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Abstract. We briefly review recent advances in the subject of hadron production in relativistic
heavy-ion collisions. We focus on the issues of chemical freeze-out, chemical equilibration and
the role of post-hadronization inelastic collisions. From the observations collected in elementary
and heavy-ion collisions, a picture emerges in which hadrons are born in chemical equilibrium at
hadronization, thereafter undergoing inelastic and elastic collisions whose impact on the primordial
distribution depends on the system size.
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1. Introduction

The study of hadroproduction in relativistic heavy-ion collisions has been the subject of
intense research for more than 20 years by now. Accurate measurements of multiplicities
of different species and their spectra over a large span of centre-of-mass energies have
been a major test bench for the models which have led to a concrete verification of the
QCD phase diagram [1]. Lately, the excellent measurements provided by the LHC exper-
iments at a nucleon–nucleon centre-of-mass energy of

√
sNN = 2.75 TeV have elicited

a renewed interest in the dynamics of the bulk hadron production, revived old ideas and
stimulated new ones. In this short review, we summarize the status of the field and discuss
the recent advances.

2. Freeze-out in an expanding hadron gas

In an expanding sytem of interacting particles freeze-out occurs when the mean scattering
time τscatt exceeds the mean collision time τexp:
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τscatt = 1

nσ 〈v〉 > τexp = 1

∂ · u
, (1)

u being the hydrodynamical velocity field and 〈v〉 is the mean velocity of particles. If
the cross-section σ is inelastic, the freeze-out is called chemical, whereas if it includes
elastic processes, the freeze-out is called kinetic. Chemical freeze-out of course precedes
the kinetic freeze-out as the inelastic cross-section is smaller than the total cross-section.

We can obtain a gross approximation of the expansion time with the ratio V/V̇ where
V (t) is the volume of the fireball at time t . For a fireball which is spherical in shape
with radius R, this is R/3Ṙ and if the radius increases at approximately the mean particle
velocity 〈v〉, we have the condition:

1

nσ 〈v〉 ≈ R

3〈v〉 �⇒ 1

nσ
≈ R

3
. (2)

For a given number of particles N within the volume, this inequality yields the radius at
which freeze-out occurs as a function of N and of the average cross-section:

Rfo ≈
√

Nσ

4π
(3)

and the density at which freeze-out occurs, which decreases with N according to:

nfo ≈ N

(4π/3)R3
fo

≈ 3

√
4π

N

1

σ 3/2
. (4)

For instance, for N = 1000, typical of heavy-ion collisions, and σ = 30 mb = 3 fm2, one
has Rfo 	 15 fm and nfo 	 0.06 fm−3, which are in the right ballpark taking into account
the drastically made approximations. The estimates (3) and (4) are obviosuly crude, but
they tell us that the freeze-out radius, for each particle, approximately scales with the
square root of the number of scattering centres a particle can interact with and the related
cross-section.

An interesting question, which is relevant for a hadronic gas, is whether multibody
collisions are significant at some stage in the expansion process. One can write a simple
generalization of the two-body collision rate formula:

dR

d4x
= n1n2σvrel = n1n2σ

√
(p1 · p2)2 − m2

1m
2
2

ε1ε2
, (5)

where pi are the particle four-momenta and mi their masses, ni their densities and vrel the
relativistic relative velocity, to a three-body collision assuming that the particle 3 collides
with a cluster (12) made of particles 1 and 2:

dR

d4x

∣∣∣∣
3

= n3n(12)σ3(12)vrelP(12), (6)

where n(12) is the density of clusters, vrel is a suitable extension of the relativistic relative
velocity function for the 2-body problem and P(12) is the cluster formation probability.
The latter can be assumed to be proportional to n1n2σ

3/2
12 , i.e. proportional to the proba-

bility that 1 and 2 find themselves within a range of ≈ √
σ . Replacing σ3(12) and σ12 with

a typical hadronic cross-section σ , one has

dR

d4x

∣∣∣∣
3

≈ n1n2n3

ε1ε2ε3
σ 5/2frel(m1,m2,m3,

√
s, ...), (7)

748 Pramana – J. Phys., Vol. 84, No. 5, May 2015



Freeze-out dynamics in heavy-ion collisions

where f is a function of relativistic invariants pertaining to a three-particle system. This
approximated formula can be extended to N -body collisions:

dR

d4x

∣∣∣∣
N

≈
(

N∏
i=1

ni

εi

)
σ (3N−4)/2frel(m1, . . . , mN,

√
s, . . .). (8)

Binary collisions prevail when the left-hand side of (5) largely exceeds the one in (7).
Assuming that the ratio of the relativistic functions frel average to O(1), this happens
when

nσ 3/2 
 1 �⇒ λ = 1

σn
� √

σ . (9)

This is physically a very clear condition: the particle mean free path λ should be much
larger than its effective interaction distance as determined by the square root of the
cross-section. This is by no means a trivial requirement; for an expanding hadron gas
to have a stage where binary collisions prevail before freeze-out, this implies, according
to eq. (2):

Rfo ≈
√

Nσ

4π
≈ 3λ � 3

√
σ (10)

that is the system should contain a large number of particles, N � O(100). If this
condition is not fulfilled, the system decouples when ternary and, in general, N -nary col-
lisions are still relevant. This is an important conclusion, to be emphasized: in relativistic
ion collisions, for the decoupling to occur in the binary collision regime, the number
of particles should largely exceed O(100). Thus, this may happen only in heavy-ion
collisions.

There is one more important condition to be addressed: for the freeze-out to be in the
kinetic regime, meaning a system of quasifree colliding particles, it is necessary that the
mean free path of particles largely exceeds their mean (thermal) wavelength, that is,

λ = 1

σn
� 1

〈p〉 = 1

m〈v〉 = 1√
3T m

, (11)

where the last expression assumes the non-relativistic regime of most hadrons, which
is a good approximation for a hadron gas in the actual observed range of temperatures.
The motivation of the condition (11) is that the collisional approximation of a strongly
interacting system makes sense only if particles exist, i.e. their quantum wavelength is
much smaller than its mean free path. Otherwise, the so-called particles would interact
after a collision before being ‘formed’ and the whole kinetic picture would break down.
Hence, writing n = N/(4πR3/3) and using (3):

4π

3
R3 � Nσ

1√
3T m

�⇒ R � R
2/3
fo

(
3

T m

)1/6

(12)

with the assumption that the number of particles N does not change till freeze-out. The
last inequality dictates that we have a kinetic stage in hadron gas expansion, that is, R <

Rfo, provided that the radius at freeze-out is very much larger than the thermal wavelength
of the hadrons. As a numerical example, for pions at T = 160 MeV, the last factor equals
1.3 fm1/3 and for Rfo = 15 fm, the above inequality demands R � 8 fm. We stress again
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that these numbers are crude approximations and only have an illustrative purpose. They
should not be compared as such with actual measurements of the system size with e.g.,
pion interpherometry.

Another relevant question is whether multibody collisions can occur in what we can
properly call a kinetic regime. According to (9), multibody collisions are relevant if the
mean free path is of the order of the square root of the cross-section. Therefore, we are
led to demand that

λ ≈ √
σ �

√
1

3mT
. (13)

Is this condition fulfilled? For pions at the typical temperature T = 160 MeV, the right-
hand side is about 1 fm, which is not much smaller than the square root of the typical
hadronic cross-section. Under this circumstance, the hadron gas cannot be considered as
made of individual colliding particles, at least as far as pions are concerned. This is quite
a peculiar situation compared to other, more familiar, kinetic systems. For instance, for
liquid water at T = 0◦C, the mean free path can be estimated to be 0.3 nm, which is
approximately equal to

√
σ . Yet the mean thermal wavelength of a H2O molecule is of

the order of 5 pm, mostly due to the large molecular mass. Hence, in liquid water we have
multibody collisions and yet molecules retain their particle identity which is necessary to
have a kinetic description. This special feature of the hadron gas, close to the critical
QCD temperature, is related to the very low viscosity/entropy density ratio which reflects
the absence of quasiparticles, hence of kinetic description, along with the other so-called
strongly interacting fluids [2].

3. The statistical model

Among the models which have been proposed to account for the quantitative features of
hadron production in relativistic heavy-ion collisions, the statistical hadronization model
can be considered as a reference. Besides its remarkable success in reproducing parti-
cle multiplicities with a few parameters, this model is used in nearly all hydrodynamical
calculations to turn the fluid cells into hadrons through the Cooper–Frye prescription,
enforcing local thermodynamical equilibrium. Furthermore, it has been shown that this
model can reproduce hadronic multiplicities in elementary collisions, from e+e− to pp and
from low to high energy [3]. Therefore, it turns out that the statistical model grasps a pecu-
liar universal feature of the hadronization process, hence of QCD in the non-perturbative
regime, regardless of the kind of collision.

Indeed, the statistical model has proved to be successful in relativistic heavy-ion col-
lisions throughout the explored centre-of-mass energy range [3]. The interpretation of
its success is, however, still a subject of debate. Some proposed that thermalization is
achieved at the level of hadrons through multiple collisions [4]. Others [5], including the
author, advocate that hadronization itself gives rise to an equilibrated system of hadrons
(modulo the extra strangeness suppression in elementary collisions, not fully understood).
In Hagedorn’s words hadrons are born in equilibrium because it would be otherwise
impossible to explain the statistical distributions observed in elementary collisions where
multiplicities are such that freeze-out coincides with hadron formation, and, chiefly, the
apparent full chemical equilibrium of strange particle abundances.
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Figure 1. Estimated equilibration time for � hyperons as a function of pion density
and temperature in a hadron gas through multibody collisions (from ref. [4]).

Indeed, in the collisional approach to thermalization, the abundance of strange par-
ticles, particulary the � baryon, is a long-standing problem. In order to reproduce the
observed enhancement in relativistic heavy-ion collisions with respect to pp, one has to
invoke multibody collisions [4,6] as well as the existence of hypothetical broad reso-
nances called Hagedorn states [6]. However, we have seen in §2 that in a hadron gas
multibody reactions become relevant in a regime where the system cannot be considered
as kinetic, i.e. in a regime where it is still a strongly interacting fluid and its particle or
quasiparticle description is questionable. Besides, the estimates of the time needed to
achieve equilibrium abundances of � hyperon are of the order of 1000 fm/c [4,6] for the
chemical freeze-out temperatures of around 160 MeV (see also figure 1) determined at
LHC [7,8]. These difficulties, and chiefly the observations in elementary collisions, lead
to the conclusion that hadronization produces a chemically equilibrated system.

4. Is there chemical life after hadronization?

If hadronization itself gives rise to an equilibrated population of hadrons, can the later
processes, if any, affect it? This is an important question for understanding the hadron
production mechanisms in both elementary and relativistic heavy-ion collisions. We can
sketch – in a very ideal fashion – the major steps in the process leading to the freeze-
out in relativistic heavy-ion collisions as points along a time-oriented axis as in figure 2.
In fact, the freeze-out processes are continuous, species-dependent, geometry-dependent
and overlapping. Nevertheless, figure 2 is a useful tool for the purpose of illustration.

After hadronization, the system begins to expand, but it can stay a little in the strong
coupling regime where it cannot be described as a kinetic system, according to the dis-
cussion in §2. At some point, this regime, where chemical equilibrium is presumably
kept, ceases and the era of binary collisions sets in, provided the number of particles
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is >O(100). For some time, binary collisions can be inelastic (chemical freeze-out),
thereafter only elastic till kinetic freeze-out occurs and the system finally decouples.

Is this picture borne out by the data? The existence of a stage where binary collisions
prevail is confirmed by at least three major evidences:

(1) The suppression of short-lived resonances compared to long-lived particles in the
statistical model fits [9–11], an effect which is not seen in elementary collisions
[12]. It can be explained by the rescattering of the resonance decay products in the
expanding medium, which is not possible for a small system.

(2) The difference between the temperatures determined in multiplicity fits and those
in the fits of transverse spectra [11]. This means that elastic interactions continue
after chemical freeze-out. Also this effect is not seen in elementary collisions [12].

(3) The dependence of kinetic freeze-out temperatures as a function of the impact
parameter [11,13]. Collisional decoupling depends on particle multiplicity, as we
have seen, as well as geometry, and it occurs at a higher density if multiplicity is
lower.

The existence of a kinetic stage where hadrons interact elastically is by now generally
accepted. Do we have a similar evidence for the abundances? In other words, do hadrons
chemically decouple after some stage of binary collisions? It should be stressed that, if
such a stage exists, hadronic abundances should show deviations from an initial chemical
equilibrium situation [14].

Until recently, there was no major clue of such a phenomenon as statistical model
fits were in agreement with the data to a satisfactory degree of accuracy. However,
new measurements of antiproton yield at SPS energy [15] and at LHC [16] resulted in
significantly lower values compared to the statistical model predictions [17,18]. This
result has been soon interpreted as an effect of post-hadronization inelastic rescattering,
where antibaryons are annihilated before chemical freeze-out, increasing pion multiplicity
[19–21]. We point out that such annihilations should occur in a stage where 2-body col-
lisions prevail (see figure 2) and Monte-Carlo simulations such as UrQMD [22] only
include binary collisions. However, as has been mentioned, the separation of N -ary to
binary collision stages in fact cannot be sharp and indeed it was pointed out [23] that the
back-reaction of N pions colliding to regenerate antibaryons could continue for a longer
time.

Figure 2. Sketch of the time sequence of processes in an expanding, strongly inter-
acting hadronic system: after hadrons are formed, a strongly interacting stage follows
where particles may undergo multibody collisions. Thereafter, mostly binary colli-
sions survive till chemical freeze-out and, later, kinetic freeze-out.
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As a matter of fact, the reanalysis of the data assuming equilibrium at hadronization
and subsequent post-hadronization inelastic rescattering stage using UrQMD predictions
as correction factors (see figure 3) gives a better fit to the data and a hadronization (or
latest chemical equilibrium point) in agreement with the extrapolated QCD lattice line
(see figure 4) [7]. Even though UrQMD does not include N-nary collisions with N>2,
this is a strong indication that inelastic processes following hadronization do play a role
and that chemical freeze-out does not coincide with hadronization. Still, taking these
processes properly into account, it is possible to reconstruct the original hadronization
conditions.

5. Outlook

We are at just the beginning of a new generation of analyses aimed at accurately deter-
mining the hadronization conditions of the quark gluon plasma. For this purpose, as
has been mentioned, we shall need reliable calculations of inelastic hadronic collisions
processes in an expanding system, both binary and multibody. One of the crucial tests
in this respect will be the analysis at different centralities. As can be seen from the
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Figure 3. Ratios between hadronic multiplicities after chemical freeze-out and those
at hadronization calculated with UrQMD [22] at several centre-of-mass energies in
Pb–Pb collisions (from ref. [7]).
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Figure 4. Reconstructed hadronization points in the (T , μB) plane compared with
lattice QCD extrapolations (solid and dashed lines) and the chemical freeze-out line
(dotted curve) (from ref. [7]).

simple formula (3), freeze-out occurs earlier for lower multiplicities. Hence some depen-
dence of sensitive quantities like e.g. antibaryon annihilation on centrality is expected.
At the same time, one would expect to see some slight dependence of the chemical
freeze-out temperature obtained with plain statistical model fits on centrality, particu-
larly a slight rise from central to peripheral collisions. Up to RHIC energies, results are
not conclusive: at top energy, no significant dependence was seen [13,24], whereas at
lower energies (in the beam scan programme) the centrality dependence changes slope
according to the statistical ensemble used [25]. More effects may play a role in deter-
mining chemical freeze-out conditions as a function of centrality (a change of QGP
hadronization conditions if baryon density changes etc.) and those should be taken into
account. A major clue will come from the analysis of LHC data, where hadronization
is expected to occur at vanishing baryon density throughout the centralities. Therein,
owing to the increased multiplicities, freeze-out radii have a larger spread, possibly giv-
ing rise to an observable dependence of chemical freeze-out temperature on the impact
parameter.
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