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It is conventionally assumed that the goal of the visual
system is to derive a perceptual representation that is a
veridical reconstruction of the external world: a
reconstruction that leads to optimal accuracy and
precision of metric estimates, given sensory information.
For example, 3-D structure is thought to be veridically
recovered from optic flow signals in combination with
egocentric motion information and assumptions of the
stationarity and rigidity of the external world. This
theory predicts veridical perceptual judgments under
conditions that mimic natural viewing, while ascribing
nonoptimality under laboratory conditions to unreliable
or insufficient sensory information—for example, the
lack of natural and measurable observer motion. In two
experiments, we contrasted this optimal theory with a
heuristic theory that predicts the derivation of perceived
3-D structure based on the velocity gradients of the
retinal flow field without the use of egomotion signals or
a rigidity prior. Observers viewed optic flow patterns
generated by their own motions relative to two surfaces
and later viewed the same patterns while stationary.
When the surfaces were part of a rigid structure, static
observers systematically perceived a nonrigid structure,
consistent with the predictions of both an optimal and a
heuristic model. Contrary to the optimal model, moving
observers also perceived nonrigid structures in situations
where retinal and extraretinal signals, combined with a
rigidity assumption, should have yielded a veridical rigid
estimate. The perceptual biases were, however,
consistent with a heuristic model which is only based on
an analysis of the optic flow.

Introduction

It is commonly assumed that the visual system is
optimal insofar as it estimates with maximum precision
and accuracy the veridical metric properties of an
object’s 3-D structure, given sensory signals (Clark &
Yuille, 1990; Landy, Maloney, Johnston, & Young,
1995; Ernst, Banks, & Bülthoff 2000; Ernst & Bülthoff,
2004; Kersten, Mamassian, & Yuille, 2004; Knill &
Pouget, 2004; Knill, 2007; Landy, Banks, & Knill,
2011).

Within such a framework, suboptimal behavior in a
laboratory experiment can be ascribed to a lack of
sufficient sensory information due to the impoverished
stimulus conditions under which the system is forced to
operate. In principle, a model that can predict optimal
behavior under normal operating conditions should
also allow a quantitative prediction of suboptimal
performance. Another possibility is that veridical
reconstruction is not the goal that the visual system has
evolved to pursue (Adelson & Pentland, 1996). Instead,
the system merely maintains a calibration between a
perceptual space that the observer experiences and the
motoric interactions the observer engages in that
perceptual space. In this framework, the perceptual
space that the brain creates is neither optimal nor
veridical in the standard sense. Instead, the visual space
that forms the basis for perceptual judgments derives
from idiosyncratic and mandatory mappings from
sensory information to perceptual experience; in
standard computational terms, the system merely
follows certain heuristics. Under this model, the
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veridicality of perceptual space is never guaranteed,
and actual perceptual judgments can exhibit large but
predictable biases, in both impoverished and natural
stimulus conditions. However, the efficient interaction
of the observer with the external world is underwritten
by a constant calibration and recalibration between
visual space and motoric actions on the basis of
constant feedback from both visual and tactile/propri-
oceptive senses (Vishwanath, 2013; Vishwanath &
Hibbard, 2013; Volcic, Fantoni, Caudek, Assad, &
Domini, 2013).

In this article we examine the problem of how
humans estimate 3-D structure from optic flow
information. The standard veridical-reconstruction
model (which we refer to as the optimal-observer model)
makes two major assumptions in order to make this
problem computationally tractable; specifically, the
ambiguity in sensory signals is resolved thorough the
use of (a) extra retinal information regarding egomo-
tion and (b) an assumption of the rigidity of the
external world. We show here that perceived 3-D
structure is inconsistent with this model and that
neither of the two assumptions appears to be used in
deriving 3-D structure from optic flow. Instead, we
show that perceptual judgments are consistent with a
model in which 3-D structure is directly derived from
optic flow following certain simple heuristics, which
correctly predict large biases away from veridicality,
even under stimulus conditions that mimic natural full-
cue conditions.

Structure and motion of a two-plane
configuration: A case study

Consider a 3-D structure composed of two planar
surfaces slanted about a common vertical axis (Figure
1a) and an observer moving with planar motion
(rotations and translations within the horizontal
plane) while directing her gaze at the center of the
structure. The observer’s motion induces a relative
rotation xr of the two-plane configuration in a viewer-
centered coordinate frame, which generates an optic
flow pattern carrying information about the 3-D
structure (Koenderink & van Doorn, 1975, 1978;
Koenderink, 1986; Braunstein & Tittle, 1988). The
optic flow information, however, is not sufficient for
an accurate estimate of the metric structure of the two-
plane configuration. Each surface projects a velocity
gradient, termed deformation (def)—in this particular
case, the rate of change of retinal velocity magnitudes
along the horizontal dimension (Liter, Braunstein, &
Hoffman, 1993; Domini, Caudek, & Proffitt, 1997;
Caudek & Domini, 1998; Domini, Caudek, Turner, &
Favretto, 1998; Liter & Braunstein, 1998; Domini &
Caudek, 1999). The velocity gradient is ambiguous,

since def specifies infinite combinations of surface
slant r and relative rotation xr, being def¼xrtanr. In
Figure 1b, it can be seen how surfaces with different
slants viewed by observers moving by different
amounts generate the same def. In theory, an accurate
measurement of the pattern of retinal accelerations
would eliminate this ambiguity, but it is known that
this measurement is highly unreliable and therefore
useless (Norman & Todd, 1993; Domini & Braunstein,
1998; Eagle & Hogervorst, 1999; Hogervorst & Eagle,
2000).

A commonly held assumption is that in order to
solve this ambiguity, the visual system combines optic
flow information with extraretinal and proprioceptive
information about the observer’s motion (Ono &
Steinbach, 1990; Rogers & Rogers, 1992; Dijkstra,
Cornilleau-Pérès, Gielen, & Droulez, 1995; Wexler,
Lamouret, & Droulez, 2001; Wexler, Panerai, La-
mouret, & Droulez, 2001; Panerai, Cornilleau-Pérès,
& Droulez, 2002; Peh, Panerai, Droulez, Cornilleau-
Pérès, & Cheong, 2002; van Boxtel, Wexler, &
Droulez, 2003; Wexler, 2003; Wexler & van Boxtel,
2005; Jaekl, Jenkin, & Harris, 2005; Colas, Droulez,
Wexler, & Bessière, 2007; Dyde & Harris, 2008; Dupin
& Wexler, 2013). Since surfaces in the world are
mostly stationary, an accurate measurement of the
observer’s egomotion provides a direct estimate of xr

and thus of r from def, since r ¼ tan"1(def/xr).
Therefore, an optimal-observer model combining
sensory information (retinal and extraretinal) with a
prior for stationarity is able to accurately derive the
metric structure of the two-plane configuration. Note
that a prior for stationarity also implies a prior for
rigidity (Ullman, 1979; Grzywacz & Hildreth, 1987).
Since static surfaces do not change their structure
during the observer’s motion, most 3-D transforma-
tions generated by egomotion are necessarily rigid.
For example, in the case of the two-plane configura-
tion, if the surfaces are static in the world, then the
dihedral angle between the two surfaces does not
change either. In the remaining part of this article, we
will therefore refer to this prior as to the stationarity/
rigidity prior.

Nevertheless, empirical data indicate that human
observers do not always perceive rigid transforma-
tions, even under conditions in which, in principle,
they should. For example, Domini and colleagues
(1997) showed that a static observer viewing a rotation
of the two-plane configuration of Figure 1 typically
perceives a nonrigid transformation: The dihedral
angle between the two surfaces is seen as changing
during the rotation. Specifically, the surface with the
larger slant is perceived as rotating faster than the
surface with the smaller slant. This result seems to be
in contrast with the hypothesis that the human visual
system embeds a prior for rigidity in its interpretation
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of the optic flow (Glennerster, Tcheang, Gilson,
Fitzgibbon, & Parker, 2006). Alternatively, these
results could be explained by a model that is optimal
but predicts suboptimal performance for stimulus
conditions providing insufficient sensory data (Colas
et al., 2007).

What is critical to our previous study (Domini et al.,
1997) is that viewers looked from a static vantage point
at projections of rotating surfaces. Thus, they lacked
the potential information about the relative motion
between them and the distal objects, provided by
extraretinal and proprioceptive signals, that is always
available when observers move in an otherwise mostly
static environment.

In the following section we will show that the
optimal-observer model, which utilizes sensory infor-
mation about the observer’s egomotion and embeds a
prior for stationarity/rigidity, mistakenly assigns a
nonrigid interpretation to rigid stimuli viewed by a
static observer and thus predicts our previous findings.

For an active observer who self-generates the optic
flow, the model predicts an opposite bias: If the
instantaneous optic flow is compatible with a rigid
transformation, it assigns a rigid interpretation to the
stimuli, even when the actual transformation is
nonrigid (i.e., rigid and nonrigid rotations cannot be
disambiguated).

The two experiments described here were designed to
test the predictions of the optimal-observer model for
an active observer. Contrary to its predictions, we show
that an active observer is subject to the same biases as a
passive observer, casting serious doubts on two widely
held assumptions: that a moving observer has access to
egomotion information for the interpretation of the
optic flow, and that the rigidity and stationarity priors
are biologically relevant. Instead, a heuristic-observer
model, which ignores both egocentric information and a
prior for stationarity/rigidity, perfectly predicts the
empirical results.
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Figure 1. Planar motion of an observer relative to a two-plane configuration. (a) An observer moves rightward while directing her gaze
(dashed lines) at the center of a structure composed of two random-dot planar surfaces slanted about the same vertical axis and both
tilted in the same direction (Experiment 1). (b, left) Bird’s-eye view of the two surfaces, having slants r1 and r2, viewed at a distance zf
by an observer moving laterally with speed Tx. The lateral movement induces a rotation of the entire structure, with respect to a
viewer-centered reference frame, of angular speed xe. Thus the angular speed of the two surfaces is xr1 ¼ xr2 ¼"xe. Due to this
rotation, the retinal projection of the texture elements of each surface changes in time to generate an optic flow pattern (c). This
particular optic flow is entirely defined by the rate of compression of the texture pattern, which is the gradient of the optic flow,
defined also as deformation (def). At a time t1, the surfaces subtend at the eye angles b11 and b21, which at a time t2, after the lateral
translation, become b12 and b22. The deformation of the two optic flows is given by the ratio between the difference b12" b11 (red)
and the time interval for surface 1, and the ration between b22 " b21 (blue) and the time interval for surface 2. The same
deformations can be produced by two surfaces with different orientations viewed by an observer moving at a different speed (b,
center), or even by a nonrigid configuration, where one surface rotates with respect to the other surface (by an amount xs2) during
the observer’s lateral motion (b, right). In this case, the angular speed of this surface in a viewer-centered reference frame is xr2¼xs2

" xe.
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Optimal Bayesian estimation of the relative
rotation between two planar surfaces

The two-plane configuration (Figure 1a) undergoes a
nonrigid transformation when the angular velocities of
the two surfaces with respect to the same arbitrary
reference system are different. In an egocentric
reference system, this means that xr1 6¼ xr2. The
sensory information available for estimating xr1 and
xr2 is the velocity gradients (def1 and def2) and an
estimate of the observer’s egomotion. The latter can
also be described in terms of angular velocity, since
when the viewpoint shifts along the horizontal axis with
linear speed Tx, as in our experiments, it produces a
rotation of the surface relative to the observer, in a
head-centric coordinate frame, of angular velocity xe¼
Tx/zf, where zf is the fixation distance (see Figure 1b).
An estimate of the angular velocity x̂e can be provided
by extraretinal and proprioceptive signals (Buizza,
Leger, Droulez, Bertoz, & Schmid, 1980; Ferman,
Collewijn, Jansen, & van den Berg, 1987; Nawrot,
2003; Nawrot & Joyce, 2006; Gu, DeAngelis, &
Angelaki, 2007; Bennur & Gold, 2008; Gu, Angelaki, &
DeAngelis, 2008; Liu & Angelaki, 2009; Nawrot &
Stroyan, 2012).

The main problem with estimating xr1 and xr2 from
def1, def2, and x̂e is that a surface rotation independent
of the observer can also contribute to xr1 and xr2

(Figure 1b). If, during a head movement, the surface
also rotates (with angular velocity xs), then the relative
angular velocity between surface and observer is xr ¼
xs " xe (Figure 1b, right panel). The problem of
estimating the relative rotation of the two surfaces is
therefore ill posed, since the velocity gradients corre-
sponding to each surface (def1 and def2) define a set of
two equations and four unknowns (xr1, xr2, r1, r2):

def1 ¼ xr1tanðr1Þ ¼ ðxs1 " xeÞtanðr1Þ

def2 ¼ xr2tanðr2Þ ¼ ðxs2 " xeÞtanðr2Þ ð1Þ
Given its nondeterministic nature, this problem can

be defined in probabilistic terms with a normative
Bayesian model:

Pðxr1;xr2jdef1; def2; x̂eÞ ¼
Pðdef1; def2jxr1;xr2ÞPðxr1;xr2jx̂eÞ

Pðdef1; def2Þ
ð2Þ

where P(def1, def2jxr1, xr2) is the likelihood term,
P(xr1, xr2jx̂e) the prior, and P(def1, def2) a normalizing
constant. Since the likelihood term is the product of
two likelihoods, then

Pðxr1;xr2jdef1; def2; x̂eÞ!
Pðdef1jxr1ÞPðdef2jxr2ÞPðxr1;xr2jx̂eÞ ð3Þ

In summary, according to this model, the probability
of observing a specific combination of angular rota-
tions for the two surfaces (xr1 and xr2) depends on
both the gradient of the optic flow produced by each
surface (through the likelihood terms) and an addi-
tional term that, as we will see shortly, restricts the
possible solutions on the basis of egomotion informa-
tion (x̂e) and a priori assumptions about the rotation of
the surfaces in the world.

Domini and Caudek (2003) postulated that the
perceptual interpretation of the optic flow is solely
based on the velocity gradients. According to that
proposal, the perceptual solution is the one maximizing
the product of the likelihood terms (i.e., maximum
likelihood estimate). Since def is ambiguous, this
solution is never veridical (see Appendix A for the
mathematical proof). No matter what the physical 3-D
rotation of a surface is, the most likely rotation is a
monotonically increasing function of def. Thus, if the
two-plane configuration undergoes a 3-D rigid rotation
but each surface projects a different value of def (def1 6¼
def2), the predicted perceptual interpretation is that of a
nonrigid structure. Conversely, if the two surfaces
rotate by different amounts but produce the same value
of def (def1¼ def2), the nonrigid rotation is predicted to
be perceived as rigid. Indeed, these predictions are
compatible with the findings of Domini et al. (1997)
showing that the two-plane configuration is perceived
as rigid only if the two surfaces generate the same value
of def.

The term P(xr1, xr2jx̂e) of Equation 3 can change
the maximum likelihood estimate (MLE), since it
incorporates both information about the observer’s
egomotion and the stationarity/rigidity prior (see
Appendix B for the mathematical proof). On the basis
of how precisely the motion of the observer is measured
and how strong the stationarity/rigidity prior is, we can
discriminate between two possible models:

1. The optimal-observer (OO) model includes a strong
stationarity/rigidity prior and a precise measurement
of the observer’s egomotion. For an active observer,
this model correctly derives a rigid interpretation
whenever the optic flow is compatible with such an
interpretation. Most importantly, in the unnatural
experimental condition in which the observer is
static, the model predicts suboptimal performance,
incorrectly assigning nonrigid interpretations to rigid
stimuli. For a passive observer, this model substan-
tially mimics the MLE interpretation, thus predict-
ing our previous findings [see ‘‘Optimal observer
(OO)’’ in Appendix C].

2. The heuristic-observer (HO) model predicts the
behavior of an observer who has access to noisy
egomotion information, and embeds a weak statio-
narity/rigidity prior. It can be shown that this model
makes predictions for both active and passive
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observers that are qualitatively identical to those of
the MLE model [see ‘‘Heuristic observer (HO)’’ in
Appendix C].

Note that the HO model is different from one based
on noisy egomotion information but embedding a
strong stationarity/rigidity prior—that is, a model with
an observer insensitive to egomotion [OIE; see ‘‘Ob-
server insensitive to egomotion (OIE)’’ in Appendix C].
Such a model indeed predicts, for a passive observer, a
rigid solution and must therefore be discarded as not
biologically plausible.

For passive observers, both the HO and OO models
predict the results observed by Domini et al. (1997):
Two rigidly rotating surfaces with different slants are
perceived as nonrigid. The goal of our study is to
distinguish between the HO model and the OO model.
Are biases in a passive observer’s judgments of rigidity
due to a visual system that ignores both the stationarity/
rigidity prior and the observer’s egomotion (HO model),
or do they take place because passive viewing of the optic
flow forces the visual system to operate in nonideal
conditions (OO model)?

We addressed this question by studying the percep-
tion of rigidity for active observers. If the predictions of
the OO model are correct, then an active observer
should perceive two surfaces projecting different
deformations, like in the example discussed so far, as
rigid. Moreover, we will see in the next section that the
OO model predicts for an active observer a bias
towards rigidity for both rigid and nonrigid transfor-
mations. Instead, the HO model predicts that an active
observer assigns a rigid interpretation to the optic flow
only when the two surfaces project the same deforma-
tions.

Experiments 1 and 2

Rationale and predictions

In the two experiments, observers viewed the two-
plane configuration in two viewing conditions: active
and passive. In the active viewing condition, the
observers moved laterally and the optic flow was
entirely or partly generated by their movement. In the
passive viewing condition, the same optic flow was
replayed and viewed from an immobile viewpoint.

During the movement of the active observer, one of
the two surfaces, referred to as the reference surface,
was always stationary in an allocentric reference frame
(xsr ¼ 0). The other surface, referred to as the target
surface, rotated in depth by an amount proportional to
the observer’s own motion xe. Thus, the amount of
rotation of the target surface was defined by a gain

factor g so that xst ¼ gxe. The factor g was made to
vary within the range ["1,þ1]. At the extreme values, g
¼þ1 caused an allocentric rotation xst of the target
surface of equal magnitude but opposite direction to
the relative rotation xe induced by the observer’s
translation; whereas g ¼"1 caused an allocentric
rotation xst of the target surface equal to the relative
rotation xe. Only g¼ 0 specified a static target surface
and, therefore, a rigid structure.

In Experiment 1 we asked the observers to judge
which surface rotated faster (the target surface or the
reference surface), whereas in Experiment 2 the
observers judged whether the dihedral angle between
the two surfaces expanded or shrank. For both tasks, a
chance-level performance indicated that the observers
perceived a rigid structure, since in such case neither
surface rotated faster (Experiment 1) and the dihedral
angle neither shrank nor expanded (Experiment 2). If
observers reliably judged that one surface was rotating
faster (Experiment 1) or that the dihedral angle shrank
or expanded (Experiment 2), then it meant they
perceived a nonrigid transformation.

In both experiments, the gain factor was varied
through a staircase procedure devised to find (a) the
point of subjective rigidity (PSR)—that is, the value of
g giving rise to a chance-level performance—and (b) the
just-noticeable difference (JND), that is, the smallest g
variation from the PSR which gave rise to a nonrigid
percept. The deformations projected by the reference
and target surfaces were defr¼"xetanrr and deft¼ (gxe

" xe)tanrt, respectively.
We used the model of Equation 3 to predict the

perceived rotation difference between the target and
reference surfaces for the range of g values tested in our
experiments. To this purpose, we considered the viewing
parameters used in Experiment 1 (lateral head transla-
tion of 160 mm performed at 125 mm/s at a viewing
distance of 668 mm), but the results of the simulation
generalize to Experiment 2 as well. The input to the HO
and OO models were the average values of def and the
average observer’s motion xe measured during the
experimental sessions. For the passive viewing condition
it was assumed that the egomotion signal specifies an
immobile observer (xe¼ 0).

Figure 2 depicts the results of the simulation for the
OO (right column) and HO (left column) models. The
results are plotted as a function of the gain g (bottom x-
axis) and the corresponding difference between the
deformations of the two surfaces, defr " deft (top x-
axis). The bottom row shows the difference between the
maximum a posteriori (MAP) estimates (x̂rr " x̂rt) of
the relative angular velocities of the reference (x̂rr) and
target (x̂rt) surfaces. In the top row, the same data are
replotted in terms of the probability of perceiving the
target surface as rotating slower than the reference
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surface, by assuming Gaussian noise on the measure-
ment of x̂rr" x̂rt.

As expected, for the passive viewer the predictions
of the two models are the same (blue). The estimated
angular velocity of the target surface is smaller than
the estimated angular velocity of the reference surface,
x̂rr " x̂rt . 0, when the deformation of the target
surface is smaller than the deformation of the
reference surface (defr" deft . 0), and vice-versa when
the deformation of the target surface is larger than the
deformation of the reference surface (defr" deft , 0).
This prediction is in agreement with previous results
(Domini et al., 1997). However, for the active observer
the predictions of the two models differ substantially
(red). For the active observer, the OO model predicts a
bias towards a rigid interpretation, whereas the HO
model predicts a similar performance for both the
active and the passive observer.

General method

Participants

Twenty-one students participated in the experi-
ments. Twelve students of the University of Trieste
participated in Experiment 1, in return for course
credit. Nine students of the University of Trento were
paid to participate in Experiment 2; six of them
performed both the active and the passive viewing
phases of the experiment. All observers had normal or
corrected-to-normal vision and were unaware of the
purpose of the experiment. Experiments were under-
taken with the understanding and written consent of
each subject, with the approval of the Comitato Etico
per la Sperimentazione con l’Essere Umano of the
University of Trieste (for Experiment 1) and Trento
(for Experiment 2), and in compliance with national
legislation and the Code of Ethical Principles for

Figure 2. Predicted relative rotation between two surfaces (bottom) and the corresponding probability of perceiving the target
surface as rotating slower than the reference surface (top), as a function of the rotation gain g and def difference. The HO model
predicts that both a passive (red) and an active (blue) observer will perceive a nonrigid rotation whenever the def difference is
detectable (top left). The reason for this behavior is that the posterior of the HO model is peaked at values of relative angular
velocities for the reference (xrr) and target (xrt) surfaces that solely depend on the values of projected deformations, for both active
and passive observers: The larger the def difference, the larger the predicted rotation difference (x̂rr " x̂rt , bottom left). The OO
model (right column) makes the same prediction as the HO model for a passive observer (blue), but also predicts that an active
observer (red) will mostly perceive rigid transformations (x̂rr " x̂rt ’ 0, bottom right), resulting in an almost flat psychometric
function (top right). The center panels represent the posteriors for the HO and OO models as a function of the angular velocities of
the two surfaces (xrr, y-axis; xrt, x-axis), with gray levels representing the probability and green lines representing rigid solutions (see
Appendix C).
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Medical Research Involving Human Subjects of the
World Medical Association (Declaration of Helsinki).
Each observer participated in all conditions of the
factorial within-subjects design.

Apparatus

The participants’ head motions were tracked in
real time by an Optotrak Certus system. A Dell
Precision T3400 525W (using an Intel Core 2
Extreme 5252W, QX9650, 3.00 GHz, 1333 MHz
FSB,12 MB L2 Cache) controlled the stimulus
display and sampled the tracker. Three sensors on the
back of the observer’s head were used to calculate the
x-, y-, and z-coordinates of the observer’s viewpoint
in order to update in real time the geometrical
projection of each pair of random-dot planar
surfaces, through a procedure similar to the one
described by Fantoni, Caudek, and Domini (2010,
experiment 3). Sampling of the head tracker was set
at 360 Hz, so that the tracker latency was lower than
the sample interval.

In Experiment 1, the stimuli were displayed on a
Sony Trinitron Color Graphic Display GDM-F520
CRT monitor set at a resolution of 1024 · 768 pixels
and a refresh rate of 85 Hz and driven by an nVidia
Quadro 5000. In Experiment 2, the same display
settings were used (1024 · 768 screen resolution; 100-
Hz refresh rate) on a ViewSonic 9613, 19W CRT
monitor driven by an nVidia Quadro FX 4600.

Displays were monocularly viewed through a high-
quality front-silvered mirror placed in front of the
observer’s central viewing position and slanted 458
away from the monitor and the observer’s interocular
axis (see Fantoni et al., 2010, figure 4). The effective
distance from the pupil to the center of the screen
was 668 mm in Experiment 1 and 568 mm in
Experiment 2.

A custom Visual Cþþ program supported by
OpenGL Libraries and combined with Optrotrak API
routines was used for stimulus presentation, response
recording, and data storage. The same program (a)
controlled the slant of the target random-rot plane
according to the observer’s translation velocity and
the selected rotation gain and (b) stored the relative
motion between the observer and the planar surfaces
in order to replay the same optic flow experienced
during active viewing to the passive observer (for
further specification, see Fantoni et al., 2010, appen-
dix B).

To control whether our tracking system might
artificially induce distortions of the perception of
stability during observers’ head movements, we
measured by how much changes in the depicted virtual
stimuli were delayed from changes in the position of
the objects being tracked (system lag). In order to do

that, we used an ‘‘external’’ measure similar to the one
described by Swindells, Dill, and Booth (2000): A
marker was mounted on a rod (10 cm long) sticking
out of a circular turntable spinning at a velocity x of
608/s. A white virtual marker was rendered, ideally
superimposed on the physical marker, and 40 mea-
sures of instantaneous angular displacement between
the physical marker and the virtual marker h were
collected by taking photographs with a Nikon D90
(resolution 3216 · 2136, ISO 6400, exposure time¼ 1/
100, focal length¼38 m) centered and aligned with the
turntable (Movie 1). Two levels of complexity of the
graphic scene were also tested: a low level, in which
just the virtual marker was displayed, and a high level,
in which the marker was displayed together with a
complex mesh with more than 106 vertices. The
estimated system lag (h/x) was about 27.9 6 1.26 ms
and was independent of graphical complexity (26.8 6
1.91 ms vs. 28.9 6 1.66 ms in the low vs. high
complexity condition, t ¼ 0.82, df ¼ 38, p ¼ 0.4).
According to the results of Allison, Harris, Jenkin,
Jasiobedzka, and Zacher (2001), such a low system lag
combined with the low head-translation velocity used
in our experiments (about 228/s) is not likely to
produce artificial distortions of the perception of
stability.

Displays

The displays simulated the perspective projection of
two rectangular planar surfaces slanted about the same
vertical axis (see Figure 1). The surfaces were defined
by randomly positioned small texture elements, which
projected as antialiased red dots (1 · 1 mm) on the
image plane (the density was about 8 dots/cm2). The
quasirectangular projections were separated by a
vertical gap (15 mm) at the center of the screen. In the
active condition, the motion of the dots on the screen
was calculated in real time by tracking the observers’
vantage point. The dots on each simulated planar

Movie 1. System lag test of our virtual reality environment.
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surface were projected onto the image plane by using a
generalized perspective pinhole model, with the ob-
server’s right eye position as the center of projection. In
the passive condition the same optic flow was replayed
to the passive observer.

We carefully removed cues other than the optic flow
that could have specified the 3-D orientation of the
planar surfaces. These were the texture gradient and the
projected foreshortening of the outline of the rectan-
gular planar surfaces due to perspective projection. To
do so, we determined the dot distribution using a back-
projection technique so that dots were randomly
distributed on the image plane, not on the simulated
surface (Banks & Backus, 1998). The height of each
plane’s projection was 50 mm, while the width
randomly varied across trials within a range of 40 to 60
mm.

The display was visible while the observer moved her
head rightward. We only kept one direction of head
movements, because we found in previous studies that
the effect of def on perceived surface orientation and
motion is exactly the same for the two possible
directions of the translatory movement (Fantoni,
Caudek, & Domini, 2012). Given the repetitive nature
of the observer movement, this also facilitated the
execution of the task.

The onset of the test stimulus occurred when the
right eye crossed a position 80 mm eccentric to the left
of the center of the screen, after the observer reversed
her direction of motion. At the average velocity of 230
mm/s, the test stimulus was visible on the screen for
about 0.7 s. The stimulus disappeared when the right
eye crossed the eccentric position opposite to that of
the stimulus onset (i.e., 80 cm eccentric to the right of
the screen center). Such a lateral head shift produced a
consequent variation of the visual direction of about
13.58 for the viewing distance used in Experiment 1 (668
mm) and 15.78 for the viewing distance used in
Experiment 2 (558 mm). The lateral head shift thus
produced a rotation xe about the vertical axis of the
simulated planar surfaces relative to the observer of
about 66.758 and 67.858, respectively.

The motion of the dots generated an approximately
linear velocity field with velocity vectors mostly parallel
to the horizontal axis of the screen. In Experiment 1,
the tilt of both surfaces was equal to 1808. This surface
tilt coupled with a rightward motion of the head
produces an optic flow of pure horizontal compression.
In Experiment 2, the tilts of the two surfaces were equal
to 08 and 1808. Therefore, one surface (tilt ¼ 1808)
produced an optic flow of pure compression, whereas
the other (tilt ¼ 08) produced an optic flow of pure
expansion.

During head translation, one of the two surfaces
(reference surface) was stationary while the other
(target surface) rotated about the vertical axis with

angular velocity proportional to the observer’s motion.
The vertical position of the two surfaces was randomly
selected on each trial, so that the target surface had
equal probability of appearing above or below the
reference surface.

The simulated slant rr of the reference surface was
308 in Experiment 1 and 258 in Experiment 2, and
remained constant throughout a trial. The simulated
slant rt of the target surface was, instead, coupled in
real time with the observer’s motion through the
following equation:

rt ¼ r0t þ ga ð4Þ
where g is the rotation gain and a the visual
direction.

When the gain g was 0, the target surface was
stationary with a constant slant rt ¼ r0t. A negative
gain (g , 0) made the surface rotate in the same
direction as the observer’s gaze, whereas a positive gain
produced the opposite rotation. The time derivative of
Equation 4 is the angular velocity of the surface, xst¼
gȧ ¼ gxe. Since xrt ¼ xst " xe is the relative rotation
between the target surface and the observer, xrt¼gxe"
xe. Therefore, the instantaneous deformation of the
target surface is deft ¼ (gxe" xe)tanrt, which on
average is equal to (gxe" xe)tanr0t. Thus a positive
gain reduces the amount of def projected by the target
surface, whereas a negative gain increases it. Most
critically, there is a value of rotation gain for which the
target surface generates the same average def as the
reference surface (Figure 3).

The rotation gain was varied by an adaptive staircase
procedure with four randomly interleaved 1-up-2-
down, 1-up-1-down, 1-down-1-up, and 2-up-1-down
staircases. Staircases were terminated after four rever-
sals. In Experiment 1, the slant r0t of the target surface
could take on two possible values (458 and 558),
whereas only one value (458) was possible in Experi-
ment 2.

In the passive vision phase, the optic flows were
generated by replaying the 2-D transformations
generated by the corresponding active vision trials.
The stimulus thus included both translatory compo-
nents (inversely proportional to the deviation be-
tween the observer’s right-eye visual axis and the
stimulus center, during the corresponding active
vision trial) and rotational components (proportional
to the three degrees of freedom of head rotations
performed by the observer during the corresponding
active vision trial). The translatory components of
our passive displays (on average, 0.5 cm), together
with the display durations (0.7 s) and display size (on
average, 58), were all small enough to prevent vection.
This was confirmed by preliminary interviews with
the observers.
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Design

In both experiments, a 2 · 2 within-subject
experimental design was used, with two viewing
conditions (active and passive) and with either two
slants for the target surface in Experiment 1 (458 and
558) or two tilt angles for the target surface in
Experiment 2 (08 and 1808).

Procedure

Participants were tested individually in complete
darkness, so that only the random-dot stimuli were
visible during the experiment. To allow for natural
head movements, head motion was not restrained.
Prior to the experiment, each participant was trained to
perform back-and-forth lateral head translations
peaking at the required velocity of about 340 mm/s
when their gaze crossed the center of the screen.

Participants were also instructed to keep fixation at the
center of the screen while performing the lateral head
translations. At the beginning of each trial, after the
observer’s gaze was aligned with the depth axis and the
center of the screen, a beep was heard and the
participant initiated a lateral rightward translation.
Once the observer reached a lateral position of 80 mm
relative to the center of the screen, a beep signaled that
the head’s lateral movement had to be reversed. The
acoustic signal also provided feedback about the speed
of the head translation: A high-pitched sound signaled
a speed that was too fast and a low-pitched sound
signaled a speed that was too slow.

After one and a half head oscillations at the required
speed and the required head orientation (i.e., head pitch
and roll were controlled in real time and required to be
within the 658 range), the stimulus appeared and
remained visible for an entire oscillation cycle (lasting
on average 0.7 s). After the stimulus disappeared, the

Figure 3. Instantaneous def of the target (blue) and reference (red) surface as a function of time. When the observer moves while
looking at a rigid two-plane configuration (i.e., g¼ 0, panel a), the def of the target surface is always larger than the def of the
reference surface (b), since the slant of the target surface is larger. When the target surface rotates during the observer translation by
a specific amount (g¼ 0.43 in the example, panel c), its instantaneous def is on average the same as that of the reference surface (d).
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observer provided her perceptual judgment through a
mouse press.

In Experiment 1, the observer’s task was to judge
which of the two surfaces (the upper or the lower
one) was rotating faster. In Experiment 2, the
observer judged whether the dihedral angle between
the two planes appeared to be shrinking or
expanding.

Each experimental session lasted about 90 min and
consisted of two phases: an active and a passive vision
phase. In each phase, eight experimental conditions
were tested: 4 staircases · 2 target-surface slants (458,
558) in Experiment 1 and 4 staircases · 2 target-surface
tilt angles (08, 1808) in Experiment 2.

In order to achieve a stable performance level, both
the active and passive vision phases were preceded by a
screening session in which observers were presented
with 46 trials randomly selected from the four extreme

rotation gain values defining the starting intensity of
each staircase (i.e., g¼6 0.9, 6 0.5). Only participants
with more than 80% correct responses were admitted to
the experimental session.

Experiment 1: Which surface
rotates faster?

The results of Experiment 1 are in good agreement
with the predictions of the HO model (Figure 4; see
Figure 2, left, for the HO model’s predictions). In the
active condition, observers were not more likely to see a
rigid structure (Figure 4a) than in the passive condition
(Figure 4b). This result is opposite to the prediction of
the OO model, that is, a flattening of the psychometric
function in the active condition (Figure 2, right).

Figure 4. Results of Experiment 1: Which surface rotates faster? (a–b) Individual (gray) and average (red in a, blue in b) cumulative
Gaussian fits of the proportion of responses ‘‘the target surface rotates slower than the reference surface’’ as a function of rotation
gain g, for active (a) and passive (b) observers. The green curving arrows indicate the direction of rotation of the target surface for
negative and positive values of rotation gain. The left and right columns show the results for each level of simulated slant of the
target surface (458 and 558, respectively). (c) Average PSR (left) and JND (right) for passive (blue) and active (red) observers, and for
each level of simulated target surface slant. Vertical bars indicate 61 standard error of the mean.
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Instead, sensitivity to the def difference was even
larger in the active than in the passive viewing
condition. This may indicate that the active observers
had an advantage over the passive observers for the
measurement of the velocity gradients, for example
through a process of retinal stabilization (Oosterhoff,
van Damme, & van de Grind, 1993; Cornilleau-Pérès &
Droulez, 1994; Aytekin & Rucci, 2012). A similar
speculation was made in previous studies (Caudek,
Fantoni, & Domini, 2011; Fantoni et al., 2012), but it
warrants further research.

Figure 4 illustrates the fitted proportions of ‘‘target
surface rotating slower’’ responses as a function of the
rotation gain for active (Figure 4a) and passive (Figure
4b) observers. The gray lines are the fitted psychometric
functions for each individual observer, while the red
and blue lines are the average fitted psychometric
functions for active and passive observers, respectively.
The fits were based on a cumulative Gaussian model
whose parameters were estimated with the constrained
maximum likelihood and bootstrap inference method
implemented by psignifit software (Wichmann & Hill,
2001). The goodness of fit of each best-fit psychometric
curve was assessed with the 95% confidence interval
criterion based on Monte Carlo simulations of 10,000
data sets.

We defined the PSR as the rotation gain corre-
sponding to the 50% point of each psychometric
function (i.e., the rotation gain at which observers were
unable to judge which surface was rotating faster). The
JND was calculated as the difference between the
rotation gain corresponding to the 84% level of the
psychometric function and the PSR.

The average PSR and JND for the two slants of the
target surface in the active (red bars) and passive (blue
bars) viewing conditions are shown in Figure 4c. We
analyzed the PSRs and JNDs using linear mixed-
effects (LME) models with subjects as random effects,
and simulated slant of target surface and viewing
condition (passive, active) as fixed effects (Bates &
Sarkar, 2007). Two-tailed p-values were obtained
using Markov chain Monte Carlo simulations (10,000
samples).

For the active observers, a rigid 3-D structure was
perceived when the target surface rotated in the
counterclockwise direction at about half the speed
induced by the observer’s translation (PSR ¼ 0.450 6
0.020, t¼ 21.9, p , 0.001). A similar bias was found in
passive vision (PSR ¼ 0.452 6 0.024, t ¼ 18.71, p ,
0.001). Furthermore, the PSR depended on the slant of
the target surface: A larger slant corresponded to a
larger PSR in both the active (PSR at 458¼ 0.37, PSR
at 558¼0.53; t¼6.04, p , 0.01) and passive (PSR at 458
¼0.39, PSR at 558¼0.51; t¼2.99, p , 0.01) conditions.
These effects were accounted for by our LME model,

revealing a significant main effect of the slant of the
target surface (t¼ 4.41, p , 0.001).

Similar main effects were found on the JNDs
(slant: t¼ 2.81, p , 0.01; viewing condition: t¼ 3.66,
p , 0.01). Importantly, the JND in the active
condition was significantly smaller than the JND in
the passive condition (0.16 and 0.26, respectively, t ¼
3.66, p , 0.01), a result that is opposite to the
prediction of the OO model. This effect cannot be
explained by the unbalanced temporal ordering of the
passive and active vision phases. Because the passive
vision phase always came after the active vision
phase, any effect of practice should have produced
the opposite result.

These results show that judgments of rigidity were
systematically biased. For both passive and active
observers, a rigid structure (g ¼ 0) was systematically
perceived as nonrigid, since the target surface was
mostly perceived as rotating faster than the reference
surface. Instead, nonrigid structures (g ¼ PSR) were
systematically perceived as undergoing a rigid trans-
formation.

Nevertheless, these biases are consistent with the
predictions of the HO model. As can be seen in Figure
5, illustrating individual (gray lines) and average (bold
lines) psychometric functions of def difference for both
active (Figure 5a) and passive (Figure 5b) observers,
two surfaces are perceived as undergoing the same
rotation in depth only when they project identical
velocity gradients (same def). When the projected
velocity gradients are discernibly different, the two-
plane configuration is perceived as undergoing a
nonrigid transformation. A statistical analysis on PSR
and JND recoded as a function of def difference
revealed that def was the only determinant of the
perceptual responses, and the additional contribution
of the slant of the target surface was not significant
(PSR: t¼ 0.42, not significant; JND: t¼ 0.036, not
significant).

In summary, these results are compatible with the
HO model, which does not embed either a prior for
stationarity/rigidity or a measurement of the observer’s
egomotion.

Experiment 2: Is the dihedral angle
shrinking or expanding?

In Experiment 1, perception of rigidity was inves-
tigated with a task that only indirectly allowed
assessment of whether or not observers perceived a
rigid transformation of the two-plane configuration. It
could be argued that in the event the structure was
always perceived as rigid, observers may have adopted
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some ad hoc strategy for deciding which of the two
surfaces rotated at a faster rate: maybe deciding to
pick the surface projecting a larger velocity gradient as
the one rotating faster, effectively performing a 2-D
task. Even though this is an unlikely possibility,
Experiment 2 was designed to rule out this alternative
explanation by adopting a more direct assessment of
rigidity.

In order to achieve this goal, Experiment 2 differed
from Experiment 1 in two important aspects. First,
the two surfaces composing the dihedral angle had
opposite tilts (08 and 1808). This made it much more
difficult to directly compare the velocity gradients of
the two surfaces, since the two gradients had
different signs. For example, if during the observer
translation one surface projected a velocity gradient
that was expanding, then the other surface, having
opposite tilt, was projecting a velocity gradient that
was contracting. Second, the task was to judge
whether the dihedral angle was shrinking or expand-
ing, which required a Euclidean estimate of the 3-D
structure.

Results

In order to better compare the results of Experiment
2 with those of Experiment 1, we recoded the
judgments of shrinkage or expansion in terms of
relative rotation of the target surface with respect to the
reference surface. For a target surface with a tilt of
1808, a ‘‘shrinking’’ response was recoded as ‘‘target
surface rotating in a counterclockwise direction relative
to the reference surface.’’ The same coding was also
given for a target surface with a tilt of 08 and an
‘‘expanding’’ response.

The results of this experiment showed the same
biases as those of the previous experiment, thus ruling
out any alternative explanation for the results of
Experiment 1. As can be seen in Figure 6, the PSRs
corresponded to a rotation gain of about 0.48 (t ¼
15.03, p , 0.001), which is close to those found in
Experiment 1, and did not depend on the tilt of the
target surface (t¼ 0.947, not significant), on whether
the observer was active or passive (t ¼ 0.175, not
significant), or on the interaction of these two variables
(t ¼ 0.954, not significant). Similar results were

Figure 5. Cumulative Gaussian fits of Figure 4 replotted as function of the def difference between the target and reference

surfaces. Panel layout and color coding are consistent with those of Figure 4. Shaded bands represent 61 standard error of the
mean for PSRs.

Journal of Vision (2014) 14(3):10, 1–22 Fantoni, Caudek, & Domini 12



obtained on the JNDs with the same LME model (tilt: t
¼ 1.87, not significant; viewing condition: t¼ 2.2, not
significant; tilt · viewing condition: t¼ 0.9, not
significant).

As in the Experiment 1, perception of rigidity
depended on the difference between the projected
velocity gradients (Figure 7), since the two-plane
structure was perceived as undergoing a rigid trans-
formation when the def difference was 0 (PSR¼"0.021,
t¼ 1.51, not significant).

General discussion and conclusions

In two experiments, we studied the perception of
rigidity of a two-plane configuration from the
information provided by the optic flow. We found
that active observers, who self-generated the optic
flow, showed systematic biases in the perception of

rigidity. Specifically, a rigid two-plane configuration
was inaccurately perceived as nonrigid: The dihedral
angle between the two surfaces was judged as
changing during the observer’s motion. The biases
found for active observers were identical to those of
passive observers, who experienced from a static
vantage point the same optic flow as the active
observers. Whereas perception of rigidity did not
depend on the actual rigidity of the distal stimuli, it
could be entirely accounted for by the difference
between the velocity gradients (deformations, defs)
projected by the two planar surfaces. When the def
difference was detectably different from 0, the two
surfaces appeared as undergoing different amounts of
rotation in depth.

These results replicate for active observers the
findings of Domini and colleagues (1997) and are in
agreement with the predictions of a model proposed
by Domini and Caudek (2003) that derives through a
maximum likelihood procedure an estimate of the 3-D

Figure 6. Results of Experiment 2: Is the dihedral angle shrinking or expanding? (a–b) Individual (gray) and average (red in a, blue in b)
cumulative Gaussian fits of the proportion of responses ‘‘target surface rotating in a counterclockwise direction relative to the
reference surface’’ as a function of rotation gain g, for active (a) and passive (b) observers. The green curving arrows indicate the
direction of rotation of the target surface for negative and positive values of rotation gain. The left and right columns show the results
for each level of tilt of the target surface (1808 and 08, respectively). (c) Average PSR (left) and JND (right) for passive (blue) and active
(red) observers, and for each level of simulated target surface tilt. Vertical bars indicate 61 standard error of the mean.
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angular velocity of a planar surface from the def
component of the optic flow. Since def is inherently
ambiguous, the MLE solution is in general inaccu-
rate: It assigns to two different values of def two
different values of estimated angular velocities,
independent of whether or not the two defs were
generated by surfaces undergoing the same rotational
motion. The MLE solution is for a passive observer
the best the visual system can do with only optic flow
information.

What is puzzling about these findings is that the
performance of active observers in the rigidity
discrimination task is basically identical to that of
passive observers, even though active observers have
access to extraretinal and proprioceptive signals,
which, in principle, are strong enough to be informa-
tive about the observer’s egomotion (Wei & Angelaki,
2004; Jaekl et al., 2005; Caudek et al., 2011; Aytekin &
Rucci, 2012). In the section ‘‘Optimal Bayesian
estimation of the relative rotation between two planar
surfaces,’’ we showed that an optimal-observer model,
which optimally combines retinal and extraretinal
sensory information and assumes a static and rigid
environment, is most likely to assign a rigid interpre-
tation to an optic flow compatible with a rigid

transformation. Instead, in both experiments observ-
ers mostly perceived nonrigid transformations, al-
though the instantaneous optic flow was always
compatible with a rigid transformation, even for the
nonrigid displays.

Note that these results cannot be explained solely on
the basis of a noisy estimate of egocentric translation.
Whether this estimate is very noisy or simply ignored
by the visual system constitutes only part of the story.
A fundamental explanatory role is played by the
absence of a reliable rigidity prior. In fact, such a prior
would bias the observer’s judgments toward a rigid
interpretation of the two-plane configuration in both
the passive and active conditions, as predicted by the
OIE model described in Appendix C.

Instead, these results are compatible with an HO
model, in which both the prior for rigidity is
uninformative and egomotion information is disre-
garded. This model is therefore equivalent to the MLE
model proposed by Domini and Caudek (2003) for
perception of 3-D structure from the passively viewed
optic flow, which only relies on the information
provided by the local velocity gradients (def). The
predictions of this model were also confirmed in a series
of studies showing systematic biases in both the

Figure 7. Cumulative Gaussian fits of Figure 6 replotted as a function of the def difference between the target and reference
surfaces. Panel layout and color coding are consistent with those of Figure 6. Shaded bands represent 61 standard error of the
mean for PSRs.
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perception of motion and slant of actively viewed
planar surfaces (Fantoni et al., 2010, 2012; Caudek et
al., 2011).

The question of why the visual system relies on
ambiguous information provided by def, while both
ignoring statistically plausible priors, like stationarity
or rigidity, and potentially available egocentric signals,
remains open. Two possible explanations could be
attempted.

A first possibility is that a monocularly viewed optic
flow, generated by the motion of a random-dot pattern
in an otherwise dark environment, is still a very
impoverished viewing condition, which forces the
visual system to operate with suboptimal performance,
even for an active observer (Wallach, Stanton, &
Becker, 1974). The presence of multiple cues, charac-
terizing normal viewing, could provide optical infor-
mation that is sufficient for an accurate estimate of 3-D
properties without the need for additional information
carried by extraretinal signals or prior knowledge about
world properties. However, even in a natural setting,
systematic errors in the perception of rigidity are
found—for example, if we walk along a street and look
around, two road signs pointing at different street
directions from a common pole are perceived as
independently rotating as we approach them (Movie 2).
Even though monocular richer stimuli still induce the
same perceptual distortions, as shown in Movie 2, the
absence of binocular disparities constitutes a critical
departure from what can be considered ecologically
valid stimuli. Indeed, binocular disparities in conjunc-
tion with the optic flow could in principle uniquely
specify the 3-D structure and motion of an object
(Richards, 1985).

A second possibility is that the goal of the visual
system is not that of recovering accurate metric
information of distal objects (Domini & Braunstein,
1998). Optimal behavior is such insofar it allows an
organism to have a successful interaction with the
environment for survival. It is possible that this
behavior takes place without detailed information
about the physical structure of the world (e.g., metric
properties). For example, it has been speculated that
local affine information, which encodes nonmetric
aspects of 3-D structure like the depth order of feature
points, determines both our conscious perception of the
world and our motor actions (Domini & Caudek,
2011). If this is the case, then perceptual processes are
likely to ignore statistical properties of the world that
are irrelevant to affine information, like stationarity or
rigidity (Jain & Zaidi, 2011).

Keywords: 3-D structure from motion, rigidity, active
vision, optic flow, optimal integration
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Appendix A

Maximum Likelihood Estimate of angular
velocities from defs

In Equation 3, the likelihoods P(defijxri), i¼1, 2, can
be calculated by integrating over the nuisance variable
r the image formation model P(defijxri, r) multiplied
by the prior distribution P(r):

PðdefijxriÞ ¼
Z

r
Pðdefijxri;rÞPðrÞdr ðA1Þ

Assuming Gaussian noise in the measurement of def,
P(defijxri, r) is a Gaussian distribution with mean at
the measured value of the velocity gradient (def) and
variance s2

def. The prior distribution of surface slant
P(r) is considered to be an uninformative Gaussian
centered at 0 with variance s2

r (Domini & Caudek, 2003;
Colas et al., 2007).

In Figure A1 we show P(defijxri, r), P(r), and
P(defijxri) for def1¼ 0.2 rad/s (Figure A1a) and def2¼
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0.35 rad/s (Figure A1b). In this simulation, we
considered an observer moving at xe¼ 19.358/s viewing
a static two-plane configuration for which r1¼ 308 and
r2 ¼ 458. We now consider the Maximum Likelihood
Estimate (MLE) of xr1 (blue lines) and xr2 (red lines),
which are the values of relative angular velocities
maximizing P(def1, def2jxr1, xr2). These values are
different from the real value of xr ¼ xe ¼ 19.358/s
(Figure A1c, green circle) and also different from each
other (Figure A1c, x- and y-coordinates of the red
outlined circle). Therefore, the MLE is that of a
nonrigid structure, since the estimated rotation of the
surface producing a larger value of def is larger. The
result of this simulation is compatible with the findings
of Domini and colleagues (1997) showing that per-
ceived angular velocity is a monotonically increasing
function of def and that the two-plane configuration is
perceived as rigid only if the two surfaces generate the
same value of def.

Appendix B

The role of egomotion information and a prior
for stationarity/rigidity

The term P(xr1, xr2jx̂e) of Equation 3 can change
the MLE interpretation (see Appendix A), since it
incorporates information about the observer’s egomo-
tion and the stationarity/rigidity prior. It can be shown
that

Pðxr1;xr2jx̂eÞ ¼Z

xe

Pðxr1jxeÞPðxr2jxeÞPðxejx̂eÞdxe ðB1Þ

where P(xr1jxe)¼ Pxs(xs1¼xr1þxe) and P(xr2jxe)¼
Pxs(xs2¼ xr2þ xe), with Pxs(xs1) and Pxs(xs2)
indicating the a priori distributions over the surface
angular velocities xs1 and xs2. These a priori distribu-
tions (modeled as Gaussians centered at 0 with
standard deviation sxs) are sharply peaked at 0 if the
surfaces are assumed to be stationary in the world,
since a stationary surface is defined by xs¼ 0. If both a
priori distributions are narrowly peaked at 0, then both
surfaces are stationary and as a consequence the
structure is rigid.

The term P(xejx̂e)—a Gaussian distribution cen-
tered at x̂e with standard deviation sxe—defines the
precision of the measurement of the egomotion angular
velocity x̂e. This distribution is narrowly peaked at x̂e

if the egomotion estimate is very precise.
In summary, P(xr1, xr2jx̂e) and its influence on the

posterior critically depends on the precision of the
measurement of the egomotion angular velocity x̂e, and
the strength of the prior for stationarity/rigidity.

Appendix C

The extent to which the Maximum A Posteriori
(MAP) estimate—that is, the pair (xr1, xr2) that
maximizes the posterior—differs from the MLE can be
seen in Figures C1 through C3. Depending on the
values of sxe (precision of egocentric motion estimate)
and sxs (strength of the stationarity/rigidity prior), we
can foresee the following three qualitatively different
models.

Optimal observer (OO)

This model, similar to the one proposed by Colas et
al. (2007), includes a strong stationarity/rigidity prior
and a precise measurement of the observer’s egomotion
(Figure C1). First consider the active observer (Figure

Figure A1. MLE of relative angular velocities from defs. The
Likelihood function P(def1, def2jxr1, xr2) (c) for two surfaces
projecting velocity gradients def1 ¼ 0.2 rad/s and def2 ¼ 0.35
rad/s is the product of two likelihood functions P(def1jxr1) (a)
and P(def2jxr2) (b) calculated by integrating over the nuisance
variable r the products P(def1jxr1, r)P(r) (a) and P(def2jxr2,
r)P(r) (b). The MLE corresponds to two values of relative
angular velocities xr1 (blue lines) and xr2 (red lines) that are
different from the actual angular velocity (green lines) and are
also different from each other (blue circle with red rim).
Therefore, the MLE is that of a nonrigid transformation (the
diagonal green line indicates rigid solutions, i.e., xr1¼xr2). Gray
levels correspond to probability.
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C1b). Since sxe and sxs are very small, P(xr1, xr2jx̂e) is
sharply peaked at the veridical solution xr1¼ xr2¼ x̂e

(Figure C1b, left panel). In this case, P(xr1, xr2jx̂e) has
a strong influence on the widely spread likelihood
function (Figure C1b, middle panel), therefore pro-
ducing MAP estimates (Figure C1b, right panel)
defining a rigid interpretation (xr1¼ xr2).

Consider now the passive observer (Figure C1a).
P(xr1, xr2jx̂e) is sharply peaked at the solution xr1 ¼
xr2 ¼ 0, since the sensed egocentric motion is zero
(Figure C1a, left panel). In this case, P(xr1, xr2jx̂e)
only pulls the MAP solution towards small rotations,
but it effectively constitutes a noninformative prior,

since it does not favor any particular solution that is
different from zero.

Therefore, for a passive observer the MAP solution
is qualitatively similar to the MLE solution, assigning a
nonrigid interpretation to the two-plane rotation
(Figure C1a, right panel).

Heuristic observer (HO)

This model includes a weak stationarity prior and a
noisy measurement of the observer’s egomotion, Figure
C2 (Fantoni et al., 2010; Caudek et al., 2011; Fantoni et

Figure C1. MAP estimate of relative angular velocities according to the OO model. The posterior distribution P(xr1, xr2jdef1, def2, x̂e) is

obtained by multiplying the likelihood P(def1, def2jxr1, xr2) by P(xr1, xr2jx̂e). If the observer’s egomotion is measured with precision

and it is assumed that surfaces in the world are stationary, then P(xr1, xr2jx̂e) is sharply peaked at the value of angular velocity equal

to the observer’s egomotion (x̂e). For a passive observer, who is static, P(xr1, xr2jx̂e) is peaked at 0 (a). For an active observer, moving

with relative angular velocity x̂e¼19.358/s, P(xr1, xr2jx̂e) is peaked at 19.358/s (b). The posterior distribution for the passive observer

is still peaked, like the likelihood, at two values of relative angular velocities xr1 (blue lines) and xr2 (red lines) that are different from

each other (a, right). Instead, the posterior distribution for the active observer is peaked at two values of relative angular velocities

xr1 (blue lines) and xr2 (red lines) that are equal to x̂e (b, right). Therefore, the MAP for a passive observer specifies a nonrigid

solution, whereas the MAP for an active observer specifies a rigid solution.
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al., 2012). For both passive (Figure C2a) and active
(Figure C2b) observers, P(xr1, xr2jx̂e) is widely spread,
since the system has no access to reliable information
about the observer’s egomotion (large sxe) and does not
assume that surfaces in the world are stationary (large
sxs). In this case, P(xr1, xr2jx̂e) constitutes a non-
informative prior which does not change the MLE
interpretation: For both passive and active observers,
the MAP estimate defines a nonrigid transformation.

Observer insensitive to egomotion (OIE)

This model includes a strong stationarity prior and a
noisy measurement of the observer’s egomotion (Figure
C3). For both passive (Figure C3a) and active (Figure
C3b) observers, the estimates of (xr1, xr2) are the same.
In this case, the measurement of xe is uncertain, but the
strong stationarity prior imposes the condition that xr1

¼xr2. The MAP estimate defines a rigid transformation
for both active and passive observers.

Figure C2. MAP estimate of relative angular velocities according to the HO model. The posterior distribution P(xr1, xr2jdef1, def2, x̂e) is

obtained by multiplying the likelihood P(def1, def2jxr1, xr2) by P(xr1, xr2jx̂e). If the observer’s egomotion is measured with very low
precision and the prior for stationarity/rigidity is uninformative, then P(xr1, xr2jx̂e) is widely distributed, peaked at 0 for a passive
observer (a) and at x̂e for an active observer (b). Given the very weak influence of P(xr1, xr2jx̂e) over the likelihood for both an active
and a passive observer, the posterior is peaked, like the likelihood, at two values of relative angular velocities xr1 (blue lines) and xr2

(red lines) that are different from each other. Therefore, the MAP for both a passive and an active observer favors a nonrigid solution.
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Figure C3. MAP estimate of relative angular velocities according to the IEO model. The posterior distribution P(xr1, xr2jdef1, def2, x̂e)

is obtained by multiplying the likelihood P(def1, def2jxr1, xr2) by P(xr1, xr2jx̂). If the observer’s egomotion is measured with very low

precision but the prior for stationarity/rigidity is highly informative, then P(xr1, xr2jx̂e) specifies a family of rigid solutions (xr1¼xr2).

In this case also, the posterior favors rigid interpretations for both a passive (a) and an active (b) observer.
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