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A detailed inelastic neutron scattering investigation of the THz dynamics of liquid zinc is presented. The
observed Q dependence clearly reveals the existence of a complex dynamics made up of two distinct
excitations. The highest energy mode is the prolongation of the longitudinal acoustic density fluctuations
whereas the comparison with the phonon dynamics of crystalline hcp zinc suggests a transverse
acousticlike nature for the second one. This mode seems related to peculiar anisotropic interactions,
possibly connected to the behavior of the crystalline phase.
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Since the seminal work of Copley and Rowe [1], who in
1974 demonstrated the existence of a long-living collective
mode in liquid Rb, the THz dynamics of a large number
of liquid metals has been investigated by means of
inelastic neutron and x-ray scattering (INS and IXS),
e.g., Refs. [2–4]. The key observable in these studies is
the dynamic structure factor SðQ;ωÞ. Experiments provide
a large body of information spanning from alkali metals
and their alloys to polyvalent and transition metals and
covering a wide range of thermodynamic states. Data seem
universally characterized by the existence of a longitudinal
acoustic mode that shows an almost well-defined sinusoidal
dispersion over a wide range of momentum transfers Q,
typically up to half the positionQp of the first maximum of
the static structure factor. Several theoretical approaches
have been proposed to describe the THz dynamics of liquid
metals [5–10] but, even if in the case of alkali metals, alkali
earths and polyvalent metals experimental data can be cast
into a common trend [3], a consistent interpretation is not
well defined yet [11].
As compared to that of liquid metals, the dynamics of

nonmetallic liquids, like water, shows a more complex
behavior and the SðQ;ωÞ is characterized by the existence
of at least two different modes, e.g., Refs. [12,13]. These
features arise in the microscopic region, well beyond the
hydrodynamic regime, and are probably due to anisotropic
interactions. Interestingly, recent studies point out the
existence of a similar behavior also in liquid metals
[14–18]. This is the case of liquid gallium, where IXS
experiments [14,15] and molecular dynamics simulations
[17] show the existence of a second low-energy mode that
is identified as transverse acousticlike. The origin of
this excitation might be related to anisotropic interac-
tions originating peculiar structural arrangement such as
transient cages [14] or Ga2 dimers [15].

In this Letter we present an inelastic neutron scattering
study of the THz dynamics of liquid zinc. In the periodic
table, zinc lies at the end of the transition metals series
where the full d-like band still contributes to the screening
of the electron-ion potential. In the crystalline phase,
Zn has an hcp structure with a room-temperature c=a
ratio of 1.856 [19], ∼14% higher than the ideal ratio
c=a ¼ ffiffiffiffiffiffiffiffi

8=3
p ≃ 1.633. This rather anomalous value

increases with temperature and indicates that specific
interactions along the c axis should be present to stabilize
the hcp structure against the more isotropic fcc one [20].
This anisotropy could be also related to the anomalous
electronic-topological transition observed at high pressure
[20] and it makes liquid zinc a good candidate for
displaying a complex dynamics. From the experimental
point of view, Zn is an almost coherent neutron scatterer
with a melting temperature Tm ¼ 693 K. In the hydro-
dynamic limit, the longitudinal sound velocity at the
melting point is v0L ¼ 2850 m=s [21]. This fairly high
value is well within the range of the time-of-flight neutron
Brillouin spectrometer BRISP [22–24], installed at the
Institut Laue Langevin research reactor (Grenoble, France)
and properly designed to perform INS experiments at small
momentum transfer Q. Experimental results reveal a com-
plex dynamics, showing the existence of two distinct
modes. A comparison with crystalline zinc phonons sug-
gests an acousticlike character for both modes.
The sample was a 99.9% pure ingot (Sigma, Aldrich)

with natural isotopic composition, which was manipulated,
weighted, and sealed into the sample container under the
inert atmosphere of a He-filled glovebox. The empty cell
was a slab-shaped Nb container with 0.5 mm thick
windows, which provides both a relatively small scattering
and a negligible mixing with liquid Zn. The experiment
was carried out with an incoming neutron wavelength of
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0.98 Å. Measurements were performed in a standard
furnace at Texp ¼ 773 K. The measured sample intensity
was reduced by carefully subtracting the contribution of the
empty cell, the environment background, and multiple
scattering, estimated using ad hoc Monte Carlo simula-
tions. The instrument elastic resolution RðωÞ, measured
using the incoherent scattering from a vanadium standard,
was Gaussian shaped with a full width at half maximum
(FWHM) of 2.8 meV.
The reduced scattering intensity IðQ;ωÞ is shown

in Fig. 1 at some typical wave vector Q. Spectra are
characterized by a resolution limited quasielastic peak with
inelastic side structures that are related to the collective
dynamics of the system and become more evident at small
Q values. The single scattering intensity can be written as

IðQ;ωÞ ¼ A

�
RðωÞ ⊗ k

k0
SðQ;ωÞ

�
; ð1Þ

where k0 and k are the initial and the final neutron wave
vector, respectively, and A is a normalization constant.

Accurate simulation studies of SðQ;ωÞ of several liquids
of various types have shown [11] that their longitudinal
translational dynamics is well described by a model
containing a term accounting for the propagation of the
acoustic excitation and two quasielastic modes related to
relaxation mechanisms building up the central peak of the
spectrum. The latter are often difficult to disentangle from
each other and from the resolution broadening when fitting
the model to actual experimental data. Considering the
broad experimental resolution, a simple empiric approach
consists in modeling the SðQ;ωÞ with the sum of a
Lorentzian for the quasielastic contribution and a damped
harmonic oscillator (DHO) for the inelastic coherent one.
This simple model has been widely exploited to describe
the dynamics of several liquid metals [3], and it provides a
reasonable good fit to the experimental spectra also in the
case of liquid Zn. However, the resulting dispersion curve,
in the inset of Fig. 2(a), appears rather anomalous and
strongly differs from the sinusoidal shape expected for a
longitudinal acoustic mode, as it shows a plateau between
0.5 and 1.1 Å−1.
In view of the findings of Refs. [14–18], this behavior

could be ascribed to the presence of an additional mode
having a Q-dependent intensity so that the single DHO
appears shifted and broadened. However, since scattering
experiments detect only longitudinal density fluctuations
and modes characterized by the same symmetry interact
with each other, the most general description of a system
with many modes has to consider also their coupling.
Consequently, the inelastic part of the spectrum is not the
sum of two DHOs and the SðQ;ωÞ is described by the sum
of a Lorentzian plus the dynamic structure factor of a
system of two interacting oscillators having energies
ℏωjðQÞ, (j ¼ 1; 2). This model was already successfully
employed in amorphous SiSe2 where a complex dynamics
is quite evident [25]. The Hamiltonian of the system is
assumed to be

H ¼ Ho þ
1

2

X
Q

UðQÞ½Q†
Q1QQ2 þQ†

Q2QQ1� þHa; ð2Þ

where Ho ¼ 1
2

P
Qj½P†

QjPQj þ ω2
jðQÞQ†

QjQQj�. Operators
PQj and QQj are the momentum and coordinate of the jth
oscillator, UðQÞ is the coupling parameter between the
modes, and Ha contains all the higher order components.
Following Refs. [7,26], the diagonal displacement-
displacement Green’s function turns out to be

GjjðQ;ωÞ ¼ 1

2π

χjðQ;ωÞ
1 − χ1ðQ;ωÞχ2ðQ;ωÞjUðQÞj2 ; ð3Þ

where the single-mode Green’s function is given by
χjðQ;ωÞ ¼ ½ω2 − ω2

jðQÞ − ΣjðQ;ωÞ�−1. The self-energy
ΣjðQ;ωÞ is written as iωΓjðQÞ, where ΓjðQÞ is the

FIG. 1 (color online). Experimental data (black dots) at three
typical Q values, Q ¼ 0.3 Å−1 (a), 0.7 Å−1 (b), and 1.1 Å−1

(c). The thick red line represents the best fit to the data using the
interacting modes model described in the text. Blue lines are the
two inelastic components of the fit, j ¼ 1 (solid blue line) and
j ¼ 2 (dashed blue line).
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damping of the jth mode. The coupling can be described by
a Gaussian function UðQÞ ¼ U0Q exp½−hR2iQ2=6�, hR2i
being the mean square range of the interaction in real space.
The SðQ;ωÞ is the sum of the imaginary parts of the
Green’s functions G11ðQ;ωÞ and G22ðQ;ωÞ, properly
weighted by the unknown mode structure factors times
nðωÞ þ 1, where nðωÞ is the Bose factor [7,26].
Consistently, if UðQÞ ¼ 0 each mode is described by a
simple DHO. The resulting best-fit curves are shown in
Fig. 1 by red lines together with the individual inelastic
components (blue lines). The fit shows that UðQÞ is
systematically nonzero in the whole Q range. The model
provides an accurate description of the spectral shapes and
the so-obtained fit was also validated by performing a
Bayesian analysis [27]. Figure 2(a) shows the dispersion
relation of the two bare energies ℏω1ðQÞ and ℏω2ðQÞ, as
obtained from the fitting procedure.

The high-energy mode ω1ðQÞ (black dots) displays a
sinusoidal shape with a maximum at Qp=2 ¼ 1.46 Å−1

(dashed blue line) and can be identified as a longitudinal
acoustic mode. The apparent high-frequency sound veloc-
ity is v∞L ¼ 3380� 60 m=s, about 20% higher than the
hydrodynamic value v0L. Although Zn is not the best
candidate for an approximation based on the homogeneous
electron gas, we can compare the longitudinal mode
dispersion relation to that derived by means of the
Bohm-Staver approximation [4]. Assuming two electrons
per atom, the sound velocity turns out to be cBS ¼
4175 m=s. Conversely, if e − e interactions are taken into
account by using the compressibility sum rule for the
homogeneous electron gas [28], we get cex ¼ 3195 m=s,
which provides a fair agreement with the experimental
value of v∞L . A similar behavior was also observed in
liquid mercury [29], which belongs to the same element
group although in both cases the agreement might be
accidental [4].
The low-lying mode ω2ðQÞ (open black circles) shows

an almost Q-independent behavior (dashed red lines) and
its identification is not straightforward. As a matter of fact,
the system isotropy prevents the precise knowledge of both
vibrational eigenvalues and eigenvectors, which is there-
fore possible only in single crystals. To provide new
insights on the nature of the modes in the liquid state,
we can compare their behavior with the phonon dynamics
of the crystalline phase. Phonon eigenvalues and eigen-
vectors of crystalline hcp zinc were calculated within the
model of Ref. [30], using the force constants deduced in
Ref. [31]. In particular, we can consider the vibrational
density of states gðωÞ of crystalline zinc in a hypothetical
high temperature phase at Texp > Tm. The hcp lattice
parameters a and c have a smooth T behavior up to the
melting temperature so that they can be extrapolated to
Texp. To achieve the same density as the liquid phase, they
were further expanded, keeping the c=a ratio constant.
Force constants were also uniformly reduced to match the
longitudinal sound velocity with v∞L . Phonon energies were
thus calculated on 98304 points in the 1=24 irreducible
wedge of the Brillouin zone and then summed with
appropriate weights to obtain the gðωÞ. This corresponds
to the spherical average of the phonon dynamics over all Q
values; hence, the so-obtained vibrational density of states
is that of an ideal polycrystal. Moreover, the knowledge of
the eigenvectors allows the projection of gðωÞ, either
acoustic or optic, along the longitudinal (L) and transverse
(T) directions. The so-obtained gLðωÞ and gTðωÞ are thus
reported in Fig. 2(b) and compared with the experimental
vibrational density of states of ω1ðQÞ and ω2ðQÞ, g1ðωÞ
and g2ðωÞ, respectively. Even if softened and broadened by
the solid-liquid transition, the peaks in g1ðωÞ and g2ðωÞ
correspond to the main features of gLðωÞ and gTðωÞ. This
supports the longitudinal acoustic nature of ω1ðQÞ, already
suggested by the dispersion curve. On the other hand, the

FIG. 2 (color online). (a) Dispersion curves for the bare
energies ℏω1ðQÞ (black dots) and ℏω2ðQÞ (open black circles).
The dashed blue line and the red one are guides to the eye
marking the behavior of ω1 and ω2, respectively. The long dashed
black line is the high frequency extrapolation of the longitudinal
sound velocity measured in the hydrodynamic regime, v0L ¼
2850 m=s [21]. The black arrow indicates the boundary of the
pseudo-Brillouin zone at Qp=2 ¼ 1.46 Å−1. The dispersion
curve obtained by using the single DHO model is reported in
the inset (black dots) where the red line is a guide to the eye.
(b) Vibrational density of states of crystalline hcp zinc of the
longitudinal (blue line) and transverse (red line) modes, gLðωÞ
and gTðωÞ, respectively (see text). The red arrow marks the
maximum of the gðωÞ for purely transverse acoustic modes. The
vibrational density of states calculated for ω1ðQÞ and ω2ðQÞ,
g1ðωÞ (dashed blue line), and g2ðωÞ (dashed red line), are also
reported.
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low-lying mode seems related to transverse phonons, and,
in particular, to the acoustic part of the gTðωÞ, whose peak,
marked by the red arrow in Fig. 2(b), is very close to that
of g2ðωÞ.
Figure 3(a) shows the damping parameter ΓðQÞ. When a

single DHO is used (see inset), ΓðQÞ shows a linear Q
trend, which is typical of other liquid metals analyzed with
the same model [1–4]. Conversely, the model with inter-
acting modes displays a different behavior. In particular,
the damping of the low-lying mode shows a linear Q
dependence, while the longitudinal one shows a quadratic
trend. This result is rather new and compares well with
nonmetallic systems, e.g., Refs. [32–34].
Further information is obtained from the integrated

intensity of the two modes, obtained by the fitting pro-
cedure. The results are reported in Fig. 3(b). The longi-
tudinal mode shows an almost constant trend up to the
region where it increases approaching the position of the
first diffraction peak,Qp ¼ 2.93 Å−1 [35]. This behavior is
expected from general arguments [7]. Interestingly, the
low-lying mode shows a completely different trend as its
intensity is quite small at low momentum, decreasing again
when Qp=2 is approached.
The existence of the transverse acousticlike mode ω2ðQÞ

might be related to anisotropic interactions of the Zn

potential and possibly connected also to the existence of
peculiar structural units such as dimers even in the liquid
phase. Of course, when the probed length scale is
increased, i.e., Q is decreased, the microscopic structure
becomes irrelevant. In this limit, coherently with a trans-
verse acoustic nature, the intensity of the low-energy mode
tends to zero and it eventually vanishes in the hydro-
dynamic region.
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