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Abstract
Metagenomics is revolutionizing our understanding of microbial communities, showing that

their structure and composition have profound effects on the ecosystem and in a variety of

health and disease conditions. Despite the flourishing of new analysis methods, current ap-

proaches based on statistical comparisons between high-level taxonomic classes often fail

to identify the microbial taxa that are differentially distributed between sets of samples,

since in many cases the taxonomic schema do not allow an adequate description of the

structure of the microbiota. This constitutes a severe limitation to the use of metagenomic

data in therapeutic and diagnostic applications. To provide a more robust statistical frame-

work, we introduce a class of feature-weighting algorithms that discriminate the taxa re-

sponsible for the classification of metagenomic samples. The method unambiguously

groups the relevant taxa into clades without relying on pre-defined taxonomic categories,

thus including in the analysis also those sequences for which a taxonomic classification is

difficult. The phylogenetic clades are weighted and ranked according to their abundance

measuring their contribution to the differentiation of the classes of samples, and a criterion

is provided to define a reduced set of most relevant clades. Applying the method to public

datasets, we show that the data-driven definition of relevant phylogenetic clades accom-

plished by our ranking strategy identifies features in the samples that are lost if phylogenetic

relationships are not considered, improving our ability to mine metagenomic datasets. Com-

parison with supervised classification methods currently used in metagenomic data analy-

sis highlights the advantages of using phylogenetic information.

Author Summary

In metagenomics, the composition of complex microbial communities is characterized
using Next Generation Sequencing technologies. Thanks to the decreasing cost of sequenc-
ing, large amounts of data have been generated for environmental samples and for a varie-
ty of health-associated conditions. In parallel there has been a flourishing of statistical
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methods to analyze metagenomic datasets, concentrating mainly on the problem of assess-
ing the existence of significant differences between microbial communities in different
conditions. However, for a large number of therapeutic and diagnostic applications it
would be essential to identify and rank the microbial taxa that are most relevant in these
comparisons. Here we present PhyloRelief, a novel feature-ranking algorithm that fills this
gap by integrating the phylogenetic relationships amongst the taxa into a statistical feature
weighting procedure. Without relying on a precompiled taxonomy, PhyloRelief deter-
mines the lineages most relevant to the diversification of the samples guided by the data.
As such, PhyloRelief can be applied both to cases in which sequences can be classified ac-
cording to a known taxonomy, and to cases in which this is not feasible, a common occur-
rence in metagenomic data analysis given the increasing number of new and uncultivable
taxa that are discovered using these technologies.

Introduction
Thanks to the possibility to characterize microbial communities through next generation se-
quencing, microbial ecology has become a central topic in many environmental and therapeu-
tic applications. Extensive explorative studies of the microbiota colonizing several districts of
the human body have been conducted, highlighting the large variability from site to site, as well
as the interpersonal differences in the same body site [1]. The more extensively studied district
is the human gastrointestinal tract (GI), whose metagenomics composition appears to be influ-
enced by several factors [2], including age [3,4], geography [5], diet [6], and lifestyle [7]. In ad-
dition, a correlation between imbalances or abnormal composition of the gut microbiota and a
number of pathologic conditions has been proposed. These alterations might be due to thera-
peutic interventions, like antibiotic treatment [8], or different lifestyle [9].

The growing body of evidence of the importance of the gut microbiota for the self-
sustainability of health of the “holobiont” is opening the debate on the design of therapeutic in-
tervention strategies. Fecal transplantation has shown its effectiveness and safety in the treat-
ment of recurrent Clostridium difficile infections [10], which are known to correlate with
altered microbiomes following antibiotic treatment [11]. Alternatives for bioremediation of
microbiota alterations is the supplementation of pro- or prebiotics, while it has been suggested
that antibiotic treatment and vaccination can be used to guide the structure of the gut micro-
biota towards a status that is compatible with health [12,13]. Most of these intervention strate-
gies would greatly increase their efficacy using a precise definition of the microbial species that
are differentially distributed in health and disease conditions. This task faces several difficulties.
On one hand, most of the microorganisms composing the human and environmental micro-
biota are poorly characterized, difficult to cultivate, and lack a precise taxonomic classification.
On the other hand, methods to unambiguously define the microbial taxa that are responsible
for these differences are still lacking, and their identification usually relies on a small number
of arbitrarily chosen association tests with high-level taxonomic classes, or on statistical learn-
ing methods, both evaluating only taxa for which a taxonomic classification is possible [14]. In
addition, the low abundance of most microbial taxa in metagenomic samples poses additional
challenges only recently tackled with statistical methods [15].

In amplicon metagenomics, the composition in term of microbial genera of a sample is in-
ferred from the high throughput sequencing of a small number of diagnostic genomic loci, the
most popular being the V1–V6 variable regions of the 16S rDNA gene for bacteria [16] and the
ITS spacer for fungi [17], selectively amplified using broadly conserved PCR primers. As a
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proxy for species, Operational Taxonomic Units (OTUs) are determined by the clustering of
the sequences up to a given level of similarity, usually 97%. Using the OTUs abundances, the
differentiation between samples or classes of samples is accomplished by measuring their β-
diversity, i.e. the variations in community membership across the different groups [18]. Given
that the sequences of marker genes are available, phylogenetic measures of diversity such as
UniFrac [19,20] have proven to be able to identify subtle differences in the structures of micro-
bial communities by weighting species abundances with the phylogenetic relationships
amongst taxa.

Here we present PhyloRelief, a ranking strategy to identify the taxa significantly contribut-
ing to the differentiation of groups of amplicon metagenomic samples. By integrating the phy-
logenetic relationships amongst taxa into the framework of statistical learning, the method is
able to unambiguously group the taxa into clades without relying on a precompiled taxonomy,
and accomplishes a ranking of the clades according to their contribution to the sample differ-
entiation. We applied the method to a meta-analysis of two recent datasets of comparative
studies of the gut microbiota of European, USA, African and South American healthy individu-
als, identifying bacterial taxa that are differentially distributed with geography and age. Com-
parison of the performances of the method to popular feature selection and classification
algorithms shows that or strategy is effective in identifying microbial clades associated to the
different sample groups, providing a novel analysis method for targeted metagenomic datasets.

Results
PhyloRelief is an algorithm that introduces the Relief [21,22] strategy of feature weighting in a
phylogenetic context to identify those OTUs or groups of OTUs that are responsible for the dif-
ferentiation between classes of samples (i.e. healthy vs. disease, lean vs. obese, population A vs.
population B, etc.) in a metagenomic dataset. The method is designed to analyze any set of
samples that has been characterized via high throughput sequencing of one or more marker ge-
nomic loci, whose sequences have been clustered into OTUs. The process requires that the
samples are unambiguously classified into cases and controls according to the description pro-
vided by the study design, and that a phylogenetic tree of the OTUs has been obtained by mo-
lecular phylogenetic analysis.

The algorithm is composed by two main conceptual steps: i) a scoring scheme that ranks
the branches of the OTU tree according to their contribution to the differentiation of the clas-
ses, and ii) a merging step that merges nested subtrees into independent clades. At the end of
this procedure, PhyloRelief ranks the clades according to their discriminant power between
cases and controls.

Definition of the scores
Given a partitioning of the samples into two or more classes ({C1}, {C2},. . .), PhyloRelief ranks
the internal branches in the OTU tree by assigning them a score w that reflects their impor-
tance in the differentiation of the classes. In its simplest form the procedure is as follows. First,
one sample S is randomly chosen and its nearest hit H (i.e. the nearest sample of the same
class) and missM (i.e. the nearest sample of a different class) are individuated (Fig. 1). Next,
the score w of each clade is increased by an amount proportional to the contribution of the
clade to the distance between S andM, and decreased by an amount proportional to its contri-
bution to the distance between S and H. In this way, the score of those clades that support the
fact that S is more distant fromM than from H is increased, while the score of those that sup-
port the contrary is decreased. A detailed description of the update rules is given in the Meth-
ods section. After that the procedure has been repeated over all possible choices of S, each clade
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has a score w that is high if the clade supports the partitioning of the samples into classes, {C1},
{C2}, and low if it does not (Fig. 1). The critical step of the procedure is the choice of the update
function, for which different definitions are possible. Here we define (see Methods): a) an un-
weighted update function, that, for each clade, is proportional to the fraction of the clade that is
unique to one of the classes, i.e. the fraction of the phylogenetic tree from which descend only
OTUs belonging to one of the classes; b) a weighted update function, in which each branch of
the tree is weighted by a quantity proportional to its unbalance between the classes, i.e. the dif-
ference between the number of sequences in samples from one class and from the other. Analo-
gously to the Relief-F extension of the Relief algorithm, PhyloRelief can be applied to multi-
class problems and can use k-nearest neighbors in the score computation, becoming robust in
the case of noisy or unbalanced data sets [21].

Fig 1. Schema of the method. A) Preliminary analysis. The PhyloRelief algorithm relies on a set of preprocessing steps of the metagenomic datasets that
must be performed using standard algorithms. From the sequences of the marker genomic loci selected by the experimental design, an OTU table and a
phylogenetic tree of the representative sequences of the OTUs is computed. B) Next, the matrix of the distances between the samples must be computed
using a phylogenetic measure of β-diversity, such as weighted or unweighted UniFrac must be provided. C) The PhyloRelief strategy. Once one sample S
has been randomly selected, the nearest hitH, i.e. the nearest sample of the same class, and the nearest missM, i.e. the nearest sample of different class
according to distance matrix DS are identified. D) The update function. For each subtree Ti the weight wi is updated by summing the value d(Ti,S,H)/m and
subtracting d(Ti,S,M)/m. The function d(Ti,A,B)/m is computed by summing the UniFrac distance between the sample A and B restricted to the subtree Ti and
m is the number of samples. E) Correlation of the weights and definition of the clades. The weights of each clade propagate to the parents, where it is either
reinforced if coalescing with a clade sharing similar unbalance between the classes, or is diluted if coalescing with a clade with no or contrasting unbalance.
This allows an iterative procedure leading to the unambiguous identification of a set of uncorrelated clades. F) Output. The algorithm provides a list of clades
of the phylogenetic tree ranked according to their contribution to the separation of the classes of samples.

doi:10.1371/journal.pcbi.1004186.g001
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Correlation between the lineages and identification of the clades
The peculiar nature of the features that we are ranking (i.e. subtrees in a tree) introduces a cor-
relation that needs to be taken into account when analyzing the data, and that can be exploited
to define a set of independent clades ranking them according to their relevance. If a given
branch is heavier, due to unbalanced OTUs distribution between the different classes, its
weight will propagate to the parent branches, where it is either reinforced by coalescing with
branches sharing a similar unbalance, or diluted if the coalescing branches have contrasting or
no unbalances. Exploiting this property, individual lineages can be clustered into taxonomic
clades by inspecting the profile of the weights along the tree and identifying the branch where
this has a local maximum. This rule, exemplified in S1 Fig, (see Methods) naturally defines a
set of independent taxonomic clades and ranks them according to their contribution to the di-
versification between the classes. Using this ranking, the minimal set of clades necessary to de-
scribe the classes to a certain level of accuracy is determined by running non-parametric tests
of class diversification, such as PERMANOVA[23] and ANOSIM[24], as a function of the
number of clades.

Applications
In order to illustrate the potentialities of the method, we analyzed two recent datasets, one in-
cluding 528 samples from healthy individuals of different ages from the United States, from
Guhaibo Amerindians living in two villages in Venezuela, and from four rural communities in
Malawi [5], and the other including samples from 14 healthy children from the Mossi ethnic
group living in a rural setting in Burkina Faso and 15 healthy children living in Florence (Italy)
[6]. To allow joint analysis of these two datasets, OTUs were picked using a reference database
(see Materials and Methods) and the OTU tables were merged and rarefied to the same number
of reads. A PCoA analysis of the weighted UniFrac distances (Fig. 2A) shows that the samples
segregate by geographical origin, with the USA and Italian samples clearly distinct from the Af-
rican (Malawi and Burkina Faso) samples, and the Venezuelan occupying an intermediate po-
sition between the two groups. Previous meta-analyses of these data have shown differences in
microbiota composition correlating to the “Western” (USA and Italy) or “non-Western” (Ma-
lawi, Burkina Faso and Venezuela) origin of the samples, and it has been suggested that these
differences are related to the different balance between protein-rich and fiber-rich diet in these
communities [2,5,6]. Stratifying the data by age of the subjects shows (S2 Fig) that the age is
also an important factor in the variability of the human gut microbiota, and that this variability
seems to be highest at younger age.

To identify the taxonomic groups that associate with the geographical origin and that might
be correlated to the different diets of the five different populations, we partitioned the samples
into two classes, one including the Western subjects (from Italy and the USA), and the other
including the non-Western (Malawi, Burkina Faso and Venezuela) subjects, and applied the
PhyloRelief algorithm to these two classes. To identify the number of clades that were more rel-
evant to differentiate the two classes, we performed ANOSIM and PERMANOVA analysis
with increasing number of clades ranked according to the PhyloRelief weights (Table 1). This
procedure showed that both ANOSIM and PERMANOVA had a maximum comprised be-
tween 20 and 30 clades, indicating that using this number of clades the separation between the
groups is largest. In Fig. 2B we show a phylogenetic tree of the OTUs present in the samples,
with those included in the 30 most relevant clades identified by PhyloRelief highlighted (in red
OTUs more prevalent in Malawi, Burkina Faso and Venezuela, in green OTUs more prevalent
in the USA and Italy). It is worth noting that most of these clades were specifically more repre-
sented in the non-Western samples, while only few were specific of the Western individuals,
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and that much of the differences were confined within the order Bacteroidales. In particular,
the Malawi, Burkina Faso and Venezuelan samples were rich in Prevotellaceae, while the West-
ern samples were rich in Ruminococcaceae. In Fig. 2C the PCoA of the weighted UniFrac dis-
tances computed on the 30 most relevant clades is shown. Although the Western samples were
distinct from the rest, they showed a large degree of variability, with a small fraction of samples
from the USA closely related to the Malawi, Burkina Faso and Venezuelan samples. In addi-
tion, age was still a major factor, being closely associated to the second component of the PCoA
(S3 Fig). To further investigate the individual distribution of the 30 most relevant clades, we

Fig 2. Variability of the gut microbiome with geography. A) PCoA of the weighted UniFrac distances stratified by geographical origin. B) Phylogenetic
tree of the OTUs. The 30 clades most relevant for the differentiation of the USA and Italian samples form the Burkina Faso, Malawi and Venezuelan samples
are highlighted. Colors distinguish those more prevalent in the USA and Italian samples (green) form those more prevalent in the Burkina Faso, Malawi and
Venezuelan samples (red) C) PCoA of the weighted UniFrac distances using only the OTUs included in the most relevant clades. D) Heatmap of the Log10 of
the relative abundances of the 30 most relevant clades (rows) identified by PhyloRelief. The age and origin of the individuals (columns) are indicated.

doi:10.1371/journal.pcbi.1004186.g002
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show in Fig. 2D a heatmap of the logarithm of the prevalences of the OTUs within these clades.
These data confirmed that there was a group of individuals from the USA that were closely re-
lated to the non-Western individuals, sharing three clades of Prevotellaceae with most of the
Malawi, Burkina Faso and Venezuelan subjects. Stratifying the subjects by age, we found that
in both classes young subjects (below 2 years of age) were clearly distinct from older subjects
(Fig. 2D, upper panel). In addition, while we found clear separation between Western and non-
Western adult subjects, some of the Western young subjects were classified by hierarchical
clustering together with the non-Western young subjects and vice-versa, suggesting that at
young age cultural or geographical differences are less important in determining the structure
of the gut microbiota probably related to the instability of the gut microbiota, a phenomenon
typical of childhood[5].

To highlight the role of age, and to identify the age for which the differences between young
and older individual was highest, we partitioned the samples into two groups using as variable
the age threshold, performing a PERMANOVA analysis of the weighted UniFrac distances be-
tween the groups as a function of this threshold. We found (S4 Fig and S1 table) that the differ-
entiation between young and older subjects was largest when the age threshold was set to two
years, and that above 14 years of age, there was no difference between the microbiome of
young and adult subjects. However, running the PhyloRelief analysis on the complete dataset,
we could not unambiguously identify a minimal set of bacterial clades associated to this differ-
entiation (S2 Table). This result was likely due to the different gut microbiota of Western and
non-Western adult subjects. For this reason, we repeated the analysis separately for Western
and non-Western samples. ANOSIM and PERMANOVA showed that the maximum

Table 1. Permutational ANOVA and ANOSIM tests on the effect of the number of clades used in the
calculation of the weighted UniFrac distance betweenWestern (USA and Italy) and non-Western (Ma-
lawi, Burkina Faso and Venezuela) individuals.

PERMANOVA ANOSIM

N clades F R2 p-value R p-value

10 49.00 0.13 0.001 0.40 0.001

20 414.44 0.44 0.001 0.68 0.001

30 374.68 0.41 0.001 0.61 0.001

40 139.46 0.20 0.001 0.29 0.001

50 121.25 0.18 0.001 0.27 0.001

60 83.88 0.13 0.001 0.36 0.001

70 82.01 0.13 0.001 0.35 0.001

80 82.24 0.13 0.001 0.35 0.001

90 92.72 0.14 0.001 0.30 0.001

100 86.89 0.14 0.001 0.32 0.001

200 98.98 0.15 0.001 0.36 0.001

300 101.74 0.15 0.001 0.35 0.001

400 109.94 0.17 0.001 0.37 0.001

500 109.73 0.17 0.001 0.37 0.001

600 106.61 0.16 0.001 0.38 0.001

700 94.92 0.15 0.001 0.35 0.001

800 94.90 0.15 0.001 0.35 0.001

900 96.79 0.15 0.001 0.36 0.001

1000 96.51 0.15 0.001 0.36 0.001

doi:10.1371/journal.pcbi.1004186.t001
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differentiation between individuals below age of 2 and above age of 2 for the Western and for
the non-Western samples was achieved using 90 (Table 2) and 30 clades (Table 3), respectively,
where both PERMANOVA R2 and ANOSIM R have a maximum. The differentiation between
young and adults was much sharper in Western subjects, with a prominent role played by
Lachnospiraceae and Ruminococcaceae in the adults (Figs. 3A and S5). In non-Western sub-
jects (Figs. 3B and S6), there was also a contribution of the presence of five clades of Prevotella-
ceae to the differentiation of the adult gut microbiota. In both Western and non-Western
samples the younger subjects have higher abundance of Bifidobacteriaceae (Fig. 3), probably
due to breast-feeding in infants [5]. Bifidobacteriaceae were present at lower prevalence in
most adult subjects, except for the adults from Burkina Faso probably due to the absence of
dairy food in adult age in this African population [25].

Table 2. Permutational ANOVA and ANOSIM tests on the effect of the number of clades used in the
calculation of the weighted UniFrac distance between young (below two years of age) and older
(above two years of age) Western individuals (USA and Italy).

PERMANOVA ANOSIM

N clades F R2 p-value R p-value

10 138.89 0.31 0.001 0.75 0.001

20 50.38 0.14 0.001 0.58 0.001

30 92.73 0.22 0.001 0.73 0.001

40 76.12 0.19 0.001 0.71 0.001

50 72.53 0.18 0.001 0.69 0.001

60 69.68 0.18 0.001 0.68 0.001

70 72.43 0.18 0.001 0.71 0.001

80 78.38 0.20 0.001 0.74 0.001

90 124.58 0.28 0.001 0.81 0.001

100 121.48 0.27 0.001 0.80 0.001

110 117.01 0.27 0.001 0.80 0.001

120 110.17 0.26 0.001 0.78 0.001

130 110.45 0.26 0.001 0.78 0.001

140 110.62 0.26 0.001 0.78 0.001

150 111.04 0.26 0.001 0.78 0.001

160 111.04 0.26 0.001 0.78 0.001

170 107.45 0.25 0.001 0.78 0.001

180 107.89 0.25 0.001 0.77 0.001

190 103.66 0.24 0.001 0.76 0.001

200 101.49 0.24 0.001 0.75 0.001

200 101.49 0.24 0.001 0.75 0.001

300 88.90 0.22 0.001 0.74 0.001

400 85.75 0.21 0.001 0.72 0.001

500 88.47 0.22 0.001 0.72 0.001

600 88.89 0.22 0.001 0.73 0.001

700 89.97 0.22 0.001 0.73 0.001

800 89.82 0.22 0.001 0.73 0.001

900 89.79 0.22 0.001 0.73 0.001

1000 89.77 0.22 0.001 0.73 0.001

doi:10.1371/journal.pcbi.1004186.t002
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Predictivity of the ranked features in supervised classification problems
The main goal of supervised classification is to build a model from a set of labeled samples to
classify new, uncategorized data in high dimensional datasets in the presence of complex rela-
tionships between the variables. Identifying a ranking strategy to reduce the dimensionality of
the dataset can improve the effectiveness of classification algorithms in metagenomic datasets,
where correlations between the variables are introduced both by the phylogenetic relationships
between the clades and by the fact that relative abundances are measured. The Random Forest
(RF) classifier was recently proven to be the most effective in this class of problems [26,27],
both for feature selection and classification. Although the main goal of this work is to define a
phylogeny-based OTUs ranking method, it is interesting to assess the predictive power of the
ranked taxa for the classification of samples into predefined categories in comparison to other
state of the art algorithms. For this purpose, we selected four publicly available datasets,

Table 3. Permutational ANOVA and ANOSIM tests on the effect of the number of clades used in the
calculation of the weighted UniFrac distance between young (below two years of age) and older
(above two years of age) non-Western individuals (Malawi, Burkina Faso and Venezuela).

PERMANOVA ANOSIM

N clades F R2 p-value R p-value

10 17.54 0.09 0.001 0.38 0.001

20 18.92 0.10 0.001 0.42 0.001

30 173.33 0.47 0.001 0.73 0.001

40 154.84 0.45 0.001 0.72 0.001

50 161.55 0.46 0.001 0.72 0.001

60 144.83 0.43 0.001 0.68 0.001

70 125.26 0.39 0.001 0.66 0.001

80 129.25 0.40 0.001 0.66 0.001

90 111.63 0.37 0.001 0.63 0.001

100 111.37 0.37 0.001 0.60 0.001

110 111.52 0.37 0.001 0.60 0.001

120 103.80 0.35 0.001 0.59 0.001

130 103.00 0.35 0.001 0.58 0.001

140 103.52 0.35 0.001 0.59 0.001

150 94.73 0.33 0.001 0.53 0.001

160 93.17 0.33 0.001 0.53 0.001

170 92.03 0.32 0.001 0.53 0.001

180 91.97 0.32 0.001 0.53 0.001

190 91.39 0.32 0.001 0.53 0.001

200 91.20 0.32 0.001 0.54 0.001

200 91.20 0.32 0.001 0.54 0.001

300 85.45 0.31 0.001 0.52 0.001

400 78.85 0.29 0.001 0.51 0.001

500 73.88 0.28 0.001 0.46 0.001

600 69.12 0.26 0.001 0.46 0.001

700 69.20 0.26 0.001 0.46 0.001

800 69.12 0.26 0.001 0.46 0.001

900 68.97 0.26 0.001 0.46 0.001

1000 68.92 0.26 0.001 0.46 0.001

doi:10.1371/journal.pcbi.1004186.t003
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including data from four body sites (forehead vs. external nose and volar forearm vs. popliteal
fossa) [1], from fecal samples (IBD vs. healthy) [28] and skin [29] (using both subject identifi-
cation—3 classes—and subject/hand identification—6 classes—as target) that have recently
been used as benchmark in comparative evaluations of classification methods for metagenomic
data [26,27,28].

We compared the performance of PhyloRelief coupled with the RF classifier to LEfSe [30],
an algorithm that uses statistical tests for biomarker discovery, to MetaPhyl, a recent phylogeny-
based method for the classification of microbial communities [31] and to Random Forest, used
both as classifier and feature selection method. The performances were assessed in terms of av-
erage predictive accuracy using the K-category correlation coefficient (KCCC), a multiclass ex-
tension of the Matthews Correlation Coefficient (MCC) [32] (see Materials and Methods for
details on the procedure). The results are reported in Table 4. We found that while in one case

Fig 3. Variability of the gut microbiome with age. A) Italy and USA; Heatmap of the Log10 of the relative abundances of the 90 clades (rows) identified by
PhyloRelief that differentiate the samples from individuals below 2 years of age from the older individuals (columns). B) Italy and USA; Phylogenetic tree of
the OTUs. The 90 most relevant clades are highlighted. Colors distinguish those more prevalent in the younger samples (green) form those more prevalent in
the older samples (red). C) Burkina Faso, Malawi and Venezuela; Heatmap of the Log10 of the relative abundances of the 30 clades (rows) identified by
PhyloRelief that differentiate the samples from individuals below 2 years of age from the older individuals (columns). D) Burkina Faso, Malawi and
Venezuela; Phylogenetic tree of the OTUs. The 30 most relevant clades are highlighted. Colors distinguish those more prevalent in the younger samples
(green) form those more prevalent in the older samples (red).

doi:10.1371/journal.pcbi.1004186.g003
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(in the volar forearm vs. popliteal fossa sample) the OTUs identified by LEfSe had a higher pre-
dictive value, in all other cases PhyloRelief coupled to RF performed equivalently to the most ef-
ficient alternative algorithm (FH vs. EN: Phylorelief 0.220+/-0.073—MetaPhyl 0.170+/-0.106;
IBD: Phylorelief 0.213+/-0.074—LEfSe 0.238+/-0.065; FS subject: PhyloRelief 1.0—LEfSe 1.0; FS
subject/hand: PhyloRelief 0.684+/-0.026—RF 0.670+/-0.026), suggesting that taxa identified
using phylogenetic information have high predictive power in classification problems.

Discussion
High throughput sequencing applied to the study of microbial communities is revolutionizing
the way we understand the role of microorganisms in the environment and in health and dis-
ease conditions. The relatively low cost of sequencing has triggered an exponential increase in
the amount of data generated, that have highlighted correlations between the structure of the
microbiota and important human pathologies for which conventional intervention strategies
were not effective. This suggests that a precise definition of the structure of the healthy vs. dis-
ease microbiota could allow early diagnosis and the definition of effective intervention strate-
gies in a number of pathologies. To become a viable diagnostic and therapeutic tool, the
evolution of sequencing technologies needs to be paralleled by progress in computational tools
enabling to significantly correlate phenotypes to the smallest possible number of microbial
taxa. This would allow, on one hand, to develop relatively cheap and easy to use diagnostic
tools, and on the other hand to design focused and personalized intervention strategies.

PhyloRelief is an algorithm that resolves the problem of relevant taxa identification by ap-
plying the Relief strategy of feature ranking in a phylogenetic context. The improvement of this
method over existing ones consists in its ability to accomplish a ranking of the microbial clades,
defined on the basis of the taxa distribution amongst the samples weighted by phylogenetic in-
formation, discovering those that contribute to the differentiation between two or more classes
of samples. Importantly, this result is obtained without relying on a predefined set of taxonom-
ic categories that are often hard pressed to describe the complexity of the evolutionary relation-
ships between microorganisms.

Table 4. Classification accuracy in terms of average K-category correlation coefficient (KCCC) using weighted and unweighted PhyloRelief, LEfSe
using OTUs and classified taxa, RF and MetaPhyl.

FH vs. EN (CBH) VF vs. PF (CBH) IBD FS subject (C = 3) FS subject/hand (C = 6)

PhyloRelief W + RF k = 2 0.214 0.103 (4) 0.655 0.045 (800) -0.011 0.060 (40) 1 0 (700) 0.678 0.028 (900)

k = 3 0.158 0.060 (4) 0.718 0.033 (800) 0.079 0.090 (40) 1 0 (700) 0.666 0.027 (800)

k = 4 0.220 0.073 (4) 0.685 0.065 (800) 0.074 0.067 (40) 1 0 (700) 0.684 0.026 (900)

PhyloRelief U + RF k = 2 -0.042 0.087 (4) 0.565 0.077 (800) 0.165 0.057 (40) 1 0 (700) 0.655 0.024 (900)

k = 3 0.112 0.095 (4) 0.539 0.080 (800) 0.213 0.074 (40) 0.994 0.006 (700) 0.640 0.020 (800)

k = 4 0.066 0.089 (4) 0.599 0.050 (800) 0.121 0.078 (40) 0.994 0.006 (700) 0.653 0.017 (900)

LEfSe + RF OTU -0.039 0.061 (19) 0.836 0.040 (100) 0.083 0.057 (81) 1 0 (181) 0.628 0.022 (59)

Taxa 0.044 0.059 (4) 0.833 0.035 (50) 0.238 0.065 (20) 0.983 0.008 (85) 0.517 0.034 (101)

RF FS 0.108 0.099 (1) 0.784 0.074 (40) 0.142 0.059 (7) 1.0 0.0 (200) 0.670 0.026 (30)

No FS -0.021 0.021 (-) 0.659 0.060 (-) 0.0 0.0 (-) 1.0 0.0 (-) 0.667 0.026 (-)

MetaPhyl No FS 0.170 0.106 (-) 0.831 0.048 (-) 0.229 0.085 (-) 0.950 0.022 (-) 0.672 0.036 (-)

For PhyloRelief, three value of k (k = 2,3,4) are shown. When feature selection was performed using PhyloRelief, LEfSe and RF, the RF classifier was

used. For each of these algorithms we report the cross-validation accuracy in terms of average KCCC, the Standard Error and the number of features

selected in the final model using the complete dataset (in parentheses). For PhyloRelief and RF the number of features was selected by a nested cross

validation loop. For each dataset, the maximum KCCC value is marked in bold.

doi:10.1371/journal.pcbi.1004186.t004
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We applied the algorithm to case control studies derived from the literature, in all cases
identifying taxa that are significantly differentially distributed. Of particular interest were the
results obtained when comparing infants vs. adults in the different geographies, showing that
age has a much greater influence in the USA and Italy than in the African and South American
samples, with a much larger fraction of the OTU differentially distributed between young chil-
dren and adults in the former than in the latter. Comparing the performances of the algorithm
to LEfSe, MetaPhyl and to Random Forest in a classical supervised classification schema using
cross validation, we found that the taxa ranked by PhyloRelief had also a high predictive value,
performing as well as—and in some cases outperforming—current gold standard methods.

The algorithm is general and does not rely on any specific sequencing technology, as
long as a phylogenetic tree of the OTUs and the distribution of the OTUs in the different
samples are available. The method presented here is technology agnostic since it can be used
to interpret data generated by the targeted amplification of marker genomic loci, such as the
variable regions of the 16S rDNA gene for bacteria, or the ITS sequences for fungi as well as
complete metagenome sequencing data, such as those obtained with Illumina technologies.
In addition, the algorithm can readily be extended to regression problems to include cases
where a continuous variable differentiate the individual samples using the RReliefF extension
of Relief [21,22]. The PhyloRelief class of algorithms fills a significant gap in the growing
array of computational methods that are currently used for the analysis of metagenomic data,
and will impact importantly on the application of metagenomics to the development of novel
diagnostic markers, leading the application of these approaches from the bench to the
bedside.

Materials and Methods

The PhyloRelief algorithm
We will assume that a phylogenetic tree T of the OTUs is given, and that a distance matrix DS

between the samples S has been computed according to some measure of β -diversity. Given
the availability of phylogenetic data, β -diversity measures incorporating phylogenetic informa-
tion, such as weighted and unweighted UniFrac [19,20] have become popular in the context of
metagenomic research, but other measures, such as Bray-Curtis dissimilarity index could also
be used. Let us define a partitioning of S into sample class {C1} and {C2}. Usually, this parti-
tioning is obtained either by exploratory analysis of the distance matrix DS, or by the study de-
sign (e.g. according to the origin of the samples, health status or age of the donor in the case of
human samples, etc.).

The purpose of the PhyloRelief algorithm is to rank the OTUs according to their relevance
in the partitioning of S into {C1} and {C2}. To accomplish this result, we developed a modified
version of the Relief-F procedure that takes into account the phylogenetic information con-
tained in the tree T. To this purpose, the algorithm does not work directly with the OTUs, but
with the clades (or sub-trees) Ti of the tree T. Below we report the two main steps of the algo-
rithm, i.e. i) the scoring scheme ranking the sub-trees of the tree T, and ii) the merging step
that identifies the independent clades.

Definition of the scores. Two different scoring function have been define: a unweighted
update function and a weighted update function. Being closely related to the unweighted Uni-
Frac distance, the unweighted update function is the natural choice when exploratory analysis
of the samples has been performed using unweighted UniFrac, while the weighted update func-
tion is the natural choice when weighted UniFrac has been used.

Unweighted PhyloRelief. For each subtree Ti (1�i�N)of T, we compute a weight w[Ti] with
the following iterative procedure:
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Start
define the subtrees Ti (1�i�N) that have the branches Bi as root;
set all weights w[Ti] = 0;
for j: = 1 to m do begin
randomly select a sample Sj;
find nearest hit H and nearest miss M;
for i = 1to N do

w½T i� ¼ w½T i� �
dðT i; Sj;HÞ

m
þ dðT i; Sj;MÞ

m

end;
end;

The function d(Ti,A,B) is equal to:

dðT i;A;BÞ ¼
X

Bq2fT ig
bqjYA

q �YB
q j

X
Bq2fT ig

bq

whereYS
q is equal to 1 if the branch Bq contains OTUs from sample S, 0 otherwise. In this way,

the contribution of each clade does not take into account the prevalence of the OTUs in the dif-
ferent classes, but just their presence. Consequently, the algorithm identifies those lineages that
are specific to one of the classes of samples.

Weighted PhyloRelief. In weighted PhyloRelief we use the same iterative procedure defined
above, but the update function d(Ti,A,B) is defined as:

dðT i;A;BÞ ¼
X

Bq2fT ig
bqjpAq � pBq j

X
Bq2fT ig

bqðpAq þ pBqÞ

The sum runs on all branches Bq of Ti (including Bi). pAq and p
B
q are the fraction of the taxa de-

scending from the branch Bq that are from samples A and B, respectively. bq is the length of the
branch Bq. In other words, d(Ti,A,B) is the weighted UniFrac distance between samples A and
B due to the OTUs in the subtree Ti of the tree T defined by the branch Bi. By iterating over Sj,
the procedure positively weights those sub-trees Ti that support the partitioning of S into {C1}
and {C2}, and negatively those that do not support the partitioning.m is a user defined parame-
ter that, in practice, can be set to the number of samples in S.

Generalizations and extensions. Analogously to the Relief-F algorithm, PhyloRelief can
work with multi-class classification problems. Moreover, in its generalized form, the algorithm
again randomly selects a sample S, but then identifies k of its nearest neighbors from the same
class, called nearest hitsHl, and k nearest neighbors from each of the different classes, called
nearest missesMl(C).

Start
define the subtrees Ti (1�i�N) that have the branches Bi as root;
set all weights w[Ti] = 0;
for j: = 1 to m do begin
randomly select a sample Sj;
find k nearest hits Hl;
for each class C6¼class(Sj) do

find k nearest misses Ml(C);

Phylogenetic-Based FeatureWeighting in Metagenomic Datasets

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004186 March 27, 2015 13 / 18



for i = 1to N do

w½T i� ¼ w½T i� �
Xk

l¼1

dðT i; Sj;HlÞ
m � k þ

X
C 6¼classðSjÞ

PðCÞ
1� PðclassðSjÞÞ

Xk

l¼1

dðT i; Sj;MlÞ
m � k

end;
end;

end;

where P(C) is the fraction of samples in class C. The factor PðCÞ
1�PðclassðSjÞÞ is required for ensuring

appropriate normalization and to guarantee that the contribution of hits and of each class of
misses is between 0 and 1.

Definition of the clades. Let Tj be a sub-tree of Ti. The correlation between the values
w[Ti], w[Tj] is illustrated by the example in S1 Fig, where the weights for four samples (“cir-
cles”, “squares”, “triangles” and “stars”) partitioned into two classes (“red” and “blue”) are
shown. The high weights in the bottom clade (Clade b, containing OTUs only from the “red”
class of samples) propagates up from the terminal branches until it merges with Clade a, that
contains OTUs from the “blue” class of samples. In the parent branch of Clades a and b, the
unbalance between the two samples is diluted, and consequently the weight decreases. In this
example, Clade a and clade b separately, but not their parent clade, would be responsible for
the differentiation between “red” and “blue” samples.

In order to exploit the information contained in the weights w[Ti], it is crucial to define a set
of independent clades and rank those in order of importance. To accomplish this, we identify
the sub-tree T with the highest weight. In the case of ties, we randomly start from one of the
subtrees if these are independent, or take the one closest to the root if these are nested. This de-
fines the first clade. Next, we prune the tree from all the branches descending from T, and from
those ascending from T. This last step is needed to avoid the possibility to iteratively enlarge
the same clades, given the correlation between the weights of nested sub-trees discussed above.
Iteratively applying this rule, we define a set of independent clades ranked according to their
weight. Using this ranking, the minimal set of clades necessary to describe the classes to a cer-
tain level of accuracy is determined by running non-parametric tests of class diversification,
such as PERMANOVA[23] and ANOSIM[24], as a function of the number of clades. Alterna-
tively, univariate non-parametric tests such as the Kruskal—Wallis could be applied for testing
whether samples originate from the same distribution in each clade.

Applications. Definition of the OTU table. USA, Venezuela and Malawi dataset. Reads
were downloaded from the MG-RAST web server (http://metagenomics.anl.gov/
metagenomics.cgi?page=MetagenomeProject&project=401). II) Burkina vs. European chil-
dren. Raw data were obtained from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/
sra), study number ERP000133. Forward and reverse primers were removed using cutadapt
[33] and reads missing the forward primer were discarded. Quality trimming was performed
by sickle (https://github.com/najoshi/sickle), with quality threshold 20. Reads with length
<100 were discarded. Chimeras were removed by uchime[34] (reference database mode) using
the Greengenes[35] database (Release 13_5) clustered at 85% identity threshold as reference.

OTUs were picked using QIIME (pick_otus.py seqs.fna --max_accepts 1 --max_rejects 8
--stepwords 8 -- word_length 8 -C) against the Greengenes database clusters at 97% identity
level (Greengenes database available at: http://greengenes.lbl.gov/Download/Sequence_Data/
Fasta_data_files/Reference_OTUs_for_Pipelines/Caporaso_Reference_OTUs/gg_otus_
4feb2011.tgz). The OTU table was obtained using custom scripts, and rarefied using the rare-
fy_even_depth() function in the phyloseq package (version 1.6.1) of the R (version 3.0.2) statis-
tical software. Taxonomy was assigned to the representative sequences using the RDP classifier
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[36] (version 2.5) with a confidence threshold of 0.8. UniFrac distances were computed and the
PhyloRelief analysis was performed using the reference phylogenetic tree from the
Greengenes release.

IBD, Costello et al. Body Habitats (CBH) and Fierer et al. Subject (FS) Datasets. Prepro-
cessed reads and metadata were downloaded from the Qiime repository http://www.microbio.
me/qiime/ under the study ids 1290, 449 and 232 respectively. OTU tables and phylogenetic
trees were inferred using the standard QIIME pipeline with default settings, where OTUs were
picked with UCLUST [37] at a sequence similarity threshold of 0.97%. Taxonomy was assigned
using the Greengenes database (version 2013/05). Rarefactions were performed at the depth of
the shallowest sample. Phylogenetic tree were computed using PyNAST [38] (using the Green-
genes 2013/05 database as template) and FastTree [39].

Non parametric tests. Permutational ANOVA (PERMANOVA) and ANOSIM tests were
performed with 999 permutations.

Predictive classification pipeline
We compared the predictive performance of PhyloRelief with the Random Forest classifier
(PhyloRelief +RF) to LEfSe + RF, MetaPhyl (without feature selection) and Random Forest
used as both classifier and feature selection method (RF + RF).

To assess the prediction performance of the weighted features we implemented a predictive
pipeline based on a stratified 10x random subsampling cross validation (CV). Data are parti-
tioned into a training set and a testing set (75% and 25% of the samples respectively). In order
to avoid overfitting and selection bias effects, the feature selection procedure was included in
the cross validation loop [40,41]. For each training set, the number of ranked features n0 that
provides the smallest average KCCC is found by a nested 10x random subsampling CV. Later,
the features are ranked using the entire training set and the model is trained using the top
ranked n0 features. The model is finally tested on the independent testing set and a KCCC is
computed. In the case of LEfSe + RF, LEfSe was treated as feature selection method using the
common p-value threshold of 0.05. For MetaPhyl, no feature selection was performed and the
nested CV was used to find the optimal model parameters (parameters grid: λ = {100000, 1000,
100, 10, 1, 0.1, 0.01, 0.001, 0.0001} and w = {0, 0.2, 0.4, 0.6, 0.8, 1}). For the Random Forest clas-
sifier, the number of trees was set to 500 and the weights were computed as in [42]. In PhyloRe-
lief OTUs were ranked using the weights computed on the related clades.

The pipeline was developed in Python using the scikit-learn module (http://scikit-learn.
org).

Software dependencies and availability. PhyloRelief is implemented in Python (http://
www.python.org), and requires Python> = 2.7 with the NumPy/SciPy (http://www.scipy.org),
Pandas (http://pandas.pydata.org/), DendroPy [43] and Statsmodels (http://statsmodels.
sourceforge.net/) libraries. PhyloRelief software, scripts and data analyzed in this paper are
available at http://compmetagen.github.io/phylorelief.

Supporting Information
S1 Fig. The PhiloRelief scoring scheme In this example, four samples (“circles”, “squares”,
“triangles” and “stars”) are partitioned into two classes (“red” and “blue”). The Bottom clades
(Clade a and Clade b) have high weight since they contain OTUs only from the “blue” and
“red” class of samples, respectively. The higher weights of the branches in clade b take into ac-
count the more even distribution of the “blue” class of samples. The weights propagate up from
the terminal branches until the two clades merge. In the parent branch of Clade a and Clade b
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the unbalance between the two samples is diluted, and consequently the weight decreases.
(TIF)

S2 Fig. PCoA of the weighted UniFrac distances stratified by age.While the first component
is correlated to geography (see Fig. 2) the second is related to the age of the subjects.
(TIF)

S3 Fig. PCoA of the weighted UniFrac distances computed using only the OTUs included
in the 30 most relevant clades for the differentiation betweenWestern (Italy and USA) and
non-Western (Malawi, Burkina Faso and Venezuela) populations. Colors indicate the age of
the subjects. Above two years (red); below two years (blue).
(TIF)

S4 Fig. R2 of the Permutational ANOVA obtained by partitioning the individuals into two
samples using an increasing age threshold, and the pair-wise weighted UniFrac distance.
The differentiation is maximum for two years of age, and there is no difference between the
two sub-samples above 16 years.
(TIF)

S5 Fig. PCoA of the weighted UniFrac distances betweenWestern (Italy and USA) individ-
uals using only the OTUs included in the 90 most relevant clades. Colors indicate the age of
the subjects. Above two years (red); below two years (blue).
(TIF)

S6 Fig. PCoA of the weighted UniFrac distances between non-Western (Malawi, Burkina
Faso and Venezuela) individuals using only the OTUs included in the 30 most relevant
clades. Colors indicate the age of the subjects. Above two years (red); below two years (blue).
(TIF)

S1 Table. Permutational ANOVA and ANOSIM tests on the effect of age. The sample has
been partitioned into two as function of an age threshold and the Permutational ANOVA and
ANOSIM tests have been computed using the weighted UniFrac distance.
(DOCX)

S2 Table. Permutational ANOVA and ANOSIM tests on the effect of the number of clades
used in the calculation of the UniFrac distance between young (below two years of age) and
older (above two years of age) individuals.
(DOCX)
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