

redundant measures of face image quality in that they are highly correlated

and using both has little sense. Symmetry has the advantage of being effi-

cient to compute, while our face pose measure results practically as a side

effect of our multi-pose face detector described in section 4.2.1.

The resolution score R ∈ [0, 1] is computed as the ratio between the face

image size and the overall frame size: R = |F |
|I| , where F and I denote a face

sub-image and the whole frame, respectively.

The symmetry score Ssym is computed as the residual power of the signal

obtained by differencing the hue channel of the original image with that of

the mirrored image. The result is normalized in order to obtain a score in
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[0, 1]:

Ssym = 1−
∑w−1

x=0

∑h−1
y=0 |FH(x, y)− FH(w − x− 1, y)|

|F | , (4.5)

where FH denotes the hue channel of a candidate face sub-image. The sym-

metry score Ssym equals 1 when F is perfectly symmetric, and equals 0 when

antisymmetric. We found this quality measure to be simple and effective,

and further to be robust across a variety of illumination conditions. Only

in cases where images are highly over- or under-saturated does this measure

degrade significantly.

A “closeness to frontal” quality measure, Spose ∈ [0, 1], can be computed

from the pose φ̄i of a detection di received from our detector described in

section 4.2.1. This score can then be used to derive a weighting factor for

the candidate face:

Spose = exp
(
−|φ̄i − φf |

σpose

)
, (4.6)

where φf is the frontal angle 2π and σpose is a parameter that scales the

tolerance for determining how close a face should be to frontal (set to 1 in

all of our experiments).

In the next section we evaluate the facelogger using resolution in combina-

tion with these two facial image quality measures: resolution with symmetry

as in eq. 4.7, and resolution with face pose as in eq. 4.8:

Qsym =WR ·R+WS · Ssym, WR +WS = 1 (4.7)

Qpose =WR ·R+WS · Spose, WR +WS = 1. (4.8)

When varying WR (and consequently WS = 1 − WR) in preliminary

experiments we noticed that for values of WR in the range [0.1, 0.9] the

system consistently returned nearly the same number of false positives. Near

the extrema of the range (e.g. WR = 0 and WR = 1) there was, however,

strong variation in the number of false positives. When using only WR the

system is more likely to accept a candidate since it considers only resolution,

and indeed the number of false positive is higher; when using only WS the

system is less likely to accept a candidate since it is more sensitive to pose

and thus generates fewer false positives. Considering this we chose a value

in the middle of this range (WR = WS = 0.5) as a trade-off between false

positives and resolution. If the quality of a candidate face image exceeds the
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highest quality seen by the tracker, it is saved in the log associated with the

tracker, otherwise it is discarded.

4.3 Experiments

We tested our face logging system on three datasets (16 sequences for a total

of about 12 hours). These datasets consist of a varying number of sequences

taken at a frame rate of about 20 fps at different resolutions (see figure A.2

in the Appendix).

The sequences in Dataset #1 were recorded to cover a wide variety of

circumstances and to give a qualitative impression of performance. For ex-

ample, some of them are taken from a typical door or corridor surveillance

vantage point while others are taken in special cases such as in a wide-angle

indoor environment where faces appear at a distance and thus the resolution

is very poor.

In Dataset #2 several sequences were taken in very crowded environments

such as would occur in real life video surveillance scenarios, both indoor and

outdoor, where occlusions, cast shadows, and frequent changes of the head

pose are very common. This dataset was collected specifically to evaluate

the effectiveness of face logging systems under realistic, video surveillance

scenarios. Sequences are taken with a varying number of people (from about

ten to more than one thousand persons) and are composed of about 60

minutes of video of critical conditions in which there may be frequent identity

mismatches due to the proximity of people.

Dataset #3 is composed of two sequences, each of about five hours, taken

in an indoor environment. This dataset was collected to evaluate the long-

term robustness of face logging systems.

4.3.1 Comparison with other face logging systems

We compare our face logging system to the recent approaches in [57] and

[96]. The comparison is made using the publicly available Hermes head pose

dataset 2 used in [96]. Following the protocol described in [96], we ran our

approach on the 48 sequences, each manually annotated to indicate which

2The dataset is publicly available at http://www.cvmt.dk/projects/Hermes/

head-data.html

http://www.cvmt.dk/projects/Hermes/head-data.html
http://www.cvmt.dk/projects/Hermes/head-data.html
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face image was of highest quality. We then count how many times the best

face image log is ranked first by our algorithm.

As can be seen in table 4.2 we outperform previous with a correct match-

ing rate of 95.8%, using the quality filter Qpose of eq. 4.8. The improvement

over the use of Qpose results from the fact that the improved quality filter is

better at filtering false positives, the detectors can be run to optimize recall,

and more targets are logged (see the experimental results in 6.4-C for a more

detailed analysis of the precision/recall trade off). Our logger misses only

two intrusions over the 48 processed sequences.

X
X
X

X
X

X
X

XX
Feature

Method
Approach [57] Approach [96] Our approach

Single-Target Yes Yes Yes

Multi-Target Yes No Yes

Automatic Init Yes Yes Yes

Accuracy 87.1% 88.5% 89.6 (Qsym), 95.8% (Qpose)

Table 4.2: Comparison with other face logging system [57, 96] on the HER-

MES dataset.

4.3.2 Qualitative performance analysis

In figure 7.5 we show some qualitative results. In particular, figure 7.5(a)

contains some logs generated by our system on the Long #2 sequence (each

color describes the log identity). We can see that logs are brief and concise,

but also meaningful and accurate. Figure 7.5(b) illustrates how the face log-

ger manages multiple target in a crowded scene. The tracked target identity

is represented with a colored circle.

Finally, in figures 7.5(c) to 7.5(e) we show the summarization capability of

our face logging system. We test it on the fourth person of the HERMES and

we give a comparison by showing the logs generated with the two proposed

quality filter measures with respect to those generated with a brute force

approach that stores a face in the log for every detection associated to a

track. In this case, shown in figure 7.5(c), the set of faces is overcomplete.

Filtering logs on the basis of resolution and symmetry results in a more

compact log, as shown in figure 7.5(d), though there is still some redundancy.

Resolution and pose result, however, in the briefest logs without sacrificing

accuracy, as can be observed in figure 7.5(e).
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(a) Some of the logs resulting from the Long #2 sequence. Images are ordered left-

to-right, top-to-bottom according to image quality measured by equation (4.8), best

quality last.

(b) Results from a crowded indoor sequence from Dataset #2.

(c) Brute force approach

(159 images omitted).

(d) Resolution and symme-

try

(e) Resolution and head

pose

Figure 4.3: Examples of our face logging system. (a): Face logs produced

by our approach, each color representing a different log. (b): Face pose es-

timation and face tracking. The white superimposed indicator shows the

estimated head pose of the target. (c) Log generated using a brute force ap-

proach. (d) Log generated using resolution and symmetry. (e) Log generated

using resolution and head pose.



88 Logging of Face Imagery

(a) Seq.#3 of Dataset #1 (b) Seq.#6 of Dataset #1 (c) Seq. #9 of Dataset

#2

(d) Seq.#10 of Dataset

#2

(e) Seq.#11 of Dataset

#2

(f) Seq. #12 of Dataset

#2

Figure 4.4: Precision/recall curves, validated over 55,367 faces, comparing

the frontal detector [123] with our multi-pose detector with and without

detection merging as described in section 4.2.1.

4.3.3 Quantitative performance analysis

In figure 4.4 we show how our multi-pose face detector described in sec-

tion 4.2.1 improves the recall and the precision against the standard Ad-

aBoost technique of Viola and Jones. These results illustrate the utility

of multi-pose detection in realistic scenarios where non-frontal faces are a

common occurrence. Each face missed by a frontal detector represents a po-

tential false negative downstream in the face logger. We evaluate detection

responses over sequences #3 and #6 of the Dataset #1, and sequences #1,

#2, #3, and #4 from Dataset #2. These sequences were selected because

they are among the most informative ones from the dataset and together

contain a total of 55,367 annotated faces. Performance is expressed using

precision/recall showing the precision against recall obtained by varying the
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confidence threshold of the detector. Given a face annotated with bounding

box A and a detection response with bounding box D, we used the VOC-

score criterion defined in equation (4.4) and we consider A as a true positive

if and only if: VOCscore(A,D) > 0.5.

The red curves show the performance of the standard AdaBoost face

detector, the violet curves the performance of our multi-pose face detector,

and the blue ones the performance of our multi-pose detector with merged

detections. Note that our detector not only improves overall estimation

accuracy, but also improves over the recall of a frontal face detector by

merging the responses from frontal and lateral cascades.

Figure 4.5(a) summarizes the face logging experiments on each of our

datasets using the Qpose quality measure of eq. 4.8. We ran our system

optimizing recall (subscript r, minimizing the number of missed faces) and

precision (subscript p, minimizing the number of false positives returned),

reporting for each setting the following values: the number of logs produced

by the face logging system (#Logs); the percentage of logs in which at

least one identity switch occurs (ID sw) between two or more targets; the

percentage of logs in which there is at least a false positive (FP) face pic-

ture; the recall of the logging system defined as the percentage of persons

actually logged with respect to those in the scene (Recall); and a measure

of log brevity with respect to the original video size (η) expressed as the

compression factor in video summarization η = sizevideo/sizelogs. Due to the

use of a particularly restrictive policy for tracker birth and death, the face

logger produces a large number of tracks for the longest and most crowded

sequences (Dataset #2). Although this reduces the probability of identity

mismatch, it can produce multiple logs for a single actual target. However,

the very low value of the identity mismatch ratio reported for each dataset

– which is very low even for the most crowded scenes – is encouraging. Our

system gives a low false positive rate for all sequences when configured to

optimize either precision or recall. Only for the Room sequences when op-

timizing recall do we have a persistent false positive that initializes eleven

tracks resulting in a high percentage of false positives.

From figure 4.5(a) we see that our face logging system yields high recall

on all sequences – in particular on the crowded indoor sequences despite the

difficulties in the initialization of each target due to occlusion and proxim-

ity between them. The low recall on the Room sequences (when optimizing

precision) is due to a combination of difficult detection conditions and the
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Value ↓ Dataset 1 Dataset 2 Dataset 3

Sequences → Door/Corridor Room Crowd In. Crowd Out. Long #1 Long #2

Video Size 232MB 202MB 713MB 1.42GB 834MB 885MB

#Logsp 113 14 359 1799 153 258

#Logsr 205 35 1313 4663 268 304

FPp (%) 0 0 0.56 0.44 2.61 0.78

FPr (%) 3.4 31.42 20.48 7.78 18.28 7.24

ID swp (%) 0 0 0.56 6.22 0 0

ID swr (%) 0 0 2.14 7.10 0 0

Recallp (%) 90 44.44 82.93 – 94.12 88.89

Recallr (%) 93.75 83.25 97.8 – 94.12 88.89

ηp 92X 250X 87X 29X 99X 59X

ηr 52X 263X 44X 2X 20X 54X

(a) Quantitative results using resolution and pose. We tested two configurations of our

system: a subscript r means results are produced with the detector set to optimize recall,

while subscript p means that the detector instead optimizes precision.

(b) Dataset #1 (c) Dataset #2 (Indoor) (d) Dataset #3

(f) Timing varying image resolution

(scale).

(g) Timing varying the number of tar-

gets.

Figure 4.5: (a) Quantitative performance analysis of our face logging system

on datasets #1, #2 and #3 using the quality filter based on pose. (b-

d) Number of false positives, ID switches and faces per log with detector

optimized for recall. (f) Timing for our face logger in milliseconds over a

range of detector scales; dotted lines show time per stage, while the red line

shows the time for the entire process. (g) Timing over a varying number of

targets and the detector scale is set to 0.85.
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relatively low number of individuals in the sequences. Unfortunately, calcu-

lation of recall for the crowded outdoor sequences (see figure A.2) is infeasible

since it contains more than one thousand people, each appearing at several

different times.

In figures 4.5(b-d) we report logging performance for the quality functions

described in section 4.2.4. Histograms show the average number of false

positive and ID switches over all the saved faces and the number of faces per

log. To test the quality measures we ran our face logger system using the

multi-pose detection set to optimize recall so that almost all persons present

in the scene are logged; doing this effectively stresses the quality measure

and evaluates which is the best filter of false positives and ID switches. The

brute force approach provides a baseline in which a face log is created for

all detections associated with a track (red bar). From this figure we see

that resolution and face pose do not improve the number of faces per log

over resolution and symmetry. They do, however, suppress the number of

errors (false positives and ID switches) of the logging system on the indoor

crowd sequences (the outdoor crowd sequences cannot be evaluated as no

annotations are available). On the first and third datasets it perform similar

to resolution and symmetry.

As shown in figure 4.5(f) and 4.5(g) we have also conducted an analysis

of time used by our system to log faces. The evaluation was performed on an

Intel Xeon Quad-core processor at 2.97 GHz, with a C++ implementation

that exploits all available cores. From figure 4.5(f) we can observe that in

most cases our approach runs at frame-rate of about 10 fps and that the

detector timing does not significantly affect the timing of the overall system.

Moreover, as shown in figure 4.5(g) there is a linear relationship between the

number of targets in the scene and the computational burden.

4.4 Conclusions

In this chapter we have proposed a method for posterity logging of face

imagery: a way to save a compact, semantically relevant snapshot of a scene

that might be relevant for future investigations. These logs generated are

brief and high-quality due to the measures of resolution, symmetry and

pose used to filter face imagery. Experiments show that our multi-pose face

detector is robust and, in addition to insuring high recall while maintaining

respectable precision, also provides an estimate of head pose that can be
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used as a facial image quality measure. Symmetry was also showed to be

an effective quality measure, one that is inexpensive to compute and that

can be applied in situations where head pose is not immediately available.

Saving only the best face images seen of each target ensures that downstream

forensic analysis will not be overwhelmed with many redundant images of the

same target. The logs generated are accurate due to the conservative data

association policy we use to associate face detections with running trackers.

The bulk of the experimental results presented in this work are on indoor

sequences, in situations where face size is bounded, illumination conditions

are consistent with the training images used to train AdaBoost detectors in

our multi-pose face detector, and in general when face detection can be ex-

pected to be reliable. This is a common and realistic scenario, though apply-

ing our approach to scenes with greater face scale and illumination variation

can be expected to increase false positive detections. Note, however, that

the experimental results on outdoor sequences presented in Figure 4.5(a) are

encouraging.



Chapter 5

2D/3D Florence Faces Dataset

This chapter describes a new dataset under construction at the

Media Integration and Communication Center and the University

of Florence. The dataset consists of high-resolution 3D scans of

human faces from each subject, along with several video sequences

of varying resolution and zoom level. Each subject is recorded in

a controlled setting in HD video, then in a less-constrained (but

still indoor) setting using a standard, PTZ surveillance camera,

and finally in an unconstrained, outdoor environment with chal-

lenging conditions. In each sequence the subject is recorded at

three levels of zoom. This dataset is being constructed specifi-

cally to support research on techniques that bridge the gap be-

tween 2D, appearance-based recognition techniques, and fully 3D

approaches. It is designed to simulate, in a controlled fashion,

realistic surveillance conditions and to probe the efficacy of ex-

ploiting 3D models in real scenarios.1

5.1 Introduction

Human faces are one of the most important biometrics for recognition. Face

imagery is easily and non-intrusively collectible, whereas other biometrics

1This chapter has been published in Joint ACM Workshop on Human Gesture and

Behavior Understanding (J-HGBU’11) ACM Multimedia Workshop 2011, Arizona,USA,

2011 and in IEEE 5th International Symposium on Communications, Control, and Signal

Processing 2012, Roma, Italy, 2012.

93
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Figure 5.1: An example of the high resolution 3D models captured in the

Florence Face Dataset. On average, all models have around 40,000 vertices,

80,000 facets and are accurate to 0.2mm.

such as fingerprints or iris scans are impractical to implement in many sce-

narios (e.g. a surveillance setting). Because of the universality of faces as

a biometric, there has been a proliferation of face recognition approaches

proposed in the research literature [138]. Along with the proliferation of

algorithms for face recognition there has also been an explosion of datasets

designed to support research in face recognition.

Face detection and recognition remains a difficult problem. Much of this

difficulty is due to challenging imaging conditions and variations caused by

expressions, gender and pose. More recently, 3D scanning technology has

matured and the price of entry is much less. This has led to renewed interest

in face recognition using 3D models of human faces. One unexplored avenue

of research on facial analysis is the potential of using 3D models to augment

the performance of traditional 2D, appearance-based techniques. One of are

prime motivations for developing the Florence 2D/3D Face Dataset was the

recent advances in tracking with PTZ cameras [44].

In this chapter we describe the Florence 2D/3D face dataset that is cur-

rently under preparation 2. The dataset has been specifically designed to

support research across a range of face analysis and recognition tasks. In

the next section we survey existing face datasets and in section 5.3 we de-

scribe the structure and organization of the Florence 2D/3D Face Dataset.

2Visit http://www.micc.unifi.it/datasets/3D-faces for an interactive preview of

the dataset.

http://www.micc.unifi.it/datasets/3D-faces
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Finally we conclude in section 6.5 with a discussion of the direction our work

will take on this new 2D/3D face dataset.

5.2 Existing Face Datasets

In this section we briefly review some currently available face datasets. We

begin first with 2D face datasets designed to support research on appearance-

based facial analysis techniques.

5.2.1 2D Face Datasets

The analysis of human faces for biometric purposes is one of the oldest

applications of computer vision. Given the consistently high level of interest

in the topic, there is an abundance of resources for conducting research in

the area. The majority of these resources are datasets consisting only of 2D

images and/or video.

The CaltechFaces [126] dataset consists of 450 face images in JPEG for-

mat at a resolution of 896×592 pixels. Around 27 people are captured under

different lighting conditions, with different expressions, and against different

backgrounds. The Caltech face dataset is a classic example of what we refer

to as a 2D face dataset. That is, it is purely designed for conducting research

on appearance-based techniques for facial analysis and recognition.

Facial analysis algorithms are difficult, in part, due to the huge varia-

tion in pose, background and illumination conditions under which faces may

be captured. The Multi-PIE [63] dataset is an example of a dataset that

advanced the state-of-the-art in facial recognition by make available facial

images with varying factors affecting the appearance of faces in them. The

original PIE database, collected at Carnegie Mellon University in 2000, was

already been very influential in advancing research in face recognition across

pose and illumination. Despite its success the PIE database has several short-

comings: a limited number of subjects, a single recording session and only

few expressions captured. The Multi-PIE dataset, also collected at Carnegie

Mellon University, contains 337 subjects, captured under 15 viewpoints and

19 illumination conditions in four recording sessions for a total of more than

750,000 images.

The FRAV2D dataset [64] contains around 100 subjects, with 32 color

images at a resolution of 320× 240 pixels. For each person, all photographs
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are taken on the same day, although the subject is made to stand up and sit

down again in order to change pose and gesture. In all cases, the background

is plain and dark blue. Each image is classified into one of six groups ac-

cording to the pose and lighting conditions: 12 frontal images, 4 15◦-turned

images, 4 30◦-turned images, 4 images with gestures, 4 images with occluded

face features and 4 frontal images with a change of illumination.

CASIA-FaceV5 [35] contains 2,500 color facial images of 500 subjects

captured using a standard, USB webcam in one session. All face images are

16-bit color BMP images at a resolution of 640× 480 pixels. This dataset is

notable in that its images are acquired using a commodity webcam and as

such represents a more realistic application setting than other 2D datasets

in the literature.

5.2.2 3D Face Datasets

From a relatively early point in the development of facial recognition algo-

rithms it was realized that one way to marginalize the affects of illumination,

pose and imaging conditions is to record 3D models of faces instead of 2D

images or video. 3D models are robust to these factors as the geometry of

objects is invariant to imaging conditions. In this section we describe some

existing datasets containing 3D models of faces.

The Texas 3D Face Recognition Database [66] contains 1,149 pairs of

color and range images of 105 faces. The images were collected by Advanced

Digital Imaging Research (ADIR), with assistance from research students

and faculty at The University of Texas at Austin. The images were acquired

using a stereo imaging system at a high spatial resolution of 0.32mm. The

images in the dataset are of adult humans from all the major ethnic groups

and genders, and each face also comes with metadata about subject gen-

der, ethnicity, facial expression, and the locations of 25 manually located,

anthropometric fiducial points.

An interesting approach to constructing a dataset of 3D face images is

the Basel Face Model (BFM) [98]. The BFM is a 3D morphable face model

constructed from 100 male and 100 female example faces. It consists of a

generative 3D shape model covering the face surface from ear to ear and a

high quality texture model. This model was designed to be used directly for

2D and 3D face recognition or to generate training and test images simulating

any imaging condition. The dataset contains all training data used to learn

the 3D morphable face model (the BFM) and the model fitting results for
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several standard image data sets (CMU-PIE, FERET).

The Bosphorus Database [108] is a 3D face dataset that includes a rich

set of expressions, variation of poses and different types of occlusions. This

database is unique for a number of reasons. First, the facial expressions

are composed of a subset of action units as well as the six basic emotions,

and many actors are used to obtain more realistic expression data. Second,

a rich set of head pose variations are represented in the dataset. Finally,

different types of face occlusions are also represented. This dataset is a

valuable resource for development and evaluation of algorithms under adverse

conditions.

The FRAV3D [65] database contains 106 subjects acquired with a Mi-

nolta VIVID 700 scanner, which provides texture information (2D image)

and a VRML file (3D image). It is a multimodal database containing 2D,

2.5D and 3D captures of each subject. A total of 16 captures per person

were taken in every session, with different poses and lighting conditions One

of the main advantages of this database, compared to others, is the extent

to which different poses are captured in the 16 scans taken of each subject.

GavabDB [95] is a 3D face database containing 549 three-dimensional

images of faces. The dataset contains images of 61 different individuals (45

male and 16 female), with 9 images per subject. Each 3D model is mesh

of connected 3D points of the facial surface without texture. The database

provides systematic variations with respect to the pose and the facial ex-

pression. In particular, the 9 images corresponding to each individual are

the following: 2 frontal views with neutral expression, 2 x-rotated views

(30◦, looking up and looking down respectively) with neutral expression, 2

y-rotated views (90◦, left and right profiles respectively) with neutral expres-

sion and 3 frontal gesture images (laugh, smile and a random gesture chosen

by the user, respectively).

The Casia3D [35] dataset consists of 4624 scans of 123 persons using the

Minolta Vivid 910 scanner: the dataset contains multiple pose variations,

expressions and illuminations, as well combinations of expressions under il-

lumination and poses under expressions. From each scan, one 2D color image

and one 3D facial triangulated surface are generated.

5.2.3 Hybrid 2D/3D Datasets

Finally, in the recent literature on facial analysis datasets there have begun

to appear a number of “hybrid” datasets that, to one degree or another, mix
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both 2D and 3D information about each subject. An example is the Face

Recognition Grand Challenge (FRGC) 2005 [99] dataset, which is to our best

knowledge the most complete hybrid face dataset. In the FRGC dataset a

subject session consists of four controlled still images, two uncontrolled still

images and one three-dimensional model.

Hybrid datasets are used to determine whether 3D imagery is more effec-

tive then 2D imagery for facial analysis, and more generally if 3D information

can be used as information complementary to 2D images in order to boost

performance. The Florence Face Dataset is also a hybrid 2D/3D dataset,

and in the next section we describe how we have designed it specifically to

explore these questions in realistic scenarios.

5.3 Design of the Dataset

When we use the term “2D” we refer to video or image sequences of database

subjects. Our dataset is designed with two main goals in mind. First, we

would like to make available accurate and complete 3D models of faces to

researchers who are primarily interested in the analysis of 3D meshes and

textures of human faces. That is, our dataset is designed to be useful for

research on pure 3D analysis techniques.

Second, however, we have designed our dataset as something that goes

beyond the scope of 3D analysis techniques, allowing researchers to investi-

gate the possibility of reducing the gap between 2D computer vision algo-

rithms and those methods that work on precise 3D models. In particular, our

dataset is thought of in the context of evaluating the use of 3D information

in computer vision problem like 3D face pose estimation [30,51] and 3D face

recognition [23], but directly from video data or still images.

To this end, the pipeline of data acquisition is designed to provide both

3D data and 2D videos consistent with each others: as shown in figure 5.2.

First a 3D model is captured of the subject using a 3D scanner. Second, we

record HD video of the subject as he simulates specific head rotations (this

corresponds to a cooperative environment). Four levels of zoom are used in

order to capture the subject face at multiple image resolutions. After this,

the subject is then recorded from two PTZ Cameras, one indoor and the other

outdoor. These two scenarios represent a more non-cooperative subject and

he is asked to be spontaneous. Three levels of zoom are captured in each

video in order to cover a broad range of face resolutions.
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Figure 5.2: The acquisition process.

The Florence 2D/3D Face Dataset is currently a continuous work in

progress and consists of 53 adult subjects as of January, 2012. The aim

is to complete the dataset with a total of 100+ subjects. The current sub-

jects are Caucasian individuals with ages ranging from 22 to 60 years. We

are attempting to make the dataset balanced in gender, though currently

we have 75% male and 25% female subjects. The data collected from each

subject is a number of 3D face models and 2D face imagery, each of which

is described in the following sections.

5.3.1 3D Face Models

In terms of 3D data, our dataset contains the following high-resolution 3D

models (both meshes and textures). Some example models are shown in

figure 5.3. The models are summarized below:

• Two frontal models with the head in approximately the same pose. This
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(a) Frontal

1

(b) Frontal

2

(c) Left

Side

(d) Right

Side

(e) Glasses

Figure 5.3: Examples of each type of 3D model for four random subjects.

is designed so that one may be used for training and the other for testing.

In figure 5.3(a) and figure 5.3(b) the frontal models are displayed for a

variety of subjects.

• One left side model, which covers approximately the whole side of the

faces: from mid-nose to the back of the head. See figure 5.3(c) for

examples.

• One right side model, with the same properties as above. See fig-

ure 5.3(d) for examples.

• If the subject wears glasses, we also capture a 3D model with glasses (see

figure 5.3(e)).

All 3D models are provided in three different formats: OBJ, PLY and VRML.

They contain the mesh and the high resolution texture.

To capture each 3D model we used a state-of-the-art 3dMD Scanner [2]. It

is not a laser rangefinder-based scanner, but instead works with the principle

of structured light in a way similar to Kinect. It superimposes a predefined

pattern using a projector in the visible spectrum and then uses two pairs of

stereo cameras to perform the 3D reconstruction of the facial surface. The

texture is acquired with a stereo RGB camera. The device can cover 180-

degrees of a frontal face, capturing from ear-to-ear at a speed of about 1.5

milliseconds at the highest resolution of 4Mpixel.

The geometry of the mesh is extremely accurate: on average about 0.2mm

of RMS error in the reconstruction or better, depending on the exact pre-

calibration and configuration. Considering this, our 3D models are very

accurate and precise in the number, yielding on average a mesh of about

40,000 vertices about 80,000 facets. The texture acquired is a stereo image

with a resolution of 3341× 2027 pixels.
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Dataset Availability # Subjects Image/Video 3D Model HD Image or Video Annotations

Florence 2D/3D On Written Request 53 No/Yes Mesh+Texture Yes None

Texas 3DFRD [66] On Written Request 118 No/No Range+Texture No Fiducial Points

FRAV3D [65] Not Publicly Available 106 No/No Range+Mesh+Tex. No None

FRGC 2005 [99] On Request 466 Yes/No Range+Texture Yes None

GavabDB [95] Public 61 No/No Mesh Only No None

Casia3D [35] On Registration 123 No/No Mesh+Texture No None

Bosphorus [108] Public 105 No/No 3D Map+Texture No Various

BFM [98] On Written Request 200 No/No Mesh+Rendering No Various

Table 5.1: A comparative examination of available datasets supporting

research on human faces, especially considering those who provide 2D ap-

pearance information like video or images along with 3D data.

5.3.2 2D Face Imagery

Once that the 3D models are acquired, the face of the subject is recorded

in several 2D videos in order to obtain the same face as seen from a cam-

era. In particular, we record three different videos in order to capture three

different imaging scenarios. The video sequences are designed to provide

video across a range of standard camera qualities and resolutions. They are

also recorded at multiple levels of zoom in order to investigate the 2D face

resolution necessary to support accurate facial analysis. Finally, the imag-

ing scenarios used are designed to simulate and indoor environment with a

cooperative subject, and indoor environment with an uncooperative subject,

and an outdoor environment with an uncooperative subject.

The three type of videos recorded for each subject are defined as follows:

• One indoor HD video (1280×720 pixel resolution) of cooperative subject

recorded at 4 levels of zoom. To generate a uniform source of light

without highlights, the subject is irradiated with two lamps in front of

her. The subject is asked to generate some out-of-plane head rotations,

viewing six points: top-right, top-left, middle-right, middle-left, bottom-

right, bottom-left. The frame rate for this video is about 20 fps and is

acquired with a AXIS Q1755 HD camera. Example frames from some of

these sequences are shown in figure 5.4.

• One indoor video (704×576 - 4CIF resolution) of a uncooperative subject

from a PTZ camera using 3 levels of zoom. Here the subject is asked

to be spontaneous. The frame rate for this video is about 20 fps and is

acquired with a AXIS PTZ Q6032-E (see figure 5.5 for examples).

• One Outdoor Video (736×544 pixel resolution) of uncooperative subject

from a PTZ camera using 3 levels of zoom. Here the subject is again

asked to be spontaneous, but this time the recorded video is very chal-
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lenging because of the uncontrolled lighting conditions and the presence

of shadows and highlights. The frame rate for this video is about 5-7 fps

and it is acquired with a SONY RZ30-P camera. Examples are given in

figure 5.5.

All videos are encoded in the MJPEG format in order to maintain the orig-

inal definition of the source, paying some complexity in the storage. The

uncooperative videos indoor and outdoor are recorded with PTZ camera

mainly because of the proliferation of this type of device and because of its

capability to redirect the field of view, zooming-in on the face and achieving

high resolution images at a distance.

5.3.3 Comparison with Other Datasets

Building an unbiased dataset is not a simple task even though the work on

faces is one of the earliest problem addressed in computer vision. Considering

this, we would like to remark that almost all datasets are built considering

a particular goal to achieve.

In this section we point out the basic differences of our dataset compared

to the the others presented in section 7.2 Our dataset is intended for re-

search on 3D and 2D human face processing tasks including face recognition

under adverse and good conditions, 3D face reconstruction from videos/im-

ages, and face pose estimation. The Florence 2D/3D Hybrid Face Dataset is

unique in several aspects. First, we provide multiple, high-quality 3D mod-

els, both meshes and textures, plus multiple high-resolution videos of each

subject. Also, the image sequences are designed to mimic a range of difficult,

real-world application scenarios involving facial analysis. Other substantive

differences are summarized in Table 5.1.

5.4 Discussion

In this chapter we discuss and review 2D and 3D face datasets available

in literature. By far the most common type of dataset available to support

research on facial analysis algorithms are standard, 2D datasets consisting of

multiple, static images of each subject. Pure 3D datasets for facial analysis

are starting to appear, though an unexplored area of research remains the

potential intersection of 2D and 3D facial analysis algorithms. This is the

niche in which we have positioned the Florence 2D/3D Face Dataset. The
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(a) Zoom level 1 (b) Zoom level 2 (c) Zoom level 3 (d) Zoom level 4

Figure 5.4: Samples of the high definition video taken of subjects in a coop-

erative setting.

(a) Zoom level 1 (b) Zoom level 2 (c) Zoom level 3

(d) Zoom level 1 (e) Zoom level 2 (f) Zoom level 3

Figure 5.5: Examples of video sequence of a subject taken from a PTZ

camera in an indoor environment (First row) and outdoor (Second row).

Three different levels of zoom are used to generate views of the subject face

at different resolutions. Subject behavior is natural and unscripted.

Florence dataset is, at the time of writing, still a work in progress, but is

scheduled to be a complete resource of 100+ subjects. Our hypothesis is

that 3D information in the form of high-resolution models of subjects can

be useful for a range of facial analysis techniques that are classically very

challenging using only traditional 2D imagery.
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Chapter 6

Matching Face Imagery with 3D

Textured Models

In this chapter we consider the problem of face recognition in im-

agery captured in uncooperative environments using PTZ cam-

eras. For each subject enrolled in the gallery, we acquire a high-

resolution 3D model from which we generate a series of rendered

face images of varying viewpoint. The result of regularly sam-

pling face pose for all subjects is a redundant basis that over

represents each target. To recognize an unknown probe image,

we perform a sparse reconstruction of SIFT features extracted

from the probe using a basis of SIFT features from the gallery.

While directly collecting images over varying pose for all enrolled

subjects is prohibitive at enrollment, the use of high speed, 3D

acquisition systems allows our face recognition system to quickly

acquire a single model, and generate synthetic views offline. Fi-

nally we show, using two publicly available datasets, how our ap-

proach performs when using rendered gallery images to recognize

2D rendered probe images and 2D probe images acquired using

PTZ cameras. 1

1This chapter has been published as “Using 3D Models to Recognize 2D Faces in

the Wild” in Proc. of CVPR Int’l Workshop on Socially Intelligent Surveillance and

Monitoring, Portland, USA, 2013.
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Figure 6.1: Synthetic data generation process: given a 3D model, we sample

the yaw angle by rendering 25 poses. The highlighted camera gives the facial

image shown in top right corner.

6.1 Introduction

Automatic face recognition is one of the classic, fundamental problems in the

computer vision community. In recent years even more effort has gone into

studying techniques and systems for accurately modeling facial appearance

and for recognizing faces in diverse environments [100]. A general statement

of the automatic face recognition problem, from a computer vision stand-

point, can be formulated as follows: given a probe image or video of a scene,

verify the identity of one or more of the persons in it using stored gallery of

known individuals. Despite its long history as a central problem in computer

vision, face recognition remains a subject of great practical and theoretical

interest [100].

The basic process of face recognition consists of:

• Enrollment of individuals in the gallery of known people. Enrollment

usually takes the form of the capture of a sequence of high resolution

images of each person, or a 3D model of each face if the system is designed

for recognition of 3D probe images. A critical point for applicability of

face recognition systems in practice is that enrollment be as efficient as

possible.
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• Learning of discriminative or generative models of gallery subjects to be

used for later recognition of faces in probe images. A variety of methods

can be used for this stage, and in case of 3D face recognition the learning

process often involves the estimation of an average 3D face that will be

used to register probe image faces at recognition time.

• Recognition of unknown individuals in probe images. In this phase un-

known faces in probe images are classified using models learned on the

gallery image set. There are also myriad recognition scenarios, though

they can be coarsely categorized into cooperative and uncooperative sce-

narios. In cooperative scenarios the unknown person is assumed to ac-

tively submit to facial image capture at recognition time and the re-

sulting probe images are usually frontal and of very high quality. In

uncooperative scenarios, recognition is passive and probe images must

be captured using passive sensors in the environment. As with enroll-

ment, it is important that recognition be as efficient and non-intrusive

as possible.

In this chapter we take a hybrid approach that exploits 3D face models

to recognize faces in PTZ camera imagery. From a high resolution 3D model

of faces, we artificially generate multiple views of each subject by rendering

the enrolled 3D models from varying viewpoints. The acquisition process for

rendered 2D model views is illustrated in Fig. 6.1. From these rendered face

images we extract SIFT descriptors at salient image positions, and, rather

than quantizing these descriptors against a visual vocabulary, we then rep-

resent each individual as an unordered bag of SIFT features. By varying

the viewpoint of subjects in the gallery, we reduce the need for frontal face

imagery for use as probes. Probe images are also represented as unordered

bags of SIFT features, and recognition is performed through sparse recon-

struction of probe image features from gallery image features. The use of

sparse reconstruction allows our approach to leverage the multiple views of

each subject in the reconstruction of unknown probe images.

In the next Section we discuss work related to face recognition and sparse

discriminative classifiers. In Section 6.3 we describe how we acquire high-

resolution 3D models of gallery subjects, generate rendered images from

multiple viewpoints of each, and finally classify unknown probe images using

these rendered views. We describe a series of experiments performed on two

face datasets in Section 6.4, and finally conclude with a discussion of ongoing

work in Section 6.5.
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6.2 Related Work

In this section we briefly review the literature on hybrid recognition ap-

proaches, by which we mean automatic recognition systems using both 3D

and 2D face data. For a more thorough survey of face recognition in general,

the interested reader should consult the excellent reviews in [3, 137].

The method in [28] estimates 3D shape and texture of faces from single

images. Rather than directly acquiring a 3D model from faces at enrollment,

an estimate of a 3D face model is computed by fitting a morphable 3D model,

learned from a set of textured 3D scans of faces, to images. Recognition is

performed by matching the shape and texture information after fitting the

2D probe images to the 3D model.

In [74] the authors propose a method for view and pose invariant face

recognition that combines component-based recognition and 3D morphable

models. The approach first uses a 3D morphable model to generate 3D face

models from only two input images of each person enrolled in the gallery

database. By rendering the 3D models under varying pose and illumination

conditions they create a large number of synthetic face images which are

used to train a component-based face recognition system. Differently from

our approach they generate a coarse 3D model from two 2D views of face

and perform a two stage classification in which they first individuate the

face component in the test image using an SVM classifier then detect the

configuration of components to feed a geometric classifier.

The authors of [33] propose a face recognition solution combining both

2D and 3D face data. They develop a PCA-based approach tuned separately

for 2D and for 3D. A multi-modal decision is obtained by first matching a

2D probe against the 2D gallery, and then the 3D probe against the 3D

gallery. A confidence is computed for the 2D and 3D recognition scores and

these confidences are used as weights in the sum of distances to obtain final

classification score. Unlike our approach they use both 3D and 2D images

in both the probe and gallery sets and only use the texture information of

the 3D model as 2D views.

In [93] the authors propose a method to learn a person detector from syn-

thetic data generated from virtual scenarios. More specifically, they record

training sequences in virtual scenarios to learn an appearance-based pedes-

trian classifiers based on HOG and linear SVM. By testing the learned model

on images containing real pedestrians they demonstrate that is possible to

learn a model for detection also from synthetic data. One of the objectives
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of our work is to extend this approach from detection to recognition tasks

by generating synthetic views from high resolution 3D models of faces.

The ℓ1-regularized sparse basis expansion has been used in literature to

perform person recognition on well-cropped 2D face images coming from the

same source. In particular, Wright et al. [128] show how sparse representa-

tion can be used as a powerful classification tool for face recognition. This

approach has been extended several times, integrating correntropy [69] and

kernel-based sparse reconstruction [78]. Elhamifar and Vidal [50] extend the

Sparse Discriminative Classifier of [128] by constraining the method to find a

representation of a test example using the minimum number of blocks from

the dictionary (each block corresponds to multiple instances of the same

subject).

6.3 2D Face Recognition from 3D Models

In this Section we describe our approach to hybrid 2D/3D face recognition.

The first step in our approach is the acquisition of high resolution 3D models

of each individual enrolled in the gallery, and then the synthetic generation

of multiple 2D views of each individual. The final step is face recognition

using the synthetic redundant basis to identify the probe.

6.3.1 2D Face Synthesis and Feature Extraction

A high resolution 3D model for each individual is quickly acquired at en-

rollment using a 3D scanner. From each model we artificially generate n

synthetic images across varying viewpoints. These images of the i-th person

in the gallery are:

Ii =
{
u1i , u

2
i , . . . , u

n
i

}
, for i ∈ [1, . . . , P ] . (6.1)

In principle, the rendered images of each subject can be generated by varying

both the yaw and pitch of each 3D model, and also by varying the illumi-

nation direction and illuminant. In this work, however, we consider only

varying yaw angle for generating synthetic 2D images of each subject. We

generate views by uniformly sampling 25 yaw angles in the range [−90+ 90.

This process is illustrated in Fig. 6.1.

The final representation of individuals is an unordered bag of SIFT de-

scriptors calculated at salient image points identified using a Harris-Laplace
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Figure 6.2: 2D face views synthesized from the 3D model. Images are gen-

erated by varying the yaw angle of the 3D model rendering a 2D image.

corner detector. The Bag of Features corresponding to the i-th person in the

gallery:

Xi =
{
x1
i ,x

2
i , . . . ,x

ni

i

}
, for i ∈ [1, . . . , P ] ,

where each xj
i is the j-th SIFT descriptor extracted from the images of the

i-th gallery individual. To simplify notation we do not use an index on SIFT

features to indicate from which image X comes.

In Fig. 6.2 we illustrate some of the rendered images derived from a model

in the Florence 2D/3D face dataset. Note the high quality of the resulting

images, which is due to the very high resolution of the models in the dataset

(each model has around 70,000 facets, and a 4MPixel texture, on average).

Figure 6.3: Some of the 2D face views obtained from a PTZ camera at

different level of zoom.

Feature extraction from probe images is performed in a similar fashion,

though of course without the synthesis process from 3D models. Assume

we have a probe image that contains a face region corresponding to a single

individual. We use the Viola-Jones face detector [124] to identify frontal and

profile faces [10]; then we extract SIFT descriptors at salient points identified

with the Harris-Laplace corner detector in the detected face region. The

probe image is represented as a bag of SIFT features:

Z = {z1, z2, . . . , zm} , (6.2)

where zj is the j-th SIFT descriptor extracted from the probe image.
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6.3.2 Face Recognition by Sparse Reconstruction

Given the gallery representation as bags of unordered SIFT features Xi and

a probe image Z, also represented as a bag of SIFT features, we perform face

recognition using a sparse discriminative classifier, similar to that of [128].

We start by computing a ℓ1-regularized sparse basis expansion of each probe

SIFT zi as a sparse linear combination of SIFT descriptors in X :

Â = argmin
A

||Z−XA||2 + λ||A||1, (6.3)

where X is a column-wise concatenation of all gallery SIFT features from all

Xi, and thus is a matrix of size 128×∑P

i=1 ni, and Z is similarly a column-

wise concatenation of the m SIFT points from the probe image (and thus a

matrix of size 128×m). Despite the potentially large number of SIFT points

(especially in the gallery), there exist very efficient techniques for solving

these types of ℓ1-regularized reconstruction problems [92]. We discovered a

good value for λ to be 0.1 and fixed this value for all the experiments.

To perform classification, we examine the reconstruction error obtained

by limiting the basis expansion to SIFT points extracted from gallery images

corresponding to a single individual:

εi = ||Z−XIiÂ||2, for i ∈ {1, . . . , P} , (6.4)

where Ii is a diagonal matrix with ones on the diagonal corresponding to

SIFT descriptors in X extracted from images of subject i, and zeros ev-

erywhere else. This matrix effectively selects only those coefficients in the

solution matrix Â that correspond to the i-th person in the gallery. The

identity of the probe image is classified as the one yielding the lowest overall

error εi.

If we have multiple probe images of each subject, we apply the method

described above for each image and accumulate the reconstruction errors

across all probe images. Then we assign the identity to the person by taking

the minimum of the ratio between the probe image yielding minimum recon-

struction error and the probe image yielding the second best reconstruction

error.

6.4 Experimental Results

In this section we report on a variety of experiments we performed on two

face datasets. For each experiment we define the number of tested images
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per subject as N , while the number of images per subject in the gallery is

M . We evaluate our approach using two test modalities:

• Single image vs Multi image: considering each single image in the probe

tested independently (N = 1), and having multiple images per subject

in the gallery (M > 1 ).

• Multi image vs Multi image: using multiple images in the probe (N > 1)

in addition to multiple gallery images (M > 1), modeling scenarios in

which multiple face images of the same subject can be reliably associated.

We express the performance figures of our approach in term of ROC (Receiver

Operating Characteristic) curves and by reporting the Recognition Rate at

First Rank.

6.4.1 Experiments on 2D Images

The first set of experiments we performed was on the FacePix dataset of 2D

face images [88]. This dataset is particularly appropriate for testing the cen-

tral idea of our approach since each subject has been directly imaged under

a variety of poses and illumination conditions. In particular, the FacePix

dataset provides facial poses for each subject from +90o -90t increments of

one degree. This results in 181 images per subject considering only pose

variations.

In this experiment both the gallery and the probe sets contain real 2D

images from the same dataset. The objective of this experiment is to show

the ability of our approach to scale with respect to the number of images

present in the gallery and to validate our belief that a redundant gallery can

provide excellent recognition performance. We perform 2-fold cross valida-

tion considering all the images per subject where the pose ranges from -90o

+90 After selecting these poses, we vary the number of images in the gallery

by sampling the pose.

The results of our approach are shown in Fig. 6.4. The ROC curves

represent the improvement in performance over varying numbers of images

in the gallery M = {3, 6, 12}. The probe images are tested independently

of each other using the Single image vs Multi image modality, and thus

N = 1. Considering the number of images in the gallery, our method achieves

recognition rates at first rank of 75.9% with M = 3, 92.2% with M = 6 and

98.5% with M = 12. These results indicate, as expected, that given enough

variety in samples of each individual, high classification accuracy can be

achieved.
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Figure 6.4: ROC curves for face recognition on FacePix. The different curves

represent different numbers of gallery images per subject (M).

6.4.2 Experiments on Rendered 2D Images

For these experiments we use the 3D models from the Florence 2D/3D Face

Dataset [11]. The models in the database are raw 3D meshes along with

associated textures.

In order to asses the potential of our approach, we duplicate the FacePix

experimental scenario with face imagery renderd using the 3D models from

the Florence dataset. We rendered images from 22 of the subjects of this

dataset using the approach described in Section 6.3.1. Sampling 25 yaw

angles per subject, we obtain a gallery of 550 images. On this dataset we

perform again 2-fold cross validation by varying the number of images per

subject in the gallery in the range M = {2, 3, 13}. The rendered images

are very similar to each other and face recognition performance saturates

quickly. We achieve excellent recognition accuracy when considering half

of the images (M = 13) in the gallery set per subject. The probe images

are tested independently of each other in the Single image vs Multi images

modality, and thus N = 1. The ROC curves for these experiments are

given in Fig. 6.5(a). Varying the number of images in the gallery, we obtain

recognition rates of 66.6% with M = 2, 84.0% with M = 3 and 100% with

M = 13.
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Figure 6.5: ROC curves showing performance on the Florence 2D/3D Face

Dataset: each curve represents a result in function of (a) number of images

(M) per subject in the gallery when recognizing 2D rendered images (b) the

image size when recognizing face imagery from a PTZ camera (c) and of the

number of images (N) present in the probe when recognizing face imagery

from a PTZ camera

6.4.3 Rendered 2D Gallery versus 2D Probes

In this Section we report preliminary experimental results on face recognition

in a video streams from the Florence 2D/3D Face Dataset captured from

a PTZ camera viewing one person, as shown in Fig. 6.3. Recognition is

performed using a gallery of rendered images from 3D models as described

in Section 6.3.1. This scenario is very challenging considering that subjects

were told to act naturally and we are basically comparing multi-modal data:

probes imaged by the PTZ camera, and gallery images rendered using 3D

models.

In these experiments, we tried using both a single probe image for test

(N = 1), and multiple probe images (N > 1). In all these experiments we

used the synthetic rendered images as described in Section 6.3.1 as gallery,

thus each subject has 25 images rendered across with varying yaw as shown

in Fig. 6.2.

Single image vs Multi image. The performance using single probe im-

age per subject is shown in Fig. 6.5(b). In this experiment we also attempted

to quantify how the system performs under zoom variation (given that zoom

variations affect the imaged face size) by sampling faces uniformly across the

entire PTZ sequence and hence including testing probe images at difference
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Figure 6.6: Face recognition results. Left: the probe image to identify. Right:

the most similar images in the gallery (from left to right) in terms of the

coefficient energy used the reconstruction (IiÂ). Note that the face pose of

the image with highest coefficient energy tends to be very similar to the pose

of the subject in the 2D image.

zoom levels. In the legend of Fig. 6.5(b) we report the average size of the

faces in probe images. In these ROC curves, there is little difference between

the three sets of zoom levels, each achieving a recognition rate between 20%

and 28%. This is likely due to the fact that other factors, such as facial

expression and extreme pose variation, affect accuracy more than variations

in face size.

In Fig. 6.6 we show four cases of true positive along with the three most

similar images from the gallery from left to right. Note the probe images are

captured “in the wild” with expressions, large pose variations and motion

blur. It is interesting to note that most similar face image in the probe
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usually has a face pose similar to that of the face in the image.

Multi image vs Multi image. In this experiment we evaluate the perfor-

mance of our approach using multiple images in the probe. This assumption

of multiple images in the probe is well known in literature for person re-

identification [20] and it seems also a reasonable assumption in real world

scenarios if we consider a tracker that can track and schedule a PTZ camera

to follow the target face [10].

In Fig. 6.5(c) we report the performance of our approach over varying

number of images used in the probe (N > 1). From this figure we see that

using more than one image to describe an unknown person improves overall

accuracy. In particular just considering N = 7 we outperform the Single

image vs Multi image approach, with a recognition rate of 31.8%. If we

continue to add images from the video stream, the chance of get the right

person goes up to 36.3% with N = 10 and to 45.5% with N = 15.

6.5 Conclusions and Future Work

In this chapter we described a hybrid approach to face recognition that uses

rendered images of 3D models to form a gallery of images with varying pose

for each enrolled subject. SIFT feature descriptors are extracted from these

images and form a bag of features representing each gallery image. Probe

images are similarly represented as unordered bags of SIFT descriptors. An

ℓ1-regularized reconstruction of probe image descriptors is used to derive a

sparse discriminative classifier that effectively incorporates the information

present in multiple views into the recognition process. An advantage of our

approach is that no discriminative model is learned and adding new subjects

to the gallery requires only concatenation of SIFT features to the existing

gallery.

Experiments on a standard 2D face dataset demonstrate that our ap-

proach is very effective when very many views of each subject are incor-

porated into the gallery, and similar experiments on rendered 2D images

for both gallery and probe show that the approach generalizes to synthetic

imagery as well. Experiments on recognizing real 2D face imagery using ren-

dered gallery images show promising results, particularly when incorporating

multiple probe images per subject.

Our ongoing work is related to determining the best face images to extract
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from PTZ sequences and quantifying more conclusively how performance is

affected by varying face resolution and quality. We are also looking at better

ways of structuring SIFT descriptors in the gallery (for example according to

pose) and of structuring sparse solutions in discriminative ways (for example

using the group lasso).
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Chapter 7

3D Assisted Pose Independent

Face Recognition

In this chapter we address the problem of pose independent face

recognition with a gallery set containing one frontal face image

per enrolled subject while the probe set is composed by just a face

image undergoing pose variations. The approach uses a set of

aligned 3D models to learn deformation components using a 3D

Morphable Model (3DMM). This further allows fitting a 3DMM

efficiently on an image using a Ridge regression solution, regu-

larized on the face space estimated via PCA. Then the approach

describes each profile face by computing LBP histograms localized

on each deformed vertex, projected on a rendered frontal view. In

the experimental result we evaluate the proposed method on the

CMU Multi-PIE to asses face recognition algorithm across pose.

We show how our process leads to higher performance than reg-

ular baselines reporting high recognition rate considering a range

of facial poses in the probe set, up to ±45°. Finally we remark

that our approach can handle continuous pose variations and it

is comparable with recent state-of-the-art approaches. 1

1This chapter has been submitted to the International Conference on Pattern Recog-

nition 2014, Stockholm, Sweden, as “Pose Independent Face Recognition by Localizing

Local Binary Patterns via Deformation Components”.
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7.1 Introduction

Face recognition has been considered a key problem in computer vision for

decades. Even if frontal face recognition seems a issue nearly solved if ad-

dressed in constrained conditions, the general problem is still open for faces

captured in the wild. A “face in the wild” typically means that the subject

is captured under challenging conditions such as aging, pose, expression and

illumination variations. Considering these challenges, the one that mostly af-

fects recognition performance is pose variation. In fact it is demonstrated [84]

that, when the face is in a non-frontal view, face recognition performance

drops drastically because discriminative descriptors, such as Local Binary

Pattern (LBP) and Gabor filters, suffer from misalignment issues. In ad-

dition to these, face recognition across pose also leads to another subtle

problem which is the ambiguity of landmarks caused by the self-occlusion of

the face: when the face assumes a profile pose, landmark detectors respond

with the same number of landmarks with respect to the ones detected on a

frontal face, but with different semantic meaning (if the right part of the jaw

is occluded, the detector will return a landmark on a cheek instead of on the

jaw). This problem also becomes harder if we consider that in the gallery

we have just one sample to describe each subject.

In this chapter we address the problem of pose invariant face recognition

with a gallery set containing one frontal face image per enrolled subject,

while the probe set is composed by just a face image undergoing pose vari-

ations. This scenario, defined as is, is an ill-posed problem considering the

gap between the kind of information present in the gallery and the one avail-

able in the probe. Considering these issues, the main contributions are the

following:

• we are the first to propose a way to automatically label and semantically

align a set of 3D face models without any manual session. This solves

the landmark ambiguity reported previously [7, 134].

• We propose a novel strategy to fit a non-rigid transformation on a face

image which exploits the face modeling power of the proposed 3D Mor-

phable Model (3DMM).

• Similarly to [134], the 3DMM is efficiently fitted on a image using a

Ridge Regression solution, that globally preserves the face shape while

locally minimizing the landmark reprojection error.

• By exploiting the previous contribution, instead of computing LBP on

a uniform grid [4], we localize the LBP histograms on the deformed
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vertices. This gives more precision to the method, obtaining features

vectors of the same dimension irrespective of the image size.

The chapter is organized as follows: in Sect. 7.2 we review the most re-

cent papers about face recognition across pose, in Sect. 7.3 we describe the

method to process a 3D face database to get a set of semantically aligned

faces with automatic labeled landmarks. In Sect. 7.4 we describe our ap-

proach to learn a 3DMM. Then in Sect. 7.5 we address the problem of fitting

this model by minimizing the reprojection error on detected landmarks, while

preserving the face shape. Once the model is fit on a generic non frontal im-

age, in Sect. 7.6 we design our face recognition scheme by computing LBP

histograms on the deformed vertices. Finally in Sect. 7.7 we perform exten-

sive evaluation experiments respect to regular baselines such as rectification

with 2D similarity, average model and other recents approaches.

7.2 Related work

Usually face recognition performance is satisfactory for near frontal faces [128]

but drops drastically when the face is not showing a pose similar to the one

in the gallery. Currently computer vision community has proposed several

innovative methods to recognize faces across pose.

Authors in [6] propose to extend the patch-based approach of Kanade and

Yamada [77] by adding a data-driven extension in which it is not only mod-

eled how a face patch varies in appearance, but also how it is deformed

geometrically as the viewpoint varies. In their case the deformation is en-

coded locally in an affine matrix that warps the patch without preserving

the face integrity.

Instead of just using a local affine warp, the authors in [84] are the first

to introduce a 3D generic face model to improve the patch-based alignment

problem, rather than relying on 3D cylindrical or 3D ellipsoid model. They

compare faces in different viewpoints using a similarity score that is measured

by correlations in a media subspace between different poses on patch level.

The media subspace is learned by Canonical Correlation Analysis (CCA) in

order to maximize the intra-individual correlations.

A powerful tool to model non-rigid transformation, firstly proposed in

computer graphics literature [27] and then applied to face recognition [26],

is the 3DMM which has been introduced by Blanz and Vetter to model de-

formation of a face. The model is learnt analyzing the principal components
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on a statistic of aligned 3D faces. In particular, in [26], Blanz and Vet-

ter propose to recognize faces by fitting a 3DMM in the gallery and in the

probe and using the retrieved coefficients as discriminative feature vector.

In contrast to 3DMM, recently, authors in [70, 102] proposed an efficient

way to estimate a 3D model from a single frontal image using their Generic

Elastic Model (GEM). The GEM assumption is that the depth variation

is not containing enough information if we consider a human face and the

GEM model considers just a deformation on the XY plane as sufficient to

obtain quite realistic 3D models. The method has been further improved

considering diverse average values of depth per ethnic group [70]. Among

all these papers, very recently, the attention has been moving on trying to

normalize the pose of the profile face to a canonical frontal view. The paper

in [7] is the first paper that reports the problem of landmark ambiguity. The

approach synthesizes a frontal view from a profile one, exploiting a collec-

tion of set of manually labeled landmarks. They manually label one set of

landmarks per pose to deal with self-occlusion. Face are normalized using a

weak perspective pose estimation method and through a refining algorithm

that extracts the boundary of the face. Boundary extraction is prone to

fail when the background is not uniform, condition that typically occurs

in video-surveillance imagery. Normalized faces are finally recognized using

LGBP (Local Gabor Binary Pattern). Inspired by 3DMM, authors in [85]

encode the pose variation of a test image in a linear combination of displace-

ment fields, that they call Morphable Displacement Field. The approach is

demonstrated to be robust and needs just eye-based alignment to process an

image but the displacement field optimization is run for each image in the

gallery, which is a strategy that does not scale for large galleries. Recently,

in contrast to face normalization to a frontal view, authors in [134] tried also

to modify a bank of Gabor Filters by localizing the filters in a precise manner

optimizing a 3DMM on a probe image. In [111], Sharma at al. propose the

Discriminant Multiple Coupled Latent Subspace framework. Similar to [84],

the approach finds sets of projection directions for different poses such that

the projected images of the same subject are maximally correlated in the

latent space. Discriminant analysis with artificially simulated pose errors in

the latent space makes it robust to small pose errors due to an incorrect pose

estimate.
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7.3 Automatically annotate and align 3D mod-

els

The dataset that was used to obtain a statistic of 3D faces is the Florence

2D/3D Face Dataset [11, 12] which collects both 2D imagery in the form

of video sequences from a PTZ camera and 3D models recorded with a 3D

scanner. We use the first raw frontal 3D model for each subject along with

the associated texture. For more details about the database, please see [11].

Figure 7.1: The face normalization process that brings all the meshes to a

canonical frontal form: for each subject, the depth image and the rendered

texture image are shown. Note that here the meshes do not have the per

vertex alignment property.

Regarding the raw 3D models, we create a fully automated process to

create canonical form of both the 3D models and the texture associated

with the model. This permits us computing an average model that it is

used to additionally parameterize all the models with the same number of

vertices. This brings these benefits:

1. all the subjects are almost registered together,
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2. the models are cleaned from noise considering hairs and ears and

3. finally the depth image and the texture image are perfectly registered

together.

To achieve this we extract the coordinates of each 3D vertex along with

its projection on the 2D image. In this chapter, we represent a 3D face as a

matrix V ∈ R
3×P where each Vi = [xi yi zi]

⊤ column represents a 3D vertex

of the mesh and P is the number of points in the mesh. The texture of each

model is represented as matrix B ∈ R
5×P where each Bi = [ui vi Ri Gi Bi]

⊤

column represents respectively the vertex projection on the texture [ui vi]

and the corresponding color value [Ri Gi Bi].

In order to get the canonical form we use an iterative approach exploiting

PCA, similar to [24, 94], and we process all the subject independently: at

each iteration we compute the PCA of the covariance matrix ofV. We center

the matrix by subtracting the mean m ∈ R
3 of the points (barycenter) and

compute the covariance matrix as:

C =
1

p

p∑

i=1

ViVi
⊤ −mm⊤. (7.1)

Performing PCA on this matrix, it gives us the rotation matrix R that align

all the point cloud V on its principal axis. This method aligns all the faces

in the same manner because the statistic of the face in the 3D space is

approximatively the same for each subject.

The rotation matrix R corresponds to the eigenvector matrix extracted

using PCA. At each iteration all the points in the matrix V are centered and

rotated with the rotation matrix as:

V′ = R(V −m) (7.2)

Once the point cloud has been rotated, we proceed to coarsely localize the

nose tip in order to remove the possible noise contained in the point cloud.

The nose tip is found slicing the mesh on the YZ plane and detecting the

nose tip as the maxiumum. Once the nose tip location is detected, we crop

the 3D mesh by removing all the points that lie outside a ball centered

in the nose with radius 100 mm. Then, in order to render a depth image

and a 2D image, the algorithm proceeds to create a regular grid in a XY

representation, that works as a support region, where both the zi-value in

V and the texture [Ri Gi Bi] in B are interpolated with cubic interpolation
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at a fixed sampling step (0.5 mm)2. The algorithm stops when a predefined

number of iterations are reached or when the estimated rotation matrix is

close to the identity matrix. The last condition usually holds. This overall

process above gives the results shown in Fig. 7.1.

7.3.1 Building a generic 3D face model

Since now all the models are in the same canonical form and are aligned

together is straightforward to build an average model that it will be used

in the rest of the work as generic reference model. In order to proceed to

average all the depth images and the texture, we repeat the algorithm of

Section 7.3 with the same support region for all the subjects, in order to get

the same image size. After that, we proceed to compute the mean on the

support region, thus in XY representation, by averaging the zi-value in V

and the texture present in B.

Once the average depth image is created, the generic face can be expressed

in 3D representation.

7.3.2 Semantic Alignment and Landmarks Detection

All the models now are coarsely aligned but each vertex does not have the

same semantic meaning along all the subjects. To overcome this, we param-

eterize each subject using the vertex of the generic model. We align each

subject to the average face model using ICP with a 3D affine deformation

that accounts for rotation, translation, size and shear as:

min
R,S,t,V′

P∑

i

‖RSVi + t−mi‖2 (7.3)

being R an orthogonal matrix, S a diagonal scale matrix, t a translation

vector. Considering that all the faces are already coarsely aligned, the ICP

algorithm starts from a point near the optimum.

Given a subject, by using each point of the average model m, we find

the index of the closest point with euclidean distance between m and V′,

creating a collection of indexes that we use to index the aligned face model

V′ and its texture. In this way we transforme all the models to satisfy the

2This parameters can be tuned in order to get bigger images: the small is the sampling

step, the bigger is the size of the image
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per vertex alignment property, obtaining, considering just the shape, the

matrix S:

S =




V
(1)
1 V

(2)
1 · · · V

(S)
1

V
(1)
2 V

(2)
2 · · · V

(S)
2

· · · · · · . . . . . .

V
(1)
P V

(2)
P · · · V

(S)
P



. (7.4)

The same holds for the texture part T. Formally, from now on, we assume

that S is centered on its empirical mean.

Similar to the dataset of Blanz and Vetter [26, 27], this brings two im-

portant benefits: (1) now each index of the mesh share the same semantic

meaning across all the 3D faces (2) all the models have the same number of

vertex.

Exploiting this property, it is possible to detect the reference 3D land-

marks in a fully automatic way, by first detecting landmarks on the 2D

rendered image for all the subjects; then computing an average of landmark

detector responses and afterwards expressing the landmark locations in term

of the 3D model, considering that the 2D image and the depth are perfectly

aligned together.

Landmark Detection on 3D Models

The 3D face models share the per vertex alignment property. Exploiting this

property, we design a way to automatically detect fiducial 3D landmarks on

each model. To this end we rendered the texture in a frontal pose and

we employ a landmark detector [142] that provides good recall in the face

detection task and decent precision in the localization.

Once we extracted all the landmarks responses from all the frontal ren-

derings, we average the responses taking the median. Our rendering software

provides the ability of associating the 2D locations of a landmark with a 3D

coordinates Vi = [xi yi zi]
⊤ of the mean surface. We store the indexes

I of these 3D labeled points that form the 3D reference landmarks. This

procedure solves the issues reported in [7] of having landmarks manually

annotated which can lead to inconsistent annotations. Even if we used just

a set of frontal landmarks, we could potentially get 3D labeled landmarks in

different poses, by just rendering the model in a given pose and repeat the

above procedure.
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Figure 7.2: Left: In red the detected points on a rendering, while in magenta

the correction that we get. The subject in the middle was not detected by

the detector. Right: The 3D labeled landmarks.

Considering the per-vertex alignment property, we are able also to prop-

agate the 3D landmarks to each subject in the dataset. Note that this is

more robust then just detect on a face image and then back-project to each

model, because by averaging the responses (1) we are accounting for some

noisy responses going outside of the model in the subject having bear or

mustaches (2) we are labeling subjects that have not been detected. See

Fig. 7.2 for one example about the corrections explained above.

7.4 Learning 3D Deformation Components via

3DMM

The authors in [26] showed how to build a Gaussian model from a set of 3D

aligned faces considering both the shape and the texture by using Principal

Component Analysis (PCA) to obtain the principal components. We apply

this approach on a dataset of 200 aligned 3D untextured faces taken from

a commercial software that can produce virtual human faces (virtualfaces)

and to our Florence Face database (florencefaces). Considering that the faces

have a small number of vertices, we augment the mesh dimension performing

a two-pass of loop-subdivision, that is able to maintain the alignment for each

vertex. We stack all the linearized vertices in a matrix S where each row

corresponds to a subject. We then proceed to label manually a set of indexes

I on the average model m = 1

S

∑S

i
Si that represents 3D reference landmarks

and S is the number of models.
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PCA factories S as follows:

S = W C, (7.5)

where W ∈ R
S×K represents the new dataset expressed in the new subspace

and C ∈ R
K×3N are the K components that correspond to the eigenvectors

with K ≤ S − 1. The benefit of using PCA is that each eigenvector has

a eigenvalue which is a scalar, quantifying the amount of variance in that

direction. In general the vector of eigenvalues is defined as σ = [σ1 . . . σK ]

from the largest to the smallest one. This vector is important because gives

a way to estimate of the probability density within a face space as p(α) ∼
N
(
0, diag(σ2)

)
.

Considering that N is very large, instead of estimating PCA using eigen-

decomposition of the covariance matrix S S⊤ , we rather use a more efficient

way by performing Singular Value Decomposition (SVD) on S divided by√
S − 1. This procedure returns the matrix C and the corresponding eigen-

values as σ.

In Fig. 7.3 are shown the deformation components of the shape and the

texture when available of virtual faces and Florence face dataset. Once the

deformation components are learnt, similarly to [26], we can easy synthesize

a new face from:

S′ = m+
K∑

k=1

αk Ck. (7.6)

where

p(α) = p(α1, . . . , αK) ∼ exp
( K∑

k=1

(αk/σ
2
k)
)
, (7.7)

7.5 Fitting a Regularized 3DMM

In order to fit a 3DMM given a test image, we need firstly to get an estimate

of the 3D pose in the image (rigid transformation) and then to fit the non-

rigid transformation to the face (face model deformation). The cost function

that we use it is simply the reprojection error of landmarks: as argued by [26],

the use of this function could cause overfitting in the deformation process,

leading to a surface which is not event close to a face3.

3This happens considering that there are a lot of surfaces that can project on the image

minimizing the reprojection error.
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(a) Shape - virtualfaces

(b) Shape - florencefaces

(c) Texture - florencefaces

Figure 7.3: Deformation of the Components: (first row:) nine constructed

components from left to right with virtual human faces. (second row:) four

constructed components from Florence Faces. (third row:) four constructed

components from Florence Faces of the texture. The average surface is always

shown in the left-most box.

To overcome this, we propose to use a regularization similar to [134]: we

formally address this problem as a Ridge Regression in which the coefficient

energy of the 3DMM is proportionally limited by the prior given by the

eigenvalues learned in Sec. 7.4. We proceed to explain firstly how the pose

is estimated and then how the model is deformed.

7.5.1 3D Face Pose Estimation

In order to deal with face pose variation, it is necessary to establish corre-

spondences between the labeled landmarks m(I) in the generic model and
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the face framed in the image. To this end, we employ the landmark detec-

tor [142] that provides good recall in the face detection task and decent

precision in the localization. We get an estimate of the pose using an affine

camera model that maps each vertex of the model to the image. Under the

affine camera model, the relation between the annotated points on the model

L
.
= m(I) ∈ R

3×N and the detected points l ∈ R
2×N is the following:

l = A L+ t (7.8)

whereA contains the affine camera parameters and t ∈ R
2×N is a translation

on the image.

To recover these parameters, firstly we subtract the mean from each

points set, then we recover the 2× 3 affine matrix in a least square sense as

A = l ·L†, where L† is the pseudo-inverse matrix of L. Secondly, we estimate

the translation as t = l−A L.

Furthermore, the matrix A can be decomposed with QR decomposition

in two matrices: a matrix S ∈ R
2×3 that expresses the scale parameters along

with the shear and another one, R ∈ R
3×3, that contains the 3D rotation

parameters of the model with respect to the image. The final affine camera

models is thus defined as:

l = S R L+ t. (7.9)

Considering Eq. (7.8), it is possible to get an estimate of the pose considering

the rotation matrix and to map each vertex of the generic model on the

image.

7.5.2 Landmark Ambiguity Resolution

One of the problem reported in literature is the ambiguity in the landmark

locations detected on an image w.r.t. the 3D reference landmarks in the

model. The ambiguity does not hold if we consider a frontal face, but when

the face undergoes large pose variations, the locations of detected landmarks

become unstable especially if we consider fiducial landmarks on the bound-

aries like the jaws. This issue was reported in [7] and [134]: while the authors

of [7] use a look-up table to access different 3D reference landmarks for each

pose, the authors of [134] do not use at all the boundary landmarks.

In our approach we overcome this issue in this way: given a test image, we

automatically select stable 3D landmarks from the ones present in the labeled
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Algorithm 2: Landmark Ambiguity Resolution

Input: 3D landmarks L, detected landmarks l

Output: S, R, t, Iv ⊆ I

1 Estimate pose A with Eq. (7.8) using all the indices I.

2 Decompose A in order to get rotation matrix R.

3 Estimate visibile landmarks as Iv = HPR(m(I),R).

4 Re-Estimate the pose A with Eq. (7.8) using Iv.

5 Decompose A and return S, R, t, Iv ⊆ I.

set I. As the face undergoes self-occlusion caused by the pose, some 3D

reference landmarks will not be visible. Our approach automatically selects

the visible landmarks to use as reference using an Hidden Point Removal

Operator (HPR) [79], and refines the pose using just a subset of indices

Iv ⊆ I. The algorithm is reported in Alg. 2. This process gives a way to select

stable landmarks and handles continuous pose variation and this information

of visibilities will be used for recognition to select from the gallery the visible

part of the face. We use all the landmarks for frontal gallery faces, omitting

the boundary ones at recognition time.

7.5.3 Optimization

Given a test image we want to find the 3D face pose that give us a rigid

transformation P and a non-rigid transformation in term of deformation

components α = [α1, . . . , αK ]. Formally we want to optimize the following:

min
P,α

∥∥∥l−P
(
m(Iv) +

K∑

k=1

αkCk(Iv)
)∥∥∥

2
+ λ ‖σ−1 ·α‖2 (7.10)

ñ where σ is defined as in Sect. 7.4, Iv expresses the indices of the visible

landmarks, (·) means the element-wise multiplication and λ is a scaling reg-

ularization parameter and has been set to 25. This values is set accordingly

to the magnitude of eigenvectors.

We solve this problem by alternating between pose estimation and model

coefficient estimation. We proceed to estimate the pose as report in Sect. 7.5.1

and then given the estimated pose P, we solve for the coefficients and the
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problem becomes:

min
α

∥∥∥l−Pm(Iv)−
K∑

k=1

PαkCk(Iv)
∥∥∥
2
+ λ ‖σ−1 ·α‖2. (7.11)

By defining X
.
= l−P m(Iv), Y

.
= P C(Iv) we get:

min
α

∥∥∥ l−P m(Iv)︸ ︷︷ ︸
X

−
K∑

k=1

αk P Ck(Iv)︸ ︷︷ ︸
Y

∥∥∥
2
+ λ ‖σ−1 ·α‖2 =

= min
α

∥∥∥X−
K∑

k=1

αkY
∥∥∥
2
+ λ ‖σ−1 ·α‖2,

(7.12)

and thus we can rewrite the system by linearizing the landmarks without

changing the meaning, casting the problem as a regularized least squares

one:

min
α

‖X−αY‖2 + λ ‖σ−1 ·α‖2 (7.13)

which is analytically solved as a Ridge Regression where each component is

weighted using the inverse of σk taken from the σ. The non-rigid coefficients

are retrieved as:

α = (YTY + λ diag(σ−1))−1YTX. (7.14)

It is important to notice that the number of unknowns in the system are the

number of components K while the constraints are the number of landmarks

2N . So it is important that K ≤ 2N to maintain the problem not under-

determined. Fig. 7.4 shows the geometrical meaning of the optimization

process along with the recovered shapes with and without regularization.

The figure shows just a landmark for the sake of clarity: the projected com-

ponents in blue indicates the directions on which deform the model in order

to minimize the reprojection error.

Once the new shape is obtained using the new α as detailed in Eq. (7.6)

, we proceed to perform a finale estimation of the pose P′ with the new

shape S′ and additionally to select the visible indices of vertices of the entire

shape Jv. In the following Section, we use these two last estimates to syn-

thesize a frontal view from a profile face accounting for rigid and non-rigid

transformation.
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Figure 7.4: (a) Detected landmarks (b) Geometric meaning of deformation

components: red cross is the detected landmark while the white dot is the

projected landmark from the generic model (the initial estimation). The

deformation components in blue indicate the directions on which deform the

model, while the coefficients are the relative magnitude. Once the model

is fit, the landmark projects on the magenta cross. (c) Respectively from

top to bottom: average model, estimate of shape without regularization and

finally with the proposed regularization. Note how the chin and the nose

have changed.

7.6 Recognition by Localizing Local Binary

Patterns on the Deformed Vertices

In this Section we describe our face recognition method across a range of

facial poses. Considering the result achieved in the previous Sections, differ-

ently from recent approaches likes [7,8,134], our method can handle continuos

pose variations and does not require any manual labeling of data except for

the 3D landmarks in the average model.

Our approach supposes to process the gallery by fitting the 3DMM for

each subject and by extracting LBP histogram on a window localized on
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each vertex of the deformed model. Furthermore in order to reduce the

dimensionality of the descriptor, we sampled equally the vertices. From our

experimental results we deduced that a 2D Gaussian low-pass filter applied

on the gallery images enhances the performance. Thus we apply it with a

size of 5 × 5 and a standard deviation of 0.9 on the frontal face rendering.

Once the LBP histograms are extracted, they are then stacked together to

form a unique descriptor similar to [4].

Defining a LBP on the vertex has several benefits w.r.t. the state-of-the-

art method [4] that divides the image with a regular uniform grid and extract

LBP histogram in each cell of the grid. These benefits are the following:

• this makes the feature vector independent of the image size.

• considering that the deformed model has been optimized to fit the face,

the LBP are better localized.

• it gives a straightforward way to restrict the feature vector to those parts

which are not visible considering a self-occluding face.

Our method to recognize a face is the following. Given a test image,

once we have an estimate of pose P′ and a regularized shape S′, we proceed

to render a frontal view and we sample LBP on just a uniform subset of

the deformed visible vertices. So in this case when the face undergoes self-

occlusion, the feature dimension of the query will be less than the one in the

gallery. To this end, we exploit the visible indices Jv and select the part of

the feature vector in the gallery that corresponds to these indices. Once we

a have a face descriptor f ∈ R
F (Jv) for a query image, we simply apply a

Nearest Neighbor (NN) algorithm to select the closest feature from the ones

in the gallery G ∈ R
F (Jv)×Ns where Ns is the number of subject in the

gallery and F (Jv) is the feature dimension that arises considering each time

the visible landmarks. Thus our recognition rule simply is:

id(f) = argmin
i
‖f −Gi‖2 (7.15)

Each frontal face image is rendered on the XY plane considering the

deformed shape, interpolating the RGB values sampled from the non-frontal

face on an uniform grid with natural neighbor interpolation. This generally

gives a face image size of about 120× 160 pixels. On each vertex we sample

a patch of size 11 pixels and each LBP histogram is quantized in 58 bins,

where two bins account for non-uniform binary patterns and the remaining

count the uniform binary patterns.
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7.7 Experimental Results

(a) (b) (c) (d) (e) (f)

Figure 7.5: Qualitative examples: (a) the probe and the gallery image

cropped with similarity alignment. (b-f) From left to right we show frontal

renderings with the following: 2D similarity method; generic model using all

the landmarks; generic model with only selected landmarks; morphed model

without regularization; morphed model with regularization.

In this section we report the experiment results obtained using our method,

comparing the performance figures with the approach of [4] considering var-

ious alignment modalities such as:

• 2d-eyes: 2D similarity alignment approach based on eyes-mouth loca-

tions. The similarity is defined by the triangle formed by the eyes and

the mouth that maps into a triangle in a template image of size 200×240;
• avg : render a frontal image by pose normalization using a 3D average

model and a final 2D similarity alignment.

• 3dmm: similar to the previous one: obtaining a frontal image by pose

normalization using a 3DMM and performing a final 2D similarity align-

ment.

All the approaches use the same landmark detector, that is the one used

specified in Sect. 7.5.1. If we apply the approach of [4] on the frontal

renderings, these have different size and the above approach does not provide

a way to extract it with a fixed length. To overcome this, we project on the

rendered face the 3D landmarks and by selecting the triangle connecting the

eyes and the mouth, we perform a final 2D similarity alignment that gives

an image of the same size, irrespective of the rendering size. Considering

these baselines, for the face poses at ±45°we use just the left/right part of

the face for matching.

In addition to these baselines, we compare with state-of-the-art results

in [7, 8, 85, 134, 136] on a regular dataset used in literature: we test our

approach on CMU Multi-PIE, expressing the performance by principally
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reporting the recognition rate at first rank under a range of facial poses.

However in order to show the potentiality of our method we show also the

full CMC (Cumulative Matching Characteristic) curves along with the nAUC

(normalized Area Under the Curve).
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Figure 7.6: The first rank recognition rate as a function of the facial pose on

the CMU-MPIE dataset.

CMU Multi-PIE is the most recent of controlled face databases and

our experiments on this will facilitate the comparison with future meth-

ods. Moreover this dataset is very complete because the subject are framed

under every possible conditions: by varying the pose, illumination and the

facial expression.

We recreate exactly the experiment settings of the approach [7] consider-

ing 137 subjects (subject from 201 to 346) with neutral expression from all

4 sessions at 7 different poses, with illumination that is frontal with respect

to the face (see labels in Tab. 7.1(b)).

We use the frontal image (label pose 051) from the earliest session for

each subject as the gallery image (137 total) and all of the remaining per

subject as the probe set. The dimension of the probe set is 1, 963 images.

Note that differently from other approaches that trained PCA and LDA

[85, 134] or learned the landmark detector on the first 200 subjects [7], we
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Figure 7.7: CMC curves with probe faces showing a pose of 45°along with

the nAUC.

did not use these data nor use PCA/LDA. In Fig. 7.5 we show some face

rectification for the subject 201 when the face undergoes a pose variation

in yaw of −45°: on the left we report the probe profile image along with

the gallery image aligned with 2D similarity. Then from left to right the

rendered frontal image, respectively using the 2D similarity method (2D-

eyes); the generic model using all the landmarks (avg); the generic model

with only selected landmarks; the morphed models without regularization

(3Dmm); and finally the morphed models with regularization. In Fig. 7.6

we show the face recognition performance across pose at first rank comparing

the baselines. Considering LBP on a regular grid [4], from our experiment

evaluation, it arises that even if the face is normalized to a frontal pose,

they still do not give compelling performances. They do provide better

performance then 2D similarity but our approach using LBP localized with

deformation components outperforms both. Moreover we experimented that

the proposed approach is more discriminative if it uses 3D real face models

(florencefaces) than virtual human faces (virtualfaces): to this end we report
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Pose -45° -30° -15° 0° +15° +30° +45° Mean

Label 080 05 130 06 140 06 051 07 050 08 041 08 190 08 –

LGBP [136] 37.7 62.5 77.0 92.6 83.0 59.2 36.1 64.0

BMVC05 [8] 43.8 83.3 94.0 96.3 94.7 70.0 41.2 74.8

ICCV11 [7] 74.1 91.0 95.7 96.9 95.7 89.5 74.8 87.7

ECCV12 s1 [85] 78.7 94.0 99.0 – 98.7 92.2 81.8 90.7

ECCV12 s2 [85] 84.7 95.0 99.3 – 99.0 92.9 85.2 92.7

CVIU12 [111] 84.8 96.6 99.2 – 99.2 96.2 89.0 94.1

Ours (virtualfaces) 61.0 93.3 96.3 95.6 96.0 90.0 74.3 86.6

Ours (florencefaces) 72.9 97.3 96.0 98.3 98.7 94.4 89.7 92.5

Table 7.1: Pose-wise first-rank recognition rates (%). Bold means best per-

formance.

also the performance figure of our approach when it uses the 3D models of

the Florence Faces dataset [11]. This can be observed also in Tab. 7.1 in

which we present also a comparison with the state-of-the-art: it is shown a

pose-wise breakdown of recognition rate at first rank against recent methods.

From this comparison our approach shows comparable results against the

state-of-the-art and in some case it reports better performance f.e. for poses

at {−30, 0,+45}°.



Chapter 8

Conclusions and Outlook

8.1 Concluding Remarks

In this thesis we have presented various methods that interpret video content

in order to automatically analyze people in term of trajectories and associate

people across camera using both body appearance and face biometric infor-

mation. The analysis is carried out automatically by interpreting a video

stream and is assisted by 3D data. The analysis is split in two different

semantic layers: a high level part, in which the thesis proposes to observe

people by extracting their paths; and a low level layer, which is focused on

faces, the most promising and non-intrusive biometric. Depending on these

two parts, different aspects of humans are captured.

8.2 Summary of Contributions

This thesis makes several contributions to the field of video understanding

and computer vision. Our effort has been dedicated to finding new algo-

rithms and practical methods that in a near future will be implemented and

will lead to the state-of-the art in video surveillance applications and video

analytics software. Though we did not address in this thesis the technical

and practical problems concerned with the implementation of this kind of

systems, from a theoretical point of view, this thesis has opened new futures

in the field of the video analytics. Regarding the contributions of this work,

we can summarize these in the following:
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• A new approach for multi-person tracking in wide areas with a robotic

PTZ sensor has been proposed in contrast to the current applications

that rely on fixed camera and background subtraction algorithms (Chap-

ter 2). The method is designed to be efficient while it has been demon-

strated that it can achieve promising performance compared to the cur-

rent state-of-the-art. The method is able to follow multiple persons and,

even if the sensor is moved, it is able to extract long trajectories in world

coordinates. This is possible with a supervised procedure that must be

performed just once at setup time.

• The approach proposed in Chapter 2 cannot deal with a person that turns

at a corner and cannot handoff between two non-overlapping cameras.

To this end, the previous method has been extended by matching person

bodies across cameras, in order to link the previous trajectories across a

wide area (Chapter 3).

• We argue that a significant contribution to the analysis of people is given

by biometric details. Thus another contribution of this thesis is to point

out how to use the face biometric in order to recognize people from still

images and videos. The answer is to improve face recognition algorithms

to collect relevant face imagery (Chapters 4 and 5) and to simplify the

enrollment process, thus using a single 3D textured model per person

(Chapter 6), or to handle large pose variations as typically occurs in

video surveillance scenarios (Chapter 7).

• A contribution that passes through all the Chapters is to show how 3D

data can assist this automatic analysis of video either on motion analysis

part either on face recognition algorithms.

8.3 Impact of the Proposed Research

We believe that the proposed research will have a high impact in the fields of

video surveillance applications and video analytics. For example, our work on

“Motion Analysis” will lay the foundations for next-generation surveillance

systems that must monitor people in critical zones; it could be useful in the

shopping centers if entrepreneurs want to have coherent statistics about the

behavior of their clients. Moreover these methods could also be exploited

in the sports domain (i.e. football player tracking) to improve statistical

analysis of players or to improve the entertainment for the final user.

Regarding our work on “Face Analysis”, we could image practical appli-
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cation of impact if someone needs to search for an identity over a large face

database having a face captured in critical conditions: a practical example is

the beneficial impact that this research will have on the toolkits that forensic

investigators use after some disasters like what happened in London in 2005

or at the Boston Marathon in 20131.

1For a real example please see the call for tips at http://www.fbi.gov/news/

updates-on-investigation-into-multiple-explosions-in-boston/photos, where you

can find also some face imagery taken from a real scenario.

http://www.fbi.gov/news/updates-on-investigation-into-multiple-explosions-in-boston/photos
http://www.fbi.gov/news/updates-on-investigation-into-multiple-explosions-in-boston/photos
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Appendix A

Other Datasets

A.1 MICC PTZ Dataset

Sequence Seq.#1 Seq.#2 Seq.#3 Seq.#4

Name “Long” “Focus” “Dense” “Rapid Motion”

#Frames 782 530 1750 600

Resolution 320×240 368×276 320×240 320×240

#Keyframes 269 144 190 140

#Zoom Levels 4 3 4 1

Density Low Medium High High

Place/Size Out/Wide Out/Wide Out/Wide Indoor/Small

Scene Texture Weak Weak Weak Good

Illumination Natural Natural Natural Artificial

Table A.1: Overview of the MICC PTZ dataset.

Standard public datasets do not contain sequences with a moving and

zooming sensor (PTZ) and the relative calibration data, except for the UBC

Hockey dataset. For this reason to test the performance of the proposed

method we have collected and published a new PTZ dataset with different

viewpoints and scenarios. We remark that all the sequences were acquired

and processed with one moving camera. In particular, the outdoor sequences

are acquired with a “PTZ Sony SNC-RZ30” while the indoor sequence is

acquired with a “PTZ Axis Q6032-E”. The map is learned by sampling the

observed scene with pan, tilt angles taken respectively at about 20, 10 degrees
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between each keyframes for all the sequences. Both cameras allow to inquire

the current motor odometry independently from the captured image.

The proposed dataset is composed by four sequences:

• Seq.#1 “Long”: outdoor, low density of targets and long trajectory.

Targets moves for about 60 meters in a parking area.

• Seq.#2 “Focus”: outdoor, medium density of targets. The camera per-

forms high zoom-in to focus on one of the tracked target during the

sequence and returns on all targets after few frames.

• Seq.#3 “Dense”: outdoor, high density of targets. Many targets move

randomly in the area and leave and enter continuously the field of view.

• Seq.#4 “Rapid Motion”: indoor, high density of targets with abrupt

camera motion. Many targets moves contemporary in the scene while

the camera is performing a rapid patrolling and zoom.

These PTZ sequences provide a total of 9,685 annotations for 3,662 frames.

(a) Seq.#1 Long

(b) Seq.#2 Focus

(c) Seq.#3 Dense

(d) Seq.#4 Rapid Motion

Figure A.1: Sample frames from the MICC PTZ Dataset. Each row repre-

sents a sequence.
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A.2 Face Logging Dataset

Face logging dataset consists of a varying number of sequences taken at a

frame rate of about 20 fps at different resolutions (see figure A.2).

The sequences in Dataset #1 were recorded so as to cover a wide variety

of circumstances and to give a qualitative impression of the performance of

our face logging system. For example, some of them are taken from a typical

door or corridor surveillance vantage point. In these cases, it is quite easy

to acquire good images of target faces. While other sequences are taken in

a wide-angle indoor environment where faces appear at a distance and thus

the resolution is very poor.

Figure A.2: Some frames from each sequence of the dataset.

Datasets #2 and #3 are specifically designed to provide a quantitative

evaluation of face logging systems and to probe their effectiveness and ro-

bustness over an entire workday. In Dataset #2 several sequences were taken

in very crowded environments such as would occur in real life video surveil-

lance scenarios, both indoor and outdoor, where occlusions, cast shadows,

and frequent changes of the head pose are very common. This dataset was

collected specifically to evaluate the effectiveness of face logging systems un-

der realistic, video surveillance scenarios. Sequences are taken with a varying

number of people (from about ten to more than one hundred persons) and

are composed of about 86 minutes of video of critical conditions in which

there may be frequent identity mismatches due to the proximity of people.

Dataset #3 is composed of two sequences, each of about five hours, taken

in an indoor environment. This dataset was collected to evaluate the long-

term robustness of face logging systems.
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Appendix B

Publications and Projects

Publications

This research activity has led to several publications in international jour-
nals and conferences. These are summarized below. The underlined name
indicates the main investigator. If more than one name is underlined, that
means equal contribution to the paper.

Submitted

• G. Lisanti, I. Masi, A. D. Bagdanov and A. Del Bimbo, “Person Re-identification

by Iterative Re-weighted Sparse Ranking” in IEEE Transaction on Pattern

Analysis and Machine Intelligence, (Under Major Revision).

• I. Masi, C. Ferrari, A. Del Bimbo, G. Medioni, “Pose Independent Face Recog-

nition by Localizing Local Binary Patterns via Deformation Components” in

International Conference on Pattern Recognition 2014, (Under Review).

• P. Salvagnini, F. Pernici, M. Cristani, G. Lisanti, I. Masi, A. Del Bimbo and V.

Murino, “Information Theoretic Sensor Management for Multi-Target Track-

ing with a Single Pan-Tilt-Zoom Camera” in IEEE Winter Applications of

Computer Vision Conference 2014, (To Appear).

International Journals

• A. D. Bagdanov, A. Del Bimbo, F. Dini, G. Lisanti and I. Masi, “Posterity

Logging of Face Imagery for Video Surveillance” in IEEE Multimedia 2012.
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International Conferences, Workshops and Demos

• Andrew D. Bagdanov, Alberto Del Bimbo, Dario Di Fina, Svebor Karaman,

Giuseppe Lisanti, Iacopo Masi, “Multi-Target Data Association using Sparse

Reconstruction” in Proc. of International Conference on Image Analysis and

Processing (ICIAP), Naples, Italy, 2013.

• I. Masi, G. Lisanti, A. D. Bagdanov, P. Pala and A. Del Bimbo, “Using 3D

Models to Recognize 2D Faces in the Wild” in Proc. of CVPR Int’l Workshop

on Socially Intelligent Surveillance and Monitoring, Portland, USA, 2013.

• A. D. Bagdanov, A. Del Bimbo and I. Masi, “Florence faces: a dataset sup-

porting 2D/3D face recognition”, in IEEE 5th International Symposium on

Communications, Control and Signal Processing, Roma, Italy, 2012.

• A. D. Bagdanov, A. Del Bimbo, G. Lisanti and I. Masi, “Multi-pose Face De-

tection for Accurate Face Logging”, in International Conference on Pattern

Recognition, Tsukuba Science City, Japan, 2012.

• A. D. Bagdanov, A. Del Bimbo and I. Masi, “The Florence 2D/3D Hybrid

Face Dataset”, in Joint ACM Workshop on Human Gesture and Behavior Un-

derstanding (J-HGBU’11) ACM Multimedia Workshop 2011, Arizona, USA,

2011.

• A. Del Bimbo, G. Lisanti, I. Masi, F. Pernici. “Continuous Recovery for Real

Time Pan Tilt Zoom Localization and Mapping”, in Proc. of 2011 IEEE Inter-

national Conference on Advanced Video and Signal based Surveillance (AVSS

2011), Klagenfurt, Austria, 2011.

• A. Del Bimbo, F. Dini, G. Lisanti, I. Masi and F. Pernici, “3D Multiple Target

Tracking and Face Pose Estimation with a Rotating and Zooming Camera”, in

ECCV – European Conference on Computer Vision, Demo Session, Heraklion,

Crete and Greece, 2010.

• A. Del Bimbo, G. Lisanti, I. Masi, F. Pernici. “Person Detection using Tem-

poral and Geometric Context with a Pan Tilt Zoom Camera”, in Proc. of

International Conference on Pattern Recognition (ICPR), Istanbul, Turkey,

2010.

• A. Del Bimbo, G. Lisanti, I. Masi, F. Pernici. “Device-Tagged Feature-based

Localization and Mapping of Wide Areas with a PTZ Camera”, in Proc. of

CVPR International Workshop on Socially Intelligent Surveillance and Moni-

toring (SISM), San Francisco, USA, 2010.

The author’s bibliometric indices are the following: H -index = 3; the total

number of citations = 15 (source: Google Scholar on December 9, 2013).
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Projects

During the Ph.D., I have personally addressed some transfer projects with
companies or helped in other projects. The projects that I was involved with
are the following:
• PAR-FAS Local Project, Intermodal System Integrated for Security and Sig-

naling on Rail.

• Image Stitcher software in C++ and ad-hoc API in C# for Cultural Heritage

for the local company Culturanuova s.r.l.

• “Video analysis software for security applications” is an ongoing technology

transfer and research project between Thales Italy and the Media Integration

and Communication Center. The result of this research is a prototype that was

presented as Very Important Demo at the Thales Technoday in Paris, France

in 2011.

• Transfer project for Zucchetti Centro Sistemi S.p.A.: we developed a method

that localizes a wheeled mobile robot observed from multiple ceiling cameras

in real-time and drives the robot over a path in a large environment with a

pure pursuit controller, achieving less then 5 pixels on cross track error.
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