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AUTOIMMUNE DISEASES 

The immune system is an extraordinary integrated network of chemical and cellular mediators, 

delegated to the organism defense against any form of external agent. As summarized in Figure 1, 

under normal conditions the immune system exhibits tolerance to self-molecules, and thus does 

not respond to elements expressed in endogenous tissues. When self-tolerance is lost, the immune 

system reacts against one or more of the body’s own components, triggering a set of mechanisms 

that represent the hallmark of autoimmune diseases (AID).  

 

Figure 1: Central and Peripheral Tolerance Mechanisms1.  

 

AID are a collection of many complex and heterogeneous disorders, characterized by the aberrant 

reaction of the immune system against self. Such pathologies are classified as organ-specific, in 

which the immune response is predominantly or exclusively directed toward tissue-specific 

elements, or systemic, in which the loss of immune tolerance is directed toward systemic antigens 

(Ag) and disease manifestations can occur at a variety of different sites. It is estimated that AID 

afflict more than 8% of people worldwide2, but the actual prevalence is predicted to be even higher 

because the extent of less common AID is possibly miscalculated due to the scarcity of 

epidemiological data3. Nearly 75% of AID patients (pts) are women3, and the risk of developing an 

AID is about tenfold higher for women than for age-matched men, although there are exceptions 

(e.g. several autoimmune renal disorder)4.  
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Even if the etiology of AID is still unknown, it is widely demonstrated that both onset and 

development are consequence of interaction between genetic and environmental factors5. It is 

known for decades that genetic predisposition to most AID involves genes within the major 

histocompatibility complex (MHC), reflecting the essential immunoregulatory effects of the human 

leukocyte Ag (HLA), but the exact mechanism that underlie these effects is still matter of debate. 

Recently, genome-wide association studies (GWAS) permitted to take remarkable steps forward in 

the genetics of AID: it was shown that more than 200 loci are associated with one or more AID. In 

many cases, the precise causal alleles or genes driving the associations were not identified, but it 

was demonstrated that some loci belong to categories of genes involved in: intracellular signaling 

regulating T- and B-cells activation; signaling by cytokines and cytokines receptors; pathways 

mediating innate immunity and microbial response1. Despite these recent progresses, much of the 

heritability of AID remains unaccounted for, disclosing that genes, alone, are not sufficient to 

trigger the disease, and that environmental factors play a key role in the autoimmune process. This 

hypothesis is supported by the largely incomplete concordance of AID in monozygotic twins6. 

Environmental risk factors associated with AID are numerous, as well as their possible mechanisms 

of action (summarized in Figure 2). In particular, both chemical and infectious agents are able to 

induce aberrant post-translational modifications (PTM) in self-Ag, contributing to tolerance 

breakdown. 

 

Figure 2: Environmental factors associated with AID and putative mechanisms  
involved in the breakdown of immune tolerance7. 
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Role of aberrant post translational modifications in 

autoimmunity 

As just mentioned, it was demonstrated that one of the mechanisms able to elicit the autoimmune 

reaction is represented by PTM, described as covalent addition of functional groups, or amino acids 

(Aa) conversions, that can be driven by enzymes or occur spontaneously (Table 1)8,9. PTM are 

frequently required for the biological function of numerous proteins, and occur during many 

physiological cellular events, e.g. ageing and cell replication: indeed, it is estimated that 50-90% of 

the human proteins are post-translationally modified9. The presence of aberrant PTM can result to 

changes in both functionality and immunogenicity of the protein, leading to the formation of neo-

Ag. Effectively, PTM could induce immune tolerance breakdown through different mechanisms. 

Concerning T-cells autoimmune response, some PTM could not be present at the time of selection 

within the thymus, allowing autoreactive T-cells to migrate to the periphery, or else, proteins 

containing PTM could encounter a different Ag processing compared with the unmodified analog 

(Figure 3). In any case, T-cells response leans toward specificity to the modified self-Ag10. 

Conversely, B-cells response tends to be promiscuous, since antibodies (Ab) could be able to bind 

not only the modified but also the native self-Ag, leading to cross-reactivity. This is probably due to 

the conservation of the Aa flanking the modified site10. 

Modification Aa altered 
Additions  
Acetylation Lys, Ser 
Glycosylation Asn, Ser 
Hydroxylation Pro, Lys 
Methylation Arg, Hys, Lys 
Phosphorilation Ser, Thr, Tyr 
Conversions  
Deamidation/Isoaspartylation Asp, Asn 
Citrullination/Deamidation Arg 

 
Table 1. Example of common PTM. 

 

 

Figure 3: alteration of Ag processing by aberrant PTM. (A) Native proteins are cleaved by 
proteases (represented by X) into peptides. T and B cells do not recognize self-peptides. (B) 

Proteins bearing aberrant PTM are not properly cleaved by proteases, 
 creating neo-Ag for T cells 11. 
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The differences between T- and B-response to post-translationally modified self-proteins was 

elucidated by Mamula M.J. et al.12, in a study on the Ag of human systemic lupus erythematosus 

(SLE), the small nuclear ribonucleoprotein particle D. The authors showed that mice immunized 

with isoaspartyl-modified form (isoAsp) of the peptide Ag develop T-response only against isoAsp 

peptide, and not against the Asp form. On the other hand, auto-Ab generated by the same 

immunization procedure were able to bind both isoAsp and Asp form of the Ag. Therefore, it could 

be hypothesized that the introduction of an aberrant PTM is able to promote the epitope spreading 

process, by which the immune response diversifies to include epitopes beyond the site(s) inducing 

the initial reaction13. This phenomenon can be both intra-molecular and inter-molecular12,14. 

In a nutshell, a putative PTM-induced autoimmune mechanism could be the following (Figure 4): 

proteins are aberrantly post-translationally modified e.g. during cellular stress, and then are 

released from apoptotic/necrotic cells where they are phagocytized by Ag presenting cells (APC). 

The presence of PTM can affect the Ag processing and presentation on MHC class II. At that point, 

modified peptide is presented to autoreactive T- and B-cells that have escaped negative selection, 

leading to autoimmune response11. 

 

Figure 4. Aberrant PTM on self-proteins initiate the autoimmune response. 

 

Relevance of biomarkers in autoimmunity 

AID are generally thought as being relatively rare2, but actually are among the leading causes of 

death among young and middle-aged women (age < 65 years) in the United States15. The chronic 

nature of many AID results in a significant impact in terms of quality of life, medical care utilization, 

and both direct and indirect economic costs16. Therefore, it is crucial to carry out an early diagnosis 

and to follow the progress of the disease, ideally with a test characterized by low-invasivity, low-

cost, and easy execution. Unfortunately, to date, in most cases the diagnostic and prognostic 

methods used for AID do not meet these criteria.  
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In order to develop a diagnostic or prognostic tool able to satisfy the previously mentioned 

properties, it could be useful to take advantage of biomarkers (BM), objectively measurable and 

evaluable biological indicator of normal physiological events, pathogenic processes or 

pharmacological responses to a therapeutic intervention. Indeed, BM can provide numerous 

information about the disease of interest, reflecting and summarizing easily all the complex agents 

and processes that are needed to produce it17. This reduction of biological complexity makes BM 

important and strong “decision-making tools” in clinical and diagnostic18. Consequently, BM field 

is arousing great attention, and both diagnostic and prognostic research is moving toward the 

design of methodologies that allow the simultaneous measurement of multiple markers (the so-

called “profiling methods”), in order to have a more comprehensive view and to follow different 

aspects of the disease.  

As already noted, the autoimmune mechanism is characterized by the presence of a response 

against self-proteins, which could lead to the appearance of circulating auto-Ab. Interestingly, 

several studies showed that some disease-specific auto-Ab can precede clinical symptoms by 

years19,20, while others can fluctuate with disease exacerbations or remissions21 (as summarized in 

Figure 522). In such cases, auto-Ab may represent useful and valuable BM for both diagnostic and 

prognostic purposes. One of the greatest advantages in using auto-Ab as disease BM is exemplified 

by the possibility to detect them in biological fluids with simple immunoenzymatic assays, using 

antigenic probes consisting of the native Ag, or molecules able to mimic its structure. In the latter 

case, it is essential not only to identify the biological target(s) of auto-Ab, but also to produce 

suitable probes. 

 

 

Figure 5: Potential role of Ab as biomarkers  
in the case of central nervous system demyelinating AID. 
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Strategies for antigenic probes production: recombinant versus 

synthetic 

The antigenic probe source is a crucial variable, as it affects reproducibility, specificity and 

sensitivity of the detection assay. The necessity to satisfy these criteria makes difficult to use native 

Ag isolated from natural sources (e.g. animal tissues), because of their significant limitations in 

terms of yield, purity and reproducibility. Therefore, it is essential to overcome this problem 

identifying an antigenic probe able to mimic the native Ag and to detect specific auto-Ab. 

One of the most used strategies to produce antigenic probes is represented by the molecular 

cloning of the auto-Ag. This procedure consists in the isolation of the messenger RNA (mRNA) 

corresponding to the gene of interest, the conversion of mRNA to complementary DNA (cDNA) by 

reverse transcriptase and the insertion of the cDNA in an expression vector. Then the obtained 

vector is transferred in the selected expression host, which will produce the recombinant protein 

encoded by the cloned gene (Figure 6). The choice of the expression host is decisive to obtain the 

protein provided with the desired physicochemical characteristics. For example, Escherichia coli 

(E.coli) represents a very efficient protein production machinery, which permits to achieve a stable, 

easy and relatively low-cost recombinant protein production. Furthermore, the use of inducible 

promoter expression plasmids allows to obtain large amounts of product. The recombinant protein 

can be easily purified by affinity chromatography adding an N- or C-terminus-tag (e.g. 6 residues 

of Histidine, 6-His): this technique enables to obtain highly purified final products, and also to 

perform on-column reactions, as cleavage to remove the tag or refolding.  

 

Figure 6: Outline of molecular cloning in bacteria. 

 

However, the use of E.coli as expression host has some limitations. First, the size of the protein 

should be comprised within the range of 100-300 Aa. Larger proteins are poorly expressed, while 

smaller need to be stabilized by a fusion partner. Second, bacteria often recognize the recombinant 

protein as foreign, and therefore isolate it into inclusion bodies (IB), insoluble aggregates of 

misfolded, neo-synthesized recombinant protein. The purification of the protein from IB requires 

a time-consuming procedure that includes sonication, mechanical and/or physical 

homogenization, and the use of strong denaturant conditions (e.g. 6 M Urea or Guanidinium 

Hydrochloride, GuaCl). Moreover, since the protein folding is often fundamental for the Ag-Ab 

recognition, the recombinant probe has to be refolded at a later stage. However, the IB expression 
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can be considered also a kind of advantage: IB are often formed only by the protein, are non-toxic 

for the host and can be accumulated in the cytoplasm in larger amounts compared with soluble 

proteins. Third, recombinant proteins expressed in bacteria are lacking in PTM, because the 

biological machinery required for the modification process is absent in prokaryotes. In the last few 

years, some advanced molecular biology techniques were developed to overcome this issue. In 

particular, the attention was focused on transferring bacteria N-glycosylation systems to expressing 

E.coli strains, allowing the in vivo production of glycosylated proteins in an easy-to-manipulate 

and fast-growing host23. In 2002 Wacker et al.24 discovered an N-linked glycosylation system in 

Campylobacter jejuni (C. jejuni), a Gram-negative bacterium, and fully reconstituted this pathway 

in E.coli. The C. jejuni glycosylation machinery is based on a block transfer mechanism, which 

involves the addition of an undecaprenyl pyrophosphate-linked heptasaccharide to the amino 

group of an Asn in the protein consensus sequence Asp/Glu-X1-Asn-X2-Ser/Thr (X1 and X2 are 

any amino acid except Pro)25,26 (Figure 7a). The oligosaccharide is assembled in the cytosol by the 

addition of the indicated sugars from nucleotide-activated donors, and is subsequently translocated 

across the inner membrane into the periplasm by the protein glycosylation K protein. Another N-

glycosylation system was defined in the Gram-negative gammaproteobacterium Haemophilus 

influenzae (H. influenzae), providing the sequential transfer of sugars to the conventional 

eukaryotic consensus sequence for N-linked glycosylation27,28 (Figure 7b). In particular, it was 

disclosed that sugars from nucleotide-activated donors are transferred to the Asn-X-Ser/Thr 

sequon of high-molecular-weight adhesin 1 (HMW1) by the glycosyltransferase HMW1C in the 

cytoplasm, and are elongated by the same enzyme. This mechanism was confirmed with purified 

components in vitro, demonstrating the ability of HMW1C to transfer both glucose and galactose 

residues derived from common sugar precursors. Furthermore, it was shown that HMW1C exhibits 

both oligosaccharyltransferase activity, adding N-linked sugars to HMW1, and glycosyltransferase 

activity, generating hexose–hexose bonds. Even if these in vivo glycosylation methods are still quite 

challenging, they open up the possibility to produce proteins provided with the desired glycans 

using molecular cloning tools29. 

 

Figure 7: Overview of bacterial N-linked pathways for protein glycosylation.  
a) Block transfer (C. jejuni) and b) Sequential transfer (H. influenzae). 
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In addition to the bacteria system, also numerous eukaryotic expression systems are yet available 

(yeast, plants, insects and mammalian). These methodologies allow the obtainment of proteins 

provided with the host usual PTM, which may not correspond to the desired one. Compared with 

the bacteria system, yields are often lower, costs of production are higher and cell culturing is 

noticeably more complicated. 

Another methodology used to produce antigenic probes is represented by the synthesis of 

peptides, short chains of Aa linked by amide bond. The most widely used technique to obtain 

peptides is solid-phase peptide synthesis (SPPS), which consists in the elongation of a peptide chain 

anchored to a solid matrix by successive additions of Aa, taking advantage of the formation of an 

amide bond between the carboxyl group of the incoming Aa and the amino group of the Aa bound 

to the matrix. The procedure can be fully automated. The presence of a covalent bond between the 

growing chain and the support permits an easy separation of the peptide from any excess of unused 

Aa and other by-products. Peptides are stable in time, and by SPPS they can be obtained in large 

amount, with high purity and reproducibility, using a rather simple procedures. SPPS represent a 

promising tool for antigenic probes production, essentially for two reasons: 

 It can be used to obtain peptides containing both linear and conformational epitopes; 

 It allows the univocal inclusion of the desired PTM in the peptide, using both a building 

block and a convergent approach.  

On the other hand, there are several drawbacks: 

 Peptides are designed according to the native auto-Ag, and then it is mandatory to identify 

the exact Aa sequence of interest; 

 The size of the molecules accessible by this technique is limited (up to 50 Aa); 

 Peptides with incorrect, truncated or modified sequences can occur due to technical failure; 

 Peptide separation and characterization methods are required. 

A methodology inspired by the necessity to overcome some of the synthetic and recombinant 

approaches issues is the native chemical ligation (NCL), a chemoselective reaction between a 

C-terminal thioester and an N-terminal Cys residue to produce a peptide bond at the site of ligation 

(Figure 8)30. The first step is a transthioesterification between the thiol side-chain of the Cys and 

the C-terminal acyl donor to generate an intermediate thioester-linked adduct; then a spontaneous 

intramolecular S→N acyl shift produces a native amide bond between the two fragments. NCL 

allows to introduce the desired modification in a controlled fashion in the C-terminal peptide 

fragment, which subsequently will be connected with the N-terminal recombinant portion. The 

ligation occurs specifically at the N-terminal Cys, even if additional Cys residues are present in 

either segment, and no protecting groups are necessary for any of the Aa side-chain functional 

groups31. The NCL reaction is performed in aqueous solution, and chaotropes as GuaCl or Urea can 

be added to increase the solubility of the fragments without affecting the success of the ligation.  
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Figure 8: Native Chemical Ligation scheme 

 

NCL can be carried out using two unprotected peptide fragments, or a peptide and a recombinant 

protein. The latter strategy enables to obtain larger proteins, and requires (1) a recombinant protein 

provided with an N-terminal free Cys, and (2) a synthetic peptide with a C-terminal thioester, 

prepared according to the specifications reported below: 

(1) To produce a recombinant protein with an N-terminal free Cys, it is necessary to introduce 

a pre-Cys sequence that will be proteolitically cleaved after the protein purification. One of 

the most commonly used technique to produce the free-Cys involves the use of Tobacco 

Etch Virus (TEV) protease, a highly specific Cys endopeptidase able to recognize an 

ENLYFQ\S (where ‘\’ denotes the cleaved peptide bond) consensus sequence. The 

recombinant cleavage represents a key step, and therefore has to be optimized to obtain the 

maximum amount of pure, N-terminal free Cys protein. 

(2) The obtainment of C-terminal thioester is a critical step, which can be accomplished using 

SPPS and avoiding basic conditions that destabilize the thioester group. The efficiency of 

NCL reaction is heavily dependent on the nature of the C-terminal thioester acyl donor 

(Xaa-SR). Even if it was reported that all the 20 natural Aa are compatible with the NCL 

reaction, the kinetics depends on the steric and electronic properties of the C-terminal 

residue Xaa32.  

This NCL variant is a laborious, time-consuming method, because it requires mastery of both SPPS 

and molecular cloning, and then includes the disadvantages of either. Nevertheless, NCL combines 

also the benefits of the previously mentioned techniques, and is one of the few approaches enabling 

the obtainment of homogeneous and consistent samples of full-length protein provided with the 

modification of interest. 
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Strategies for auto-Ab detection: Enzyme-Linked ImmunoSorbent 

Assays (ELISA) 

Enzyme-linked immunosorbent assays (ELISA) are biochemical plate-based assays designed for 

detecting and quantifying substances in a given sample, based on the primary immunology concept 

of Ag binding to specific Ab. ELISA are widely used in diagnostic field and analytical biomedical 

research, as they allow both quantitative and qualitative detection of specific Ag or Ab in biological 

fluids. The greatest advantage of these techniques lies in the immobilization of one of the reactants 

to a solid surface: this feature makes ELISA easy to design and to perform, and enables to separate 

bound from non-bound material during the assay, allowing to measure specific analytes within a 

crude preparation. 

The general ELISA procedure (shown in Figure 9) involves the immobilization of the Ag on a solid 

phase (coating), usually on a 96-well microtiter plate, and the consequent blocking of any un-coated 

areas of the well with a solution of non-reactive protein (e.g. fetal bovine serum, FBS). Then the 

given biological sample is applied, allowing the binding of the coated Ag to a specific Ab, which is 

subsequently detected bound by a secondary enzyme-coupled Ab. Detection is accomplished by 

assessing the conjugated enzyme activity via incubation with a substrate to produce a measureable 

product. Secondary Ab are commonly labeled with alkaline phosphatase or horseradish peroxidase, 

and a large selection of substrates is available. The choice depends upon the required assay 

sensitivity and the instrumentation available for signal-detection. 

 

Figure 9: General ELISA technique summary33. 
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Starting from ELISA basic procedure, numerous variations of the assay were developed (Figure 10): 

 Direct assay (the Ag is detected by a labeled primary Ab). 

 Solid-phase (SP-ELISA), or direct assay (the Ag is detected using a conjugate secondary Ab, 

which binds the primary Ab). This variation represents the best compromise between ease 

of execution, costs and reliability of the results. 

 Capture assay, or sandwich ELISA (the Ag is bound between two primary Ab, one of which 

is coated on the plate. Detection occurs using a conjugate secondary Ab). 

 Competitive ELISA (primary Ab is incubated with the Ag, and the resulting complexes are 

added to wells coated with the same Ag, or with another Ag). 

 

Figure 10: ELISA variations. 

 

Chemical Reverse Approach applied to Multiple Sclerosis: 

CSF114(Glc) 

The necessity to identify new candidate BM of disease in AID led to the use of new discovery tools. 

A promising strategy to detect auto-Ab as disease-specific BM is represented by the chemical 

reverse approach, a methodology based on the use of pts sera to screen focused libraries of Ag18. 

The approach is defined “reverse” because it enables the identification of auto-Ag through the 

ELISA screening of dedicated antigenic probes libraries with a large group of pts sera. The 

recognition of specific probes by serum Ab drives the selection and the optimization of the 

“chemical” structure of the library, e.g. through the evaluation of different PTM. By the use of the 

chemical reverse approach it is possible to identify molecules able to recognize selectively and 

specifically auto-Ab as disease BM, and therefore to develop diagnostic and/or prognostic tools.  

The chemical reverse approach proved to be interesting in the case of Multiple Sclerosis (MS), 

allowing the identification of the N-glucosylated peptide CSF114(Glc) as antigenic probe, able to 

recognize disease-specific auto-Ab as BM of MS. This finding is based on the previous results 

achieved by Mazzucco et al., which demonstrated that a glucosylated peptide analogue of the 

immunodominant epitope of human Myelin Oligodendrocyte Glycoprotein (hMOG), 

[Asn31(Glc)]hMOG(30-50), is able to recognize auto-Ab in MS pts sera34. Subsequently, it was 
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demonstrated that the un-glucosylated analogue hMOG(30-50) is inactive, despite its 

conformation in solution is similar to the one adopted by [Asn31(Glc)]hMOG(30-50). Therefore, 

the authors concluded that the ability of [Asn31(Glc)]hMOG(30-50) to detect auto-Ab is not 

conformation-dependent, but is related to the N-glucose moiety35. Starting from this point, our 

research group synthesized a series of peptides and glycopeptide sequences unrelated to MOG to 

further investigate the relevance of glycosylation in MS autoimmunity36,37. We found out that all 

glycopeptides containing glucose identified high Ab titers, but that a completely MOG-unrelated 

sequence, termed CSF114(Glc), was able to detect the highest auto-Ab titers in MS pts serum. 

CSF114(Glc) is a structure-based designed type I’ -turn sequence, characterized by the propensity 

to optimally expose the sugar moiety38. The relevance of glucose was confirmed testing a small 

focused library of CSF114 analogues with glyco-Aa diversity, as glycopeptides lacking Asn(Glc) 

displayed irrelevant inhibitory activity in competitive ELISA and failed to detect IgG in SP-ELISA. 

Therefore, it was assumed that the minimal epitope is represented by Asn(Glc). Furthermore, 

through the use of another peptides library, it was also demonstrated the importance of type I’ -

turn structure for minimal epitope exposure. At the clinical level, the CSF114(Glc) value was 

established testing it as antigenic probe in SP-ELISA. It was shown that CSF114(Glc) is able to 

detect high titer IgM in 30% of the examined relapsing-remitting subtype MS population compared 

with healthy and pathological controls. Conversely, the anti-CSF114(Glc) IgG determination has a 

prognostic value, as it parallels the occurrence of magnetic resonance imaging lesions and disease 

progression in 40% of analyzed pts. These findings on CSF114(Glc) uncovered the importance of 

N-glucosylation in the case of MS immunopathogenesis, paving the way for further investigation 

on the link between this aberrant PTM and AID.  

The interest in CSF114(Glc) was boosted by the hypothesis of a mimicry between the peptide and 

aberrantly N-glucosylated self-Ag, triggering the MS specific immunological response. In order to 

identify the native Ag mimicked by CSF114(Glc), we used anti-CSF114(Glc) auto-Ab isolated from 

MS pts sera as primary Ab in Western Blot (WB) experiments on whole rat brain proteins. 

Immunoreactive bands were identified with alpha fodrin, alpha actinin 1, creatine kinase, and 

CNPase by proteomic analyses. CSF114(Glc) purified auto-Ab were subsequently tested against the 

commercially available version of the previously mentioned proteins, disclosing that only alpha 

actinin 1 was specifically recognized, whereas the other three proteins were not consistently 

detectable. It is interesting to note that alpha actinin 1 is implicated in other inflammatory and 

degenerative AID, such as lupus nephritis and autoimmune hepatitis39. These results give grounds 

for additional studies on the role of alpha actinin 1 in MS40 §.  

                                                           
§ Pandey, S., Dioni, I., Lambardi, D., Real-Fernandez, F., Peroni, E., Pacini, G., Lolli, F., Seraglia, R., 
Papini, A. M., Rovero, P. Alpha actinin is specifically recognized by Multiple Sclerosis autoantibodies 
isolated using an N-glucosylated peptide epitope. Mol. Cell. Proteomics 12, 277–82 (2013).  
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AIM OF THE WORK 

AID represent a group of chronic and heterogeneous diseases, whose common trait is the immune 

system reaction against self-components of the organism. Most of the AID have unknown etiology, 

but it was demonstrated that both genetic and environmental factors are involved in triggering the 

pathologic mechanism5. Because of their chronicity and their debilitating complications, AID have 

high medical and socioeconomic costs16, leading to the crucial necessity to perform an early 

diagnosis and to monitor the disease follow up. Unfortunately, the available diagnostic and 

prognostic instruments are often complicated and invasive. In order to develop diagnostic and/or 

prognostic tools marked by low-invasivity, low-cost, and easy execution, it is crucial to detect 

trustworthy BM. The BM characterization has a significant importance also because it represents a 

powerful instrument to disclose the molecular mechanisms involved in the ethiopathogenesis of 

the disorder of interest. 

In this context, the main goal of this work is to identify the target(s) of the humoral autoimmune 

response using the chemical reverse approach, which involves the screening of focused Ag libraries 

with pts serum18. Indeed, in the case of autoimmunity, an easily detectable and reliable BM may be 

represented by the titer of a specific auto-Ab. A key feature of this study is the evaluation of the role 

of aberrant PTM in autoimmunity, as it was hypothesized that environmental agents may induce 

the occurrence of non-natural PTM on self-proteins, uncovering neo-epitopes and triggering the 

autoimmune response11. 

For this purpose, the experimental workflow of this project is the following: 

1. Auto-Ag selection: the Ag to be studied was chosen through an in-depth bibliographical 

research on the AID of interest.  

2. Evaluation of putative aberrant PTM: depending on Ag structure, Aa sequence and 

localization, it is possible to hypothesize the most probable aberrant PTM. The eventual 

involvement of disease-correlated enzymatic reactions and the presence of modifications 

dependent on exposure to environmental agents were taken into account.  

3. Antigenic probe production: once the native Ag is known, and the presence of aberrant PTM 

was evaluated, one has to select the best strategy to produce an antigenic probe able to 

mimic the desired Ag. The selection is guided by the characteristics of the antigenic probe 

(e.g. presence of PTM, protein length, importance of folding, Aa sequence, etc.). In this 

project, depending on the characteristic of the desired antigenic probe, different 

approaches were used to produce it: SPPS, NCL and molecular cloning.  
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4. Auto-Ab detection: according to the chemical reverse approach, the obtained antigenic 

probes were tested with pts sera or with sera from animal models of the disease of interest, 

in order to verify their ability to reveal auto-Ab as specific pathological BM. The selected 

detection methodology is SP-ELISA, which is characterized by adequate specificity and 

reproducibility as well as ease of execution and moderate cost. 

 

 

In particular, the attention was focused on two main topics, which will be treated separately 

within this presentation:  

 The role of Myelin Oligodendrocyte Glycoprotein (MOG) as putative auto-Ag in central 

nervous system AID (Chapter 2); 

 Investigation of the involvement of aberrant PTM in the ethiopathogenesis of Primary 

Biliary Cirrhosis (Chapter 3).





 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: MYELIN 
OLIGODENDROCYTE 

GLYCOPROTEIN 
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STRUCTURE AND FUNCTION OF 
MYELIN OLIGODENDROCYTE 

GLYCOPROTEIN 

Myelin Oligodendrocyte Glycoprotein (MOG) is a 218 Aa (28 kiloDalton, kDa) member of the 

immunoglobulin (Ig) superfamily exclusively expressed in the central nervous system (CNS). In 

particular, it is a minor component of myelin (0,05%), and its localization is on the outermost 

surface of myelin sheath and the plasma membrane of oligodendrocytes41 (Figure 11). The specific 

function of the protein still has to be clarified: it was shown that it is an important surface marker 

of oligodendrocyte maturation, and it was suggested that it might act as cell adhesion molecule, 

regulator of microtubule stability and mediator of interactions between myelin and immune 

system42. The MOG gene maps to the region encoding the MHC in both humans and rodents, and 

the protein is highly conserved between species43. 

 

Figure 11: Proteins of the myelin sheath, oligodendrocytes and neurons.  
MAG, Myelin-Associated Glycoprotein; MBP, Myelin Basic Protein; PLP, Proteo-Lipid Protein44. 

 

In 1996, Kroepfl et al. proposed a pattern of MOG topology (Figure 12)45, hypothesizing that the 

protein contains the following domains:  

 an extracellular domain (MOGED) that comprises an Ig-like portion and the N-linked 

carbohydrate moiety (N-terminal); 

 a first typical transmembrane domain; 

 a second hydrophobic domain, which is probably associated with the membrane but not 

spanning it. In this region there are two Cys that appear to be targets for palmitoylation; 

 a small intracellular domain (C-terminal). 
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Figure 12: Proposed model for MOG membrane topology42. 

 

Crystal structure of rMOGED
46 and mMOGED

47 were resolved with X-ray crystallography in 2003 

(Figure 13). These studies proved that the overall structure of MOGED adopts a topology of an Ig-V 

domain structure, which consists of a compact -sandwich domain with one antiparallel -sheet 

(strands A, B, E, and D) packing against a mixed -sheet (strands A, G, F, C, C, and C). The N and 

C termini are at opposite ends of the molecule. In addition to the -strands, there are four 310 helices 

at the periphery of the molecule. The core packing residues of MOGED is represented by a canonical 

disulfide bond (Cys24–Cys98) that packs against the consensus residue (Trp39), and a salt bridge 

between Arg68 and Asp92. The glycosylation site of MOG (Asn31) is located in the BC loop, exposed 

at the top, membrane-distal side of MOGED. 

 

 

Figure 13: X-ray crystal structure of rMOGED (on the left) and mMOGED (on the right). 
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MOGED was crystallized as a monomer, but the observed interactions within the crystalline lattice 

were suggestive of a biologically relevant MOGED dimer. Indeed, there are three regions of crystal 

contacts observed within the lattice of MOG, and only one of these was observed to lie on a 

crystallographic twofold, forming an antiparallel, head-to-tail dimer within the lattice. The shape 

complementarity index at the dimer interface is high, representing a value that is comparable to 

that observed in Ab–Ag interactions. The dimer interface runs along the long axis of the molecule, 

with interactions predominantly involving the extreme N terminus, the A-A’ loop (residues 8–11), 

the C–C’ loop (residues 40–46), and the F–G strand -hairpin (residues 95–112) (Figure 14). The 

interface is dominated by van der Waals interactions and hydrogen bonds, and all the residues 

mediating the dimeric contacts are conserved among species.  

These findings confirmed that native MOG exist as a mixture of monomeric and dimeric species, as 

repeatedly reported 42,48,49. It was demonstrated that the monoclonal Ab (mAb) 8-18C5, which is 

able to mediate demyelination in vitro and in vivo, and to augment clinical EAE in rats50, is capable 

to recognize proteins with relative mass of 26–28 kDa (monomeric MOG) and 54 kDa (dimeric 

MOG) in CNS myelin from mouse and human brain as well as native hMOG purified from brain. It 

was also confirmed that the observed dimer was not merely due to crystal packing artifacts using 

several biochemical techniques (e.g. native gel electrophoresis). 

 
 

Figure 14: Schematic representation of the MOGED head-to-tail dimer  
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THE CONTROVERSIAL ROLE OF 
MOG IN AUTOIMMUNITY 

Central nervous system autoimmune diseases in which MOG is 

putatively involved 

Multiple Sclerosis (MS) 

MS is the major inflammatory demyelinating disease of CNS51. The disorder represents a prime 

cause of neurological disability in young adults52, resulting in wide health, psychological, and socio-

economic consequences. MS is marked by inflammatory infiltrates, both axonal and neuronal 

damage, destruction of myelin sheath and oligodendrocytes, and glial proliferation, leading to the 

formation of large confluent plaques of demyelination in white and grey matter51. While most of 

the immune mechanisms associated with demyelination and tissue damage in MS are present in 

other CNS pathologies, it has to be stressed that widespread demyelination with preservation of 

axons is highly specific for MS, with the exception of viral infection of oligodendrocytes53 or the 

presence of toxins affecting myelin or oligodendrocytes54. 

The course of this chronic pathology usually starts with a clinically isolated syndrome (CIS) that 

evolves in clinically definite MS in 63% of cases55. The majority of MS pts (85-90%) develop 

relapsing-remitting MS (RRMS), in which worsening of clinical symptoms alternate with periods 

of remission51,56. About 40% of RRMS pts develop secondary progressive MS (SPMS), a form 

characterized by a progression of the disease associated with decrease or absence of relapses. In 10-

20% of pts, MS manifests with a slow and progressive exacerbation of symptoms without remission 

(primary progressive MS, PPMS)56 (Figure 15).  

 

Figure 15: Time course of the different MS subgroups. 
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As immune mechanisms are at the core of the disease, MS is widely regarded as autoimmune. 

However, MS triggering events still have to be clarified, as both genetic and environmental factors 

are involved57. The extremely heterogeneous pattern of symptoms and disease course makes 

challenging to both diagnose and predict the pathology progression58.  

In the last decades, much efforts were made to characterize the auto-Ab response in MS59,60, as the 

presence of oligoclonal Ig bands in the CSF of most MS pts uncovered the potential involvement of 

an autoimmune humoral reaction in MS pathogenesis61. Auto-Ab may have different biological 

functions in MS, ranging from a mere bystander phenomenon to primary involvement at different 

stages of the immunopathogenic 

cascade (e.g. demyelination), 

facilitation of repair mechanisms (e.g. 

remyelination) and balancing of the 

natural autoimmunity system. 

Therefore, a precise characterization of 

the auto-Ab response in MS may enable 

the identification of BM for diagnosis, 

clinical classification, monitoring of 

disease activity and follow-up 

prediction (Figure 16)62.  

Myelin Ag were longtime considered as 

the primary targets of humoral 

autoimmune response in MS, and 

recently the focus was shifted to the 

entire CNS cells58, but unfortunately 

the Ag involved in the disorder have not 

been clearly identified yet.  

 
Figure 16: Potential use of Ab as BM in MS. 

 

Experimental Autoimmune Encephalomyelitis (EAE) 

As the access to MS tissue and biological fluids samples is often restricted, and the modification of 

experimental conditions is limited in human studies, it is necessary to employ animal models to 

understand the immunopathological mechanisms of the disease. Due to the extreme complexity of 

MS, a single animal model is not representative of all the clinical features of the disease53. Large 

part of the MS pathophysiology was uncovered using EAE, which is the most extensively used MS 

model. Initially, EAE induction was performed using brain or spinal cord homogenates, or purified 

myelin proteins, added with an adjuvant. To date, the model is obtained immunizing the animals 

with an emulsion of adjuvant and recombinant or synthetic myelin proteins (or peptides deriving 
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from them) by subcutaneous injection. The disease can be achieved also by cell transfer from EAE 

donors to naïve recipient53, whereas spontaneous disease can be obtained in transgenic mice63.  

Concerning MS, EAE closely parallels key features of the human disease, as inflammation, 

demyelination and gliosis64. Nevertheless, EAE differs from MS in several remarkable aspects. 

First, EAE requires an external immunization step to develop65, typically with adjuvant containing 

bacterial components highly capable of activating the innate immune system66. Second, EAE 

represents the prototype T cell-mediated model, whereby CD4+ T cells are the major effector of the 

disease, while MS immunopathology is characterized by both humoral and cellular mechanisms51. 

Third, in EAE the inducing Ag are known, while the triggering event of MS is still matter of debate. 

It is evident that usage of different immunizing agents, protocols, or animals (mice, rats, primates, 

etc.) will lead to a different subtype of immune response, and therefore to a particular CNS 

inflammatory disorder. Therefore, the use of one of the EAE model variation should be guided by 

a rational selection based on a specific research question. 

 

Neuromyelitis Optica (NMO) 

NMO is a severe inflammatory demyelinating disease characterized by severe attacks of neuritis 

and myelitis. The pathology affects selectively optic nerves and spinal cord (but not necessarily with 

co-occurrence), typically spares the brain in the early stages, and generally follows a relapsing 

course67,68. Until recently, NMO was considered an MS variant, as both are featured by optic 

neuritis, myelitis and inflammatory demyelination69,70, but currently it is known that the disorders 

have distinct clinical, neuroimaging and laboratory features67,71 (summarized in Table 2).  

 

Table 2: Definitions and characteristics of MS and NMO75 

 

The real breakthrough in NMO field was achieved in 2004 by Lennon et al., with the discovery of 

NMO-IgG, an auto-Ab to aquaporin-4 (AQP4) present in more than 70% NMO pts72. NMO-IgG 

recognizes aquaporin-4 (AQP4), the main channel responsible for water homeostasis regulation in 

the CNS. AQP4 is located in astrocyte membranes, and the areas where its expression is normally 
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higher coincide with the sites of brain lesions in 10% of pts73,74. The identification of a specific 

serological disease BM enabled to simplify the diagnosis and to investigate the molecular immune-

mechanisms. Nevertheless, the role of NMO-IgG and AQP4 has yet to be clarified. Despite the 

NMO-IgG identification as disease BM, a small percentage of pts remains seronegative. In this 

context, the presence and significance of anti-MOG auto-Ab in NMO is matter of debate. 

 

Role of MOG in central nervous system autoimmunity: first 

hypothesis and animal models contribution 

Inflammatory demyelinating diseases of CNS include numerous and heterogeneous pathologies, 

such as MS and NMO. The evidence of an Ab-dependent mechanism contributing to at least a 

subset of pts affected by these disorders is highlighted by both histopathological investigations and 

clinical response to plasma exchange76. First studies aimed at understanding the mechanism(s) that 

induces demyelination dates back to the period between ‘800 and the early ‘900. In 1906, Marbourg 

proposed the existence of a soluble myelinolytic factor, while Babinski hypothesized that myelin 

was attacked by inflammatory cells77. By the use of EAE animal model, today it is well known that 

both mechanisms are possible, and that selective primary demyelination can be induced either by 

cytotoxic T-cells recognizing an oligodendrocyte Ag78,79, or by specific demyelinating auto-Ab80. 

The advent of myelinating tissue culture models in the 60s allowed to discover that sera and 

cerebrospinal fluid (CSF) from MS pts contain a soluble factor able to induce demyelination in 

vitro81,82. This phenomenon was observed predominantly in pts with active disease83, but rarely in 

control sera82,83. A similar demyelinating factor was found in the sera of EAE animals after 

sensitization with CNS homogenate81,84–87. Later, it was discovered that this soluble factor was an 

Ig able to induce demyelination through complement activation both in vitro88 and in vivo89,90. The 

target Ag of demyelinating Ab was identified as MOG91 using the mouse mAb 8-18C5 directed 

against rat cerebellar glycoproteins49. Since then, MOG became the most extensively studied 

putative Ag in CNS AID. The encephalitogenic properties of MOG are believed to result from the 

extracellular localization of its IgV-like domain on the outermost myelin lamellae, which makes it 

an exposed target accessible to autoimmune attack even on intact myelinated axons92,93.  

The attention in MOG was further encouraged by the demonstration of the association between 

demyelinating activity of guinea pig EAE serum and anti-MOG Ab titers91. The presence of 

demyelinating Ab anti-MOG was then confirmed in both rodent and primates EAE models50,80,94, 

and it was shown that anti-MOG Ab are capable to induce widespread plaque-like demyelination 

in the white matter95 and in the cerebral cortex96 in vivo. In MOG-induced EAE models, the subpial 

demyelinating cortical lesions were identical to those present in MS pts96, while these lesions are 

absent in Ab-independent EAE models97. 

In 2004, von Büdingen et al.98 demonstrated, using an EAE marmoset model, that only auto-Ab 

directed against conformational epitopes of MOG are responsible for demyelination worsening. 



Myelin Oligodendrocyte Glycoprotein 

 

25 

Indeed, they observed the occurrence of IgG deposition and complement activation only in 

association with the presence of conformational auto-Ab. In the same publication, they reported 

that conformational auto-Ab are also an essential factor for disease dissemination within CNS, a 

typical hallmark of human MS. A year later, Marta et al.99 obtained an EAE model immunizing 

C57BL/6 mice with either rat (rMOG) or hMOG. Although anti-MOG Ab were generated in both 

cases, only immunization with hMOG led to a B-cells dependent disorder. In particular, they 

showed that the mutation of Pro at position 42 with Ser in hMOG (as in rMOG) results in a change 

in the mechanism of encephalitogenicity from B-cell dependent to independent, reflecting the close 

connection between Ag conformation and Ab pathogenicity. They established also that only Ab 

from mice immunized with unmodified hMOG were encephalitogenic in primed B cell-deficient 

mice. Furthermore, they demonstrated the capability of encephalitogenic anti-hMOG Ab to bind 

properly glycosylated MOG. Based on these data, they hypothesized that non-pathogenic Ab bind 

linear MOG determinants, while pathogenic Ab recognize only conformational, glycosylation-

dependent epitopes.  

Understanding the three-dimensional structure of MOGED allowed the identification of solvent-

exposed surfaces that may be involved in Ab-mediated demyelination. As previously mentioned, 

Ab demyelinating activity is strictly dependent on 

epitope conformation, with the exception of a 

minor subset of murine mAb able to bind also 

peptides containing the 63-87 region. This 

sequence includes the DE loop, which forms part of 

a protruding surface at the top of BED sheet and 

comprises highly exposed residues100. Additionally, 

it was shown that Lewis rats immunized with 

MOG(35-55) develop a demyelinating variant of 

EAE, leading to the hypothesis that also this 

fragment encompasses a B-epitope101. This 

assumption is supported by MOG(35-55) 

localization into the surface-exposed and highly 

flexible CC’ loop (Aa residues 41-46). Furthermore, 

MOGED was crystallized in complex with a chimeric 

fragment Ag-binding (Fab) derived from 8-18C5 

(Figure 17)46.  

 
Figure 17: Overall structure of Fab-MOGED complex.  

The binding site of Fab is shown with surface representation,  
and atoms contacting MOGED are colored in red. 
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The capacity of 8-18C5 to detect MOG from different species and to inhibit the binding MOG-

specific mAb to the protein indicate that 8-18C5 recognizes a central conserved epitope. The crystal 

structure of MOG-Fab complex disclosed that 8-18C5 binds the upper, membrane-distal surface of 

MOGED, namely the N terminus and the BC, C’C’’ and FG loops. The major interaction site is formed 

by the three complementarity determining regions (CDR) of the mAb heavy chain and both residues 

in the G strand and in the FG loop (Aa residues 101-108), which represent 65% of the total MOGED 

interaction surface. The highly specific interaction with the 101-108 region is also supported by 

presence of van der Waals bonds between MOG residues and Fab in the periphery of the binding 

site.  

The discovery of the crucial relevance of MOG conformation and glycosylation in the occurrence of 

EAE pathogenesis represents a concrete breakthrough in the CNS autoimmunity field. 

 

MOG as putative auto-Ag in human CNS AID: an issue open to 

discussion 

Despite the interesting and grounded results achieved in animal models, the demonstration of anti-

MOG Ab pathogenicity in humans is still lacking. The main reason for the inhomogeneous and 

controversial data on the role of MOG in MS autoimmune response is the use of different assays 

testing different MOG preparations (summarized in Table 3). Namely, the causes of this debatable 

circumstance concern: 

1. sequence, conformation and origin of MOG used as Ag; 

2. technique used to measure anti-MOG Ab; 

3. Ig isotype detected; 

4. absence of standardized MS subtype definition; 

5. nature of negative controls (normal blood donors, NBD; other neurological disease, OND; 

etc.). 

Some of these aspects were summarized in the following table: 

  
Type of MOG recombinant MOG (different portions) expressed: 

- in mammalian cells 
- in E.coli 
- by in vitro translation 

synthetic peptides (1 to 125 Aa) 
purified from human myelin 
tetramer 
cell-based assays (human or murine cells expressing hMOG on their surface) 

MOG 
sequence 

human, rat, mouse 

Ig isotype IgG, IgM, IgA 
Immunossay ELISA, Immunoblot, Fluid Phase, Elispot, Fluorescence-activated flow cytometry 

(FACS) 
 

Table 3: MOG preparations and immunoassays used for anti-MOG Ab detection102 
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Since 1991, the role of anti-MOG Ab in MS and in other CNS AID was extensively investigated 

(results are reviewed in Table 4 62,103,104). The first studies were carried out employing hMOG 

purified from brain white matter as Ag in ELISA testing MS pts sera and CSF. This methodology 

enabled the detection of anti-MOG Ab in the CSF of a subset of MS pts, but also in the control 

cohort105. Afterwards, comparable results were obtained using not-refolded hMOG extracellular 

domain expressed in E.coli106. The use of full-length glycosylated mouse MOG (mMOG) expressed 

in mammalian cells allowed the identification of high IgM titers in MS pts during the first 

demyelinating event, and elevated IgG during relapses and secondary chronic progressive MS. The 

results obtained with MS subgroups were compared with NBD and remission pts107. These findings 

permitted to hypothesize the importance of epitope glycosylation and conformation also in human 

MS. Later studies confirmed the theory of a pathogenic role of anti-MOG Ab108–113, while others 

denied it114–118. Additionally, in the recent years the focus partially shifted to pediatric MS119–122 and 

other neurological AID (e.g. NMO and acute disseminated encephalomyelitis, ADEM), leading to 

an even more intricate situation. 

In this context, our research group focused on the detection of serum IgG and IgM directed against 

the extracellular domain of MOG, with an emphasis on the protein conformation. To do this, Gori 

et al.118 developed a method to produce recombinant rMOG1-125(His)6 centered on the on-column 

refolding and affinity purification of the protein produced in E.coli. MOG folding was verified by 

circular dichroism spectroscopy, then the protein was used as antigenic probe in SP-ELISA. Results 

obtained disclosed that rMOG1-125(His)6 is not able to detect serum Ab neither in MS pts nor in 

controls using an immunoenzymatic solid-phase assay. 
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Study Method Ag Ig isotype Sample 

tested 

Results & Discussion 

Xiao 1991105 ELISA hMOG from 

white matter 

IgG Plasma 

and CSF 

Anti-MOG IgG were detected in 

7/30 MS pts (compared with 

controls). No anti-MOG IgG Ab 

were demonstrable in plasma. 

Karni 

1999123 

ELISA hMOG 

expressed in 

E.coli 

IgG Plasma 

and CSF 

Anti-MOG Ab are elevated in 

MS, but also in other neurologic 

diseases. 

Lindert 

1999124 

 

 

WB hMOG 

expressed in 

E.coli 

IgG Serum The frequency of anti-MOG 

seropositive samples was 

significantly higher in MS than 

in normal random controls 

(positivity percentages: MS 

54%; controls 22%). 

Reindl 

1999106 

WB 

ELISA 

hMOG 

expressed in 

E.coli 

IgG Serum 38% of MS are seropositive for 

anti-MOG IgG (persistent 

response). Similar % were found 

in OND, but the response is 

transient. 

Egg 2001125 Immunoblot hMOG 

expressed in 

E.coli 

IgG, IgM, 

IgA 

Serum 72% of MS have anti-MOG Ab, 

and the dominating one is anti-

MOG IgM. A significant 

relationship between anti-MOG 

IgA and a progressive disease 

course was found. 

Berger 

2003126 

WB hMOG 

expressed in 

E.coli 

- Serum of 

CIS 

patients 

Analysis of anti-MOG (and 

MBP) Ab enables to predict 

early conversion to clinically 

definite MS. 

Vojdani 

2003127 

ELISA Syntethic 

MOG 

peptides 

IgG, IgM, 

IgA 

Serum Detection of anti-MOG peptides 

Ab, together with the 

measurement of other 

serological parameters, could be 

used for the confirmation of MS 

diagnosis. 

Kennel de 

March 

2003128 

ELISA, ELISPOT Synthetic 

MOG(35-55), 

recombinant 

MOG 

IgG, IgM, 

IgA 

Serum MS patients had significantly 

higher levels of anti-MOG IgA 

and MOG-specific spot-forming 

cells than controls. 
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Study Method Ag Ig isotype Sample 

tested 

Results & Discussion 

Gaertner 

2004107 

ELISA mMOG 

transfected 

AG8 cells 

IgG, IgM Serum Anti-MOG IgM were elevated 

during the first demyelinating 

event, while higher MOG-

specific IgG were found during 

relapses and in secondary 

chronic progressive MS 

compared to pts in remission 

and controls. 

Lampasona 

2004129 

Liquid-phase 

radiobinding 

assay 

hMOG in 

vitro 

translated 

IgG, IgM Serum The frequency of positive 

samples with low titers of anti-

MOG IgG (≤5.7%) and IgM 

(≤8.3%) was similar in both MS 

and control, disclosing that anti-

MOG Ab are not disease specific. 

Mantegazza 

2004130 

ELISA hMOG 

expressed in 

E.coli 

IgG Serum 

and CSF 

Serum anti-MOG Ab were 

detectable in 13.7% of MS pts, 

mainly in SPMS (25%), in 13.7% 

of OND pts and in 6.2% of 

controls. A direct correlation 

between disease severity and 

anti-MOG titer was found only 

in PPMS and SPMS pts. Anti-

MOG Ab were present in the 

CSF of 11.4% MS patients and 

18.9% OND pts.  

Zhou 

2006109 

Cell-based assay hMOG 

transfected 

LN18 cells 

IgG, IgM Serum IgG but not IgM Ab-titers to 

native MOG were significantly 

higher in MS compared with 

different control group (highest 

prevalence in PPMS). The 

presence of a pathogenic Ab 

response to native MOG in a 

subgroup of MS patients was 

suggested. 
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Study Method Ag Ig isotype Sample 

tested 

Results & Discussion 

Lalive 

2006110 

Cell-based assay hMOG 

transfected 

CHO cells 

IgG Serum Compared with healthy 

controls, native MOG-specific 

IgGs were most frequently 

found in serum of CIS and 

RRMS, only marginally in 

secondary progressive SPMS 

PPMS. Therefore, cell-based 

assay provides a practical 

serologic marker for early 

detection of CNS autoimmune 

demyelination. 

ELISA (only on 

CIS cohort) 

hMOG 

expressed in 

E.coli 

IgG 

Kuhle 

2007114 

WB hMOG 

expressed in 

E.coli 

IgG, IgM Serum of 

CIS 

patients 

No associations were found 

between the presence of anti-

MOG Ab and progression to MS. 

Pelayo 

2007115 

WB hMOG 

expressed in 

E.coli 

ND Serum of 

CIS 

patients 

No associations were found 

between the presence of anti-

MOG Ab and CIS-to-MS 

conversion. 

O’connor 

2007116 

ELISA (DELFIA) hMOG 

expressed in 

E.coli 

(refolded) 

IgG, IgM Serum 

and CSF 

It was shown that tetramer RIA 

is the most sensitive 

methodology for MOG auto-Ab. 

MOG-specific auto-Ab were 

identified in a subset of ADEM 

but only rarely in adult-onset 

MS cases, indicating that MOG 

is a more prominent target 

antigen in ADEM than MS. 

Solution phase 

radioimmuno-

assay (RIA) 

hMOG in 

vitro 

translated 

(self-

assembling 

radiolabeled 

tetramers) 

Menge 

2007111 

ELISA 

LiPhELIA 

hMOG 

expressed in 

E.coli 

IgG Serum SP methods are superior in 

measuring anti-MOG Ab, but do 

not have the discriminative 

power to isolate only the 

disease-relevant ones. Indeed, 

anti-MOG IgG reactivity of MS 

and controls are comparable. 
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Study Method Ag Ig isotype Sample 

tested 

Results & Discussion 

Wang 

2008131 

ELISA hMOG 

expressed in 

E.coli 

IgG, IgM Serum The presence of anti-MOG IgG 

was related with an increase in 

risk of developing MS. This 

association may in part reflect 

cross-reactivity between MOG 

and Epstein-Barr nuclear 

antigen. 

Klawiter 

2010113 

ELISA hMOG 

produced 

using 

baculovirus 

and insect 

cell-mediated 

expression 

system 

IgG Serum 

and CSF 

Serum and CSF anti-MOG Ab, 

together with albumin levels, 

were used to calculate s a marker 

of intrathecal MOG Ab 

production, the rMOG index, 

which was found to be elevated 

in MS compared to controls. 

Results obtained display that 

intrathecal anti-MOG Ab 

production may be more 

pronounced in progressive than 

relapsing forms of MS.  

Gori 2011118 ELISA Refolded 

rMOG 

expressed in 

E.coli 

IgG, IgM Serum Anti-MOG Ab are not detectable 

in both MS and controls. 

Menge 

2011132 

ELISA 

Denaturing 

ELISA 

Recombinant 

refolded 

hMOG1-125, 

hMOG1-118 

and rMOG1-

125 produced 

in E.coli 

IgG Serum High-titer of anti-MOG Ab were 

identified in ≈8% of tested 

samples, and are highly specific 

for certain epitopes of hMOG. In 

RRMS, high-titer anti-MOG IgG 

correlate with disability. 

 
Table 4: Summary of the most relevant studies on anti-MOG Ab response in MS. 
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AIM OF THE WORK 

MOG is one of the most studied Ag candidate in the case of demyelinating AID, especially in 

MS102,104. The hypothesis of MOG involvement in the autoimmune reaction is due to the exposition 

of its Ig-like extracellular domain on the outermost surface of myelin sheaths, allowing the access 

of potential auto-Ab to the protein41. Despite the presence of numerous studies based on MOG, the 

role of the protein in CNS AID is still controversial. Indeed, the use of inhomogeneous protein 

preparations and different immunological protocols to reveal anti-MOG Ab led to the presence of 

contrasting and debatable data. In this context, we decided to study the involvement of MOG in 

different CNS AID using the refolded recombinant rat extracellular domain of the protein, rMOG1-

117. The choice of a shortened protein fragment compared with the so-called standard extracellular 

domain MOG1-125 was inspired by an attempt to avoid the solubility issues characterizing rMOG1-

125. Indeed, rMOG1-125 sequence comprises also a small transmembrane portion, which is highly 

hydrophobic (F119YWI122). The removal of these Aa residues may lead a more soluble recombinant 

product, which is more appropriate to be employed as Ag in immunological solid-phase assays. The 

initial decision of our research group to work with rMOG as antigenic probe dates back to the early 

2000, and was guided by the fact that the protein was used in studies with animal model, aimed to 

understand the molecular mechanisms of MS. Furthermore, one of our primary focus was to restore 

the native protein conformation through the refolding procedure, in order to preserve MOG 

conformational epitopes. This feature supported the employment of rat protein because the 

reference conformational studies were carried out on the rat isoform46 (together with the mice 

one47). However, the use of the rat protein in studies on human pathology may lead to confusing 

data: hMOG and rMOG share a >90% homology, but rMOG has a Ser in position 42, while hMOG 

has a Pro (Figure 18). As already speculated by Marta et al.99, this single Aa difference could lead 

to structural differences, with consequent alteration of the immunogenicity of the probe.  

 

Figure 18: rMOG1-117 – hMOG1-117 BLAST alignment.  
In red, Aa differences. + indicates a conservative mutation. 

Ser42 and Pro42 are highlighted in yellow. 

 



Myelin Oligodendrocyte Glycoprotein 

 

33 

Based on the foregoing, recombinant rMOG1-117  was used as antigenic probe in SP-ELISA aimed to 

disclose different aspects of MOG immunogenicity in several pathologies. In particular, we 

evaluated the role of MOG in: 

 EAE mice model of MS; 

 NMO; 

 NMO-like EAE rat models. 

Furthermore, as the Ag production step is crucial in the BM research field, part of the work was 

focused on MOG production through molecular biology techniques. In particular, we worked on: 

 Optimization of rMOG1-117 productive process; 

 Semi-synthesis of aberrantly N-glucosylated hMOG1-117. 

The previously mentioned aspects will be treated separately in this presentation. Specifically, the 

work is structured as follows: 

 Part I: Immunological role of MOG in the EAE mice model of MS 

The EAE mice model was obtained by Dr. Rina Aharoni (Weizmann Institute, Rehovot, Israel) 

immunizing C57BL/6 mice with commercial mMOG(35-55) peptide. We tested sera samples of 

mice with various clinical course (active disease with different disease score; spontaneous 

recovery; immunized mice that have not developed any clinical sign), comparing them with 

naïve mice. We tested three temporally distinct cohorts of sera, to assess different hypothesis: 

1. First cohort: preliminary SP-ELISA screening on rMOG1-117(His)6, CSF114 and 

CSF114(Glc).  

17 EAE active disease, 1 spontaneous recovery and 8 naïve mice sera samples were 

tested in SP-ELISA to assess the presence of Ab response against MOG. The N-

glucosylated peptide CSF114(Glc) was also tested, together with its un-glucosylated 

analog, to assess the role of N-glucosylation in the mice model. 

2. Second cohort: anti-rMOG1-117(His)6 IgM screening. 

16 EAE active disease, 3 spontaneous recovery, 6 immunized mice that that have not 

developed any clinical sign (“no disease”) and 12 naïve mice sera samples were tested 

in SP-ELISA to verify the hypothesis of a protective role of anti-MOG IgM. 

3. Third cohort: rMOG1-117 epitope mapping. 

33 EAE active disease, 12 spontaneous recovery, 2 “no disease” and 9 naïve mice sera 

samples were tested to determinate the presence of an epitope spreading mechanism 

against MOG portions different from the immunizing peptide mMOG(35-55). For this 

purpose, the MOG(1-117) sequence was divided in 6 peptide fragments (1-34, 35-55, 56-

75, 76-95 and 96-117), which were subsequently used as antigenic probe in SP-ELISA. 

Results obtained were compared with the one achieved on the full-length recombinant 

protein. 

  



Chapter 2 

 

34 

 Part II: Evaluation of MOG-IgG and CSF114(Glc)-IgG as additional BM in NMO 

NMO is an inflammatory demyelinating disorder of CNS that affects spinal cord and optic 

nerve. In 2004, Lennon et al. discovered a specific disease BM, NMO-IgG, that is an auto-Ab 

of the IgG class directed against AQP472. As NMO-IgG is present in approximately 70% of NMO 

pts, the evaluation of other NMO BM may be useful to perform a more accurate diagnosis. 

Recently, the role of MOG as auto-Ag in NMO was extensively studied, but the relevance of 

anti-MOG Ab in this pathology still needs clarifications. These findings disclosed the potential 

of anti-MOG IgG as additional NMO BM, but to date the involvement of MOG in NMO is still 

matter of debate. In this context, we assessed the presence of a specific IgG reactivity against 

MOG testing 21 NMO pts sera in SP-ELISA. As NMO is an MS-related disorder, we tested the 

same sera on CSF114(Glc), and results obtained for both Ag were compared with a cohort of 20 

NBD using a cutoff calculated as (mean value of NBD)+3*(standard deviation of NBD). 

 

 Part III: Immunological role of MOG in NMO-like EAE rat models 

Several attempts to obtain a specific Rattus Norvegicus NMO-like model were made by Prof. 

Jerome De Seze group (Hôpitaux universitaires de Strasbourg, France) immunizing Brown 

Norway rats with recombinant, not-refolded rMOG1-117(His)6 produced in our lab. In particular, 

it was studied the possibility to reproduce the disorder administering two doses of immunizing 

agent, or using an IgG passive-transfer strategy. In this context, we evaluated the Ab response 

elicited in the NMO-like model to disclose the correlation between anti-MOG Ab titer and 

disease progression. A first attempt to evaluate the model obtained immunizing Brown Norway 

rats with rMOG1-117(His)6 was made studying the time-course of IgM and IgG anti-MOG Ab 

response. Subsequently, it was assessed the correlation between Ab titer against refolded MOG 

and both time- and disease-course in four different immunization protocols. The same animal 

cohort was examined to verify the presence of a response against unfolded MOG and 

CSF114(Glc). 

 

 Part IV: Optimization of rMOG1-117 production process 

Ag production process is a key step of the BM research in both diagnostic and prognostic fields. 

As mentioned several times during this presentation, MOG is the most studied candidate Ag in 

the case of CNS AID, and therefore the production of this protein as antigenic probe is of crucial 

relevance to study the immunopathogenesis of disorders such as MS or NMO. In our lab, we 

decided to employ recombinant rMOG1-117, which was obtained through the expression and 

purification protocol published by Gori et al.118. This methodology includes numerous laborious 

and time-consuming phases that invalidate productivity. Therefore, the aim of this project was 

to improve rMOG1-117 production process, focusing on the optimization of both expression in 

E.coli and purification/on-column refolding of the protein.  
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 Part V: Semi-synthesis of aberrantly N-glucosylated hMOG1-117 

The involvement of aberrant PTM on MOG in triggering CNS autoimmunity is a crucial topic. 

In this context, we hypothesized that an aberrant N-glucosylation on the MOG native site of 

glycosylation (Asn31) may be involved in the immunopathogenesis of CNS demyelinating 

disorders. This assumption is supported by the presence of a preliminary study proving that 

[Asn31(Glc)]hMOG(30-50) is capable to recognize auto-Ab in MS pts sera, while the 

corresponding un-glycosylated hMOG(30-50) is inactive34. Furthermore, it is well documented 

that the N-glucosylated type I’ -turn peptide CSF114(Glc) is able to detect specific and high 

affinity Ab in MS patients, disclosing the relevance of N-glucosylation in MS autoimmunity36,37. 

Therefore, we decided to develop a NCL semi-synthetic strategy to produce [Asn31(Glc)]hMOG1-

117, which will be compared with both un-glucosylated hMOG1-117 and CSF114(Glc) from an 

immunological point of view. The chosen protocol provides the formation of an amide bond 

between a recombinant protein bearing an N-terminal Cys and a peptide with a C-terminal 

thioester. For this purpose, it was decided to produce the hMOG fragment (35-117) using 

molecular biology tools, engineering the sequence to obtain the N-terminal free Cys. 

Specifically, a selective point mutation was introduced at the 35 residue (M35C) and the 

sequence was extended at the N-terminus with the TEV-protease consensus sequence. The C-

terminal active ester of the peptide fragment [Asn31(Glc)]hMOG(1-34) was prepared at the 

SOSCO Laboratory (Universitè de Cergy Pontoise, France). 
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PART I: IMMUNOLOGICAL ROLE OF 
MOG IN THE EAE MICE MODEL OF 

MS 

As stated in the previous section, the aim of this study concerns the evaluation of the immunological 

role of MOG in an EAE mice model of MS obtained immunizing C57BL/6 mice with a commercial 

mMOG(35-55) peptide. We tested sera samples of mice with various clinical courses (active disease 

with different disease score; spontaneous recovery; immunized mice that have not developed any 

clinical sign), comparing them with naïve mice. In particular, we assessed different hypothesis 

testing three temporally distinct cohorts of sera: 

1. First cohort: preliminary SP-ELISA screening on rMOG1-117(His)6, CSF114 and CSF114(Glc): 

we evaluated the presence of Ab response against MOG, together with the role of N-

glucosylation in the MS mice model. 

2. Second cohort: anti-rMOG1-117(His)6 IgM screening: we investigated a putative protective 

role of anti-MOG IgM. 

3. Third cohort: rMOG1-117 epitope mapping: we explored the possible presence of Ab directed 

against MOG epitopes different from the immunizing peptide mMOG(35-55), i.e. a 

phenomenon known as epitope spreading. MOG(1-117) sequence was divided in 6 peptide 

fragments (1-34, 35-55, 56-75, 76-95 and 96-117), which were subsequently used as 

antigenic probe in SP-ELISA. Results obtained were compared with the one achieved on 

full-length recombinant protein. 
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Results & Discussion 

First cohort: preliminary SP-ELISA screening on rMOG1-117(His)6, 

CSF114 and CSF114(Glc) 

Results are summarized in Figure 19. No response to peptide Ag was detected in EAE mice 

compared with naïve. In the case of IgG, EAE mice showed high response to rMOG1-117(His)6, while 

only the recovery mice displayed a high and consistent response to rMOG1-117(His)6 compared with 

both EAE and naïve mice. The latter finding allowed us to hypothesize a protective role for anti-

MOG IgM. 

 

 

 

Figure 19: Data distribution for IgG (top) and IgM (bottom) in EAE (left) and naïve mice (right). 
Recovery mice is highlighted with a red circle. 
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Second cohort: anti-rMOG1-117(His)6 IgM screening 

Results obtained are shown in Figure 20. Cutoff value was calculated as (mean of naïve)+ 

3*(standard deviation of naïve). Tests on the new cohort displayed that most of recovery and “no 

disease” mice have anti-MOG IgM titers, confirming the hypothesized anti-MOG IgM protective 

role. However, anti-MOG IgM are present also in the active disease group.  

A limitation of these data concerns the small recovery and “no disease” cohorts. Therefore, the 

obtained results have to be considered as preliminary. The small size of the cohort and the difficulty 

in the model management (most of the mice do not survive beyond day 22) prevented us to perform 

a time-course and a disease-course analysis of the Ab response against rMOG. 

 

Figure 20: Data distribution of IgM against rMOG1-117(His)6 tested the second cohort.  
Cutoff value is shown with the dotted line. 
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Third cohort: rMOG1-117 epitope mapping 

Results obtained are shown in Figure 21. No significant response was detected against any Ag in 

the case of IgM comparing EAE with naïve mice. On the contrary, EAE active disease mice displayed 

high and specific IgG response against mMOG(35-55) and recombinant rMOG1-117, while no 

response was detected against the other Ag. The higher response against the recombinant full-

length protein compared with the immunizing peptide allowed us to speculate the presence of a 

MOG conformational epitope recognized by auto-Ab. Indeed, the recombinant protein is able to 

reproduce both Aa sequence and conformation of the native Ag, which is probably stable during 

the coating phase. The peptide probe instead is able to mimic only a linear, short portion of the 

protein, and due to its flexibility may display a random conformation on the plate. Therefore, it can 

be hypothesized the presence of two distinct families of auto-Ab: one directed against a linear 

peptide reproduced by both mMOG(35-55) and the recombinant protein, and one able to detect 

conformational epitope(s) on rMOG1-117. To verify this assumption, it will be necessary to test both 

Ag in a competitive ELISA test. 

 

 

Figure 21: Data distribution for IgG (top) and IgM (bottom) in EAE (left) and naïve mice (right). 

 

  



Chapter 2 

 

40 

The possibility to investigate MS using an animal model is remarkably advantageous, as it enables 

to study in depth the disorder from a clinical point of view, and also to have a large number of 

biological samples. Conversely, both development and management of a proper disease model is 

complicated. For example, the use of the EAE mice model of MS allows to examine 

immunopathological and molecular aspect characterizing the acute phase of the disorder, because 

the animals did not survive long after immunization. Furthermore, blood draws are difficult and 

often lead to the death of the animal. 

In conclusion, the obtained results boost the interest in using recombinant MOG to assess the 

presence of Ab in the mice model of MS. The use of a proven animal model has numerous 

advantages, as it enables to plan the desired experiments aimed to explore a peculiar aspect of the 

disorder, and to have a large number of samples to be analyzed. The results presented are 

preliminary and therefore will require further investigations to better understand the molecular 

mechanisms underlying the immunological response to MOG in MS. A limitation of this study is 

represented by the execution of tests on temporally distinct cohorts, making the obtained data not 

entirely homogeneous. However, we demonstrated the lack of evidence of an epitope spreading 

mechanism related to MOG sequence. Based on these findings, future developments of this work 

will include focused and detailed studies aimed to disclose the putative pathologic role of the anti-

MOG immunological response. Specifically, the existence of a correlation between anti-MOG Ab 

and disease course, or response to pharmacological therapy, will be evaluated. Furthermore, the 

intriguing theory of a protective role of anti-MOG IgM response will be deepened. 
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Materials & Methods 

Serum samples 

90 EAE induced mice serum samples (provided by Dr. Rina Aharoni, Weizmann Institute, Rehovot, 

Israel) were analyzed, divided according to disease status. 29 naïve mice serum samples were used 

as healthy control group. Samples were tested in triplicate with a single dilution (1:100) in FBS 

Buffer.  

 

Antigens 

Recombinant rMOG1-117 was produced according to the protocol published by Gori et al118. Peptide 

probes were synthesized at the French-Italian Laboratory of Peptide and Protein Chemistry & 

Biology (PeptLab), University of Florence and University of Cergy-Pontoise. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

1 microgram (ug)/well of Ag (peptide or protein) were dissolved in Coating Buffer (12mM Na2CO3, 

35mM NaHCO3, pH 9.6), then 100 microliter (ul) of solution were dispensed in each well of 96-

well Maxisorp plates. Plates were incubated @4°C ON. Subsequently, plates were washed 3 times 

with Washing Buffer (0,9% NaCl, 0,01% Tween 20), and blocked 1 h at room temperature (RT) with 

100ul/well of FBS Buffer (10% FBS in Washing Buffer). FBS Buffer were removed, and 100ul/well 

of diluted sera sample (1:100 in FBS Buffer) were dispensed. Blank wells were included in all the 

plates, and were obtained using FBS Buffer instead of serum. Plates were incubated @4°C ON, and 

then washed 3 times with Washing Buffer. 100ul/well of secondary Ab diluted in FBS Buffer (mIgG 

1:30000 and mIgM 1:7500) were dispensed, and plates were incubated 3 h at RT. Plates were 

washed 3 times with Washing Buffer, then 100ul/well of Substrate Solution (1mg/ml p-PNP in 

Substrate Buffer: 1M Diethanolamine, 1mM MgCl2, pH 9.8) were dispensed. Plates were incubated 

for 15’-40’, and then ABS at 405 nm of each well was red with a spectrophotometer. ABS value for 

each serum was calculated as (mean ABS of triplicate) – (mean ABS of blank triplicate).  
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PART II: EVALUATION OF MOG-IgG 
AND CSF114(Glc)-IgG AS ADDITIONAL 

NMO BIOMARKERS 

As already noted, NMO is an inflammatory demyelinating disorder of CNS, characterized by the 

presence a specific disease BM (an auto-Ab of the IgG class directed against AQP4), which is present 

in approximately 70% of NMO pts72. Therefore, the evaluation of other NMO BM may be useful to 

perform a more accurate diagnosis. The potential role of anti-MOG IgG as additional NMO BM was 

taken into account, but the studies done so far failed to give definitive results on this topic.  

In this context, we assessed the presence of a specific IgG reactivity against MOG testing NMO pts 

sera in SP-ELISA. As NMO is an MS-related disorder, we tested the same sera on CSF114(Glc), 

which is an antigenic probe able to detect disease-specific Ab response in RRMS. Results obtained 

for both Ag were compared with NBD. 

 

Results & Discussion 

IgG reactivity to rMOG1-117(His)6 is shown in Figure 22. Results obtained indicate that IgG reactivity 

to MOG is not increased in pts compared with NBD, disclosing that anti-MOG IgG is not a reliable 

BM in the case of NMO. However, we noted that Ab titer in AQP- pts is higher than in AQP+ (Figure 

23), even if both the NMO groups have lower anti-MOG IgG values compared with NBD. 

Results obtained testing the antigenic probe CSF114(Glc) on both NMO and NBD sera (Figure 24) 

show that there is no significant difference between pts and healthy controls, disclosing that anti-

CSF114(Glc) IgG is not a BM in the case of NMO. This finding further confirms that NMO and MS 

are two distinct pathologies, characterized by different serological profiles. 

Concluding, our study demonstrates that anti-MOG IgG are not present in NMO pts. The use of the 

properly refolded rat isoform of the extracellular domain of the protein, which shares a >90% 

homology with the human one, could represent a limitation of this work. Indeed, rMOG has a Ser 

in position 42, while hMOG has a Pro: this could lead to both structural and immunogenicity 

differences. It may be useful to repeat the test comparing anti-rMOG and anti-hMOG Ab titer. 

Furthermore, the absence of anti-CSF114(Glc) IgG in NMO pts provides an additional evidence of 

the different pathological profile of MS and NMO. One of the further developments of this work 

may be represented by the enlargement of both NMO and NBD cohorts, in order to obtain more 

reliable data, to be compared with the one previously achieved for MS. 
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Figure 22: IgG reactivity to rMOG1-117(His)6 in NMO (left) and NBD (right).  
Cutoff value is represented with a dotted line. 

 

 

Figure 23: IgG reactivity to rMOG1-117(His)6 in the tested sera group.  
From left: AQP4+ NMO pts, AQP4- NMO pts, NBD. 

 

 

Figure 24: IgG reactivity to CSF114(Glc) in NMO (left) and NBD (right).  
Cutoff value is represented with a dotted line. 
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Materials & Methods 

Serum samples 

21 NMO pts serum samples (provided by Prof. Jerome De Seze, Hôpitaux universitaires de 

Strasbourg, France) were analyzed, divided according to disease status. 20 NBD serum samples 

were used as healthy control group. Samples were tested in triplicate with a single dilution (1:100) 

in FBS Buffer.  

 

Antigens 

Recombinant rMOG1-117 was produced according to the protocol published by Gori et al118. Peptide 

probe was synthesized at the French-Italian Laboratory of Peptide and Protein Chemistry & Biology 

(PeptLab), University of Florence and University of Cergy-Pontoise. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

1ug/well of Ag (peptide or protein) were dissolved in Coating Buffer (12mM Na2CO3, 35mM 

NaHCO3, pH 9.6), then 100 ul of solution were dispensed in each well of 96-well Maxisorp plates. 

Plates were incubated @4°C ON. Subsequently, plates were washed 3 times with Washing Buffer 

(0,9% NaCl, 0,01% Tween 20), and blocked 1 h at RT with 100ul/well of FBS Buffer (10% FBS in 

Washing Buffer). FBS Buffer were removed, and 100ul/well of diluted sera sample (1:100 in FBS 

Buffer) were dispensed. Blank wells were included in all the plates, and were obtained using FBS 

Buffer instead of serum. Plates were incubated @4°C ON, and then washed 3 times with Washing 

Buffer. 100ul/well of secondary Ab diluted in FBS Buffer (hIgG 1:8000 and hIgM 1:1200) were 

dispensed, and plates were incubated 3 h at RT. Plates were washed 3 times with Washing Buffer, 

then 100ul/well of Substrate Solution (1mg/ml p-PNP in Substrate Buffer: 1M Diethanolamine, 

1mM MgCl2, pH 9.8) were dispensed. Plates were incubated for 15’-40’, and then ABS at 405 nm 

of each well was red with a spectrophotometer. ABS value for each serum was calculated as (mean 

ABS of triplicate) – (mean ABS of blank triplicate).  
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PART III: IMMUNOLOGICAL ROLE OF 
MOG IN NMO-LIKE EAE RAT MODELS 

As previously noted, the obtainment of a specific Rattus Norvegicus NMO-like EAE model was 

achieved immunizing Brown Norway rats with recombinant, not-refolded rMOG1-117(His)6 

produced in our lab. In particular, it was analyzed the possibility to reproduce the disorder 

administering two doses of immunizing agent (together with adjuvant). The aim of this study was 

to evaluate the Ab response elicited in the NMO-like model to disclose the correlation between anti-

MOG Ab titer and disease progression. A first attempt to evaluate the model obtained immunizing 

Brown Norway rats with rMOG1-117(His)6 was made studying the time-course of IgM and IgG anti-

MOG Ab response. Subsequently, it was assessed the correlation between Ab titer against refolded 

MOG and both time- and disease-course in four different immunization protocols. The same cohort 

was examined to verify the presence of a response against unfolded MOG and CSF114(Glc). 

Results & Discussion 

11 EAE rat serum samples collected in different days post immunization (DPI) were tested in SP-

ELISA against rMOG1-117(His)6. Results obtained were compared with 3 naïve rat samples (Figure 

25). Data obtained confirmed the presence of a canonical Ab response, with the IgM peak at day 10 

and the IgG peak around day 45. 

 

Figure 25: IgM and IgG response to rMOG1-117(His)6.  

Anti-MOG Ab time-course is shown on the right. 
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A second rat cohort was tested to assess the correlation between anti-MOG titer and disease 

progression in four distinct models. Animals were immunized with recombinant, unfolded rMOG1-

117(His)6, then divided in 4 groups:  

1. No further immunization; 

2. Boost at day 39 with PBS; 

3. Boost at day 39 with rMOG1-117(His)6; 

4. Boost at day 50 with rMOG1-117(His)6. 

Serum samples were collected from at day 42, 51 and 77 post immunization, and tested against 

rMOG1-117(His)6. Results obtained are shown in Figure 26 and Figure 27 . 

Rats that received one single immunization with the protein have a disease score = 0 throughout 

the observation period, and developed a stable anti-MOG Ab response (both IgM and IgG) after the 

administration of the protein. These findings indicate that the first immunization with the protein 

triggers a strong humoral response, which however is not correlated with disorder occurrence or 

progression. Similar results were achieved in the animals boosted with PBS alone, which in turn 

did not exhibit pathological signs. 

In the case of double-immunization, rats developed a disease score = 4-5 after the boost. We 

observed that IgG titers are high and stable in time, in agreement with the previously mentioned 

results that disclose the IgG peak around day 45 post-immunization (Figure 25). Therefore, the 

anti-MOG IgG detected still refers to the first immunization step. In the case of IgM, we noticed a 

high increase in the Ab titer in 3/5 animals.  

From a molecular point of view, it appears that a single immunization with the recombinant is 

rMOG1-117(His)6 is not sufficient to induce the disease in Brown Norway rats, even if it is able to 

elicit an Ab response. Conversely, animals boosted with a second dose of protein develop a severe 

NMO-like disorder, corresponding to a rise of the anti-MOG IgM titer. Based on these findings, we 

can hypothesize two different scenarios: 

 the anti-MOG response is not correlated with disease progression, and therefore the 

detected Ab have not a pathologic role; 

 there are two families of anti-MOG Ab, and only one is responsible for disease occurrence. 

We are not able to distinguish them because we used a full-length recombinant protein, 

which contains different epitopes, both conformational and linear.  

In the latter case, it would be interesting to investigate the epitope of the two families through an 

epitope mapping study, using both solid phase and competitive ELISA. Summarizing, we 

demonstrated that a NMO-like model can be obtained immunizing Brown Norway rats with 

recombinant rMOG1-117(His)6. This result allows us to speculate a role of this protein in the disorder, 

even if we obtained contrasting data in human NMO. As already stated, this may be due to the use 

of recombinant rMOG as Ag in the tests with human sera: the two isoforms share a high degree of 

homology in terms of sequence, but some of the not conserved Aa may be crucial for both 
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conformation and immunogenicity, affecting the Ab recognition. The relevance of this difference in 

the primary sequence will be elucidated testing in parallel rMOG and hMOG as Ag, and comparing 

the obtained data. However, it must be kept in mind that both the results achieved studying NMO 

and the rat NMO-like model are preliminary, and therefore further clarifications and investigations 

are needed.  

 

The same sera cohorts were tested also against unfolded rMOG1-117(His)6 and CSF114(Glc). 

Preliminary results are show in Figure 28 (IgM response) and Figure 29 (IgG response). The Ab 

response detected against refolded and unfolded recombinant protein is slightly different, 

indicating that the conformation is maintained during the ELISA coating step. However, this 

difference is not statistically relevant, and does not allow us to speculate the presence of 

conformational epitopes. Concerning CSF114(Glc), we have not detected any IgG response against 

this probe, coherently with the data obtained in the human NMO pathology (Figure 24). 

Conversely, the anti-CSF114(Glc) IgM response is detectable in the model regardless of the 

immunization protocol, with a trend mirroring that of MOG. This pattern of Ab response against 

the glucosylated peptide (namely, presence of IgM and absence of IgG) may indicate a sort of 

epitope spreading starting from the immunizing agent.  

As stressed also in the case of EAE mice model of MS, the use of animal models in both clinical and 

immunological field is of crucial relevance, as it enables to understand numerous aspects that 

would otherwise be out of reach. The obtainment of a suitable NMO-like EAE animal model may 

allow to disclose the molecular mechanisms characterizing this CNS AID, and in particular to clarify 

the immunopathogenic role of both AQP4 and MOG. However, further investigations on the Ab 

response of the NMO-like model are required to formulate a precise hypothesis of 

immunopathogenic molecular mechanism characterizing the disorder. 
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Figure 26: IgM response to rMOG1-117(His)6 in the different cohorts: not boosted rats (black);  
boosted at day 39 with PBS (red); boosted at day 39 with rMOG1-117(His)6 (blue);  

boosted at day 50 with rMOG1-117(His)6. 

 

 

Figure 27: IgG response to rMOG1-117(His)6 in the different cohorts: not boosted rats (black);  
boosted at day 39 with PBS (red); boosted at day 39 with rMOG1-117(His)6 (blue);  

boosted at day 50 with rMOG1-117(His)6. 
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Figure 28: IgM titers against refolded rMOG1-117(His)6 (green), unfolded rMOG1-117(His)6 (blue) and 
CSF114(Glc) (yellow) in the 4 different immunization protocols:  

not boosted (1N, 2N, 3N), boosted at day 39 with rMOG1-117(His)6 (1B, 2B, 3B),  
boosted at day 39 with PBS (1R, 2R, 3R), boosted at day 50 with rMOG1-117(His)6 (1V, 2V, 3V). 
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Figure 29: IgG titers against refolded rMOG1-117(His)6 (green), unfolded rMOG1-117(His)6 (blue) and 
CSF114(Glc) (yellow) in the 4 different immunization protocols:  

not boosted (1N, 2N, 3N), boosted at day 39 with rMOG1-117(His)6 (1B, 2B, 3B),  
boosted at day 39 with PBS (1R, 2R, 3R), boosted at day 50 with rMOG1-117(His)6 (1V, 2V, 3V). 
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Materials & Methods 

Serum samples 

50 EAE induced rat serum samples (provided by Prof. Jerome De Seze group (Hôpitaux 

universitaires de Strasbourg, France) were analyzed, divided according to the immunization 

protocol. Samples were tested in triplicate with a single dilution (1:100) in FBS Buffer.  

 

Antigens 

Recombinant refolded rMOG1-117 was produced according to the protocol published by Gori et al118. 

Recombinant unfolded rMOG1-117 was obtained modifying the purification protocol as follows. 

Solubilized IB sample was loaded in column and washed with:  

1. 50 ml Buffer A (100 mM NaH2PO4, 10 mM Tris, 6M GuaCl) pH 8; 

2. 50 ml Buffer A pH 6; 

3. 50 ml Buffer A pH 5.2. 

Elution was performed using Buffer A pH 4.5.  

Peptide probes were synthesized at the French-Italian Laboratory of Peptide and Protein Chemistry 

& Biology (PeptLab), University of Florence and University of Cergy-Pontoise. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

1ug/well of Ag (peptide or protein) were dissolved in Coating Buffer (12mM Na2CO3, 35mM 

NaHCO3, pH 9.6), then 100 ul of solution were dispensed in each well of 96-well Maxisorp plates. 

Plates were incubated @4°C ON. Subsequently, plates were washed 3 times with Washing Buffer 

(0,9% NaCl, 0,01% Tween 20), and blocked 1 h at RT with 100ul/well of FBS Buffer (10% FBS in 

Washing Buffer). FBS Buffer were removed, and 100ul/well of diluted sera sample (1:100 in FBS 

Buffer) were dispensed. Blank wells were included in all the plates, and were obtained using FBS 

Buffer instead of serum. Plates were incubated @4°C ON, and then washed 3 times with Washing 

Buffer. 100ul/well of secondary Ab diluted in FBS Buffer (rIgG 1:5000 and rIgM 1:5000) were 

dispensed, and plates were incubated 3 h at RT. Plates were washed 3 times with Washing Buffer, 

then 100ul/well of Substrate Solution (1mg/ml p-PNP in Substrate Buffer: 1M Diethanolamine, 

1mM MgCl2, pH 9.8) were dispensed. Plates were incubated for 15’-40’, and then ABS at 405 nm 

of each well was red with a spectrophotometer. ABS value for each serum was calculated as (mean 

ABS of triplicate) – (mean ABS of blank triplicate).  
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PART IV: OPTIMIZATION OF rMOG1-117  
PRODUCTION PROCESS 

As stated in the introductive chapter, Ag production process is a key step of the BM research in both 

diagnostic and prognostic fields. As mentioned several times during this presentation, MOG is the 

most studied candidate Ag in the case of CNS AID, and therefore the production of this protein as 

antigenic probe is of crucial relevance to study the immunopathogenesis of disorders such as MS 

or NMO. In our lab, we decided to employ recombinant rMOG1-117, which was obtained through the 

expression and purification protocol published by Gori et al.118. This methodology includes 

numerous laborious and time-consuming phases that invalidate productivity. Therefore, the aim of 

this project was to improve rMOG1-117 production process, focusing on the optimization of both 

expression in E.coli and purification/on-column refolding of the protein. 

 

Results & Discussion 

The recombinant rat protein rMOG1-117 was primarily expressed, purified and refolded according to 

the protocol published by Gori et al.118. This methodology was very effective, but included some 

laborious and lengthy steps. Therefore, the method was improved optimizing the following steps: 

1. E.coli cells 

The previous protocol was carried out employing ER2566 electrocompetent E.coli cells, 

which give high transformation efficiencies using a quick method. However, the procedure 

requires specialized apparatus and cuvettes, and is salt-sensitive. The use of chemically 

competent cells leads to both simplification of the protocol and cost reduction, as no special 

equipment is necessary and cells are less expensive. Furthermore, the selected BL21(DE3)-

Gold cells are ultra-competent, thus allowing the obtainment of transformation efficiencies 

comparable with the one achieved using electrocompetent cells. 

 

2. IB solubilization 

The original protocol provided 5 steps of sonication-centrifugation-resuspension with 

Potter. In particular, the resuspension part is laborious, time-consuming and requires skills 

with the instrument. Additionally, the final product has to be resuspended by a ≈90’ stirring 

and then centrifuged again before the purification.  

A first attempt for improvement was made changing resuspension buffer composition 

(which consisted of Tris and NaCl) by the addition of a denaturant (GuaCl) and a detergent 

(Triton X-100), in order to facilitate the solubilization. Furthermore, the number of 

sonication-centrifugation-resuspension steps was reduced from 5 to 3. Unfortunately, the 

new method was still disadvantageous, as the Potter resuspension was still required, and 
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the final stirring step was not removed. Furthermore, the obtained sample was viscous, 

leading to overpressure problems of and column clogging during the purification. 

Both duration and complexity of the process were considerably reduced using the next 

measures: 

- Longer sonication for time (1’ instead of 10’’); 

- Longer and at higher-rpm speed (from 17,000 to 25,000 rpm) centrifugation steps; 

- Use of Urea 8M and ≈30’ stirring for solubilization. 

These modifications enable to obtain a soluble sample to be purified with only 2 

centrifugation steps and 1 resuspension by stirring. Being liquid, the lysate can be loaded 

directly into the purification system without needing dilution, and causes no problems to 

the column or to the instrument. 

3. Purification method 

The previously reported method used a Precision Column Holder to be packed with 

Chelating Sepharose Fast Flow resin and then added with NiSO4. This procedure requires 

two incubation steps of the column: the first, to facilitate the Ni2+ binding to the resin (30’) 

and the second to allow the protein sample binding to Ni2+ (2h). Furthermore, an 

approximate calculation of the protein concentration is needed, in order to estimate the 

amount of resin and NiSO4 to be loaded in column. To avoid the manual packing, which is 

laborious and time-consuming, the HisTrap FF pre-packed column was selected. This 

column is pre-charged with Ni Sepharose 6 Fast Flow, has high binding capacity 

(approximately 40 mg/ml medium) and is compatible with a wide range of additives 

(reducing agents, detergents, denaturants, ecc.). The price of the product is moderate, and 

can be further reduced recharging the exhausted column with fresh NiSO4 after an easy 

cleaning-in-place procedure. 

Another improvement concerns the use of a Superloop to introduce the lysate in the 

purification system. This step enables to fully automate the procedure, as the sample is 

injected in the column directly by the instrument. Moreover, up to 50 ml of solubilized IB 

can be purified at one time, significantly reducing the process time.  
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Materials & Methods 

rMOG1-117(His)6 expression and purification protocol  

pET-22rMOG1-117(His)6 plasmid 

pET-22rMOG1-117(His)6 plasmid (Figure 30) was obtained amplifying the 1-117 portion of MOG 

from pQE12rMOGED(His)6 plasmid and inserting it into a pET-22b vector (Novagen). 

 

Figure 30: pET-22rMOG1-117(His)6 plasmid structure (left)  
and recombinant rMOG1-117(His)6 sequence (right).  

In red, Aa added during the amplification step. In blue, the 6-His tag. 

 

ER2566 cells transformation with pET-22rMOG1-117(His)6 

ER2566 electrocompetent cells were transformed with pET-22rMOG1-117(His)6 using the 

electrophoretic transformation protocol. Briefly, 70 ul of cells were added to 1 ul of plasmid (120 

ng/ul), then the suspension was transferred into a 1 mm cuvette and electroporated (2000 V, 5 ms). 

Immediately, 300 ul of SOC medium were added to the cells. The obtained suspension was 

incubated at 37°C for 1 h with vigorous shaking, then 50 or 100 ul were plated on pre-warmed 

selective plates (LB Amp+) and incubated overnight (ON) at 37°C. Single colonies were picked and 

inoculated in 2 ml of LB each. The precultures (PC) were incubated ON at 37°C with vigorous 

shaking.  
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Precultures and Expression Test 

Colonies were chosen to prepare PC. 5 ml of LB medium containing Ampicillin were inoculated 

with one single colony and incubated ON at 37°C with vigorous shaking. Then 6 ml of LB medium 

containing Ampicillin were inoculated with 6 ul of PC, and incubated at 37°C with vigorous shaking 

until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml of each suspension 

was collected as not-induced sample (NI) and the remaining culture was induced with 5 ul of IPTG 

(final concentration: 1 mM) and incubated ON at 37°C with vigorous shaking. 1 ml of each induced 

culture was collected (I). NI and I samples were centrifuged at 1700o rpm for 30’ at 4°C, then the 

pellet was resuspended in 50 ul of Laemmli Buffer, heated at 100°C for 10’ and loaded on 16% SDS-

PAGE (Sodium Dodecyl Sulphate PolyAcrilamide Gel Electrophoresis). 

 

Large-scale protein expression 

1 ml of PC was inoculated in 1 L of LB medium containing Ampicillin, then incubated at 37°C with 

vigorous shaking until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml 

of each suspension was collected as not-induced sample (NI) and the remaining culture was 

induced with 5 ul of IPTG (final concentration: 1 mM) and incubated ON at 37°C with vigorous 

shaking. 1 ml of each induced culture was collected (I). NI and I samples were centrifuged at 1700o 

rpm for 30’ at 4°C, then the pellet was resuspended in 50 ul of Laemmli Buffer, heated at 100°C for 

10’ and loaded on 16% SDS-PAGE. 

 

Cell lysis and IB solubilization 

The ON 1 L culture was centrifuged for 30’ at 4°C, 4000 rpm. The pellet was resuspended in 10 ml 

of Soni Buffer pH 8 (50 mM Tris, 300 mM NaCl) containing protease inhibitor (500 ul of a solution 

obtaining dissolving a tablet of Complete, EDTA-free protease inhibitor in 2 ml of milliQ H2O), then 

stored at -20°C if not immediately used for the following steps. The suspension was added with a 

tip of lysozyme, then stirred for at least 30’ at RT. LDAO was added (0,83 ml/50 ml of culture), 

then: 

1. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 30’ at 

4°C, 17000 rpm.  

2. The pellet was resuspended* in 10 ml of Soni Buffer + LDAO 0,5%. 

3. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 20’ at 

4°C, 17000 rpm.  

4. The pellet was resuspended* in 10 ml of Soni Buffer + LDAO 0,5%. 

5. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 20’ at 

4°C, 17000 rpm.  

6. The pellet was resuspended* in 10 ml of Soni Buffer + LDAO 0,5%. 
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7. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 20’ at 

4°C, 17000 rpm.  

8. The pellet was resuspended* in 10 ml of Soni Buffer. 

9. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 20’ at 

4°C, 17000 rpm.  

10. The pellet was resuspended* in 10 ml of Soni Buffer. 

11. The suspension was sonicated on ice (10x30’’, power=50%) and centrifuged for 20’ at 

4°C, 17000 rpm. 

 * Resuspension steps are performed with Potter. 

The obtained pellet (IB) was solubilized adding 500 ul of Soni Buffer and then 5 ml of Buffer A + 

40 mM β-mercaptoethanol, βME, pH 8 (100 mM NaH2PO4, 10 mM Tris, 6M GuaCl, 40 mM βME) 

and stirring for 30-90’ at RT. The suspension was centrifuged at 17000 rpm for 30’ at RT. 

 

Purification and refolding by affinity chromatography 

Precision Column Holder XK16 was packed with Chelating Sepharose Fast Flow resin, then 

connected with ÄktaBasic chromatograph system. The column was washed with milliQ H2O, 

disconnected and added with NiSO4, then stirred for 30’ at RT. The column was connected again 

with ÄktaBasic chromatograph system and washed with milliQ H20, then equilibrated with Buffer 

A + 1 mM βME pH 8 (100 mM NaH2PO4, 10 mM Tris, 6M GuaCl, 1 mM βME). 

Previously obtained sample was diluted with Buffer A pH 8 (100 mM NaH2PO4, 10 mM Tris, 6M 

GuaCl), in order to obtain a 2-3 mM βME final concentration. Sample was loaded into the column, 

then stirred for 2 h at RT. The column was packed by gravity and connected with ÄktaBasic 

chromatograph system. Purification and refolding method is the following (flow: 1 ml/min): 

a) Refolding. Gradient (600’): 100% Buffer A → 100% Buffer B + GSH pH 8 (100 mM 

NaH2PO4, 10 mM Tris, 3mM GSH) 

b) Gradient (120’). 100% Buffer B + GSH → 100% Buffer B (100 mM NaH2PO4, 10 mM 

Tris) 

c) Elution. 100% EluBuffer pH 8 (100 mM NaH2PO4, 10 mM Tris, 200 mM NaCl, 500 mM 

Imidazole). 
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rMOG1-117(His)6 expression and purification protocol optimization 

BL21(DE3) cells chemical transformation with pET-22rMOG1-117(His)6 

BL21(DE3) cells were transformed with pET-22rMOG1-117(His)6 using the chemical transformation 

protocol. Briefly, 100 ul of cells were added to 1-50 ng of plasmid and incubated on ice for 30’, then 

heat shocked for 20’’-1’ in a 42°C water bath without shaking and incubated on ice again for at least 

2’. 900 ul of pre-warmed LB medium were added to each cell aliquot, and then the suspensions 

were incubated at 37°C for 1 h at 225 rpm. 100 ul of each suspension were plated on pre-warmed 

selective plates (LB Amp+) and incubated ON at 37°C.Single colonies were picked and inoculated 

in 2 ml of LB each. The PC were incubated ON at 37°C with vigorous shaking.  

 

Precultures and Expression Test 

Colonies were chosen to prepare PC. 5 ml of LB medium containing Ampicillin were inoculated 

with one single colony and incubated ON at 37°C with vigorous shaking. Then 6 ml of LB medium 

containing Ampicillin were inoculated with 6 ul of PC, and incubated at 37°C with vigorous shaking 

until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml of each suspension 

was collected as not-induced sample (NI) and the remaining culture was induced with 5 ul of IPTG 

(final concentration: 1mM) and incubated ON at 37°C with vigorous shaking. 1 ml of each induced 

culture was collected (I). NI and I samples were centrifuged at 1700o rpm for 30’ at 4°C, then the 

pellet was resuspended in 50ul of Laemmli Buffer, heated at 100°C for 10’ and loaded on 16% SDS-

PAGE. 

 

Large-scale protein expression 

1 ml of PC was inoculated in 1 L of LB medium containing Ampicillin, then incubated at 37°C with 

vigorous shaking until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml 

of each suspension was collected as not-induced sample (NI) and the remaining culture was 

induced with 5 ul of IPTG (final concentration: 1 mM) and incubated ON at 37°C with vigorous 

shaking. 1 ml of each induced culture was collected (I). NI and I samples were centrifuged at 1700o 

rpm for 30’ at 4°C, then the pellet was resuspended in 50ul of Laemmli Buffer, heated at 100°C for 

10’ and loaded on 16% SDS-PAGE. 
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Evaluation of the best strategy for cell lysis and IB solubilization 

Method #1  

The ON 1 L culture was centrifuged for 30’ at 4°C, 4000 rpm. The pellet was resuspended in 10 ml 

of Tris 20 mM pH 8 containing protease inhibitor (500ul of a solution obtaining dissolving a tablet 

of Complete, EDTA-free protease inhibitor in 2 ml of milliQ H2O), then stored at -20°C if not 

immediately used for the following steps. The suspension was sonicated on ice (4 x 10’’, 

power=60%) and centrifuged for 10’ at 4°C, 17000 rpm. The pellet was resuspended* in 10 ml of 

cold IB Solubilization Buffer pH 8 (2M GuaCl, 20 mM Tris, 0.5 M NaCl, 2% Triton X-100) then 

sonicated on ice (4 x 10’’, power=60%) and centrifuged for 10’ at 4°C, 17000 rpm. The pellet was 

resuspended* in 10 ml of cold IB Solubilization Buffer pH 8 then sonicated on ice (4 cycles of 10’’, 

power=60%) and centrifuged for 10’ at 4°C, 17000 rpm. The pellet was resuspended* in 10 ml of 

cold IB Solubilization Buffer pH 8 without GuaCl (20 mM Tris, 0.5 M NaCl, 2% Triton X-100) then 

sonicated on ice (4 x 10’’, power=60%) and centrifuged for 10’ at 4°C, 17000 rpm. The pellet 

obtained can be used immediately for purification or conserved at -20°C. The IB pellet was 

resuspended in 10 ml of Binding Buffer pH 8 with βME (GuaCl 6M, NaH2PO4 0.1 M, 10 mM Tris, 

0.5 M NaCl, 20 mM Imidazole, 20 mM βME) by stirring for 60-90’ at RT, then centrifuged for 15’ 

at RT, 17000 rpm 

* The resuspension steps are performed with Potter. 

 

Method #2  

The overnight cultures were centrifuged at 4000 rpm for 30’ at 4°C. The pellet was resuspended in 

10 ml of 20 mM Tris pH 8 containing protease inhibitor (500 ul of a solution obtaining dissolving 

a tablet of Complete, EDTA-free protease inhibitor in 2 ml of milliQ H2O), then stored at -20°C if 

not immediately used for the following steps. The suspension was sonicated (3 x 1’, 40% amplitude, 

repeated twice) and centrifuged at 25000 rpm for 65’ at 4°C. The supernatant (called “1st 

supernatant”) was collected to evaluate the possible presence of the protein, and the pellet was 

resuspended in the same amount of Urea 8M. The sample was sonicated and centrifuged again. 

The supernatant (called “2nd supernatant”) was collected to evaluate the possible presence of the 

protein, and the pellet was resuspended in the same amount of Urea 8M. The sample obtained was 

called “Solubilised IB”. 20 ul of each sample were added with 5 ul of 5X Laemmli Buffer, heated at 

100°C for 10’ and loaded on 16% SDS-PAGE. After the SDS-PAGE run, is evident that the protein 

is absent in the 1st supernatant, while the largest amount is located in the 2nd wash. This sample 

was used for the purification step. 
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Purification and refolding by affinity chromatography 

The purification steps are performed using ÄktaBasic chromatograph system and the HisTrap FF 1 

ml column (GE Healthcare). Purification and refolding method is the following: 

1) Column equilibration. 15 CV Binding Buffer pH 8 (6 M GuaCl, 0.1 M NaH2PO4, 10 mM 

Tris, 0.5 M NaCl, 20 mM Imidazole) 

2) Sample Injection 

3) Conditioning. 15 CV Binding Buffer pH 8. The UV signal must be stable 

4) Refolding. Gradient (600’): 100% Binding Buffer pH 8 → 100% GSH Buffer pH 8 (6 M 

GuaCl, 0.1 M NaH2PO4, 10 mM Tris, 0.5 M NaCl, 20 mM Imidazole, 3 mM GSH) 

5) Wash (60’). GSH Buffer pH 8 

6) Gradient (150’). 100% GSH Buffer pH 8 → 100% Washing Buffer (0.1 M NaH2PO4, 10 

mM Tris, 0.5 M NaCl, 20 mM Imidazole) 

7) Wash. 5 CV Washing Buffer  

8) Elution. Gradient (20 CV): 100% Washing Buffer → 100% Elution Buffer (6 M GuaCl, 

0.1 M NaH2PO4, 10 mM Tris, 0.5 M NaCl, 500 mM Imidazole ) 

9) Continue the Elution with 100% Elution Buffer.  
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PART V: SEMI-SYNTHESIS OF 
ABERRANTLY N-GLUCOSYLATED 

hMOG1-117 

As stated above, the involvement of aberrant PTM on MOG in triggering CNS autoimmunity is a 

crucial topic. In this context, we hypothesized that an aberrant N-glucosylation on the MOG native 

site of glycosylation (Asn31) may be involved in the immunopathogenesis of CNS demyelinating 

disorders. For this purpose, it was decided to produce the hMOG35-117 fragment using molecular 

biology tools, engineering the sequence to obtain the N-terminal free Cys. Specifically, a selective 

point mutation was introduced at the 35 residue (M35C) and the sequence was extended at the N-

terminus with the TEV-protease consensus sequence. The C-terminal active ester of the peptide 

fragment [Asn31(Glc)]hMOG(1-34) was prepared at the SOSCO Laboratory (Universitè de Cergy 

Pontoise, France). 

 

Results & Discussion 

To perform NCL, the native sequence of hMOG35-117, reported on data bank, was modified with a 

selective point mutation (M35→C35) and extended with the consensus sequence of TEV at the N-

terminus. Furthermore, a 6-His tag was added at the C-terminus to enable Ni-affinity 

chromatography purification (Figure 31). The designed sequence was successfully cloned in a pET-

22b expression vector (Figure 32. Cloning steps are displayed in Materials & Methods section), as 

demonstrated by PCR (Figure 33) and sequencing (data not shown). Further confirmation was 

obtained performing a specific digestion on the purified PCR fragment (Figure 33). 

Recombinant protein expression and purification protocols were developed and selected in order 

to optimize both protein yield and process timing. In particular: 

 Expression was carried out in BL21(DE3)-Gold chemically competent E.coli cells, which enable 

a high efficiency expression level under the control of a T7 promoter. 

 It was determined that the best strategy to obtain an acceptable amount of soluble protein is 

the post-induction ON growth at RT with vigorous shaking. Classical 37°C ON growth after 

induction enables to obtain higher protein concentrations, which precipitates after purification.  

 Recombinant protein is expressed in IB. The chosen strategy to obtain solubilized IB provides 

two sonication-high speed centrifugation steps (Figure 34). The developed methodology is not 

time-consuming and enable the obtainment of the protein sample directly in solution after the 

last centrifuge. The latter feature is particularly important because it allows to easily 

manipulate the sample during the purification step and avoid column clogging. 
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Purification was performed on large-scale cultures using an Äktabasic system. The selected affinity 

columns are the prepacked HisTrap FF 1ml, which enable to perform a rapid and efficient process. 

The developed protocol allows to purify the recombinant from the lysate through a 4-step process, 

which leads to the obtainment of partially refolded protein in non-denaturing conditions. The 

identity of the purified protein was assessed by MALDI-MS (Figure 35), performed in collaboration 

with Toscana Biomarkers srl (Siena), and SDS-PAGE (Figure 36). The latter analysis enabled to 

notice that a fraction of the protein is not retained in column during the wash step, as it is present 

also in the column flow-through. Therefore, the column flow was always collected, checked by SDS-

PAGE to verify the presence of MOG, and eventually loaded in column for a second purification 

round.  

 

Figure 31: Engineered hMOG35-117 sequence, (TEVconsensus)-(Cys35)hMOG1-117(His)6.  
In green, the TEV consensus sequence. In red, the mutated residue (M35C).In blue, the 6-His tag. 

 

 

Figure 32: pET-22b_(TEVconsensus)-(Cys35)hMOG1-117(His)6 vector scheme.  
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Figure 33: 1,5% agarose gels: on the left, PCR fragments obtained amplifying the plasmid  
with T7 promoter and terminator primers (desired fragment =453 bp);  

on the right PCR fragments digested with XhoI (desired fragment = 359 bp). 

 

 

Figure 34: 16% SDS-PAGE of different fractions obtained during cell lysis and IB solubilization.  
The protein is present in solution after 2 sonication-centrifugation steps. 

 

 

Figure 35: MALDI-MS analysis of (TEVconsensus)-(Cys35)hMOG1-117(His)6 protein. 
(MW = 11678 Da). 

 

 

Figure 36: 16% SDS-PAGE of (TEVconsensus)-(Cys35)hMOG1-117(His)6 protein. In the first lane, the 
solubilized IB sample loaded in column, then the column flow-throughs  

and the purified fractions. 
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To obtain the free N-terminal Cys35 required for NCL, several TEV-cleavage attempts were 

performed. In particular, the following variables were adjusted to maximize the amount of cut 

protein: units of enzyme (U), cleavage buffer composition, incubation time and temperature. 

Samples obtained after cleavage reaction were run on 16%-4% SDS or 18%-5% Tricine PAGE, in 

order to verify the cleavage. Since gels have not enabled the detection of two distinct bands (cut and 

uncut protein), it was necessary to perform MALDI-MS analyses on the samples. Another useful 

methodology to monitor the cleavage reaction is analytical HPLC-MS. This technique requires 

small sample volume, is fast and relatively inexpensive. Furthermore, it allows to follow the 

reaction course observing the protein molecular weight, provided by MS. Using both MALDI-MS 

and HPLC, we established that the best cut protein yield was obtained using 200 U of TEV/100 ug 

of protein, and incubating the reaction ON at 20°C in a buffer containing 2 M Urea and 14 mM 

βME. In spite of the numerous different reaction conditions tested, we have not obtained high yield 

of (Cys35)-hMOG35-117. Indeed, all the samples analyzed are composed by a mixture of cut and uncut 

protein, and the latter was always the most abundant. To overcome this problem, we decided to 

purify selectively the cut protein (Cys35)-hMOG35-117 using semi-preparative HPLC. 

Further developments of this work include: 

 ligation reaction implementation; 

 purification of the semi-synthetic protein;  

 use of the semi-synthetic construct as antigenic probe in SP-ELISA tests aimed to clarify 

the role of aberrant N-glucosylation on MOG. 

The development of a methodology allowing the obtainment of N-glucosylated MOG is crucial to 

investigate the involvement of aberrant PTM in the ethiopathogenesis of CNS AID, and to elucidate 

the role of MOG as putative auto-Ag. The use of NCL enables to combine the advantages of E.coli 

expression and SPPS, but requires considerable skills in both techniques. Furthermore, the large 

number of steps and the significant time necessary to execute and setup the method may invalidate 

the feasibility of this technique. To overcome these issues, preliminary tests were performed using 

advanced molecular biology tools. In particular, a plasmid encoding the H. influenza 

glycosyltransferase HMW1C (kindly provided by Prof. Barbara Imperiali, Massachusetts Institute 

of Technology, Cambridge) was employed to perform a double chemical transformation on 

BL21(DE3)-Gold E.coli cells, together with pET-22rMOG1-117(His)6 plasmid. Indeed, rMOG 

sequence includes the consensus sequence sequon Asn-X-Thr required for in vivo glycosylation 

operated by HMW1C. Unfortunately, the attempts performed using the HMW1 N-glucosylation 

standard protocol have not succeeded, possibly because of the protein expression at the IB level. 
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Materials & Methods 

Chemical Transformation of DH5 cells with pET-22b and pMAT-

(TEVconsensus)-(Cys35)hMOG1-117(His)6 

50 ul of chemically competent cells were transformed using two different plasmids, pET-22b 

(Novagen) and pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 (Life Technologies). Specifically, 2 

different mixes were prepared:  

1. DH5 cells + 10 ng of pET-22b 

2. DH5 cells + 10 ng of pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 

Reactions were incubated on ice for 30’, then heat-shocked at 42°C for 20’’ and incubated again on 

ice for 2’. 950 ul of LB medium was added to each reaction, and then the suspensions were 

incubated at 37°C for 1 hour with vigorous shaking. 100 ul of each suspension were plated on LB-

Agarose plates containing Ampicillin. Plates were incubated at 37°C overnight. 

 

Precultures and Midiprep of pET-22b and pMAT-(TEVconsensus)-

(Cys35)hMOG1-117(His)6 

Colonies are visible on all the plates. 2 colonies for each plasmid were chosen for PC. Briefly, each 

colony was inoculated in 3 ml of LB medium containing Ampicillin and incubated at 37°C for 8h 

with vigorous shaking. Then 50 ml of fresh medium were inoculated with 100 ul of the starter 

culture and incubated ON at 37°C for 8h with vigorous shaking. Both plasmids were purified from 

cell cultures using NucleoBond® PC100 kit (Macherey-Nagel). According to the manufacturer’s 

protocol, the cultures were centrifuged @4000 g for 30’ @4°C. The pellets were carefully 

resuspended in buffer S1+RNase A, then buffer S2 was added. The suspension were mixed by 

inverting the tubes 6-8 times. Pre-cooled buffer S3 was added, and the lysates were immediately 

mixed by inverting the tubes until a homogenous suspension containing an off-white flocculate is 

formed. Suspensions were incubated on ice for 5’. Meanwhile, NucleoBond® columns were 

equilibrated with buffer N2. Lysates were clarified using the provided folded filters, then each 

solution was loaded into a column. After the columns have emptied by gravity, buffer N3 was added 

to wash the columns. Flow-throughs were discarded. Plasmids were eluted from the columns using 

buffer N5. Each plasmid was precipitated adding RT carefully discarded, then 70% RT ethanol was 

added to each pellet. Solutions were centrifuged @15000 g for 10’ @RT, then ethanol was carefully 

removed. Pellets were allowed to dry @RT for 10’, then reconstituted with water. 
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Double Digestion of pET-22b and pMAT-(TEVconsensus)-

(Cys35)hMOG1-117(His)6 

pET-22b (cloning vector, V) and pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 (plasmid 

containing insert, I) were double-digested using NdeI and XhoI (NEB), using the following 

protocol: 

 pET-22b 

(V) 

pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 

(I) 

Reagent Volume (ul) Volume (ul) 

Buffer 4 (10X) 2.5 2.5 

BSA (100X) 0.25 0.25 

NdeI 0.5 0.5 

XhoI 0.5 0.5 

pET-22b (V) 2.5 (1 ng) - 

pMAT-(TEVconsensus)-
(Cys35)hMOG1-117(His)6 (I) 

- 1 (1 ng) 

H2O 18.75 20.25 

   

Final volume 25 25 

 

The amount of each enzyme and DNA was calculated according to the manufacturer’s instructions. 

The reactions were incubated for 3 hours at 37°C. An aliquot of each reaction was loaded into an 

1.5% Agarose gel containing Sybr Safe (Life Technologies), together with the not-digested form of 

the plasmids. The gel was run at 90 V for 1 hour. 

1) pET-22b (8ul TE buffer, 2ul DNA, 2ul Loading 

buffer 6X) 

2) Double digested pET-22b (entire reaction + 2,5ul 

Loading buffer 10X) 

3) GeneRuler 1kb Plus DNA Ladder (3 ul) 

4) pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 (8ul 

TE buffer, 2ul DNA, 2ul Loading buffer 6X) 

5) Double digested pMAT-(TEVconsensus)-

(Cys35)hMOG1-117(His)6 (entire reaction + 2,5ul 

Loading buffer 10X) 

6) GeneRuler 1kb Plus DNA Ladder (3 ul) 

 

DNA fragments of interest are: pET-22b, 5364 bp and pMAT-(TEVconsensus)-(Cys35)hMOG1-

117(His)6, 273 bp. Corresponding bands were cut from the gel and the DNA fragments were purified 

from agarose gel using the NucleoSpin® Gel and PCR Clean-up kit (Macherey Nagel). Obtained 

DNA fragments were loaded into 1.5% Agarose gel containing Sybr Safe, and then quantized 
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comparing the intensity of bands with GeneRuler 1kb Plus DNA Ladder. The amount of purified 

pET-22b is 20 ng/ul, and that of pMAT-(TEVconsensus)-(Cys35)hMOG1-117(His)6 is 5 ng/ul. 

 

1) Double digested pET-22b, purified from Agarose gel 

(8ul TE buffer, 2 ul DNA, 2 ul Loading buffer 6X) 

 

2) GeneRuler 1kb Plus DNA Ladder (6ul) 

 

3) Double digested pMAT-(TEVconsensus)-

(Cys35)hMOG1-117(His)6, purified from  Agarose gel 

(4ul TE buffer, 4 ul DNA, 2 ul Loading buffer 6X) 

 

 

 

 

 

Ligation of the digested fragments 

The amount of vector and insert for the ligation reaction were chosen using the following formula: 

 𝑥𝑛𝑔 𝑖𝑛𝑠𝑒𝑟𝑡 =  
𝑦𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 × 𝑏𝑝𝑖𝑛𝑠𝑒𝑟𝑡

𝑏𝑝𝑣𝑒𝑐𝑡𝑜𝑟
 ×  (𝑟𝑎𝑡𝑖𝑜 𝑖𝑛𝑠𝑒𝑟𝑡: 𝑣𝑒𝑐𝑡𝑜𝑟) 

 Reaction I 

Vector: 40 ng (1:1) 

Reaction II 

Vector: 80 ng (1:1) 

Reaction III 

Vector: 40 ng (5:1) 

Reagent Volume (ul) Volume (ul) Volume (ul) 

Vector 2 4 2 

Insert  4 8 10 

Ligase Buffer 

(Fermentas) 

2 2 2 

T4 Ligase 

(Fermentas) 

2 2 2 

H2O 10 4 4 

    

Final volume 20 20 20 

 

Reactions were incubated at 16°C overnight.  
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Chemical Transformation of DH5 and XL-10 cells with ligation 

products 

200 ul of chemically competent cells were transformed using the ligation reactions. Specifically, 5 

different mixes were prepared, in order to find the best conditions: 

1. DH5 cells + 10 ul of Reaction I 

2. XL-10 cells + 10 ul of Reaction I 

3. DH5 cells + 5 ul of Reaction II 

4. XL-10 cells + 5 ul of Reaction II 

5. XL-10 cells + Reaction III. 

Reactions were incubated on ice for 1 hour, then heat-shocked at 42°C for 2’ and incubated again 

on ice for at least 5’. 1 ml of LB medium was added to each reaction, and then the suspensions were 

incubated at 37°C for 2 hours with vigorous shaking. 100 ul of each suspension were plated on LB-

Agarose plates containing Ampicillin and Nalidixic Acid. After that, reactions were centrifuged at 

5000 rpm for 5’. 100 ul of each supernatant were used to resuspend the pellet, then plated on LB-

Agarose plates containing Ampicillin and Nalidixic Acid. Plates were incubated at 37°C overnight. 

 

Colony picking and Colony PCR 

Colonies are visible on all the plates. 30 colonies from different plates were chosen to perform 

colony PCR. Briefly, each colony was picked with a sterile tip and streaked on a fresh LB-Agarose 

plates containing Ampicillin and Nalidixic Acid (transfer plate). Then the same tip was used to 

resuspend the colony in 50 ul of sterile H2O. The suspensions were incubated at 100°C for 15’, then 

at -20°C for 15’ (heat shock). Suspensions were centrifuged at 15000 g for 3’. 2 ul of each 

supernatant were carefully collected and used as template for PCR. The PCR reactions were 

prepared as follows: 

Reagent Volume (ul) Final Concentration 

10X DreamTaq Green Buffer (Fermentas) 2.5 1X 

dNTPs (Sigma Aldrich) 0.5 0.2 uM 

T7 terminator primer (Jena Biosciences) 2.5 1 uM 

T7 promoter primer (Jena Biosciences) 2.5 1 uM 

DreamTaq DNA Polymerase (Fermentas) 0.2  

DNA template 2  

H2O 14.8  

   

Final volume 25  
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In addition to DNA template from the colonies, negative controls were added (pET-22b and H2O). 

Thermocycler was set as follows: 

1. 95°C for 3’ 

2. 95°C for 30” 

3. 55°C for 30”       35 cycles 

4. 72°C for 30” 

5. 72°C for 5’ 

6. 12°C  

Samples were loaded on 1% Agarose gel. The expected band is 453 bp (pET-22b negative control: 

309 bp). 

 

PCR reactions: 

1-30 – template = colony; 31 – no template; 32 – template = pET-22b 

 

Miniprep of the ligation product 

Three clones (#15, 16 and 22) were chosen for Midiprep. Corresponding colonies from transfer 

plate were inoculated in 10 ml of LB-medium containing Ampicillin and Nalidixic Acid, then 

incubated at 37°C overnight with vigorous shaking. Each PC was divided in 2 aliquots of 5 ml and 

processed according Miniprep protocol (Qiagen). Plasmids were eluted with 50 ul of EB buffer. 
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Ligation validation: Double digestion and PCR of the prepped 

plasmids 

Prepped plasmids were double-digested using NdeI and XhoI (NEB), using the following protocol: 

Reagent Volume (ul) 

Buffer 4 (10X) 2.5 

BSA (100X) 0.25 

NdeI 0.5 

XhoI 0.5 

Plasmid 1 ng 

H2O 18.75 

  

Final volume 25 

 

The amount of each enzyme and DNA was calculated according to the manufacturer’s instructions. 

Reactions were incubated for 3 hours at 37°C. An aliquot of each reaction was loaded into an 1.5% 

Agarose gel containing Sybr Safe, together with the not-digested form of the plasmids. The gel was 

run at 90 V for 1 hour. Plasmids were also tested by PCR using T7 terminator and T7 promoter 

primers. PCR mixes were prepared as follows: 

Reagent Volume (ul) Final Concentration 

10X DreamTaq Green Buffer 2.5 1X 

dNTPs 1 0.2 uM 

T7 terminator primer 1.25 0.5 uM 

T7 promoter primer 1.25 0.5 uM 

DreamTaq DNA Polymerase 0.2  

Plasmid 0.5  

H2O 18.3  

   

Final volume 25  

 

pET-22b was processed as negative control. Thermocycler was set as follows: 

1. 95°C for 3’ 

2. 95°C for 30” 

3. 55°C for 30”        35 cycles 

4. 72°C for 30” 

5. 72°C for 5’ 

6. 12°C  

Samples were loaded on 1% Agarose gel. The expected band is 453 bp (negative control: 309 bp). 
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Ligation validation: Sequencing of the amplicons 

Bands corresponding to the insert were cut from Agarose gel and purified from agarose gel using 

the NucleoSpin® Gel and PCR Clean-up kit. Obtained DNA fragments were loaded into 1.5% 

Agarose gel containing Sybr Safe, and then quantized comparing the intensity of bands with 

GeneRuler 1kb Plus DNA Ladder. Samples were digested with XhoI to confirm the identity of the 

sequences, using the following reaction: 

Reagent Volume (ul) 

Buffer 4 (10X) 2.5 

BSA (100X) 0.25 

XhoI 0.5 

DNA fragment 5 

H2O 16.75 

  

Final volume 25 

 

After 1 hour of incubation at 37°C, samples were loaded on 2% Agarose gel. Full-lenght band is 453 

bp, while the digested fragments are 359 bp and 94 bp. Three of six samples were sent to Eurofins 

MWG Operon to be sequenced using the commercial primers T7 promoter and T7 terminator. Exact 

match between of the obtained sequence and the desired one was confirmed using BLAST (Basic 

Local Alignment Search Tool). 

 

Chemical transformation of BL21Gold(DE3) cells with pET-22b-

(TEVconsensus)-(Cys35)hMOG1-117(His)6 

200 ul of chemically competent cells were transformed using the ligation product #15A, that is pET-

22b-(TEVconsensus)-(Cys35)hMOG1-117(His)6. Specifically, 3 different mixes were prepared, in 

order to find the best conditions: 

1. BL21Gold(DE3) + 2.5 ul of plasmid 

2. BL21Gold(DE3) + 1.5 ul of plasmid 

3. BL21Gold(DE3) + 1 ul of plasmid 

Reactions were incubated on ice for 1 hour, then heat-shocked at 42°C for 2’ and incubated again 

on ice for at least 5’. 1 ml of LB medium was added to each reaction, and then the suspensions were 

incubated at 37°C for 2 hours with vigorous shaking. 100 ul of each suspension were plated on LB-

Agarose plates containing Ampicillin. After that, reactions were centrifuged at 5000 rpm for 5’. 100 

ul of each supernatant were used to resuspend the pellet, then plated on LB-Agarose plates 

containing Ampicillin. Plates were incubated at 37°C overnight. 
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Colony picking and Colony PCR 

Colonies are visible on all the plates. 13 colonies from different plates were chosen to perform 

colony PCR. Briefly, each colony was picked with a sterile tip and streaked on a fresh LB-Agarose 

plates containing Ampicillin and Nalidixic Acid (transfer plate). Then the same tip was used to 

resuspend the colony in 50 ul of sterile H2O. The suspensions were incubated at 100°C for 15’, then 

at -20°C for 15’ (heat shock). Suspensions were centrifuged at 15000 g for 3’. 2 ul of each 

supernatant were carefully collected and used as template for PCR. PCR reactions were prepared 

as previously described. Samples were loaded on 1% Agarose gel. Expected band is 453 bp. 

 

  

Precultures and Expression Test 

6 of the 13 selected colonies were chosen to prepare PC. 5 ml of LB medium containing Ampicillin 

were inoculated with one single colony and incubated ON at 37°C with vigorous shaking. Then 6 

ml of LB medium containing Ampicillin were inoculated with 6 ul of PC, and incubated at 37°C with 

vigorous shaking until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml 

of each suspension was collected as not-induced sample (NI) and the remaining culture was 

induced with 5 ul of IPTG (final concentration: 1mM) and incubated ON at 37°C with vigorous 

shaking. 1 ml of each induced culture was collected (I). NI and I samples were centrifuged at 1700o 

rpm for 30’ at 4°C, then the pellet was resuspended in 50ul of Laemmli Buffer, heated at 100°C for 

10’ and loaded on 16% SDS-PAGE. The expected mass of (TEVconsensus)-(Cys35)hMOG1-117(His)6 

is 11,678 kDa. 
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Evaluation of the best large-scale expression strategy  

400 ml of LB medium containing Ampicillin were inoculated with 400 ul of each PC in duplicate 

(e.g. 1A and 1B are cultures prepared using the same PC), and incubated at 37°C with vigorous 

shaking until an OD600nm between 0.4 and 0.8 (log-phase) was reached. Afterwards, 1 ml of each 

suspension was collected as not-induced sample (NI) and the remaining culture was induced with 

400 ul of IPTG (final concentration: 1mM). To evaluate which is the best growth temperature for 

the protein over-expression, one of the culture prepared in duplicate (e.g. A serie) was incubated 

ON at 37°C with vigorous shaking, while the other one (e.g. B) was incubated ON at RT with 

vigorous shaking. 1 ml of each induced culture was collected (I). NI and I samples were centrifuged 

at 1700o rpm for 30’ at 4°C, then the pellet was resuspended in 50ul of 5X Laemmli Buffer, heated 

at 100°C for 10’ and loaded on 16% SDS-PAGE. The same test was performed to evaluate the best 

IPTG concentration (1mM or 0.5mM). 

 

Cell Lysis and IB Disruption 

Overnight cultures were centrifuged at 4000 rpm for 30’ at 4°C and each pellet was resuspended 

in 10 ml of 20mM Tris pH 8 containing protease inhibitor (500ul of a solution obtaining dissolving 

a tablet of Complete, EDTA-free protease inhibitor in 2 ml of milliQ H2O), then stored at -20°C if 

not immediately used for the following steps. Suspensions were sonicated (3x1’, 40% amplitude, 

repeated twice) and centrifuged at 25000 rpm for 65’ at 4°C. Supernatants (called “1st supernatant”) 

were collected to evaluate the possible presence of the protein, and the pellets were resuspended in 

the same amount of Urea 8M. Sample were sonicated and centrifuged again. Supernatants (called 

“Urea wash”) were collected to evaluate the possible presence of the protein, and the pellets were 

resuspended in the same amount of Urea 8M. Samples obtained were called “Solubilised IB”. 20 ul 

of each sample were added with 5ul of 5X Laemmli Buffer, heated at 100°C for 10’ and loaded on 

16% SDS-PAGE. 
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Recombinant protein purification 

Purification step was carried out using an immobilized metal ion affinity chromatography (IMAC) 

strategy. “Urea wash” was chosen as sample for the purification. ÄktaBasic chromatography system 

was used with an HisTrap FF 1 ml column (affinity column prepacked with precharged Ni 

Sepharose™ 6 Fast Flow, GE Healthcare). The purification protocol includes of the following steps: 

1. Column equilibration: wash the column with Binding Buffer until the ABS reaches a steady 

baseline (generally, at least 5 CV) 

2. Sample injection: using Superloop 

3. Column wash: wash the column with Binding Buffer until the ABS reaches a steady baseline 

(generally, at least 10 CV) 

4. Elution: wash the column with Elution Buffer. 

 

Binding Buffer pH 8 

Urea 8M 

NaH2PO4 100 mM 

Tris 10 mM 

NaCl 250 mM 

Imidazole 20 mM 

 

Elution Buffer pH 8 

NaH2PO4 100 mM 

Tris 10 mM 

NaCl 250 mM 

Imidazole 500 mM 

 

The presence of proteins in the different fractions (column flow, eluted fractions) was verified 

through 16% SDS-PAGE. 

 

Mass Spectrometry analyses of the purified fractions 

MALDI-MS analyses of the purified fractions were performed using two different matrixes: HCCA 

(MW range: 2-13 kDa) and sinapinic acid (5-20 kDa). Analyses were performed at Toscana 

Biomarkers srl, Siena. 
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hMOG35-117(His)6 cleavage trials with TEV 

In order to obtain the N-terminal free Cys on the recombinant protein, different buffer and 

incubation conditions with TEV enzyme were tested: 

1. Dilution of the protein to 1mg/ml with TEV Buffer 1. Cleavage reaction in TEV Buffer 1:  

a) @ RT for 3 h (100 ul of protein + 2 ul of TEV). 

b) @ 30°C for 3 h (100 ul of protein + 2 ul of TEV). 

c) @ 30°C for 24 h (100 ul of protein + 5 ul of TEV).  

d) @ 30°C for 24 h (100 ul of protein + 10 ul of TEV). 

e) @ 30°C for 48 h (100 ul of protein + 10 ul of TEV).  

Protein precipitation occurred in all the samples. 

2. Dilution of the protein to 1mg/ml with TEV Buffer 2. Cleavage reaction in TEV Buffer 2 @ 

30°C for 48 h (100 ul of protein + 10 ul of TEV), sample 4. Protein precipitation occurred. 

3. Dilution of the protein to 1 mg/ml with TEV Buffer 3. Cleavage reaction @30°C ON (100ul 

of protein + 5 ul TEV), sample 5. Protein precipitation occurred. 

4. Dilution of the protein to 1 mg/ml with TEV Buffer 4. Cleavage reaction:  

a) @30°C ON (120ul of protein + 12 ul TEV). 

b) @20°C ON (50ul of protein + 7 ul TEV). 

c)  Dilution of the protein to 1mg/ml with TEV Buffer 1. Cleavage reaction in TEV 

Buffer 1 @ 20°C ON (100 ul of protein + 10 ul of TEV). 

5. Dilution of the protein to 1 mg/ml with TEV Buffer 5. Cleavage reaction: 

a) @20°C ON (400 ul of protein + 40 ul TEV). 

b) @20°C ON (400 ul of protein + 40 ul TEV). Dialysis in buffer 1 @20°C for 24h. 

c) @20°C for 24h (400 ul of protein + 40 ul TEV). Dialysis in buffer 1 @20°C for 

24h. 

d) @20°C for 48h (400 ul of protein + 40 ul TEV). Dialysis in buffer 1 @20°C for 

24h. 

 

(TEVconsensus)-(Cys35)hMOG1-117(His)6 cleavage trials with TEV: MALDI-MS 

analyses 

Samples obtained after TEV cleavage reactions (both solutions and suspensions) were analyzed by 

MALDI-MS. All the analyses were performed at Toscana Biomarkers srl, Siena. Calculated masses 

of the two MOG form are the following:  

 (TEVconsensus)-(Cys35)hMOG1-117(His)6: 11,678 kDa 

 (Cys35)hMOG1-117(His)6: 10,752 kDa 
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(TEVconsensus)-(Cys35)hMOG1-117(His)6 cleavage trials with TEV: HPLC analyses 

HPLC analyses on (TEVconsensus)-(Cys35)hMOG1-117(His)6 

Analytical analyses were performed on a HPLC instrument coupled to ESI-MS using a C18 column. 

The viability of the test was verified using different methods on (TEVconsensus)-(Cys35)hMOG1-

117(His)6 protein sample, modifying the elution gradient in order to find the conditions allowing to 

obtain a single and well-separated peak containing the recombinant protein. The solvents used 

were: H2O with 0.1% TFA, ACN with 0.1% TFA. The selected method was from 30% ACN to 50% 

ACN in 5’ at a flow rate of 0.6 mL min-1. 

 

HPLC analyses on cleavage reaction samples  

Different incubation times were evaluated using the selected method on analytical HPLC. The 

protein was diluted to 1 mg/ml with buffer 5, then TEV was added (400 ul of protein + 40 ul TEV). 

The following cleavage reactions were performed: 

@20°C, ON. 

 

 

 

 

 

@20°C, 24h. 

 

 

 

 

 

@20°C, 41h. 
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hMOG35-117(His)6 cleavage trials with TEV: Buffers composition 

TEV Buffer 1, pH 7.5 

Tris 25 mM 

NaCl 250 mM 

ME 14 mM 

 

TEV Buffer 2, pH 7.5 

Tris 25 mM 

NaCl 250 mM 

ME 28 mM 

 

TEV Buffer 3, pH 7.5 

Tris 25 mM 

NaCl 250 mM 

TCEP 1 mM 

 

TEV buffer 4, pH 7.5 

NaH2PO4 100 mM 

Tris 10 mM 

NaCl 250 mM 

TCEP 1 mM 

 

TEV Buffer 5, pH 7.5 

Tris 25 mM 

NaCl 250 mM 

-mercaptoethanol 14 mM 

Urea 2 M 
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GENERIC METHODS 

Molecular Biology Generic Methods 

Sodium Dodecyl Sulphate PolyAcrilamide Gel Electrophoresis (SDS-

PAGE) 

Stacking gel and separating gel (in different percentages, according to the size of the proteins to be 

separated) were prepared as follows. Stacking gel was poured on top of the separating gel after 

solidification (30’ at RT). Gel comb was inserted into the stacking gel, in order to allow the 

formation of the wells. Protein samples were diluted with 5X Laemmli Buffer and boiled at 100°C 

for 10’. 15 ul of each sample were loaded into a well. When all the samples were loaded, the 

apparatus was filled with Tris-SDS Running Buffer (250 mM Tris, 1.92 M Glycine, 1% SDS, pH 8.3), 

then a voltage of 150 V was applied for 1h. After the run, the gel was incubated with Staining 

Solution (0.1% Coomassie R250, 10% acetic acid, 40% methanol) or 1h at RT. Nonspecific bands 

were removed washing and the gel twice with Destaining Solution (10% acetic acid, 40% methanol) 

(1h incubation each). 

 

Separating Gel, 18% - 8 ml 

Reagent Volume  

dd H2O 1 ml 

30% Acrylamide 4,8 ml 

1.5M Tris pH 8.8 2 ml 

10% SDS 80 ul 

10% APS 80 ul 

Temed 8 ul 

 

Separating Gel, 16% - 8 ml 

Reagent Volume  

ddH2O 1,6 ml 

30% Acrylamide 4,27 ml 

1.5M Tris pH 8.8 2 ml 

10% SDS 80 ul 

10% APS 80 ul 

Temed 8 ul 
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Stacking Gel, 4% - 3 ml 

Reagent Volume  

ddH2O 1,8 ml 

30% Acrylamide 400 ul 

0.5M Tris pH 6.8 750 ul 

10% SDS 30 ul 

10% APS 30 ul 

Temed 3 ul 

 

Tricine-PAGE 

Stacking gel and separating gel were prepared as follows: 

Separating Gel, 18% - 8 ml 

Reagent Volume  

ddH2O 880 ul 

30% Acrylamide 2,7 ml 

3 M Tris pH 8,45 2 ml 

Ethylene glycole 2,4 ml 

10% APS 32 ul 

Temed 12 ul 

 

Stacking Gel, 5% - 4 ml 

Reagent Volume  

ddH2O 2,62 ml 

30% Acrylamide 375 ul 

3 M Tris pH 8,45 1 ml 

10% APS 16 ul 

Temed 16 ul 

 

Protein samples were diluted with 5X Laemmli Buffer (60 mM Tris-Cl pH 6.8, 2% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and boiled at 100°C for 10’. 15 ul of each 

sample were loaded into a well. When all the samples were loaded, the apparatus was filled with 

Tris-SDS Running Buffer, then a voltage of 200 V was applied for 1h. After the run, the gel was 

stained as reported for SDS-PAGE. 
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Agarose gel 

According to the size of the DNA fragment to be separated, different Agarose percentages were 

selected to prepare the gel. 

Recommended % Agarose Optimum Resolution for Linear DNA 

0.5 1,000–30,000bp 

0.7 800–12,000bp 

1.0 500–10,000bp 

1.2 400–7,000bp 

1.5 200–3,000bp 

2.0 50–2,000bp 

 

E.g., to prepare 30 ml of 1% agarose gel, 3 g of agarose powder were dissolved in 30 ml Tris-Acetate-

EDTA Buffer, TAE (40 mM Tris, 20 mM acetic acid and 1 mM EDTA) under heating. The solution 

was cooled, then 3 ul of Sybr Safe were added and the mixture was poured into the instrument. Gel 

comb was inserted, and the gel was allowed to polymerize at RT for 1 h, then the apparatus was 

filled with TAE Buffer. Each DNA samples was diluted with 6X Loading Buffer and loaded into a 

well, then a voltage of 180V was applied for 1h. The presence of bands was revealed using an UV 

transilluminator. 
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PRIMARY BILIARY CIRRHOSIS 

Primary Biliary Cirrhosis (PBC) is an immune-mediated chronic inflammatory liver disease with 

slow progression. PBC is characterized by destruction of small interlobular bile ducts, gradual 

cholestasis and portal inflammation. Loss of bile ducts causes both decrease of bile secretion and 

retention of toxicants within the liver, resulting in fibrosis, cirrhosis and, ultimately, need for a liver 

transplantation133. Enhanced awareness in the diagnostic field, together with an increased 

knowledge of PBC pathogenesis, lead to most frequent and early diagnoses. Indeed, more than half 

of the diagnosed pts is asymptomatic134. The diagnosis can be established when two of the following 

criteria are met: biochemical evidence of cholestasis based on alkaline phosphatase elevation; 

presence of serum anti-mitochondrial Ab (AMA) of the IgG class by indirect immunofluorescence 

(IIF); histological evidence of non-suppurative destructive cholangitis and destruction of 

interlobular bile ducts on bioptic tissue135. 

PBC etiology can be defined multifactorial, as it was widely hypothesized that the disease is 

triggered by environmental exposure in the context of a genetic background permissible for 

autoimmunity development136. Indeed, variation in geographical prevalence, presence of disease 

clustering, and seasonal differences in disease diagnosis provide evidence for a crucial 

environmental role in PBC development. Evidence for the strong impact of genetic factors is 

provided by the overlap with other AID137, the high monozygotic twin concordance (about 60%)6,138, 

and the increased sibling risk of AMA positivity139 and PBC development140. Furthermore, GWAS 

identified independent association with genes of known immunological function141–143. To note, 

many of the PBC-associated loci overlap with signals obtained for other AID, suggesting that these 

genetic differences may be linked to autoimmunity. Although genetic factors play an important role 

in the development of complex autoimmune disease, it is becoming apparent that environmental 

exposures are equally important. Indeed, progression and disease severity are variable among 

affected monozygotic twins, and the concordance between dizygotic twins is nearly 0%136. It is 

reasonable to hypothesize that environmental factors may ultimately induce tolerance breakdown 

through a variety of mechanisms in genetically susceptible individuals. Effectively, xenobiotics 

contribution to PBC pathogenesis may be due to potential direct cellular effect (leading to apoptosis 

or oncosis), and/or chemical modification of native proteins, causing neo-Ag formation, while 

viruses or bacteria may evoke a molecular mimicry mechanism. For example, several peptides and 

proteins from bacteria commonly associated with PBC (including E. coli, Novosphingobium 

aromaticivorans, and Lactobacillus delbrueckii) were shown to strongly cross-react with AMA and 

activate T-cell clones from PBC patients144–146, disclosing how PBC could be due to exposure to 

bacterial Ag. 
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PBC immunopathogenesis: the key role of anti-mitochondrial 

Ab 

Even if factors leading to PBC remain poorly understood, the disease is considered a model 

AID147,148. Indeed, the high specificity of the bile ducts damage is a unique and critical feature of 

PBC, and suggests the occurrence of an intense autoimmune response directed against biliary 

epithelial cells. This hypothesis is supported by the presence of MHC class II Ag on the biliary 

epithelium and lymphoid infiltration in the portal tract148. Furthermore, PBC has a serological 

hallmark signature, represented by AMA, highly disease-specific auto-Ab found in 90-95% of pts 

and less than 1% of healthy controls149.  

Numerous studies aimed to understand the molecular immunopathogenic mechanisms underlying 

the disease were performed since the 50s, when a PBC serum was found to react with tissue extracts 

by complement fixation150. In 1965 the reactant was located to mitochondria by IIF and called 

M2151. The first attempts of M2 molecular characterization were achieved 20 years later by 

Gershwin et al., which identified the reactant with a family of proteins of 48-74 kDa by both 

immunoblotting and molecular cloning149, and Yeaman et al., which showed that M2 is the E2 

component of the mammalian pyruvate dehydrogenase complex152. Subsequently, both Van de 

Water et al. and Coppel et al. confirmed that M2 is represented by multiple subunits of the 2-0x0-

acid dehydrogenase complex153,154, which is located in the inner mitochondrial membrane and is 

responsible of the oxidative decarboxylation of keto-acid substrates155. In particular, the targets of 

AMA are represented by:  

 dihydrolipoamide acetyltransferase (E2 component of the pyruvate dehydrogenase 

complex, PDC-E2), which is the most frequently detected;  

 dehydrogenase dihydrolipoyl transacylase (E2 subunit of the branched-chain 2-oxo-acid 

dehydrogenase, BCKD-E2);  

 dihydrolipoamide succinyltransferase (E2 component of the oxo-glutarate dehydrogenase 

complex, OGDC-E2);  

 dihydrolipoamide dehydrogenase binding protein or E3-binding protein (E3-BP)147.  

It is important to note that AMA auto-Ag share a substantial homology, having a common highly-

conserved N-terminal domain containing a lipoylated Lys residue (Figure 37)148.  

 

Figure 37: Lipoyl domain homology of mitochondrial auto-Ag 
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The specifically localized damage at the intrahepatic bile ducts and the ubiquitous auto-Ag 

expression lead to the PBC paradox149. In order to explain this phenomenon, it was hypothesized 

that the peculiar biliary epithelial cells metabolic processing of AMA Ag during apoptosis may 

attract the immune response on bile-duct cells (Figure 38). In particular, three observations on the 

PDC-E2 Ag demonstrate the importance of these differences in understanding PBC 

immunopathogenesis: 

1. PDC-E2 can be recognized by auto-Ab depending on the attachment of glutathione to the 

lipoylated Lys during apoptosis156; 

2. differently from other cell types, epithelial cells do not attach glutathione to PDC-E2 lipoyl-

Lys group during apoptosis157; 

3. specific modifications of the inner lipoyl domain of the PDC-E2 have shown to be 

immunoreactive when tested with pts serum, suggesting the importance of lipoyl-Lys 

moiety status158. 

Studies on cultured human intrahepatic biliary epithelium cells (HIBEC) confirmed that the 

autoimmune injury in PBC is a consequence of the unique characteristics of HIBEC during 

apoptosis159, and subsequently it was demonstrated that biliary apotopes and AMA are able to 

activate innate immune responses in mature monocyte-derived macrophages cultures160. These 

findings provide further evidences to the hypothesis of a specific apoptotic mechanism responsible 

for the strictly localized PBC autoimmune response. 

 

Figure 38: Properties of Apoptosis in Somatic Cells and Biliary Epithelial Cells148. 
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Although it is widely demonstrated that PDC-E2 is main target of AMA, the definition of its 

immunodominant epitope is still controversial (as shown in Table 5). PDC-E2 was originally 

mapped digesting the corresponding cDNA clone with restriction endonucleases and subcloning 

the obtained fragments into frame-shifted expression vectors. The clone encoding for the main 

immunogenic region was identified by immunoblot assays with PBC pts sera. Subsequently, to 

precisely define the epitope, peptides encompassing distinct hydrophilic peaks within this region 

were synthesized and tested by ELISA, leading to the identification of the immunodominant 

epitope the highly conserved Aa surrounding the lipoyl-Lys residue in position 173 (K173), and in 

particular to the 20 Aa linear peptide AEIETDKATIGFEVQEEGYL corresponding to Aa 167-186 

within hPDC-E2153. The putative relevance of lipoic cofactor was further disclosed in another study, 

which reported the presence of a minor epitope 

associated with the outer lipoyl domain (Aa 1-80)161 (    

Figure 39). Lipoyl domains are fundamental for PCD-

E2 function in pyruvic acid metabolism, acting as 

acceptor of acetyl groups formed by the oxidative 

decarboxylation of pyruvate and transferring them to 

coenzyme A (Figure 40). Even though the previously 

mentioned studies represent the basis for the 

hypothesis of an involvement of lipoic acid in the AMA 

Ab recognition, it is important to stress that they have 

not taken into account the lipoylation status of the 

employed Ag. 

    Figure 39: Aa sequence of PDC-E2 162. 

 

 

Figure 40: On the left, 3D image of PDC complex, showing the subunit structure: E1, pyruvate 
dehydrogenase; E2, dihydrolipoyl transacetylase; and E3,dihydrolipoyl dehydrogenase. The core 

(green) consists of 60 molecules of E2, arranged in 20 trimers to form a pentagonal 
dodecahedron. The lipoyl domain of E2 (blue) reaches outward to touch the active sites of E1 

molecules (yellow) arranged on the E2 core. A number of E3 subunits (red) are also bound to the 
core, where the swinging arm on E2 can reach their active sites. An asterisk marks the site where 

a lipoyl group is attached to the lipoyl domain of E2. On the right, the oxidative decarboxylation of 
pyruvate to acetyl-CoA by the PDC complex. 
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The identification of the main immunogenic region with hPDC-E2(167-186) was questioned by 

Braun et al.162. In this work, 33 synthetic overlapping peptides covering the entire length of PDC-

E2 were tested by SP-ELISA. The authors showed that the reactivity of PBC sera with peptides 

containing the immunodominant epitope in both inner and outer lipoyl domain was rather low, 

although significantly higher than that of NBD. In contrast, up to 74% of the PBC sera reacted with 

the two peptides within the catalytic domain (Aa 407-431 and 475-499) and the peptide 101-125 in 

the first hinge region. Sera from AMA- PBC pts hardly reacted with any of the peptides. In addition, 

they evaluated the function of lipoic acid synthesizing the immunodominant peptide 167-184 in 

both unlipoylated and lipoylated form. In order to find out whether Ab may recognize a 

conformational epitope, either peptide was also coupled with ovalbumin (OVA). For this purpose, 

it was necessary to add a Cys at the C-terminal end, which had to be substituted by a Lys for coupling 

the LA-conjugated. Compared with the unconjugated analogues, the OVA conjugates exhibited 

stronger reactivity. However, most sera showed high reactivity also with OVA alone, disclosing a 

huge limitation of this study. After subtracting the reactivity to OVA alone from the OVA-coupled 

peptides, 44% of PBC sera had IgG response to the unlipoylated (OVA-167-184) peptide and 22% 

to the lipoylated peptide (OVA-167-184-LA). IgM were found in 57% and 31%, respectively. 

Therefore, the higher Ab response was detected by the unlipoylated peptide (Figure 41). 

 

Figure 41: Data distribution of IgG (left) and IgM (right) reactivity of PBC sera  
with OVA-167-184, OVA-167-184-LA and OVA alone.  
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Significance of lipoic acid cofactor in Ab recognition 

The identification of the main immunogenic region with the inner lipoyl domain of PDC-E2 

prompted the investigation on the role of lipoic acid cofactor. From a conformational point of view, 

a study on Bacillus stearothermophylus PCD-E2 lipoyl domain disclosed that lipoylation does not 

impose any conformational change on the secondary structure of the protein163. If the same 

condition occurs in the human analog, this would imply that the Ab recognition of the lipoylated 

form is not a consequence of any conformational change imposed by the lipoate attachment, but 

involves the lipoate group per se164. The resolution of the 3D structure of lipoylated recombinant 

hPDC-E2132-208 by Howard et al. revealed that the inner lipoyl domain is characterized by a β-barrel 

containing two antiparallel β-sheet, each of which contains three major strands and one minor 

strand. Intriguingly, they hypothesized that the lipoylated K173 is prominently exposed at the top of 

a tight type I β-turn (Figure 42)165, but without verifying the lipoylation status of the recombinant 

protein. This serious issue represents a crucial limitation of this study for two reasons. Firstly, the 

3D structure obtained in this study may not represent the native one. Secondly, although they 

documented the K173 localization on the tip of the -turn, the prominent exposition of lipoic acid is 

not demonstrated, as the presence of lipoylation may affect both conformation and folding of the 

domain, resulting in a different 3D structure. 

 
 

 
 
 
 
 

Figure 42: Representation of recombinant  
hPDC-E2132-208 polypeptide fold hypothesized by Howard.  

Lipoylation site is indicated together with the type I β turn 
(black). The β sheet containing K173 residue is shown in dark 
grey; β sheet containing N- and C-terminal residues is shown 

in light grey. 

 

 

 

Since the main immunogenic region of PCD-E2 was identified with the inner lipoyl domain of the 

protein, the involvement of lipoyc acid in the IgG auto-Ab response was intensely examined. 

Unfortunately, the use of inhomogeneous and not well characterized Ag preparations led to an 

intricate situation. Indeed, these studies employed PDC-E2 of different origin (bacterial, human, 

rat), using the whole protein or a sub-domain, obtained by extraction or produced by molecular 

biology, and even short peptide fragments, prepared by chemical synthesis and, in one case, 

conjugated to an irrelevant proteins (such as OVA), to mimic the native Ag. Therefore, a univocal 

conclusion was not reached yet, as outlined by some of the most remarkable studies summarized 

in Table 5, and the role of lipoic acid in PBC autoimmunity is still matter of debate.  
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Authors  

(year) 

Ag description Lipoate attachment 

is required for Ab 

recognition? 

Gershiwn et al. 

(1987)149 

Fused polypeptide (obtained by screening of rat liver cDNA 

library) expressed in E.coli. 

Lipoylation status was 

not taken into account 

during the Ag 

characterization. 

Van de Water 

et al.  

(1988)153 

Synthetic peptides of rPDC-E2 (mapping of the fused 

polypeptide obtained by Gershwin149). 

Lipoylation status was 

not taken into account 

during the Ag 

characterization. 

Coppel et al. 

(1988)154 

Recombinant hPDC-E2 of unknown lipoylation state 

expressed in E.coli. 

Lipoylation status was 

not taken into account 

during the Ag 

characterization. 

Mutimer et al. 

(1989)166 

Extractive PDC-E2 from bovine heart. Lipoylation status was 

not taken into account 

during the Ag 

characterization. 

Fussey et al.  

(1990)161 

Lipoylated, unlipoylated and octanoylated PDC-E2 extracted 

from E.coli  

Yes  

(also octanoylated 

protein detects Ab) 

Leung et al.  

(1990)167 

Recombinant hPDC-E2 of unknown lipoylation state. Ag was 

engineered by site directed mutagenesis, substituting K173 to 

make new unlipoylatable isoforms, which are as immunogenic 

as the wild type.  

No 

Tuaillon et al.  

(1992)168 

Lipoylated and unlipoylated synthetic octadecapeptides 

conjugated with OVA. Racemic lipoic acid is directly coupled 

to the side chain of Lys. 

Yes 

 

Quinn et al.  

(1993)164 

Lipoylated and unlipoylated recombinant hPDC-E2 inner 

lipoyl domain expressed in E.coli. Lipoylation was performed 

in vitro using racemic mixture. 

Yes 

 

Koike et al. 

(1998)169 

PDC-E2 from porcine heart, enzimatically delipoylated and 

re-lipoylated.  

No 

Bruggraber, et 

al. 

(2003)157 

 Free lipoic acid  

 Recombinant lipoylated hPDC-E2 

 PDC-E2 unrelated carrier bound lipoate. 

 

Yes 

(Reactivity is specific 

for conjugated form 

of lipoyc acid, 

irrespective of the 

protein carrier) 

Braun, et al. 

(2010)162 

 Lipoylated and unlipoylated synthetic hPDC-E2(167-184) 

 Lipoylated and unlipoylated synthetic hPDC-E2(167-184) 

conjugated with OVA. 

No 

 
Table 5: Summary of the literature on lipoic acid involvement in PBC autoimmunity. 
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According to the popular assumption of xenobiotics as trigger for PBC, it was hypothesized that the 

exposure to certain compounds may cause aberrant modifications on lipoic acid, leading to neo-

epitope uncovering. The susceptibility of lipoic acid to non-natural alteration may be explained 

considering its prominent exposition on the outer surface of the protein165. Furthermore, lipoic acid 

is able to rotate with respect to the PDC-E2 molecule by means of its “swinging arm”, allowing the 

accessibility of its dithiolane ring for reductive acylation170,171. This conformational change, together 

with the existence of multiple conformations of lipoyl domain during the reductive acylation170, is 

required for acyl transfer mechanism, but renders the cofactor vulnerable to modifications. Indeed, 

it was shown that PDC-E2 conjugated to some synthetic small molecules able to mimic lipoic acid 

displays highly specific reactivity to AMA+ PBC sera, at levels often higher than the native 

molecule172,173. In this context, one of the most relevant work is that of Amano et al.174, which 

concerns the replacement of lipoic acid on synthetic PDC-E2(169-183) by 107 different xenobiotics. 

They showed that 33/107 xenobiotics have significantly higher IgG reactivity against PBC sera 

compared with NBD, and one of the compounds, 2-octinoyc acid (Figure 43), is more reactive than 

the native lipoylated peptide. Interestingly, the methyl ester of this molecule is one of the oldest 

artificial flavoring and was widely used since the 1900s in perfumed cosmetics for its violet scent. 

Other relevant findings were achieved by Leung et al.175, which addressed the question whether the 

physiological lipoyl ring reduction renders the lipoyc acid receptive for xenobiotics modification, 

testing synthetic thioesters modified analogs of open-ring lipoyc acid. They verified that three of 

these molecules, namely 6,8-bis(acetylthio)octanoic acid (SAc), 8-(acetylthio)octanoic acid and 

6,8-bis(propionylthio)octanoic acid (Figure 43), showed highly reactivity to AMA+ sera compared 

to the native lipoylated protein. These data suggest that xenobiotics alterations of the lipoyl S-S 

linkage during physiological electron transfer could break immunological tolerance to PDC-E2, 

according to the former hypothesis that the oxidative state of PDC-E2 may affect its 

immunogenicity156. In the same study it was demonstrated that purified anti-SAc-bovine serum 

albumin (BSA) conjugate Ab are of the IgM type, and are able to recognize both SAc-BSA and 

recombinant PDC-E2, while purified anti-recombinant PDC-E2 Ab are of the IgG type and 

recognize only PDC-E2. Based on these results, the presence of the following process may be 

argued: 

1. The initial exposure to chemicals leads to a primary IgM specific immune response against 

the exogenous Ag;  

2. Subsequently, the similarity between the lipoyl domain of PDC-E2 and the xenobiotic 

generates a cross-reactive response to the self-Ag, causing self-tolerance breakdown to the 

native protein;  

3. In the end, the affinity maturation and isotype switching processes lead to a secondary IgG 

immune response to the native protein176. 
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Figure 43: Chemical structure of lipoic acid (LA) and related xenobiotc compounds.  
SAc = 6,8-bis(acetylthio)octanoic acid; 2OA = 2-octinoyc acid;  

SCOEt = 6,8-bis(propionylthio)octanoic acid;  
OASAc=8(acetylthio)octanoic acid. 

 

In a few words, the hypothesis of lipoic acid as minimal epitope candidate in the case of PBC was 

deeply investigated, but remains highly controversial. The assumption of a role of lipoic acid in PBC 

immunopathogenesis is supported by both cofactor localization165 and oxidized state during 

pyruvate decarboxylation170, which make it an easy target for auto-Ab and aberrant chemical 

modifications due to xenobiotic exposure. However, the presence of inhomogeneous data on this 

topic led to a confusing situation that needs further clarifications. 
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AIM OF THE WORK 

PBC is a chronic liver AID characterized by the presence of highly specific serum AMA in 95% of 

pts. The current diagnostic tool for AMA detection is based on IIF detection of serum IgG targeting 

the so-called M2 Ag, which is represented by a pool of various, not fully characterized Ag. Indeed, 

AMA test is performed using whole tissues from rat kidney as Ag substrate, enabling the detection 

on a heterogeneous Ab population directed against an undefined complex set of proteins. This 

unclear situation may be resolved through a precise molecular definition of the immunodominant 

epitope(s), which may provide critical insights into the molecular basis of PBC immunology and 

ethiopathogenesis. The main immunogenic region of AMA was mapped to the inner lipoyl domain 

of PDC-E2, and in particular to the Aa residues surrounding the lipoylated K173 of the linear peptide 

AEIETDKATIGFEVQEEG, corresponding to PDC-E2(167-184)153. The importance of the lipoyl-Lys 

seems to be confirmed by its relevant localization within the protein, on the tip of a type I -turn165. 

It was also speculated that the lipoic acid itself is prominently exposed on the -turn, but since the 

structural studies were performed without verifying the lipoylation status of the analyzed protein 

this is only one of the possible hypothesis. In addition to the doubts of its structural localization, to 

date also the role of lipoic acid per se and of the lipoylation on the immunodominant peptide is still 

debated for several reasons. First, different Ag preparations, including peptides, recombinants and 

conjugated molecules, were use. Second, the length and origin (bacterial, human, rat) of the PDC-

E2 sequences employed is extremely heterogeneous. Third, the assays used for anti-PDC-E2 

detection range from immunoblot to IIF. Last but not least, some studies have not taken into 

account the lipoylation status of the probes. 

In this scenario, we decided to characterize the PDC-E2 immunodominat region (Aa 167-184) from 

a molecular point of view. We focused our attention on both lipoylation and aberrant PTM that may 

occur on this region, using well-characterized synthetic peptide probes resulting from the human 

sequence. These peptides were used as antigenic probes in SP-ELISA to detect Ab in PBC pts sera.  

The project addressed the following issues: 

1. Role of lipoic acid and its chiral center 

Lipoic acid is an essential cofactor of many enzyme complex, and its role is crucial in aerobic 

metabolism. As the C6 of the molecule is chiral, lipoic acid exists as two enantiomers, (R)-lipoic 

acid and (S)-lipoic acid (Figure 44), and as a racemic mixture (R/S)-lipoic acid. Only the (R)-

enantiomer exists in nature. To date, the role of the two enantiomers and/or the racemic 

mixture in PBC immunopathogenesis was not taken into account. For this purpose, we 

developed a SPPS strategy aimed to introduce both the natural and non-natural enantiomers 

of lipoic acid on the immunodominant epitope in a controlled fashion. Using this methodology, 

we synthesized and characterized [(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK and [(S)-

Lipoamide-Lys173]PDC-E2(167-186)-KKKK. To elucidate the significance of lipoic acid, the 

unlipoylated form of the peptide was also synthesized: [Lys173]PDC-E2(167-186)-KKKK. In 
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order to enhance the solubility of PDC-E2(167-186) derived peptides, and to allow the coating 

on the ELISA plate, a 4-Lys tag (KKKK) was added to the C terminus of all the PDC-E2(167-

186) peptides. 

 

Figure 44: (R)-lipoic acid (top) and (S)-lipoic acid (down) 

 

2. Role of K173 lipoylation and relevance of K173 hypothetical exposition on the tip of the β-turn 

In order to clarify the role of the presence of lipoyl-modified Lys residue on the 

immunodominant sequence, and the importance of its presumed exposition on the β-turn in 

the Ab recognition, we inserted the lipoylated Lys on the tip of a scaffold β-turn peptide 

sequence. We selected the 21-mer peptide CSF114, as we previously demonstrated its ability to 

expose optimally post-translationally modified residues on the tip of a type I’ β-turn 

(corresponding to position 7) as irrelevant peptide sequence177. Analogues of CSF114 bearing 

the same PTM of hPDC-E2 peptides were designed: [(R)-Lipoamide-Lys7]CSF114, [(S)-

Lipoamide-Lys7]CSF114 and [Lys7]CSF114. 

 

3. Relevance of N-glucosylation in PBC autoimmunity 

The involvement of aberrant N-glucosylation in autoimmunity and the role of Asn(Glc) as 

minimal epitope exposed on a type I’ β-turn structure was previously demonstrated36,37. In 

order to assess a possible role of glucosylation in PBC autoimmunity, we synthesized an analog 

of PDC-E2 peptide containing the minimal epitope Asn(Glc) exposed on the tip of the β-turn 

(same position of the natural lipoylated Lys): [Asn173(Glc)]PDC-E2(167-186)-KKKK. The 

specificity of the response against Glc was evaluated synthesizing also the peptide bearing an 

N-acetyl-glucosamine (GlcNAc) on Asn residue: [Asn173(GlcNAc)]PDC-E2(167-186)-KKKK. To 

further clarify the relevance of glucosylation, the corresponding unglucosylated peptide (with 

the Lys → Asn mutation) was synthesized: [Asn173]PDC-E2(167-186)-KKKK. Finally, we 

investigated a possible role of Asn(Glc) independently from the specific sequence of PDC-E2, 

we prepared and tested analogues of CSF114 with the same PTM of hPDC-E2 peptides: 

[Asn7(Glc)]CSF114, [Asn7(GlcNAc)]CSF114 and [Asn7]CSF114 . 
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Further to the molecular characterization of the PDC-E2 immunodominant region, we evaluated 

the possible diagnostic relevance of the previously mentioned peptides (summarized in Table 6). 

For this purpose, we tested the synthetic probes as Ag in SP-ELISA, comparing the results obtained 

in the PBC cohort with other control diseases, such as Rheumatoid Arthritis (RA) and Scleroderma 

(SSC), and NBD. 

 

PDC-E2 series CSF114 Series 

[(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK [(R)-Lipoamide-Lys7]CSF114 

[(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK [(S)-Lipoamide-Lys7]CSF114 

[Lys173]PDC-E2(167-186)-KKKK [Lys7]CSF114 

[Asn173(Glc)]PDC-E2(167-186)-KKKK [Asn7(Glc)]CSF114 

[Asn173(GlcNAc)]PDC-E2(167-186)-KKKK [Asn7(GlcNAc)]CSF114 

[Asn173]PDC-E2(167-186)-KKKK [Asn7]CSF114 

  

Table 6: Summary of the peptides used in the PBC study §.  

All the peptides were synthesized by SPPS at the SOSCO Laboratory  

(Universitè de Cergy Pontoise, France).  

                                                           
§ Rentier, C., Pacini, G., Nuti, F., Peroni, E., Rovero, P., Papini, A. M.,Synthesis of diastereomerically 

pure Lys(N-lipoyl) building-blocks and their use in Fmoc/tBu solid phase synthesis of lipoyl-
containing peptides for diagnosis of paciprimary biliary cirrhosis. Journal of Peptide Sciences, 
submitted. 
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RESULTS & DISCUSSION 

Importance of lipoyc acid and its chiral center 

[(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK, [(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK 

and [Lys173]PDC-E2(167-186)-KKKK were tested for both IgG and IgM on a cohort of 65 PBC pts 

using SP-ELISA. IgM on [(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK were tested on a smaller 

cohort. 

Results obtained display an Ab response against all the peptides tested (Figure 45). In particular, a 

paired t test confirmed that values obtained for the (R)- and (S)-enantiomers are comparable (P= 

0.499 in the case of IgG and P= 0.367 for IgM), allowing us to assume that the lipoic acid chirality 

on the C6 has no influence on the Ab recognition.  

The presence of a response against [Lys173]PDC-E2(167-186)-KKKK enables to hypothesize that a 

PTM (namely, a de-lipoylation) can uncover a neo-epitope. 

 

 

Figure 45: IgG (left) and IgM (right) data distribution of PBC sera against  

[Lys173]PDC-E2(167-186)-KKKK, [(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK and  

[(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK. P-values obtained in paired t tests are shown. 
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Role of lipoyl-K173 and the relevance of K173 exposition on the tip 

of the β-turn 

Results obtained with [(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK, [(S)-Lipoamide-

Lys173]PDC-E2(167-186)-KKKK and [Lys173]PDC-E2(167-186)-KKKK were compared with the one 

achieved with CSF114 corresponding analogues: [(R)-Lipoamide-Lys7]CSF114, [(S)-Lipoamide-

Lys7]CSF114 and [Lys7]CSF114. All the peptides were tested for both IgG and IgM on a cohort of 

65 PBC pts using SP-ELISA. IgM on [(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK were tested 

on a smaller cohort. 

A paired t test confirmed that the absorbance values observed against CSF114 series are lower than 

the one obtained with the corresponding PDC-E2 analogues (Figure 46). These findings enable us 

to speculate that K173 (both lipoylated and unlipoylated) exposed on the type I’ β-turn irrelevant 

peptide sequence is not able to detect Ab in PBC pts, and therefore that the Aa residues surrounding 

the lipoyl-Lysine are required for Ab recognition. 

 

 

Figure 46: IgG (left) and IgM (right) data distribution of PBC sera against  

[Lys173]PDC-E2(167-186)-KKKK, [Lys7]CSF114,  

[(S)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK, [(S)-Lipoamide-Lys7]CSF114,  

[(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK and [(R)-Lipoamide-Lys7]CSF114.  

P-values obtained in paired t tests are shown: **** P < 0,0001. 
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Relevance of N-glucosylation in PBC autoimmunity 

[Asn173(Glc)]PDC-E2(167-186)-KKKK, [Asn173]PDC-E2(167-186)-KKKK, [Asn7(Glc)]CSF114 and 

[Asn7]CSF114 were tested for both IgG and IgM on a cohort of 65 PBC pts using SP-ELISA.  

Results obtained (Figure 47) display a high and specific response in the case of [Asn173(Glc)]PDC-

E2(167-186)-KKKK, uncovering the hypothesis of an involvement of aberrant N-glucosylation in 

the immunopathogenesis of PBC.  

To verify the specificity of the Ab response detected against glucose, [Asn173(GlcNAc)]PDC-E2(167-

186)-KKKK and [Asn173(GlcNAc)]CSF114 were tested on a smaller cohort of sera (n=7).  

Results obtained show that the higher titers detected in both CSF114 and PDC-E2 series concerns 

[Asn(Glc)] peptides (Figure 48). We can assume that the response is [Asn(Glc)]-specific, as 

[Asn(GlcNAc)] peptides are unable to recognize Ab in PBC pts sera. It is important to note that 

[Asn173(Glc)]PDC-E2(167-186)-KKKK could also mimic a different self Ag bearing an aberrant N-

glucosylation. For this purpose, further investigations on the involvement of N-glucosylation in 

PBC are required, such as the characterization of anti-[Asn173(Glc)]PDC-E2(167-186)-KKKK Ab 

isolated from pts sera and the assessment of the cross-reactivity between these Ab and the other 

PDC-E2 antigenic probes. 

 

Figure 47: IgG (left) and IgM (right) data distribution of PBC sera against  
[Asn173]PDC-E2(167-186)-KKKK, [Asn7]CSF114,  

[Asn173(Glc)]PDC-E2(167-186)-KKKK and [Asn7(Glc)]CSF114. 
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Figure 48: Comparison between [Asn], [Asn(Glc)] and [Asn(GlcNAc)] results  
for both IgG (left) and IgM (right). 
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Search of an antigenic probe able to recognize disease-specific 

auto-Ab in PBC pts sera 

The antigenic probes summarized in Table 6 were tested as antigenic probes in SP-ELISA, in order 

to identify auto-Ab in pts sera as disease BM. Disease-specificity of the detected Ab was evaluated 

comparing the results obtained in PBC pts with NBD cohort using a cutoff value calculated as (mean 

value of NBD) + 3*(standard deviation of NBD). Data distribution of all the tests are shown in 

Supplementary Data.  

Unpaired t tests with Welch’s correction confirmed that the difference between the results obtained 

for PBC pts and for NBD are statistically significant for all the Ag. Furthermore, we included 3 

different cohorts of disorders as pathological control groups: RA, SSC and other not-hepatic AID 

(OAID). The most interesting results were achieved using the PDC-E2 peptide series (Figure 49). 

Comparing PBC data with NBD through cutoff value allowed us to identify [Lys173]PDC-E2(167-

186)-KKKK as the most relevant antigenic probe for IgM detection. This peptide is able to recognize 

63% of PBC pts, even if with lower titers compared with the lipoylated peptide [(R)-Lipoamide-

Lys173]PDC-E2(167-186)-KKKK, which is able to discriminate 37% of pts (Figure 50). PBC-

specificity of the detected Ab was confirmed using 3 different pathologic control cohorts: RA 

(n=22), SSC (n=12) and OAID (n=47). In particular, we obtained 0% positivity percentage for IgM 

against the unlipoylated PDC-E2 peptide in both RA and SSC cohorts, while OAID have 23% of 

positivity (Figure 51). This finding enabled us to hypothesize that [Lys173]PDC-E2(167-186)-KKKK 

may represent the target of auto-Ab response in the case of PBC. The disease specificity of detected 

Ab is confirmed by the comparison with all the three pathological control cohorts. Such a result is 

remarkable, as RA is characterized by high levels of circulating auto-Ab, in particular rheumatoid 

factors, cross-reactive Ab that may cause interference in solid phase assays. SSC was selected as 

control disease because it is often associated with PBC, suggesting a common genetic background 

for the two disorders. SSC sera included in this study, however, are AMA negative and contain auto-

Ab of other specificities, not reactive with the PDC-E2 sequences. 
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Figure 49: IgG (left) and IgM (right) data distribution of PBC sera against  
[Lys173]PDC-E2(167-186)-KKKK, [(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK,  

[Asn173]PDC-E2(167-186)-KKKK and [Asn173(Glc)]PDC-E2(167-186)-KKKK 

 

 
 

Figure 50: IgM data distribution of PBC pts and NBD against  
[Lys173]PDC-E2(167-186)-KKKK (left), and  

[(R)-Lipoamide-Lys173]PDC-E2(167-186)-KKKK (right).  
Dotted line indicate the cutoff value. 
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Figure 51: IgM data distribution of PBC pts against [Lys173]PDC-E2(167-186)-KKKK  

compared with control cohorts: NBD, RA, SSC and OAID.  

Dotted line indicate the cutoff value.  

P-values obtained comparing PBC pts with control cohorts are shown:  

**** P < 0,0001; ** P 0.001 to 0.01 . 
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CONCLUSIONS 

PBC is one of the few AID having available a not-invasive diagnostic tool, i.e. serum AMA detection. 

However, since AMA are not present in all pts, the diagnostic procedure includes also a control of 

alkaline phosphatase elevation, and/or histological analyses on bioptic tissue135. AMA detection 

procedure is executed by IIF (a not-automated, subjective and labor-intensive technique) on whole 

tissues from rat kidney as Ag substrate. This enables the detection of a heterogeneous Ab 

population, directed against an undefined complex of various, not fully characterized proteins, the 

so-called M2 Ag. The absence of a precise molecular definition of the immunodominant epitope(s) 

led to an intricate situation, which results in a lack of characterization of the immunopathogenic 

mechanism triggering and pursuing PBC. Indeed, the research in the PBC field was strictly focused 

on the identification of the main immunogenic region of AMA, without considering that the 

diagnostic test reveals Ab toward a pool of proteins. 

In the late 80s, the main immunogenic region was mapped to the inner lipoyl domain of PDC-E2, 

and specifically to the Aa residues surrounding the lipoylated K173 of the linear peptide 

AEIETDKATIGFEVQEEG, corresponding to PDC-E2(167-184)153. Therefore, the importance of 

both lipoyl-Lys and lipoic acid per se were extensively debated, but without reaching a conclusion, 

particularly due to the use of inhomogeneous Ag preparations and sequences. Furthermore, some 

studies have not taken into account the lipoylation status of the probes, resulting in even more 

confusion. Even the conformational study performed by Howard et al.165, which resolved the 3D 

structure of recombinant hPDC-E2132-208 speculating the exposition of lipoic acid at the top of a 

tight type I β-turn (Figure 42), was performed without verifying the lipoylation status of the protein. 

This could have led to the obtainment of a structure that not correspond to the native one, as the 

presence of lipoic acid may influence both conformation and folding. To elucidate this point, 

circular dichroism spectroscopy studies on our synthetic peptides [(R/S)-Lipoamide-Lys173]PDC-

E2(167-186)-KKKK and [Lys173]PDC-E2(167-186)-KKKK were performed by Prof. Alfonso 

Carotenuto (University of Naples "Federico II"). Preliminary results disclosed that lipoylation 

actually affects the conformation of the peptides (data not shown), although it should be taken into 

account that peptides have a different conformational behavior compared with full-length proteins, 

encouraging us to deepen the structural differences between lipoylated and unlipoylated probes. 

In this context, we decided to clarify the situation characterizing PDC-E2 immunodominat region 

(Aa 167-184) from a molecular point of view. We focused our attention on both lipoylation and 

aberrant PTM that may occur on this region, using well-defined synthetic hPDC-E2 peptide probes, 

which were used as antigenic probes in SP-ELISA to detect Ab in PBC pts sera.  

Firstly, we examined the problem of lipoic acid chirality, which until now was never addressed. We 

elucidated that the chirality on the C6 has no influence on the Ab recognition, as the Ab responses 

detected toward (R)- and (S)-enantiomers are comparable.  
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Secondly, we clarified the relevance of K173 lipoylation and hypothetical exposition on the β-turn in 

the Ab recognition inserting it on the tip of a optimized scaffold β-turn peptide sequence, CSF114177. 

We tested analogues of CSF114, disclosing that the absorbance values observed against CSF114 

series are lower than the one obtained with the corresponding hPDC-E2 analogues. Based on these 

results, we speculate that Lys (both lipoylated and unlipoylated) exposed on the type I’ β-turn 

irrelevant peptide sequence is not able to detect Ab in PBC pts, and therefore that the Aa residues 

surrounding Lys are required for Ab recognition.  

Thirdly, as we previously demonstrated the involvement of aberrant N-glucosylation in 

autoimmunity and the role of Asn(Glc) as minimal epitope exposed on a type I’ β-turn structure36,37, 

we decided to explore the putative relevance of this PTM in PBC. Therefore, we tested an analog of 

hPDC-E2 peptide containing the minimal epitope Asn(Glc) exposed on the tip of the β-turn (same 

position of the natural lipoylated Lys). Results were compared with the unglucosylated analogue 

(bearing a Lys → Asn mutation), uncovering the hypothesis of an involvement of aberrant N-

glucosylation in the immunopathogenesis of PBC. The specificity of the response against Glc was 

assessed testing a peptide bearing a GlcNAc on Asn residue, which gave lower titers compared with 

Glc peptide. These results allow us to assume the presence of a Glc-specific response in PBC sera. 

We investigated also the possibility of a role of Asn(Glc) independently from the specific sequence 

of hPDC-E2 testing analogues of CSF114. Preliminary data display a high and specific response in 

the case of [Asn173(Glc)]PDC-E2(167-186)-KKKK, uncovering the hypothesis of an involvement of 

aberrant N-glucosylation in the immunopathogenesis of PBC, which however requires further 

clarification. 

 

In addition to the molecular characterization of the PDC-E2 immunodominant region, we 

evaluated the possible diagnostic relevance of the previously mentioned peptides, in order to 

identify auto-Ab in pts sera as disease BM (summarized in Table 6). For this purpose, we tested the 

synthetic probes as Ag in SP-ELISA, comparing the results obtained in the PBC cohort with other 

control diseases, such as RA, SSC, OAID and NBD. Disease-specificity of the detected Ab was 

evaluated comparing the results obtained in PBC pts with NBD cohort using a cutoff value 

calculated as (mean value of NBD) + 3*(standard deviation of NBD). Comparing PBC data with 

NBD through cutoff value allowed us to identify [Lys173]PDC-E2(167-186)-KKKK as the most 

relevant antigenic probe for IgM detection. This peptide recognized 63% of PBC pts sera, even if 

with lower titers compared with the lipoylated peptide [(R)-Lipoamide-Lys173]PDC-E2(167-186)-

KKKK, which is able to discriminate 37% of pts. PBC-specificity of the detected Ab was confirmed 

using pathologic control cohorts: we obtained 0% positivity percentage for IgM against the 

unlipoylated PDC-E2 peptide in both RA and SSC cohorts, while OAID have 23% of positivity.  

Based on the obtained results, we hypothesized that an aberrant PTM, namely a de-lipoylation, may 

uncover a neo-epitope, triggering PBC autoimmune reaction. Inner mitochondrial proteins may 

become the target of an autoimmune response by several possible mechanisms, including 
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abnormalities in structure: altered or abnormal enzyme forms may be degraded at an increased 

rate, leading to amplified presentation at the surface. 

The de-lipoylation reaction may be enzymatically performed by a lipoamidase (Lpa). For example, 

the presence of an Lpa was described in Enterococcus faecalis, a gut bacterium capable to do a 

commensal-to-pathogen switch in particular conditions. Expression and cloning of Lpa allowed to 

demonstrate its ability to release lipoyc acid from lipoylated intact proteins both in vivo and in 

vitro178,179. Intriguingly, Enterococcus faecalis is responsible of urinary tract infections, and the 

occurrence of this pathology is strictly associated with PBC as reproducible risk factor180,181. Based 

on these observations, it is possible to hypothesize the occurrence of a pathological de-lipoylation 

of PDC-E2 operated by Enterococcus faecalis as trigger for PBC. 

Even if hPDC-E2 includes two lipoyl domains (Figure 52), a de-lipoylation of the protein could lead 

to a failure of the PDC function or even to an enzymatic inactivation. Genetic PDC-E2 deficiency 

results in lactic acidosis as well as neurological dysfunction in infancy and early childhood182, 

symptoms that are not included in the clinical presentation of PBC pts. 

 

 

 
Figure 52: PDC-E2 domains in different species: E.coli, mammals, yeast. 

 

However, both Van de Water183 and Uibo184 demonstrated the AMA ability to inhibit the catalytic 

function of PDC by binding to the residues surrounding the lipoyl-Lys on PDC-E2, which is the core 

of the enzymatic reaction. Specifically, they incubated PBC pts sera with commercial PDC in a 

medium containing the reagents required for the enzymatic reaction, and quantified the NADH 

production by spectrophotometrical measurement at 340 nm. Intriguingly, the degree of enzymatic 

inhibition was directly proportional to the pts ABS value detected in ELISA. It was also 

demonstrated that PBC pts sera pre-absorbed with the recombinant Ag lost the ability to inhibit 

the enzyme activity. Results obtained with control sera are comparable with the one achieved 
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incubating the reaction mixture without sera. Therefore, the presence of AMA per se affects the 

enzyme functionality. Based on this statement, it is possible to hypothesize that the presence of an 

aberrant modification on PDC-E2, which may lead to an enzyme malfunction, is compatible with 

the disorder.  

Testing [Lys173]PDC-E2(167-186)-KKKK, we obtained 63% of positivity in PBC pts, which may seem 

a relatively significant result compared with the 95% detected by the routine assay. However, it 

must be kept in mind that the IIF assay measures the response directed toward a mixture of tissue 

Ag trough a complicated and time-consuming method. Our simple, single-Ag detection enabled to 

identify a population of PBC pts, with high specificity compared with control cohorts. Indeed, the 

significance of our result is emphasized not only by the 0% positivity obtained testing NBD, RA and 

SSC control cohorts, but also by the fact that RA is characterized by high levels cross-reactive Ab, 

and SSC is often associated with PBC. It will be of great interest to investigate the clinical features 

of the positive pts compared with the negative one, to disclose if our assay is able to discriminate a 

clinically defined subgroup of PBC pts, characterized by pathological peculiarity. Further 

investigations will be carried out to identify other candidate Ag to be added to the selected one, in 

order to develop a multi-Ag assay capable to discriminate a higher percentage of pts. In this way, 

we may obtain a new diagnostic tool characterized by: 

 Molecular characterization of the Ag; 

 Low invasivity for the pts; 

 Ease of execution (with feasibility of automating) and high reproducibility of the assay, 

which gave clearly interpretable results. 

Concluding, these results allowed us to hypothesize a molecular mechanism responsible for PBC 

triggering, and pave the way for further studies aimed both at understanding the pathological 

insights of PBC and at developing a more advantageous and significant diagnostic assay. 
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MATERIALS & METHODS 

Serum samples 

50 AMA+ and 15 AMA- serum samples were analyzed as PBC pts group (n=65). 56 NBD serum 

samples were used as healthy control group. Samples were tested in triplicate with a single dilution 

(1:100) in FBS Buffer.  

 

Antigens 

Antigenic probes used in this study are listed in Table 6. All the sequences were synthesized at the 

SOSCO Laboratory (Universitè de Cergy Pontoise, France) using SPPS strategy.  

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

1ug/well of Ag (peptide or protein) were dissolved in Coating Buffer (12mM Na2CO3, 35mM 

NaHCO3, pH 9.6), then 100 ul of solution were dispensed in each well of 96-well Maxisorp plates. 

Plates were incubated @4°C ON. Subsequently, plates were washed 3 times with Washing Buffer 

(0,9% NaCl, 0,01% Tween 20), and blocked 1 h at RT with 100ul/well of FBS Buffer (10% FBS in 

Washing Buffer). FBS Buffer were removed, and 100ul/well of diluted sera sample (1:100 in FBS 

Buffer) were dispensed. Blank wells were included in all the plates, and were obtained using FBS 

Buffer instead of serum. Plates were incubated @4°C ON, and then washed 3 times with Washing 

Buffer. 100ul/well of secondary Ab diluted in FBS Buffer (hIgG 1:8000 and hIgM 1:1200) were 

dispensed, and plates were incubated 3 h at RT. Plates were washed 3 times with Washing Buffer, 

then 100ul/well of Substrate Solution (1mg/ml p-PNP in Substrate Buffer: 1M Diethanolamine, 

1mM MgCl2, pH 9.8) were dispensed. Plates were incubated for 15’-40’, and then ABS at 405 nm 

of each well was red with a spectrophotometer. ABS value for each serum was calculated as (mean 

ABS of triplicate) – (mean ABS of blank triplicate).  
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SUPPLEMENTARY DATA 

 

 

 
Supplementary figure 1: IgM data distribution of PBC pts and control cohorts  

against PDC-E2 peptides. Dotted line indicate the cutoff value.  

P-values obtained comparing PBC pts with control cohorts are shown:  

**** P < 0,0001; *** P 0.0001 to 0.001; ** P 0.001 to 0.01; * P 0.01 to 0.05. 
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Supplementary figure 2: IgG data distribution of PBC pts and control cohorts  

against PDC-E2 peptides. Dotted line indicate the cutoff value.  

P-values obtained comparing PBC pts with control cohorts are shown:  

**** P < 0,0001; *** P 0.0001 to 0.001; ** P 0.001 to 0.01; * P 0.01 to 0.05. 
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ABBREVIATIONS 

AID Autoimmune Disease Ig Immunoglobulin 

Aa Aminoacid IIF Indirect Immunofluorescence 

Ab Antibody K Lys 

ABS Absorbance kDa kilo Daltom 

Ag Antigen mAb Monoclonal Ab 

AMA  Anti-Mitochondrial Antibodies MBP Myelin Basic Protein 

APC  Antigen Presenting Cell MHC Major Histocompatibility Complex  

AQP4 Aquaporin-4 MOG Myelin Oligodendrocyte Glycoprotein 

BCKD-E2 Dehydrogenase Dihydrolipoyl Transacylase  mRNA Messenger RNA 

BM Biomarker MS Multiple Sclerosis 

BSA Bovine Serum Albumin NBD Normal Blood Donors 

C.jejuni Campylobacter jejuni  NCL Native Chemical Ligation 

cDNA Complementary DNA NMO Neuromyelitis Optice 

CDR Complementarity Determining Regions  OD Optical Density 

CIS Clinically Isolated Syndrome OGDC-E2 Dihydrolipoamide Succinyltransferase  

CNS Central Nervous System OND Other Neurological Disorders 

CSF Cerebrospinal Fluid OVA Ovalbumin 

E.coli Escherichia coli PBC Primary Biliary Cirrhosis 

E3BP Dihydrolipoamide Dehydrogenase Binding Protein PDC-E2 Dihydrolipoamide Acetyltransferase  

EAE Experimental Autoimmune Encephalomyelitis  PPMS Primary Progressive MS 

ELISA Enzyme-Linked Immunosorbent Assay PTM Post-Translational Modification 

FACS Fluorescence-Activated Flow Cytometry  pts Patients 

FBS Fetal Bovine Serum RA Rheumatoid Arthritis 

Glc Glucose RRMS Relapsing-Remitting MS 

GlcNAc N-Acetyl-Glucosamine  SLE Systemic Lupus Erytemathosus 

GWAS Genome-Wide Association Studies SP-ELISA Solid Phase ELISA 

H.infulenzae Haemophilus influenzae SPMS Secondary Progressive MS 

HIBEC Human Intrahepatic Biliary Epithelium Cells  SPPS Solid-Phase Peptide Synthesis 

HLA Human Leukocyte Antigen SSC Scleroderma 

HMW1 High-Molecular-Weight Adhesin 1  TEV Tobacco Etch Virus  

IB  Inclusion Bodies ul microliter 

 


