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Abstract: The analysis of highly structured data requires models with unobserved compo-
nents (random effects) able to adequately account for the patterns of variances and corre-
lations. The specification of the unobserved components is a key and challenging task. In
this paper, we first review the literature about the consequences of misspecifying the dis-
tribution of the random effects and the related diagnostic tools; we then outline the main
alternatives and generalizations, also considering some issues arising in Bayesian inference.
The relevance of suitably structuring the unobserved components is illustrated by means of
an application exploiting a model with heteroscedastic random effects.

Keywords: finite mixture; heteroscedasticity; misspecification; mixed model; prior distri-
bution

1 Introduction

Random effects models are a key tool for the analysis of multilevel data in a wide range
of fields. These models are also known as mixed (Demidenko 2013) or multilevel models
(Raudenbush and Bryk 2002, Goldstein 2011, Snijders and Bosker 2012). Multilevel data
can also be analysed with methods avoiding random effects, such as fixed effects models,
marginal models via generalized estimating equations (GEE), and cluster-robust standard
errors derived from sandwich estimators or bootstrap (Scott et al. 2013). However, in this
review we explicitly focus on the random effects approach.

Multilevel structures include both hierarchical cross-sectional data and repeated mea-
surements, thus our review is not limited to a specific setting. The case study concerns the
assessment of school effectiveness (Grilli and Rampichini 2009), where multilevel models
aim to determine the contribution of each school to the achievement of its students, usually
measured through test scores. The random effects are interpreted as value-added measures,
and their predictions are used to compare the schools (Leckie and Goldstein 2009).

To introduce the terminology, let us consider the simple case of a linear random intercept
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model:
yi j = βββ ′xi j + γγγ ′z j +u j + ei j (1)

where yi j is the response variable for the i-th level 1 unit of the j-th level 2 unit (cluster), xi j

is the vector of level 1 covariates, z j is the vector of level 2 covariates, ei j are level 1 errors,
and u j are level 2 errors or random effects. The vectors βββ and γγγ collect the coefficients of
the covariates, also called fixed effects.

The level 1 and level 2 errors are assumed independent, with level 1 errors following a
normal distribution with variance σ2

e . In this review we focus on the assumptions for the
random effects u j, whose distributions is usually assumed to be

u j
iid∼ N(0,σ2

u ) (2)

where σ2
u is the level 2 variance. In other words, the standard assumptions for random effects

state that they are independent and identically distributed (thus homoscedastic) across level
2 units, with a normal distribution.

A further assumption, often not explicitly stated, is the mean independence of the random
effects on the covariates (level 2 exogeneity), namely

E(u j | x1 j,x2 j, . . . ,xn j j,z j) = 0 (3)

Exogeneity is needed for unbiased estimation (Ebbes et al. 2004, Kim and Frees 2007, Grilli
and Rampichini 2011). In this review exogeneity is assumed and not considered anymore.

In most cases of practical interest, the distribution of the random effects is technically
identifiable (Alonso et al. 2010), but the data usually carry little information for assessing
the appropriateness of the assumed distribution. A gross misspecification of the distribution
of the random effects can have severe consequences on the properties of the estimators and
it can even obscure some key features of the phenomenon under investigation. In response
to those concerns, several papers analyzed the consequences of misspecifying the random
effects distribution and proposed alternatives to relax standard assumptions.

The paper is organized as follows. Section 2 summarizes the findings about the conse-
quences of misspecifying the random effects distribution, whereas Section 3 briefly describes
the corresponding diagnostic tools. Section 4 reviews the main proposals to relax standard
assumptions, focusing on flexible specifications of the random effects distribution. Section
5 is devoted to special issues arising in the Bayesian framework. In Section 6 a case study
illustrates the relevance of a suitable specification accounting for heteroscedasticity. Section
7 offers some final remarks.

2 Consequences of misspecification of random effects

In linear models, a wrong specification of the random effects distribution has modest conse-
quences on maximum likelihood estimators: Verbeke and Lesaffre (1997) and Maas and Hox
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(2004) showed that the estimators of fixed effects and variance components with normality
assumption are consistent and asymptotically normally distributed even if the true random
effects do not follow a normal distribution, though their asymptotic covariance matrix is
biased (see also Jacqmin-Gadda et al. 2007, McCulloch and Neuhaus 2011a). However,
there can be serious consequences on the Empirical Bayes predictions of the random effects
(Verbeke and Lesaffre 1996; McCulloch and Neuhaus 2011b).

In some fields, like school effectiveness, empirical Bayes predictions are routinely used
to rank the level 2 units. Arpino and Varriale (2010) studied the robustness of the ranking
based on empirical Bayes level 2 residuals for a linear random intercept model under several
random effects distributions. In a situation with 100 clusters of size 50, with an ICC of
0.2 and normally distributed homoscedastic random effects, they found that the Spearman
correlation among true and estimated rankings is 0.945. The correlation is lower in case
of misspecification of the random effects distribution, the worst case being that of χ2(1)
random effects yielding a correlation of 0.817.

In generalized linear models, the consequences of misspecified random effects are more
serious and difficult to evaluate. Heagerty and Kurland (2001) performed a simulation study
for a random intercept logit model, generating random effects with a Gamma distribution
and fitting the model with maximum likelihood assuming normal random effects. This kind
of misspecification yields seriously biased regression estimators for level 2 covariates when
the true distribution of the random effects is highly skewed and the level 2 standard deviation
is high (i.e. σu ≥ 2, a value common in longitudinal data, but not realistic in cross-sectional
data). Moreover, the simulation study shows that serious biases may occur in case of het-
eroscedastic random effects. Litière et al. (2007, 2008, 2011) investigated the issue further,
also considering type I and type II error rates for the fixed effects, though the conclusions
are somewhat controversial.

The consequences of misspecified random effects are investigated also by Agresti et al.
(2004) for binary response models and survival models. In addition to the bias of the esti-
mators, they considered the loss of efficiency, which is relevant when the assumed (normal)
distribution is substantially different from the true distribution (a two-point mixture with a
large variance).

3 Checking the assumptions on the random effects

The usual approach to check the distribution of random effects is based on the analysis
of level 2 residuals (Langford and Lewis 1998, Eberly and Thackeray 2005, Snijders and
Berkhof 2008, Loy and Hofmann 2013). A widely used diagnostic tool is a normal probabil-
ity plot of the level 2 standardized Empirical Bayes (EB) predictions. However, such a tool
is sensitive to both deviations from normality of the random effects and misspecification of
other parts of the model, in particular the fixed effects. In general, it is advisable to carefully
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check the level 1 model specification before checking the random effects distribution.
McCulloch and Neuhaus (2011a) raise serious doubts on the ability of the normal proba-

bility plot of the EB residuals to detect deviations from normality. Indeed, they note that the
shape of the distribution of the EB predictions may not reflect the true underlying shape of
the distribution of the random effects, but instead the assumed distribution. In other words,
EB predictions tend to look normal even when normality is violated.

A general misspecification test for nonlinear mixed effects models has been proposed by
Huang (2009, 2011). The test compares ML estimates on original data with ML estimates
based on reconstructed coarsened data.

Recently, Verbeke and Molenberghs (2013) proposed the gradient function as an ex-
ploratory diagnostic tool to assess misspecification of the random effects distribution. This
method is applicable to a wide range of mixed models and it is easy to implement because
it only needs ML estimates of the current model and the corresponding marginal likelihood
function. The gradient function is plotted alongside with confidence bands, pointing out
intervals of values of the random effects for which the distribution is locally misspecified.

As a cautionary note, we remind that all the procedures for checking the random effects
distribution suffer from a fundamental limitation: in fact, any discrepancy can be attributed
to a misspecification of the random effects only by assuming that the other parts of the model
are correctly specified.

4 Specifying the random effects in multilevel models: be-
yond standard assumptions

In addition to level 2 exogeneity stated in equation (3), the standard assumptions for random
effects are: (i) independence across level 2 units; (ii) identical distribution across level 2
units; (iii) normal distribution. We now review several proposals to relax assumptions (i)-
(iii).

The assumption that the random effects are independent across level 2 units is ques-
tionable when such units are adjacent geographical areas. Indeed, in fields such as disease
mapping (Besag et al. 1991) and small area estimation (Rao 2003) the models have spatially
correlated random effects. In the multilevel literature, correlated random effects are uncom-
mon. Nonetheless, Browne and Goldstein (2010) considered multilevel models where the
higher-level random effects are linked by a suitable correlation structure to be estimated.
This is relevant in educational effectiveness, where the performances of nearby schools may
be correlated.

The assumption that the random effects have identical distribution across level 2 units im-
plies constant level 2 variance (homoscedasticity), which is too restrictive in some settings.
Heteroscedasticity across strata of level 2 units (e.g. private vs public schools) is handled by
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inserting stratum-specific random effects, as shown in Section 6. Heteroscedasticity depend-
ing on continuous covariates is accounted by a parametric regression model for the level 2
variance. This can be accomplished in several ways, for instance by adding random coef-
ficients to the level 2 covariates responsible for the heteroscedasticity (Snijders and Bosker
2012, Sect. 8.2), or by specifying a linear model for the logarithm of the level 2 variance, as
in the mixed location scale model of Hedeker et al. (2008, 2012).

The assumption of normal distribution for the random effects can be overcome in several
ways ranging from two extremes: (i) a continuous parametric non-normal distribution, and
(ii) an arbitrary discrete distribution with locations and masses to be estimated.

Examples of continuous parametric non-normal distributions are the multivariate Stu-
dent’s t of Pinheiro et al. (2001), which yields results robust to outliers, and the skewed
parametric family of Liu and Day (2008).

More flexible approaches rely on mixtures, such as finite mixtures of Gaussian distri-
butions (Verbeke and Lesaffre 1996), or penalized Gaussian mixtures (Ghidey et al. 2004,
Komárek and Lesaffre 2008). Alternatively, the random effects density can be approximated
by a semi-non-parameteric (SNP) representation (Zhang and Davidian 2001, Papageorgiou
and Hinde 2012).

The random effects can even be modelled through an arbitrary discrete distribution. For
a given number of mass points, the likelihood can be maximized through the EM algorithm
(e.g. Aitkin 1999). Nonparametric maximum likelihood (NPML) is obtained by increasing
the number of mass points. Two techniques to achieve NPML are the directional derivative
(e.g. Rabe-Hesketh et al. 2003) and the direct search method based on the gradient function
of Lesperance et al. (2014). NPML estimates can also be obtained by iterating until con-
vergence the smoothing by roughening (SBR) method of Shen and Louis (1999). Recently,
Azzimonti et al. (2013) proposed an EM algorithm that includes the selection of the optimal
number of mass points.

Nonparametric estimators of the random effects distribution based on Fourier inversion
have been proposed by Hall and Yao (2003) and Comte and Samson (2012).

Antic et al. (2009) compared some nonparametric methods in nonlinear mixed effects
models, with focus on pharmacokinetics applications. Ghidey et al. (2010) compared four
flexible methods for estimating the random effects distribution of a linear mixed model:
their simulations indicate that the penalized Gaussian mixtures approach of Ghidey et al.
(2004) often has the smallest integrated mean squared error for estimating the random effects
distribution. Nonetheless, the finite mixture approach (Verbeke and Lesaffre 1996) and the
SNP approach (Zhang and Davidian 2001) seem to perform better when the true distribution
of the random effects is a mixture.

From a different perspective, a model with random effects having a discrete distribution
can be interpreted as a latent class multilevel model (Vermunt 2003), where the level 2
units are assumed to belong to latent classes with common unobserved components. In
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this framework, the choice of the number of latent classes is a difficult task (Lukociene et
al. 2010). A promising procedure to classify level 2 units with data-driven selection of the
number of classes is represented by Dirichlet process mixtures. This approach was originally
proposed in the Bayesian framework (see Section 5), but it has been recently implemented
in a frequentist setting by Heinzl and Tutz (2013) via a penalized EM algorithm.

In the context of repeated measures, discrete random effects or latent classes are the core
of Growth Mixture Models (Muthén 2004, Palardy and Vermunt 2010) and Latent Markov
Models (Bartolucci et al. 2011).

5 Specification issues in the Bayesian framework

In Bayesian hierarchical modelling (Gelman and Hill 2007) the distribution of the random
effects is specified conditionally on the level 2 variance. The implied marginal distribution
of the random effects is usually not mentioned, but it should be considered in order to make
comparisons with non-Bayesian approaches. The most common specification is u j | σ2

u ∼
N(0,σ2

u ) with a Gamma prior distribution for the level 2 precision (σ2
u )

−1 ∼ Γ(a,b), where a
is the shape parameter and b is the rate parameter (so that the mean is a/b and the variance is
a/b2). It follows (Fong et al. 2010, Lemma 1) that u j ∼ t2a(0,

√
b/a), namely the marginal

distribution of the random effects is Student’s t with 2a degrees of freedom, location 0 and
scale

√
b/a. Note that a = 0.5 yields one degree of freedom, namely a Cauchy distribution,

whereas a < 0.5 yields a distribution whose tails are much heavier than even a Cauchy. Prior
distributions with a < 0.5 are common practice, for example the popular BUGS software
(Lunn et al. 2012) has default setting a = b = 0.001. Fong et al. (2010) argued that it is
difficult to justify for the random effects a marginal distribution such as a t with 0.002 degrees
of freedom and propose to choose a prior distribution for (σ2

u )
−1 that implies a reasonable

distribution for u j. For example, in logistic regression they chose Γ(0.5,0.0164) because it
implies a marginal Cauchy distribution such that eu j ∈ [0.1,10] with probability 0.95. For the
same model, Grilli et al. (2014) performed a simulation study showing that, in case of few
clusters (e.g. 10 clusters), the Γ(0.5,0.0164) prior outperforms the Γ(0.001,0.001) prior for
the bias on the level 2 variance and for the coverage of the intervals for the fixed effects.

Gelman (2006) pointed out some drawbacks of the Gamma prior and suggested an alter-
native prior distribution based on the half-t family.

In order to avoid the specification of the random effects distribution, the Dirichlet process
can be exploited to devise a semi-parametric Bayesian approach (Kleinmann and Ibrahim
1998, Ohlssen et al. 2007). This approach is used by White et al. (2012) to classify patients
in Parkinson disease, and by Guglielmi et al. (2013) to cluster hospitals on the basis of
patients survivals. As noted in Section 4, Heinzl and Tutz (2013) proposed a penalized
likelihood approach based on Dirichlet process mixtures.
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6 Accounting for heteroscedasticity: a case study on the
value added of Italian schools

In educational effectiveness, the homoscedasticity assumption is often inappropriate since
the variance between schools is typically quite different across geographical areas or school
types (e.g. public vs private). Differential variability is a negative feature in educational
systems aiming at guarantee equal opportunities. Indeed, important research questions in
educational effectiveness are related to the pattern of variability, thus involving tests of hy-
pothesis on random-part parameters.

Sani and Grilli (2011) analyzed the performance of fifth-grade pupils attending Italian
schools using data collected by INVALSI (the Italian national institute for the evaluation of
the school system). In particular, they considered the mathematics test administered at the
end of the 2008/2009 year, along with a pupil’s questionnaire for measuring socio-economic
factors. The analysis exploited a random intercept linear model on the Rasch score of the
mathematics test, with pupil-level errors depending on gender and school-level errors de-
pending on the geographical area:

yi j = βββ ′xi j + γγγ ′z j +u j(k)+ ei j(m) (4)

where i indexes pupils (level 1 units) and j indexes schools (level 2 units). Model (4) has
the same structure of model (1), except for the errors which are assumed to be normally
distributed with zero mean and stratum-specific variances:

ei j(m)
iid∼ N(0,σ2

e(m)), m = 1, . . . ,M (5)

u j(k)
iid∼ N(0,σ2

u(k)), k = 1, . . . ,K (6)

The strata of level 1 units (pupils) are defined by gender (M=2), while the strata of level 2
units (schools) are defined by the geographical area (K=5).

The results show a considerable increase in the residual variance among schools when
going from North to South, pointing out a serious issue of fairness in Southern Italy. Specifi-
cally, with reference to males, the estimated values of the residual Intraclass Correlation Co-
efficient (proportion of residual variance due to the schools) are 4.7% in North-West, 6.7%
in North-East, 13.5% in Center, 35.1% in South and 23.1% in South-Isles. The high values
of the residual ICC in the Southern regions imply that in those regions the pupil achievement
is strongly affected by unobserved school-level factors, possibly including social segregation
effects not accounted for by socio-economic covariates (Leckie et al. 2012).

7 Final remarks

In multilevel modelling, the specification of the random effects is a key and challenging task.
An appropriate specification is crucial for valid predictions of the random effects, which
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is an important goal in some applications. As for parameter estimation, the consequences
of misspecification are usually minor in linear models and potentially serious in nonlinear
models. However, the bias on parameter estimates should not be the only concern, since a
proper modelling of the variance-covariance structure may be essential for the research aims,
as illustrated by the heteroscedastic structure adopted in the case study of Section 6.

In general, the consequences of a wrong specification of the random effects distribution
depend on the degree of departure from the true distribution. A dangerous situation is when
the assumed distribution has a single mode (as usual), but the true distribution has several
sharp modes.

In the last fifteen years, there has been a lot of research on flexible specifications of
the random effects distribution. The proposed solutions range from heavy-tailed or skewed
parametric families to nonparametric approaches, with several intermediate semi-parametric
and mixture-based approaches. In general, when moving from parametric to nonparametric
methods one has to face potential losses of efficiency and computational problems. An ad-
vantage of flexible methods is their ability to provide relevant information on the nature of
heterogeneity of the population of interest. If the analysis aims at classifying level 2 units,
the approaches based on the Dirichelet process are especially suitable as they allow a data
driven selection of the number of latent classes.

A suitable specification of the random effects distribution is relevant regardless of the
inferential approach. However, the standard specification is different in frequentist and
Bayesian approaches. In fact, in Bayesian modelling the normality assumption is usually
placed on the distribution of the random effects conditional on the level 2 variance: there-
fore, with the usual Gamma prior, the marginal distribution of the random effects is Student’s
t, which is more robust to outliers. Nevertheless, the specification of the prior for the level 2
variance entails several open issues as discussed in Section 5.

Recently proposed diagnostic tools are promising. Yet, their usefulness is limited since
any discrepancy can be attributed to a misspecification of the random effects only by assum-
ing that the other parts of the model are correctly specified. Therefore, after a decade we
still subscribe the Agresti et al. (2004) suggestion to rely on sensitivity analysis by fitting
the model using both a parametric specification and a flexible approach.
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