
Dottorato di Ricerca in
Ingegneria Industriale

Ciclo XXVII

Coordinatore del Dottorato
Prof. Ing. Maurizio De Lucia

Development of efficient rotordynamical models

to study coupled lateral-torsional vibrations

Settore Scientifico Disciplinare ING/IND 13

Candidata

Ing. Alice Innocenti

Tutor Co-Tutors

Dott. Ing. Andrea Rindi Dott. Ing. Enrico Meli

Prof. Ing. Paolo Toni

Anni 2012/2014





Abstract

A correct prediction of the dynamic behaviour of rotors represents a criti-
cal issue in the rotating machines field. In the design of rotating systems such
prediction is necessary to evaluate if it will accomplish the requirement of safe
operating conditions and to prevent systems from working in harmful operat-
ing conditions (excessive vibration level, instabilities) that may lead to possible
negative consequences such as undesired shut-downs or failures. Hence, the
development of accurate and efficient rotordynamical model to be used in the
design phase is an important issue in turbo-machinery and rotating machine
applications. The current trend in equipping machinery with predictive main-
tenance systems and the necessity of methods for determining the state of the
machine from less intrusive measurements, have led to an increasing need for
more reliable mathematical models in rotordynamics. A large amount of re-
search work dealing with rotordynamics modelling can be found in literature
and nowadays both traditional simple and complex models may be adopted to
investigate the vibration behaviour of rotating equipments.

For a long time most of studies has focused on a single form of vibration,
hence lateral and torsional vibrations have been investigated through separate
analysis. Current design trends for rotating equipment aim to get higher power
transmission and efficiency by reducing weight and increasing the operating
speeds, setting the assumption on treating lateral and torsional vibrations by
separate and decoupled approaches much less accurate. In fact, this coupling
usually exists, as it is caused by the most common malfunction conditions, such
as rotor unbalance or shaft misalignment hence, neglecting this coupling may
result in inaccurate predictions of the system dynamics. Moreover, complex
distributed inertial elements connected to the shaft may determine the coupling
of torsional and lateral vibrations as well.

In this thesis an accurate, efficient and fully coupled model for the evalu-
ation of the dynamical behaviour of complex multi-rotor systems is presented.
The model has been conceived with the purpose of modelling complex rotors
through a systematic and practical approach and with the goal of investigat-
ing the bending-torsional interaction in rotor vibrations. The model is based
on a finite element rotordynamics formulation and it is able to deal with long
rotors characterised by complex topology, such as rotor with distributed iner-
tias or complex connections. This kind of rotor and the way in which they are
modelled may deeply influence the predicted dynamics of the system with par-
ticular concern to the lateral-torsional vibrations coupling. Thus, through the
developed model, complicated shaft-to-rotor connections or particular mounted
parts, otherwise not representable with classical models, may be mathematically
described. The proposed model represents a systematic and practical approach
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ii Abstract

to the rotor dynamics modeling issue and its main contribution to the research
topic of coupled lateral-torsional vibration in rotors is due to its general topol-
ogy.

Multi-rotor linking elements (such as couplings) modelled with different lev-
els of detail may be used and non-standard elements may be also adopted for
describing particular rotor components, such as rotor with distributed inertias or
complex connections. The model is based on a finite element (FE) formulation
with 6 degrees of freedom (dofs) for each node and it is therefore suitable to fully
coupled studies, in which the existing dependency among longitudinal, lateral
and torsional dynamics can be evaluated. Thanks to its numerical efficiency,
the proposed model represents a good compromise between accuracy and com-
putational effort, thus it may be used to perform rotordynamical investigation
commonly used in rotating machinery design.

The investigated rotor test-case is a dynamometric flywheel test bench for
railway brakes that is characterised by a complex geometry formed of several
rotors with complex topology (distributed inertias).

The effectiveness of the presented model in predicting the critical behaviour
of the considered test-case has been tested by means of experimental vibration
data. The experimental data are the results of dedicated vibration tests cam-
paign, performed in collaboration with Politecnico di Milano, Italcertifer (FS)
and Simpro S.p.A to assess the vibration behaviour of the machine.
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Introduction

Comprehension and advanced modelling of the complicated dynamic and
vibration phenomena involved in rotating machines applications represent a
critical issue in the rotordynamics field. A correct prediction of the dynamical
behaviour of a rotating machine is indeed an important issue to identify safe
operating conditions and to avoid instability operating range that may lead
to possible catastrophic consequences for machine. Recent design trends for
rotating equipment aim to get higher power and efficiency through optimised
weights and increased operating speeds. To this aim, the development and the
adoption of advanced rotordynamics models enable designers and engineers to
make precise assessment of the significant parameters of rotors and accurate
identification of their critical speeds and dynamical behaviour. Furthermore,
the current trend in equipping rotating machinery with predictive maintenance
systems and the necessity of methods for determining the state of the machine
from less intrusive measurements, have led to an increasing demand for more
accurate and reliable mathematical models in rotordynamics.

A large amount of research work can be found in literature dealing with
rotordynamics modeling and nowadays both traditional simple models (such
as the Jeffcott or Stodola-Green rotor models [2, 3]) or more complex ones
(transfer-matrix or finite-element (FE) approaches [4, 5, 6, 7, 8]) can be used
to investigate the vibration behaviour of a rotor system. Both traditional and
complex approaches use systematic discretisation to create an approximated
model of the investigated rotor with a finite number (but possibly large) of
coordinates. While in the past transfer-matrix methods [4, 8] were used to this
aim, nowadays, with the recent fast increase in computing power, FE method
represent the standard approach adopted to analyse the dynamics of structure,
considering also rotating machines [9].

In the case of rotating machines, for a long time most of studies has focused
on a single form of vibration, hence lateral and torsional vibrations were usually
modelled and studied in a separate way [4, 6, 9] until some real applications
[10] exhibited unpredicted critical resonances on the lateral vibrations charac-
terised by the torsional mode frequency, demonstrating that decoupled lateral
and torsional studies could not correctly predict some vibrations.

Current trends in rotordynamics design resulting in more and more complex
rotors and high rotational speeds, set the assumption on treating lateral and
torsional vibrations by separate and decoupled analysis much less accurate. In
fact, this coupling usually exists, as it is caused by the most common malfunc-
tion conditions, such as rotor unbalance, shaft misalignment or rotor-to-stator
rubbing [11, 12, 13]. Hence, neglecting this coupling may result in inaccurate
predictions of the system dynamics. Coupling mechanisms in lateral-torsional
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dynamics may lead to rotor unstable behaviours, which mainly arise for rotor
speed value where maps of lateral and torsional natural frequencies intersect
each other. Hence, in those types of rotating machinery where the angular
speed is subjected to high rate of changes, a correct identification of unstable
regimes by means of coupled models is required [14]. The coupling of the rotor
lateral and torsional motion also becomes significant when the driving or load
torques applied to the rotor are unsteady. Torsional vibrations are quiet and
do not usually propagate to other elements of the machine [10, 15]: only dedi-
cated instrumentation may detect the torsional vibrations and machine opera-
tors often do not recognize their presence. In such situations, accurate coupled
lateral-torsional models may be useful in detecting torsional vibrations from
more standard measurements (such as lateral vibrations).

Vibration analysis represents so a crucial issue in the preliminary design and
analysis of rotating machines. The majority of vibrations are caused by rota-
tion related sources (normally unbalance) and consequently excitation forces are
synchronous with the rotational speed. Therefore, the forced vibration study is
a fundamental aspect in design and analysis of rotating equipments. Since cer-
tain effects, such as gyroscopic or fluid-bearings characteristics, are dependent
on the rotational speed, common analysis methods require computational as-
sembly and inversion of large matrices at each frequency step. In such a context
the development of an accurate and efficient rotordynamics models is highly de-
manded to accomplish the design and acceptance criteria required by rotating
machines standards [16, 17, 18].

Dynamical properties of rotor systems are hence derived through advanced
mathematical models representing all the rotordynamics elements present in
real rotor applications. Such elements may be classified in two groups: single-
rotor elements (shafts, mounted parts, bearings, seals) and multi-rotor elements
(couplings and gearboxes). It is worth noticing that while the mathematical rep-
resentations of the elements belonging to the former group are almost standard-
ised in the technical literature [1, 4, 10, 17], modelling issues characterising the
components of the latter group are still open and their influence on multi-rotors
vibration behaviour is yet not well-understood [19, 20, 21, 22].

Critical systems from the modelling standpoint are represented by complex
topology rotors, such as rotor with distributed inertial elements or connected
simultaneously in several points to the shaft. In this case, a substantial lack
concerning models suitable for the coupled bending-torsional analysis of complex
rotors is observed in the literature.

Flexible couplings are widely used in rotating machines for power trans-
mission, to compensate the residual misalignment between shafts that rotating
equipments may exhibit because of improper machine assembly, thermal dis-
tortion or asymmetries in the applied loads. Misalignment represents the sec-
ond most common malfunction cause after unbalance [10, 19], thus an accurate
knowledge of this kind of phenomenon is useful in each application related to the
rotating machines diagnosis and prognosis. An extensive overview of the most
important papers dealing with this topic can be found in [19]. Since the pres-
ence of coupling-misalignment may lead to several problem such as vibration,
noise, power losses, wear of bearings or seals and fatigue failures, an accurate
modelling of the flexible-coupling in multi-rotor assembly is required to correctly
evaluate their dynamical effects in real shaft-lines [21].

Gearboxes are components commonly adopted in multi-rotor systems to in-
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crease or reduce the transmitted torque and consequently to reduce or increase
shafts angular velocity. The dynamical behaviour induces complex coupled lat-
eral and torsional vibrations phenomena through gear meshing effect, hence, in
geared rotors, a correct modelling of gear components is fundamental to predict
the vibration behaviour and to achieve a highly reliable design of the investi-
gated machine [22, 23].

Mechanical looseness or improper fit between components parts is common
machine malfunction [10] and it generally produces very characteristic modifi-
cations of rotor dynamic responses [24] (i.e. long string of frequency harmonics
in the FFT at abnormally high amplitudes). A mathematical model capable to
reproduce the dynamical properties of loosing parts is very useful to investigate
the rotor response to looseness-related dynamic phenomena.

The majority of rotordynamics studies are linear and they are performed
in the frequency domain. However, linearity is an idealization of the actual
behaviour of real rotors that always deviates to a certain extent from linearity
[25]. Rotors may be indeed considered linear in their nominal conditions (small
displacements) other components like bearings, dampers, and seals may exhibit
severe nonlinear behaviours.

When the linear analysis techniques commonly adopted in design phase are
not accurate enough [26] to predict the critical behaviour and to evaluate the
amplitude response of nonlinear rotor systems, nonlinear computational strate-
gies like transient analysis must be adopted. Moreover, when forcing functions
becomes time dependent, steady-state frequency domain analysis are not suffi-
cient to provide adequate analysis capability and to correctly represent the dy-
namical behaviour of the considered rotor system [27]. Also in such cases time
transient analysis are required since the system response has to be computed as
a function of time, especially when rotordynamics analysis are concerned with
stresses and fatigue life of the investigated machine.

In literature, several models concerning classical rotordynamics elements
may be found [4, 6, 9, 10, 26] while there is a substantial lack concerning dis-
tributed elements modelling for the development of general and multi-purpose
rotordynamics models. In the present thesis, a rotordynamics model developed
with the aim of studying complex phenomena ruling rotor vibrations is intro-
duced. The developed model aims at overcoming modelling limitations relative
to complex topology rotors, such as rotors with distributed inertias or con-
nected simultaneously in several points. The modelling of this kind of rotors
may affect the dynamical behaviour of the system with particular concern to
lateral-torsional vibrations coupling.

The model studies the dynamic behaviour of rotating equipments by means
of a FE formulation characterised by 3D beams with 2 nodes and six degrees of
freedoms for each node [28, 29]. Based on the finite element formulation a ded-
icated tool has been developed in the MatLab with Comsol 4.4a environment.
The developed model is established to perform rotordynamics analysis of ro-
tor systems characterised by complex topology, such as distributed rotors. The
tool has the capability to automatically cover all the typical steps required in
a generic rotordynamics design analysis such as undamped and damped critical
speeds,harmonic response and instability analysis [17]. Classical or distributed
rotordynamics elements may be adopted to execute both linear or nonlinear
analysis respectively in the frequency or in the time-domain. Due to its com-
putational efficiency, the model introduced in this work is a good compromise
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between accuracy and computational load, hence it is suitable to execute com-
mon dynamical studies in the design of rotating equipments.

The rotor test-case studied and modelled in the present work is a flywheel
masses test bench for railway brakes, which has been designed for the dynamic
testing of railway brakes components. During the tests, railway discs or pads
must dissipate the relative quota of the total kinetic energy characterising a
single vehicle. Therefore, to produce such huge amount of energy the test bench
is composed of a group of shafts, linked each other through flexible couplings
and driven by an electrical motor, and of five shiftable flywheel masses, which
are used during tests to vary the simulated mass of vehicle. The maximum
operating speed of the test bench is equal to 3000 rpm.

The brake test bench has been chosen as case study for several reasons. The
first motivation consists in its complex topology configuration. The shaft-line
is made up of a multi-rotor configuration, formed of multiple shaft groups pre-
senting several distributed inertial elements and linked together through flexible-
couplings. Secondly, the particular operating conditions (transient characterised
by high torsional and bending applied moments) of the test bench may induce
harmful stress state in the rotor structure and may also determine complex
modes and coupled lateral-torsional vibrations.

The activity on the selected test-case has been performed in collaboration
with RFI (Rete Ferroviaria Italiana) and Simpro S.P.A.

A correct identification of the critical speeds of the machinery is necessary
to assure safe working conditions and to prevent the system from working with
large amplitude vibrations that may be harmful for the system integrity (rolling
bearing, flexible couplings) and for the operation of the test bench. In fact,
since the test bench must be used for certification purposes, vibration levels
allowed during brake components tests must respect the vibration limits pre-
scribed in international standards [18]. Moreover, during the verification tests
the test bench showed some unpredicted vibrations phenomena. Furthermore,
after simple rotordynamics models failed to predict the critical speeds in the
operating range, a comprehensive model accounting for all flexible systems is
required.

Since measured axial motions of the test bench are small if compared both
with torsional and lateral ones, in the present state of the research activity the
longitudinal displacements have not been taken into account.

The rotordynamics model developed in this work has been validated in a
preliminary way by means of experimental data coming from a test campaign
aimed at the evaluation of the vibration behaviour of the machine. The test
campaign has been performed by Politecnico di Milano, thanks to the instru-
mentation of the test bench by means of accelerometers to measure mechanical
vibration signals in terms of acceleration characterising the non-rotating parts
of the machinery [18]. More specifically, accelerometers have been installed on
the bearings housing to capture radial vibrations and servo-accelerometers have
been used to measure the vibrations of the baseplate, foundation and of the civil
structure.



Structure of the thesis

This thesis starts with an initial chapter presenting a survey of the modelling
approaches commonly used to study uncoupled lateral and torsional vibrations
in rotordynamics applications.

In the second chapter the state-of-the-art on the topic of lateral-torsional
vibrations coupling in rotors is presented. Both the phenomenological and the
modelling aspects are treated.

The third chapter deals with the description of the Rotordynamical model
developed during the Ph.D research activity. A preliminary validation of the
model based on a numerical rotor benchmark is also presented.

In the fourth chapter the structure and several components of the rotating
machine investigated as test-case are presented.

The experimental activities performed to characterise the dynamical be-
haviour of the test-case is described in the fifth chapter.

Finally, in the sixth chapter numerical results are compared to experimental
data to validate the developed Rotordynamical model by means of measure-
ments coming from the studied test-case.
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Chapter 1

Rotordynamics modelling

Rotating machines exhibit complex torsional and bending dynamics for which
analytical models may be obtained in the simple cases. Nowadays, thanks to the
recent increase in computational power, complex numerical 2D or 3D analysis
may also be performed to predict the critical behaviour of rotors. Neverthless,
thanks to their step-to-step derivation, analytical models are still employed for
understanding physical phenomena determining the peculiar dynamics of rotat-
ing systems. For a long time most of studies has focused on a single form of
vibration, hence separate lateral and torsional analysis were usually performed
[4, 9, 6] through appropriate uncoupled models. These models can be classi-
fied in two groups: classical and modern methods. Classical models [2, 3] are
based on the study of oversimplification of real-world rotors to gain a qualitative
insight into important phenomena typical of rotordynamics, while being much
simpler than more realistic models. Such methods provide analytical close so-
lutions to assess the basic critical behaviour of rotors but, due to the geometry
semplification, cannot represent real-rotors with complex geometries. Modern
rotordynamics models are instead used to investigate the dynamics behaviour of
real rotors and they can be based on both transfer-matrix [30] or finite element
(FE) [4, 9] formulations.

1.1 Lateral Vibrations

Lateral vibrations are a serious concern in rotors and, if not accurately pre-
dicted and corrected, can determine trips, noise, fatigue failure and reduced
efficiency of machine. Therefore, analysis of lateral dynamical behaviour of
rotors represents a critical issue for the design of turbomachinery and other
rotating equipments.

The most important classical and modern methods developed for the study
of uncoupled lateral vibrations of rotor are presented in the following sections.

1.1.1 Jeffcott’s rotor

The first attempts in defining a mathematical model for the comprehension
of rotordynamics were made by Föppl in 1895 and Jeffcott [2] in 1919. Their
results can be summed up in the so-called Jeffcott’s model where the dynamical

9
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behaviour of a simple rotor-bearings system is investigated and the basic theory
for prediction and attenuation of rotor vibrations is established.

Figs. 1.1(a)- 1.1(b) illustrate a flexible rotor with rigid bearings. A rigid
disk is located at the axial mid-span of the shaft. Considering the reference
frame Oxyz shown in Fig. 1.1(b) the instantaneous position of the rotation axis
(geometric center of the rotor) is denoted with the letter C, and it is located in
the point of lateral coordinates xC and yC ; due to a residual unbalance in the
disk, the coordinates of the center of mass G are xG and yG.

(a) (b)

Fig. 1.1: Jeffcott’s rotor (a): scheme (b): back view.

The Jeffcott’s model is based on the following assumptions:

• the disk may only translate and it cannot tilt around x or y axis; thus
gyroscopic effects can be neglected;

• the disk mass value m is noticeably higher than the shaft mass; the shaft
is thus considered massless;

• the shaft is supposed to be isotropic and characterised by a bending stiff-
ness value k;

The studied system is planar and the position of the center of mass G at a
generic time t is given by:

xG = xC + δ cosωt (1.1)

yG = yC + δ sinωt (1.2)

Time derivatives of Eqs. 1.1 and 1.2 can be obtained:

ẋG = ẋC − δω sinωt (1.3)

ẏG = ẏC + δω cosωt (1.4)

ẍG = ẍC − δω2 cosωt (1.5)

ÿG = ÿC − δω2 sinωt (1.6)
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By applying the Newton’s second law through the projection of the force vectors
on the plane perpendicular to the rotor undeformed axis the following expres-
sions can be written:

mẍG + kxC = fx(t) (1.7)

mÿG + kyC = fy(t) (1.8)

and considering a free motion Eqs. 1.7 and 1.8 become:

mẍG + kxC = 0 (1.9)

mÿG + kyC = 0 (1.10)

Introducing the acceleration expressions defined in Eq. 1.5 and 1.6 into the
equations of motion it results:

mẍC + kxC = mδω2 cosωt (1.11)

mÿC + kyC = mδω2 sinωt (1.12)

The previous equations prove that horizontal (x) and vertical (y) motions
of the geometric center C of the shaft consist in forced vibrations, that are the
response to the x and y components of the centrifugal force. Moreover, when
rigid bearings are assumed, lateral responses are decoupled in the x and y lateral
directions and they do not affect each other.

Through the adoption of a complex coordinates formalism [25], as the shaft
geometrical center C moves in a plane variable, a vector (C−O) may be defined
through the following complex variable:

rC = xC + jyC (1.13)

By multiplying Eq. 1.12 for the imaginary unit j, adding it to Eq. 1.11 and
introducing the complex variable rC , it leads to the single complex equation:

mr̈C + krC = mδω2ejωt (1.14)

thus the Jeffcott’s rotor equation is analogous to a single-dof mass equation
where the excitation magnitude is function of ω2. The solution of the previous
equation is given by the sum of the homogeneous solution and the particular
integral.

The homogeneous solution describes the free motion of the considered rotor
and it may be derived by solving the homogeneous algebraic equation obtained
introducing a general form of the solution in the homogeneous form of Eq. 1.14
[25]. It results that free whirling of the Jeffcott’s rotor is ruled by the expression:

rhomC (t) = R1e
jωnt +R2e

−jωnt (1.15)

where ωn =
√
k/m is the natural frequency in rad/s and R1, R2 are complex

constants depending on the initial conditions.
The particular solution defines the response to the harmonic forcing term

mδω2ejωt. Accordingly to the system linearity, the solution has to be harmonic
at the same frequency ω of the forcing term:

rforC (t) = r0e
jωt (1.16)



12 Chapter 1. Rotordynamics modelling

Velocity and acceleration responses are given by time derivatives of the previous
expression:

ṙforC (t) = jωr0e
jωt (1.17)

r̈forC (t) = −ω2r0e
jωt (1.18)

By introducing Eqs. 1.16, 1.17 and 1.18 in Eq. 1.14 and simplifying, the unbal-
ance amplitude response can be obtained:

rfor0 =
mδω2

k −mω2
(1.19)

with rfor0 ∈ <, ∀ω and ω 6= 0.
Considering a damped motion, where for instance air drag on disks, bear-

ings or shaft damping is modelled through a viscous damping coefficient c, the
unbalance response amplitude is instead given by the complex expression [1, 25]:

r0 =
mδω2

k −mω2 + jωc
(1.20)

In this case, the maximum value of the unbalance amplitude response is
given when the shaft speed ω is equal to the critical speed ωcr = ωcr/(1− 2ξ2),
where ξ = c/(2

√
km) is called the damping factor.

1.1.2 Stodola-Green’s model

The Jeffcott’s model helps in the introduction of elementary rotordynamics
concepts as critical speeds and synchronous response. The heaviest assumption
made in the Jeffcott’s model consists in concentrating the whole mass in a point
mass located at the mid-span of the shaft, consequently the contribution of the
moments of inertia is not taken into account. This limitation precludes the
study of phenomena that considerably affect lateral dynamics, such as those
causing the lateral natural frequencies to depend on the rotor spin speed. To
overcome this limitation, a first step was made by the so-called Stodola-Green’s
model. This model is the final output of the research activity performed by
Stodola (1927) [3], Green (1948) and Den Hartog (1952) [8].

The model can be derived starting from the following hypotheses:

• the rotor mass is uniformly distributed in a disk;

• the disk can be placed at any axial location of the shaft (Fig. 1.2(a));

• the rotation axis is coincident with the geometrical shaft line and it is
inertial central and principal;

• the longitudinal displacement may be neglected;

• rotor spin speed is constant.

An analytical response of the rotor system may be derived through the ap-
plication of the rigid-body dynamics equations [6] leading to a model with six
degrees of freedom (dofs): three translations xG, yG and zG of the center of mass
G of the disk and three rotational displacements. Due to the adopted working
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(a) (b)

Fig. 1.2: Stodola-Green’s model (a): rotor scheme (b): reference systems.

hypotheses, only four degrees of freedom have to be considered: the lateral
translations (xG and yG) of the center of mass G and two rotations α and β
around appropriate axes. These rotations may be defined considering that, in a
reference system with central axes x′, y2 and z3 illustrated in Fig. 1.2(b), that
are parallel to those of the undeformed system, the angular position of the disk
may be defined through an α rotation around x′ axis, a β rotation around y2

and finally a φ rotation around the z3 axis.
By hypothesizing that the vibration motion is characterised by a synchronous

pulsation ω and neglecting damping effects, the existence of a rotating plane
around the z axis that contains the deformed system can be assumed (Fig. 1.3(a))
and the disk equilibrium in the rotating plane can be studied to obtain an ana-
lytical solution of the problem [31].

The forces acting on the rotating plane are the centrifugal force FC =
mω2xGi and the centrifugal momentum MC = Ixzω

2j where it can be proved
that Ixz ∼= (IP − IT )α . In the case of small deformations the beam theory
establishes that deformations (Fig. 1.3(b)) are linear functions of the applied
loads:

xG = a11FC + a12MC (1.21)

α = a21FC + a22MC (1.22)

where, from the Maxwell’s theorem a12 = a21 and the coefficients aij with i, j =
1, 2 depend only on the beam geometry and material’s property. Introducing the
expressions of the centrifugal force FC and momentum MC and re-arranging,
the following homogeneous system may be obtained:

(a11mω
2 − 1)xG + a12(IP − IT )ω2α = 0 (1.23)

a21mω
2xG +

[
a22(IP − IT )ω2 − 1

]
α = 0 (1.24)

Non-trivial solution of the previous system may be obtained setting the
determinant of the coefficient matrix equal to zero and solving the resulting
characteristic equation:

(a11mω
2 − 1)

[
a22(IP − IT )ω2 − 1

]
− a12(IP − IT )ω2ma21 = 0 (1.25)
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(a) (b)

Fig. 1.3: Solution on the rotating plane (a): centrifugal force and momentum
(b): deformed state.

The two values of the variable ω satisfying the previous equation are the two
critical speeds of the investigated rotor. The complete solution of Eq. 1.25 is
formed of two pairs of values, presenting by the same module and opposite sign,
each one relative to the opposite whirling directions of the rotor.

1.1.3 Myklestad-Prohl Transfer Matrix Approach

Transfer-matrix formulations have been historically employed to develop
lumped-parameters structural models for rotordynamics analysis [8]. Three dif-
ferent formulations belonging to this group are: the first one is the Myklestad’s
[32] approach for predicting critical speeds of non-rotating constrained beam
(particularly cantilever aircraft wing). The second is the Myklestad-Prohl’s
method [30, 33] for the critical speeds computation in a isotropic rotor; it ex-
tends the application of the previous one to rotating structures by including
gyroscopic moments. The third approach is the so-called Lund method [6],
representing a generalization of the second one to include complex motion and
generalized bearings. In the present section the approach developed almost si-
multaneously by Myklestad and Prohl is introduced. The investigated rotor
system, depicted in Fig. 1.4(a), is lumped in a number of rigid disks located
at specific nodes, called stations. Following the conventional transfer-matrix
notation, the i− th disk element is placed at the i− th station and the massless
beam element connecting two succeeding stations (i and i+1) is the i− th field.
Fields are the elements to which the elastic characteristics of the investigated
rotor are assigned. Superscripts r and l refer respectively to left and right side
of a station. The properties necessary to represent the i− th disk are: mass mi,
polar JPi and transverse JTi inertia values.

The mathematical development of the present model is based on the assump-



1.1 Lateral Vibrations 15

(a)

(b)

Fig. 1.4: Myklestadt-Prohl approach (a): scheme of the discretisation (b): ex-
ternal forces and moments.

tion that the deformed shape of the investigated structure, due to shear forces
Tx and bending moments My ,lies in the xz plane as illustrated in Fig. 1.4(b).
A deformed configuration is thus defined through the deflection xi and slope βi
values. The i− th state vector si can be thus defined:

si =
[
xi βi Txi Myi

]T
(1.26)

Relationships that relate the shear forces and moment of the left and right side
of the i− th station can be derived through continuity:

xri = xli (1.27)

βri = βli (1.28)

T rxi = T lxi −mixiω
2 (1.29)

Mr
yi = M l

yi − Iiβiω2 (1.30)

or in matrix arrangement:
xi
βi
Txi
Myi


r

=


1 0 0 0
0 1 0 0

−ω2mi 0 1 0
0 −ω2Ii 1



xi
βi
Txi
Myi


l

(1.31)

Considering the state vector expression in Eq. 1.26, Eq. 1.31 can be written in
a more compact form;

sri = Tsis
l
i (1.32)
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where Tsi represents the i− th station transfer matrix.
Analogous relationships may be written to relate variables on left and right-

hand sides of the i − th field element. The deflection xi+1 at the right-hand
side of the considered field is evaluated as the characteristic deflection of a li
length cantilever beam, loaded on its right-hand side by the shear force Txi+1

and bending moment Mxi+1 and subjected on its left-hand side to the initial
constraint displacement xi and rotation βi. Taking into account the bending
moment and shear force equilibrium requirements:

∂M

∂z
= T (1.33)

∂2x

∂z2
=
M

EI
(1.34)

equations relating right and left-hand side of the i− th field result:

xli+1 = xri + βili −
l3i

6EIi
T lxi+1 +

l2i
2EIi

M l
yi+1 (1.35)

βli+1 = βri −
l2i

2EIi
T lxi+1 +

l2i
EIi

M l
yi+1 (1.36)

T lxi+1 = T rxi (1.37)

M l
yi+1 = Mr

yi + liT
r
xi (1.38)

where Ii is the area moment of inertia of the i− th shaft station.
In matrix form it can be written:

xi+1

βi+1

Txi+1

Myi+1


l

=


1 ly

l3i
6EIi

l2i
2EIi

0 1 − l2i
2EIi

+
l2i
EIi

0 0 1 0
0 0 −li 1



xi
βi
Txi
Myi


r

(1.39)

or more compactly:

sli+1 = Tfis
r
i (1.40)

where Tfi represents the field transfer matrix. The combination of Eq. 1.40 with
Eq. 1.32 yields to the overall transfer matrix:

sli+1 = TfiTsis
l
i = Tis

l
i (1.41)

Through the recursive application of the previous equation from station 1
to station n, where n is the number of stations forming the rotor discretisation,
the system global transfer matrix can be obtained:

srn = TsnTn−1Tn−2...T1s
l
1 = T sl1 (1.42)

Since the elements of the global transfer matrix T matrix are functions of ω,
the values of the natural frequencies of the system can be obtained by introduc-
ing the boundary conditions (e.g free-free boundary conditions) of the system
and then imposing the mathematical conditions to get non-trivial solutions [31].
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1.1.4 Finite Element Models for Lateral Vibrations

In the past, methods based on transfer matrices were used to predict the
dynamical behaviour of rotating machines because they could work with tab-
ular manual computations or implemented on very small computers. Due to
the fast increase in computational power registered in the last thirty-years, fi-
nite element (FE) method has become the de facto standard approach to model
rotordynamics systems [8, 9]. The FE approach was firstly applied to a ro-
tor structure by Ruhl and Booker [34], with subsequent main contributions by
Nelson and McVaugh [8, 35, 36].

A lot of works has been done and several models can be found in literature
dealing with the development of finite element formulations for lateral vibration
analysis. In the following part of the section, a mathematical model based on
the work of Lalanne [4] and Friswell [9] is described. The FE formulation is
obtained by a Lagrangian approach.

Conceptually, to apply the FE approach to an investigated structure, this
one must be preliminary discretised into simple elements. The mathematical
formulations describing these elements can be derived and then assembled to-
gether yielding, with acceptable accuracy, to the equations of motion of the en-
tire studied structure. For modelling purposes, rotors are discretised into shaft
elements. Each element is characterised by two nodes where disks, bearings or
other concentrated elements may be attached.

FE elements models developed for lateral analysis are focused only on lateral
vibrations, hence four generalized coordinates for each node are employed to
represent the significant degrees of freedom: two transverse displacements and
two rotations about the lateral X and Y axes.

The following hypotheses hold:

• XY Z is an inertial frame;

• rotations are defined such that θ is a positive rotation around X axis and
ψ is a positive rotation around the Y axis;

• small displacements and rotations of the rotor from its equilibrium as-
sumptions are considered.

Disk element

The equations of motion of disk elements may be derived through an en-
ergetic lagrangian approach: because the disk is supposed to be rigid, kinetic
energy must be evaluated and strain energy can be neglected. The expression
of the translational kinetic energy of the i − th disk, neglecting axial motions,
may be derived as:

T tDi =
1

2
mDi

(
u̇2
i + v̇2

i

)
(1.43)

with mDi is the mass of the i− th disk and u̇i,v̇i are the translational velocities
in the X and Y directions.

For a simmetric disk, the kinetic energy related to the rotational motion,
may be computed as:

T rDi =
1

2
IDi

(
ω̃2
xi + ω̃2

yi

)
+

1

2
IPiω̃

2
zi (1.44)
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where IPi and ITi are respectively the polar and transverse moments of inertia
of the disk; ω̃xi, ω̃yi and ω̃zi are the instantaneous angular speeds around the x̃,
ỹ and z̃ axes of a reference frame attached to the disk. The expressions ω̃xi, ω̃yi
and ω̃zi can be derived considering an appropriate set of subsequent rotations
relating the orientation of the disk reference system to the fixed one. It is easy
to obtain [9] the following expression:ω̃xiω̃yi

ω̃zi

 =

 θ̇ cosφ+ ψ̇ sinφ cos θ

−θ̇ sinφ+ ψ̇ cosφ cos θ

Ω− ψ̇ sin θ

 (1.45)

By substituting the previous definitions in Eq. 1.44 and assuming small
values for the rotations θ and ψ, the rotational kinetic energy of the disk is
defined through the following expression:

T rDi =
1

2
IDi

(
θ̇2
i + ψ̇2

i

)
+

1

2
IPi

(
Ω2 − 2ψ̇iΩθ

)
(1.46)

At this point the total kinetic energy of the disk can be evaluated:

TDi = T tDi + T rDi =
1

2
mDi

(
u̇2
i + v̇2

i

)
+

1

2
IDi

(
θ̇2
i + ψ̇2

i

)
+

1

2
IPi

(
Ω2 − 2ψ̇iΩθ

) (1.47)

Re-arranging the local coordinates defining the motion of the i−th disk element
in the state vector ui ∈ <4×1:

ui =
[
ui vi θi ψi

]T
(1.48)

the application of Lagrange’s equations to Eq. 1.47 leads to:

d

dt

(
∂TDi
∂u̇i

)
− ∂TDi

∂ui
= MDiüi + ΩGDiui (1.49)

where the expressions of the i − th disk mass MDi ∈ <4×4 and gyroscopic
GDi ∈ <4×4 matrices result:

MDi =


mDi 0 0 0

0 mDi 0 0
0 0 IDi 0
0 0 0 IDi

 GDi =


0 0 0 0
0 0 0 0
0 0 0 IPi
0 0 −IP 0

 (1.50)

Shaft element

Shaft elements contribute both on stiffness and inertial property of the rotor
finite element model, thus both kinetic and strain energy must be evaluated to
determine shaft element matrices.

Shaft elements are usually represented as beam-like structure with circu-
lar or circular hollow cross-section. Several beam theories have been employed
in rotordynamics analysis. The Euler-Bernoulli [9, 25] beam element is the
most simple as it neglects shear effects and rotary inertia contribution. Mass
and stiffness matrices derived through this beam formulation are usually accu-
rate enough for the description of slender beams. For relatively thick shafts
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both shear effects and rotary inertia must be considered and to this aim the
Rayleigh’s beam model [9], which takes into account shear effects, and Timo-
shenko’s formulation [9, 25, 37], including both shear and rotary inertia effects,
can be employed.

Fig. 1.5: Timoshenko’s beam.

In the following part of the section, the derivation of the mass and stiffness
matrices for a Timoshenko beam element (Fig. 1.5) is presented. The k − th
Timoshenko beam element is delimited by two nodes with six dofs for each node:
three displacements and three rotations. As the Timoshenko’s beam properties
lead to uncoupled axial, torsional and bending behaviour, lateral analysis in
each of the coordinate planes may be performed considering only four degrees
for each node namely two transverse displacement u and v along respectively x
and y axes and two rotations θ and ψ around the same axes. Hence, the vectors
of generalized coordinates u1k and u2k containing the nodal displacement for
the k − th shaft element result:

u1k =
[
u1k θ1k v1k ψ1k

]T
(1.51)

u2k =
[
u2k θ2k v2k ψ2k

]T
(1.52)

The deflections and rotations within the k − th element may be expressed
as function of the nodal variables:

[
uk(ξ, t)
ψk(ξ, t)

]
=

[
N11(ξ) N12(ξ) N13(ξ) N14(ξ)
N21(ξ) N22(ξ) N23(ξ) N24(ξ)

]
u1k(t)
ψ1k(t)
u2k(t)
ψ2k(t)

 = Nqx (1.53)

[
vk(ξ, t)
−θk(ξ, t)

]
=

[
N11(ξ) N12(ξ) N13(ξ) N14(ξ)
N21(ξ) N22(ξ) N23(ξ) N24(ξ)

]
v1k(t)
θ1k(t)
v2k(t)
θ2k(t)

 = Nqy (1.54)

and the expression of the adopted shape functions can be easily found in liter-
ature [9, 25].

The potential energy consists of the contribution given by bending and shear
deformations:

dUk =
1

2
EIyk

[(
∂ψk
∂z

)2

+

(
∂θk
∂z

)2
]
dz +

1

2

GAk
χk

(
γ2
xz + γ2

yz

)
dz (1.55)

with E and G respectively denoting the Young’s and tangential modulus of the
shaft material, Iyk and Ak represents the diametral cross-section inertia and
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area. Shear deformations γxz and γyz are related to displacements through the
following expressions:

γxz = ψ − ∂u

∂z
γyz = −θ − ∂v

∂z
(1.56)

The expression of the strain energy of the element may be computed integrating
Eq. 1.55 over the whole beam:

Uk =
EIyk
2lk

∫ 1

0

qTx
∂NT

2

∂z

∂N2

∂z
qxdζ +

EIyk
2lk

∫ 1

0

qTy
∂NT

2

∂z

∂N2

∂z
qydζ

+
6EIyk

Φlk

∫ 1

0

qTxNT
3 N3qxdζ +

6EIyk
Φlk

∫ 1

0

qTy NT
3 N3qydζ

(1.57)

where:

• N1 and N2 denote respectively the first and second row of the shape
function matrix N ;

• N3 is given by the expression N2 − ∂NT
1 /∂z;

• Φ = 12EIyk/GAkl
2
kχ and χ represents the shear factor.

Eq. 1.57 can be re-arranged by introducing the stiffness matrix K:

Uk =
1

2
qTxKqx +

1

2
qTyKqy (1.58)

and introducing the expressions of the shape functions [9] in the potential energy
expression and through integrations, the bending stiffness matrix K results:

K =
EIyi

l3 (1 + Φ)


12 6lk −12 6lk

(4 + Φ) l2k −6lk (2− Φ) l2k
12 −6lk

symm. (4 + Φ) l2k

 (1.59)

The expression of the kinetic energy can be computed as:

dTSk =
1

2
ρAk

(
u̇2 + v̇2

)
+

1

2
ρ
[
Iy

(
θ̇2 + ψ̇2

)
+ JP

(
Ω2 + Ωψθ

)]
(1.60)

Substituting into the previous equation the expressions of the shape function
[9], it yields to:

Tk = +
1

2
ρAlk

∫ 1

0

(
q̇TxN

T
1 N1q̇x + q̇TyN

T
1 N1q̇y

)
dζ

+
1

2
ρIylk

∫ 1

0

(
q̇TxN

T
2 N2q̇x + q̇TyN

T
2 N2q̇y

)
dζ

+ ρJylkΩ2 − 2ρJylkΩ

∫ 1

0

qTyN
T
2 N2qxdζ

(1.61)

Through the introduction of the the mass matrix M , the following expression
holds:

TSi = +
1

2
q̇TxMtq̇x +

1

2
q̇TyMtq̇y +

1

2
q̇TxMrq̇x +

1

2
q̇TyMrq̇y (1.62)

+ ρJyliΩ
2 − 2Ωq̇TyMrqx (1.63)
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where Mt and Mr represents respectively the translational and rotational mass
matrices.

Bearing elements

All types of bearings that can be adopted in rotating machines are char-
acterised by a certain amount of flexibility and a certain quantity of adsorbed
energy; hence, in FE models, they can be represented by means of stiffness and
damping elements connecting the nodes of the rotor and the supporting struc-
ture. For most types of bearings, the load-deflection characteristic is nonlinear
and it is function of the shaft speed, leading, from a modelling standpoint, to
more difficult dynamical analysis. A widely spread simplified approach consists
in assuming a linear load-deflection relationship that holds when the dynamical
displacements are small.

In industrial applications, bearing elements are usually taken into account
only for lateral translational motions. Therefore, the mathematical expression
of the X and Y components of the j − th force acting on the rotor due to
bearing can be written starting from velocities and displacements of the j − th
shaft node: [

FXj
FY j

]
= −

[
KXX KXY

KY X KY Y

] [
uj
vj

]
−
[
CXX CXY
CY X CY Y

] [
u̇j
v̇j

]
(1.64)

or in matrix form:
Fbrgj = −Kbrg

j ubrgj − Cbrgj u̇brgj (1.65)

Bearing stiffness and damping matrices are commonly asymmetrical and
their terms may be noticeably vary in function of rotor speed.

From a rotordynamics modelling standpoint, seals act essentially as bearings
acting forces on the rotors and they can be taken into account as extra-bearings.

Assembly of the full equations of motion

The global equation of motion for a n degrees of freedom rotor system can be
obtained through the assembly of the equations of motion of the single elements:

M ü + (C − ΩG) u̇ +Ku = F (1.66)

where u ∈ <n×1 is the vector of displacements and rotations of the nodes. M ,
C, G and K are respectively the mass, damping, gyroscopic and stiffness global
matrices and F is the vector of the external forces acting on the discretised
system.

1.2 Torsional Vibrations

All rotating machines experience torsional vibrations of a certain degree
during startup, operating conditions and shutdown, thus the torsional response
must be predicted and investigated to ensure operation reliability of rotating
equipments [15]. Torsional vibration is an oscillatory twisting motion of the
shaft of a rotating system that is superimposed on its steady rotational motion.
The time-dependent twist in the shaft line induces pulsating torques acting
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both on the shafts of the machines and on couplings or gearboxes in multi-rotor
configurations [4, 38].

Torsional shaft vibrations may cause gear noise and wear, gear teeth failures,
damages on couplings, shrink-fit slip and keys failures. Tipically single turbo-
machinery rotors are characterised by high torsional stiffness values, hence the
natural frequencies of torsional vibrations are out of the possible torsional excita-
tions range; in multi-rotor configurations the torsional stiffness values character-
ising shaft-couplings may be low enough to set the torsional natural frequencies
of the considered system in the range of excitation frequencies [39]. Moreover,
coupling of turbomachinery with other type of rotating machines (e.g., elec-
trical motors) or the presence of complex distributed inertial elements with
multi-points and asymmetric rotor-to-shaft connections may results in torsional
vibrations phenomena.

Mechanical reliability of rotating machines represents a crucial aspect in the
design phase of every train element and sufficient analysis and investigation
has to be done to ensure reliable operating condition of the designed machine
throughout its service life [17]. When several rotor units are assembled together
to form a multi-rotor configuration, an investigation of the torsional response of
the complete train is highly required with the purpose of studying the torsional
behaviour of individual units when coupled together and ensuring reliability of
the coupled system.

The torsional response of a rotor system can be considered acceptable when
it does not exhibit any coincidence between operating speeds or torsional exci-
tations harmonic with the torsional natural frequency. For instance, API codes
for turbomachinery applications [16, 17] establish that the torsional frequency
values of a complete unit have to be lower at least 10 percent of any operating
speed or 10 percent higher than the trip speed value.

Torsional natural frequencies may be evaluated through uncoupled analysis
focused on torsional vibrations only or also by means or more complex coupled
lateral-torsional models.

Detailed methodology and modelling recommendations for uncoupled train
torsional analysis (such as rotor discretisation, dimensions and number of ele-
ments) can be found in API standards [16, 17].

In the present section the mathematical modelling of uncoupled torsional
vibration is introduced; this kind of approach may be employed when the rotor
lateral response is substantially absent (whenever the rotor is characterised by a
high value of the flexural stiffness or supported by adequately spaced bearing),
or when torsional-lateral coupling is negligible.

1.2.1 Direct Approach

In lumped parameters models [10, 25], the torsional behaviour of rotors can
be investigated using a direct approach. The rotor is lumped into a set of
rigid inertias, connected by means of massless visco-elastic elements. Damping
elements may represent internal damping phenomena (related to relative motion
between rotor sections) or external damping caused by the shaft-case relative
motion [38].

Inertias representing disk elements are located at specific positions called
nodes. Each node is characterised by a single degree of freedom, namely, the
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(a)

(b)

Fig. 1.6: Direct approach (a): disk-shaft system (b): lumped parameters model.

torsional rotation, and a single generalized force, the torsional moment, is acting
on it.

The generic rotor train illustrated in Fig. 1.6(a) is formed of n massive
disks connected by n − 1 torsionally flexible rotors, the corresponding lumped
parameters model is shown in Fig. 1.6(b). Each torsionally flexible section is
represented by a torsional stiffness ki that is evaluated by means of the following
expression:

ki =
πG(d4

i,ext − d4
i,int)

32li
(1.67)

with G representing the shear modulus of the rotor material, li is the length of
the section, di,ext and di,int are respectively the external and internal diameter.
The polar inertia of the i − th shaft section Ji can be computed through the
relation:

Ji =
ρπli(d

4
i,ext − d4

i,int)

32
(1.68)

where ρ is the density of the material. The inertia Ji is divided in two equal
parts that are respectively concentrated in the two nodes delimiting the section.
The linear equations of motion of the lumped model are given by:

Jiϑ̈i + di−1(ϑ̇i − ϑ̇i−1) + di+1(ϑ̇i − ϑ̇i+1) (1.69)

+ ki−1(ϑi − ϑi−1) + ki+1(ϑi − ϑi+1) = Ti(t) (1.70)

where ϑi is the angular position of the i − th node, Ti(t) ∈ <n×1 include the
contribute of an external torque on the i − th disk and i = 1, .., n. These
equations may be assembled in a matrix formulation:

Jϑ̈+Dϑ̇+Kϑ = T (1.71)
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where J,D,K ∈ Rn×n denote respectively the inertia, damping and stiffness
matrix, T is the vector of the applied torques and ϑ ∈ Rn×1 is the vector
representing the degrees of freedom of the lumped model, the nodes rotation
around the shaft axis. The solution of Eqs. 1.71 consists of free and forced
responses of the rotor. The main purpose of assessing free vibrations is to
obtain the natural frequency spectrum and the corresponding mode shapes.
Forced vibrations are usually studied to evaluate the system response to constant
torque or variable torque.

Modal analysis to investigate the free response can be done starting from
the homogeneous equations of motion:

Jϑ̈+Kϑ = 0 (1.72)

where the external torque and damping contribution of Eq. 1.71 is neglected.
The harmonic time solution and its derivatives can be written in the form:

ϑ(t) = ϑ0e
jωt (1.73)

ϑ̇(t) = jωϑ0e
jωt (1.74)

ϑ̈(t) = −ω2ϑ0e
jωt (1.75)

Introducing Eqs. 1.73 and 1.75 in Eq. 1.72, eliminating the exponential term
(that is always non-zero) and re-arranging, the formulation of the problem can
be obtained by multiplying each term for J−1, thus resulting in:

(−ω2I + J−1K)ϑ0 = 0 (1.76)

where I ∈ Rn×n is the identity matrix. From the previous expression it clearly
results that the computation of non-trivial solutions for ϑ0 correspond to the
eigenvalue analysis of matrix J−1K:

det(−ω2J +K) = 0 (1.77)

The square-root values of the non-zero eigenvalues represent the torsional
natural frequencies ωi in rad/s. The eigenvector associated to the i−th torsional
natural frequency is the corresponding torsional mode shape of the investigated
rotor.

1.2.2 Holtzer’s method

The generic rotor train shown in Fig. 1.7 is lumped in a number of rigid disks
located at specific nodes, called stations. Following the conventional transfer-
matrix notation, the i− th disk element is placed at the i− th station and the
massless torsional flexible element connecting two succeeding stations (i and
i + 1) is the i − th field. Each station has one degree of freedom, namely the
rotation around rotor axis φz
The i− th state vector si is can be expressed as:

si =
[
φzi Mzi

]T
(1.78)

where Mzi is the applied moment at the i− th station.
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Fig. 1.7: Holtzer’s method: scheme of the discretisation and external moments.

The general expression of the field transfer matrix is obtained considering that
the moment at the left is equal to the moment at the right end of the field and
that the rotation at the right is given by the sum of the rotation at the left end
and the twisting of the field:

φrzi = φlzi + ∆φzi = φlzi +
li

GiIPi
M l
zi (1.79)

Mr
zi = M l

zi (1.80)

or in matrix form: [
φzi
Mzi

]r
=

[
1 li

GiIPi
0 1

] [
φzi
Mzi

]l
(1.81)

Considering the state vector expression, Eq. 1.81 can be written as:

sri = Tfis
l
i (1.82)

where Tfi represents the field transfer matrix.
Analogous relationships may be written to relate variables on the left and

right-hand sides of the i − th station. The rotations at the left and right side
of the i − th station are equal, while the moment at the right of the station
is equal to the one at the left increased by the concentrated moments acting
on the station due to torsional spring constraints and to inertia reactions. The
equations relating right and left-hand side of the i− th station result:[

φzi
Mzi

]l
=

[
1 0

−ω2Jzi +Kt 1

] [
φzi
Mzi

]r−1

(1.83)

or more compactly:

sri = Tsts
r−1
i (1.84)

where Tst represents the station transfer matrix. The recursive multiplication
of Eq. 1.82 with Eq. 1.84 yields to the overall transfer matrix and it can be
written: [

φz
Mz

]
n

=

[
T11 T12

T21 T22

] [
φz
Mz

]
1

(1.85)
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As it has been stated for lateral transfer-matrix formulations, the value of
the torsional natural frequencies of the system can be obtained by introducing
the boundary conditions (e.g free-free boundary conditions) of the system and
then imposing the mathematical conditions to get non-trivial solutions.

1.2.3 Finite Element Models for Torsional Vibrations

Accuracy in torsional response calculations may be improved through finite
element (FE) formulations. In FE torsional mathematical models, disks are
modelled through rigid elements thus they only add discrete inertias to FE
model, as it occurrs in the direct approach. Torsional stiffness is instead taken
into account with energy distributed inertia matrices for each shaft element
[9, 15].

FE formulations can be derived using shape functions of arbitrary order. In
the present work distributed inertia matrices defined by means of linear shape
functions are briefly presented.

Fig. 1.8: Torsional shaft element.

Fig. 1.8 illustrates a circular cross-section torsional element with 1 dof per
node, namely the rotational displacement ϑx about the longitudinal axis x of
the shaft.

The kinetic energy of the the k − th element is computed as the integral of
the product of the velocity and mass squared, resulting for a rotational motion
in the product of the angular velocity squared and second moment of area:

Tk =
1

2

∫ Lk

0

ρkJk

(
∂ϑxk(x, t)

∂t

)2

dx (1.86)

where Lk is the element length, ρk is the density of the material and Jk repre-
sents the torsional constant that for a circular cross section is equal to π(d4

i,ext−
d4
i,int)/32.

The strain energy within a bar due to torsion is evaluated through the in-
tegration of the product of stress and strain, resulting for uncoupled torsional
analysis in the following expression [9]:

Uk =
1

2

∫ Lk

0

GJk

(
∂ϑxk(x, t)

∂xxk

)2

dx (1.87)

where G denotes the shear modulus.
Introducing in Eqs. 1.86 1.87 and the displacement model obtained through

the adoption of a linear shape functions:
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ϑxk(x, t) =
(

1− x

L

)
ϑx1k(t) +

x

L
ϑx2k(t) (1.88)

the expressions of the element mass and stiffness matrix may be respectively
derived:

M = ρkJkL
6

[
2 1
1 2

]
Kk = GkJk

L

[
1 −1
−1 1

]
(1.89)





Chapter 2

Coupled Lateral-Torsional
Vibrations

In the rotating machines field, lateral and torsional dynamics affect each
other depending on the amount of the coupling effect [10, 14]. Coupling between
torsional and lateral modes of vibration, to a certain degree, usually exists in
rotating machines, as it is caused by the most common malfunction conditions
such as rotor unbalance and shaft anisotropy [10]. This coupling can also occur
by means of gyroscopic effects, radial constant forces, tangential forces and in
presence of a gearbox [8, 40] (Fig. 2.1). Coupled lateral-torsional vibrations may
occur in long flexible shaft systems due to long span or in complex structure
such as rotors with distributed inertial elements. Bending-torsional coupling
may lead to rotor unstable behaviour [14] that may cause problems and faults
of rotating machines.

For long time rotordynamics studies and research activities have been fo-
cused on a single form of vibration: lateral and torsional vibrations were inves-
tigated through uncoupled separate models. However, this kind of approach is
correct as long as the coupling effect is weak and recent trends in turbomachin-
ery design, with higher performance and more sophisticated systems, set the
uncoupled approach to be less and less accurate.

To assure rotor systems stability and reliability, more accurate mathemat-
ical advanced models are required to take into account all external or internal
factors that may affect the dynamical behaviour, such as the bending-torsional
vibrations coupling [41].

Furthermore, the necessity of more advanced rotordynamics models is highly
demanded for monitoring and diagnostic purposes. In fact, although vibrations
problems occurring in rotating machines may be detected through diagnostic
dedicated tools (accelerometers, proximity probes), these systems are usually
intrusive and require penetration and machinery access. Advanced model could
then be employed to determine state of machines from simpler and more con-
venient measurement devices [42].

In the present section an extended review of literature dealing with lateral-
torsional vibrations coupling in rotors is presented and the most significant
mathematical models developed by researchers for the comprehension of the
problem are briefly introduced.

29
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2.1 Literature survey

Several research activities may be found in literature on the topic of cou-
pling between lateral and torsional vibration in rotors. These works are focused
on both the physical investigation of the mechanisms inducing the vibrations
coupling (phenomenological aspect) and on the development of innovative math-
ematical formulations, able to represent lateral-torsional dynamics (modelling
aspect).

The attention of researchers to this particular topic arose due to real case-
studies [10] relative to rotating machines that exhibited unpredicted critical
resonances on the lateral vibrations characterised by the torsional mode fre-
quency.

From a chronological standpoint, to the author’s knowledge, the first work in
literature addressing the phenomenological aspect of lateral-torsional vibration
coupling in rotating machines is the paper by Tondl [43], where the stability of
a steam coupled turbo-generator is investigated. More specifically, thanks to an
analytical model, results are given about the rise of some instability regions when
torsional-lateral coupling is caused by rotor unbalance. The model consists of
a massless shaft with two rigid disks and the torsional vibrations are described
through the superimposition of the torsional angle to the rigid body rotational
motion.

In the research by Rabkin [44], the forced lateral-torsional vibration response
of an unbalanced multi-disk rotor is mathematically derived.

The paper by Smith [45] analyses rotor instability caused by the interac-
tion between 2X torsional vibration with lateral vibrations at frequency 1X or
3X. In the studied test-case the main mechanism inducing the lateral-torsional
coupling is represented by unbalanced blade vibrations.

Diken [46] investigates the effect of coupling with torsion on the lateral re-
sponse of unbalanced flexible rotors, supported by isotropic damped bearings.
Bending torsional coupling of the shaft-disk system occurs through mass eccen-
tricity. A modified Myklestad-Prohl method is employed to solve numerically
the equations of motion of the continuous system. Both constant and harmonic
torques are applied to the investigated system and gyroscopic effects, rotary
inertia, shear deformation, external and internal damping effects are taken into
account.

A reference work is represented by the study of Bernasconi [47]. In this
study the dynamical behaviour of unbalanced rotors is considered and it is
found out that gyroscopic effects induce torsional vibrations at 2X frequency
(bisynchronous vibrations). The nonlinear term which represents this coupling
is characteristic of the asymmetrical aspect of the rotating shaft kinematics.
The analytical results obtained in this study have been confirmed through ex-
perimental tests.

In Cohen’s research [48] a model of an unbalanced rotor, driven by a torsional-
flexible and lateral rigid shaft by means of a constant velocity joint, is employed
for studying the combination-resonance effect in coupled torsional-lateral vibra-
tion. The nonlinear equations of motion are solved by means of an asymptotic
method that determines the instability zones of the system but does not yield
to a closed solution. Results also show that superimposed lateral and torsional
damping may cause enlargement of the instability zones.

The problem of torsional and transverse deformations of a shaft rotating at
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a constant speed is also addressed by Nataraj in [49]. The displacements are
expressed through a perturbation series in terms of a small parameter. Energy
expressions are computed for each order and Hamilton’s principle is then applied
to obtain the equations of motion and the boundary conditions governing the
displacement functions of different orders. This work clearly shows that the
interaction of torsion and lateral vibration occurs at second order. Previous
results of torsional vibration caused at a 2X frequency due to this interaction
are confirmed.

In the work by Plaut [50] coupled bending and torsional displacements are
investigated considering three coupling mechanisms: unbalance, gravitational
effects and time-dependent angular velocity. The linearised equations for the two
transverse deflections and the torsional vibration are derived using the Euler-
Bernoulli beam theory and solved through the application of the Galerkin’s
method.

The coupled dynamics of actively controlled drillstrings is studied by Yigit
and al. in [51]. In this work the effect of axial forces and torques on the system
bending stiffness is investigated.

Another mechanism representing a source of lateral and torsional vibrations
is rotor anisotropy, condition occurring when cracks are present in the shaft.
This kind of mechanism has been extensively addressed in the rotordynamics
literature [52, 53, 54, 55]. In [53], for instance, the presence of a transverse shaft
crack is modelled through a 3x3 flexibility matrix describing local flexibility due
to crack. Due to the shear terms of the Timoshenko beam equation of the shaft,
lateral vibration results coupled to torsional vibration and the influence of crack
depth and slenderness ratio is investigated. A finite element procedure devel-
oped to simulate the dynamic characteristics of a rotor system with transverse
cracks is introduced in [56].

Fig. 2.1: Mechanisms inducing coupled torsional lateral vibrations (a): unbal-
ance (b): rotor anisotropy (c): rubbing (d): blade dynamics (e): gearbox (f):
complex rotors.

An important source of torsional-lateral coupling is the presence of a gearbox
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in geared multi-rotors, where lateral and torsional vibrations get coupled due
to the tooth force resulting in coupled lateral-torsional or lateral-torsional-axial
vibrations not found in non-geared shafts. The problem of lateral-torsional vi-
brations in geared multi-rotor systems has been extensively addressed in the
rotordynamics literature [12, 22, 40]. Significant discussions and information
on publications on different topics of geared rotordynamics, such as torsional-
lateral vibration coupling modelling, may be found in [57]. The research activity
presented in [58] studies the influence of torsional-lateral coupling on the sta-
bility behaviour of a simple geared system supported by oil film bearings. The
coupling effect due to the gear system is investigated through parametric studies
and sensitivity analysis for both uncoupled and coupled system. The influence of
torsional excitations on coupled torsional-lateral response of geared rotors is also
studied by Rao in [22]. In this work, a turbo-alternator example is investigated
through a coupled torsional-lateral finite element approach. The influence of ax-
ial torques and the response to short circuit torques is analysed. The coupling
among the axial, torsional and lateral vibrations due to bevel gear transmission
is addressed in [59]. In [60] an estimation of dynamic gear tooth loading caused
by coupled torsional-lateral vibrations in a geared rotor-hydrodynamic bearing
system is given. The effects of mass unbalance and geometrical eccentricity of
the pinion and the combined effects of manufacturing errors, profile modifica-
tions of gear teeth, gear mesh compliance and damping have been taken into
account. Journal lateral motions are shown to be related with variations in the
angular velocity ratio of meshing gears and with the dynamic loading of gear
teeth.

The coupling between lateral and torsional vibrations in rotors can also be
determined by the dynamics of blades in bladed rotors [13]. In [61] a dynam-
ical model considering elastic blade attached to a disk mounted on a torsional
flexible shaft is introduced. Lateral-torsional coupling in rotors may also arise
due to rotor-to-stator rubbing [10, 20]. In [62] a model for the coupled torsional
and lateral vibrations of unbalanced rotors that considers for the rotor-to-stator
rubbing is presented. Lagrangian dynamics is used to obtain the equation of
motions for the rotor rigid-body rotation, the rotor torsional deformation and
two orthogonal lateral deflections of the rotor. The rubbing condition is mod-
elled through an elastic impact-contact idealization, consisting of normal and
tangential forces at the rotor-to-stator contact point. A mathematical model
of an impacting-rub rotor system is also developed in [63]. In this work the
influence of lateral-torsional coupling on the dynamical response of the stud-
ied response is discussed. The vibration characteristics of a rotor in presence
of unbalance, rotor-to-stator rub and transverse crack are investigated in [20]
through a fully coupled finite-element model.

Several sources causing the excitation of lateral-torsional vibrations are also
analysed in [10]. More specifically mathematical models are derived for the
description of the lateral-torsional dynamic coupling due to unbalance, variable
torques and rotor anisotropy.

2.2 Modelling aspect

Rotordynamics analysis have been performed for more than 140 years [8]. To
this purposes, appropriate mathematical models have been developed coherently



2.2 Modelling approaches 33

on current computational technology and rotordynamics knowledge. Thanks to
the elementary models such as Jeffcott’s rotor, simple mathematical formula-
tions and closed analytical solution may be used for educational purposes or to
investigate particular phenomena [64].

Nowadays, the study of complex rotating machines requires the application
of more advanced models able to represent all the significant property of a
real system (e.g., multi-rotors configuration, distributed inertial elements and
lateral-torsional vibrations coupling).

In the present section an overview of the modelling aspect of the coupled
lateral-torsional vibrations in literature is given and the most significant models
developed by rotordynamics researchers are briefly introduced. Such models
can be classified into: elementary models, transfer-matrix formulations, finite
element approaches, distributed models and models based on flexible multi-body
formulations.

Elementary models [10, 11] are derived from the simple Jeffcott’s rotor and
they are employed for studying the basic mechanisms inducing the lateral-
torsional coupling. For instance, a rotordynamical model of an unbalanced
Jeffcott rotor is derived in [65]. Three degrees of freedom are considered, namely
two lateral displacement and the torsional angle. The solution of the nonlinear
equations of motions is obtained using the Wilson-Θ method.

Both analytical and numerical methods are used in [41] to study internal
and external lateral-torsional coupling effects of an unbalanced rotor. More
specifically, static, dynamical and comprehensive unbalance effects on the lat-
eral torsional coupling are studied. External and internal bending torsion cou-
pling effects of a rotor system with comprehensive unbalances are studied by
analytical analysis and numerical simulations. Based on Lagrangian approach, a
full-degree-of-freedom dynamic model of a Jeffcott rotor is developed. The har-
monic balance method and the Floquet theory are combined to analyse the sta-
bility of the system equations. Numerical simulations are conducted to observe
the lateral-torsional coupling effects. In the formulation of rotordynamic model,
two bending torsion coupling patterns, external coupling and internal coupling,
are suggested. By analytical analysis, it is concluded that the periodic solution
of the system is asymptotically stable. From numerical simulations, three bend-
ing torsion coupling effects are observed in three cases. Under static unbalance,
synchronous torsional response is observed, which is the result of external cou-
pling under unbalanced force. Under dynamic unbalance, two-time synchronous
frequency torsional response is observed, which is the result of internal coupling
under unbalanced moment. Under comprehensive unbalance, synchronous and
two-time synchronous frequency torsional components are observed, which are
the results of both external and internal couplings under unbalanced force and
moment. These observations agree with the analytical analysis.

The aim of the work described in [66] consists in studying the characteris-
tics of torsional vibration of a rotor with unbalance by numerical simulation. It
can be concluded that synchronous torsional vibration accompanying with small
higher harmonic components are excited, except when the speed of rotation is
near, or equal to, half the natural frequency of torsional vibration, the bisyn-
chronous component is much more remarkable than other harmonic components
including the degraded synchronous one, and torsional vibration of the shaft can
result in lateral vibration with bisynchronous frequency. Especially, when the
rotating frequency is near the natural torsional frequency, where torsional vi-
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bration is strongest, the bisynchronous vibration becomes rather strong.

In [67] the nonlinear response of a rotor system in coupled lateral torsional
vibrations is studied through a nonlinear mathematical model.

The transfer-matrix approaches is used in [68] where an extended method to
investigate coupled lateral and torsional vibrations of symmetric rotor-bearing
system subject to time-varying torques is presented. Results of the introduced
model show that, when unbalance and torque excitation are applied to the
system, the steady-state lateral response consists of a forward and a backward
whirl at (n+ 1)x and (n− 1)x (with nx spin frequency) whirls arise together
with the synchronous whirl.

Finite element formulation is used in [69], wherein a finite element model
with 5 degrees of freedom for each node is established for investigating coupled
lateral-torsional vibration of shaft system.

A model based in discrete-continuos approach for the study of coupled lateral
torsional vibration of rotor system is presented in [64]. The paper investigates
coupled linear or nonlinear lateral torsional vibrations of rotors in steady-state
and transient operations.

Recent developments in rotorcraft and wind turbine industry have led to the
adoption of flexible multibody modelling approaches for the prediction of the
dynamical behaviour of rotating systems [70]. Particularly, flexible multibody
modelling is starting to be employed to address the limitations of the classical
equations of motion and to provide a comprehensive model for rotating shafts.
To this purpose, Brown and Shabana [71] derived the general equations of mo-
tion for a flexible body through the application of the principle of virtual work
in rotating shaft dynamics. The equations include both the Coriolis and cen-
trifugal inertia forces, and in the work the effect of the inertia terms on the
system dynamic stability is studied. The effect of the rotary inertia on the axial
and lateral deformations is also formulated and the coupling terms are obtained.
The results presented in the study show that the general flexible body formu-
lation can be used to study rotating shafts. As a consequence, general purpose
flexible multibody computer algorithms can be adopted to systematically solve
more general rotating shaft problems.

In the following sections the mathematical formulations of the most repre-
sentative models are briefly introduced.

2.2.1 Anisotropic rotor with one massive disk (3 dofs)

An extensive investigation on several mechanisms inducing lateral-torsional
coupling in rotors has been made by Muszynska [10]. In particular she studied
the torsional-lateral response and stability of a simple Jeffcott’s rotor when
subjected to different source of couplings such as unbalance, constant radial force
and variable/unsteady driving or load torque applications and rotor anisotropy).

Muszynska’s model represents the dynamical behaviour of a 3 degrees of
freedom undamped Jeffcott’s rotor; the flexible rotor is assumed to be mass-less
and the total mass M is concentrated in a point mass representing the unbal-
anced disk that is placed at the midspan of the flexible shaft, thus gyroscopic
effects may be neglected.

The classical 3 dofs mathematical model in the xyz fixed reference system
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Fig. 2.2: Coordinate reference systems and rotor main stiffness axes.

(Fig. 2.2) is formulated through the following equations of motion:

Mẍ+Kx = Mr
(
ψ̇2 cosψ + ψ̈ sinψ

)
(2.1)

Mÿ +Ky = Mr
(
ψ̇2 sinψ − ψ̈ cosψ

)
−Mg (2.2)

Iψ̈ +Kr (ψ − ψe) +Kr (x sinψ − y cosψ) = T (t) +Mgr cosψ (2.3)

where K is the rotor lateral stiffness, Kt is the torsional flexibility, I represents
the disk polar inertia, ψ(t) and ψe are the twist angles at respectively the
disk and the driving end sections. T (t) is the applied torque and g is the
gravity acceleration. Lateral (Eqs. 2.1- 2.2) and torsional (Eq. 2.3) equations
are nonlinear and coupled through the disk mass eccentricity r.

A more suitable form of the previous system of equations may be obtained
according to the following assumptions:

• the angle of twist ψ of the rotor is given by the sum of two terms: the angle
due to the rotational rigid body motion Ωt and the torsional vibration φ;

• after linearisation in the inertial coordinate system, Eqs. 2.1- 2.3 can be
transformed into the rotating coordinates ξ and η attached to the rotor.

The resulting equations of motion are as follows:

M
(
ξ̈ − 2Ωη̇ − Ω2ξ

)
+Kξξ − 2MrΩφ̇ = MgrΩ2 −Mg sin Ωt (2.4)

M
(
η̈ + 2Ωξ̇ − Ω2η

)
+Kηη +Mr

(
φ̈− Ωφ

)
= −Mg cos Ωt (2.5)

Iφ̈+Ktφ−Kηrη = T (t) +Mgr cos Ωt (2.6)

where Kξ and Kη are the anisotropic lateral stiffness values along the main
stiffness axes ξ1 and η1 as shown in Fig. 2.2.

Eqs. 2.4-2.6 represent the model of coupled lateral-torsional vibrations of
anisotropic rotors with one unbalanced disk. It must be noticed that if the
disk is perfectly balanced (r = 0), the equations describing lateral and torsional
models result decoupled. The solution of this set of equations consist of the
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modal response and forced vibrations due to the unbalance force or gravity
force and to the application of an unsteady torque T (t).

Concerning the free response, Muszynska solves the eigenvalue problem as-
sociated to Eqs. 2.4-2.6 through a numerical procedure to find the rotor natural
frequencies and she studied the existence of instability ranges. The Campbell’s
plot (Fig. 2.3) illustrates the resulting natural frequencies plotted versus the ro-
tational speed Ω values and also the natural frequencies of the uncoupled system
are shown. The first instability range is shown to be approximately between two
natural frequencies of the rotor lateral modes and it is determined by the in-
equality of the stiffness components. It can also be noticed that the uncoupled
natural frequencies represent asymptotes for the coupled natural frequencies
and an additional instability zone may arise in the vicinity of the intersection
between torsional and lateral uncoupled modes.

Fig. 2.3: Rotor natural frequencies of the coupled lateral and torsional vibrations
versus rotational speed expressed in the rotating coordinates.

A mathematical explanation of when intersections in the map of uncoupled
frequencies determines instability ranges is given by Gosiewski in [14]. He firstly
investigates lateral-torsional coupling effects by means of an approach similar
to Muszynska’s model, then he studies the system stability through a model
derived from the control theory.

By solving the forced response [10], Muszinska finds out that, even if the
unbalance is a mechanism determining lateral-torsional coupled modes, the un-
balance force does not directly excite torsional response in elementary models.
The application of a variable torque to the rotor coupled model excites lateral
vibrations with frequencies being sums and differences of the torque frequen-
cies and rotational speeds. These vibrations are particularly critical when the
excitation frequencies coincide with the coupled lateral/torsional natural fre-
quencies.
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2.2.2 Anisotropic rotor with one massive disk (4 dofs)

A further step in the investigation of lateral-lateral coupling due to unbal-
ance has been made by Al-Bedoor in [11], wherein a coupled lateral-torsional
mathematical formulation of a Jeffcott’s rotor is derived. The main novelty of
this work w.r.t to most of the studies previously cited, consists in assuming the
torsional vibration motion as a separate degree of freedom. The studied system
is a driven shaft rotor, composed of a motor and a driven disk-shaft element
illustrated in Fig. 2.4(a), and the adopted notation is shown in Fig. 2.4(b).

(a) (b)

Fig. 2.4: Disk-shaft system (a): scheme of the motor-disk-shaft system (b): the
adopted coordinate reference system configuration.

The mathematical formulation is derived according to the following hypotheses:

• the model is based on the Jeffcott’s approach [2], therefore gyroscopic
effects due to spinning motion of the rotor are neglected;

• the total mass M corresponds to the modal mass of the first lateral mode
of the model;

• the considered range of operating conditions includes speeds lower than
the second critical speed value of the system;

• lateral stiffness of the shaft is small if compared with the bearings stiffness;

• bearings are characterised by viscous damping;

The reference systems adopted for the development of the present model
are illustrated in Fig. 2.4(b), where X and Y are the lateral coordinates in the
inertial reference frame XY Z, while xm and ym are the lateral coordinates in
a body coordinate system xmymzm rigidly attached to the motor shaft thus
rotating with the torsionally undeformed system; xyz is instead the rotating
system attached to the disk.

The system has 4 degrees of freedom lumped at the disk:

• two lateral displacements X and Y of the disk geometrical center C;

• one rigid rotation θ around the axle of the rotor Z;

• one torsional deflection angle ψ;

The unbalance mass mu is located at the position defined by the vector e from
the shaft geometric center C. The position of mu with respect to the inertial
reference system can be written as:

Re = A (θ)A (ψ) e (2.7)
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where A (θ) and A (ψ) are the rotational transformation matrices respectively
from the motor coordinate system xmymzm and from the disk coordinate system
xyz to the inertial frame XY Z. By assuming small values for the torsional
deflection ψ, the expression of the transformation matrices result:

A (θ) =

[
cos θ − sin θ
sin θ cos θ

]
A (ψ) =

[
1 −ψ
ψ 1

]
(2.8)

The equations of motion describing the dynamic behaviour of the system
are obtained through the application of the Lagrangian approach in the inertial
frame. The kinetic energy of the system, which is formed of three contributes:
the disk kinetic energy Td, the motor kinetic energy Tm and the mass unbalance
kinetic energy Tmu, is given by the following expression:

T = Td + Tm + Tmu

=
1

2
M(Ẋ2 + Ẏ 2) +

1

2
Jd(Θ̇ + ψ̇)2 +

1

2
Jmθ̇

2 +
1

2
muṘ

T
e ṘT

e

(2.9)

where Jm is the motor inertia (kgm2) and Ṙe is the velocity vector of the
unbalance mass mu in the inertial reference frame.

The potential energy of the studied system is formed of the bending and
torsional strain energy contribution of the shaft:

U = Uben + Utors =
1

2
KXXX

2 +
1

2
KY Y Y

2 +
1

2
Kψψψ

2 (2.10)

where KXX , KY Y and Kψψ represent the lateral and torsional stiffness values.
It is assumed that the system has modal viscous damping, thus the corre-

sponding Rayleigh’s dissipation function may be expressed as:

R =
1

2
CXXẊ

2 +
1

2
CY Y Ẏ

2 +
1

2
Cψψψ̇

2 (2.11)

with CXX , CY Y and Cψψ are the lateral and torsional damping values. By

introducing the extended expression of Ṙe in Eq. 2.9 and applying Lagrange’s
approach to Eq. 2.9 and 2.10, the equations of motion of the system may be
written as:

M q̈ + Cq̇ +Kq + Q = F (2.12)

where q =
[
X Y θ ψ

]T
is the vector containing the system degrees of

freedom, Q is the vector of nonlinear terms and F represents the external forces
vector. The matrices M , C and K are symmetrical and contain respectively
mass, damping and stiffness properties of the studied rotor and they are defined
according to the following expressions:

M =


mXX 0 mXθ mXψ

0 mY Y mY θ mY ψ

mθX mθY mθθ mθψ

mψX mψY mψθ mψψ

 (2.13)

C =


cXX 0 0 0

0 cY Y 0 0
0 0 0 0
0 0 0 cψψ

 (2.14)
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K =


kXX 0 0 0

0 kY Y 0 0
0 0 0 0
0 0 0 kψψ

 (2.15)

The following relationships hold:

mXX = mY Y = M +mu (2.16)

mθθ = JM + JD +mue
2(1 + ψ2) (2.17)

mψψ = mue
2 + JD (2.18)

mxψ = −mu (ex sin θ + ey cos θ) (2.19)

myψ = mu (ex cos θ − ey sin θ) (2.20)

mxθ = −mu [(ex − ψey) sin θ + (exψ + ey) cos θ] (2.21)

myθ = mu [(ex − ψey) cos θ − (exψ + ey) sin θ] (2.22)

mψθ = mue
2 + JD (2.23)

kψψ = Kt −mue
2θ̇2 (2.24)

The main results of the model presented by Al-Bedoor show that inertial
coupling among lateral and torsional degrees of freedom exists, as it is can be
deduced from the form of the mass matrix M (see Eq. 2.13). Eq. 2.17 prooves
that the inertia of the rotational rigid motion is influenced by the unbalance mass
and it is nonlinearly affected by the torsional vibration ψ. Coupling also exists
among the rigid body rotation θ and torsional motion ψ due to the disk inertia
JD and to unbalance. Eqs. 2.21 and 2.22 shows the periodic inertial coupling
among lateral and rotational motion caused by the unbalance and torsional
vibration. Finally, periodic inertial couplings of the lateral and torsional motions
is shown by the expressions in Eqs. 2.18 and 2.20. The model predicts also a
softening effect on the torsional stiffness kψψ due to the rigid body rotation, as
it can be seen in Eqs. 2.24 and highlights the presence of coupling nonlinear
terms. More specifically, lateral-torsion coupling is contained in the QX and
QY terms of the nonlinear terms vector:

QX = 2muθ̇ψ̇ (ey sin θ − ex cos θ)

−muθ̇
2 [(ex − ψey) cos θ − (exψ + ey) sin θ]

(2.25)

QY = −2muθ̇ψ̇ (ex sin θ + ey cos θ)

−muθ̇
2 [(ex − ψey) sin θ − (exψ + ey) cos θ]

(2.26)

where nonlinear terms due to Coriolis and centrifugal effects appear. In the final
part of the paper [11], thanks to the developed model, the dependence of the
energetic interaction between lateral and torsional modes to the values of the
uncoupled lateral frequencies is investigated through a set of numerical analysis.

The previous model has been further extended by Sukkar and Yigit in [42]
to include the effect of axial forces.
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2.2.3 Finite Element Models for Torsional-Lateral Vibra-
tions

In the last decades finite element formulations have become the standard
method employed for rotordynamics and during the last 50 years many different
mathematical formulations have been proposed [8]. To the author’s knowledge
the finite element method for rotors was first developed by Ruhl and Booker
[34]. Their model includes only translational inertia and bending effects. Nelson
and McVaugh [35] extended this model to include gyroscopic effects. The effects
of axial torque were included by Zorzi and Nelson [36] and Nelson [72] defined
rotor dynamics elements with the Timoshenko beam theory.

The coupling between lateral and torsional deformations is not included nor
in the works previously cited neither in the numerous formulations that have
been developed starting from them. To obtain information on coupled torsional
and lateral behaviour, adequate finite element approaches have been proposed
by in [5, 22, 69] where the effects of torsional and bending deformation coupling
have been taken into account.

In the present section the FE formulation presented by Mohiuddin in [5]
is described. As it holds for uncoupled lateral FE formulations, coupled finite
element models are based on the adoption of an inertial XY Z and a rotating
xyz reference frame. Considering the notation adopted by Mohiuddin in [5] , the
X and x axes are coincident with the undeformed centerline of the investigated
rotor. By defining the angular displacement between the two axes as θ(t), the
rotational speed of the rotor can be expressed as θ̇(t).

The vector of generalized coordinates e, representing the deformation of a
generic shaft element delimited by a left i and a right j node, is defined through
the following expression:

e =
[
vi wi βi γi φi vj wj βj γj φj

]T
(2.27)

where five degrees for each node have been considered: two lateral displacement
v and w along respectively Y and Z directions and three rotational deformations
β, γ and φ about Y , Z and X respectively.

The translation, rotation and the torsional deflection of a point within the
shaft element can be expressed as function of the nodal variables:[

v(x, t)
w(x, t)

]
= Nv(x)e(t) =

[
Nvv(x)
Nvw(x)

]
e(t)

=

[
Nv1 0 0 Nv2 0 Nv3 0 0 Nv4 0

0 Nv1 −Nv2 0 0 0 Nv3 −Nv4 0 0

]
e(t)

[
β(x, t)
γ(x, t)

]
= Nβ(x)e(t) =

[
Nββ(x)
Nβγ(x)

]
e(t)

=

[
0 −Nβ1 0 0 0 −Nβ3 Nβ4 0 0 0
Nβ1 0 0 Nβ2 0 Nβ3 0 0 Nβ4 0

]
e(t)

φ(x, t) = Nφ(x)e(t) =
[
0 0 0 0 Nφ1 0 0 0 0 Nφ1

]
e(t) (2.28)

where the extended expressions of the adopted shape functions can be found in
[5]. Referring to Fig. 2.5, the position vector rp of a generic point pi in the
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Fig. 2.5: Generalized coordinates of the i− th element.

deformed shape element can be defined as:

rp = R + r0 + u (2.29)

where R defines the coordinates of the origin of the XiY iZi frame in the global
reference frame XY Z and r0 is the position vector of the point pi in the local
frame XiY iZi. The deformation vector u can be written as:

u = Ne (2.30)

with N ∈ <5×10 representing the shape functions matrix

N =

NvNβ
Nφ

 (2.31)

The kinetic energy Ti of the i−th shaft element can be obtained by integrat-
ing the kinetic energy of an infinitesimal volume at point pi over the element
volume V and it results:

T =
1

2
ėTM ė +

1

2
C∗θ̇2 − θ̇ėTG∗ė (2.32)

where the composite mass matrix M is:

M = Mt +Mr +Mφ − 2Me (2.33)

The matrix Me contains the coupling terms between torsional and lateral vi-
brations and, since it is a function of the nodal vector, it results time-dependent.
The extended expressions of the M matrix may be found in [5].
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The strain energy of the i− th shaft can be written as:

U = +
1

2

∫ l

0

EI

{(
∂β

∂x

)2

+

(
∂γ

∂x

)2
}
dx

+
1

2

∫ l

0

κGA

{(
∂v

∂x
− γ
)2

+

(
∂γ

∂x
+ β

)2
}
dx

+
1

2

∫ l

0

GJ

(
∂φ

∂x

)2

dx

(2.34)

where G is the shear modulus of the shaft material, I is the second moment of
cross-sectional area, J is the polar moment of inertia and κ is the shear factor.
In a matrix form this equation results:

U =
1

2
eTKe (2.35)

where the K matrix is the composite stiffness matrix that is equal to:

K = Ke +Ks +Kφ (2.36)

with Ke, Ks and Kφ represent respectively the elastic, shear and torsional
stiffness matrices.

Through the Lagrangian approach, the equations of motion of a generic shaft
element can be derived as:

M ë + θ̇Gė +Ke = Q (2.37)

where G = G∗ − G∗T is the element gyroscopic matrix and Q is the vector of
generalized forces.

Finally, considering the equations of motion of disk elements and the expres-
sions of generalized forces due the bearings action, the equation of motion of a
general rotor-bearing system may be written:

M ë + Cė +Ke = Q (2.38)

.
An analogous 5 dofs formulation has been derived by Qin in [69], through

the application of the extended Hamilton’s principle. In this work, the effects of
internal viscous and hysteretic damping and of mass unbalance are also included.
The finite element proposed by Qin is assessed through three numerical examples
of rotor systems taken from the literature.

2.2.4 Discrete-continuous models

The continuous modelling of rotating machines is based on the assumptions
of uniform axial mass distribution and stiffness of rotor shafts. Inertial disks
data and visco-elastic properties of bearings and seals are considered as uni-
formly distributed along the shaft or through distributions of the Dirac type.
Bladed disks, impellers, gears, coupling disks, flywheels can be represented by
rigid bodies fixed in appropriate sections of the stepped shafts. In many ap-
plications, to take into account the lateral flexibility of these components when
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they influence the lateral response of shafts, they are modelled as rigid disks
connected to shafts by massless isotropic membranes.

In the work by Szolc [64], the discrete-continuos modelling of the rotor-shaft
system illustrated in Fig. 2.6(a) is presented.

(a)

(b)

Fig. 2.6: Shaft-rotor system (a): finite-element model (b): discrete-continuous
model.

Each i − th (with i = 1, ..., n) cylindrical element of the stepped shaft is
treated as a lateral and torsional flexible continuous visco-elastic element. Shaft
elements are characterised by the same parameters of finite-elements models:
element length li, cross-sectional mass density ρAi, lateral EIi and torsional
GJ0i stiffness, mass eccentricities δi(x) and phases Γi. Each rigid body is or
ring is characterised by mass mi, diametral Ji and polar I0i inertia, radial
eccentricity εi and phase ∆i and by the centrifugal inertias Ixyi, Ixzi and Iyzi
with i = 1, ..., n+1. Bearings are modelled with the same visco-elastic approach
used in finite-elements models.

Both external distributed or concentrated loads, damping forces and torques
can be added to the model as arbitrary time functions or as functions of the
system response.

Considering an orthogonal non-rotating coordinate system Oxyz where the x
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axis is parallel to the rotation axis of the undeformed shaft with the origin set at
the shaft left-most cross-section, as shown in Fig. 2.6(b). The y axis is vertical,
directed downwards. The shaft is assumed slender enough to neglect shear
effects in the considered frequency range. Thus, for small lateral vibrations
vertical and horizontal motions of circular cross-sections of the i − th elastic
segment of the stepped shaft are described by means of the rotating Rayleigh
beam equation:

EIi

[
∂4vi (x, t)

∂x4
+ e

∂5vi (x, t)

∂x4∂t

]
− ρIi

[
∂4vi (x, t)

∂x2∂t2
+ 2jΩ

∂3vi (x, t)

∂x2∂t

]
+ρAi

∂2vi (x, t)

∂t2
= ρAiδi (x) Ω2 exp(Ωt+ Γi)

(2.39)

where vi (x, t) = ui (x, t) + jwi (x, t), with ui (x, t) lateral displacement in the
vertical direction and wi (x, t) in the horizontal direction and j is the imaginary
unit.

Torsional motions is given by the following equation:

G

[
∂2θi (x, t)

∂x2
+ τ

∂3θi (x, t)

∂x2∂t

]
− ρ∂

2θi (x, t)

∂t2
= qi (x, t) (2.40)

with θi (x, t) angular displacement with respect of the shaft rotational motion
with the constant velocity Ω and qi (x, t) representing the external torque dis-
tribution. The material damping in the shaft is represented by the viscosity
coefficients for τ torsion and bending e, respectively.

Eqs. 2.39-2.40 can be solved with appropriate boundary conditions (geomet-
rical conformity for displacements and inclinations of extreme cross-sections),
linear and nonlinear equilibrium equations for the external forces and torques,
static and dynamic unbalance forces and moments, inertial, elastic and external
damping forces, supports forces and gyroscopic moments [14].

The analytically derived mathematical model formed of Eqs. 2.39-2.40 can
be solved using the separation-of-variable approaches to evaluate both free and
forced vibration behaviours. Results show that an increase in the unbalance
values (eccentricity of static unbalances or inertia describing dynamic unbal-
ance) cause a proportional rise of the lateral-torsional vibrations interaction.
For relatively small static or dynamic unbalance the coupling between lateral
and torsional vibration is small enough to treat them in an uncoupled way.
Neverthless, a rapid increase in unbalance induce strong lateral and torsional
vibrations that may lead to fatigue damage or rotor failures.

2.2.5 Flexible-multibody models for rotating shafts

Flexible-multibody techniques can be used to address the limitations of the
classical equations of motion and provide a comprehensive model for rotating
shafts. To this aim, Brown and Shabana [71] derived the general equations of
motion for a flexible body through the application of the principle of virtual
work in rotating shaft dynamics. The mathematical model developed in [71]
aims at overcoming the limitations of classical formulations of the equations of
motion of a rotating shaft, taking into account both the Coriolis and centrifugal
inertia forces, and the effect of the inertia terms on the system dynamic stability
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is studied. The effect of the rotary inertia on the axial and lateral deformations
is also formulated and the coupling terms are obtained.

Classical formulation of rotating shaft problems

The working hypotheses for the derivation of classical formulation of rotating
shaft applications are:

• a shaft rotating about its axis at a constant angular velocity is considered;

• cross sectional dimensions of the shaft are small in comparison to its
length;

• shear deformation is neglected.

The equations of motion are derived by applying Newton-Euler equations to
a cross-section characterised by an infinitesimal length of a rotating shaft (see
Fig. 2.7. The gyroscopic moment effect is studied using the definition of the
angular momentum as it applies to the rotation of the cross-section of the shaft.

Fig. 2.7: Rotating shaft.

Starting from the Euler’s equation

T = ρI
∂Ψ

∂t2
(2.41)

where T represents the vector of applied moments, I is the inertia tensor of an
infinitesimal cross-section of the shaft defined as:2I 0 0

0 I 0
0 0 I

 (2.42)

with I moment of inertia of the cross-section about the y and z axes, ρ is the
shaft density. The angular displacement of the shaft is given by

Ψ =
[
0 ψ2 ψ3

]T
(2.43)

where ψ2 and ψ3 are rotations about respectively the y and z axes. Due to the
assumption of constant angular velocity ω1 about the x axis its angular accel-
eration about the x axis is identically equal to zero The angular displacements
can be written as:

ψ2 = −∂u3

∂x ψ3 = ∂u2

∂x
(2.44)
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where u1 and u2 are the displacements in the y and z directions. The angular
momentum of the shaft is expressed as:

H̄ = ρIω (2.45)

with

ω =
[
ω1 0 0

]T
(2.46)

Using the rate of change of the angular momentum and following the pro-
cedure described in references the classical equations of motion for the rotating
shaft can be obtained [71]. In obtaining the classical equations of motion several
assumptions are made, limiting the use of this formulation in the analysis as
follows:

1. The angular velocity of the shaft is assumed constant and hence classical
formulation cannot be used in the analysis of shafts that have non-zero
angular accelerations.

2. The effect of the longitudinal displacement resulting from the transverse
applied load is neglected. As a result of the rotary inertia effect, bending
deformations affect the longitudinal displacement of the rotating shaft and
this effect cannot be examined using the classical approach.

3. The classical formulation does not take into account the support vibration
resulting from support movements or bearing looseness and joint clear-
ances. Therefore the use of this formulation is limited to special rotating
shaft problems where base excitations and joint and bearing flexibility are
ignored.

4. In the classical formulation the complete effect of the deformation on the
expression of the angular momentum is not taken into consideration. At
high speed rotations such as those encountered in modern rotating spindle
applications, a more precise definition for the inertia forces must be used.

Flexible-multibody models for rotating shafts
Through the adoption of the principle of virtual work in dynamics, the equa-

tions of motion of a deformable body that undergoes an arbitrary displacement
can be written as:

M q̈ +Kq = Qv + Qc (2.47)

where M is the body mass matrix, K is the stiffness matrix, Qv is the vector of
Coriolis and centrifugal forces and Qe is the vector of generalized applied forces.
The vector of generalized coordinates q can be written in a partitioned form as:

q =
[
RT θT qTf

]T
(2.48)

with R reference displacement, θ represents the set of parameters defining the
body orientation and qf is the vector of elastic coordinates.

According to the coordinate partitioning, the equation of motion can be
written as:
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mRR mRθ mRf

mθR mRθ mθf

mfR mfθ mff

R̈

θ̈
q̈f

+

0 0 0
0 0 0
0 0 kff

R
θ
qf

 =

(Qv)R
(Qv)θ
(Qv)f

+

(Qe)R
(Qe)θ
(Qe)f


(2.49)

where the elements of the stiffness matrix, quadratic velocity vector (Qv) and
the vector of generalized external forces (Qe) are defined in explicit form in [71].
The elements of the mass matrix are defined as

M =

mRR mRθ mRf

mθR mRθ mθf

mfR mfθ mff

 =

∫  I A˜̄uḠ AS

ḠT˜̄u
T˜̄uḠ ḠT˜̄uS

Sym STS

dV (2.50)

where the integration is taken over the volume of the body V , A is the transfor-
mation matrix defining the orientation of the body coordinate system ˜̄u is the
skew symmetric matrix associated with the vector ū that gives the position of
an arbitrary point on the body with respect to the body coordinate system, S
is the shape function matrix and Ḡ is the matrix relating the angular velocity
vector to the vector of time derivatives of the orientation coordinates. That is

ū = ū0 + ūf = ū0 + Sqf ω̄ = Ḡθ̇ (2.51)

where ū0 is the position of an arbitrary point on the body in the undeformed
state, ūf is the time-space dependent deformation vector and θ̇ is the angular
velocity vector in the body coordinate system. The expressions describing the
vector of the Coriolis and centrifugal forces can be found in [71]. This general
formulation can be applied to the rotating shaft problem to investigate the
dynamics of accelerating shafts, the effect of rotary inertia and of the Coriolis
coupling [71].

The results presented in the study show that the general flexible body formu-
lation can be used to study rotating shafts. As a consequence, general purpose
flexible multibody computer algorithms can be adopted to systematically solve
more general rotating shaft problems.





Chapter 3

Architecture of the
Rotordynamical Model

Modelling approaches for coupled lateral-torsional rotordynamics are mainly
based on elementary formulations and applied to simple theoretical rotor schemes
for a qualitative investigation on the mechanisms inducing the coupling. For
real applications, an improvement of rotordynamical models is still highly de-
manded, in order to make them able to model the combined torsional-lateral
dynamics and to properly predict the critical behaviour of complex rotor sys-
tems, such as rotors with distributed elements and with multi-point connections.
As far as the author knows, in the literature, there is a substantial lack con-
cerning models suitable for the coupled lateral-torsional analysis of multi-rotor
systems characterised by complex topology. In such a context a rotordynamical
model is introduced in this thesis; the model has been specifically developed to
be suitable for the analysis of coupled lateral-torsional vibrations in complex
multi-rotor configurations.

3.1 General architecture of the model

The proposed rotordynamical model represents a systematic and efficient
approach to various rotor dynamics modelling issues and its main contribution
to the state-of-the-art in rotordynamics research is due to its general topology.
In fact, the presented model is general-purpose and it is able to reproduce all the
main mechanisms inducing vibration phenomena in rotating machinery. More
particularly, it allows complex topology rotors to be modelled through a general
approach. Innovative rotor elements are available to characterise the dynamic
behaviour of non-standard components that cannot be represented with any
classical rotordynamics elements such as disks, shafts or concentrated elasto-
damping elements. For instance, the model is particularly useful for the mathe-
matical modelling of distributed rotors with complex rotor-to-shaft connections
to accurately reproduce their contributions to the dynamical response of rotor
systems or eventually, to consider moments and forces due to mechanical loose-
ness or improper assembly. Multi-rotor linking elements such as couplings and
gearboxes can be represented with elements defined by according to several lev-
els of detail. The rotordynamical model is based on an accurate FE formulation

49
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Fig. 3.1: General architecture of the proposed model.

with 6 degrees of freedom for each node. Because of its numerical efficiency,
it represents a good compromise between accuracy and computational effort,
thus it may be used to perform the common dynamical investigation used in
the rotordynamics design phase.

The general architecture of the model developed in this work is illustrated
in Fig. 3.1. The model is formed of three succeeding parts:

• the Physical Inputs module, involving the pre-processing phase;

• the Rotordynamical Model, representing the core of the proposed model;

• the Rotordynamics Analysis module, conceived for the post-processing of
the results.

The Physical Inputs part is the module that includes all the physical inputs
that must be provided to the model to perform the rotor discretisation and
the dynamical analysis. It represents the collecting process of the significant
physical features and modeling choices that must be specified to the model to
ensure that it accurately portrays the dynamics of the investigated test-case
(such as geometry and material of the shafts, disk inertias and bearing or seals
data) for single-rotor systems and also data relative to coupling components
(i.e. flexible couplings) in multi-rotor configurations.

The core of the innovative model is the second part of the general architec-
ture, the Rotordynamical Model, which is the module responsible for the model
set-up and for the dynamical analysis. The Rotordynamical Model is able to
reproduce the dynamics of a generic multi-shaft rotor assembly, taking into ac-
count all the components that influence the response of the investigated rotor
system (Fig. 3.2).

The elementary unit of the Rotordynamical Model is represented by an accu-
rate FE model of a single-rotor formed of basic building blocks (rotordynamics
elements). More specifically, it is the module responsible for describing the rotor
mass-elastic properties by means of both classical and non-standard rotor FE
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Fig. 3.2: Rotordynamics elements.

elements such as shafts, disks, distributed inertias with multi-point connections,
bearings and seals [4].

The building blocks that must be joined together to obtain a complete single
rotor model may be distinguished according to the physical characteristics of a
generic rotating assembly:

1. Shaft elements that contribute both on stiffness and inertial properties
of the rotor model. Typical shaft elements include beam characterised
by circular or hole-circular cross-sections. In the presented model rotat-
ing beams characterised by generic user-defined cross-section can also be
adopted.

2. Mounted elements, representing disks or other massive components shrunk
onto the shaft. Due to the high complexity characterising modern ro-
tating systems, the necessity of generating detailed inertia distribution
models and other non-standard components has increased. In the Rotor-
dynamical Model, mounted elements may be represented through both
classical lumped and non-standard distributed inertial elements. Lumped
elements give contribution only to inertial properties thus representing
disk elements of classical modelling approaches. Inertial distributed ele-
ments are instead employed when particular mounted elements have to
be reproduced and they may be used to easily represent different types of
connection, which can be adopted to take into account the elastic effects
of massive components. In general, distributed elements may be adopted
to correctly model elements characterised by more complex shaft-to-rotor
multiple-points connections. The non-standard elements previously de-
scribed have been developed to overcome modelling limitations relative to
complex rotor with distributed inertias, such kind of component may in
fact affect the dynamical behaviour of the system with particular concern
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to the lateral-torsional coupled vibrations.

3. Elasto-damping lumped elements that are commonly employed to take into
account the contribution that seals or bearings can give to rotor vibrations.
The elements are based on stiffness and damping matrices [4, 6, 9] that
are computed through the linearised models (obtained starting from more
complex FE or CFD models) of bearings and seals, assuming that they
act on the centerline of the associated shaft element.

A multi-rotor configuration can be assembled starting from several single ro-
tors, connected each other through innovative elements that model the common
devices used for the power transmission. Linking elements used to drive rotating
machines such as flexible couplings can be represented through the presented
Rotordynamical Model. More specifically, generic power transmission systems
linking the different shafts of a multi-rotor configuration to be investigated, can
be easily taken into account by means of both static or dynamical 6 dofs mod-
els [21]. This kind of approach leads to equivalent, accurate and simple models,
starting from data computed by means of more sophisticated analysis (e.g. solid
3D finite element models).

The presented model is able to study the influence of distributed rotors on
the dynamics of an investigated system, thanks to a FE formulation with 3D
beam that may shift among formulations characterised by 1, 4, 5 or 6 degrees
of freedom for each node [28, 29]. In such a way, traditional uncoupled, such
as lateral (4 dofs) or torsional (1 dof) studies, or coupled such as axial-lateral-
torsional (6 dofs) or lateral-torsional (5 dofs) approaches can be chosen for the
rotordynamics analysis.

The Rotordynamical Model has been specifically developed to perform clas-
sical rotordynamics analysis, commonly performed in the design, operating,
and troubleshooting phases of rotating equipments. Thanks to the proposed
model, the most significant rotordynamics analysis can be performed and for
each studied rotor assembly all the relevant results can be obtained in a reason-
able computational time.

The rotordynamics outputs of the developed model are:

• Undamped Critical Speed UCS : it determines how modifications in some
design parameters (i.e. bearing stiffness) affect the critical speed values of
the considered system;

• Damped Critical Speed DCS : it allows the Campbell’s plot to be defined
and the evaluation of the torsional natural frequencies of the studied rotor;

• Forced Response to assess the amplitudes of synchronous, sub-synchronous
and super-synchronous vibration caused by the rotor unbalance or other
harmonic forcing functions;

• Transient analysis to study nonlinear or local effects.

The third part of the general architecture, the Rotordynamics analysis, is
the module responsible for the post-processing (i.e. the outputs of the Rotor-
dynamical Model). The specific output of each feasible analysis can be assessed
and the typical results are automatically generated. In the following sections the
Rotordynamical Model developed in the present activity is described in detail.
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3.2 The Physical Inputs module

The Physical Inputs module is the part responsible for the pre-processing
phase and it represents the first step in a rotordynamics analysis when the stud-
ied equipment is reproduced by means of a theoretical scheme according to the
chosen modelling elements. The starting point of each rotordynamical analysis
consists in fact in defining a FE model of the rotating assembly that has to be
investigated. The model is totally defined when the geometrical characteristics
and the significant mechanical properties are given.

Fig. 3.3: An example of FE discretisation [1].

The Physical Inputs is hence the module where both geometrical-physical
properties and discretisation data, needed for the definition of the mathematical
model, are provided. More specifically the inputs that must be specified for a
generic model are:

• node positions (stations);

• cross-section areas and inertia moments;

• material properties (density, elastic and tangential modulus);

• inertial characteristics of the mass elements;

• stiffness and damping parameters of bearings and seals;

• non-standard components features and mechanical properties;

• multi-rotor couplings parameters.

It must be noticed that the necessary physical inputs for the mathemati-
cal description of the investigated system are strictly related to the particular
analysis task and elements chosen for the discretisation.

The Physical Inputs module is implemented in tha Matlab environment.

3.3 The Rotordynamical Model

The finite element approach provides a methodical approach for the dis-
cretisation of a continuum [73]. It can provide a solution for many types of
complicated systems including fluid flows, static or dynamic mechanical sys-
tems. In each case the system is divided into smaller contacting regions called
elements that can be described mathematically. For rotordynamics applications,
finite elements models aim to describe them mathematically using a system of
differential equations. Thanks to the increase in computing power in the last
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decades, this kind of method became the de facto standard for the static and
dynamic analysis of rotor systems [9].

In the present section the core of the developed model is introduced. The
Rotordynamical Model is based on a FE formulation using 3D 2 nodes beams
with 6 dofs at each node [28, 29]. Thanks to this formulation the following
coupled or uncoupled analysis may be performed:

• axial-lateral-torsional (6 dofs);

• lateral-torsional (5 dofs);

• lateral (4 dofs);

• torsional (1 dof).

The finite element method for rotordynamics analysis is based on the dis-
cretization of the considered rotor into a series of rotor elements [4, 8, 9].
More specifically, in rotordynamics applications several kinds of elements can
be adopted for the system modelling and the standard ones that may be imple-
mented in a single rotor unit of the introduced model are:

• rigid disk element;

• shaft element;

• bearing element;

• non-standard component.

The model described in this thesis enables the representation of non-standard
elements (distributed inertial elements, solid 3D components and elements char-
acterised by complex connections). The general rotor equations of motion are
provided by applying the Lagrange’s equation to the expressions of the kinetic
energy (disk elements, shafts and unbalanced mass), of strain energy (shaft ele-
ments) and of the virtual work done by the forces acting on the shaft (bearings,
seals and complex connections).

The presented Rotordynamical Model allows the modelling of multi-rotor
elements representing coupling components that link the single rotor units and
that are commonly adopted in multi-shaft configurations such as flexible cou-
plings and gear-boxes.

A subset of the possible rotordynamics elements has been adopted for the
study of the test-case presented in this thesis, thus, for sake of brevity, the
mathematical formulation of the elements employed in the present application
is described in the following parts of the work.

The entire Rotordynamical Model has been implemented in the Matlab with
Comsol v.4.4a environment [74].

Working hypotheses

The mathematical formulation of the Rotordynamical Model is based on the
following working hypotheses:

• XY Z is a fixed reference frame with the origin in the point O;
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• XdYdZd is a rotating reference frame attached to the symmetric disk and
placed in its center of mass G;

• the X and Xd axes are coincident with the rotor axis in the undeformed
configuration;

• small-deformation and small-rotation problems are considered.

Rigid disk element

The disk is a rigid element containing the inertial properties of the rotor
system. It does not contribute to the stiffness of the model since it is taken into
account as a rigid body, free from elastic deformations. The dynamics of the
disk may be described starting from an energy standpoint. The strain energy
may be neglected and only its kinetic energy contributes to the definition of the
equations of motion.

Fig. 3.4: Typical rotor deformed configuration and reference systems.

According to the rotating GdXdYdZd reference system illustrated in Fig. 3.4,
the general expression of the kinetic energy TDi of the i− th disk element con-
sidering a complete 6 dofs motion is given by the sum of the translational TD t

i

and rotational TD r
i contributions:

TDi = TD t
i + TD r

i =
1

2
mD
i

(
v̇Di
)2

+
1

2
ωDi

T
ΓDi ω

D
i (3.1)

where vDi =
[
u̇Di v̇Di ẇDi

]T
is the velocity vector of the center of mass GDi of

the i− th disk with u̇Di , v̇Di and ẇDi translational velocities respectively in the
X,Y and Z directions.

The vector ωDxi =
[
ωDi ωDyi ω

D
zi

]T
is the angular speed of the disk expressed

in the rotating reference system XdYdZd, m
D
i is the mass of the disk and ΓDi

is the inertial tensor. Assuming that the disk is symmetric, then XdYdZd are
principal directions of inertia and the ΓDi tensor is given by:JDPi 0 0

0 JDTi 0
0 0 JDTi

 (3.2)

with JDPi and JTi defining respectively the polar and the transverse inertial
moments of the disks.
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Fig. 3.5: Rotation angles.

To find an expression of the vector ωDi in the fixed reference frame, the
inertial OXY Z and the disk GdXdYdZd reference systems orientation can be
related through a set of rotations shown in Fig. 3.5.

The rotations are applied in the following order: θz about Z0 axis, θy about
the new Y1 axis and finally θx about the so obtained X2 axis, thus θx represents
the angle of rotation about the rotor shaft.

Assuming that θ̇y and θ̇z are the rotational velocity of the disk with respect
to respectively the Y and Z fixed axes, the angular velocity ωDi is given by:

ωDi =

θ̇xi0
0

+

1 0 0
0 cos θxi sin θxi
0 − sin θxi cos θxi

 0

θ̇yi
0


+

1 0 0
0 cos θxi sin θxi
0 − sin θxi cos θxi

cos θyi 0 − sin θyi
0 1 0

sin θyi 0 cos θyi

 0
0

θ̇zi

 (3.3)

Hence it results:

ωDi =

ωxiωyi
ωzi

 =

 θ̇xi − θ̇zi sin θyi
θ̇yi cos θxi + θ̇zi sin θxi cos θyi
−θ̇yi sin θxi + θ̇zi cos θxi cos θyi

 (3.4)

Substituting the previous expressions in Eq.3.1, and assuming the hypothesis of
small rotation angle (thus neglecting terms higher than second order derivatives)
an extended formulation of the kinetic energy of the disk in the fixed reference



3.3 The Rotordynamical Model 57

system may be calculated [4, 8, 28, 9]:

TDi = TD t
i + TD r

i =
1

2
mD
i

[(
u̇Di
)2

+
(
v̇Di
)2

+
(
ẇDi
)2]

+
1

2
JDPi

(
θ̇2
xi − 2θ̇ziθ̇xiθyi

)
+ JDTi

(
θ̇2
yi + θ̇2

zi

) (3.5)

In the present research activity a complete 6 dofs formulation is considered,
thus at the i − th disk node the rotor has six degrees of freedom: three trans-
lations uDi ,vDi ,wDi and three rotations θDxi, θ

D
yi and θDzi. Then, if the i − th

displacement vector of the disk center in the fixed reference frame is:

qDi =
[
uDi vDi wDi θDxi θDyi θDzi

]T
(3.6)

the application of the Lagrange’s equations to the expression of the kinetic en-
ergy determines the matrices describing the dynamics of the i− th disk element.

d

dt

(
∂T

∂q̇Di

)
− ∂T

∂qDi
= MD

i q̈Di + ΩGDi q̇D
i = FDi (3.7)

where MD
i and GDi represent respectively the mass and the gyroscopic matrices

and FDi represents the vector of external forces. The rotation θDxi around the
spin axle is related to the spin speed Ω according to the relation θDxi = Ωt + φ
where φ is the vibration contribute.

Shaft element

Shaft elements contribute both on stiffness and inertial property of the rotor
finite element model. They are represented as beam with circular or circular
hollow cross-section with 6 dofs for each node [28, 29]. In this case the vector
of the generalized coordinates of the k − th shaft element is given by:

qsk =
[
us1 vs1 ws1 θsx1 θsy1 θsz1 us2 vs2 ws2 θsx2 θsy2 θsz2

]
(3.8)

where, the subscript k has been dropped out for notational simplicity.
The deformation vector u describing axial u (x, t), transverse v (x, t), w (x, t)

deflections, θy (x, t) and θz (x, t) rotations and torsional θz (x, t) deformation of
a point within the element can be expressed as:

u (x, t)
v (x, t)
w (x, t)
θx (x, t)
θy (x, t)
θz (x, t)

 =


Nu
Nv
Nw
Nθx
Nθy
Nθz

qs = Nqs (3.9)

where the shape function matrix N is:

N =


Nu1 0 0 0 0 0 Nu2 0 0 0 0 0

0 Nv1 0 0 0 Nv2 0 Nv3 0 0 0 Nv4
0 0 Nw1 0 Nw2 0 0 0 Nw3 0 −Nw4 0
0 0 0 0 0 Nθx1 0 0 0 0 0 Nθx2
0 0 −Nθy1 0 Nθy2 0 0 0 −Nθy3 0 Nθy4 0

0 Nθz1 0 0 0 Nθz2 0 Nθz3 0 0 0 Nθz4


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where the extended expressions of the shape functions are given in appendix ??.

For shaft elements both kinetic and strain energy contribute to the determi-
nation of the shaft element matrices [4, 9, 28, 22]. The expression of the kinetic
energy of the k−th shaft element of length lk, (Fig 3.6) comes from an extension
of the disk equation:

TSk =
1

2

∫ lk

0

ρAk
(
u̇2 + v̇2 + ẇ2

)
ds+

1

2

∫ lk

0

ITk

(
θ̇2
y + θ̇2

z

)
ds

+
1

2

∫ lk

0

IPk

(
θ̇2
x − 2Ωθ̇zθy

)
ds

(3.10)

where ρ is the density of the material, Ak is the k− th section area, IPk and ITk
define respectively the polar and transverse inertial moments for length unit.
The potential energy is given by:

USk =
1

2

∫ lk

0

EIk

[(
∂θy
∂x

)2

+

(
∂θz
∂x

)2
]
ds

+
1

2

∫ lk

0

KkGAk

[(
∂v

∂x
− θz

)2

+

(
∂v

∂w
− θy

)2
]
ds

+
1

2

∫ lk

0

GJk

(
∂θz

∂x

)2

ds+
1

2

∫ lk

0

EAk

(
∂u

∂x

)2

ds

(3.11)

where E is the Young’s modulus, Ik represent the second area moment of the
k − th shaft section, G is the shear modulus, Kk is the shear form factor and
Jk is the polar second moment of area.

Fig. 3.6: Shaft beam element.

Substituting the relationships defined by Eq. 3.9 into the previous expression
and applying the Lagrange’s equations to the expression of the kinetic and strain
energies, the equationss describing the dynamics of the k−th shaft element may
be written as:

d

dt

(
∂L

∂q̇Si

)
− ∂L

∂qSi
= MS

k q̈Sk + ΩGSk q̇S
k +KS

k qSk = FSk (3.12)
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where Ms
k , Gsk and Ks

k represent respectively the mass, gyroscopic and stiffness
matrices and Fsk is vector of the generalized forces applied to the shaft beam
element.

Bearing element

In rotor systems the bearing forms a link between the rotor and the support
structure representing one of the most critical components in turbomachinery
and rotating machines applications. Bearings have a deep influence on the
rotordynamics performance and their contribution must be accurately taken
into account for the dynamical behaviour prediction.

Several types of bearings (Fig. 3.7) are employed in rotordynamics appli-
cations: rolling-elements bearings, fluid-dynamic journal bearings, hydrostatic
journal bearings and magnetic bearings. Rolling bearings are characterised by
an isotropic behaviour and they exhibit very low damping values. Stiffness
properties are almost independent on the spin speed, while they depend on the
housing geometry. Cost is relatively low but they require accurate maintenance
operations.

Fig. 3.7: Bearing examples.

Hydrostatic journal bearings may support the rotor in low rotational speed
regimes, avoiding the contact between the rotor and housing. To this purpose,
they require a lubricant supplying system. In fluid-dynamic journal bearings,
usually adopted in heavy and large machine, a film of oil is present in the clear-
ance between static and rotating elements. The rotor creates a hydrodynamic
pressure distribution within the oil film supporting weight and unbalance forces
of the rotor. In the last decades magnetic bearings have been introduced in
rotordynamics application. The peculiarity of such type of bearings is that the
separation between rotor and stator is obtained through a magnetic field, thus
rotor to stator contact is removed.

In classical FE uncoupled lateral formulation [4, 9], they are usually spec-
ified through stiffness and damping elements connecting the transverse v and
w degrees of freedoms of rotor nodes to the supporting structure or the four
bending dofs (v, w translations and θy, θz rotations). Furthermore, stiffness
and damping values are usually evaluated considering only the linear part of
the load-deflection characteristics.

In the Rotordynamical Model developed in the present activity, classical
bearing formulations have been extended to consider all the six components of
the load exerted by a generic bearing element on the shaft. More specifically,
the action of the p − th bearing element on the investigated rotor in compact
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form is defined as:

Fbrgp = −Kbrg
p (N,Ω)(qbrgp1 − qbrgp2 )− Cbrgp (N,Ω)(q̇brgp1 − q̇brgp2 ) (3.13)

where the stiffness Kbrg
p (N,Ω) and damping Cbrgp (N,Ω) matrices may depend

on both the rotational shaft speed Ω and the load N . The extended expressions
of the stiffness and damping matrices are given by:

Kbrg
p =



kbrgxxp kbrgxyp kbrgxzp kbrgxθxp kbrgxθyp kbrgxθzp
kbrgyxp kbrgyyp kbrgyzp kbrgyθxp kbrgyθyp kbrgyθzp
kbrgzxp kbrgzyp kbrgzzp kbrgzθxp kbrgzθyp kbrgzθzp
kbrgθxxp kbrgθxyp kbrgθxzp kbrgθxθxp kbrgθxθyp kbrgθxθzp
kbrgθyxp kbrgθyyp kbrgθyzp kbrgθyθxp kbrgθyθyp kbrgθyθzp
kbrgθzxp kbrgθzyp kbrgθzzp kbrgθzθxp kbrgθzθyp kbrgθzθzp


(3.14)

Cbrgp =



cbrgxxp cbrgxyp cbrgxzp cbrgxθxp cbrgxθyp cbrgxθzp
cbrgyxp cbrgyyp cbrgyzp cbrgyθxp cbrgyθyp cbrgyθzp
cbrgzxp cbrgzyp cbrgzzp cbrgzθxp cbrgzθyp cbrgzθzp
cbrgθxxp cbrgθxyp cbrgθxzp cbrgθxθxp cbrgθxθyp cbrgθxθzp
cbrgθyxp cbrgθyyp cbrgθyzp cbrgθyθxp cbrgθyθyp cbrgθyθzp
cbrgθzxp cbrgθzyp cbrgθzzp cbrgθzθxp cbrgθzθyp cbrgθzθzp


(3.15)

As it will be explained in the following sections, in case of complex rotor-to-
structure connections, the elements of the previous matrices can be previously
evaluated starting from more complex models (solid FEM,CFD) and then stored
in look-up tables as function of the spin speed Ω or of the load N . The vec-
tors qbrgp1 and qbrgp2 are the vectors describing the generalized coordinates of the
connected nodes respectively on the rotor and on the structure:

qbrgp1 =
[
ubrgp1 vbrgp1 wbrgp1 θbrgxp1 θbrgyp1 θbrgzp1

]T
(3.16)

qbrgp2 =
[
ubrgp2 vbrgp2 wbrgp2 θbrgxp2 θbrgyp2 θbrgzp2

]T
(3.17)

Obviously, if the supporting structure is assumed to be rigid the qbrgp2 vector is
set to zero.

The presented formulation is used to model through a practical and simple
approach the dynamical characteristics of the most common bearing types.

It is worth noticing that the same modelling approach may be employed adopted
also for seals [4, 9].

Non-standard components

The main feature of the Rotordynamical Model developed in the present re-
search activity consists in its capability of modelling and investigating complex
topology rotors through a general and systematic approach. Innovative mod-
els have been developed to characterise the dynamic behaviour of non-standard
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components that cannot be reproduced with any classical rotordynamical el-
ement such as disks, shafts or concentrated elasto-damping elements. For in-
stance, the model is particularly useful for the mathematical modelling of dis-
tributed rotors with complex rotor-to-shaft connections to accurately reproduce
their contributions to the dynamical response of rotor systems or eventually, to
consider moments and forces due to mechanical looseness or improper assembly
in general.

Distributed elements may be adopted to correctly model elements charac-
terised by more complex shaft-to-rotor multiple-points connections. Such ele-
ments have been developed to overcome modelling limitations relative to com-
plex rotor with distributed inertias, that may affect the dynamical behaviour of
the system with particular concern to the lateral-torsional.

Fig. 3.8: Example of solid 3D elements to model complex components.

In the developed Rotordynamical Model shaft beam formulations may be em-
ployed to model in a general way massive elements to correctly reproduce their
possible elastic effects on the rotor. Thus coaxial-rotors, particular mounted
massive elements or distributed inertial components characterised by connec-
tions to shaft in multiple points (see Fig. 3.9) may be represented with a sys-
tematic approach with an high level of accuracy.

A distributed inertial element linked to the rotor by multi-point connections
may be reproduced with classical beam or more advanced solid FE models
connected to the rotor through general visco-elastic connections. The p − th
connection element is described by the interaction of the two connecting nodes,
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Fig. 3.9: Scheme of multi-point connections and distributed inertial element.

whose displacement vectors may be defined as:

qconp1 =
[
uconp1 vconp1 wconp1 θconp1 θconp1 θconp1

]T
(3.18)

qconp2 =
[
uconp2 vconp2 wconp2 θconp2 θconp2 θconp2

]T
(3.19)

where qconp1 and qconp2 are the connection nodes. The force acting between the
two interconnected nodes may be evaluated as:

Fconp = Kcon
p (N,Ω)(qconp1 − qconp2 ) + Cconp (N,Ω)(q̇conp1 − q̇conp2 ) (3.20)

where the matrices characterising the stiffnessKcon
p (N,Ω) and damping Cconp (N,Ω)

properties of the p− th connection element may depend on both the rotational
regime (Ω) and the load (N) and their values are usually computed through pre-
vious more complex analysis, such as solid 3D or CFD analysis and then stored
in look-up tables (LUT). The general expressions of the stiffness and damping
matrices are:

Kcon
p =



kconxxp kconxyp kconxzp kconxθxp kconxθyp kconxθzp
kconyxp kconyyp kconyzp kconyθxp kconyθyp kconyθzp
kconzxp kconzyp kconzzp kconzθxp kconzθyp kconzθzp
kconθxxp kconθxyp kconθxzp kconθxθxp kconθxθyp kconθxθzp
kconθyxp kconθyyp kconθyzp kconθyθxp kconθyθyp kconθyθzp
kconθzxp kconθzyp kconθzzp kconθzθxp kconθzθyp kconθzθzp


(3.21)

Cconp =



cconxxp cconxyp cconxzp cconxθxp cconxθyp cconxθzp
cconyxp cconyyp cconyzp cconyθxp cconyθyp cconyθzp
cconzxp cconzyp cconzzp cconzθxp cconzθyp cconzθzp
cconθxxp cconθxyp cconθxzp cconθxθxp cconθxθyp cconθxθzp
cconθyxp cconθyyp cconθyzp cconθyθxp cconθyθyp cconθyθzp
cconθzxp cconθzyp cconθzzp cconθzθxp cconθzθyp cconθzθzp


(3.22)

Multi-rotor connections

In the Rotordynamical Model, the critical behaviour of multi-rotor layouts
may be accurately studied. For sake of brevity, in the present work only cou-
pling modelling is presented. A coupling is a device used to connect two shafts
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together at their ends for the purpose of transmitting power. Couplings do
not normally allow disconnection of shafts during operation, however there are
torque limiting couplings which can slip or disconnect when some torque limit
is exceeded.

Two main types of couplings are used in rotordynamics: rigid and flexible.
Actually true rigid couplings do not exist on rotating machinery because all
components exhibit a certain degree of flexibility, anyway the term rigid may
be referred to those couplings designed when precise shaft alignment is required.
Rigid couplings, shown in Fig. 3.10(a), are formed of two coupling halves con-
nected by means of a set of bolts placed on a bolt circle diameter. Each coupling
half may be realized as an integral part of the rotor end to be connected or it
may be mounted onto the shaft through shrink-fit or keys.

(a) (b) (c)

Fig. 3.10: Types of coupling used in rotating machinery (a): rigid coupling (b):
diaphragm flexible coupling (c): pin flexible coupling .

Some rotating machines exhibit substantial variations in the alignment pass-
ing from cold stand-still conditions to hot operating conditions thus requiring
the adoption of flexible coupling to compensate a certain level of misalignment
(radial, angular or axial) and to reduce the transmission of bending moments to
minimize shaft bending stress and lateral vibration stability problems. There-
fore, flexible couplings are adopted to introduce some features to produce a
controlled amount of flexibility or damping in multi-rotor configurations to
accommodate misalignment between centerlines of machine during operation,
vibrations and shocks and axial loads.

Several types of couplings exist, such as diaphragm (illustrated in Fig. 3.10(b)),
elastomeric, pin (see Fig. 3.10(c)), gear and disk coupling. The type to be se-
lected for a certain application is chosen mainly depending on the rotational
speed and the magnitude of steady-state or transient torque to be transmitted.
Other important features for the selection of flexible couplings are represented
by the required values of lateral and torsional, linear or nonlinear, stiffness and
damping properties and also by the inertia and mass values of the coupling.

In standard uncoupled torsional models, the dynamical properties of cou-
plings are usually taken into account as equivalent concentrated mass and in-
ertia and with the corresponding torsional stiffness values that are provided by
the coupling manufacturer.

In lateral analysis, ideally, couplings should have critical speeds much higher
than the machine ones, thus resulting in a minor influence on the critical be-
haviour of machine. However, in some cases, the mass of the coupling halves
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may represent a not negligible percentage of the total machine mass value, thus
requiring an accurate modelling of such components to correctly predict the
vibration behaviour of the investigated system. To this purposes couplings lat-
eral models have been proposed in literature [21, 39] in the past. Due to the
necessity of improving the accuracy of rotordynamical studies to predict critical
speeds, also more accurate models of coupling are currently being developed to
understand the influence of misalignment on the critical behaviour of rotating
systems. Misalignment is the second most common malfunction cause in rotors
(after unbalance) [10, 19, 75] and rotors often exhibit some residual misalign-
ment even after they have been subjected to alignment operations. Furthermore,
shaft misalignments may appear after continuous operating due to foundation
movements or thermal heatings. Thus, such as unbalance, misalignment repre-
sents a prevailing malfunction cause in rotor dynamic systems and appropriate
models are required to take into account couplings flexibility in rotordynamics
studies and for understanding the coupling influence on the system, a correct
estimation of the forces and the lateral moments generated in the coupling due
to shaft misalignment is required. Couplings are critical elements also from the
lateral-torsional coupling standpoint. Nowadays, several works may be found in
literature describing accurate and innovative coupling models [19, 75]. In the
Rotordynamical Model, couplings can be modelled according to three different
formulations. The first one is the more general and it is based on an extended
visco-elastic formulation. The displacement vectors of the two interconnected
nodes of the generic r − th flexible coupling model (Fig. 3.11) are:

qcplgr1 =
[
ucplgr1 vcplgr1 wcplgr1 θcplgr1 θcplgr1 θcplgr1

]T
(3.23)

qcplgr2 =
[
ucplgr2 vcplgr2 wcplgr2 θcplgr2 θcplgr2 θcplgr2

]T
(3.24)

and the force acting on the interconnected nodes may be evaluated as:

Fcplgp (N,Ω) = Kcplg
p (N,Ω)(qcplgr1 − qcplgr2 ) + Ccplgp (N,Ω)(q̇cplgr1 − q̇cplgr2 ) (3.25)

where the matrices of stiffness Kcplg
p (N,Ω) and damping Ccplgp (N,Ω) properties

of the couplings depends both on the rotational regime (Ω) and the on load (N).

Fig. 3.11: Coupling element.
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The extended stiffness and damping matrices are:

Kcplg
r =



kcplgxxp kcplgxyp kcplgxzp kcplgxθxp
kcplgxθyp

kcplgxθzp

kcplgyxp kcplgyyp kcplgyzp kcplgyθxp
kcplgyθyp

kcplgyθzp

kcplgzxp kcplgzyp kcplgzzp kcplgzθxp
kcplgzθyp

kcplgzθzp

kcplgθxxp
kcplgθxyp

kcplgθxzp
kcplgθxθxp

kcplgθxθyp
kcplgθxθzp

kcplgθyxp
kcplgθyyp

kcplgθyzp
kcplgθyθxp

kcplgθyθyp
kcplgθyθzp

kcplgθzxp
kcplgθzyp

kcplgθzzp
kcplgθzθxp

kcplgθzθyp
kcplgθzθzp


(3.26)

Ccplgr =



ccplgxxp ccplgxyp ccplgxzp ccplgxθxp
ccplgxθyp

ccplgxθzp

ccplgyxp ccplgyyp ccplgyzp ccplgyθxp
ccplgyθyp

ccplgyθzp

ccplgzxp ccplgzyp ccplgzzp ccplgzθxp
ccplgzθyp

ccplgzθzp

ccplgθxxp
ccplgθxyp

ccplgθxzp
ccplgθxθxp

ccplgθxθyp
ccplgθxθzp

ccplgθyxp
ccplgθyyp

ccplgθyzp
ccplgθyθxp

ccplgθyθyp
ccplgθyθzp

ccplgθzxp
ccplgθzyp

ccplgθzzp
ccplgθzθxp

ccplgθzθyp
ccplgθzθzp


(3.27)

The second approach is based on the adoption of general ordinary differential
equations (ODE) describing the dynamics of rigid parts of the couplings and in-
teracting with the rotor FE model through load connections. Such formulations
are particularly useful when nonlinear couplings characteristics must be taken
into account in transient analysis. For flexible-couplings it can be written:

M cpl
r q̈cplr + Ccplr q̇cplr +Kcpl

r qcplr = Fcplr1 + Fcplr2 (3.28)

where M cpl
r Ccplr Kcpl

r ∈ <6×6 and Fr1 and Fr1 are the load connections to the
rotor FE model.

The third approach consists in using an equivalent shaft element, the ma-
terial and geometrical properties of which are set to represent the equivalent
torsional and bending stiffness properties of the coupling.

Assembly of the equations of motion

The general form of the equation of motion for the complete discretised rotor
system can be formulated in matrix form as:

M q̈ + (C + ΩG)q̇ +Kq = F (3.29)

where M is the assembled mass matrix, G is the gyroscopic matrix, C and
K represent respectively the damping and stiffness matrices of the considered
system. q is the displacement and rotation vector of the nodes of the model
(q ∈ R6·ntot , with ntot number of nodes of the analysed model) describing the
position of each node of the discretised system, F is the applied load vector.

The Rotordynamical Model may be adopted to study the phenomenon of
interaction between lateral and torsional vibrations in rotor systems. This can
be reached thanks to finite element formulation that may vary in the number
of degrees of freedom associated to each node. More specifically classical un-
coupled finite element models (4 dofs for uncoupled lateral dynamics and 1 dof
for torsional models) can be easily derived from the developed fully coupled
lateral-torsional 6 dofs model. Hence, the proposed model may be employed to
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evaluate the improvement and benefit of fully coupled model with respect to
the classical uncoupled ones.

A number of different types of analyses can be performed starting from
the previous equation: the prediction of critical speeds, harmonic response and
transient analysis. The rotordynamical studies that can be performed through
the developed model are briefly introduced in the following section.

3.4 The Rotordynamics Analysis

The third part of the general architecture, the Rotordynamics analysis, is
the module responsible for the post-processing (i.e. the outputs of the Rotor-
dynamical Model). The Rotordynamics analysis module has been implemented
in the Matlab environment.

(a) (b)

(c) (d)

Fig. 3.12: Rotordynamics analysis (a): Undamped Critical Speed UCS (b):
Damped Critical Speed DCS (c): Forced Response (d) Transient analysis.

The specific output of each feasible analysis can be assessed and the typical
results are automatically generated. The analysis (Fig. 3.12) that can be easily
performed are:

• Undamped Critical Speed UCS is performed to study how the critical
speeds of a specified machine layout may vary w.r.t design parameters.
For instance, this kind of analysis can be used for the selection of bearings
to reach a good rotordynamics behaviour.

• Damped Critical Speed DCS that allows the Campbell’s plot to be defined
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and the evaluation of the lateral and torsional natural frequencies of the
studied rotor;

• Forced Response to assess the amplitudes of synchronous, sub-synchronous
and super-synchronous vibration caused by the rotor unbalance or other
harmonic forcing functions;

• Transient analysis to study nonlinear or local effects can be performed.

3.5 Numerical validation

The Rotordynamical Model presented in this thesis has been specifically
developed with the aim of modelling and investigating the dynamical behaviour
of real complex machines. Before applying the model to experimental test-cases,
it has been preliminary validated through the analysis of a numerical benchmark
rotor. This kind of approach is a fundamental aspect and good practice in most
of engineering research study, where software and experimental validation of
theoretic studies are necessary for understanding both performance and limits
of the research outputs.

In this section the numerical validation [76] is presented. The numerical
validation has been performed considering two benchmark theoretical rotors
described in [4, 9]. Friswell et al. developed a rotordynamical model for uncou-
pled lateral analysis based on a FE formulation characterised by 3D Timoshenko
beams with 4 dofs per node. This model has been implemented in the MatLab
enviroment. The capabilities of the model are extensively investigated in [9]
through several rotor applications and one of those has been adopted for the
numerical comparison of the model developed in the present thesis with the
reference Friswell’s model.

The investigated rotor-bearing system consists of a 1.5 m long shaft, shown
in Fig. 3.13 , with a constant diameter of 0.05 m. Two disks are placed at the
shaft locations 0.5 m and 1.0 m from the shaft extremity.

Fig. 3.13: Scheme of the two-disk, two-bearings rotor.

The first disk is 0.07 m thick with a diameter of a 0.28 m while the second
has the same thickness values and a diameter of 0.35 m. Concerning shaft ma-
terial properties, Young’s E and tangential G modulus are respectively equal
211 GN/m2 and 81.2 GN/m2. No internal shaft damping has been considered
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and for both the shaft and disks, the density ρ is equal to 7810 kg/m3. The
response of the system at the disks due to an unbalance on the left disk equal
to 0.001 kg m has been computed in two cases:

• Case A: isotropic bearings with stiffness values equal to 1 MN/m in both
the lateral directions;

• Case B : anisotropic bearings with different stiffness values in the two
lateral directions, respectively equal to 1 MN/m and 0.8 MN/m.

The critical speed map and the harmonic response of the investigated rotor
have been computed both with the Friswell’s model through the Rotor Software
V1 implemented in the Matlab environment and with the Rotordynamical Model
developed in this thesis and implemented through the Comsol with Matlab
environment. The following figures show that the results of the Rotordynamical
Model match those computed through the Friswell’s model in both cases. For
sake of brevity, a subset of the available results of the two models are shown.
These results represent a preliminary validation step of the model in the case
of simple rotor system and for uncoupled lateral analysis. Extended analysis
and extensive investigation are further required to validate the Rotordynamical
Model application for real machine applications.

Case A

The modal response of the Friswell’s model and of the Rotordynamical
Model developed in this work are respectively illustrated in Fig. 3.14(a) and
Fig. 3.14(b). The Campbell’s plot shows a good agreement of the two models
in calculating the modal response of the considered rotor (case A) in the entire
operational regime.

Tab. 3.1: Case A - Isotropic rotor: Numerical Damped Natural Frequencies
(Hz) at 0 and 3000 rpm.

Friswell’s Rotordynamical

model Model

13.79 13.79

0 rpm 43.66 43.66

43.66 43.66

13.64 13.65

3000 rpm 13.93 13.93

41.00 40.99

46.13 46.13

Figs. 3.15 and 3.16 show that the Friswell’s model and the Rotordynamical
Model results are quite the same also concerning mode shapes determination.

Case B

Analogous considerations hold also for the anisotropic case (Case B). In this
case the modal response of the Friswell’s model and of the Rotordynamical
model developed in this work are respectively illustrated in Fig. 3.17(a) and
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(a)

(b)

Fig. 3.14: Case A - Isotropic rotor: Campbell’s plot (a): Friswell’s model (b):
Rotordynamical Model.

Fig. 3.15: Mode shapes in the yz plane at 0 rpm (Friswell’s model).
.
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Fig. 3.16: Mode shapes in the xy plane at 0 rpm (Rotordynamical Model).

Fig. 3.17(b) where the Campbell’s plots show good agreement of the two models
in calculating the modal response of the considered rotor (case B) in the entire
operational regime.

Tab. 3.2: Case B - Anisotropic rotor: Numerical Damped Natural Frequencies
(Hz) at 0 and 3000 rpm.

Friswell’s Rotordynamical

model Model

13.15 13.15

0 rpm 13.79 13.79

40.51 40.51

43.66 43.66

13.12 13.12

3000 rpm 13.81 13.81

38.96 38.98

45.01 45.01
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(a)

(b)

Fig. 3.17: Case B: Campbell’s plot (a): Friswell’s model (b): Rotordynamical
Model.





Chapter 4

Test-case description

The rotor test-case studied in this work is a dynamometric flywheel test
bench, designed for the acceptance tests of railway brake components. Thanks to
different testing equipments both brake disks and brake shoes can be tested. The
chosen case study presents several distributed inertial elements characterised
by a multi-point connection inducing complex dynamical behaviours that are
difficult to be investigated and predicted (especially in terms of later-torsional
vibrations). During the verification tests performed in the acceptance phase the
test bench exhibited some unpredicted vibrations phenomena.

4.1 Machine description

Dynamometric flywheel test bench are designed for the acceptance testing
of railway brake components. The layout of such kind of machine must fulfill
specific requirements that are provided in the ERRI B126/RP 18 report [77]
that defines the general features and the approval tests for the validation of
railway brake test-benches. To this aim, dynamometric test-benches are usually
formed of a solid baseplate on which are mounted several movable flywheels,
which, when appropriately combined, simulate the inertia of railways vehicles.
Electrical motors are used to drive the flywheels up to the speed values required
by the test cycles [78, 79, 80, 77]. In the opposite side of the shaft linking the
motor to the flywheels, the mechanical and hydraulic components constituting
the brake system to test are mounted by means of dedicated mechanical inter-
faces. Railway brake elements that can be tested are: brake disk, brake caliper
and pads or wheel and brake blocks.

During the tests, brake components must dissipate the relative quota of
the total kinetic energy characterising a single vehicle according to the railway
standards [78, 79, 80, 77].

To this aim a dedicated test-bench has been built through a collaboration of RFI
(Rete Ferroviaria Italiana) and Simpro S.P.A. To produce the required amount
of energy the investigated test-bench is composed of a group of shafts, sustained
by rolling bearings and linked each other through flexible couplings and driven
by an electrical motor, and of five movable flywheel masses, which are used
during tests to vary the simulated mass of vehicle.

Fig. 4.3 shows a scheme of the studied rotor. The whole train is formed of six

73
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(a) (b)

Fig. 4.1: Railway braking systems (a): disk brake (b): block brake.

(a) (b)

(c)

Fig. 4.2: Brake pad types (a): organic pads (b): sintered pads (c): organic
blocks.
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parts linked by means of flexible couplings: the electrical motor group driving
the train, the brake group supporting the disk brake to be tested and the four
flywheel-shaft groups (denoted with the acronyms K1, K2, K3 and K4− 5).

Fig. 4.3: View of the dynamometric flywheel test bench.

4.2 Motor group

The Motor group (MG) consists in the electrical motor driving the shaft line
is a 500 kW asynchronous three-phases motor, which has been designed for this
particular application. The maximum rotating speed of the motor is 3000 rpm,
corresponding to a translational velocity equal to 500 km/h for vehicles with
wheels characterised by a diameter equal to 890 mm.

Fig. 4.4: Motor group.

The motor is equipped with an encoder to measure the rotational regimes
and it may be controlled both in speed and torque (that is instantaneously
measured), getting also the functionality of inertia simulator. This capability is
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required to compensate the brake inertia when the mechanical inertia (provided
by the combination of the flywheels) cannot exactly represent the brake mass
value defined in the testing provision imposed by the reference standards [78,
79, 80, 77].

4.3 Flywheel-shaft groups

The part of the studied test-case responsible for the simulation of the me-
chanical inertia is based on a modular architecture, formed of four flywheel-
groups, conventionally named K1, K2, K3 and K4 (see Fig. 4.3). The four
modules present a similar geometrical layout and differ each other for the iner-
tial properties. More specifically, the K1 and K2 groups are identical; the K3
module is characterised by the same layout but it exhibits different inertial val-
ues. The architecture of the K4 group is slightly different from the other ones
since it carries on two flywheels (conventionally named K4-200 and K4-400).
The total number Ntot of flywheel is five, thus allowing 2Ntot = 32 possible
combinations of the simulated inertia.

The inertial properties of the five flywheels are listed in Tab. 4.1. As it
can be seen from Tab. 4.1, since the shaft inertia is equal to 200 kg m2, the
total mechanical inertia that can be simulated by the test bench is equal to
3600 kg m2.

Tab. 4.1: Mechanical inertia of the test bench.
Group name Rotatory Inertia (kg m2) Total mass (kg)

Shaft K0 200 2200

Flywheel K1 1000 6000

Flywheel K2 1000 6000

Flywheel K3 800 5000

Flywheel K4-200 200 1330

Flywheel K4-400 400 1650

Total 3600 19980

The layout of a flywheel-shaft group, which is illustrated in Fig. 4.6, is
composed of:

• a steel forged flywheel;

• a steel transmission shaft with an in-built disk used to engage the corre-
sponding flywheel;

• an emergency disk-brake operated by a fail-safe brake caliper;

• a manual locking system that allows the flywheel engagement on the shaft;

• two self-aligning roller bearings;

• a baseplate supporting the flywheel when it is not used for brake tests.

The flywheel is the element responsible for the simulation of the mechanical
inertia. Each flywheel is made in steel through forging operations. The trans-
mission shaft is realized in steel and it carries on an integral disk adopted to
engage the flywheel when it is in the mounted position.
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Fig. 4.5: The K2 flywheel-shaft group.

Fig. 4.6: Layout of the K1 and K2 flywheel-shaft group.
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An appropriate manual locking device (see Fig. 4.5) is used to engage the fly-
wheel to the shaft, allowing the modification of the mechanical inertia simulated
during the test. Such manual device allows the engagement/disengagement of
the flywheel with its relative shaft, through the flywheel axial translation. When
the flywheel is translated to the engagement position (represented with the blue
line in Fig. 4.6), it is axially coupled with its supporting shaft by means of
a double-conical coupling. The rotational locking to the shaft is then assured
by fastening the flywheel to the in-built disk by means of three screws. The
flywheel represents a distributed inertial elements with several shaft-to-rotor
point connections, thus defining a complex topology rotor system. This kind
of elements are difficult to be described and their mathematical modelling re-
quires the complete definition of stiffness [K] and damping [C] properties of
the geometrical coupling. Stiffness properties have been evaluated through an
appropriate 3D FE model of the considered components.

When the flywheel is disengaged (black line in Fig. 4.6) from the shaft it does
not contribute to the simulated inertia and it is sustained by an appropriate
steel structure. The main geometrical and inertial property of the K1 module
are listed in Tab. 4.2.

Tab. 4.2: Main features of the K1 module.

Shaft diameter 165 mm

Flywheel external diameter 1120 mm

Flywheel inertia 1000 kg m2

Axial distance between bearing locations 1173 mm

In-built disk diameter 670 mm

Static load acting on bearing DE 32.6 kN

Static load acting on bearing NDE 26.1 kN

The critical aspects of the particular flywheel-shaft coupling mechanism are
the static indetermination of the coupling itself and the high distance between
the two contact surfaces. Due to these issues a correct identification of the
real contact points/surfaces between the flywheel and the shaft is very diffi-
cult. Hence, the action distribution between the two contact surfaces cannot
be identified and large uncertainties on the influence of dynamical properties of
the flywheels during the transient operating conditions arise This is a common
problem that must be overcome for the study of distributed rotor elements.

It must be noticed that, due to the above-mentioned issues the dynami-
cal analysis of the present test-case by means of classical models may lead to
inaccurate results. More specifically, in the current application the classical as-
sumptions made on the active surfaces do not hold, thus classical disk models
cannot be employed to reproduce the flywheel dynamical behaviour and the
introduction of distributed inertial elements is required.

The two ends of each flywheel-shaft module are supported on two identical
self-aligning spherical roller bearings. These bearings are formed of a double-row
roller bearings, a shared spherical outer ring raceway and two inner grooves. The
center of the external groove sphere is located on axis of the bearing, enabling
the inner ring and the rolling element set to make angular motions. Hence, this
kind of bearing are self-aligning and insensitive to shaft misalignment due for
example by the shaft deflection [81]. Self-aligning bearings have been adopted



4.3 Flywheel-shaft groups 79

to accommodate radial as well as thrust loads. Bearings may be mathemati-
cally modelled in rotor dynamics application either as ideal boundary condition
for the shafts or as dynamic stiffness and damping elements [4]. In the latter
case, the dynamical properties of bearings, characterised by the manufacturers
through experimental setup or by means of dedicated simulation tools, must be
known to achieve accurate rotor dynamics analysis results. A typical charac-
teristic of a rolling element bearing is a high stiffness depending on the load
[82], while they usually exhibit a very low damping. Furthermore, stiffness and
damping values are almost constant for varying rotating speeds and exciting
frequencies. Dynamical properties of the self-aligning spherical roller bearings
adopted in the present test-case, have been provided by the bearing manufac-
turer according to the static load acting on them in the different configurations
of the machine. It must be noticed that the stiffness values of the bearings
are related to the static loads acting on them. Hence, in the investigated test-
case, these values may vary according to the machine configuration. Stiffness
properties relative to the K0 configuration (nominal load configuration wherein
the total test inertia is given by the shaft inertia and none of the flywheels is
mounted on the shaft-line) are listed in Tab. 4.3 where directions are defined ac-
cording to the reference system shown in Fig. 4.7a and DE and NDE acronyms
refer indicate respectively the motor (Drive End) and the brake-disk (Non Drive
End) group side of each shaft-group. It must be noticed that for self-aligning
rolling bearing only direct stiffness values (kxx, kyy, kzz) exhibit significant val-
ues, while the indirect terms of the stiffness matrix are equal to zero. The
listed values are the nominal ones, evaluated considering nominal loads acting
on the bearings when none of the flywheel is engaged to the rotor shaft. Stiffness
characteristics vary according to loads and rolling speed. In the present case
the adoption of roller bearings set these features almost independent from the
rolling speed [82].

Tab. 4.3: Bearings characteristics of the flywheel groups in nominal conditions.

Group kxx (N/m) kyy (N/m) kzz (N/m)

K1 DE 9.5 · 107 8.4 · 108 3.3 · 109

K1 NDE 9.5 · 107 8.4 · 108 3.3 · 109

K2 DE 9.5 · 107 8.4 · 108 3.3 · 109

K2 NDE 9.5 · 107 8.4 · 108 3.3 · 109

K3 DE 9.5 · 107 8.4 · 108 3.3 · 109

K3 NDE 7.9 · 107 2.8 · 108 6.9 · 108

K4 DE 7.9 · 107 2.8 · 108 6.9 · 108

K4 NDE 7.9 · 107 2.8 · 108 6.9 · 108

The data of the two bearings supporting the motor group and of the three
bearings of the brake group are shown in Tab. 4.4.

In multi-rotor configurations flexible couplings are elements that transmit
torque between two shafts, while compensating residual misalignments and min-
imizing their effect on the vibration response. Misalignment is accepted as the
second most observed disturbance factor in rotating equipments [10, 19] and
rotors often exhibit some residual misalignment even after they have been sub-
jected to alignment operations. Furthermore, shaft misalignments may appear
after continuous operating due to foundation movements or thermal heatings.
Thus, such as unbalance, misalignment represents a prevailing malfunction cause
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(a) (b)

Fig. 4.7: Self-aligning spherical rolling contact bearings (a): photo (b): rotor-
dynamical scheme.

Tab. 4.4: Motor group and Brake group bearings characteristics.

Group kxx (N/m) kyy (N/m) kzz (N/m)

MG DE 9.5 · 107 8.4 · 108 3.3 · 109

MG NDE 9.5 · 107 8.4 · 108 3.3 · 109

BG 1 9.5 · 107 8.4 · 108 3.3 · 109

BG 2 9.5 · 107 8.4 · 108 3.3 · 109

BG 3 9.5 · 107 8.4 · 108 3.3 · 109

in rotor dynamic systems and appropriate models are required to take into
account couplings flexibility in rotordynamics studies. Couplings are critical
elements also from the lateral-torsional coupling standpoint.

In the investigated test-case the shaft line is connected through torsionally-
stiff flexible couplings. Couplings consist of two disk packs, two flanges (hubs)
and one spacer. The flexible disk-pack is cardanically attached to both the
hubs. The disk-pack consists of a number of thin disks made of stainless steel.
Torsionally-stiff flexible couplings are adopted compensate for axial, angular
and radial misalignment. The main geometrical and inertial property of the
flexible couplings mounted in the investigated test-case are listed in Tab. 4.5.

Tab. 4.5: Main properties of the adopted flexible couplings.

Nominal torque 45 kN m

Maximum torque 80 kN m

Maximum Axial misalignment 3.6 mm

Maximum Radial misalignment 1.18 mm

Maximum Angular misalignment 0.75°
Torsional Spring Rate 29.9 · 106 N m/rad

Moment of inertia 1.04 kg m2

Weight 48 kg
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4.4 Brake supporting group

The brake supporting group (BG) is the part of the test-case onto which the
brake disk or train wheel to be braked are mounted. The devices to be tested
are assembled to the shaft of the brake group by means of dedicated mechanical
interfaces.

Brake calipers for brake disk or blocks are constrained to a dedicated sup-
porting structure called Prony’s system that is used for the measurement of the
braking torque. It is formed of an oscillating beam to which calipers and their
supports are assembled by means of slides. On the opposite side of the caliper
support structure, the oscillating beam is substained by a load cell to measure
the vertical load and then evaluate the equivalent braking torque.

When braking forces are applied to the overhang brake disk, the shaft is
subjected to high bending and torsional loads and this aspect is particularly
critical if combined with the presence of complex rotor elements.

Fig. 4.8: Brake supporting group.

The shaft of the brake-group is supported by three bearings: a slow-friction
roller radial bearing on the brake side, a roller-radial bearing and a double-
ball bearing on the shaft line side. The brake supporting group (Fig. 4.8) is
connected to the flywheels shaft line through a safety hydraulic coupling and of
a torsiometer for the measurement of the braking torque.

4.5 Problem description

The investigated test-case is critical from the rotordynamic modelling stand-
point both for several issues related to the particular adopted mechanical com-
ponents and to the working conditions. The firs critical aspect is represented by
the high dimensions of the rotating masses (i.e. the flywheels) with respect to
the masses conventionally considered in rotordynamics models. Another aspect
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Fig. 4.9: A brake-disk mounted onto the brake supporting group.

related to the rotating masses is their particular assembly to the shaft (dis-
tributed rotor) that cannot be described with common disk or beam elements
and require the adoption of distributed inertial elements with several shaft-
to-rotor connections. The third issue consists in the influence of the flexible
couplings on the shaft vibration, which gave rise to the necessity of correctly
modelling such components. Furthermore, a correct representation of the mis-
alignment between the shaft groups is fundamental to investigate its influence
on the rotor line response.

Concerning the operating conditions it must be noticed that the studied
test-case alway works in torsional and bending transient conditions, that are
particularly critical for the lateral-torsional coupling, thus requiring an accurate
prediction of its dynamical behaviour in order to avoid static or fatigue failure.

Furthermore, the brake testing standards [78, 79, 80] requires several brake
mass value to be tested, imposing the utilisation of different flywheels for dif-
ferent tests. Each single flywheel configuration must be studied as a separate
rotor system, hence requiring the adoption of an efficient rotordynamical model
able to represent complex rotor and to perform the required analysis with a low
computational effort.
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Experimental tests

This chapter deals with the experimental activity performed on the dynamo-
metrical flywheel test bench for railway brakes. The experimental work on this
particular test-case is part of a support activity for the acceptance of new test
benches for railways components that has been committed to the DIEF - Ap-
plied Mechanics section of the University of Florence by Italcertifer S.p.A (FS
group).

Due to the complexity of the dynamometrical flywheel test bench the activity
on this particular machine lasted more than two years, during which the typical
phases of an acceptance process have been executed. The undesired vibration
phenomena firstly revealed theirselves during the emergency run tests, when
the test bench exhibited some unpredicted vibration behaviours that have been
identified through high noise, disturbs on the standard measurements as braking
force, braking torque and pressure in the brake cylinder, (see Fig. 5.1) and as
ground vibrations.

(a) (b)

Fig. 5.1: Disturbs on the standard acquired measurements (a): brake torque
(b): brake force.

A correct assessment and mapping of the vibration levels was hence required
to identify safe operating conditions for all the machine configurations to pre-
serve the machine integrity, to guarantee operators safety and to assure the
goodness of acceptance test on brake components.

Different test campaigns have been then executed with the aim of evaluating

83
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the machine vibration levels by measurements on non-rotating parts (housings
of the bearings, baseplates and foundation). Three measurement campaigns
have been executed over time in collaboration with Politecnico of Milano and
they can be classified and conventionally named:

• Test campaign 1 : the first one has been executed on November 2012 when
both impulsive and free run tests of few machine configurations were ex-
ecuted;

• Test campaign 2 : the second campaign has been performed on September
2013 with the same instrumentation set and tested configurations of the
first one after some structural interventions on the baseplate anchorage;

• Test campaign 3 : during the third test campaign, executed on January
2014, a comprehensive set of machine configurations has been tested in
both free and brake run tests.

The measurement have been performed according to the guidelines provided
by the ISO 10816 series Mechanical vibration Evaluation of machine vibration
by measurements on non-rotating parts [18], that is one of the ISO (International
Organization for Standardization) reference standards in the field of machinery
vibration monitoring and analysis.

In the following sections the evaluation criteria, the experimental setup and
the different test campaigns are briefly described.

5.1 Evaluation criteria

The evaluation criteria adopted for the assessment of the vibration severity
of the test bench configurations is provided by the ISO 10816 Standard [18]
and it is based on the magnitude of observed vibration. The dynamometrical
flywheel test bench is a peculiar machine that cannot be classified in a specific
machine type, thus, in this case, evaluation criteria specified in Appendix B
of [18] of general type machine have been employed. The maximum vibration
magnitude measured at each pedestal is classified according to the various classes
of machines and to the different evaluation zones for the support class where the
evaluation zones have been established from international experience to permit
a qualitative evaluation on a specific machine. The different machine classes
are:

• Class I: Small machines up to 15 kW;

• Class II: Machines with power in the range 15 -75 kW on light foundations;

• Class III: Machines with power above 300 kW on heavy and rigid founda-
tions;

• Class IV: Machines with power above 300 kW on flexible foundations (soft
mount).

Four evaluation zones have been defined:

• Zone A: relative to new commissioned machines;
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• Zone B: containing vibration values acceptable for long-term operation;

• Zone C: defining vibration values unsatisfactory for long-term operation
and the necessity of suitable remedial actions;

• Zone D: relative to vibration values high enough to cause damage to the
machine.

Obviously, numerical values assigned to the zone boundaries are not manda-
tory, and specific values must be agreed by the machine manufacturer and cus-
tomer. However, these values provide guidelines for avoiding gross deficiencies
or unrealistic requirements.

In several studies it has been found that vibration velocity is sufficient to
characterise the zone boundary values of vibration over a wide range of machine
types and machine operating speeds. The main evaluation quantity is therefore
the overall root-mean-square (r.m.s.) value of vibration velocity in mm/s.

The numerical limit values of the evaluation quantity are shown in Fig. 5.2

Fig. 5.2: Evaluation of vibration severity.

Since the dynamometrical test bench belongs to Class III, the following upper
limits on the r.m.s value of vibration velocity have been considered to assess the
vibration severity in the machine configurations:

• Zone A: 1.8 mm/s;

• Zone B: 4.5 mm/s;

• Zone C: 11.2 mm/s;

5.2 Description of the experimental setup

According to the different executed test campaigns, the test bench has been
instrumented by means of

• a set of vertical and lateral piezo-electric accelerometers;

• vertical and lateral servo-accelerometers;
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Fig. 5.3: An example of the positioning of the accelerometers.

• an encoder.

The positioning of the accelerometers during Test Campaign 1 is illustrated
in Fig. 5.3. The set of piezo-electric accelerometers has been used for the mea-
surement of the radial (vertical and horizontal) vibration on the bearings hous-
ings (see Fig. 5.4) of the shafts group in compliance with the regulation of the
ISO 10816 Standard. The accelerometers have been installed by stick method.

Servo-accelerometers have been installed in several location of the test bench
to evaluate the vibration of the baseplates and of the supporting foundation (see
Fig. 5.5).

Fig. 5.4: Accelerometers sticked on the bearing housing.

5.3 Configurations of the test-case

The dynamic behaviour of the studied test-case has been investigated in
different configurations of the machine and for several operating conditions.

The possible machine configurations are 32 according to the number of pos-
sible combination of mounted flywheels. Moreover, the vibration of the test
bench have been measured according to different working conditions: free and
braking conditions. The tests executed during the measurement test campaigns
are:

• impulsive excitation tests;
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Fig. 5.5: Position of the servo-accelerometers on baseplate and foundation.

• run tests that can be distinguished in free and braking runs. The free case
consists of three different phases: a ramp-up test wherein the test bench
accelerates from the zero-velocity condition to the maximum angular speed
value, a regime test during which the investigated machine rotates at
the maximum angular speed value, a ramp-down test wherein the test
bench decelerates from the regime condition until it reaches zero-velocity
condition. Braking tests consist of the first two phases of the free ones,
followed by a braking-test that is a ramp down in which the test bench
brakes according to specific braking conditions applied to the test railway
brake disk in compliance with railway standards [77, 78, 79].

During Test campaign 1 impulsive (hammer) and free tests considering the
machine configurations listed in Tab. 5.1 have been performed. The aim of
this test campaign consists in the evaluation of the rms-values of the velocity
of the vibration measured on the bearing housings during the regime phase.
This value is taken by the ISO 10816 Standard as the evaluation criterion to
assess vibration severity in terms of vibration magnitude. According to this
parameter, evaluation zones are defined to permit a qualitative assessment of
the vibration, and to provide guidelines on possible actions [18].

Test campaign 2 has been performed to verify a possible improvement of
the dynamic behaviour. Impulsive and free tests executed in Test campaign 1
have been repeated and other machine configurations have been investigated
(see Tab. 5.2).

Test campaign 3 has been executed to study the influence of the braking



88 Chapter 5. Experimental tests

Tab. 5.1: List of tests performed in Test Campaign 1.
Mounted Test Total Inertia Operating Regime speed

flywheels type (kg m2) conditions (rpm)

Hammer 1 K2 Impulsive test 1200 ET K1 -

Hammer 2 K2 Impulsive test 1200 ET K2 -

Hammer 3 K1+K2 Impulsive test 2200 ET K3 -

Hammer 4 K1+K2 Impulsive test 2200 ET BD -

Run 1 - Run Test 200 Free 3000

Run 2 K2 Run Test 1200 Free 3000

Run 3 K1+K2 Run Test 2200 Free 3000

Run 4 K3+K4+K5 Run Test 1600 Free 3000

Tab. 5.2: List of tests performed in Test Campaign 2.
Mounted Test Total Inertia Operating Regime speed

flywheels type (kg m2) conditions (rpm)

Hammer 1 K2 Impulsive test 1200 ET K1 -

Hammer 2 K2 Impulsive test 1200 ET K2 -

Hammer 3 K1+K2 Impulsive test 2200 ET K1 -

Hammer 4 K3+K4 200-400 Impulsive test 1600 ET K3 -

Hammer 5 K3+K4 200-400 Impulsive test 1600 ET BP -

Run 1 K5 Run Test 600 Free 3000

Run 2 K2 Run Test 1200 Free 3000

Run 3 K4 200-400 Run Test 800 Free 3000

Run 4 K1+K2 Run Test 2200 Free 3000

Run 5 K3+K4 200-400 Run Test 1600 Free 3000

Run 6 K1+K2+K3+K4 200-400 Run Test 1600 Free 3000

conditions on the vibration behaviour of the machine. Thus, a set of the braking
tests required by the railways standards for the acceptance and the validation
of this kind of test bench [77] have been performed. A subset of the executed
braking tests is listed in Tab. 5.3. The listed tests are the ones characterised
by values of the angular speed, mechanical inertia and brake application force,
that are meaningful for the evaluation of the dynamics behaviour of the studied
test bench.

During Test campaign 3 also further free tests, limited for the maximum
value of the angular speed, have been executed to investigate the vibration
behaviour of the entire set of machine configurations (see Tab. 5.4).

Figs 5.6-5.11 show the results of a subset of the regime tests in terms of the
the r.m.s values of the velocity vibration in mm/s that is the evaluation quantity
according to the ISO 10816 Standard [18]. The limit values respectively for Zone
A and Zone B are plotted as horizontal red lines.

Tab. 5.3: A subset of the braking tests performed in Test Campaign 3.
Mounted Total Inertia Brake Inertia Maximum speed Brake force

flywheels (kg m2) (kg m2) (rpm) (kN)

Run 1 K3+K4 400 1400 1485 1192 46

Run 2 K4 400 600 1485 1490 18

Run 3 K4 400 600 792 2682 14/18

Run 4 K4 400 1000 1210 2170 14/18

Run 5 K4 400 600 1210 2170 14/18

Run 6 K4 400 600 792 2980 14/18

Run 7 K4 400 1000 1210 2411 14/18

Run 8 K4 400 600 1210 2411 14/18

Run 9 - 200 792 2682 14/18

Run 10 - 200 792 2980 14/18
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Tab. 5.4: List of free tests performed in Test Campaign 3.
Mounted Test Total Inertia Maximum speed

flywheels type (kg m2) (rpm)

Run 1 - Run Test 200 3000

Run 2 K4 400 Run Test 600 3000

Run 3 K4 200 Run Test 400 3000

Run 4 K4 200-400 Run Test 800 2800

Run 5 K3 Run Test 1000 3000

Run 6 K3+K4 400 Run Test 1400 2900

Run 7 K3+K4 200 Run Test 1200 2900

Run 8 K3+K4 K4 400 Run Test 1600 2800

Run 9 K2 Run Test 1200 2400

Run 10 K1 Run Test 1200 2400

Run 11 K1+K3 Run Test 2000 2500

Run 12 K1+K2 Run Test 2200 2300

Run 13 K1+K2+K3 Run Test 3000 2300

Run 13 K1+K2+K3+K4 400 Run Test 3000 2300

Run 13 K1+K2+K3+K4 200-400 Run Test 3000 2300

Fig. 5.6: Test Campaign 1 - Run 1 (K0 - 3000 rpm): r.m.s. value of the vibration
velocity.
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Fig. 5.7: Test Campaign 1 - Run 2 (K2 - 1500 rpm): r.m.s. value of the vibration
velocity.

Fig. 5.8: Test Campaign 3 - Run 1 (K0 - 3000 rpm): r.m.s. value of the vibration
velocity.



5.3 Configurations of the test-case 91

Fig. 5.9: Test Campaign 3 - Run 10 (K1 - 2000 rpm): r.m.s. value of the
vibration velocity.

Fig. 5.10: Test Campaign 3 - Run 3 (K4 - 3000 rpm): r.m.s. value of the
vibration velocity.
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Fig. 5.11: Test Campaign 3 - Run 13 (K1-K2-K3-K4-K5 - 2300 rpm): r.m.s.
value of the vibration velocity.

As it can be deduced from the Figs. 5.6-5.11, the measurements performed
on the non-rotating parts of the machine (bearing pedestals) had shown that
vibration values usually falls in Zone B of severity evaluation. Moreover, several
channels exhibit r.m.s velocity vibration values that fall in Zone C, and this
behaviour is unacceptable for a new machine. Only one machine configuration
respects the limits of Zone A, this configuration is the K0 configuration, when
none of the five flywheels is engaged to the shaft.

The realisation and validation of an accurate mathematical model of the test
bench is highly recommended to investigate the cause of these vibrations and to
evaluate in reasonable times and costs, the benefit of possible modifications to
the structure of the machine in terms of reduction of vibrations severity. Since
the test bench has 32 configurations, a systematic approach for the machine
modelling is highly needed.
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Numerical Results

The dynamometric test bench presented in the previous chapter has a mod-
ular structure formed of five movable flywheels that can be engaged to the rotor
shaft and contribute to the rotating masses. Therefore, the test bench can be
operated in 32 different configurations (Nconfig = 25), which can cover all the
rotating inertia values required by testing standards [78, 79, 80]. The dynamical
behaviour of each configuration must be investigated and predicted as a sepa-
rate rotor system; thus, in this case, the adoption of an efficient and systematic
rotordynamical model is fundamental to analyse all the complex rotor config-
urations and to perform the required analysis with a low computational effort.
Thanks to its systematic architecture, the Rotordynamical Model developed in
this thesis, results particularly efficient in such kind of task.

In this chapter the application of the Rotordynamical Model to the test-case
is firstly introduced, focusing on those modelling features and issues that are
the same for all the studied configurations. Then the numerical results of the
studied machine configurations are compared to the experimental data to assess
and validate the Rotordynamical Model performance in predicting the critical
behaviour of real complex rotating machines.

For sake of brevity, in the present chapter the comparison between numerical
results and experimental data relative to a subset of the machine configurations
is shown. The presented configurations (see Fig. 6.1) are:

• K1+K2 configuration (Jeq = 2200 kg m2): the results of this configura-
tion are particularly meaningful because its dynamical behaviour has been
tested in all the different Test Campaigns;

• K3+K4 200-400 configuration (Jeq = 1600 kg m2): this configuration is
studied to test the Rotordynamical Model for the different layout of the
K4 200-400 shaft;

• K2 configuration (Jeq = 1200 kg m2): this configuration is characterised
by one of the rotational inertial value usually required by railway braking
standards.

93
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(a)

(b)

(c)

Fig. 6.1: The investigated configurations (a): K1+K2 (b): K3+K4 200-400 (c)
K2.
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6.1 Test-case modelling

The starting point for the rotordynamical analysis is the creation of the
model representing the investigated test-case. To this purpose, the complex
structure of the dynamometric brake test bench has been discretised and repre-
sented through several meaningful elements characterising the rotordynamical
behaviour of the machine components. The discretised models of the considered
machine configurations are based on the following assumptions:

• for the investigation of the lateral-torsional vibration behaviour of the
considered test-case, the significant lateral and torsional properties (ma-
terial, stiffness, damping and inertias) of the elements have been taken
into account;

• axial motions have not be taken into account;

• at this step of the research activity vibrations due to the shaft line dy-
namics have been investigated; other critical behaviours of the machine
resulting from the dynamics properties of the baseplate, of the foundation
and of the brake supporting structure are not studied;

• since detailed geometrical and bearing property of the motor group shaft
missed, a theoretical discretisation of the motor shaft line has been adopted
for the model;

• since detailed geometrical and material property of the motor group shaft
missed, a theoretical discretisation of the motor shaft line has been adopted
for the model;

The studied machine configurations present common features that have been
represented through a subset of the elements defined by the Rotordynamical
Model. Both standard and non-standard elements have been employed to rep-
resent the mechanical components of the test-bench.

Standard components

Classical rotordynamical models are used to represent the dynamical char-
acteristics of some inertial elements and several components of the test bench
have been thus modelled by means of lumped disk elements. Such components
are:

• four emergency disk-brakes (Fig. 6.2);

• four in-built disks for the engagement of the flywheels (Fig. 6.2);

• the tested rail disk-brake (Fig. 6.3);

• the flanges of the flexible couplings (Fig. 6.2).

The inertial properties introduced in the Rotordynamical Model are listed
in Tab. 6.1.

The test-bench shaft line is the same for all the machine configurations. It
is formed of six shaft linked each other through flexible-couplings: one motor
shaft, the brake group shaft and four flywheel module shafts (see Fig. 6.4(a)-(c)).
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Fig. 6.2: Components of the flywheel modules modelled as disk elements.

Fig. 6.3: A railway brake disk mounted on the shaft of the brake group.
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(a)

(b)

(c)

Fig. 6.4: Rotors shafts geometry (a): K1 and K2 modules shaft (b): K3 module
shaft (c) K4 200-400 module shaft.
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Tab. 6.1: Main properties of disk elements.

Mass Polar inertia Transverse inertia

mD (kg) JD
P (kg m2) JD

T (kg m2)

Emergency brake-disk 203 15.48 7.08

Engagement in-built disk 254 15.33 7.88

Tested brake-disk 123.2 6.3 3.15

Flexible-coupling flange DE 36 0.83 0.42

Flexible-coupling flange NDE 60 1.3 0.78

Flexible-coupling 42 1 0.63

Each shaft module is discretised into several shaft beam elements characterised
by circular sections.

Thirteen standard bearing elements based on the elasto-damping approach
have been considered in each configuration and the values of the stiffness matri-
ces have been provided by the bearing manufacturer as a function of the static
load acting on each bearing. The bearing elements are introduced and modelled
according to Eq. 3.13.

Non-standard components

In this specific application, non-standard elements are used to model the
massive flywheels when they are engaged to the corresponding shaft and to
represent the dynamical properties of flexible-couplings forming the multi-rotor
configuration of the test bench.

A correct representation of the flywheel dynamical properties is the most
critical issue from a modelling standpoint due to its complex topology. The fly-
wheel is in fact a distributed inertial element assembled to the shaft by means
of the complex connections that have been previously described in Sec. 4.3. In-
vestigations performed by means of classical rotordynamical elements (flywheels
modelled as lumped disks) showed the limitation of such kind of approach in
predicting the critical behaviour of the test-case [83]. Also full solid 3D models
(see Fig. 6.1) failed in the prediction of the dynamical critical speeds because
of its limitation in the modelling of the complex flywheel-to-shaft connection.
Furthermore, the high computational load required by such kind of approach
is too expensive in this application where 32 different machine configurations
must be investigated thus increasing the necessity of a simpler and systematic
approach.

The non-standard elements of the Rotordynamical Model developed in the
present research activity are particularly useful for the mathematical modelling
of distributed rotors with complex rotor-to-shaft connections. In this specific
application, a distributed inertial element is used to represent the inertial and
stiffness contribution of each flywheel to rotordynamics behaviour. The com-
plex connection of the flywheel to the shaft, which consists in a double conical
coupling and a torsional coupling, is modelled through two visco-elastic ele-
ments (previously described in sec.3.3), connecting the distributed element and
the rotor shaft in the midpoints of the double-conical surfaces, as illustrated
in Fig. 6.6. The values of the stiffness matrices Kcon

DE and Kcon
NDE are derived
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Fig. 6.5: Complete 3D model of the test bench.

from preliminary FEM analysis of the geometrical coupling for different values
of the load acting on the midpoints and for speeds values covering the entire
operation range of the machine (0 − 3000 rpm). The values are then stored in
equivalent look-up tables (LUT) as function of the load N and rotational speed
Ω. The torsional coupling between the flywheel and the rotor shaft through
the in-built disk has not been directly modelled; it has been taken into account
by modifying the values of the Kcon

NDE stiffness matrice on the NDE side of the
flywheel.

Fig. 6.6: Flywheel groups: modelling of the flywheel to shaft connections.

Fig. 6.7 shows a schematic representation of the implemented model for
the K1+K2 configuration where K1 and K2 flywheels are both modelled as
distributed inertial elements linked to the main shaft by means of two connection
elements characterised by different values of the matrices Kcon

DE and Kcon
NDE . In

this way the asimmetry of the double-conical and torsional coupling can be
correctly reproduced.

An analogous approach has been used for modelling flexible-disk couplings.
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Fig. 6.7: Schematic representation of the implemented model for the K1+K2
configuration.

The inertial properties of the two coupling halves are introduced as classical
lumped masses, while the stiffness properties Kcpl of the flexible disk are com-
puted by previous solid FEM analysis.

6.2 K1-K2 configuration results

The FE model of the K1+K2 configuration is characterised by a shaft dis-
cretisation formed of 141 3D shaft elements that mathematically describes the
multi-rotor shaft line formed by the motor group (MG), the flywheel-shaft
groups and the brake supporting group (BG). The section properties are at-
tributed according to real geometries of the shafts.

Fig. 6.8: Discretisation of the K1+K2 configuration.

Two distributed inertial elements are used to model both K1 and K2 fly-
wheels that are mounted on the rotor line. The K1 and K2 flywheel are in-
troduced in the model as distributed inertial elements connected to the shaft
by means of visco-elastic elements with the properties stored in the matrices
Kcon
K1DE(Ω), Kcon

K1NDE(Ω), Kcon
K2DE(Ω), Kcon

K2NDE(Ω) and CconK1DE(Ω), CconK1NDE(Ω),
CconK2DE(Ω), CconK2DE(Ω).

A total of 13 bearings elements are introduced and modelled according to
Eq. 3.13 in the K1+K2 configuration model. A schematic representation of the
discretised rotor system is illustrated in Fig. 6.8.

In this application axial vibrations are small if compared to lateral ones,
thus axial motions have been neglected. Firstly, to validate the Rotordynamical
Model results by means of real experimental data (only lateral vibrations mea-
surement have been performed on the test-case), the lateral behaviour of the
K1-K2 configuration is studied through an uncoupled lateral FE formulation
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with 4 dofs for each node.
The matching with the experimental data in terms of modal response is

investigated by means of a damped natural frequency analysis in the entire
operational regime of the machine (0 − 3000 rpm). The values of the first ten
computed natural frequencies relative to the K1+K2 configuration at 0 rpm are
listed in Tab. 6.2.

Tab. 6.2: K1+K2 Configuration - Computed natural frequencies at 0 rpm (Un-
coupled lateral analysis).

Number Mode Value Element

(Hz)

1 fcom st
K1+K2 m1 58.3 Flywheel K1

2 fcom st
K1+K2 m2 58.3 Flywheel K1

3 fcom st
K1+K2 m3 63.8 Flywheel K2

4 fcom st
K1+K2 m4 63.8 Flywheel K2

5 fcom st
K1+K2 m5 89.2 K1-K2 Flexible-Coupling

6 fcom st
K1+K2 m6 89.2 K1-K2 Flexible-Coupling

7 fcom st
K1+K2 m7 90.3 MG-K1 Flexible-Coupling

8 fcom st
K1+K2 m8 90.3 MG-K1 Flexible-Coupling

9 fcom st
K1+K2 m9 101.2 K2 Shaft

10 fcom st
K1+K2 m10 101.2 K1 Shaft

The first two natural frequencies f com st
K1+K2 m1 and f com st

K1+K2 m2 are relative
to the horizontal and vertical bending modes of the K1 flywheel-shaft group;
analogously, the modes at natural frequencies f com st

K1+K2 m3 and f com st
K1+K2 m4 are

bending modes in the horizontal and vertical plane of the K2 flywheel-shaft
group. Modes involving the flexible-couplings are characterised by the natural
frequencies values f com st

K1+K2 m5 and f com st
K1+K2 m6 for the coupling linking the K1

and K2 modules and f com st
K1+K2 m7 andf com st

K1+K2 m8 for the coupling between the
motor group and the K1 module.

The static computed damped natural frequencies values f com st
K1+K2 mi are com-

pared to the experimental measurements coming from an impulsive test per-
formed on the K1+K2 configuration. More specifically, results relative to the
Hammer 3 - impulsive test obtained through an impulsive excitation on the
in-built disk of the K1 flywheel in the vertical direction during the Test Cam-
paign 2 are considered. The results of the considered experimental impulsive
test in terms of vertical displacement of the bearing housings of the K1 and
K2 flywheel-shaft groups are illustrated in Figs. 6.9(a) and (b) and listed in
Tabs. 6.3 and 6.4.

Comparing the experimental data with the results coming from the the
modal analysis of the Rotordynamics Model of the K1+K2 configuration, it
can be noticed that the value of the experimental frequency corresponding to
the main peak of the K2 NDE vertical accelerometer response (fexp−stK2−NDE−m2 =

62.19 Hz) is very close to the value of the static frequency of the 3rd and 4th

computed mode f com st
K1+K2 m3 = f com st

K1+K2 m4 = 63.8 Hz. Furthermore, the com-
puted vertical modal response of the K1 bearings matches the experimental
data in terms of natural frequency values (f comstK1+K2 m1 = f com st

K1+K2 m2 = 58.3 Hz
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(a)

(b)

Fig. 6.9: K1+K2 Configuration - Hammer 3: Impulsive test - Excitation on K1
flywheel - (a): K2 NDE Vertical accelerometer (b): K1 NDE Vertical accelerom-
eter.

vs. fexp−stK1−NDE−m1 = 57.94 Hz). The K2+K1 (see Tab. 6.2) configuration model
has two modes characterised by a static frequency f comK1+K2 m9 = f comK1+K2 m10 =
101.2 Hz that match the peaks in the experimental response characterised by
frequency values near 104 Hz and present in accelerometric data of each exper-
imental tests Fig. 6.9, independently from the particularly mounted flywheel,
thus meaning that it characterise modes of the shaft-line regardless the specific
mounted flywheel.

Tab. 6.3: K1+K2 Configuration- Hammer 3 Impulsive test: Peak frequencies in
the hammer displacement response K2-NDE.

Number Mode Value

(Hz)

1 fexp−st
K2−NDE−m1 58.52

2 fexp−st
K2−NDE−m2 62.19

3 fexp−st
K2−NDE−m3 88.3

4 fexp−st
K2−NDE−m4 104.2

The numerical modal response in the whole operating range of the test bench
(0 − 3000 rpm) is presented in the Campbell’s plot (Fig. 6.10), derived con-
sidering a step of 100 rpm. The Campbell’s plot individuates two possible
harmonic resonances in the operating regime of the machine. The resonance
predicted by means of the Rotordynamical Model relative to the 1st mode
(f comp resK2 m1 = 47.38 Hz) is approximately equal to the experimental resonance
that the K2 flywheel shaft group exhibits for a rotational regime corresponding
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Tab. 6.4: K1+K2 Configuration - Hammer 3 Impulsive test: Peak frequencies
in the hammer displacement response K1-NDE.

Number Mode Value

(Hz)

1 fexp−st
K1−NDE−m1 57.94

2 fexp−st
K2−NDE−m3 89.8

3 fexp−st
K2−NDE−m4 100.3

to fexp−resK2−NDE m1 = 48.8 Hz (see Fig. 6.11) in the Run 4 test performed during
Test Campaign 2.

Fig. 6.10: K1+K2 configuration - Campbell’s plot (Uncoupled lateral analysis).

Fig. 6.11: K1+K2 Configuration - Run 4 Free run test: K2 NDE vertical ac-
celerometer.
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6.3 K3+K4 200-400 configuration results

The capability of the Rotordynamical Model in predicting the critical be-
haviour of complex real rotating machines is further investigated by applying it
to the machine configuration with K3 and both K4-200 and K4-400 flywheels
engaged to the shaft, for a total inertial value Jeq equal to 1600 kg m2. The pe-
culiarity of this configuration consists in the shaft geometry of the K4 flywheel
group that differs from the ones of the K1, K2 and K3 groups (see Fig. 6.4c).
In the K4 group, two flywheels can be engaged or disengaged to the shaft and,
to this purpose, the in-built disk for the engagement is placed in the mid-span
of the shaft instead of being at the NDE side.

Fig. 6.12: Discretisation of the K3+K4 200-400 configuration.

To further validate the Rotordynamical Model results by means of real ex-
perimental data (only lateral vibrations measurement have been performed on
the test-case), the lateral behaviour of the K3-K4 200-400 configuration is stud-
ied through an uncoupled lateral FE formulation with 4 dofs for each node.

The FE model of the K3+K4 configuration is characterised by a shaft dis-
cretisation formed of 148 3D shaft elements that mathematically describes the
multi-rotor shaft line formed by the motor group (MG), the flywheel-shafts
groups and the brake supporting group (BG). The section properties are at-
tributed according to real geometries of the shafts.

Three distributed inertial elements are used to model K3, K4-200 and K4-
400 flywheels that are mounted on the rotor line. These flywheels are intro-
duced in the model as distributed inertial elements connected to the shaft
by means of visco-elastic elements with the properties stored in the matri-
ces Kcon

K3DE(Ω), Kcon
K3NDE(Ω), Kcon

K4200DE(Ω), Kcon
K4200NDE(Ω), Kcon

K4400DE(Ω),
Kcon
K4400NDE(Ω) and CconK3DE(Ω), CconK3NDE(Ω), CconK4200DE(Ω), CconK4200NDE(Ω),

CconK4400DE(Ω), CconK4400NDE(Ω).
A total of 13 bearings elements are introduced and modelled according to

Eq. 3.13 in the K1+K2 configuration model. A schematic representation of the
discretised rotor system is illustrated in Fig. 6.12.

As it has been done for the K1+K2 configuration analysis, the matching
with the experimental data in terms of modal response is investigated by means
of a damped natural frequency analysis in the entire operational regime of the
machine (0− 3000 rpm). The values of the first ten computed damped natural
frequencies relative to the K3+K4 200-400 configuration at 0 rpm are listed in
Tab. 6.5.

The first two natural frequencies f com st
K3+K4 m1 and f com st

K3+K4 m2 are relative
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Tab. 6.5: K3+K4 200-400 Configuration - Computed natural frequencies at 0
rpm (Uncoupled lateral analysis).

Number Mode Value Element

(Hz)

1 fcom st
K3+K4 m1 61.5 Flywheel K3

2 fcom st
K3+K4 m2 61.5 Flywheel K3

3 fcom st
K3+K4 m3 65.2 Flywheels K4

4 fcom st
K3+K4 m4 66.6 Flywheels K4

5 fcom st
K3+K4 m5 87.2 K3-K4 Flexible-Coupling

6 fcom st
K3+K4 m6 87.2 K3-K4 Flexible-Coupling

7 fcom st
K3+K4 m7 90.5 K3-K4 Flexible-Coupling

8 fcom st
K3+K4 m8 91.5 K3-K4 Flexible-Coupling

9 fcom st
K3+K4 m9 116.3 K3-K4 Shaft

10 fcom st
K3+K4 m10 116.3 K3-K4 Shaft

to the horizontal and vertical bending modes of the K3 flywheel-shaft group;
analogously, the modes at natural frequencies f com st

K3+K4 m3 and f com st
K3+K4 m4 are

bending modes in the horizontal and vertical plane of the K4 flywheel-shaft
group. Modes involving the flexible-couplings are characterised by the natural
frequencies values f com st

K3+K4 m5, f com st
K3+K4 m6, f com st

K1+K2 m7 and f com st
K1+K2 m8.

The static computed damped natural frequencies values f com st
K3+K4 mi are com-

pared to the experimental measurements coming from an impulsive test per-
formed on the K3+K4 configuration. More specifically, results relative to the
Hammer 4 - impulsive test obtained through an impulsive excitation on the in-
built disk of the K3 flywheel in the vertical direction during the Test Campaign
2 are considered. The results of the considered experimental impulsive test in
terms of vertical displacement of the bearing housings of the K3 and K4 groups
are illustrated in Figs. 6.13 - 6.15 and listed in Tabs. 6.3 and 6.4.

Fig. 6.13: K3+K4 Configuration - Hammer 4: Impulsive test - Excitation on
K3 flywheel: K3 NDE Vertical accelerometer.

Comparing the experimental data with the results coming from the the
modal analysis of the rotordynamics model of the K3+K4 configuration, it can
be observed that the value of the experimental frequency corresponding to the
main peak of the K3 NDE vertical accelerometer response fexp−stK2−NDE−m2 = 63.4
Hz is close to the value of the static frequency of the 1st computed mode
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Fig. 6.14: K3+K4 Configuration - Hammer 4: Impulsive test - Excitation on
K3 flywheel: K4 DE Vertical accelerometer.

Fig. 6.15: K3+K4 Configuration - Hammer 4: Impulsive test - Excitation on
K3 flywheel: K4 NDE Vertical accelerometer.

f com st
K3+K4 m1 = f com st

K3+K4 m4 = 61.5 Hz. Furthermore, also the computed verti-
cal modal response of the K4 bearings matches the experimental data in terms
of frequency response (f comstK3+K4 m2 = 65.2 Hz vs. fexp−stK4−NDE−m2 = 67.2 Hz).
The K3+K4 configuration model has two modes characterised by a static fre-
quency f comK3+K4 m9 = f comK3+K4 m10 = 116.3 Hz that may correspond to the peaks
in the experimental response characterised by frequency values near 103.6 Hz
representing modes of the shaft-line. It must be noticed that the discrepancy
between computed and experimental data in the frequency values may be caused
by the particular geometrical arrangement of the K3+K4 shaft. A more detailed
discretised model is hence required to match shaft bending modes.

The numerical modal response in the whole operating range of the test bench
(0− 3000 rpm) is presented in the Campbell’s plot (Fig. 6.16), derived consid-
ering a step of 100 rpm.

The Campbell’s Diagram individuates one possible harmonic resonance in
the operating regime of the machine (f comp resK2 m1 = 45.8 Hz). The experimental
response of the K3 flywheel shaft is illustrated in 6.17 in terms of r.m.s. value
of the vertical vibration velocity of the K3 NDE bearing housing. It can be
noticed that the dynamical response exhibits a dynamical amplification starting
from a speed equal to 45 hertz, thus assessing the predicting capability of the
Rotordynamical Model with a good degree also in this machine configuration.
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Fig. 6.16: K3+K4 200-400 Configuration - Campbell’s plot (Uncoupled lateral
analysis).

Fig. 6.17: K3+K4 200-400 Configuration: Test Campaign 2 - Run 5: r.m.s.
value of the vibration velocity (K3 NDE vertical accelerometer).
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Tab. 6.6: K3+K4 Configuration - Hammer 4 Impulsive test: Peak frequencies
in the hammer displacement response K3-NDE.

Number Mode Value

(Hz)

1 fexp−st
K3−NDE−m1 63.4

2 fexp−st
K3−NDE−m2 67.4

3 fexp−st
K3−NDE−m3 85.3

4 fexp−st
K3−NDE−m4 103.3

Tab. 6.7: K3+K4 Configuration - Hammer 4 Impulsive test: Peak frequencies
in the hammer displacement response K4-DE.

Number Mode Value

(Hz)

1 fexp−st
K4−NDE−m1 63.7

2 fexp−st
K4−NDE−m2 67.7

3 fexp−st
K4−NDE−m3 87.9

4 fexp−st
K4−NDE−m4 103.6

6.4 K2 configuration results

To investigate the performance of the Rotordynamical Model in describing
coupled bending-torsional vibrations, the K2 configuration is analysed using of
a coupled lateral torsional FE formulation with 5 dofs for each node. The K2
shaft line is modelled analogously to the previous configuration: 141 3D shaft
are used with the section properties attributed according to real geometries of
the shafts.

Fig. 6.18: Discretisation of the K2 configuration.

Concerning rigid disk elements, for the entire set of rotor units a total of 30
lumped mass have been added to nodes to take into account the inertial influence
of the emergency brake disks, the in-built disks, the tested brake-disk and the
flanges of the flexible-couplings. The lumped masses are placed in the nodes
corresponding to their location on the corresponding shaft. The K2 flywheel is
modelled as a distributed inertial element connected to the shaft in two points.
The geometry coupling both axially and torsionally the K2 flywheel to the
shaft is described with different values of the Kcon

K2SNDE(Ω, N), Kcon
K2DE(Ω, N)

and CconK2DE(Ω, N), CconK2NDE(Ω,N) matrices. To consider the influence of the
centrifugal forces on the double-conical coupling the stiffness matrices is speed
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Tab. 6.8: Peak frequencies in the hammer vertical displacement response: K4-
NDE.

Number Mode Value

(Hz)

1 fexp−st
K4−NDE−m1 63.7

2 fexp−st
K4−NDE−m2 67.7

3 fexp−st
K4−NDE−m3 87.5

4 fexp−st
K4−NDE−m4 103.6

dependent.
In the developed model 13 bearings elements are introduced and modelled

according to Eq. 3.13.
The torsionally-stiff flexible-couplings are introduced as general elasto-damping

elements linking the single Rotor units according to the approach described by
Eq. 3.25. The inertial properties of the flexible-couplings are introduced by
means of classical disk massive elements.

A schematic representation of the rotor system is illustrated in Fig. 6.18.
The modal response of the K2 configuration is obtained from a coupled

lateral-torsional damped natural frequency analysis in the entire operational
regime of the machine 0 − 3000 rpm. The values of the first six computed
damped natural frequencies relative to the K2 configuration at 0 rpm are listed
in Tab. 6.9.

Tab. 6.9: K2 Configuration - Computed natural frequencies at 0 rpm (Coupled
torsional-lateral analysis).

Number Mode Value Element

(Hz)

1 fcom st
K2 m1 13.1 Torsional

2 fcom st
K2 m2 20.2 Torsional

3 fcom st
K2 m3 36.2 Torsional

4 fcom st
K2 m4 63.9 Lateral

5 fcom st
K2 m5 89.4 Lateral

6 fcom st
K2 m6 101.2 Lateral

The first three natural frequencies f com st
K2 m1 = 13.1 Hz, f com st

K2 m2 = 20.2Hz are
f com st
K2 m3 = 36.2 Hz are characteristic of torsional modes. The modes at natural

frequencies f com st
K2 m4 = 63.9 Hz, f com st

K2 m5 = 89.4 Hz and f com st
K2 m6 = 101.2 Hz are

the bending modes relative respectively to the flywheel-shaft K2 module, the
K1-K2 flexible coupling and the K2 shaft.

The numerical results relative to lateral modes can be directly compared to
the experimental measurements coming from an impulsive test performed on the
K2 configuration. More specifically, results relative to the Hammer 2-impulsive
test obtained through an impulsive excitation on the in-built disk of the K2
flywheel in the vertical direction during the Test Campaign 2 are considered.

The results of the considered experimental impulsive test in terms of vertical
displacement of the bearing housings of the K2 NDE bearing are illustrated in
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Fig. 6.19 and listed in Tab. 6.10. Comparing the experimental data with the
results coming from the the modal analysis of the rotordynamics model of the K2
configuration, it must be noticed that the value of the experimental frequency
corresponding to the main peak of the K2 NDE vertical accelerometer response
(fexp−stK2−NDE−m2 = 63.35 Hz) is very close to the value of the static frequency of

the 4th computed mode f com st
K2 m4 = 63.9 Hz.

The other two peaks in the experimental response (fexp−stK2−NDE−m2 = 86.9 Hz

and fexp−stK2−NDE−m2 = 101.1 Hz) are matched by the computed static frequencies

f com−stK2−NDE−5 = 89.4 Hz and f com−stK2−NDE−6 = 101.2 Hz relative respectively to
flexible-coupling and shaft modes and they are predicted with a good approxi-
mation by the discretisation developed with the Rotordynamical Model.

Tab. 6.10: Peak frequencies in the hammer displacement response: K2-NDE.

Number Mode Value

(Hz)

2 fexp−st
K2−NDE−m1 63.35

3 fexp−st
K2−NDE−m2 86.9

4 fexp−st
K2−NDE−m2 101.1

Fig. 6.19: K2 Configuration - Hammer 2: Impulsive test - Excitation on K2
flywheel.

It must be noticed that the Campbell’s plot (see Fig. 6.20) highlights one
possible lateral synchronous resonance (f comp resK2 m = 47.4 Hz) of the 4th lateral
mode in the entire operating range of the test bench. The predicted reso-
nance value is approximately equal to the experimental resonance frequency
that the K2 flywheel shaft group exhibits for a rotational regime corresponding
to fexp−resK2−NDE mI = 48.6 Hz (see Fig. 6.21) in the Run 2 test performed during
Test Campaign 2.

The Campbell’s plot individuates also three possible torsional resonance
speed (f comp resK2 t1 = 13.1, f comp resK2 t1 = 13.1, f comp resK2 t2 = 20.2 and f comp resK2 t2 =
36.2 Hz). Since direct measurements on torsional vibrations are not available
(dedicated tests to evaluate the torsional vibrations behaviour of the machine
have not been performed), some considerations have been performed from indi-
rect vibration lateral data.

More specifically, Test-Campaign 3-Run 9 data are considered; this test is
formed of a ramp-up frome 0 rpm to 2400 rpm, a regime phase 2400 rpm and
a run-down to 0 rpm. Figs. 6.22(a) and 6.22(b) illustrate the vertical accelera-
tion response respectively on the K2 NDE and K2 DE housings. Responses are
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Fig. 6.20: K2 Configuration - Campbell’s plot (Coupled torsional-lateral analy-
sis).

Fig. 6.21: K2 Configuration - Run 2: Free run test: vertical accelerometers on
K2 flywheel-shaft group.
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plotted as a visual representation of the spectrum of frequencies of the accelero-
metric data as they vary with time during a free run test.

(a)

(b)

Fig. 6.22: K2 Configuration - Test campaign 3 run 9: Vertical acceleration on
K2 bearing supports (a): NDE (b): DE .

As it can be seen from the figures, both the plots present the typical syn-
chronous response and other non-harmonic dynamical amplifications probably
due to shaft-line misalignments. The spectrum of the vertical acceleration of the
K2 NDE housing exhibit a weak amplification zone at a constant frequency in
the band around 13 Hz. Such kind of response can be explained as the influence
on the lateral response of a torsional vibration at a value of about 13 Hz, that
is close to the value of the first torsional frequency predicted by the numerical
model f comp resK2 t1 = 13.1. It must be noticed that the K2 NDE housing is on
the side of the K2 module where there is the torsional coupling between the K2
flywheel and its in-built disk, which represents a possible torsional excitation
source; the constant frequency amplification band is in fact not present in the
response on the K2 DE housing where such torsional coupling is absent.



Conclusions

In the present thesis a general-purpose Rotordynamical Model has been de-
veloped for the systematic analysis of multi-rotor systems. The aim of the work
consists in modelling complex rotors through a systematic and practical ap-
proach for the study of coupled lateral and torsional dynamics. The model is
based on a finite element rotordynamics formulation and it is able to manage
long rotors characterised by complex topology, such as rotor with distributed
inertias or elements with complex connections. A correct modelling of this kind
of rotor is a fundamental aspect for the prediction of the critical behaviour of the
rotordynamics systems, particularly when lateral-torsional vibration couplings
arise. Through the developed model, complicated shaft-to-rotor connections
or particular mounted parts, otherwise not representable with classical mod-
els, may be mathematically described. The main innovative characteristics of
the model consists in its general topology: it may reproduce rotor features by
means of both standard and non-standard rotor finite element (FE) models.
Multi-rotor linking elements (such as couplings) may be implemented and non-
standard elements may be also used for describing rotor non-standard compo-
nents. The finite element formulation is derived considering for shafts 3D beams
with 6 degrees of freedom (dofs) per node. The numerical efficiency of the pre-
sented model set it as a good compromise between accuracy and computational
effort, thus it may be used to perform common rotordynamical investigation
performed in rotating machinery design.

The test-case investigated in this research activity is a dynamometric fly-
wheels test bench for railways brakes, designed for the acceptance dynamical
testing of railways brake components. This particular test bench has been cho-
sen as case study for its complex configuration characterised by distributed ro-
tors requiring a correct identification of the critical speeds of the machinery in
order to assure safe working conditions and to prevent the system from working
with large amplitude vibrations that may be harmful for the system integrity
(rolling bearings, flexible couplings) and for the operation of the test bench.

The Rotordynamical Model developed during the Ph.D activity has been
validated by means of experimental data coming from a test campaign aimed
at the evaluation of the vibration levels of the machinery. The test campaign
has been performed by Politecnico di Milano, in collaboration with Italcertifer
(FS) and Simpro S.p.A thanks to the instrumentation of the test bench through
a set of accelerometers to measure mechanical vibration signals in terms of
acceleration characterising the non-rotating parts of the machinery.

The Rotordynamical Model turned out to be particularly useful for the ro-
tordynamical systematic analysis of the investigated machine, enabling the defi-
nition of models and analysis of several machine configurations through a simple

113
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procedure. Thanks to its efficiency, it represents a good compromise between
accuracy and computational load and it exhibited good capabilities in predict-
ing lateral and torsional dynamics behaviour of the complex machine chosen as
test-case.

Future developments of the present work will be based both on the modal
analysis of other tested machine configurations of the present case study and
on the comparison of the results coming from transient simulations with the
vibration levels acquired during brake test. The entire set of tests performed
in Test Campaign 1, 2 and 3 will be analysed in detail. Frequency responses
and transient analysis will be performed to make a quantitative investigation
of the contribution of the complex components on the vibration behaviour of
the test-bench. Furthermore, thanks to the developed model, the effects due to
the misalignment of the flexible-couplings will be studied. Models of the base-
plate and foundation will also be introduced to reproduce modes relative to the
anchoring structure. Simultaneously, other test-cases, such as multi-rotor ma-
chines equipped with gearboxes, will be studied with the developed model. From
a modelling stand-point more complex finite-element or flexible-multibody for-
mulations will be studied and possibly introduced in the general architecture of
the developed model. Furthermore, the modelling of other coupling mechanisms
will be enabled in the Rotordynamical Model.
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Shape Functions
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Nθx1 = 1− ξ (A.9)

Nθx1 = ξ (A.10)
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Fig. B.1: Programme pour les essais comparatifs et pour les verifications peri-
odiques - Projet
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