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Abstract

In this work, the problem of active attenuation of disturbances with uncertain and

possibly time-varying characteristics is addressed. The focus is on situations in which the

uncertainty set is large, that is, the possible operating conditions of the system subject to

disturbances can be different so that a single robust controller cannot ensure satisfactory

performance levels. These situations underline the importance of control solutions able to

reconfigure their action in real-time.

The first part of this work is focused on the description of two different case studies,

namely an active suspension system and an adaptive optics system, as well as on an overview

of relevant contributions within the literature related to this subject. The solution that

we propose is described in the second part; this method relies on the Adaptive Switching

Control (ASC) paradigm, which has emerged as an alternative to classical Adaptive Control.

In ASC, a finite family of candidate controllers is pre-synthesized off-line, and a supervisory

logic has to select the potentially best one to be put in feedback with the plant. Particular

attention is devoted to both performance and stability of the overall switching system.

Finally, as an extension of the solution based on ASC, in the third part of this work an

algorithm is proposed which combines both switching and tuning, aiming at preserving

the beneficial features of the two different approaches, while possibly overcoming their

drawbacks.

The effectiveness of the proposed solutions is validated by means of simulation

tests performed in the context of the two considered case studies.
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Introduction

A disturbance is an element that affects the normal behavior of a system. These

few words roughly explain the importance of solutions able to counteract the effects of

disturbances, that is, aiming at leading the system to act, as closely as possible, as if the

disturbances do not affect it. Disturbance attenuation is a common goal in several diversified

contexts of application, such as: active noise control [58]; noise cancellation in an acoustic

duct [10]; vibration attenuation for helicopter rotors [12]; biomass productivity in a fed-batch

reactor [89]; eccentricity compensation [26]; disturbance torque compensation in electric

machines [81]; laser systems [52]; active suspension systems [64]; disturbance attenuation

for adaptive optics applications for ground-based telescopes [2]. In this work, two case

studies are considered, namely an active suspension system and an adaptive optics system.

In particular, the former case refers to a quarter-car model with the aim of attenuating the

effects of the road unevenness, while in the latter case the problem is that of attenuating the

effects of wavefront distortion, caused by atmospheric turbulence and structural vibrations,

in order to recover a satisfactory resolution.

In several situations, a non-negligible uncertainty affects the a priori available

disturbance model. If the possible uncertainty set is sufficiently small, that is, the possible

operating conditions of the system subject to the disturbances are quite close one another,

a single robust controller can in general achieve a satisfactory performance level. On the

contrary, if the uncertainty set is large, it becomes difficult to achieve desirable attenuation

capabilities by means of a unique control action. The concept of robustness is thus naturally

extended to the concept of real-time control reconfiguration.

Specifically, the reconfiguration of the control action in real-time arises in both

learning and adaptation problems. In particular, a learning problem refers to the case in

which the disturbance characteristics are almost stationary, thus the aim is that of finding

2



Introduction

the controller, within a family of candidate controllers, able to ensure the best possible level

of attenuation. On the other hand, an adaptation problem arises when the disturbance

characteristics vary with time, then the control action must be adjusted to fit the current

operating condition.

Much interest to adaptive solutions for the problem of disturbance attenuation has

been raised with respect to narrow-band disturbances. In this context, the proposed tech-

niques follow in general the classical Adaptive Control paradigm, involving either direct ap-

proaches (providing algorithms inherently designed for disturbance attenuation objectives)

or indirect approaches (exploiting the separation principle and resorting to disturbance

frequency estimation).

The control solution that we propose in this work is based on a different paradigm,

that is, the Adaptive Switching Control (ASC) approach. ASC has emerged as an alternative

to classical Adaptive Control, and has been largely studied and adopted in the context of

plant model uncertainty. In ASC, a finite family of candidate controllers is pre-synthesized

off-line, and a supervisory logic has to select the potentially best one to be put in feedback

with the plant. Among the possible advantages of ASC, discussed for example in [46],

we can mention the modularity, that is, the independence between the synthesis of the

controllers and the design of the switching logic. This feature can be useful either when

existing control solutions should be used, or when advanced control strategies are required

for specific problems. Further, it is worth noting that the ASC approach is also more

suitable to quickly achieve satisfactory performance and to deal with abrupt changes in

the uncertain disturbance characteristics, provided that the supervisor is able to select in a

short time the potentially best controller; however, the attenuation level achievable by the

pre-synthesized controllers in the finite set determines the performance that can be achieved

by the overall control scheme. On the other hand, classical adaptive techniques based on

parameter tuning can usually achieve better performance levels in the long run, but it is

possible that the tuning procedure requires a non-negligible time interval before achieving

a satisfactory behavior. With this respect, as an extension of the proposed solution to

the problem of active disturbance attenuation based on the ASC paradigm, we propose an

algorithm combining both switching and tuning, aiming at preserving the beneficial features

of the two different approaches, while possibly overcoming the mentioned drawbacks.
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Introduction

Within the control strategies that have been briefly outlined above, the problem of

stability of the overall closed-loop switching system is analyzed, and specifically two differ-

ent solutions are proposed. One of them addresses the stability requirement directly within

the synthesis of the set of controllers; this makes the complexity of the multi-controller

architecture independent of the plant order, but, on the other hand, affects the modularity

which is typical of the ASC paradigm. The other solution relies on the Youla parametriza-

tion of the stabilizing controllers, and on a specific implementation of the multi-controller

based on a switching mechanism between the Youla parameters; with respect to this solu-

tion, the modularity of the ASC approach is preserved, but the complexity of the adopted

architecture is unavoidably influenced by the plant order.

This work presents results and solutions that we propose for the problem of dis-

turbance attenuation; part of its contents has been published or submitted in [2, 3, 21, 19,

20, 18]. The organization of the work is as follows.

Part I aims at providing a presentation of the topic by describing in some detail

both the considered case studies and relevant solutions for the problem of active disturbance

attenuation that have been proposed in the literature. In particular, Chapter 1 illustrates

the problem of control design for adaptive optics systems, while Chapter 2 introduces the

challenges related to active suspension systems. Finally, Chapter 3 provides an overview

of significant contributions proposed in the literature in the context of active disturbance

attenuation.

The solution based on the ASC paradigm is introduced in Part II. Details on the

selection of the potentially best controller by the supervisory unit are provided in Chapter

4, with particular emphasis on the properties of test functionals which are computed to

evaluate the potential behavior of each candidate controller. Then, Chapter 5 and Chapter

6 focus on the proposed solutions for the problem of ensuring stability of the feedback loop

under arbitrary switching. Further, the simulation results shown in Chapter 6 underline

the validity of the ASC approach in the presence of different classes of disturbances.

Part III is devoted to the presentation of the algorithm combining switching and

tuning. In particular, it is shown that, under appropriate assumptions, the proposed scheme

is able to achieve an arbitrary attenuation level. The theoretical findings are validated by

means of simulation tests.

Finally, concluding remarks and future perspectives are indicated.
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PART I

Problem overview and applications
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Chapter 1

Control Design for Adaptive Optics

A central problem when dealing with ground-based telescopes arises from deforma-

tions of the light wavefront caused by the atmosphere. It is well known that the maximum

resolution of any optical device depends on diffraction; in order to recover diffraction limited-

resolution, modern ground-based telescopes are equipped with adaptive optics (AO) devices,

which aim at reducing, thanks to the use of deformable mirrors, the aforementioned effects

of wavefront distortion. In addition to the atmospheric turbulence [84], telescopes also

suffer from structural vibrations due to situations such as telescope orientation, telescope

tracking errors, and wind shaking. In view of their potential impact, considerable attention

has been devoted over the last decades to the analysis and design of AO systems. Together

with developments of physics, mathematics and technology, contributions to the subject

have been recently proposed also from a control engineering perspective, as witnessed by

[57, 78, 39, 80, 48, 2, 3] and the special issue on AO for ground-based telescopes organized

by the European Journal of Control [29].

We focus on the control architecture installed on the Large Binocular Telescope

(LBT, located on Mt. Graham, Arizona, USA) [2, 5, 1, 4, 3], and one of the two Magellan

Telescopes (Las Campanas Observatory, Chile) [28]. A similar architecture will be also

adopted for the upgrading of one of the four Very Large Telescopes (Cerro Paranal, Chile)

[66] and the Giant Magellan Telescope (Las Campanas, Chile), which is expected to be

operative by the end of 2024 [37]. The considered AO unit comprises a wavefront sensor

(WFS) - specifically, we consider a pyramid one - an adaptive secondary mirror (ASM),

and a real-time computer (RTC). Roughly speaking, the pyramid WFS delivers a signal
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Chapter 1. Control Design for Adaptive Optics

that is proportional, by a first-order approximation, to the first derivative of the incom-

ing wavefront. The RTC, which implements the AO controller, computes the command

vector driving the actuators of the ASM. Through the use of hundreds of voice-coil (electro-

magnetic force) actuators, distributed on the mirror shell, the ASM corrects the wavefront

distortion according to the RTC command vector. The correction is realized in such a way

that the shape of the shell of the ASM becomes, as closely as possible, opposite to that of

the wavefront distortion [84, 25].

As pointed out in [29], AO systems are becoming bigger and also more complex,

with the aim of achieving higher performance levels. This obviously raises increasingly

challenging issues for the design and implementation of appropriate control techniques,

which have to ensure satisfactory performance while requiring low computational burden.

Classical approaches to AO control can be subdivided into two main groups: those

which do not employ any form of identification of turbulence and vibrations models [31, 42];

and those which employ models of turbulence and/or vibrations in combination with model-

based control design techniques, such as H2, H∞ and LQG control [78, 79, 5, 30, 57]. Model-

based approaches have the intuitive advantage of including a notion of optimality in the

sense of performance ideally achievable for the identified process model. However, it is to

be noticed that it is practically impossible to achieve exact models for the disturbances, and

it is therefore important that the models used to synthesize the controller are sufficiently

accurate at the frequencies of concern. This basically means that model-based approaches

provide controllers whose order is essentially determined by the order of the underlying

models. High-order turbulence/vibrations models, in addition to requiring non-negligible

identification effort, will therefore lead to high-order controllers, which may be infeasible

(or simply not desired) from an implementation viewpoint. On the other hand, models with

reduced complexity may fail to capture well the behavior of turbulence and/or vibrations

at the frequencies of concern.

The previous considerations suggest that techniques not relying on identified mod-

els of the disturbances could represent an appealing strategy for the reduction of wavefront

distortion. Specifically, in Appendix 6.B we will describe a design method [2], which allows

to optimize the parameters of a modal controller of given order with respect to a relevant AO

performance criterion which is defined on a “sampled” frequency-domain; this means that

the optimization procedure involves samples of turbulence and vibrations frequency pro-

7
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Figure 1.1: AO control scheme.

files, rather than their analytical models (as happens in classical H2, H∞ and LQG control

design). This makes it possible to use turbulence/vibration profiles of arbitrary complex-

ity, even empirical power spectral densities (PSDs) from data, while keeping the controller

order at a manageable value. As it will appear clearly from Appendix 6.B, the proposed

technique allows to deal also with the contribution of the measurement noise by employ-

ing directly its frequency profile, or empirical PSD from data, within the above-mentioned

sampled frequency-domain framework.

Finally, it is worth noting that the frequency profiles of the aforementioned distur-

bances, that is turbulence, vibration and measurement noise, vary in accordance with the

operating conditions of the telescope (e.g., different wind speed, different cloudiness during

the exposure time). Situations of this type can be managed for example by accounting for

robustness in the frequency-based control synthesis approach outlined above [3], or, alterna-

tively, by resorting to an adaptive switching control approach as described in next chapters

(simulation results related to the latter case will be shown in Section 6.3).

1.1 AO control system architecture

The architecture of the AO control system that we consider is depicted in Fig. 1.1,

and is composed of an external AO control system (working at the AO sampling time Ts =

1ms), whose task is to determine the commands to the ASM, and an internal ASM control

8



Chapter 1. Control Design for Adaptive Optics

system (with sampling time TASM ≈ 10−2 Ts). The main devices characterizing the control

loop are the AO controller, the Pyramid WFS, and the ASM. The AO controller receives

at time tTs (where t ∈ Z+, Z+ := {0, 1, · · · }) the measurement vector y(t) ∈ R
q, with q the

number of measurements, from the Pyramid WFS and computes the command vector u(t) ∈

R
p, with p the number of actuators, so as to pilot the actuators acting on the ASM shell. The

command vector provides the information about the shape to be reproduced by the shell in

order to compensate for the wavefront distortions. Due to the non-negligible dynamics of the

shell, a dedicate control loop is needed to get the desired shape within Ts. Such a control loop

is realized through the use of p capacitive sensors co-located with the actuators and placed at

the back of the shell. Specifically, the control law piloting each actuator has a decentralized

component obtained by a Proportional-Derivative feedback action which depends on the

measurement of the co-located sensor, and a centralized component implemented through a

feed-forward action which equals the force needed to statically deform the shell as indicated

by the command vector u(t); this latter action is obtained by multiplying u(t) with an

estimate of the shell stiffness matrix of dimensions p × p, which is a-priori calibrated. For

more details about the ASM internal position control, the interested reader is referred to

[1, 83].

In Fig. 1.1 the phase aberration of the light wavefront due to turbulence and vibra-

tions is denoted by φtot(t). Such a distortion has to be corrected by the shell deformations

which provide the so called correction phase φcor(t). The difference φres(t) = φtot(t)−φcor(t)

is the residual phase after the ASM correction. The objective of the external control loop

therefore consists in regulating the residual phase φres(t) about 0.

The control architecture of Fig. 1.1 refers to a modal control scheme where the

phase aberrations are expressed through a modal basis. Common choices in this regard are

Zernike and Karhunen-Loève basis [25, 84], the latter being considered in our framework.

The residual phase is translated into the measurement vector y(t) from the Pyramid WFS

as described by

y(t) = D φres(t− 1) + w(t) , (1.1)

where w(t) ∈ R
q is the measurement noise vector, which is assumed to be a zero-mean

white noise. The matrix D characterizes the WFS and describes the geometric relationship

between the modal space and the measurement space. Notice that the modal space depends

9



Chapter 1. Control Design for Adaptive Optics

on the selected modal basis and all the phase variables represent coefficient vectors belonging

to R
p, where p denotes the dimension of the modal space.

The ASM correction phase is obtained as

φcor(t) = N u(t− 1), (1.2)

where N is the so-called Commands-to-Modes matrix, which describes the geometric re-

lationship between the command space and the modal space. An estimate of N can be

obtained via finite elements analysis of the mirror shell, once chosen the modal basis to be

used.

The command vector provided to the ASM is computed by the AO controller as

follows 1

u(t) =MKM (d)R y(t) , (1.4)

where M is the Modes-to-Commands (or Projection) matrix, represented by the From

modes to commands block in Fig. 1.1, and R is the Reconstruction matrix, which yields the

geometric relationship between the WFS measurements and the deformations of the ASM

(Modal reconstruction block in Fig. 1.1). The transfer matrix KM (d) has dimension p × p

and has to be designed in order to satisfy the control requirements. In the proposed setting,

KM (d) is chosen as a diagonal matrix, KM (d) = diag{C1(d), · · · , Cp(d)}, as the ideal goal

is to control the i−th mode by means of controller Ci(d).

In fact, the residual phase satisfies the relationship

φres(t) = φtot(t)−N d u(t) = φtot(t)− dN MKM (d)R y(t) (1.5)

which can be rewritten as

∆(d)φres(t) = φtot(t)− Ξ(d)w(t) (1.6)

1Given an LTI dynamic system with input u and output y, by the notation y(t) = W (d)u(t) we mean

that the signal y is computed by means of the difference equation

nG∑

k=0

Gk y(t− k) =

nH∑

k=0

Hk u(t− k) (1.3)

where W (d) = [G(d)]−1H(d) is the system I/O operator in the unit backward shift operator d, where

H(d) =
∑nH

k=0 Hkd
k and G(d) =

∑nG

k=0 Gkd
k are polynomial matrices having maximum degree nG and nH ,

respectively; further, G(0) = I.

10



Chapter 1. Control Design for Adaptive Optics

where ∆(d) := (I + d2N MKM (d)RD) and Ξ(d) := dN MKM (d)R. The matrix R is

then selected as the Moore-Penrose inverse of D, i.e. R := (D⊤D)−1D⊤. Accordingly, ∆(d)

simplifies to ∆(d) = (I + d2N MKM (d)). The matrices N and M are instead calibrated

so as to yield N M ≈ I (more precisely for the LBT, N M is a matrix with elements on

the diagonal equal to 1 and extra-diagonal elements with absolute values ≈ 2−15). Thus,

by neglecting the measurement noise, we can therefore select a diagonal controller KM (d)

and achieve modal decoupling, i.e. φres(t) ≈ (I + d2KM (d))−1 φtot(t).

In principle, one could synthesize a dedicated controller Ci(d) for each mode.

However, in practice, it is convenient to consider advanced control design techniques only for

those modes having more influence on the value of φres(t). Within the addressed framework,

dedicated controllers CD(d) are synthesized only for tip and tilt modes [5, 4, 39], which

consist in the image displacements in the two orthogonal directions of the focal plane, while

the remaining modes are regulated by simple integrator controllers CI(d) = g/(1−d), where

g is a gain to be set. In fact, it has been observed by means of experimental studies on

LBT that turbulence and vibrations affect mainly tip/tilt modes. In turn, according to

the Kolmogorov theory, in the considered operating setting tip/tilt modes yield more than

80% of the overall atmospheric turbulence variance [77]. The choice of considering only two

dedicated controllers is mainly motivated by the memory constraints of the RTC which, as

detailed in [5], has been designed to work with a modal integrator, so that the maximum

state dimension allowed for the AO controller KM (d) is 672.

Let uM (t) ∈ R
p be the command vector in the modal space, such that u(t) =

MuM (t), and suppose that tip and tilt correspond to the first two entries of the vec-

tor uM (t), then KM (d) = diag{CD(d), CD(d), CI(d), · · · , CI(d)}, where for simplicity the

same controller is used for tip and tilt modes.

To conclude this presentation and to introduce the framework which will be con-

sidered for the simulation results of Section 6.3, we point out that we will refer to the modal

control scheme related to tip and depicted in Fig. 1.2; accordingly, the subscript tip is

adopted to indicate variables related to tip mode. The blocks M(d) and H(d) represent

the dynamics of the ASM and WFS, respectively; the cascade of these two blocks repre-

sents the plant to be controlled in the presence of the disturbances φtottip(t) and wtip(t). In

particular, within the considered setting, both M(d) and H(d) can be assumed to behave

as a unit delay, since their tasks are supposed to be executed within one sampling time of

11
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Figure 1.2: Modal control scheme.

the external loop. In fact, the internal position control acting on the mirror shell, see Fig.

1.1, works with a sampling time much lower than the one of the external AO loop (in LBT,

for example, it is about 0.01ms), and thus it allows the mirror shell to achieve the desired

shape within one AO loop sampling time.

12



Chapter 2

Active suspension systems

The interest in the study and improvement of suspension systems for ground ve-

hicles arises from the fact that road unevenness causes vibrations which are detrimental

both for comfort and for the durability of the vehicle. With this respect, a suspension sys-

tem aims at guaranteeing ride comfort and road holding for different road conditions and

maneuvers, thus ensuring the vehicle stability and safety [38]. As pointed out in [86], a sus-

pension comprises three main elements: a) an elastic element (typically a coil spring); b) a

damping element (typically a hydraulic shock absorber); c) mechanical elements which link

the suspended body to the unsprung mass. Specifically, while the spring and the damper

have to be considered from the dynamic point of view, the mechanical elements are mainly

related to the suspension kinematics.

The goal of a suspension system is to provide comfortable ride and good road-

holding, which, however, turn out to be conflicting requirements; thus, as underlined in [86],

it is not surprising that, at a certain point, the interest of suspension designers focused on

possible solutions to overcome the problem of a-priori compromising between these opposite

goals. With this respect, the possibility of easily modifying part of a suspension became a

topic of major concern, opening the way to the idea of “on-line” electronic adaptation.

The suspension systems can be subdivided into three main classes: passive, semi-

active, and active. Roughly speaking, a passive suspension comprises a spring and a damper,

where both components are fixed; energy is stored in the spring and dissipated through

the damper. In semi-active suspensions, on the other hand, a controllable shock absorber

with adjustable damping replaces the passive damper with fixed damping. Finally, active
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Chapter 2. Active suspension systems

suspensions are composed of the passive components, augmented by actuators that provide

additional forces [11]; this type of suspensions can ideally achieve the best performance

(even if the technological and economical burden associated to them has to be taken into

account).

In the next section, we will give insight into the mathematical description of the

passive and active suspensions, mainly referring to [86].

2.1 Suspension system models

A possible model used for the design of suspension systems is the so-called quarter-

car model. Basically, this model“aims at describing the interactions between the suspension

system, the tire and the chassis in a single corner of a vehicle” [86].

With reference to a passive suspension system, a general description for the passive

quarter-car model can be provided in terms of the following equations:

m1z̈1(t) = Fk(t) + Fd(t) + FL(t)−m1g

m2z̈2(t) = −Fk(t)− Fd(t) + Fkt(t) + Fdt(t)−m2g ,
(2.1)

where, with abuse of notation, we use the letter t to indicate continuous time; further, g

denotes the gravitational constant, m1 is the suspended mass representing the chassis, and

m2 is the tire mass (accounting for the wheel, multiple links from the chassis to the road,

etc.). We denote by z1 and z2 the vertical chassis and wheel bounce absolute displacements,

respectively. The functions Fk and Fd represent the suspension spring and damper vertical

forces, respectively; Fkt and Fdt express the tire stiffness and damping vertical forces, re-

spectively. Finally, n(t) denotes the road vertical excitation, while FL is the vertical load

disturbance.

Following [86], some assumptions are introduced in order to simplify the model

(2.1). Specifically, FL(t) is assumed to be identically equal to zero, since it comprises effects

produced by steering and braking maneuvers which are not accounted for in this work.

Further, the tire spring force is described by the linear function

Fkt(t) = −κ2(z2(t)− n(t)−Rt) , (2.2)

with κ2 and Rt the linearized stiffness and nominal length of the tire spring, respectively.

With respect to the tire damping factor, it is assumed that Fdt(t) = 0, that is, the tire damp-
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ing coefficient is assumed to be negligible if compared to the tire stiffness. The suspension

spring force is described in terms of the linear function

Fk(t) = −κ1(z1(t)− z2(t)− L) , (2.3)

with κ1 and L the linearized stiffness and nominal length of the suspension spring, respec-

tively. Finally, the suspension damper force is described in terms of the linear function

Fd(t) = −c(ż1(t)− ż2(t)) . (2.4)

Thanks to the assumptions that have been introduced (further details can be found in [86]),

the quarter-car model can be simplified as follows:

m1z̈1(t) = −κ1(z1(t)− z2(t)− L)− c(ż1(t)− ż2(t))−m1g

m2z̈2(t) = κ1(z1(t)− z2(t)− L) + c(ż1(t)− ż2(t))− κ2(z2(t)− n(t)−Rt)−m2g ,
(2.5)

which can be considered valid provided that the deflections of the suspension are small

around the nominal load compression, and the wheel is always linked to the ground [86].

Further, as shown in [86], by computing the system equilibrium point from model (2.5), the

linear time-invariant (LTI) passive quarter-car model can be finally expressed as

m1ÿ1(t) = −κ1(y1(t)− y2(t))− c(ẏ1(t)− ẏ2(t))

m2ÿ2(t) = κ1(y1(t)− y2(t)) + c(ẏ1(t)− ẏ2(t))− κ2(y2(t)− n(t)) ,
(2.6)

where y1 and y2 denote the displacement ofm1 andm2, respectively, around the correspond-

ing equilibrium point. Accordingly, the graphical representation in Fig. 2.1 is considered.

Further, if we denote by F (t) the external force which is introduced into the system

(representing the control input), the LTI quarter-car model with active suspension system

can be derived from (2.6) as:

m1ÿ1(t) = −κ1(y1(t)− y2(t))− c(ẏ1(t)− ẏ2(t)) + F (t)

m2ÿ2(t) = κ1(y1(t)− y2(t)) + c(ẏ1(t)− ẏ2(t))− κ2(y2(t)− n(t))− F (t) .
(2.7)

The corresponding graphical representation is provided in Fig. 2.2.
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m1

κ1 c

m2

κ2

n(t)

y1(t)

y2(t)

Figure 2.1: Quarter-car model scheme with passive suspension system.

By applying the Laplace Transform to model (2.7), we can derive the transfer

function from the disturbance n to the displacement y1 of the suspended mass (with respect

to its equilibrium point) as:

Fp(s) =
(cκ2)s+ (κ1κ2)

(m1m2)s4 + (cm2 + cm1)s3 + (m1κ1 +m2κ1 +m1κ2)s2 + (cκ2)s+ (κ1κ2)
, (2.8)

where s is the Laplace variable. Further, the transfer function from the force F to the

displacement y1 can be derived as:

P (s) =
m2s

2 + κ2
(m1m2)s4 + (cm2 + cm1)s3 + (m1κ1 +m2κ1 +m1κ2)s2 + (cκ2)s+ (κ1κ2)

. (2.9)

We refer to the transfer function Fp(s) in (2.8) as the primary path, and to P (s) in (2.9)

as the secondary path (or, simply, the plant). Notice that P (s) and Fp(s) have the same

denominator.

By discretizing Fp(s) and P (s), we obtain the following transfer functions

Fp(d) =
E(d)

A(d)
, P (d) =

B(d)

A(d)
,

from which the difference equation

A(d)y(t) = B(d)u(t) + E(d)n(t) (2.10)
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m1

κ1 c

m2

κ2

F (t)

n(t)

y1(t)

y2(t)

Figure 2.2: Quarter-car model scheme with active suspension system.

suspended mass m1 117 kg

tire mass m2 30 kg

suspension damping c 3000 Ns/m

suspension stiffness κ1 30000 N/m

tire stiffness κ2 200000 N/m

Table 2.1: Parameter set used in the simulation tests.

is derived, where y and u correspond to the displacement y1 and to the force F , respectively;

further, in this case t ∈ Z+, Z+ := {0, 1, · · · }, denotes discrete-time instants, and d is the

unit backward shift operator. In the following, for the sake of brevity, we will consider

ν(t) = E(d)n(t), thus we will consider the following difference equation

A(d)y(t) = B(d)u(t) + ν(t) . (2.11)

In particular, in the simulation tests that will be shown in Chapters 6 and 7, the sampling

time Ts is set to 10−3 s in the discretization procedure, and the considered parameters refer

to the motorcycle model of [86] and are summarized in Table 2.1.

A general control scheme involving an active suspension system for the quarter-car

model is shown in Fig. 2.3, where we denote by n the signal produced as

n(t) = Fp(d)n(t) . (2.12)
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Controller P (d)

Fp(d)

−1

u(t)

n(t)

n(t)
y(t)

Figure 2.3: General control scheme involving an active suspension system.

Remark 2.1.1. For the sake of completeness, we show in Fig. 2.4 the quarter-car model

with semi-active suspension system; as briefly described in the beginning of this chapter,

with respect to the passive model, in this type of suspension systems the damping c is

adjustable and hence represents the control input.
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m1

κ1 c(t)

m2

κ2

n(t)

y1(t)

y2(t)

Figure 2.4: Quarter-car model scheme with semi-active suspension system.
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Chapter 3

Literature overview

The design of control architectures able to deal with the problem of adaptive dis-

turbance attenuation is a topic of great interest within the control community, as witnessed

by the wide range of contexts of application including (but not limited to) acoustics [10],

active suspension systems [60], adaptive optics for ground-based telescopes [2], laser sys-

tems [52]; the aim of this chapter is that of providing a brief overview of some of the most

relevant solutions which have been proposed in the literature related to this subject.

When a measurement correlated with the disturbance (called image of the distur-

bance) is available thanks to the use of an additional transducer, a possible approach for

addressing the problem is based on a feedforward compensation. Specifically, a control input

is generated by filtering such a measurement via an adaptive filter whose parameters are

adjusted with the aim of minimizing the effects of the disturbance on the output. A brief

introduction to solutions based on the feedforward approach is provided in [63], which refers

to [23, 34, 35, 40] and especially indicates the technique described in [91] in the context of

adaptive noise cancellation as the one inspiring this type of approaches. Some drawbacks

of the feedforward approach are the need of the additional transducer and the difficulty

in the choice of its location. Other interesting works on this subject are [59, 61, 8, 62],

which point out the presence in many systems of a “positive feedback coupling”between the

compensator system and the measurement of the image of the disturbance which can lead

the system to instability; an outline of previous solutions to this problem is also provided.

In the following, the focus will be on solutions based on feedback control for the

attenuation of disturbances with uncertain and possibly time-varying characteristics. Much
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interest in adaptive solutions for the problem of disturbance attenuation has been raised

with respect to narrow-band disturbances; the proposed techniques involve either indirect

approaches (exploiting the separation principle and resorting to disturbance frequency es-

timation), or direct approaches (proposing algorithms inherently designed for disturbance

attenuation objectives). Following the review proposed in [63], some approaches that have

been proposed as solutions to the problem of attenuating disturbances having uncertain

characteristics and affecting a known plant could be mentioned:

• solutions based on the internal model principle (see for example [64, 9, 10, 89]);

• solutions based on adaptive observers (see for example [32, 67]);

• solutions based on the phase-locked loop structure used in communication systems (see

for example [24]).

Specifically, strategies relying on the internal model principle adopt a control struc-

ture which incorporates the model of the disturbance; since this model is unknown/uncertain,

this part of the controller should be adapted and re-designed in real-time. Indirect solutions

of this class estimate the disturbance model and re-compute the controller by including in

its transfer function the estimated model. As an alternative, by adopting the Youla-Kucera

parametrization (also known as Q-parametrization) of the controller and adjusting the pa-

rameters of the Q polynomial, it is possible to adapt the internal model in the controller

within a direct scheme.

The second class of solutions employ adaptive observers of the disturbance which are in-

corporated in the controller. These strategies rely on the idea of integrating in the control

structure a device able to provide an estimate of the disturbance, so that it can be employed

to generate an appropriate control signal.

Finally, the method proposed in [24] is a direct approach for the rejection of sinusoidal

disturbances based on a phase-locked loop structure for adaptive feedback control, wherein

a single error signal is employed to simultaneously accomplish frequency estimation and

disturbance cancellation. Rough initial estimates of the disturbance frequency are required,

which are provided by means of an initialization scheme.

In order to give better insight into the problem of active disturbance attenuation

and the relevance of this issue within the control community, in the remaining of this chapter

we will describe in some detail some of the most relevant contributions that can be found in
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the literature, with particular reference to solutions based on internal model principle and

adaptive observers.

3.1 Direct adaptive scheme for the rejection of narrow band

disturbances

The solution proposed in [64], and later refined in [63, 27], consists in a direct

adaptive scheme for the asymptotic rejection of narrow band disturbances. The approach

has been developed as a solution within a benchmark for the rejection of unknown multiple

narrow band disturbances affecting an active suspension system. The plant model is ob-

tained by identification, and thus it is assumed to be known. The disturbance is expressed as

a Dirac impulse filtered through the model of the disturbance, whose order nDp is assumed

to be known (for narrow band or sinusoidal disturbances, it can be directly deduced in

terms of the number of peaks in the power spectral density of the output signal); however,

the parameters of the disturbance model are unknown. The idea of this approach relies

on the well known Internal Model Principle, thus the rejection of unknown disturbances

implies the adaptation and re-design in real-time of the internal model of the controller.

The controller is expressed in terms of the Youla-Kucera parametrization of the stabilizing

controllers; specifically, the polynomial Q(d) has the form

Q(d) = q0 + q1d+ · · ·+ qnQ
dnQ , (3.1)

where d is the unit backward shift operator and nQ is the order of Q(d), such that nQ =

nDp − 1. Thanks to the adopted Q-parametrization, the internal model is incorporated and

adjusted in the controller by means of the parameters q0, q1, · · · , qnQ
. Further, variations

of the Q polynomial in (3.1) do not affect the closed-loop poles.

A parameter adaptation algorithm is performed directly on the parameters of the Q poly-

nomial, with the aim of iteratively tuning such parameters and thus adjusting the internal

model in the controller. The adaptation is carried out at each time instant if an adaptive

operation is considered; otherwise, the procedure can be activated either on demand or

when the performance becomes unsatisfactory. A stability analysis proving the parametric

convergence of the procedure is provided in [64], under the following hypotheses: the con-

sidered model for the plant is identical to the true plant model; the disturbance model has

poles on the unit circle; the denominator of the disturbance model has a known order.
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3.2 Indirect adaptive scheme for the attenuation of narrow

band disturbances

In [6], an indirect adaptive regulation strategy is presented for the attenuation of

narrow-band disturbances (see also [7]). The controller design relies on an output-sensitivity

shaping which is achieved by the use of band-stop filters (BSFs) with transfer functions of

the form
SBSFi

(d)

PBSFi
(d)

=
1 + βi1d+ βi2d

2

1 + αi
1d+ αi

2d
2
, i ∈ {1, 2, · · · , n} , (3.2)

with n the known number of spikes in the spectral characteristics of the disturbance. The

transfer functions in (3.2) are a discretized version of the continuous filters

Fi(s) =
s2 + 2ζni

ωis+ ω2
i

s2 + 2ζdiωis+ ω2
i

, i ∈ {1, 2, · · · , n} , (3.3)

each one introducing an attenuation of

Mi = −20 log10

(
ζni

ζdi

)

(3.4)

at the frequency ωi. To take into account n narrow-band disturbances, n BSFs can be

combined as

HBSF (d) =
SBSF (d)

PBSF (d)
=

∏n
i=1 SBSFi

(d)
∏n

i=1 PBSFi
(d)

. (3.5)

The number n of the BSFs, that is, the number of narrow-band disturbances that can be

compensated, can in principle be as large as necessary; however, it has to be underlined that

there is a trade off between the value of n and the attenuation level that can be achieved.

As mentioned above, the BSFs are used to shape the output sensitivity function; specifi-

cally, the poles of the BSFs are desired poles of the closed loop system, while their zeros are

implemented in the controller. With this respect, it is shown that the computation of the

numerator and denominator polynomials of the controller turns out to require a reduced

complexity if the Youla-Kucera parametrization is adopted.

The control scheme described above can be applied to attenuate unknown and possibly

time-varying narrow-band disturbances if an estimation in real-time of the frequencies cor-

responding to the peaks in the disturbance spectrum is available. It is assumed that a

reliable estimate p̂ of the disturbance is available and that the number n of narrow band

disturbances is known; then a technique based on adaptive notch filters (ANFs) can be used
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to estimate the frequencies of the sinusoidal signals in the disturbance1. An ANF has the

following general form:

Hf (d) =
Af (d)

Af (ρd)
, (3.6)

where Af (d) has its roots on the unit circle, and Af (ρd) has its roots on a circle of radius

1/ρ (on the same radial lines as the roots of Af (d)). The cascade of n second-order ANF is

considered of the form

Hf (d) =
n∏

i=1

H i
f (d) =

n∏

i=1

1 + afid+ d2

1 + ρafid+ ρ2d2
. (3.7)

The estimation of the frequency corresponding to one peak is performed assuming conver-

gence of the other n− 1, which in practice can be filtered out of the estimated disturbance

signal p̂. The parametric adaptation algorithm is thus performed with respect to the coeffi-

cients afi for each i. Once the frequencies corresponding to the spikes have been estimated,

they can be employed within the design method described above. Further details regarding

the described technique can be found in [6] and [7]. Specifically, [7] provides a stability

analysis of the overall adaptive scheme.

3.3 Adaptive internal models for disturbance cancellation

The approach proposed recently in [71] extends the results of [69, 68, 70], by

addressing the problem of designing an adaptive regulator in the presence of disturbances

and/or reference signals generated by a linear unknown exosystem (both its parameters and

its order are unknown). Specifically, the linear system

ẋ = Ax+ bu+ Pw , x(0) = x0 (3.8)

e = cx+ qw (3.9)

is considered, with x ∈ R
n the state vector (n is a positive integer), u ∈ R the scalar input,

e ∈ R the scalar output to be regulated around zero; it is assumed that the output e is the

only measured signal. Both the disturbances and the possible references are generated by

a linear exosystem, described by the differential equation

ẇ = Rw, w(0) = w0, w ∈ R
2r+1 , (3.10)

1In the context of narrow-band disturbance rejection it a common assumption that the disturbances are

sinusoidal signals with variable frequencies [6].
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where r is the number of frequencies {ω1, · · · , ωr} which characterize the disturbance Pw

to be rejected and/or the reference qw to be tracked. While the triple (A, b, c) is assumed to

be known, P , R, q and the order of the exosystem are not. The proposed technique is based

on the following assumptions: (H1) (A, b) is stabilizable; (H2) (A, c) is detectable; (H3)

rank

[

A− λI b

c 0

]

= n+1, for any eigenvalue λ of R; (H4) the spectrum of the exosystem

matrix R can be bounded from below by a known value ωmin, that is, it can be expressed

as {0,±jωi, 1 ≤ i ≤ r} with ωi ≥ ωmin. It is underlined that there is no requirement that

the system (A, b, c) is minimum-phase; by virtue of (H3), the zeros of the system are only

required not to coincide with the eigenvalues of the matrix R.

The regulator employs two different observers and includes an adaptive internal model

which tunes m parameters on the basis of the output regulation error. A stability analysis

is provided which shows that, if m ≥ r, the regulation error tends exponentially to zero;

in fact, in this case the adaptive internal model is able to reproduce the exogenous signal

to be rejected or tracked. On the other hand, if m < r, the adaptive internal model can

only approximate the exogenous signal with an approximation error ǫ; in this case it is

shown that, under appropriate assumptions on the value of ǫ, the regulation error tends

exponentially into a closed ball whose radius is proportional to ǫ.

3.4 Gain-scheduled H∞ synthesis method

The approach proposed in [54] within the benchmark on adaptive regulation for the

rejection of narrow-band disturbances presented in [60] relies on a synthesis method of gain-

scheduled H∞ controllers. This technique hinges upon the approach originally proposed in

[55] for the synthesis of a single robust fixed-order controller for SISO plants represented by

nonparametric models. With reference to [55], the transfer function K(d) of the controller

is an affine function of a parameter vector ρ:

K(d) = K(d, ρ) = φ⊤(d)ρ . (3.11)

The performance requirement

||W1 S||∞ < 1 , (3.12)

where W1(d) is the transfer function of a performance weighting filter for the output-

sensitivity having transfer function S(d, ρ), is considered and linearized around a known
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desired open-loop transfer function Ld(d). This leads to the following linear approximation

of (3.12) in the frequency domain:

∣
∣W1(e

−jω)[1 + Ld(e
−jω)]

∣
∣−Re{[1 + Ld(e

jω)] [1 + P (e−jω)φ⊤i (e
−jω)ρ]} < 0 ∀ω , (3.13)

where we denote by Re{x} the real part of the complex number x. In fact, by recalling that

Re{x} ≤ |x|, where |x| is the modulus of x, inequality (3.13) leads to

∣
∣W1(e

−jω)[1 + Ld(e
−jω)]

∣
∣−
∣
∣[1 + Ld(e

jω)]
∣
∣

∣
∣
∣[1 + P (e−jω)φ⊤i (e

−jω)ρ]
∣
∣
∣ < 0 ∀ω , (3.14)

and thus to
∣
∣W1(e

−jω)
∣
∣ <

∣
∣
∣[1 + P (e−jω)φ⊤(e−jω)ρ]

∣
∣
∣ ∀ω , (3.15)

from which (3.12) follows. The performance criterion expressed by (3.12) can be improved

by taking into account an upper bound γ on the H∞ norm, thus leading to the following

optimization problem to be solved:

min
γ,ρ

γ (3.16)

s.t.
∣
∣
∣
∣

1

γ
W1(e

−jω)[1 + Ld(e
−jω)]

∣
∣
∣
∣
−Re{[1 + Ld(e

jω)][1 + P (e−jω)φ⊤i (e
−jω)ρ]} < 0 ∀ω . (3.17)

By adopting the bisection algorithm, thus fixing the value of γ at each step, the problem

can be recast as a linear programming problem.

Within the gain-scheduling scheme of [54], each element of the vector ρ is an affine or

polynomial function of a scheduling parameter θ. Further, the desired open-loop transfer

function Ld(d) can be a function of θ as well. The approximation (3.13) of the performance

criterion (3.12) can thus be expressed as

∣
∣W1(e

−jω)[1 + Ld(e
−jω, θ)]

∣
∣−Re{[1 + Ld(e

jω, θ)] [1 + P (e−jω)φ⊤i (e
−jω)ρ(θ)]} < 0 ∀ω , ∀θ .

(3.18)

Obviously, considering the infinite number of constraints in (3.18) is intractable; a possibility

to overcome this problem is that of choosing finite grids for both ω and θ. The authors

considered the first two levels of the benchmark of [60], namely the rejection of one sinusoidal

disturbance having frequency in a certain range Ω, and the rejection of two sinusoidal

disturbances having frequency in the same range Ω. For the first level, a controller K(d, ρ)

of the following form is considered:

K(d, θ) = [K0(d) + θK1(d)]M(d, θ) , (3.19)
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where K0 and K1 are Finite Impulse Response filters and

M(d, θ) =
1

1 + θd+ d2
(3.20)

the disturbance model (in accordance with the internal model principle). The optimization

problem to be solved accounts also for the particular specifications imposed within the

benchmark (e.g., it is required that the maximum of the modulus of the output-sensitivity

does not exceed a specified upper bound). The scheduling parameter θ which appears in the

internal model of the disturbance is estimated by means of a recursive parameter adaptation

algorithm. For the second level of the benchmark, the controller transfer function has the

form

K(d, θ1, θ2) = [K0(d) + θ1K1(d) + θ2K2(d)]M(d, θ1, θ2) , (3.21)

where K0, K1 and K2 are Finite Impulse Response filters and

M(d, θ1, θ2) =
1

1 + θ1d+ θ2d2 + θ1d3 + d4
. (3.22)

The same parameter adaptation algorithm is used for this level, taking into account that

the scheduling parameter θ in this case is replaced by the vector [θ1, θ2].

3.5 Adaptive control design for the suppression of laser beam

jitter

Finally, in [52] a robust adaptive scheme for the suppression of laser beam jitter in

the presence of unmodeled dynamics is presented. It is pointed out that much of the jitter

is caused by periodic disturbances with unknown and possibly time-varying frequencies and

amplitudes. In such applications, it is usually assumed that the system has already been

stabilized (e.g., by means of an integrator). The problem is formulated in continuous time.

The considered disturbance is composed of a bounded noise disturbance and of the combi-

nation of sinusoidal signals with unknown frequency, amplitude and phase. The controller

transfer function is affine in a n-dimensional parameter vector θ.

A first analysis is carried out by assuming that all the sinusoidal components of the distur-

bance are known; it is shown in this case that, if the number of parameters in the controller

transfer function is large enough, under appropriate assumptions the sinusoidal part can

be completely rejected and the output signal will be limited by a value depending on the
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amplitude of the bounded additive noise. In the absence of noise, the output signal will

converge to zero exponentially fast.

The analysis is then extended to the case of unknown disturbance. The aim is that of de-

signing an adaptively tuned filter to minimize the output variance. The robust least-square

algorithm [51, 50] is adopted to estimate the parameter vector θ. An upper bound on the

norm of the estimate θ̂ is imposed by defining a compact set S as

S = {θ̂ ∈ R
n s.t. θ̂⊤θ̂ − θ2max ≤ 0} , (3.23)

with θmax > 0 large enough to ensure that the optimal (unknown) parameter vector (achiev-

ing perfect rejection of the sinusoidal components of the disturbance) belongs to S. Then,

projection can be used within the adaptation algorithm in order to have θ̂ ∈ S. It is shown

that, by adopting the proposed adaptive law, the average energy of the output signal is of

the order of the modeling error and the noise amplitude; thus, in the absence of modeling

error and noise, the output signal converges to zero.
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A Switching Control approach
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Chapter 4

Adaptive disturbance attenuation:

a Switching Control approach

In Chapter 3, an outline of some solutions to the problem of the attenuation of

disturbances having uncertain and possibly time-varying characteristics has been provided;

the described methods rely in general on control structures which aim at adaptively changing

their action in order to be able to deal with the uncertainty and to react to changes in the

operating conditions of the system to be controlled.

The objective of controlling a system subject to uncertainty, either in the plant

model or in the model of the disturbances acting on it, has been a topic of major concern

over the past decades, and there is still a strong interest with respect to this subject. It is

to be noted that, if the uncertainty set is sufficiently small, a single robust controller can

in general achieve satisfactory performance with respect to all the possible operating con-

ditions (see [92] and the references therein). However, the need for control reconfiguration

becomes important especially when the uncertainty set is large (in the sense that the pos-

sible operating conditions of the system could be very different from one another), so that

the action of a single robust controller cannot ensure a satisfactory performance level in all

the possible situations. Further, when the uncertain characteristics are also time-varying,

the ability of adapting can in general provide a more appropriate action (at least in the long

run) with respect to the specific operating condition.

With this respect, several techniques have been proposed, following either the

Adaptive Control paradigm (see for example [51, 74, 13, 63]), or, more recently, the Adaptive
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Switching Control (ASC) paradigm (see [73, 75, 45, 15, 53, 17, 16, 19]). Despite the common

goal of providing a control structure which is able to adaptively change its action, the two

approaches have their own distinguishing, and in some measure, complementary features.

A comparison between the two paradigms is provided for example in [46]. Specifically,

within the ASC paradigm, a finite family of controllers is pre-synthesized off-line, each one

suitable for a specific operating condition. Then the choice, at each time instant, of which

controller should be put in feedback with the plant is made by a high-level supervisory

unit. An important feature of this control approach is modularity: the control strategy

and the adaptation mechanism are designed independently from one another. Specifically,

each controller can be synthesized according to any technique, since the design procedure

is carried out off-line. The absence of any connection with the switching rule can be useful

either when existing control structures should be used, or when advanced control strategies

are required for specific problems.

It is worth underlining that the ASC scheme has been largely adopted and studied

in the context of plant model uncertainty, as witnessed by most of the bibliographical

references which have been mentioned above. We propose to employ the ASC paradigm

to deal with the problem of the attenuation of disturbances with uncertain and possibly

time-varying characteristics [19, 21, 20]. In fact, by relying on a family of controllers, each

one synthesized so that it enjoys satisfactory performance with respect to a subregion of

the uncertainty set, and on a logic able to select the (potentially) best one at each time

instant, it is possible to obtain very good attenuation capabilities even with respect to

large uncertainty sets. Further, the modularity which characterizes the ASC approach

makes the technique well-suited to being applied in different contexts (such as, for example,

active vibration control, eccentricity compensation, adaptive optics applications, as well as

noise cancellation in acoustic ducts) since the switching mechanism does not depend on the

disturbance model, which has to be taken into account only within the controller family

design.
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Cσ(t) P

Supervisor

−1

u(t)

ν(t)

y(t)

σ(t)

Figure 4.1: Overall control scheme.

4.1 Problem setting

Consider a single-input single-output (SISO) linear time-invariant (LTI) dynamical

system whose input-output behavior can be described by the difference equation

A(d)y(t) = B(d)u(t) + ν(t) , (4.1)

where y(t) is the system output, u(t) the control input, and ν(t) an unknown bounded

disturbance acting on the system. The polynomials A(d) = 1 + a1 d + · · · + ana d
na and

B(d) = b1 d+ · · · + bnb
dnb in the unit backward shift operator d are known and have strictly

Schur greatest common divisor (g.c.d.).

Remark 4.1.1. We underline that the model provided in (4.1) can be used without loss of

generality. In fact, a general LTI model of the form

A(d)y(t) =
B(d)

F (d)
u(t) +

H(d)

R(d)
e(t) , (4.2)

where e(t) is a zero mean white noise with variance σ2e , and B(d) and F (d) are coprime

polynomials, can be written as in (4.1) by defining

A(d) := A(d)F (d) , ν(t) :=
H(d)F (d)

R(d)
e(t) .

In the simulation setup presented in Chapter 6, for example, we will resort to the model in

(4.1) with the disturbance ν(t) obtained as the output of a suitable filter.

We denote by P the plant in (4.1) having transfer function P (d) = B(d)/A(d).

The problem of interest is that of attenuating the disturbance ν(t) by regulating the plant
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output y(t) around zero. We suppose that a non-negligible uncertainty affects the a priori

available disturbance model, so that a single robust LTI controller cannot achieve satisfac-

tory performance within the whole uncertainty set.

The solution that we propose for the problem of disturbance attenuation relies on

the ASC paradigm; in fact, the control architecture is composed of a finite family of pre-

designed controllers supervised by a high-level switching logic. The controllers are supposed

to have been synthesized off-line, according to any design technique, so that: each of the

pre-synthesized controllers stabilize the plant; and, for any possible operating conditions,

at least one of the controllers is able to achieve a certain prescribed performance level (for

example, in terms of disturbance-to-output energy gain). Then, at each time instant, the

supervisory unit infers the potential behavior of each candidate controller and selects the

one providing the best potential performance, which is quantified in terms of test functionals

defined on the basis of the plant input/output data.

Let C := {Ci, i ∈
←−
N } denote the family of pre-designed candidate controllers,

where
←−
N := {1, 2, · · · , N}. The transfer function of the i-th controller is Ci(d) = Si(d)/Ri(d)

with the polynomials Ri(d) = 1+ri1d+ · · ·+rinri
dnri and Si(d) = si0+si1d+ · · ·+sinsi

dnsi

having strictly Schur g.c.d. At each time instant, the selected controller belonging to C is

identified by means of the switching signal σ(·) : Z+ →
←−
N . Accordingly, we denote by Cσ(t)

the switching controller (or multi-controller), with the understanding that, on all the time

intervals on which σ(t) is constant and equal to a certain i, the multi-controller takes the

form of a LTI system having transfer function equal to Ci(d). We defer any discussion on

the internal structure of the multi-controller to Section 6.1, where it will be shown how a

suitable implementation of such a block always preserves stability under arbitrary switching.

The overall control scheme is depicted in Fig. 4.1.

4.1.1 Controller selection

In this section, a criterion is proposed for selecting, among the controllers belonging

to C , the one to be put in feedback to the plant. To this end, at any time t, a set of

test functionals Π(t) :=
{

Πi(t), i ∈
←−
N
}

is computed, each one quantifying the performance

achievable by the use of the related candidate controller Ci. Each test functional is computed

only on the grounds of the plant input/output data without the necessity of inserting the

corresponding controller in the feedback loop.
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Let

ε(t) := A(d) y(t)−B(d)u(t) (4.3)

denote the prediction error, where y(t) and u(t) are the output and input data produced

by the switching system (P/Cσ(t)) composed of the feedback interconnection of P and Cσ(t).

We underline that, for any t ≥ n = max{na, nb}, the prediction error ε(t) coincides with

the disturbance ν(t). Hence, the potential performance achievable by a certain candidate

controller Ci can be evaluated by filtering the prediction error ε(t) with a suitable transfer

matrix Σi(d) related to the potential loop (P/Ci), defined as the feedback interconnection

of the plant P with the controller Ci.

In particular, we consider the weighted mixed-sensitivity Σi(d) related to the loop

(P/Ci) and defined as

Σi(d) :=
1

χi(d)
Li(d) (4.4)

where

Li(d) =

[

Ri(d)

−η Si(d)

]

and χi(d) = A(d)Ri(d) + B(d)Si(d) is the characteristic polynomial of (P/Ci). It can be

seen that the two elements of Σi(d) represent the disturbance-to-output and, respectively,

disturbance-to-control transfer functions of (P/Ci). The latter one is weighted by a non-

negative scalar η which can be tuned to give more or less importance to the contribution of

the control input in the performance evaluation.

Then, in order to compute, for each i ∈
←−
N , the hypothetical weighted response

zi = [yi η ui]
⊤ (4.5)

of the potential loop (P/Ci) to the disturbance ν, we solve, at each time instant, the differ-

ence equation

χi(d)zi(t) = Li(d)ε(t) . (4.6)

The computation of the signals zi(t) by means of (4.6) is started at a time t0 ≥ n

with zero initial conditions.
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On the basis of the foregoing definitions, the performance of each potential loop

can be evaluated in terms of the test functional

Πi(t) :=







‖ zi|
t
t−M(t)‖

‖ ε|tt−M(t)‖
, if ‖ ε|tt−M(t) ‖ > 0

0 , if ‖ ε|tt−M(t) ‖ = 0 ,

(4.7)

where ‖ ε|tt ‖ :=
√
∑t

k=t |ε(k)|
2, with t and t two generic time instants such that t ≤ t ; | · | is

the Euclidean norm and ε|tt := col[ε(t), . . . , ε(t)]. The memory M(t) of the test functionals,

that is the size of the time window on which the test functionals are computed, is a design

parameter. In practice, the choice ofM(t) is related to the disturbance characteristics which

are expected within the specific context. In particular, we can distinguish between two

different situations. When the disturbance can be assumed to be almost stationary, albeit

with an unknown frequency profile, we can use a persistent memory and set M(t) = t− t0.

In fact, the switching logic is activated at the time instant t0 from which the computation

of the signals zi(t) (and thus of the test functionals Πi(t)) starts. On the contrary, if it

is expected that the disturbance characteristics vary with time, a finite memory is more

appropriate so as to make the test functionals able to promptly reflect any change in the

environmental conditions. Then, in this case, we set

M(t) =

{

t− t0 , if t < t0 +M∗

M∗ , otherwise ,
(4.8)

where M∗ is a positive integer. Specific values for M∗ are related to the properties that the

test functionals satisfy under certain assumptions on the nature of the disturbance, as will

be shown in Section 4.2. We can notice that, if the disturbance can be assumed to be almost

stationary, the problem to be solved is a learning problem; otherwise, if the disturbance is

supposed to change in time, the aim is that of solving an adaptation problem.

Remark 4.1.2. It is interesting to underline that the choice of M∗ does not affect the

closed-loop stability. As a matter of fact, the choice of M∗ only affects the closed-loop

performance in the sense that for smaller M∗, the more prompt the control scheme to react

to changes in the disturbance characteristics, but also the more prone to spurious switching,

as will be clear from Section 4.2.2. An alternative to the finite memory is a fading memory,

which can be achieved for instance by introducing a forgetting factor in the Euclidean norm.
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This choice also ensures that the effect of old data vanishes as time advances. In this case,

however, no simple characterization of the switching behavior exists to our knowledge. The

simplest and most effective way for improving performance consists perhaps in an adaptive

memory. This basically means replacing M∗ with M(t), where the latter is chosen on-

line depending on the exhibited process behavior. Specifically, the idea is that, based on

the values taken on by Πi(t), old data can be retained (M(t) increases) so as to facilitate

“learning” or discarded (M(t) decreases) if they contain information which is irrelevant for

taking switching decisions. A detailed analysis and discussion of logics of this kind can be

found in [22].

With respect to the switching rule, we assume that the sequence σ is determined

according to the Hysteresis Switching Logic (HSL) (see [73])

σ(t+ 1) = l(σ(t),Π(t)), σ(t0) = i0 ∈
←−
N

l(i,Π(t)) =

{

i, if Πi(t) < Πi∗(t)(t) + h

i∗(t), if Πi(t) ≥ Πi∗(t)(t) + h

(4.9)

where i∗(t) is the smallest index in
←−
N such that Πi∗(t)(t) ≤ Πi(t), ∀i ∈

←−
N , and h > 0 is the

hysteresis constant. For t ≤ t0, σ(t) is kept constant and equal to an arbitrary initial value

i0 ∈
←−
N .

4.2 Properties of the test functionals

In this section, the properties of the test functionals will be analyzed for both the

cases of persistent and finite memory. In the following we assume that ‖ ε|tt−M(t) ‖ > 0, for

any t ≥ t0, so that Πi(t) is defined as in the first case of (4.7).

4.2.1 Persistent memory

Consider first the case of a learning problem wherein a persistent memory M(t) =

t− t0 is adopted. Then, the following result can be readily stated.

Theorem 4.2.1. Let the test functionals Πi(t), i ∈
←−
N , be defined as in (4.7) with M(t) =

t− t0. Then, for any i ∈
←−
N and t ≥ t0

Πi(t) ≤ ‖Σi‖∞ . (4.10)
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If, in addition, the disturbance ν(t) is supposed to be quasi-stationary and ergodic, the

following facts hold.

i) For any i ∈
←−
N , the test functional Πi(t) converges to the gain of the system Σi(d) in

response to ν

Πi :=

(∫ π
−π |Σi(e

−jω)|2Φν(ω) dω
∫ π
−π Φν(ω) dω

)1/2

(4.11)

as t→∞, where Φν(ω) denotes the power spectral density of the signal ν(t);

ii) when the HSL (4.9) is adopted, there is a finite time tf ∈ Z+, after which no more

switching occurs and the final controller, say Cf , ensures the best achievable performance

apart from the hysteresis constant, i.e.,

Πf < min
i∈
←−
N

Πi + h . (4.12)

2

The bound in (4.10) as well as the asymptotic result of fact i) are straightforward

consequences of the stability of Σi(d). Further, fact ii) descends from the well-known HSL

Lemma of [73].

Remark 4.2.1. A case of special interest arises when the disturbance ν(t) is narrow-band

and can be well modeled by a sinusoidal signal of frequency ω0. In this case, the asymptotic

value Πi turns out to be equal to Πi = |Σi(e
−jω0)|. Then, if the disturbance frequency ω0

is known to belong to a given interval [ωmin, ωmax] and the family C is designed so as to

ensure a desired level of attenuation γ in the whole frequency interval of interest so that

max
ω0∈[ωmin,ωmax]

min
i∈
←−
N

|Σi(e
−jω0)| ≤ γ ,

the proposed switching control scheme ensures a disturbance attenuation level smaller than

γ + h.

We conclude this section dedicated to the case of persistent memory by noting

that, whenever the disturbance ν(t) is periodic, it is possible to analyze in some detail the

behavior of the test functionals and of the overall switching scheme during the transient.

First of all, we establish an upper bound on the difference |Πi(t) − Πi| that holds for any

t ≥ t0.
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Lemma 4.2.1. Let the test functionals Πi(t), i ∈
←−
N , be defined as in (4.7) with M(t) =

t− t0. Further, let the disturbance ν be periodic with period T > 0. Then there exist suitable

nonnegative constants λi such that, for any t ≥ t0 and i ∈
←−
N ,

|Πi(t)−Πi| ≤
λi T Cν

‖ ν|tt0 ‖
(4.13)

with Cν the magnitude of the disturbance ν.

Proof: see the Appendix. 2

The result given in Lemma 4.2.1 is useful to derive the following theorem.

Theorem 4.2.2. Let the same assumptions as in Lemma 4.2.1 hold, and let λ := max
i∈
←−
N
λi.

Finally, let the HSL (4.9) be adopted. Then no switching can occur after t̃, namely the first

switching time such that condition

‖ ν|t̃t0 ‖ >
4λTCν

h
(4.14)

holds.

Proof: see the Appendix. 2

Notice that condition (4.14) is always attained in finite time for any non-null

periodic disturbance sequence. By comparing (4.14) with (4.12), it can be seen that the

choice of the hysteresis constant h leads to a trade off between attenuation performance

(the right-hand side of (4.12)) and learning time (the right-hand side of (4.14)).

4.2.2 Finite memory

In this section, we take into account an adaptation problem wherein a finite mem-

ory M(t) defined as in (4.8) is used. The following results hold in this case.

Proposition 4.2.1. Let the test functionals Πi(t), i ∈
←−
N , be defined as in (4.7) with M(t)

defined as in (4.8). Then, for any i ∈
←−
N and t ≥ t0,

Πi(t) ≤







‖Σi‖∞ , if t < t0 +M∗

‖Σi‖∞ + δiCν

‖ν|tt−M∗
‖
, if t ≥ t0 +M∗

(4.15)

holds, with δi a suitable nonnegative constant.
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Proof: see the Appendix. 2

Proposition 4.2.1 provides an upper bound on the test functionals Πi(t) defined in

(4.7) when a finite memory is adopted. Notice that, for t ≥ t0 +M∗, the non-zero initial

conditions of (4.6) at time t −M∗ are taken into account by means of the additional term

δiCν/‖ ν|
t
t−M∗

‖, where δi is a constant which is independent of the disturbance ν and is

such that δiCν provides a bound on the norm of the free-response of the system Σi(d) to

the initial conditions at time t−M∗.

With the aim of proving some properties that the test functionals Πi(t), i ∈
←−
N ,

satisfy when a finite memory is adopted within an adaptation problem, we consider a peri-

odic signal s(t) with period T > 0, and denote the gain of the system Σi(d) in response to

s as

Πi:=






∑T
ℓ=1

∣
∣
∣Σi(e

−j 2π
T

ℓ)ŝT
(
2πℓ
T

)
∣
∣
∣

2

∑T
ℓ=1

∣
∣ŝT
(
2πℓ
T

)∣
∣
2






1/2

, (4.16)

where ŝT (2πℓ/T ) are the coefficients of the Discrete Fourier Transform of the sequence s|T1 .

This definition coincides with the one given in (4.27) within the Proof of Lemma 4.2.1.

However, differently from the case of persistent memory, here Πi cannot be interpreted as

the asymptotic limit of Πi(t), in that the asymptotic limit need not exist.

If the disturbance ν(t) coincides with the periodic signal s(t), at least in a suffi-

ciently large time interval, we can provide the following results.

Lemma 4.2.2. Let the test functionals Πi(t), i ∈
←−
N , be defined as in (4.7) with M(t)

defined as in (4.8). Further, let the disturbance ν(t) coincide with the periodic signal s(t)

for any t ∈ [t1 , t2] such that t2 ≥ t1+M∗. Then, for any t ∈ [t1+M∗ , t2] and i ∈
←−
N , there

exist suitable nonnegative constants λi, δi such that

|Πi(t)−Πi| ≤
[λi T + δi]Cν

‖ ν|tt−M∗
‖

. (4.17)

Proof: see the Appendix. 2

Notice that the larger the interval spanned by the finite memory, the lower the

bound on the difference |Πi(t)−Πi|. In fact, for a generic time instant t ∈ [t1+M∗ , t2], we

can assert that

‖ ν|tt−M∗
‖ ≥

⌊
M∗
T

⌋

‖ s|T1 ‖ , (4.18)
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where ⌊M∗/T ⌋ denotes the largest integer ξ such that ξ ≤ M∗/T ; the equality in (4.18)

holds if M∗ = µT , with µ a positive integer. We point out that, if t1 ≡ t0, then (4.17)

reduces to

|Πi(t)−Πi| ≤
λi T Cν

‖ ν|tt−M∗
‖
. (4.19)

Thanks to Lemma 4.2.2 it is possible to derive the following theorem.

Theorem 4.2.3. Let the same assumptions as in Lemma 4.2.2 hold. Further, let λ be

defined as in Theorem 4.2.2 and δ := max
i∈
←−
N
δi. Finally, assume that the HSL (4.9) is

adopted. Then, if
⌊
M∗
T

⌋

> 4
λT + δ

h ‖ s|T1 ‖
Cν (4.20)

holds, there can be at most one switch in the interval [t1 +M∗ , t2].

Proof: see the Appendix. 2

The previous theorem shows that at most one switch can occur in the interval

[t1 +M∗ , t2] if the size M∗ of the finite memory is sufficiently large, given a certain h, or,

equivalently, if the value of the hysteresis constant h is sufficiently large, given a certain

M∗. This means that the smaller the value of M∗, the more prompt the control scheme

to react to changes in the disturbance characteristics, but also the more prone to spurious

switching. If the disturbance characteristics vary in time, this result holds for each pair

(t1 , t2) such that the hypotheses of the theorem are satisfied; a special case of interest is

when the disturbance is piecewise periodic. We point out that, if t1 ≡ t0, (4.20) reduces to
⌊
M∗
T

⌋

>
4λTCν

h ‖ ν|T1 ‖
. (4.21)

Remark 4.2.2. The extension of the performance analysis of Theorems 4.2.2 and 4.2.3

to more general classes of disturbances (e.g., bounded quasi stationary signals) is quite

challenging and appears to be a more difficult task. From a technical point of view, such

a difficulty is essentially dictated by the fact that Theorems 4.2.2 and 4.2.3 hinge upon

Lemmas 4.2.1 and 4.2.2, which provide an explicit characterization of the distance between

Πi(t) and Πi (see (4.13) and (4.17)). However, for general quasi-stationary signals, only

asymptotic (rather than finite-time) bounds are available. The simulation tests presented

in Chapter 6, nonetheless, illustrate the effectiveness of the considered approach even in

more general situations than those captured by Theorems 4.2.2 and 4.2.3.
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4.3 Stability under arbitrary switching

A critical issue related to solutions involving switching is that of guaranteeing

the stability of the overall closed-loop system; in fact, as well known, even if each of the

subsystems is stable (i.e., each of the synthesized controllers is stabilizing), the stability

of the system as a whole is not ensured under arbitrary switching sequences. In classical

approaches (see for example [43, 65]), the stability of the switching system is verified a-

posteriori, and it is in general guaranteed by increasing either the dwell-time or the hysteresis

constant. In the former case, this means increasing the minimum time interval between

two switching instants; in the latter one, this means increasing the minimum difference

between performance functionals related to the controllers that allows the replacement of

the controller which is currently in feedback with the plant by a potentially better one. It is

clear, however, that such mechanisms can be detrimental for the performance of the system,

since they slow down the switching and hence make the system less prompt to reconfigure

the control action when needed.

In this chapter, it has been shown that, under appropriate assumptions, the switch-

ing can be ensured to stop in finite time, and this is enough to guarantee the stability of

the overall feedback scheme, since the final controller is stabilizing by assumption. This is

the case, for example, of a disturbance with almost stationary characteristics when a per-

sistent memory is adopted. However, in more general situations, as it could happen when

the disturbance characteristics vary persistently with time, the switching need not stop in

finite time, and this raises the problem of ensuring the stability of the overall feedback loop

under arbitrary switching sequences.

A possible solution is that of addressing the stability requirement directly within

the synthesis of the controller family. As will be shown in detail in Chapter 5, this allows

the complexity of the multi-controller architecture to be independent of the plant order; on

the other hand, the inclusion in the synthesis step of a constraint related to the switching

mechanism affects the modularity which is typical of the ASC paradigm.

Another solution in order to ensure the stability of the overall feedback loop is that

of considering the Youla parametrization of all the stabilizing controllers and adopting a

specific implementation of the multi-controller based on a switching mechanism between the

Youla parameters. This solution completely preserves the modularity of the switching con-
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trol approach; on the other hand, the complexity of the adopted architecture is unavoidably

influenced by the plant order. Details will be provided in Chapter 6.
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4.A Appendix: Proofs

Proof of Lemma 4.2.1

Since the disturbance ν(t) is a periodic signal with period T , we can express the

generic time instant t ≥ t0 as t = t0+KT + θ, with K, θ ∈ Z+. Further, recall that, for any

t ≥ t0, ε(t) coincides with ν(t).

With respect to zi|
t
t0
, we can distinguish between two different contributions:

zi|
t
t0
= zi,Σi

|tt0 + zi,ν |
t
t0
, (4.22)

with zi,Σi
|tt0 conveying the effects of the poles of Σi(d) and zi,ν |

t
t0

conveying the effects of

the eigenvalues of the system generating ν. It can be noticed that zi,Σi
|tt0 depends on Cν

and T (the magnitude and the period of ν(t), respectively), as well as on the dynamics of

Σi(d), and is such that

‖ zi,Σi
|tt0 ‖ ≤ αiTCν , (4.23)

for some nonnegative constant αi.

For all K > 0, both

‖ ν|t0+KT−1
t0

‖2 = K
T∑

ℓ=1

∣
∣
∣
∣
ν̂T

(
2πℓ

T

)∣
∣
∣
∣

2

(4.24)

and

‖ zi,ν |
t0+KT−1
t0

‖2 = K
T∑

ℓ=1

∣
∣
∣
∣
ẑi,ν,T

(
2πℓ

T

)∣
∣
∣
∣

2

(4.25)

hold, where ν̂T (2πℓ/T ) and ẑi,ν,T (2πℓ/T ) are the coefficients of the Discrete Fourier Trans-

form of the sequences ν|T1 and zi,ν |
T
1 , respectively. For the sake of brevity, we make (4.24)

and (4.25) hold also for K = 0 by letting ‖ ν|t0−1t0
‖ = ‖ zi,ν |

t0−1
t0
‖ = 0.

In turn, we can compute ẑi,ν,T (2πℓ/T ) as

ẑi,ν,T

(
2πℓ

T

)

= Σi(e
−j 2π

T
ℓ)ν̂T

(
2πℓ

T

)

. (4.26)

We denote Πi as the gain of the system Σi(d) in response to ν:

Πi:=






∑T
ℓ=1

∣
∣
∣Σi(e

−j 2π
T

ℓ)ν̂T
(
2πℓ
T

)
∣
∣
∣

2

∑T
ℓ=1

∣
∣ν̂T

(
2πℓ
T

)∣
∣
2






1/2

. (4.27)
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We point out that, for a periodic disturbance ν and in the case of persistent memory, Πi

coincides with the asymptotic limit of the test functional Πi(t) in (4.11).

From (4.7), (4.22) and (4.23) we can assert that

‖ zi,ν |
t
t0
‖

‖ ν|tt0 ‖
−
αiTCν

‖ ν|tt0 ‖
≤ Πi(t) ≤

‖ zi,ν |
t
t0
‖

‖ ν|tt0 ‖
+
αiTCν

‖ ν|tt0 ‖
. (4.28)

Then

Πi(t) ≤
‖ zi,ν |

t0+KT−1
t0

‖+ ‖ zi,ν |
t
t0+KT ‖

‖ ν|tt0 ‖
+
αiTCν

‖ ν|tt0 ‖

≤
‖ zi,ν |

t0+KT−1
t0

‖

‖ ν|t0+KT−1
t0

‖
+
‖ zi,ν |

t
t0+KT ‖

‖ ν|tt0 ‖
+
αiTCν

‖ ν|tt0 ‖

≤ Πi +
αiTCν

‖ ν|tt0 ‖
+
βiTCν

‖ ν|tt0 ‖
, (4.29)

where the last inequality (4.29) follows from the fact that ‖ zi,ν |
t
t0+KT ‖ can be upper-

bounded as in

‖ zi,ν |
t
t0+KT ‖ ≤ βiTCν (4.30)

for some nonnegative constant βi.

Similarly,

Πi(t) ≥
‖ zi,ν |

t0+(K+1)T−1
t0

‖ − ‖ zi,ν |
t0+(K+1)T−1
t+1 ‖

‖ ν|tt0 ‖
−
αiTCν

‖ ν|tt0 ‖

≥
‖ zi,ν |

t0+(K+1)T−1
t0

‖

‖ ν|
t0+(K+1)T−1
t0

‖
−
‖ zi,ν |

t0+(K+1)T−1
t+1 ‖

‖ ν|tt0 ‖
−
αiTCν

‖ ν|tt0 ‖

≥ Πi −
αiTCν

‖ ν|tt0 ‖
−
βiTCν

‖ ν|tt0 ‖
. (4.31)

The last inequality (4.31) follows from the fact that βi can be chosen such that

‖ zi,ν |
t0+(K+1)T−1
t+1 ‖ ≤ βiTCν (4.32)

holds.

Consequently,

|Πi(t)−Πi| ≤
(αi + βi)TCν

‖ ν|tt0 ‖
. (4.33)

Eq. (4.13) then follows by defining λi := (αi + βi). 2
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Proof of Theorem 4.2.2

Let t̃ be a switching instant such that (4.14) holds, and let σ(t̃ + 1) = σ. Notice

that, since t̃ is a switching instant, we have Πσ(t̃) ≤ Πi(t̃) , ∀i ∈
←−
N . Consider now a generic

time instant t > t̃. Then

Πσ(t) ≤ Πσ +
λσTCν

‖ ν|tt0 ‖

≤ Πσ(t̃) +
λσTCν

‖ ν|tt0 ‖
+
λσTCν

‖ ν|t̃t0 ‖

≤ Πi(t̃) +
λσTCν

‖ ν|tt0 ‖
+
λσTCν

‖ ν|t̃t0 ‖

≤ Πi +
λσTCν

‖ ν|tt0 ‖
+

[λσ + λi]TCν

‖ ν|t̃t0 ‖

≤ Πi(t) +
[λσ + λi]TCν

‖ ν|tt0 ‖
+

[λσ + λi]TCν

‖ ν|t̃t0 ‖

≤ Πi(t) +
2λTCν

‖ ν|tt0 ‖
+

2λTCν

‖ ν|t̃t0 ‖
.

In view of (4.14), then both

2λTCν

‖ ν|t̃t0 ‖
<
h

2
,

2λTCν

‖ ν|tt0 ‖
<
h

2

hold. Consequently Πσ(t) < Πi(t)+h for any i ∈
←−
N and, according to the HSL, the controller

with index σ will never be removed from the feedback loop after t̃; thus no switching can

occur after t̃. 2

Proof of Proposition 4.2.1

The bound in (4.15) follows from the stability of Σi(d). Specifically, the former

case coincides with the bound established in (4.10) when a persistent memory is used. As

for the case t ≥ t0 +M∗, with reference to the cost Πi(t) defined as in (4.7), we recall that

zi(t) is the response of the system Σi(d) to the input ε(t). Then, considering t−M∗ as the

initial time instant, we can decompose zi(k) at a time k ≥ t−M∗ as

zi(k) = zi,free(k) + zi,forced(k) , ∀k ≥ t−M∗

where zi,free(k) is the free response of Σi(d) which depends on the initial conditions at time

t−M∗, and zi,forced(k) is the forced response of Σi(d) which depends on the input ε(k) for
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k ≥ t−M∗. For the forced response, one has

‖ zi,forced|
t
t−M∗

‖ ≤ ‖Σi‖∞‖ ε|
t
t−M∗

‖

thanks to the stability of Σi(d). As for the free response, consider any minimal realization

of Σi(d)

xi(t+ 1) = Aixi(t) +Biε(t) (4.34)

zi(t) = Cixi(t) +Diε(t) (4.35)

and let xi(t −M∗) be the vector of the initial conditions of Σi(d) at time t −M∗. Then,

since zi,free(k) = CiA
k−t+M∗

i xi(t−M∗) and Σi(d) is stable, we can derive the bound

‖ zi,free|
t
t−M∗

‖2 ≤ δ̄2i ‖xi(t−M∗)‖
2

where δ̄2i is a positive scalar which bounds ‖Ci‖
2
∑M∗

k=0 ‖A
k
i ‖

2. Recalling now that system

(4.34)-(4.35) is run from time t0 with null initial conditions, we can also obtain the bound

‖xi(t−M∗)‖ ≤ δ̃iCν

where Cν is the peak of the signal ε(t) = ν(t) (recall that this equality holds for any t ≥ t0)

and δ̃i is the input-to-state peak-to-peak gain of system (4.34)-(4.35). Summing up, by

defining δi = δ̄iδ̃i, we can obtain

‖ zi,free|
t
t−M∗

‖ ≤ δiCν (4.36)

and hence

Πi(t) ≤ ‖Σi‖∞ +
δiCν

‖ ε|tt−M∗
‖
.

The bound for t ≥ t0 in (4.15) then follows thanks to the fact that ε(t) = ν(t) for any t ≥ t0.

2

Proof of Lemma 4.2.2

Following considerations similar to the ones shown in the proof of Lemma 4.2.1,

we can express zi|
t
t−M∗

as

zi|
t
t−M∗

= zi,free|
t
t−M∗

+ zi,Σi
|tt−M∗

+ zi,ν |
t
t−M∗

, (4.37)
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where zi,free is as in the Proof of Proposition 4.2.1, thus obtaining

Πi(t) ≥
‖ zi,ν |

t
t−M∗

‖

‖ ν|tt−M∗
‖
−

αiTCν

‖ ν|tt−M∗
‖
−

δiCν

‖ ν|tt−M∗
‖

(4.38)

and

Πi(t) ≤
‖ zi,ν |

t
t−M∗

‖

‖ ν|tt−M∗
‖

+
αiTCν

‖ ν|tt−M∗
‖
+

δiCν

‖ ν|tt−M∗
‖
, (4.39)

with αi a nonnegative constant as in (4.23), and δi a nonnegative constant as in (4.36).

Then the proof follows the same reasoning as the one shown in the proof of Lemma 4.2.1.

2

Proof of Theorem 4.2.3

Within the proof, we assume that ⌊M∗/T ⌋ ≥ 1, otherwise (4.20) obviously does

not hold. Let τ ∈ [t1 +M∗ , t2) be a switching instant and let σ(τ + 1) = σ. Notice that,

since τ is a switching instant, then Πσ(τ) ≤ Πi(τ), ∀i ∈
←−
N . Further, let t be a generic time

instant such that t > τ and t ∈ (t1 +M∗ , t2]. Then, by applying Lemma 4.2.2, a reasoning

very close to the one shown in the proof of Theorem 4.2.2 yields

Πσ(t) ≤ Πi(t) +
2[λT+δ]Cν

‖ν|ττ−M∗
‖
+ 2[λT+δ]Cν

‖ν|tt−M∗
‖

≤ Πi(t) +
2[λT+δ]Cν

⌊M∗

T ⌋‖ s|
T
1 ‖

+ 2[λT+δ]Cν

⌊M∗

T ⌋‖ s|
T
1 ‖
. (4.40)

Thus, if (4.20) holds, Πσ(t) < Πi(t) + h for any i ∈
←−
N and, according to the HSL, the

controller with index σ will not be removed from the feedback loop after τ in the interval

[t1 +M∗, t2]; thus no switching can occur after τ in the interval [t1 +M∗, t2]. 2
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Chapter 5

Design of a switching controller

with guaranteed stability

In the context of ASC techniques, a possible method for dealing with the problem

of ensuring stability of the overall closed loop under arbitrary switching is to consider

this requirement as one of the specifications within the synthesis of the controller family.

In particular, the solution that we propose relies on sufficient conditions which can be

expressed in terms of LMI constraints, and thus can be easily integrated in design techniques

specifically focusing on the controller performance [18]. Further, the proposed approach

allows one to adopt a simple multi-controller architecture by switching directly between the

controllers belonging to the family C , making the multi-controller structure independent of

the plant model.

5.1 Stability requirement

The idea is based on classical results on the stability of switching systems; specif-

ically, we exploit the well known fact that a sufficient condition ensuring stability of a

switching system is the existence of a common quadratic Lyapunov function between the

subsystems corresponding to the different possible configurations.

Before stating the main result supporting the proposed approach, it is useful to

provide the following definition from [85], where we recall that [88] for a strictly positive
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real (SPR) rational transfer matrix H(d) the following properties hold: a) all elements of

H(d) are stable; b) H(e−jω) +H⊤(ejω) > 0 ∀ω ∈ [0, 2π].

Definition 5.1.1. Two matrices F and V in R
m×m, with m a positive integer, are called a

strictly positive real pair (SPR-pair) if the transfer matrix H(d) defined by the quadruple

(F, I, F − V, I), i.e., H(d) = d(F − V )(I − dF )−1 + I, is SPR.

Then the following proposition can be stated [85], in which the symbol ⋆ is intro-

duced to denote a symmetric block.

Proposition 5.1.1. Given F and V in R
m×m, if they are a SPR-pair, then they are both

stable with a common Lyapunov matrix Q > 0 and the following inequalities are equivalent:

[

F⊤QF −Q ⋆

QF − F + V Q− 2I

]

< 0 (5.1)

[

V ⊤QV −Q ⋆

QV − V + F Q− 2I

]

< 0 . (5.2)

The equivalence between (5.1) and (5.2) can be derived for example by considering

the matrix

L =

[

I 0

V − F I

]

.

In fact, (5.2) is obtained from (5.1) by pre-multiplying by L⊤ and post-multiplying by L (a

similar consideration is suggested also in [36]).

Let (ACi
, BCi

, CCi
, DCi

) be stabilizable and detectable realizations of Ci(d) having

the same order for any i ∈
←−
N (for example, when all the Ci(d) have the same order, con-

trollable/observable canonical forms can be used). Further, let (AP , BP , CP ) be a minimal

realization of P (d). Then the i-th closed-loop state matrix is defined as

ACL,i =

[

AP −BPDCi
CP BPCCi

−BCi
CP ACi

]

. (5.3)

The following result can now be presented.
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Theorem 5.1.1. Let ACL,i, i ∈
←−
N , be the closed-loop state matrices, defined as in (5.3).

Further, let Mi, i ∈
←−
N , be stable matrices, and T a non-singular matrix, and assume that

Mi and T
−1ACL,iT are SPR-pair ∀i ∈

←−
N . Finally, let the multi-controller be implemented

by means of the shared-state architecture

xC(t+ 1) = ACσ(t)
xC(t)−BCσ(t)

y(t)

u(t) = CCσ(t)
xC(t)−DCσ(t)

y(t) ,
(5.4)

with xC the controller state. Then, if there exists a symmetric positive-definite matrix G

such that [

M⊤i GMi −G ⋆

GMi −Mi + T−1ACL,iT G− 2I

]

< 0 , ∀i ∈
←−
N , (5.5)

the overall closed-loop switching system is exponentially stable under arbitrary switching.

Proof: see the Appendix. 2

Remark 5.1.1. It it is worth underlining that the matrix T must be the same for all the

controllers in C ; in fact, this follows clearly from the proof of Theorem 5.1.1 , and specifically

from (5.31)-(5.32).

The overall control scheme showing the multi-controller implementation is repre-

sented in Fig. 5.1. Consider now a set of linearly-parametrized controllers with transfer

functions

Ci(d) =
Si(d)

Ri(d)
(5.6)

expressed in the form

Ci(d) = C(d, ρi) =
S(d, ρi)

Ri(d)
, ∀i ∈

←−
N , (5.7)

where the polynomial Si(d) := Si(d, ρi) is an affine function of an nρ-dimensional parameter

vector ρi, with nρ a positive integer, and Ri(d) is a fixed polynomial for each i ∈
←−
N ; further,

Si(d) and Ri(d) have strictly Schur g.c.d.

Thanks to the controller parametrization (5.7), if, for example, we realize each

Ci(d) in controllable canonical form, then the matrices CCi
= CC(ρi) and DCi

= DC(ρi)

are affine functions of the parameter vector ρi, while the matrices ACi
and BCi

are constant.

This in turn implies that each matrix ACL,i = ACL(ρi) depends affinely on ρi; thus each

inequality (5.5) becomes an LMI with respect to the unknowns G and ρi.
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xC(t+ 1) = ACσ(t)
xC(t)−BCσ(t)

y(t)

u(t) = CCσ(t)
xC(t)−DCσ(t)

y(t)
P

Supervisor

u(t)

ν(t)

y(t)

σ(t)

Figure 5.1: Adaptive Switching Control scheme.

5.1.1 Choice of Mi and T

The choice of the matrices Mi and T plays an important role within the proposed

method. Following [85], the solution that we adopt relates this choice to the synthesis of a

set of N initial fixed-order stabilizing controllers, which we assume to have been synthesized

according to any design technique (a possible synthesis approach that can be used is the

one described in [55]).

Let ACL,i be the closed-loop state matrix related to the i-th controller. Then, the

matrices Mi and T can be determined by solving the following feasibility problem
[

A
⊤
CL,iGi,TACL,i −Gi,T ⋆

Gi,TACL,i −XACL,i +Mi,T Gi,T − 2X

]

< 0 , ∀i ∈
←−
N (5.8)

Gi,T = G⊤i,T > 0 , ∀i ∈
←−
N , (5.9)

with respect to the unknownsGi,T ,X,Mi,T , whereMi,T := T−⊤MiT
−1, Gi,T := T−⊤GiT

−1,

X := T−⊤T−1 (the notation T−⊤ := (T⊤)−1 is adopted). Thus

T = (chol(X))−1 (5.10)

Mi = T⊤Mi,TT , (5.11)

where for example the Cholesky factorization, denoted by chol, can be used to compute T .

In practice, by solving the feasibility problem (5.8)-(5.9), we aim at finding matrices Mi
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and T such that Mi and T
−1ACL,iT , ∀i ∈

←−
N , are a SPR-pair, i.e., the SPR-pair property

involving Mi and T holds with respect to the initial controllers.

5.2 Performance-oriented design

In this section we will discuss a design technique aiming at providing fixed-order

controllers able to attenuate the effects of a disturbance ν(t) on the output y(t) (recall

(4.1)).

The performance criterion, for each i ∈
←−
N , can be defined as

∣
∣
∣
∣

∣
∣
∣
∣
W1,i

Ri

χi

∣
∣
∣
∣

∣
∣
∣
∣
∞

< 1 , (5.12)

where W1,i(d) is the transfer function of a performance weighting filter for the controller

Ci. As pointed out in Chapter 4, Ri(d)/χi(d) represents the disturbance-to-output transfer

function of (P/Ci), where χi(d) is the characteristic polynomial of (P/Ci), with (P/Ci)

defined as the closed-loop system involving the feedback interconnection of P with Ci.

Remark 5.2.1. The choice of the weights W1,i(d), i ∈
←−
N , can be related to the a-priori

available information on the disturbance characteristics (see for example [54]). For example,

let the model related to the disturbance ν depend on an uncertain parameter vector θ, with

θ belonging to an uncertainty set Θ. We assume that Θ is such that the task of providing a

good level of attenuation of the disturbance cannot be managed by a single robust controller.

A possible solution is then to divide the set Θ into N subsets Θ1,Θ2, · · · ,ΘN , and to

synthesize the controllers Ci, i ∈
←−
N , with each Ci exhibiting desired attenuation capabilities

within a specific subregion Θi. If we denote by ψ(ω, θ), θ ∈ Θi, the power spectral density

of the disturbance ν in the subregion Θi, then Wi(d) could be chosen for example such that

ψ(ω, θ) ≤ |W1,i(e
−jω)|2 ∀θ ∈ Θi . (5.13)

Another possible way of definingW1,i(d) is to consider a grid ofN values θ1, θ2, · · · , θN of θ in

Θ, and to address the performance problem expressed by (5.12) only in the correspondence

of these values. In this case, we could define W1,i(d) such that Wi,1(e
−jω) is a spectral

factor of ψ(ω, θi). Further, if a data series of the disturbance is available for N operating

conditions, then each Wi,1(e
−jω) can be chosen so as to match, as closely as possible, the

frequency profile which can be extracted from the data.
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Im

Re

|W1,i(e
−jω)||Ri(e

−jω)|

Im

Re

|W1,i(e
−jω)||Ri(e

−jω)|

Figure 5.2: Graphical interpretation of condition (5.15) on the left-hand side and its

approximation (5.16) on the right-hand side, respectively. In both cases, χi(e
−jω) must lie

outside the grey region.

Notice that criterion (5.12) is in general non-convex due to the dependence of

χi on the parameter vector ρi. Nevertheless, it can be linearized by resorting to simple

considerations. To this end, let us rewrite (5.12) as

∣
∣
∣
∣
W1,i(e

−jω)
Ri(e

−jω)

χi(e−jω)

∣
∣
∣
∣
< 1 , ∀ω , (5.14)

which means
∣
∣W1,i(e

−jω)
∣
∣
∣
∣Ri(e

−jω)
∣
∣ <

∣
∣χi(e

−jω)
∣
∣ , ∀ω . (5.15)

By recalling that, for a complex number x, Re{x} ≤ |x|, where |x| is the modulus of x, it

is possible to assert that if

∣
∣W1,i(e

−jω)
∣
∣
∣
∣Ri(e

−jω)
∣
∣ < Re{A(e−jω)Ri(e

−jω) +B(e−jω)S(e−jω, ρi)} , ∀ω (5.16)

holds, then (5.15) is ensured. The graphical interpretation of (5.15) and the approximation

(5.16), which is affine in the parameter vector ρi, can be explained with reference to Fig. 5.2.

If a circle with center at the origin and radius
∣
∣W1,i(e

−jω)
∣
∣
∣
∣Ri(e

−jω)
∣
∣ is considered in the

complex plane, then (5.15) requires that χi(e
−jω), for all ω, lies outside that circle. On the

other hand, (5.16) imposes that χi(e
−jω), for all ω, lies on the right-hand side with respect

to a line which is tangent to the circle and perpendicular to the real positive semi-axis, as

depicted in Fig. 5.2.
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Further, we underline that the performance criterion expressed by (5.12) can be

improved by taking into account an upper bound γ on the H∞ norm, thus leading to the

following optimization problem to be solved:

min
γ,ρi

γ (5.17)

s.t.

∣
∣W1,i(e

−jω)
∣
∣
∣
∣Ri(e

−jω)
∣
∣ < γ Re{A(e−jω)Ri(e

−jω) +B(e−jω)S(e−jω, ρi)} , ∀ω . (5.18)

By adopting the bisection algorithm, thus fixing the value of γ at each step, the problem in

(5.17)-(5.18) is a linear programming problem.

A final remark on the synthesis approach described in this section regards the

problem of dealing with the infinite number of constraints in (5.18). A practical solution

is to impose the constraints only in the correspondence of a finite number of frequencies

{ω1, ω2, · · · , ωK̃}; accordingly, we define the set ΩK̃ := {ω1, ω2, · · · , ωK̃}. Clearly, the choice

of K̃ should be such that both the approximation in the frequency domain is sufficiently

accurate, and the problem has a manageable computational burden. Depending on the

specific context of application, the K̃ frequencies can be selected by means of either a

random or a deterministic approach [55].

5.2.1 The proposed design algorithm

The design algorithm that we propose integrates the constraints introduced in

Section 5.1 within the synthesis method described in Section 5.2 and provides a family of

controllers guaranteeing the stability of the overall closed-loop switching system and good

attenuation capabilities in the presence of a disturbance with unknown and possibly time-

varying characteristics.

Algorithm 5.2.1

Step 0 - Initialization. Define the set ΩK̃ . For each i ∈
←−
N , define: the length of the

parameter vector ρi; the denominator Ri(d) (and compute its frequency response Ri(e
−jω));

the weight W1,i(e
−jω) for the sensitivity function.

Step 1. Compute N initial stabilizing controllers accounting for the performance require-

ment only (for example, by means of the technique proposed in [55]).
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Step 2. Compute stabilizable and detectable realizations (ACi
, BCi

, CCi
, DCi

) having the

same order for all the initial controllers (for example, in controllable canonical form); com-

pute a minimal realization of the plant (AP , BP , CP ).

Step 3. Compute the state matrix of the closed-loop system on the basis of the state-space

realizations of the plant and of the i-th initial controller for all i ∈
←−
N :

ACL,i =

[

AP −BPDCi
CP BPCCi

−BCi
CP ACi

]

. (5.19)

Step 4. Solve the feasibility problem
[

A
⊤
CL,iGi,TACL,i −Gi,T ⋆

Gi,TACL,i −XACL,i +Mi,T Gi,T − 2X

]

< 0 , ∀i ∈
←−
N (5.20)

Gi,T = G⊤i,T > 0 , ∀i ∈
←−
N , (5.21)

with respect to the unknowns Mi,T , Gi,T , X (defined as in Section 5.1.1), and set

T = (chol(X))−1 (5.22)

Mi = T⊤Mi,TT . (5.23)

Step 5. Consider a set of controllers having transfer functions C(d, ρi), i ∈
←−
N , depending

on a parameter vector ρi, and compute stabilizable and detectable state-space realizations

(ACi
, BCi

, CCi
, DCi

) having the same order for all of them (for example, in controllable

canonical form); compute the corresponding closed-loop state matrices

ACL(ρi) =

[

AP −BPDCi
CP BPCCi

−BCi
CP ACi

]

. (5.24)

Step 6. Solve the optimization problem

min
γ,ρi,G

γ (5.25)

s.t.

∣
∣W1,i(e

−jω)
∣
∣
∣
∣Ri(e

−jω)
∣
∣ < γ Re{A(e−jω)Ri(e

−jω) +B(e−jω)S(e−jω, ρi)} , ∀ω ∈ ΩK̃ ,

∀i ∈
←−
N ,

[

M⊤i GMi −G ⋆

GMi −Mi + T−1ACL(ρi)T G− 2I

]

< 0 , ∀i ∈
←−
N (5.26)

G = G⊤ > 0 . (5.27)
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Step 7. Compute the set of controllers on the basis of the vectors ρ̂i as

Ci(d) =
S(d, ρ̂i)

Ri(d)
, (5.28)

where ρ̂i is solution to the problem (5.25)-(5.27).

Remark 5.2.2. The method described in this chapter ensures the stability of the over-

all closed-loop system under arbitrary switching, provided that a feasible solution can be

obtained from Algorithm 5.2.1. However, it is to be pointed out that the optimization

problem in Step 6 is not guaranteed to provide a feasible solution. An interesting topic

for future research, as indicated within the concluding remarks of this work, could be that

of finding a more suitable formulation of the problem accounting for stability within the

synthesis step and always ensuring the existence of a feasible solution.

Remark 5.2.3. A design method based on linear or convex constraints expressed in the

frequency-domain has been proposed in [55], with the aim of synthesizing a robust fixed-

order controller for a SISO LTI plant represented by non-parametric models. This technique,

which can be used for the synthesis of the initial stabilizing controllers in Step 1 of Al-

gorithm 5.2.1, has been exploited in [54] in the context of the attenuation of uncertain

and time-varying narrow band disturbances by means of a gain-scheduling scheme. In fact,

the method of [55] is well suited to dealing with the context of disturbances described by

uncertain models (for example, when only empirical estimates of the disturbance spectra are

available); further, it addresses the performance problem by means of a convex optimization

problem. This technique relies on the idea of linearizing the performance criterion around a

desired open-loop transfer function Ld(d), reflecting the open-loop behavior corresponding

to a desired controller Cd(d); this turns out to be useful also to provide a stability condi-

tion for the closed-loop system. However, in our framework, differently from this approach,

the stability of each closed-loop system is ensured by the stability of the overall switching

system, addressed by means of the constraints discussed in Section 5.1; this avoids the ne-

cessity of relying on desired open-loop transfer functions related to the controllers to be

synthesized.
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5.A Appendix: Proofs

Proof of Theorem 5.1.1. From classical results on the stability of switching systems it is

possible to assert that, if a common quadratic Lyapunov matrix exists for the closed-loop

systems with state matrices ACL,i defined in (5.3), this guarantees the stability of the overall

closed-loop switching system. The result stated in Theorem 5.1.1 then follows thanks to the

fact that Mi and T
−1ACL,iT are SPR-pair ∀i ∈

←−
N , and recalling the equivalence between

(5.1) and (5.2). This can be proved by following the reasoning explained below.

If [

M⊤i GMi −G ⋆

GMi −Mi + T−1ACL,iT G− 2I

]

< 0 , ∀i ∈
←−
N , (5.29)

holds, then

[

(T−1ACL,iT )
⊤G(T−1ACL,iT )−G ⋆

G(T−1ACL,iT )− (T−1ACL,iT ) +Mi G− 2I

]

< 0 , ∀i ∈
←−
N , (5.30)

holds as well. By multiplying by diag(T−⊤, T−⊤) on the left (with T−⊤ := (T⊤)−1) and by

diag(T−1, T−1) on the right, from (5.30) one obtains

[

A⊤CL,iT
−⊤GT−1ACL,i − T

−⊤GT−1 ⋆

T−⊤GT−1ACL,i + T−⊤MiT
−1 − T−⊤T−1ACL,i T−⊤GT−1 − 2T−TT−1

]

< 0 ,

∀i ∈
←−
N .

(5.31)

Thus from (5.31) it is possible to assert that

A⊤CL,i(T
−⊤GT−1)ACL,i − (T−⊤GT−1) < 0 , ∀i ∈

←−
N , (5.32)

which means that the matrices ACL,i, i ∈
←−
N , have a common Lyapunov matrix (T−⊤GT−1).

Similar considerations are suggested also in [85]. Then, if the multi-controller is implemented

as in (5.4), then the closed-loop state matrix of the overall switching system has the form

ACL,σ(t) =

[

AP −BPDCσ(t)
CP BPCCσ(t)

−BCσ(t)
CP ACσ(t)

]

. (5.33)

Thus, thanks to (5.32), it is possible to assert that the overall closed-loop switching system

is exponentially stable for any switching signal σ. 2
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Chapter 6

Switching between the Youla

parameters

The approach proposed in Chapter 5 provides a family of controllers to be used

within an adaptive switching control scheme and ensuring by construction the stability of

the overall switching closed-loop system. While such a method allows the complexity of the

multi-controller to be independent of the plant complexity, on the other hand there is not

a perfect independence between the synthesis step and the switching mechanism. Further,

the design of the N controllers is unavoidably constrained by the necessity of admitting a

common quadratic Lyapunov function for all the potential closed-loop systems. In order to

recover full modularity of the switching scheme, the stability requirement can be addressed

by taking special care on the implementation of the multi-controller [19, 21, 20]. Guidelines

for the implementation of a multi-controller able to preserve stability for any arbitrary

switching sequence when switching between stabilizing controllers are presented in [47] for

the continuous-time case. In this chapter, we will briefly discuss how similar considerations

hold also for the discrete-time case, and we will finally focus on a specific implementation

which is less general but requires reduced efforts.

6.1 Switching controller implementation

Following the reasoning shown in [47], we adopt the Youla-Kucera parametrization

for the controllers in C . For this purpose, consider a controller C0 with transfer function
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A(d)

B(d)

S0(d) 1−R0(d)

Qσ(t) P

Supervisor

u(t)ε(t)

u(t)

ũ(t)

ν(t)

y(t)

σ(t)

−
−

−

Figure 6.1: Youla-Kucera parametrization: switching between the Qi.

C0(d) = S0(d)/R0(d) satisfying the Bezout identity

A(d)R0(d) +B(d)S0(d) = 1 . (6.1)

Then, as well known, each transfer function Ci(d), i ∈
←−
N , can be expressed as

Ci(d) =
S0(d)Di(d) +A(d)Ni(d)

R0(d)Di(d)−B(d)Ni(d)
(6.2)

where

Qi(d) =
Ni(d)

Di(d)
(6.3)

is the transfer function of the Youla parameter Qi corresponding to Ci. Recall also that

for any stabilizing controller the corresponding Youla parameter turns out to be stable.

Hereafter, we will refer to Q as the finite family composed of {Qi, i ∈
←−
N }.

Remark 6.1.1. We note that, in terms of the Youla parameter Qi, the weighted mixed-

sensitivity Σi(d) in (4.4) takes the form

Σi(d) =
1

Di(d)

[

R0(d)Di(d)−B(d)Ni(d)

−η(S0(d)Di(d) +A(d)Ni(d))

]

.

Hence it can be seen that the dependence on the numerator Ni(d) is affine, while the

denominator Di(d) coincides with the closed-loop characteristic polynomial.

The proposed multi-controller implementation is based on the idea of switching

between the Youla parameters as depicted in Fig. 6.1. Accordingly the control input u(t)
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is generated as

u(t) = u(t)− ũ(t) , (6.4)

where ũ(t) is the output of the switching system Qσ(t) having input ε(t), and the signals

u(t) and ε(t) are obtained as

[

u(t)

ε(t)

]

=

[

(1−R0(d)) −S0(d)

−B(d) A(d)

][

u(t)

y(t)

]

. (6.5)

As for the switching system Qσ(t), let m be the largest among the orders of the

transfer functions of Qi in Q and let us consider, for any i ∈
←−
N , a stabilizable and detectable

m-dimensional realization {Ai, Bi, Ci, Di} of the transfer function Qi(d). Then, Qσ(t) takes

the form

Qσ(t) :

{

ζ(t+ 1) = Aσ(t)ζ(t) +Bσ(t)ε(t)

ũ(t) = Cσ(t)ζ(t) +Dσ(t)ε(t)
. (6.6)

Notice that each Ai is asymptotically stable since the Youla parameter Qi(d) is stable by

construction.

The following result can now be stated.

Theorem 6.1.1. Let the multi-controller Cσ(t) be implemented as in (6.4)-(6.6). Then,

when σ(t) = i, the frozen-time transfer function between y(t) and u(t) coincides with −Ci(d).

If in addition the matrices Ai, i ∈
←−
N , admit a common quadratic Lyapunov function, i.e.,

there exists a symmetric positive definite matrix G such that

A
⊤
i GAi −G < 0, i ∈

←−
N , (6.7)

then the switching system (P/Cσ(t)), made up of the feedback interconnection of P and Cσ(t),

is internally stable for any switching signal σ.

Proof: see the Appendix. 2

In the above theorem, by saying that (P/Cσ(t)) is internally stable we mean that

all the signals in the system remain bounded for any bounded disturbance ν. In view of

Theorem 6.1.1, it can be seen that, in order to ensure stability, it is sufficient to choose

the realizations {Ai, Bi, Ci, Di}, i ∈
←−
N , so that condition (6.7) holds. The following lemma

shows that this is always possible.

60



Chapter 6. Switching between the Youla parameters

Lemma 6.1.1. Given any finite set of asymptotically stable transfer functions Qi(d) related

to a family Q = {Qi, i ∈
←−
N } and any symmetric positive definite matrix G (whose order

m is the largest order of the transfer functions of the systems in Q), there exist stabilizable

and detectable m-dimensional realizations {Ai, Bi, Ci, Di} for each Qi(d) such that (6.7)

holds.

Proof: see the Appendix. 2

Remark 6.1.2. When the plant to be controlled is stable, i.e. P (d) is a stable transfer

function, each stabilizing controller in C can be expressed as:

Ci(d) =
A(d)Ni(d)

A(d)Di(d)−B(d)Ni(d)
, (6.8)

and the control input u can be computed as the output of the switching system Qσ(t) having

as input a signal ẽ computed as

ẽ(t) =
B(d)

A(d)
u(t)− y(t) . (6.9)

By following the same line of reasoning as the one shown in the proof of Theorem 6.1.1,

stability of the overall feedback system holds provided that the disturbance is bounded and

that the multi-controller is implemented so as to satisfy (6.6), (6.7), (6.9).

6.1.1 A simplified implementation

As pointed out in Remark 6.1.1, the weighted mixed-sensitivity Σi(d) depends

affinely on the numerator Ni(d) of the Youla parameter. With this respect, if each Ni(d) is

expressed as an affine function of a parameter vector ρi, by fixing the denominator Di(d)

of each Youla parameter it is possible to formulate the control design problem as a convex

optimization problem. In fact, the choice of a specific structure for the Youla parameter

in order to simplify a controller synthesis algorithm or make it enjoy some properties is

quite a common practice (see for example [63] or [87] in Section 4.4 and the references

therein). Clearly, fixing each Di(d) can limit the achievable performance; however, it is

to be pointed out that, by increasing the number of free parameters in the numerator, it

is possible to approximate any finite-order stable transfer function with arbitrary accuracy

[49]. Specifically, a convenient choice could be that all the Youla parametersQi(d) associated
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with the controllers Ci ∈ C share the same denominator, i.e.,

Qi(d) =
Ni(d)

D(d)
(6.10)

with D(d) a given stable polynomial. For example, the characteristic polynomial D(d) can

be chosen so as to ensure a desired transient behavior, whereas each numerator Ni(d) can

be designed by optimizing a H2 or H∞ performance objective defined with respect to a

certain disturbance frequency profile (different for each i ∈
←−
N ).

The choice of a common denominator D(d) for all the Youla parameters simplifies

also the multi-controller architecture and the stability analysis of the closed-loop system.

In fact, in this case it is not necessary to look for realizations {Ai, Bi, Ci, Di}

satisfying condition (6.7), since Qσ(t) can be simply implemented through the difference

equation

Qσ(t) : D(d)ũ(t) = Nσ(t)(d)ε(t) , (6.11)

with ε(t) defined as in (6.5), from which the stability of the overall switched system follows,

as stated in the following result.

Proposition 6.1.1. Let the multi-controller Cσ(t) be implemented as in (6.4), (6.5), (6.11).

Then the switching system (P/Cσ(t)) is internally stable for any switching signal σ.

Proof: see the Appendix. 2

If the plant transfer function P (d) is stable, the architecture can be further sim-

plified by taking

Qσ(t) : D(d)u(t) = Nσ(t)(d)ẽ(t) (6.12)

with ẽ(t) as in (6.9).

In the next sections, we will show simulation results obtained on the active suspen-

sion system described in Chapter 2 and the adaptive optics system described in Chapter 1.

In both contexts, the multi-controller architecture is implemented as described in Section

6.1.1; since both the plants are stable, Qσ(t) is as in (6.12). Specifically, with respect to

the results obtained within the adaptive optics application, a detailed presentation of the

synthesis algorithm, involving the employment of the Youla parametrization and the opti-

mization of the Youla parameter, will be provided in Appendix 6.B; controllers synthesized

by means of this technique have been tested on an adaptive optics simulator, and very
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Controller Frequency range

C1 Ω1 = [0, 4)Hz

C2 Ω2 = [4, 6.5)Hz

C3 Ω3 = [6.5, 8.5)Hz

C4 Ω4 = [8.5, 10)Hz

Table 6.1: Active suspension system. Frequency ranges Ωi , i = 1, 2, 3, 4.

satisfactory results have been achieved [2] (see also [3] for an extension of the algorithm

accounting for robustness with respect to variations of the turbulence and vibration profiles

in accordance with the operating conditions of the telescope).

6.2 Disturbance attenuation in an active suspension applica-

tion

In this section we present simulation tests related to the active suspension system

for a quarter-car model, introduced in Chapter 2 and represented in Fig. 2.2. The system

is stable and can be described by means of the model (2.7); the aim is that of regulating

the displacement y1 (with respect to its equilibrium point) around zero in the presence of

the road excitation n. The discretized model of the system is of the form (4.1), where y is

represented by the displacement y1, u is represented by the force F , and ν is replaced by a

moving average of samples of the disturbance n. The considered parameters are summarized

in Table 2.1.

We first suppose that the disturbance n is a sinusoidal signal with 0.1m magnitude

and unknown frequency f belonging to the range Ω = [0, 10]Hz. We subdivide the range

Ω into four subsets Ωi ⊂ Ω, i = 1, 2, 3, 4, and synthesize four controllers Ci , i = 1, 2, 3, 4,

with each Ci exhibiting a satisfactory attenuation level in the subset Ωi (see Table 6.1).

The Youla parameter related to each controller has the form (6.10) and the switching

system is implemented as shown in (6.12). The common denominator D(d) is chosen such

that all the controllers exhibit a satisfactory transient behavior; each numerator Ni(d) is

expressed as an affine function of a parameter vector ρi. Specifically, D(d) = 1−0.9 d, while

Ni(d) = ϕ⊤(d)ρi, with ϕ(d) = [1, d, · · · , d10]⊤. The design procedure of each controller
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involves the solution of an optimization problem, which can be formulated as

min
γ,ρi

γ (6.13)

s.t.

|Σi,1(e
−jω, ρi)|

2 < γ , ∀ω ∈ Ωi , (6.14)

|Σi,2(e
−jω, ρi)|

2 < δ , ∀ω ∈ Ωi , (6.15)

where, for each i ∈
←−
N , Σi,1(d, ρi) is the transfer function from the signal n, computed as

in (2.12), to the output y1, while Σi,2(d, ρi) is the transfer function from n to the control

input F ; further, δ is a design parameter. Specifically,

Σi,1(d, ρi) = 1− P (d)Qi(d) = 1− B(d)
A(d)

ϕ⊤(d)ρi
D(d) , (6.16)

Σi,2(d, ρi) = Qi(d) =
ϕ⊤(d)ρi
D(d) . (6.17)

Since both Σi,1 and Σi,2 depend affinely on the parameter vector ρi, the problem (6.13)-

(6.15) can be recast as an optimization problem with linear objective function and quadratic

constraints. In order to overcome the problem of dealing with an infinite number of con-

straints, a practical solution is to impose (6.14) and (6.15) only in correspondence of a finite

number of frequencies; in the proposed setting, a grid with resolution of 0.1Hz is adopted

for each set Ωi. Figure 6.2 shows the Bode Diagram of the transfer functions from n to y1,

obtained when each of the controllers is in feedback with the plant.

We consider a disturbance with time-varying frequency; thus we adopt a finite

memory with M(t) defined as in (4.8) and M∗ = 2000 time samples. As for the switching

logic, we set h = 5× 10−3. The parameter η is set to zero; as far as sinusoidal disturbances

are considered, this choice allows one to immediately identify the best controller to be

selected by the supervisory unit as the one corresponding to the maximum attenuation

level achieved by the transfer functions in Fig. 6.2 at the frequency f .

In the tests that are shown in this section, we compare the performance achieved by

the proposed method with the behavior exhibited by the direct adaptive scheme described

in [64, 63], for which a constant forgetting factor with value 0.998 is used in the estimation

algorithm.
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Figure 6.2: Active suspension system. Bode diagram of the transfer functions from n to

y1 related to the controllers Ci , i = 1, 2, 3, 4.

In Fig. 6.3, the frequency f of the sinusoidal disturbance n is supposed to be

defined as follows:

f=







2.6Hz , t ∈ [0, 15) s

5.8Hz , t ∈ [15, 30) s

7.3Hz , t ∈ [30, 45) s

. (6.18)

When the multi-controller is used, we can notice that the supervisory unit selects, after

a short learning time, the controller which provides the best performance level in corre-

spondence to each value of f . The length of the learning time is related to the choice of h

and M∗, as discussed in the analysis presented in Chapter 4, but does not depend on any

estimation algorithm (as it is the case of the direct adaptive scheme).

Another interesting test is the one shown in Fig. 6.4, where we let the frequency

of the sinusoidal disturbance vary continuously with time from 1 Hz to 9.5 Hz, and then

back from 9.5 Hz to 1 Hz. The proposed switching scheme achieves a high performance

level also in this case.
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Figure 6.3: Active suspension system. System output in the presence of a sinusoidal road

excitation with frequency f as in (6.18): comparison between open-loop, direct adaptive

scheme, and multi-controller case.

As a final test, we suppose the disturbance n to be generated as the output of a

filter with time-varying characteristics, having a zero-mean white noise as input. We let the

characteristics of the filter to be constant over time intervals TI1 = [0, 15) s, TI2 = [15, 30) s,

TI3 = [30, 45) s; the Fourier Transforms of the resulting signal n are shown in Fig. 6.5 for

t ∈ TI1, t ∈ TI2, and t ∈ TI3, respectively. The results, shown in Fig. 6.6, confirm the

ability of the proposed method in providing a high performance level also in the presence

of a more general bounded disturbance signal.
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Figure 6.4: Active suspension system. System output in the presence of a sinusoidal road

excitation with frequency varying continuously with time: comparison between open-loop,

direct adaptive scheme, and multi-controller case.

6.3 Disturbance attenuation in an adaptive optics applica-

tion

In this section, simulation tests related to an adaptive optics application are shown.

We refer to the control scheme depicted in Fig. 1.2, where we consider a family of Dedicated

controllers, related to the tip mode, to be used within a switching control architecture

as described in Section 6.1. Specifically, the Youla parameter related to each controller

has the form (6.10) and the switching system is implemented as shown in (6.12). Each
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Figure 6.5: Active suspension system. Magnitude of the Fourier Transform of the con-

sidered signal, obtained as the output of a filter with time-varying characteristics having a

zero-mean white noise as input, for t ∈ [0, 15) s, t ∈ [15, 30) s and t ∈ [30, 45) s, respectively.

controller belonging to the family is synthesized according to the design algorithm described

in Appendix 6.B (where results obtained on an adaptive optics simulator are also presented,

with respect to a specific operating condition of the telescope, to show the effectiveness of

the proposed synthesis procedure).

In the test that follow, we take into account variations of the variance of the

measurement noise wtip (arising in particular situations, e.g., in the case of atmospheric

transparency variations due to clouds temporarily“hiding”the object to be observed). Since

ytip(t) = H(d)φrestip (t) + wtip(t) , (6.19)

with H(d) behaving as a unit delay, for a measurement noise wtip decorrelated from the

residual phase φrestip (we assume that wtip is a zero-mean white noise), we can assert that the

part H(d)φrestip (t) is decorrelated from the component wtip(t); it follows that minimizing the

variance of the residual phase φrestip is equivalent to minimize the variance of the measured

output ytip. This line of reasoning is also followed in [31]. The problem can be addressed

68



Chapter 6. Switching between the Youla parameters

0 5 10 15 20 25 30 35 40 45

−0.2

0

0.2

y 1
(t

)[
m

]

open loop

0 5 10 15 20 25 30 35 40 45

−0.1

0

0.1

y 1
(t

)[
m

]

direct adaptive scheme

0 5 10 15 20 25 30 35 40 45
−0.05

0

0.05

y 1
(t

)[
m

]

multi−controller

0 5 10 15 20 25 30 35 40 45
0

2

4

S
el

ec
te

d 
co

nt
ro

lle
r

t [s]

 

 

best
selected

Figure 6.6: Active suspension system. System output in the presence of a disturbance

obtained as the output of a filter with time-varying characteristics having a zero-mean white

noise as input: comparison between open-loop, direct adaptive scheme, and multi-controller

case.

by means of a switching control solution; with respect to the model in (4.1), the output y

is represented by ytip, while the disturbance ν is the sum of the measurement noise and the

one-step-delayed wavefront distortion.

Within this framework, we synthesize two controllers, by means of the algorithm

shown in Section 6.B, related to the following situations: (a) measurement noise having

variance of≈ 10−6 (almost ideal case, i.e., almost negligible contribution of the measurement
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Figure 6.7: Adaptive optics system. Evolution of the measured output in open loop, with

the controller (a) in feedback with the plant, and with the controller (b) in feedback with

the plant, respectively.

noise); (b) measurement noise having variance ≈ 10−2 (case accounting for a low signal-to-

noise ratio).

The design algorithm is initialized from the starting controller

Ĉ(d) =
0.65

1− 0.95 d
; (6.20)

the number K̃ of frequencies at which the constraints are imposed within the design algo-

rithm is set to 502, and Γ is set to 18 (the meaning of the “starting controller” and of the

parameters K̃ and Γ is explained in Appendix 6.B).

We consider a measurement noise wt having variance

var(wtip)≈







10−2 , t ∈ [0, 7.5) s

10−6 , t ∈ [7.5, 15) s
. (6.21)
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Figure 6.8: Adaptive optics system. Evolution of the measured output: comparison

between open loop and multi-controller case.

We first show in Fig. 6.7 the evolution of the signal ytip(t): in open loop; when

the controller (a) is in feedback with the plant; when the controller (b) is in feedback with

the plant.

Further, we show in Fig. 6.8 a comparison between the evolution of the signal

ytip(t) in open-loop and by applying the multi-controller implemented as shown in Section

6.1.1. A fixed memoryM∗ = 1000 time samples, and an hysteresis constant h = 2×10−2 are

considered. The results underline the validity of the adaptive switching control approach

as a solution to the problem.
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6.A Appendix: Proofs

Proof of Theorem 6.1.1. The fact that, when σ(t) = i, the transfer function between y(t)

and u(t) coincides with −Ci(d) derives directly from the implementation described in (6.4),

(6.5) and (6.6). In the following, we focus on the internal stability of the switching system

(P/Cσ(t)).

We recall that, for t ≤ t0, the switching signal is kept constant (thus one of the

stabilizing controllers belonging to C is continuously in feedback with the plant), and that,

for t > t0 the signal ε(t) coincides with the disturbance ν(t). This means that ε(t) is

independent of σ and that it is bounded, provided that ν(t) is bounded. By choosing a

stabilizable and detectable realization {Ai, Bi, Ci, Di} of each Qi(d) such that a common

Lyapunov function V(ζ) = ζTGζ exists for the family of linear time-invariant systems

{ζ(t+ 1) = Aiζ(t), i ∈
←−
N } , we can assert that Qσ(t) is exponentially input-to-state stable,

and thus its state ζ(t) and its output ũ(t) are bounded for all σ. The boundedness of the

signal ũ(t) implies the boundedness of u(t) and y(t). In fact, from (4.1) the following steps

hold:

A(d)y(t) = B(d)u(t) + ν(t)

= B(d)u(t)−B(d)ũ(t) + ν(t)

= B(d)[1−R0(d)]u(t)−B(d)ũ(t)−B(d)S0(d)y(t) + ν(t)

= B(d)u(t)−R0(d)[A(d)y(t)− ν(t)]−B(d)S0(d)y(t)−B(d)ũ(t) + ν(t) .

Thus one obtains

[A(d)R0(d) +B(d)S0(d)]y(t) = −B(d)ũ(t) +R0(d)ν(t)

which, by recalling (6.1), yields y(t) = −B(d)ũ(t) + R0(d)ν(t). Similarly, from (6.4) and

thanks to (4.1) and (6.1), one obtains u(t) = −A(d)ũ(t)− S0(d)ν(t). 2

Proof of Lemma 6.1.1. This proof follows along the same lines of Appendix A1 of [47]. Let

{Ãi, B̃i, C̃i, D̃i} be any m-dimensional realization of Qi(d), with Ãi asymptotically stable.

Thus it is possible to assert that symmetric positive definite solutions Gi to the set of

Lyapunov equations

Ã⊤i GiÃi −Gi = −I, i ∈
←−
N (6.22)
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exist, such that Gi = Ĝ⊤i Ĝi, with Ĝi nonsingular. Accordingly, we can consider a positive

definite matrix G ∈ R
m×m such that G = Ĝ⊤Ĝ, with Ĝ nonsingular, and define

Ai := Ĝ−1ĜiÃiĜ
−1
i Ĝ (6.23)

Bi := Ĝ−1ĜiB̃i (6.24)

Ci := C̃iĜ
−1
i Ĝ (6.25)

Di := D̃i . (6.26)

In turn, the set {Ai, Bi, Ci, Di} provides a realization of Qi(d), because it has been obtained

from {Ãi, B̃i, C̃i, D̃i} by means of a similarity transformation.

From (6.23) it is possible to compute Ãi as

Ãi = (Ĝ−1Ĝi)
−1Ai(Ĝ

−1
i Ĝ)−1 . (6.27)

Consequently,

[(Ĝ−1Ĝi)
−1Ai(Ĝ

−1
i Ĝ)−1]⊤Ĝ⊤i Ĝi[(Ĝ

−1Ĝi)
−1Ai(Ĝ

−1
i Ĝ)−1]− Ĝ⊤i Ĝi = −I

which yields

[Ĝ−1i ĜAiĜ
−1Ĝi]

⊤Ĝ⊤i ĜiĜ
−1
i ĜAiĜ

−1Ĝi − Ĝ
⊤
i Ĝi = −I

⇒ Ĝ⊤i (Ĝ
⊤)−1A

⊤
i Ĝ
⊤ĜAiĜ

−1Ĝi − Ĝ
⊤
i Ĝi = −I ,

from which it is possible to obtain

Ĝ⊤i (Ĝ
⊤)−1A

⊤
i Ĝ
⊤ĜAiĜ

−1Ĝi − Ĝ
⊤
i (Ĝ

⊤)−1Ĝ⊤ĜĜ−1Ĝi = −I

⇒ Ĝ⊤i (Ĝ
⊤)−1[A

⊤
i GAi −G]Ĝ

−1Ĝi = −I .

Thus

A
⊤
i GAi −G = −(Ĝ−1i Ĝ)⊤Ĝ−1i Ĝ < 0 , (6.28)

which concludes the proof. 2

Proof of Proposition 6.1.1. As shown in the proof of Theorem 6.1.1, in order to prove

stability it is sufficient to verify that ũ remains bounded for any σ when ν is bounded. This

readily follows from the fact that D(d) is stable and Nσ(t)(d)ε(t) is bounded, since it is a

moving average, with bounded coefficients, of a bounded signal. 2
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6.B Appendix: Modal control design in adaptive optics ap-

plications

In this section, we show a frequency-based design algorithm, proposed in [2] within

a “Modal-Control” framework in the context of adaptive optics systems for ground-based

telescopes; this method builds upon an optimization procedure performed on the Youla

parameter of a given modal controller with respect to a relevant adaptive optics performance

criterion defined on a “sampled” frequency domain. The algorithm is initialized with a

starting controller, which can be either a model-based controller (synthesized on the grounds

of disturbance models of low complexity), or a non-model-based one. Controllers synthesized

by means of this technique have been tested on an adaptive optics simulator, and some

results are shown at the end of this section.

6.B.1 A frequency based approach

With reference to Fig. 1.2, we consider the transfer function C(d, ρ) of an arbitrary

controller with fixed structure depending on a parameter vector ρ which has to be tuned so

as to achieve desired performances. We recall that the plant, with transfer function P (d),

is composed of the cascade of the blocks M(d) and H(d), representing the dynamics of the

ASM and WFS, respectively, each one assumed to behave as a unit delay (i.e. M(d) ≈

H(d) ≈ d). In fact, the internal position control acting on the mirror shell works with a

sampling time much lower than the one of the external AO loop.

The main objective of the AO system is to regulate the residual phase about zero

by rejecting the disturbances acting on the system. To this end, a typical AO performance

criterion to be minimized is the sampled-valued variance of the residual phase, defined as

(see [30])

f(ρ) = lim
h→∞

1

h+ 1

h∑

k=0

|φrestip (k)|
2 (6.29)

In fact, minimizing f(ρ) amounts to maximizing the Strehl-ratio (SR), which is the ratio of

the maximum of the Point Spread Function (PSF) of the distorted image and the maximum

of the theoretical diffraction limited image PSF [44]. Let now Υφ(ω) and Υw(ω) denote the

PSDs of the signals φtottip(t) and wtip(t), respectively. Supposing φ
tot
tip(t) and wtip(t) mutually

uncorrelated, by virtue of the Parseval’s relationship, one can rewrite f(ρ) in the frequency
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domain as follows

f(ρ) =
1

2π

∫ π

−π
( |S(e−jω, ρ)|2Υφ(ω) + |T (e

−jω, ρ)|2Υw(ω) )dω , (6.30)

where S(d, ρ) is the transfer function mapping the phase aberration φtottip(t) into the residual

phase φrestip (t), whereas T (d, ρ) is the transfer function mapping the measurement noise

wtip(t) into the residual phase φrestip (t). With reference to Fig. 1.2, it is immediate to see

that S(d, ρ) = (1 + C(d, ρ)P (d))−1 and T (d, ρ) = −M(d)C(d, ρ) (1 + C(d, ρ)P (d))−1.

In practice, it is convenient to approximate the integral in (6.30) with a finite sum

by considering the samples at certain frequencies ω1, ω2, . . . , ωK̃ of the PSDs of φtottip(t) and

wtip(t). These samples can be obtained either from a model, possibly infinite-dimensional

and non parametric, or directly from collected data series. Accordingly, we redefine the

performance criterion in (6.30) as

f(ρ) =
1

K̃

K̃∑

k=1

(|S(e−jωk , ρ)|2 Υ̂φ(ωk) + |T (e
−jωk , ρ)|2 Υ̂w(ωk)) , (6.31)

where Υ̂φ(ωk) and Υ̂w(ωk) denote estimates of the PSDs Υφ(ωk) and Υw(ωk), respectively,

at the frequency ωk.

In order to derive a controller C(d, ρ) with optimized performance with respect

to the objective function f(ρ), we resort to the Youla parametrization, implemented as in

(6.8) since the plant is stable. In particular, in the framework proposed in this context, we

can resort to the following expression for the family C(P ) of all the stabilizing controllers

described by means of the Youla parametrization [33]:

C(P ) =

{

C(d) =
Q(d)

1− P (d)Q(d)
, Q(d) ∈ S

}

, (6.32)

where Q(d) is an arbitrary transfer function belonging to S, with S the family of all stable

proper transfer functions. Thus, the transfer function Q(d) has to be regarded as a free

parameter which can be tuned so as to achieve the desired control performance. To this

end, we give Q(d) a fixed structure depending on a parameter vector ρ, i.e., Q(d) = Q(d, ρ),

thus considering controllers of the form

C(d, ρ) =
Q(d, ρ)

1− P (d)Q(d, ρ)
. (6.33)
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Thanks to the adopted Youla parametrization, it is possible to express both S(d, ρ) and

T (d, ρ) in a form which is affine in the Youla parameter Q(d, ρ):

S(d, ρ) = 1− P (d)Q(d, ρ) , (6.34)

T (d, ρ) = −M(d)Q(d, ρ) . (6.35)

Hence, by expressing Q(d) as a linear combination of functions ψi(d), each one weighted by

a parameter ρi, i.e.

Q(d, ρ) = ψ⊤(d)ρ, (6.36)

where ψ(d) =
[
ψ1(d)ψ2(d) · · · ψnρ(d)

]⊤
and ρ =

[
ρ1 ρ2 · · · ρnρ

]⊤
, it is possible to make

both S(d, ρ) and T (d, ρ) affine functions of the parameter vector ρ:

S(d, ρ) = 1− P (d)ψ⊤(d)ρ , (6.37)

T (d, ρ) = −M(d)ψ⊤(d)ρ . (6.38)

With respect to the choice of the vector ψ(d), many alternatives are possible (for

instance, one can choose ψ(d) as a collection of basis functions, through which it is possible to

approximate any finite-order stable transfer function with arbitrary accuracy by increasing

the value of nρ [55]). In this framework, we consider

ψ(d) =
1

D(d)
[1 d · · · dnρ−1]⊤ , (6.39)

where the denominator D(d) is a fixed polynomial. As it can be seen from (6.37) and (6.38),

the polynomial D(d) determines the closed-loop poles of the considered modal control loop.

Accordingly, the choice of D(d) allows to a priori fix an adequate stability margin. As will

be discussed in detail in Section 6.B.2, in practice D(d) can be chosen on the basis of a

given reference controller which represents the starting point of the proposed control design

procedure.

The parameter vector ρ plays a fundamental role, in that it is used as the deci-

sion variable of the optimization problem. In fact, the objective function in (6.31) can be

equivalently written as a quadratic function of ρ:

f(ρ) =
1

K̃

K̃∑

k=1

{

|(1− P (e−jωk)ψ⊤(e−jωk)ρ)|2 Υ̂φ(ωk) + |M(e−jωk)ψ⊤(e−jωk)ρ|2 Υ̂w(ωk)
}

.
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Thanks to the form of the function f(ρ), it would now be immediate to compute the param-

eter vector, say ρ◦, which minimizes f(ρ). The resulting controller C(d, ρ◦) would provide

optimized performance in the sense of the minimum sampled-valued variance.

Nevertheless, in many situations a controller should fulfill additional requirements

beyond stabilization and performance. For instance, while observing an astronomical object,

several circumstances may cause the command signal u(t) to be interrupted for a few time

steps: actuators may be required to perform an action that is not compatible with their

stroke or with the force they can bear (this phenomenon can be frequent, up to some events

per second, in seeing conditions ≥ 1.2”); also, slopes may not be delivered for a frame or

two, producing the same effects of command interruptions (though the latter is an extremely

rare event).

With this respect, common practice suggests that it is not advisable to make use

of unstable controllers, especially if the plant itself is stable, as it is within our setting. In

fact, if the feedback loop opens (generalizing, this could happen due to a sensor or actuator

failing, or deliberately being turned off during start-up or shutdown), overall stability is

maintained if both plant and controller individually are stable [33].

Clearly, the Youla parametrization does not ensure by itself that a generic con-

troller of the form shown in (6.33) is stable, thus unconstrained minimization of f(ρ) can

result in an unstable (albeit stabilizing) controller C(d, ρ◦). A possible way of overcoming

such a drawback consists in solving a constrained optimization problem (COP), defined such

that f(ρ) is the objective function and the controller stability requirement characterizes the

feasibility domain

min
ρ
f(ρ) , (6.40)

s.t.

C(d, ρ) ∈ S. (6.41)

6.B.2 Algorithm details

Solving an optimization problem is not a trivial numerical task, and requires that

the constraints, as well as the objective function, are expressed in the simplest possible

form. Unfortunately, the feasibility domain embodied by (6.41) is in general non convex

and thus it is advisable to consider some kind of convex approximation. This can be done

provided that a reference parameter vector ρ̂ is available corresponding to a stable controller
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C(d, ρ̂) (in practice ρ̂ can be computed from a given stable and stabilizing controller as will

be detailed in the following). In fact, a sufficient condition for the stability of a controller

C(d, ρ) is that

Re
{
(1− P (ejω)Q(ejω, ρ̂))(1− P (e−jω)Q(e−jω, ρ))

}
> 0 , ∀ω , (6.42)

where Re{·} denotes the real part. Indeed, condition (6.42) ensures that the number of

counterclockwise encirclements around the origin of the Nyquist plot of 1 − P (d)Q(d, ρ)

equals that of the Nyquist plot of 1−P (d)Q(d, ρ̂). In view of the Nyquist stability criterion

[41], this ensures that C(d, ρ) and C(d, ρ̂) have the same stability property (recall (6.33)).

The condition given above is defined for all ω, i.e. over a continuum, thus of no

practical use. One possible solution in order to avoid this drawback is to impose that (6.42)

is satisfied only in the sampled-frequency domain {ω1, ω2, ...ωK̃}. As recalled in Chapter 5,

the problem of dealing with an infinite number of frequency constraints via a finite number

of frequencies has been addressed for example in [55], wherein guidelines on the choice of

the sampled-frequency domain can be found. The resulting condition can be written in the

form of linear constraints

A(ρ̂) ρ+ b(ρ̂) < 0 (6.43)

by conveniently defining matrix A and vector b. Specifically, matrix A takes the form

A(ρ̂) =







a11(ρ̂) · · · a1nρ(ρ̂)
...

. . .
...

aK̃1(ρ̂) · · · aK̃nρ
(ρ̂)







(6.44)

with elements aki(ρ̂), k = 1, ..., K̃, i = 1, ..., nρ, computed as

aki(ρ̂) = Re
{
(1− P (ejωk)Q(ejωk , ρ̂))P (e−jωk)ψi(e

−jωk)
}
, (6.45)

and vector b(ρ̂) is defined as

b(ρ̂) =
[
b1(ρ̂) · · · bK̃(ρ̂)

]⊤
(6.46)

with elements bk(ρ̂), k = 1, ..., K̃, computed as

bk(ρ̂) = −Re
{
1− P (ejωk)Q(ejωk , ρ̂)

}
. (6.47)

Summing up, by replacing the original stability constraint in (6.41) with the linear

constraints in (6.43), we obtain a quadratic programming problem which can be solved

78



Appendix: Modal control design in adaptive optics applications

efficiently by means of several numerical tools. Typical algorithms for solving such a kind of

problems are based on Active-Set, Sequential Quadratic Programming (SQM) or Interior-

Point methods. In the proposed implementation, the Active-Set method is adopted.

Hereafter, we write the proposed synthesis procedure step by step and provide a

schematic summary of the algorithm. As previously mentioned, the procedure starts with a

pre-existing stable and stabilizing controller Ĉ(d) which can be synthesized either by means

of a simple non-model based technique or of some model-based design procedure. Then we

compute the Youla parameter

Q̂(d) =
Ĉ(d)

1 + P (d)Ĉ(d)
=
N̂(d)

D(d)
, (6.48)

where N̂(d) = n̂0 + n̂1 d+ · · ·+ n̂∂N̂ d∂N̂ is a polynomial of degree ∂N̂ . In order to increase

the degrees of freedom of our optimization problem, nρ can be set as nρ = ∂N̂ +1+Γ, with

Γ a nonnegative integer; then the reference parameter vector ρ̂ is defined as

ρ̂ = [n̂0 n̂1 · · · n̂∂N̂ 0 . . . 0
︸ ︷︷ ︸

Γ

]⊤ . (6.49)

Then it is possible to minimize the performance criterion f(ρ) under the constraints in

(6.43). In addition, in order to improve the controller performance, one can construct an

iterative procedure by using, at every step, the solution of the optimization problem as a

novel reference parameter vector. This idea gives rise to the following iterative procedure.

Iterative design procedure

Step 1: given an initial controller Ĉ(d) and a nonnegative integer Γ, compute Q̂(d), nρ,

and ρ̂ as described above;

Step 2: set i := 0 and ρ(0) := ρ̂;

Step 3: compute the matrix A(ρ(i)) and the vector b(ρ(i));

Step 4: compute the parameter vector ρ(i+1) as the solution of the quadratic programming

problem

min
ρ
f(ρ) (6.50)

s.t.

A(ρ(i)) ρ+ b(ρ(i)) < 0; (6.51)
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Figure 6.9: Turbulence and vibration PSD related to tip.

Step 5: if the termination criterion is met, then return ρ(i+1); otherwise set i := i+ 1 and

go back to Step 3.

As for the termination criterion, an upper bound on the difference between the

value functions corresponding to subsequent iterations is imposed, thus terminating the

algorithm when |f(ρ(i+1)) − f(ρ(i))| < ǫ, with ǫ a given threshold. With this respect,

notice that by construction the sequence f(ρ(i)) is monotonically non-increasing with i.

In fact, it can be easily verified that ρ(i) always satisfies the constraint in (6.51) so that

f(ρ(i+1)) ≤ f(ρ(i)). Since f(ρ) is bounded from below, this ensures that the sequence f(ρ(i))

converges to some finite limit and, hence, that the termination criterion is always eventually

met.

6.B.3 Simulation results

In this section we provide the results obtained from simulation studies. The sim-

ulation results rely on an End-to-End simulator of the First Light Adaptive Optics system

of the LBT.
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We adopt the residual phase variance and the Strehl ratio (computed at 1.65 µm)

as performance parameters. Specifically, the SR is defined as

SR =
PSFres(o)

PSFAiry(o)
, (6.52)

where PSFres denotes the intensity value at the center o of the AO-corrected PSF and

PSFAiry denotes the intensity value at the center o of the diffraction-limited PSF of the

telescope. The PSFres is determined as the Fourier transform of the residual phase at the

telescope pupil, while PSFAiry is the Fourier transform of a uniform phase over the telescope

pupil. The pyramid WFS [82] with tilt modulation is simulated with a full Fourier-optics

code developed at the Arcetri Astrophysical Observatory. In the simulator the image on

the detector is obtained by two Fourier Transforms. The first one converts, for each step of

modulation, the complex amplitude of the tilted incoming wavefront into the electrical field

on the pyramid; the second one converts the electrical field on the pyramid multiplied by the

phase mask of the pyramid into the image on the detector. Finally the signal is computed

as in [90]. The atmospheric turbulence is simulated in order to emulate a typical LBT

operating environment. Specifically, the turbulent phase is represented by a set of turbulent

layers, where each layer corresponds to a phase screen. In the simulations presented in this

section, a set of two layers is considered. The phase screens are generated following the

McGlamery method [72]. They have altitude of 0 and 6000 m over the telescope and their

relative intensity is 60% and 40%, respectively (they produce a seeing of 0.8”). The temporal

evolution of the turbulence is simulated, based on the Taylor’s hypothesis, by displacing the

phase screens in front of the telescope pupil according to the specified speed of 15 and 18

m/s respectively (the considered mean wind speed is 16.5 m/s). The considered telescope

structural vibrations have frequencies at 13 and 22 Hz, with a standard deviation of 20

mas and a damping ratio of 0.01. Figure 6.9 shows the PSD of turbulence and vibrations,

related to tip. The ASM spatial response was modeled by using the influence functions

determined via the FEA (Finite Elements Analysis) model of the LBT ASM, while the

temporal one is considered as a delay of 1 ms. Specifically, the ASM is characterized by

672 Karhunen-Loève modes projected onto the ASM influence functions.

The simulation results reported hereafter consider two scenarios: in the first one,

the proposed procedure is initialized from a non-model-based controller, i.e., from a con-

troller synthesized without identifying mathematical models of turbulence and vibrations; in

the second scenario, the proposed procedure is initialized from a H2-controller synthesized
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Ca(d) Cb(d) Cc(d) Cd(d) Ce(d) Cf (d)

SR % 58.51 86.22 86.49 79.20 84.02 86.61

Table 6.2: Performance exhibited by the controllers considered in the simulation tests.

using mathematical models of turbulence and vibrations of reduced complexity, namely a

second-order autoregressive (AR) model for the turbulence and two second-order autore-

gressive moving-average (ARMA) models for the vibrations.

In both scenarios, the optimization procedure is carried out by sampling the PSDs

of the phase aberration related to tip/tilt modes, as reported in Fig. 6.9, and the PSD of the

measurement noise (assumed having variance of ≈ 10−4). As for the sampling of the PSDs

in (6.31), we select K̃ = 2000 samples with linear gridding (simulation results, not reported

here, indicate that K̃ > 500 samples are sufficient for achieving satisfactory closed-loop

performance). The termination criterion of the optimization algorithm is defined on the

basis of the threshold ǫ = 10−3 on the difference between the value functions corresponding

to two successive iterations. The closed-loop performance (in terms of Strehl ratio) is

evaluated over the last 2000 samples of the residual phase (in the steady state). Finally,

all the modes except for tip and tilt are controlled by means of integrators with optimized

gains selected via the Optimized Modal Gain Integrator (OMGI) approach as described in

[31]. Finally, also the constraint on the controller stability are considered.

First scenario: Let

Ĉ(d) =
g

1− 0.95 d
, (6.53)

with g such that the closed-loop is stable. By following the procedure described in Section

6.B.2, Q̂(d) takes the form

Q̂(d) =
g

1− 0.95 d+ g d2
=
N̂(d)

D(d)
. (6.54)

Accordingly,

ψ(d) =
1

D(d)
[1 d · · · dnρ−1]⊤ =

1

1− 0.95 d+ g d2
[1 d · · · dnρ−1]⊤ . (6.55)

Then, the algorithm is initialized by letting

ρ(0) = ρ̂ = [ g 0 . . . 0
︸ ︷︷ ︸

Γ

] . (6.56)
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Figure 6.10: PSF profiles resulting from the use of the controllers in the control loop.
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Figure 6.11: Bode diagram of the sensitivity function related to the controllers.

As for the simulation, we set g = 0.77. Compared with Ĉ(d), which achieves a residual

phase variance (V AR) V AR = 0.2528 (SR = 58.51%), controllers provided by the proposed

procedure show a significant performance improvement; in particular, for Γ ≥ 9 we obtain

V AR < 0.0209 (SR > 86.22%).

Second scenario: As the initial controller, we now consider a H2-controller syn-

thesized by using mathematical models of turbulence and vibrations of reduced complexity.

Specifically, we adopt the design procedure described in [5], with the following choices: the

model of the turbulence is taken as a second-order AR model having input η and output ξ,
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and described by the difference equation

ξ(t) = 1.9774 ξ(t− 1)− 0.9776 ξ(t− 2) + η(t) , (6.57)

where η is a white-noise process. As for the structural vibrations, we consider two second-

order ARMA models having input µi and output ζi, i = 1, 2. They are described by the

difference equations

ζ1(t) = 1.9917 ζ1(t− 1)− 0.9984 ζ1(t− 2) + 1.8431µ1(t− 1)− 0.8493µ1(t− 2) , (6.58)

for the model having a vibration peak around 13Hz, and

ζ2(t) = 1.9782 ζ2(t− 1)− 0.9972 ζ2(t− 2) + 1.7418µ2(t− 1)− 0.7585µ2(t− 2) , (6.59)

for the model having a vibration peak around 22Hz, where µ1 and µ2 are both white-noise

processes.

With respect to the H2-controller, the corresponding ∂N̂ = 9, and we set Γ = 2.

In this case, the simulation results show a performance improvement from V AR = 0.0393

(SR = 84.02%) to V AR = 0.0152 (SR = 86.61%). The performance obtained for larger

values of Γ is very similar to the one obtained for Γ = 2.

Figures 6.10, 6.12 and 6.11, along with Table 6.2, provide a summary of the ob-

tained results, also compared with the optimized modal gain integrator (OMGI) controller

of [31], applied to all modes (including tip/tilt). For simplicity, we adopt the following no-

tation: Ca(d) initial controller in the first scenario; Cb(d) final controller in the first scenario

with Γ = 9; Cc(d) final controller in the first scenario with Γ = 18; Cd(d) OMGI controller;

Ce(d) initial controller in the second scenario; Cf (d) final controller in the second scenario

with Γ = 2. The results are very close to what one could expect: Cc(d), Ce(d) and Cf (d) are

those exhibiting lower residual phase both at low frequencies as well as in correspondence

of the vibration peaks (Fig. 6.12). This is also evident from Fig. 6.11. In particular, the

sensitivity functions related to Ce(d) and Cf (d) both exhibit the two anti-resonance peaks

at the frequencies characterizing the vibration models.

It is worth mentioning that, as shown in Table 6.2, the best performance is achieved

when starting from a model-based controller synthesized in accordance with models of re-

duced complexity. Such a result, obtained without identifying mathematical turbulence

and vibration models of increased complexity, underlines that the proposed approach is

best viewed as cooperative with (rather than as alternative to) classical AO control design

approaches.
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Figure 6.12: PSDs of the residual phase (related to tip/tilt).
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PART III

Combining switching and tuning
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Chapter 7

A hierarchical approach:

combining switching and tuning

In the previous chapters, we have shown the performance level that can be achieved

by applying the ASC paradigm to the context of active disturbance attenuation. Particular

attention has been focused on the choice of the test functionals that the supervisory unit

has to compute and compare, in order to select, at each time instant, the (potentially)

best controller within the finite family C ; it is worth recalling that each test functional

is computable in real-time from the plant input/output data, and reflects the potential

performance of the related controller. Another crucial issue which has been taken into

account within an ASC structure is that of the stability of the overall closed loop under

arbitrary switching, and different possible solutions have been proposed.

It has been underlined (for example with reference to the simulation results shown

in Section 6.2) that the switching approach, if compared to classical adaptive techniques

based on parameter tuning strategies, is in general more suitable to quickly achieve satisfac-

tory performance and to deal with abrupt changes of the unknown characteristics, provided

that the supervisor is able to select in a short time the controller providing the more desir-

able behavior. However, the attenuation level achievable by the pre-synthesized controllers

in the finite set determines the performance that can be achieved by the overall control

scheme. On the other hand, classical Adaptive Control techniques can usually achieve bet-

ter performance levels as a final result, but the tuning procedure of the controller parameters
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can require in general a non-negligible time interval before leading the closed-loop system

to a satisfactory behavior.

This brief overview suggests that a technique integrating switching and tuning

appears to be suitable to combine the advantages of the two different approaches, while

possibly overcoming the aforementioned drawbacks. This idea has been exploited in the

past in the context of adaptive control of uncertain plants, usually within multi-model

architectures (see for example [76, 56, 14] and the references therein). The aim of this

chapter is that of proposing an algorithm combining switching and tuning in the context

of active disturbance attenuation, and of providing an analysis of the properties that the

proposed scheme is able to ensure [20].

7.1 Problem setting

With reference to the problem defined in Section 4.1, the aim is that of obtaining an

arbitrary level of attenuation in the presence of a bounded disturbance ν having uncertain

and possibly time-varying characteristics. Following the ASC paradigm, a controller is

selected by a supervisory unit among a finite set of stabilizing controllers, by resorting to

the computation in real-time of test functionals evaluating their potential performance; then,

a local refinement of the selected controller is performed, providing a new controller which

can be put in feedback with the plant in accordance to a switching rule, possibly different

from the logic adopted for the controller selection applied to the finite family. We recall that

C := {Ci, i ∈
←−
N } denotes the finite family of pre-designed candidate controllers. The i-th

controller has transfer function C∗i (d) = S∗i (d)/R
∗
i (d) with the polynomials R∗i (d) and S

∗
i (d)

having strictly Schur g.c.d.; R∗i (0) = 1. We denote by Cℓ the augmented family of controllers

composed of C and the controller C◦ℓ obtained by means of the tuning procedure. The

transfer function of the optimized controller C◦ℓ is denoted by C◦ℓ (d). Since the refinement

of the controller selected from C will be performed iteratively in general, as will be explained

in the next section, we use the subscript ℓ = 1, 2, · · · , to refer to the sequence of solutions

of the tuning problems. Clearly, the set Cℓ has cardinality N + 1 for any ℓ.

In the proposed framework, the switching signal σ is the signal that identifies

which of the candidate controllers belonging to the augmented family Cℓ is in feedback

with the plant at each time instant, thus σ(·) : Z+ →
←−−−
N + 1. The notation Cσ(t) for the

multi-controller means that, on all the time intervals on which σ(t) is constant and equal
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to a certain j, the multi-controller takes the form of a LTI system having transfer function

equal to C∗j (d) if j ∈
←−
N or equal to C◦ℓ (d) if j = N + 1.

7.1.1 Combining switching and tuning

With the aim of addressing the problem of disturbance attenuation with arbitrary

attenuation level, we propose an algorithm based on a hierarchical structure. First, a high-

level switching logic SL1 is applied to the controllers belonging to the set C in order to

select the controller, say Cj , guaranteeing the best attenuation capabilities within C ; then an

optimization criterion is adopted to find a local refinement of Cj , and a switching logic SL2,

possibly different from SL1, is used to decide whether to substitute Cj with its refinement

or not.

The output of the first switching logic SL1 is a switching signal σ(t) taking value

in
←−
N . Then, at any time t, the true controller switching signal σ(t) will be equal either to

σ(t) or to N + 1 in case the optimized controller is selected.

The potential performance of each candidate controller in C is evaluated in terms

of test functionals Π(t) := {Πi(t), i ∈
←−
N }, which are computed in real-time on the basis

of the plant input/output data. As in Chapter 4, the well-known hysteresis switching logic

[73] is adopted as SL1 by the supervisory unit to generate the switching signal σ(t) which

selects the controller Cj within C . We denote by t∗, with t∗ ≤ t being t the current time,

the most recent time instant in which the index j has been changed by the SL1.

If the index σ(t) remains constant and equal to a certain j for a pre-defined time

interval TL, then an optimization procedure is applied in order to find a local refinement of

Cj . To this end, a parametric set of controller transfer functions {Cj(d, ρj), ρj ∈ Rj} is con-

sidered depending on a parameter vector ρj belonging to a given set Rj ⊆ R
nρj . We denote

by ρ∗j ∈ Rj the parameter vector of the pre-designed controller Cj , i.e., C
∗
j (d) = Cj(d, ρ

∗
j ).

The refinement aims at optimizing a functional Jℓ(ρj) starting from ρ∗j . Some constraints

in the optimization problem could be imposed in order to match specific requirements; this

will be discussed in Section 7.2. We denote by tℓ and t
∗
ℓ the time instants at which the ℓ-th

optimization starts and, respectively, terminates. Thus at each time t∗ℓ a new controller C◦ℓ

with transfer function C◦ℓ (d) = Cj(d, ρ
o
j,ℓ) is available, where ρoj,ℓ is the optimal parameter

vector obtained from the ℓ-th optimization, and the controller family is updated accordingly.
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C := {Ci, i ∈
←−
N } finite family of stabilizing controllers

C∗i (d) = S∗i (d)/R
∗
i (d) transfer function of the i-th controller Ci

belonging to C

ℓ = 1, 2, · · · index related to the solutions

of the iterative tuning procedure

C◦ℓ controller obtained by means of

the tuning procedure when

the ℓ-th optimization terminates

Cℓ := C ∪ {C◦ℓ } augmented family of stabilizing controllers

σ(·) : Z+ →
←−
N output of the SL1

σ(·) : Z+ →
←−−−
N + 1 output of the SL2

t∗ the most recent time instant in which

the index j has been changed by the SL1

tℓ time instant in which the ℓ-th optimization starts

t∗ℓ time instant in which the ℓ-th optimization terminates

ρ∗j the parameter vector of the controller Cj

selected by SL1, i.e., C
∗
j (d) = Cj(d, ρ

∗
j )

ρoj,ℓ the optimal parameter vector obtained

from the ℓ-th optimization

Table 7.1: Summary of the adopted notation.

After an optimization has terminated, a novel one is performed until a controller achieving

a pre-specified performance level γ is found.

Table 7.1 provides a brief summary of the notation adopted for the technique

outlined above.

Remark 7.1.1. The selection of the controller Cj ∈ C is performed at each time instant.

Thus, it could happen that the selected controller within C changes (i.e., the index j

changes) while the ℓ-th optimization is running. In this case, the optimization routine is

stopped, and a local refinement of the novel Cj will be performed once σ(t) remains constant

and equal to the novel j for at least TL instants (obviously if this will actually happen).
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For the optimized controller C◦ℓ , a test functional ΠN+1(t) is computed having the

same form of the test functionals in Π(t). Then the test functionals Πj(t) and ΠN+1(t) are

compared in accordance with the switching logic SL2. Again, a hysteresis switching logic

is adopted possibly with a different hysteresis constant. The SL2 is active only if there is a

valid optimized controller. We use a binary variable f(t) to indicate this fact.

The outline of the algorithm can be presented as follows.

Algorithm 7.1.1

Step 0. (initialization)

Select an initial controller Ci0 to be put in feedback with the plant until a starting time t0.

Set σ(t0) = σ(t0) = i0, ℓ = 0, f(t0) = 0 and t∗ = t0.

For t = t0 + 1, t0 + 2, . . .

Step 1. (SL1)

Select the candidate controller achieving the best (potential) attenuation performance within

the finite set C as follows

σ(t+ 1) = argmin
i∈
←−
N

{
Πi(t)− h δiσ(t)

}
(7.1)

where δij is the Kronecker delta and h > 0 is the hysteresis constant for the SL1.

Step 2. (SL2)

If σ(t+ 1) 6= σ(t)

Set σ(t+ 1) = σ(t+ 1) and t∗ = t; stop the optimization routine and set f(t) = 0;

Else

Perform the following operations:

• check if the (ℓ+1)-th optimization has successfully terminated. In this case, construct

the novel set Cℓ+1, and set f(t) = 1, t∗ℓ+1 = t, and ℓ = ℓ + 1; otherwise set f(t) =

f(t− 1);

• in case no optimization is running and t− t∗ ≥ TL, check if there is a valid optimized

controller whose potential performance is below the prescribed level γ, i.e., such that

max
τ∈[t∗

ℓ
,t]
ΠN+1(τ) ≤ γ . (7.2)

In the negative, then start a novel optimization and set tℓ+1 = t;
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• if f(t) = 0 then set σ(t+1) = σ(t+1). Otherwise select between the starting and the

optimized controller as follows

σ(t+ 1) = arg min
i∈{σ(t),N+1}

{
Πi(t)− h δiσ(t)

}
(7.3)

where h > 0 is the hysteresis constant for the SL2.

End if

End for

The time instant t0 from which Algorithm 7.1.1 is initialized is the time instant at

which the switching logic is activated, as discussed in Section 4.1. We note that Algorithm

7.1.1 has a hierarchical structure, since the low-level switching logic SL2 does not interfere

with the high-level one. Hence the proposed approach turns out to be modular, in the sense

that the behavior of the signal σ(t) can be analyzed without worrying of what happens at

the lower level. This means that the results presented in Chapter 4 still hold, provided that

the same choice for the test functionals is adopted. As previously noticed, the hysteresis

constants in SL1 and SL2 will be different in general. For instance, h in SL1 has to be

chosen large enough so as to avoid spurious switching and ensure a more rapid selection of

the index j (recall Chapter 4). On the other hand, as will be clarified in Section 7.3.1, by

taking h suitably small one can improve the attenuation performance.

7.2 Controller implementation and stability analysis

The implementation of the multi-controller adopted in this framework is the one

discussed in Chapter 6. Specifically, each controller belonging to Cℓ is realized by means

of the Youla-Kucera parametrization of all the stabilizing controllers, then the switching

occurs between the controller Youla parameters.

Hereafter, Q∗j (d) = N∗j (d)/D
∗
j (d) will denote the transfer function of the Youla

parameter of the j-th predesigned controller Cj . As for the optimized controller C◦ℓ , it is

supposed that only the Youla parameter numerator depends on the parameter vector ρj

whereas the denominator is kept constant in the optimization and equal to D∗j (d). Accord-

ingly, whenever σ(t) = j, the Youla parameter of the optimized controller C◦ℓ takes the form

Q◦ℓ (d) = Nj(d, ρ
◦
j,ℓ)/D

∗
j (d). For the pre-designed controller Cj , we let N∗j (d) = Nj(d, ρ

∗
j ).
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We recall from Chapter 6 that the control input is computed as

u(t) = u(t)− ũ(t) , (7.4)

where ũ(t) is the output of a switching system Qσ(t) having input ε(t), which represents the

prediction error at time t; the signals u(t) and ε(t) are obtained as

[

u(t)

ε(t)

]

=

[

(1−R0(d)) −S0(d)

−B(d) A(d)

][

u(t)

y(t)

]

. (7.5)

With respect to the specific implementation of the switching system Qσ(t), we

compute, for any i ∈
←−
N , the filtered prediction error εf,i(t) by solving the difference equation

D∗i (d) εf,i(t) = ε(t) . (7.6)

Then, supposing that at time t the switching signal σ(t) takes on value j, we let

ũ(t) =







N∗j (d) εf,j(t) if σ(t) = j

Nj(d, ρ
◦
j,ℓ) εf,j(t) if σ(t) = N + 1

. (7.7)

The following results state that such an implementation ensures internal stability,

provided that the parameter vector ρ◦j,ℓ is bounded. We recall from Chapter 6 that the

internal stability of the feedback interconnection (P/Cσ(t)) means that all the signals in the

system remain bounded for any bounded disturbance ν.

Theorem 7.2.1. Let the multi-controller Cσ(t) be implemented as in (7.4)-(7.7). Then,

when σ(t) = j, the frozen-time transfer function between y(t) and u(t) coincides either with

−C∗j (d) if σ(t) = j or with −C◦ℓ (d) if σ(t) = N + 1.

Further, if for any i ∈
←−
N the set Ri is bounded, then the switching system (P/Cσ(t)) is

internally stable for any switching signal σ.

Proof: see the Appendix. 2

Since each setRi, to which the parameter vector ρi belongs, can be freely chosen by

the designer, the conditions of Theorem 7.2.1 can be easily satisfied in practice. For instance,

if we denote by ‖ · ‖ the Euclidean norm, one can simply let Ri = {ρi ∈ R
nρi : ‖ρi‖

2 ≤ K},

where the bound K has to be chosen large enough so that the controllers belonging to the
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resulting parametric family can ensure a satisfactory performance level in response to the

class of disturbances of interest. Further, instead of imposing a common boundK, a different

bound Ki can be chosen with respect to each Ri, that is, Ri = {ρi ∈ R
nρi : ‖ρi‖

2 ≤ Ki}.

Remark 7.2.1. We underline that the same implementation for the switching system Qσ(t)

as in Chapter 6 could be adopted in principle; however, the use of the one described in

terms of (7.6)-(7.7) avoids the necessity of computing an appropriate realization for the

Youla parameter related to the controller Coℓ such that a common Lyapunov function exists

(recall Theorem 6.1.1), thus reducing the computational burden of the proposed algorithm.

Further, this specific implementation allows the proposed scheme to achieve an arbitrary

attenuation level in the presence of particular classes of disturbances (see the results of

Section 7.3.1 and specifically Corollary 7.3.1).

7.3 Choice of the functionals and attenuation properties

The test functionals Πi(t), i ∈
←−
N , are computed in order to evaluate the potential

performance related to each controller Ci. A possible definition for Πi(t), i ∈
←−
N , is the

one provided in Chapter 4. Specifically, in the proposed framework, we adopt the same

definition with the particular choice of the value zero for the parameter η, which appears in

(4.5), in order to derive the results shown in Section 7.3.1 and thus to ensure an arbitrary

attenuation level in the presence of particular classes of disturbances; thus in practice

Πi(t) :=







‖ yi|
t
t−M(t) ‖

‖ ε|tt−M(t) ‖
, if ‖ ε|tt−M(t) ‖ > 0

0 , if ‖ ε|tt−M(t) ‖ = 0

. (7.8)

Similarly to the line of reasoning followed in Chapter 4, by computing Πi(t) as defined

in (7.8), we aim at evaluating the potential performance associated with each controller

Ci, i ∈
←−
N , in terms of the plant output hypothetical response yi to the disturbance ν by

means of the i-th disturbance-to-output transfer function

Σi(d) =
R∗i (d)

χi(d)
. (7.9)
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Notice that, in terms of the adopted Youla-Kucera parametrization of the controllers, Σi(d)

can be expressed as

Σi(d) =
1

D∗i (d)
[R0(d)D

∗
i (d)−B(d)N∗i (d)] . (7.10)

We recall that the prediction error ε computed as in (7.5) is such that ε(t) ≡ ν(t) for any

t ≥ n = max{na, nb}. Hence, yi can be obtained as

yi(t) =
1

D∗i (d)
[R0(d)D

∗
i (d)−B(d)N∗i (d)] ε(t) . (7.11)

In practice, we can exploit the filtered prediction error defined in (7.6) and compute yi as

yi(t) = R0(d)ε(t)−B(d)N∗i (d)εf,i(t) , (7.12)

starting from the time instant t0 ≥ n at which the switching logic is activated.

As regards the tuning procedure, the aim is that of computing a local refinement

of the controller Cj which has been selected by the switching rule SL1. In view of the

definitions in (7.10)-(7.12), a possible choice for the optimization criterion at time tℓ is as

follows:

Jℓ(ρj) = ‖R0(d)ε|
tℓ
tℓ−I
−B(d)Nj(d, ρj)εf,j |

tℓ
tℓ−I
‖2 , (7.13)

with I a specified time interval and εf,j the filtered prediction error related to the controller

Cj . Notice that Jℓ in (7.13) is defined in terms of the norm, computed on the time interval

[tℓ − I, tℓ], of the hypothetical output signal yj(t, ρj) depending on ρj and defined as

yj(t, ρj) = R0(d)ε(t)−B(d)Nj(d, ρj)εf,j(t) . (7.14)

For ρj = ρ∗j , it turns out that yj(t, ρ
∗
j ) coincides with the signal yj(t) defined in (7.12);

the understanding is that, even though the time intervals involved in (7.8) and (7.13) are

different, in both the performance evaluation (by means of the test functional Πi) and

the tuning procedure (by means of the optimization of Jℓ) the aim is that of determining

the control configuration which minimizes the effects of the disturbance ν on the system

output. Further we can notice that, if we let Nj(d, ρj) depend linearly on ρj , i.e. Nj(d, ρj) =

ϕj(d)
⊤ρj , where ϕj := [1, d, · · · , dnρj

−1]⊤, then the functional Jℓ(ρj) is quadratic.

The test functional ΠN+1(t) for the optimized controller C◦ℓ is defined as in (7.8)

with yi(t) replaced by yj(t, ρ
◦
j,ℓ) for any t ∈ [t∗ℓ −M(t), t∗ℓ+1 − 1].
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Remark 7.3.1. As discussed in Section 4.1.1, several choices for the memory M(t) are

possible. Specifically, in the proposed framework we refer to a finite memory defined as in

(4.8).

7.3.1 Analysis of the attenuation properties

For the results presented in this section, we will refer to the following assumptions.

A1. There exists a finite time tf after which σ(t) remains constant, i.e., σ(t) = j for any

t ≥ tf .

A2. The disturbance ν(t) in (4.1) can be expressed as the output of an autoregressive

model

∆(d)ν(t) = 0 , (7.15)

with ∆(d) having all simple roots on the unit circle.

A3. For any i ∈
←−
N , there exists a parameter vector ρ̂i ∈ Ri such that the controller with

transfer function Ci(d, ρ̂i) perfectly rejects the disturbance ν(t).

Sufficient conditions for assumption A1 to hold, depending on the disturbance characteris-

tics and on the choice of the parameters M∗ and h, can be found in Chapter 4.

Under assumptions A1-A3, we can show that the proposed algorithm is able to

attenuate the effects of the disturbance ν(t) expressed as the output of the model (7.15)

with a desired attenuation level.

Lemma 7.3.1. Let assumptions A1-A3 hold and suppose that an infinite number of opti-

mizations is performed. Then

Jℓ(ρ
o
j,ℓ) −−−→

ℓ→∞
0 . (7.16)

Proof: see the Appendix. 2

In the results that follow we denote by ∂p the degree of a generic polynomial p(d).

Lemma 7.3.2. Let assumptions A1-A3 hold and suppose that an infinite number of opti-

mizations is performed. If I ≥M∗ + ∂∆+ ∂D∗j and M∗ > ∂∆, then

ΠN+1(t) −−−→
t→∞

0 . (7.17)
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Proof: see the Appendix. 2

The results shown in Lemma 7.3.1 and in Lemma 7.3.2 are useful to prove the

following theorem.

Theorem 7.3.1. Let assumptions A1-A3 hold; further, suppose that I ≥M∗+∂∆+∂D∗j ,

M∗ > ∂∆, and h > γ. Then the following facts hold.

i) Only a finite number ℓ of optimizations is performed and the final optimized controller

with transfer function Cj(d, ρ
o
j,ℓ
) is such that ΠN+1(t) ≤ γ for any t > t∗

ℓ
.

ii) There exists a finite time tf after which σ(t) remains constant, i.e., σ(t) = µ for any

t ≥ tf . In addition,

Πµ(t) ≤ h+ γ (7.18)

for any t ≥ tf .

Proof: see the Appendix. 2

Notice that the attenuation level in (7.18) can be made arbitrarily small by suitably

decreasing the parameters h and γ. While Πµ(t) is designed to measure the potential

performance, when the same controller is kept in the loop for a sufficiently long time then

Πµ(t) will also reflect the true performance of the feedback loop.

Corollary 7.3.1. Let the same assumptions as in Theorem 7.3.1 hold. Then, for t ≥

tf +M∗ + ∂B,

‖y|tt−M∗
‖ ≤ (h+ γ)‖ν|tt−M∗

‖ (7.19)

holds.

Proof: see the Appendix. 2

7.4 Simulation results

The simulation results provided in this section refer to the quarter-car model in-

troduced in Chapter 2, with the parameters shown in Table 2.1.
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Controller Frequency range

C1 Ω1 = [0, 5)Hz

C2 Ω2 = [5, 8)Hz

C3 Ω3 = [8, 10)Hz

Table 7.2: Frequency ranges Ωi , i = 1, 2, 3.

We assume that the disturbance power spectral density is in the frequency range

Ω = [0, 10]Hz; as for the finite set C , we synthesize three controllers Ci, i = 1, 2, 3, each

one designed so as to guarantee a desired attenuation level in a subset Ωi ⊂ Ω (see Table

7.2). Specifically, the transfer function of each controller Ci is parametrized in terms of (6.2),

with Ni(d) = N∗i (d) an affine function of a parameter vector ρi, i.e., N
∗
i (d) = ϕ⊤(d)ρ∗i and

Di(d) = D∗i (d) a fixed polynomial (different for each i ∈
←−
N ), chosen so that a satisfactory

transient behavior is ensured. The controller C0 with transfer function C0(d) = S0(d)/R0(d)

is obtained by solving the Bezout identity (6.1), imposing that both S0(d) and R0(d) are

polynomials of degree 3. Then, the following optimization problem is solved

min
γ,ρi

γ (7.20)

s.t.

|Σi,1(e
−jω, ρi)|

2 < γ ∀ω ∈ Ωi (7.21)

|Σi,2(e
−jω, ρi)|

2 < δ ∀ω ∈ Ωi , (7.22)

where

Σi,1(d, ρi) = A(d)[R0(d)D
∗
i (d)−B(d)ϕ⊤(d)ρi]/D

∗
i (d) (7.23)

Σi,2(d, ρi) = A(d)[S0(d)D
∗
i (d) +A(d)ϕ⊤(d)ρi]/D

∗
i (d) . (7.24)

Fig. 7.1 shows the transfer functions from n to y1, related to each of the controllers.

We set h = 7 × 10−3 in (7.1); M∗ = 2000 time samples in (4.8); I = 2500 time

samples in (7.13). The time interval TL is set equal to M∗.

We first consider a disturbance n made up of the superposition of two sinusoidal

signals having frequency 3Hz and 6.4Hz, respectively, and magnitude 0.1m and 0.05m,
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Figure 7.1: Bode diagram of the the transfer functions from n to y1 related to the con-

trollers Ci , i = 1, 2, 3.

respectively. In Fig. 7.2 we can notice that the controller Cj in C achieving the best potential

performance is quickly selected by the supervisory unit in accordance with SL1; then, a local

refinement of Cj is iteratively computed and selected by the supervisor according to SL2,

thus improving the achieved attenuation level.

Further, we consider a signal generated as the output of a filter having a zero-mean

white noise as input (the Fourier Transform of the resulting signal is shown in Fig. 7.3);

the disturbance n is now generated by adding this signal to the disturbance considered in

the previous test. The results obtained from this simulation are shown in Fig. 7.4. As can

be noticed, after selecting the controller Cj , the proposed method is able to further improve

the achieved performance level even in this case.
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Figure 7.2: Response y1(t) to a road excitation n(t) composed of the sum of two sinusoidal

signals. With respect to the selected controller, the blue thin line represents σ(t), while the

superimposed red thick line indicates the time instants in which the optimized controller is

selected by the SL2.
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Figure 7.3: Magnitude of the Fourier Transform of the signal obtained as the output of a

filter having a zero-mean white noise as input.
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Figure 7.4: Response y1(t) to a road excitation n(t) composed of the sum of two sinusoidal

signals and a filtered white noise. With respect to the selected controller, the blue thin line

represents σ(t), while the superimposed red thick line indicates the time instants in which

the optimized controller is selected by the SL2.
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7.A Appendix: Proofs

Proof of Theorem 7.2.1. The fact that, when σ(t) = j, the transfer function between y(t)

and u(t) coincides either with −C∗j (d) if σ(t) = j or with −Cj(d, ρ
◦
j,ℓ) if σ(t) = N+1 follows

directly from the implementation described in (7.4), (7.5), (7.6) and (7.7).

The proof of the internal stability of the switching system (P/Cσ(t)) is shown in the following

steps. We can compute y(t) and u(t) from (4.1), (6.1), (7.4) and (7.5). In fact

A(d)y(t) = B(d)u(t) + ν(t)

= B(d)u(t)−B(d)ũ(t) + ν(t)

= B(d)[1−R0(d)]u(t)−B(d)ũ(t)−B(d)S0(d)y(t) + ν(t)

= B(d)u(t)−R0(d)[A(d)y(t)− ν(t)]−B(d)S0(d)y(t)−B(d)ũ(t) + ν(t) .

Thus one obtains

[A(d)R0(d) +B(d)S0(d)]y(t) = −B(d)ũ(t) +R0(d)ν(t)

which, by recalling (6.1), yields

y(t) = −B(d)ũ(t) +R0(d)ν(t) . (7.25)

Similarly,

u(t) = −A(d)ũ(t)− S0(d)ν(t) . (7.26)

Thus the signals u(t) and y(t) are bounded, provided that ũ(t) is bounded (recall that ν(t)

is bounded). The boundedness of ũ(t) follows from (7.6) and (7.7). In fact, each filtered

prediction error εf,i(t) is bounded, since it is computed by filtering the bounded signal ε(t)

by means of a stable filter 1/D∗i (d); further, ũ(t) is a moving average of εf,i(t) as shown in

(7.7). Thus ũ(t) is bounded, provided that the coefficients of both N∗j (d) (if σ(t) = j) and

Nj(d, ρ
◦
j,ℓ) (if σ(t) = N +1) are bounded. The former case is related to the synthesis of the

controllers within the finite family C , while the latter is ensured provided that the set Ri

is bounded for any i ∈
←−
N . 2

Proof of Lemma 7.3.1. With respect to the parameter vector ρ̂j defined in assumption A3,

by letting ℓ→∞ it is possible to assert that

Jℓ(ρ̂j) −−−→
ℓ→∞

0 . (7.27)
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Further, thanks to the optimality of ρoj,ℓ, the following holds:

0 ≤ Jℓ(ρ
o
j,ℓ) ≤ Jℓ(ρ̂j) , (7.28)

from which (7.16) follows straightforwardly. 2

Proof of Lemma 7.3.2. By assumption A2, when M∗ > ∂∆ and ν is not identically null,

the denominator of ΠN+1(t) can be bounded from below. As for the numerator, the signal

yj(k, ρ
o
j,ℓ) is computed as

yj(k, ρ
o
j,ℓ) = R0(d)ε(k)−B(d)Nj(d, ρ

o
j,ℓ)εf,j(k) . (7.29)

Multiplying both sides of (7.29) by the polynomial ∆(d)D∗j (d) and recalling (7.6), the fol-

lowing identities hold:

∆(d)D∗j (d)yj(k, ρ
o
j,ℓ) =

∆(d)D∗j (d)[R0(d)ε(k)−B(d)Nj(d, ρ
o
j,ℓ)εf,j(k)] =

D∗j (d)R0(d)∆(d)ε(k)−B(d)Nj(d, ρ
o
j,ℓ)∆(d)D∗j (d)εf,j(k) =

D∗j (d)R0(d)∆(d)ε(k)−B(d)Nj(d, ρ
o
j,ℓ)∆(d)ε(k) ,

(7.30)

from which, for k ≥ t0 and recalling (7.15), one obtains

∆(d)D∗j (d)yj(k, ρ
o
j,ℓ) =

D∗j (d)R0(d)∆(d)ν(k)−B(d)Nj(d, ρ
o
j,ℓ)∆(d)ν(k) = 0 .

(7.31)

Thus, it can be seen from the previous steps that the signal yj(k, ρ
o
j,ℓ) satisfies the following

autoregressive model

∆(d)D∗j (d)yj(k, ρ
o
j,ℓ) = 0 , (7.32)

whose state is defined as x(k) := [yj(k− 1, ρoj,ℓ) yj(k− 2, ρoj,ℓ) · · · yj(k− ∂∆D
∗
j , ρ

o
j,ℓ)]

⊤, with

∂∆D∗j the degree of the polynomial ∆(d)D∗j (d). The recursion in (7.32) can be initialized

at time tℓ. Recall that ∆(d) has all the roots on the unit circle and D∗j (d) is stable by

construction. Thus the following holds:

|yj(k, ρ
o
j,ℓ)|

2 ≤ ξ‖x(tℓ)‖
2 , (7.33)

with ξ a nonnegative constant and

‖x(tℓ)‖
2 =

tℓ−1∑

h=tℓ−∂∆D∗

j

|yj(h, ρ
o
j,ℓ)|

2 . (7.34)
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If I ≥M∗ + ∂∆+ ∂D∗j , then for any k ∈ [t∗ℓ −M(t), t∗ℓ+1 − 1]

|yj(k, ρ
o
j,ℓ)|

2 ≤ ξJℓ(ρ
o
j,ℓ) , (7.35)

with Jℓ(ρ
o
j,ℓ)→ 0 as ℓ→∞ (recall Lemma 7.3.1), which means, equivalently, that Jℓ(ρ

o
j,ℓ)→

0 as t→∞. Thus the validity of (7.17) is proved. 2

Proof of Theorem 7.3.1. Fact i) follows straightforwardly from (7.17) and from the fact that

no novel optimization is run if condition (7.2) is satisfied, as shown in the outline of the

Algorithm 7.1.1 in Section 7.1.1.

With respect to Fact ii), suppose first that σ(t) = σ(t) holds true for any t ≥ t̃, with t̃ > t∗
ℓ
.

This means that

Πσ(t)(t)− h ≤ ΠN+1(t) (7.36)

with ΠN+1(t) ≤ γ as shown in Fact i). Thus, according to (7.3), σ(t + 1) = σ(t) for any

t ≥ t̃, and (7.18) holds with µ = σ(t).

On the contrary, suppose that there exists a time instant t̂ > t∗
ℓ
such that σ(t̂) = N + 1.

Since h > γ and ΠN+1(t̂) ≤ γ, it follows that ΠN+1(t̂)− h < 0. We recall that Πσ(t̂) ≥ 0 by

construction; then, according to (7.3),

σ(t̂+ 1) = N + 1 , (7.37)

thus proving that, for any t ≥ t̂, σ(t) = N + 1; in addition, (7.18) holds with µ = N + 1.

In both cases, tf can be identified as the final switching instant. 2

Proof of Corollary 7.3.1. The proof follows by comparing the expressions of y(t) and yj(t, ρj)

y(t) = −B(d)ũ(t) +R0(d)ν(t)

= −B(d)ũ(t) +R0(d)ε(t)

= −B(d)Nj(d, ρj)εf,j(t) +R0(d)ε(t) for t ≥ tf + ∂B , (7.38)

yj(t, ρj) = −B(d)Nj(d, ρj)εf,j(t) +R0(d)ε(t) , (7.39)

where ρj can be either the parameter vector ρ∗j if σ(t) = j or ρ◦j,ℓ if σ(t) = N + 1. Thus,

recalling (7.7), once ∂B time instants have elapsed after tf we have that y(t) and yj(t, ρj)

coincide. Finally, (7.19) follows from Theorem 7.3.1 after additional M∗ time instants have

elapsed. 2

104



Conclusions and future work

In this work, the problem of active disturbance attenuation has been addressed,

and solutions have been proposed with specific focus on the performance of the control

system, as well as on stability under arbitrary switching.

In particular, the aim of providing a control scheme able to reconfigure its action in

real-time has been addressed by means of an Adaptive Switching Control (ASC) approach.

In ASC, a finite family of candidate controllers is pre-synthesized off-line, and a supervisory

logic has to select the potentially best one to be put in feedback with the plant. This

mechanism relies on the use of test functionals which are computable in real-time and reflect

the potential behavior of the candidate controllers. A detailed analysis of the properties of

the test functionals is provided in Chapter 4. Further, the problem of stability of the overall

closed-loop system has been addressed, and two different solutions have been proposed in

Chapters 5 and 6. Specifically, the method described in Chapter 5 accounts for the stability

requirement directly within the synthesis of the controller family. It has been pointed out

that this allows the complexity of the multi-controller architecture to be independent of the

plant order, but the inclusion in the synthesis step of a constraint related to the switching

mechanism affects the modularity which is typical of the ASC paradigm. On the other hand,

the method described in Chapter 6 relies on a specific implementation of the multi-controller

based on a switching mechanism between the Youla parameters related to the candidate

controllers. This solution completely preserves the modularity of the switching control

approach, even if the complexity of the adopted architecture is unavoidably influenced by

the plant order.

The ASC paradigm has emerged as an alternative solution to classical Adaptive

Control. The ASC approach is more suitable to quickly achieve satisfactory performance

and to deal with abrupt changes in the uncertain disturbance characteristics, provided that

105



Conclusions and future work

the supervisor is able to select in a short time the potentially best controller; however, the

attenuation level achievable by the pre-synthesized controllers in the finite set determines the

performance that can be achieved by the overall control scheme. On the other hand, classical

adaptive techniques based on parameter tuning can usually achieve better performance

levels in the long run, but it is possible that the tuning procedure requires a non-negligible

time interval before achieving a satisfactory behavior. With this respect, as an extension

of the proposed solution to the problem of active disturbance attenuation based on the

ASC paradigm, an algorithm has been proposed (and described in Chapter 7) combining

both switching and tuning, aiming at preserving the beneficial features of the two different

approaches, while possibly overcoming the mentioned drawbacks.

The effectiveness of the proposed solutions is validated by means of simulation

tests performed in the contexts of two case studies, namely an active suspension system and

an adaptive optics system.

A final remark is devoted to possible future perspectives arising from this work.

First of all, since in our framework it has been assumed that the plant model is known, an

interesting extension would be to account for plant model uncertainty within the proposed

control solutions.

Further, it has been pointed out that the technique described in Chapter 5 is not guaranteed

to provide a feasible solution to the optimization problem to be solved in order to find

a common quadratic Lyapunov function for the closed-loop systems. Thus, it would be

interesting to find a suitable formulation of the problem accounting for stability within the

synthesis step and always ensuring the existence of a feasible solution.
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