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1. Introduction

An abstract regularity result. We propose an abstraction of a quantitative stratification 
principle introduced and developed in a series of papers by Cheeger and Naber [6,7], 
Cheeger, Haslhofer and Naber [4,5] and Cheeger, Naber and Valtorta [8].

The interest in finding general formulations of this kind of regularity results is driven 
by a number of important applications in geometric analysis. Apart from those contained 
in the papers quoted above, we mention the cases of Dir-minimizing Q-valued maps 
according to Almgren, of varifold with bounded mean curvature and of almost minimizers 
of the perimeter. The former is treated in detail in Section 4 and Section 5, the latter in 
Section 6. We explicitly remark that the papers [4,5] deal also with parabolic examples, 
a case that is not covered by our results.

To our knowledge the first example in this direction of abstraction is the general 
regularity theorem proven by Simon [18, Appendix A] based on the so called dimension 
reduction argument introduced by Federer in his pioneering work [15]. Similarly, the 
paper by White [22] generalizes the refinement of Federer’s reduction argument made by 
Almgren in his big regularity paper [2].

The basic principle and the main ingredients of our abstract formulation can be ex-
plained roughly as follows.

Abstract stratification: the set of points where a solution to a geometric problem 
is faraway at every scale from being homogeneous with k + 1 independent invariant 
directions has Minkowski dimension less than or equal to k.

The main sets of quantities we consider are:

(a) a family of density functions Θs, increasing w.r.t. s ≥ 0;
(b) a family of distance functions dk, k ∈ {0, . . . , m}, measuring the distance from 

k-invariant homogeneous solutions.

In addition, we assume suitable compatibility conditions, namely

(i) a quantitative differentiation principle that allows to quantify the number of those 
scales for which closeness to homogeneous solutions fails, and that typically follows 
in the applications from monotonicity type formulas;

(ii) a consistency relation between the distances dk: if a solution is close to a k-invariant 
one and additionally is 0-invariant with respect to another point away from the 
invariant k-dimensional space, then it is actually close to a (k+1)-invariant solution 
(see Section 2.2 for the detailed formulation).

This set of hypotheses is common to many problems in geometric analysis such as 
the Dirichlet minimizing multiple valued functions, harmonic maps, almost minimizing 
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currents and several others (see [6–8] for other applications). Indeed, the stratification 
result and the estimate on the Minkowski dimension only depend on assumptions (i) and 
(ii), thus making the common aspects of all previous results clear.

It turns out that there is a simple connection between White’s approach to Almgren’s 
stratification and the one outlined above. In Section 3.1 we show how to recast the result 
by White in our framework. In this respect, we stress that the stratification in [7] and 
in our Theorem 2.3 can be applied to some cases not covered by the ideas in [22], such 
as stationary harmonic maps (cp. [7, Corollary 2.6], Section 2.6.2 and [22, Section 6]).

Our main application of the abstract stratification principle is outlined in the following 
paragraph.

Application to Q-valued functions. In the regularity theory for higher codimension min-
imal surfaces (in the sense of mass minimizing integer rectifiable currents) a fundamental 
role is played by the multiple valued functions introduced by Almgren in [2], which turn 
out to be the correct blowup limits for the analysis of singularities (see also [9,13,12,10,
11] for a simplified new proof of the result in [2]).

Following [9], a Q-valued function u is a measurable map from a bounded open subset 
Ω ⊂ R

n (for simplicity we always assume that the boundary of Ω is smooth) taking 
values in the space of positive atomic measures in Rm with mass Q, namely

Ω � x �→ u(x) ∈ AQ(Rm) :=
{

Q∑
i=1

�pi� : pi ∈ R
m

}
,

where �p� denotes the Dirac delta at p. Almgren proves in [2] (cp. also [11]) that the 
blowups of higher codimension mass minimizing integral currents are actually graphs of 
Q-valued functions u in a suitable Sobolev class W 1,2(Ω, AQ(Rm)) minimizing a gener-
alized Dirichlet energy (cp. [9, Definition 0.5]):

ˆ

Ω

|Du|2 ≤
ˆ

Ω

|Dv|2 ∀ v ∈ W 1,2(Ω,AQ(Rm)), v|∂Ω = u|∂Ω,

(explicit examples of Dir-minimizing Q-valued functions are given in [20]).
In order to estimate the size of the singular set of a minimizing current it is essential to 

bound the dimension of the set of points where the graph of a Dir-minimizing Q-valued 
function has higher multiplicity. Almgren’s main result in the analysis of multiple valued 
functions is in fact an estimate of the Hausdorff dimension of the set ΔQ of multiplicity 
Q points of a Dirichlet minimizing Q-valued function u, i.e. the set of points x ∈ Ω such 
that u(x) = Q �p� for some p ∈ R

m, which turns out not to exceed n − 2 in the case it 
does not coincide with Ω (cp. [9, Proposition 3.22]).

In this paper we improve Almgren’s result by showing an estimate of the Minkowski 
dimension of ΔQ. To this aim we denote by Tr(E) := {z ∈ R

n : dist(z, E) < r} the 
tubular neighborhood of radius r of a given set E ⊂ R

n.
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Theorem 1.1. Let u : Ω → AQ(Rm) be a Dir-minimizing function, where Ω ⊂ R
n is a 

bounded open set with smooth boundary. Then either ΔQ = Ω, or for every Ω′ ⊂⊂ Ω the 
Minkowski dimension of ΔQ ∩ Ω′ is less than or equal to n − 2, i.e. for every Ω′ ⊂⊂ Ω
and for every κ0 > 0 there exists a constant C > 0 such that

|Tr(ΔQ ∩ Ω′)| ≤ C r2−κ0 ∀ 0 < r < dist(Ω′, ∂Ω). (1.1)

We also obtain a stratification result for the whole set of singular points of multiple 
valued functions that, even if known to the experts, we were not able to find in the 
literature. To this aim we introduce the following notation. Given a Q-valued function 
u : Ω → AQ(Rm), we denote by Singu ⊂ Ω its singular set, i.e. x0 /∈ Singu if and only if 
there exists r > 0 such that

graph(u|Br(x0)) := {(x, y) ∈ R
n×m : |x− x0| < r, y ∈ supp(u(x))}

is a smooth n-dimensional embedded submanifold (not necessarily connected). For every 
k ∈ {0, . . . , n}, we define the subset Singku of the singular set Singu made of those points 
having all tangent functions with at most k independent directions of invariance (we 
refer to Section 5.3 for the precise definition).

Theorem 1.2. Let u : Ω → AQ(Rm) be a Dir-minimizing function, where Ω ⊂ R
n is a 

bounded open set with smooth boundary, and let Singku be the singular strata defined in 
Section 5.3. Then, Singu = Singn−2

u and

Sing0
u is countable (1.2)

dimH(Singku) ≤ k ∀ k ∈ {1, . . . , n− 2}. (1.3)

In the case Q = 2 a more refined analysis by Krummel and Wickramasekera [16]
shows the rectifiability of the singular set, remarkably improving Almgren’s work.

We prove Theorems 1.1 and 1.2 as a consequence of our abstract stratification princi-
ple. More precisely, Theorem 1.2 is a direct consequence of it, while Theorem 1.1 requires 
a further stability property deduced by an ε-regularity result (see Proposition 5.4).

Applications to generalized submanifolds. In the final Section 6 we apply the abstract 
stratification principle to varifolds with bounded mean curvature and almost minimizers 
of the perimeter, two relevant cases for applications that are not covered by the results 
in [7]. Also in these cases we derive some improvements of well-known estimates for the 
singular set. Stratification for the singular set of stationary varifolds with bounded mean 
curvature is addressed in Section 6.1. Eventually, in Theorem 6.7 we give a bound on the 
Minkowski dimension of the singular set of an almost minimizer of the perimeter rather 
than the classical Hausdorff dimension estimate, and in Theorem 6.8 we show higher 
integrability for its generalized second fundamental form.
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On the organization of the paper. A few words are worthwhile concerning the structure 
of the paper. The first two sections of the paper are devoted to the abstract regular-
ity results. In particular, Section 2 contains the estimate of the volume of the tubular 
neighborhood of the singular strata given in Theorem 2.2 (which is proved in the first 
part of Section 3) and the abstract stratification in Theorem 2.3. In order to make our 
statements and hypotheses recognizable and “natural” to the readers, we illustrate them 
in Section 2.6 for the model examples of area minimizing currents and harmonic maps. 
The last part of Section 3 is devoted to the comparison with the results by White in 
[22]. Then, we specialize our results to the case of Q-valued functions in Section 5, the 
needed preliminaries are collected in Section 4. We finally focus on varifolds with suit-
able hypotheses on their mean curvature and on almost minimizers of the perimeter in 
Section 6.

2. Abstract stratification

The general abstract approach we propose is based on two main sets of quantities: 
namely, a family of density functions Θs and an increasing family of distance functions dk.

2.1. Densities and distance functions

Let Ω ⊂ R
n be open and bounded, and for every s ≥ 0 set Ωs := {x ∈ Ω : dist(x, ∂Ω) ≥

2s}. We assume the following.

(a) For every s such that Ωs �= ∅, there exist functions Θs ∈ L∞(Ωs) such that

0 ≤ Θs(x) ≤ Θs′(x),

for all 0 ≤ s < s′ and for all x ∈ Ωs′ . Moreover, for every s0 > 0 there exists 
Λ0 = Λ0(s0) > 0 such that

Θs(x) ≤ Λ0,

for every 0 ≤ s ≤ s0 and for every x ∈ Ωs0 .
(b) Setting U := {(x, s) : x ∈ Ωs, Θ0(x) > 0}, there exist a positive integer m ≤ n and 

control functions dk : U → [0, +∞) for k ∈ {0, . . . , m} such that

d0 ≤ d1 ≤ · · · ≤ dm.

2.2. Structural hypotheses

These two sets of quantities are then related by the following structural hypotheses.
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(i) For every s0 > 0, ε1 > 0 there exist 0 < λ1(s0, ε1), η1(s0, ε1) < 1/4 such that if 
(x, s) ∈ U , with x ∈ Ωs0 and s < s0, then

Θs(x) − Θλ1s(x) ≤ η1 =⇒ d0(x, s) ≤ ε1.

(ii) For every s0 > 0, for every ε2, τ ∈ (0, 1) there exists 0 < η2(s0, ε2, τ) ≤ ε2 such that 
if (x, 5s) ∈ U , with x ∈ Ωs0 and 5s < s0, satisfies for some k ∈ {0, . . . , m − 1}

dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥ ε2,

then there exists a k-dimensional linear subspace V for which

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(x + V ),

where Tτs(x + V ) := {z : dist(z, x + V ) < τs} is the tubular neighborhood of x + V

of radius τs.

2.3. Volume of the neighborhoods of singular strata

The sets we consider in our estimates are the following.

Definition 2.1 (Singular strata). For every 0 < δ < 1, 0 < r ≤ r0 and for every k ∈
{0, . . . , m − 1} we set

Sk
r,r0,δ :=

{
x ∈ Ωr0 : Θ0(x) > 0 and dk+1(x, s) ≥ δ ∀ r ≤ s ≤ r0

}
(2.1)

and

Sk
r0,δ :=

⋂
0<r≤r0

Sk
r,r0,δ and Sk

r0 :=
⋃

0<δ<1

Sk
r0,δ. (2.2)

Note that, by the monotonicity of the control functions, Sk
r,δ ⊂ Sk′

r′,δ′ if δ′ ≤ δ, r ≤ r′

and k ≤ k′.
Our abstract stratification result relies on the following estimate for the tubular neigh-

borhoods of the singular strata. Its proof is postponed to Section 3.

Theorem 2.2. Under the structural hypotheses in Section 2.2, for every κ0, δ ∈ (0, 1) and 
r0 > 0 there exists C = C(κ0, δ, r0, n, Ω) > 0 such that

|Tr(Sk
r,r0,δ)| ≤ C rn−k−κ0 ∀ 0 < r < r0 ∀ k ∈ {1, . . . ,m− 1} (2.3)

S0
r0,δ is countable. (2.4)
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2.4. Hausdorff dimension of the singular strata

It is now an immediate consequence of Theorem 2.2 the following stratification result.

Theorem 2.3. Under the structural hypotheses in Section 2.2 for every r0 > 0 the estimate 
dimH(Sk

r0) ≤ k holds for k ∈ {1, . . . , m − 1}. Moreover, S0
r0 is countable.

Proof. Indeed Theorem 2.2 implies that dimM(Sk
r0,δ

) ≤ k, where dimM is the Minkowski 
dimension. Since the Hausdorff dimension of a set is always less than or equal to the 
Minkowski dimension, we also infer that

dimH(Sk
r0) ≤ dimH

( ⋃
δ>0

Sk
r0,δ

)
≤ k

because, being the union monotone, it is enough to consider a countable set of parame-
ters. �
2.5. Minkowski dimension of the singular strata

The dependence of the constant C in (2.3) on δ prevents the derivation of an estimate 
on the Minkowski dimension of the singular strata Sk

r0 . Nevertheless, if such dependence 
drops, then Theorem 2.2 turns actually into an estimate on the Minkowski dimension of 
the singular strata which is not implied by Almgren’s stratification principle.

Theorem 2.4. Under the hypotheses of Theorem 2.2, if for some δ0 > 0 and k ∈
{0, . . . , m − 1}

Sk
r0,δ = Sk

r0 ∀ δ ∈ (0, δ0), (2.5)

then for every 0 < κ0 < 1 and r0 > 0 there exists C = C(κ0, δ0, r0, n, Ω) > 0 such that

|Tr(Sk
r0)| ≤ C rn−k−κ0 ∀ 0 < r < r0. (2.6)

In particular dimM(Sk
r0) ≤ k.

2.6. Examples

The meaning of the structural hypotheses in Section 2.2 is very well illustrated by 
the two familiar examples of area minimizing currents and stationary harmonic maps 
treated in [7] for which Theorem 2.2 and 2.3 hold. Moreover for area minimizing currents 
of codimension one in Rn Theorem 2.4 can be also applied for k = n − 8.
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2.6.1. Area minimizing currents
Let T be an m-dimensional area minimizing integral current in Ω. Then we can set

Θs(x) := ‖T‖(Bs(x))
wmsm

for s > 0 and Θ0(x) := lim
r↓0+

Θr(x)

and for k ∈ {0, . . . , m}

dk(x, s) := inf
{
F
(
(Tx,s − C) B1

)
: C is k-conical & area minimizing

}
,

where

• Tx,r is the rescaling of the current around any point x ∈ R
n at scale r > 0:

Tx,r :=
(
ηx,r

)
#T (2.7)

and the push-forward is done via the proper map ηx,r given by y �→ (y − x)/r;
• F is the flat norm (see [18, § 31]);
• an m-dimensional current C in Rn is k-conical for k ∈ {0, . . . , m}, if there exists a 

linear subspace V ⊂ R
n of dimension bigger than or equal to k such that

Tx,r = T for all r > 0 and x ∈ V.

Note that a 0-conical current is simply a cone with respect to the origin.

One can choose Λ0(r0) := M(T )/ωmrm0 . Then (a) is a consequence of the Monotonicity 
Formula (see [18, Theorem 17.6]) and (b) follows from the inclusion of k-conical currents 
in the k′-conical ones when k′ ≤ k. With this choice, the structural hypotheses in Sec-
tion 2.2 are satisfied, indeed (i) is an other consequence of the Monotonicity Formula 
and (ii) follows from a rigidity property of cones sometimes called “cylindrical blowup” 
(see [18, Lemma 35.5]).

Then the quantitative stratification principle in Theorem 2.2 recovers the correspond-
ing result in [7]:

the set of points that are faraway from (k + 1)-conical area minimizing currents, at 
every scale in [r, r0], has Minkowski dimension less than or equal to k.

2.6.2. Stationary harmonic maps
Similarly let u ∈ W 1,2(Ω, N ) be a stationary harmonic map from an open set Ω ⊂ R

n

to a Riemannian manifold (N m, h) isometrically embedded in some Euclidean space Rp

(see, e.g., [19]). We can set

Θs(x) := s2−n

ˆ
|∇u|2dy, s ∈

(
0, dist(x, ∂Ω)

)
,

Bs(x)
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and for every k ∈ {0, . . . , n}

dk(x, r) := inf
v∈Ck

 

B1

dist2N
(
ux,r, v

)
dy,

with

• ux,r(y) := u(x + ry) for x ∈ Ω and r ∈
(
0, dist(x, ∂Ω)

)
;

• a measurable map v is said to be k-conical if there exists a vector space V with 
dimV ≥ k that leaves v invariant, i.e.

v(x) = v(y + x) ∀x ∈ R
n, y ∈ V, (2.8)

and such that v is 0-homogeneous with respect to the points in V , i.e.

v(y + x) = v(y + λx) ∀x ∈ R
n, y ∈ V and λ > 0; (2.9)

• Ck := {v : B1 → N k-conical}.

Assumption (a) in Section 2.1 is easily verified and the monotonicity formula

Θr(x) − Θs(x) =
rˆ

s

ˆ

∂Bt(x)

t2−n

∣∣∣∣∂u∂t
∣∣∣∣
2

dHn−1dt

together with an elementary contradiction argument show that the Structural Hypothesis 
(i) in Section 2.2 is satisfied. Moreover the Structural Hypothesis (ii) follows similarly to 
the one for minimizing currents (cp. [7] for more details), thus leading to the stratification 
of Theorem 2.2.

In Section 6 we give other applications of this abstract regularity result to the case of 
varifolds with bounded variation and almost minimizers of the mass in codimension one.

3. Proof of the abstract stratification and comparison with Almgren’s stratification

To begin with, we state a simple consequence of the Structural Hypothesis (ii) (cp. 
Section 2.2) in the following

Lemma 3.1. For every s0 > 0, for every ε, τ ∈ (0, 1) there exists 0 < γ0 ≤ ε such that if 
(x, 5s) ∈ U , with x ∈ Ωs0 and 5s < s0, satisfies for some k ∈ {0, . . . , m − 1}

d0(x, 4s) ≤ γ0 and dk+1(x, 4s) ≥ ε,

then there exists a linear subspace V with dim(V ) ≤ k such that

y ∈ Bs(x) & d0(y, 4s) ≤ γ0 =⇒ y ∈ Tτs(x + V ). (3.1)
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Proof. Let γ0 ≤ γ1 ≤ . . . ≤ γk+1 be set as γk+1 = ε and γj−1 = η2(s0, γj , τ) with η2
the constant in the Structural Hypothesis (ii). Let i ∈ {0, . . . , k} be the smallest index 
such that di+1(x, 4s) ≥ γi+1 (which exists because of the assumption dk+1(x, 4s) ≥
ε = γk+1). Then, applying the Structural Hypothesis (ii) we deduce that there exists an 
i-dimensional linear subspace V such that every point y ∈ Bs(x) with d0(y, 4s) ≤ γ0 ≤ γi
belongs to the tubular neighborhood Tτs(x + V ). �

In the proof of Theorem 2.2 we shall repeatedly use the following elementary covering 
argument.

Lemma 3.2. For every measurable set E ⊂ R
n with finite measure and for every ρ > 0, 

there exists a finite covering {Bρ(xi)}i∈I of Tρ/5(E) with xi ∈ E and

H0(I) ≤
5n |Tρ/5(E)|

ωn ρn
. (3.2)

Proof. Consider the family of balls {Bρ/5(x)}x∈E . By the Vitali 5r-covering lemma, there 
exists a finite subfamily {Bρ/5(xi)}i∈I of disjoint balls such that Tρ/5(E) ⊂ ∪i∈IBρ(xi). 
By a simple volume comparison we conclude (3.2). �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We start fixing a parameter τ = τ(n, κ0) > 0 such that

ωn τ
κ0
2 ≤ 20−n. (3.3)

We choose the other constants involved in the structural hypotheses in the following 
way:

1. let γ0 ≤ γ1 ≤ . . . ≤ γk be such that γk = δ and γj−1 = η2(r0, γj , τ) for every 
j ∈ {1, . . . , k} as in the Structural Hypothesis (ii);

2. let λ1 = λ1(r0, γ0) and η1 = η1(r0, γ0) be as in the Structural Hypothesis (i);
3. fix q ∈ N such that τ q ≤ λ1.

We divide the proof into four steps.

Step 1: reduction to dyadic radii. Let Λ0 = Λ0(r0) given in Section 2.1. It suffices to 
prove (2.3) for every r of the form r = r0τ

p

5 with p ∈ N such that p ≥ p0 := q + M + 1
and M := �qΛ0/η1�. Indeed for r0τ

p0

5 < s < r0 we simply have

|Ts(Sk
s,r0,δ)| ≤ |Ω| ≤ |Ω|(

r0τp0
5

)n−k−κ0
sn−k−κ0

= C2(κ0, δ, r0, n,Ω) sn−k−κ0 .
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On the other hand, if we assume that (2.3) holds with a constant C1 > 0 for every r of 
the form r = r0τ

p

5 with p ≥ p0, we conclude that for rτ < s < r it holds

|Ts(Sk
s,r0,δ)| ≤ |Tr(Sk

r,r0,δ)| ≤ C1 r
n−k−κ0 ≤ C1 τ

k+κ0−n sn−k−κ0 .

Therefore setting C := max{τk+κ0−n C1, C2} we deduce that (2.3) holds for every r ∈
(0, r0).

Step 2: selection of good scales. Fix a value p ∈ N with p ≥ p0 as above and set r = r0τp/
5. 

For all (x, r0) ∈ U we have

p∑
l=q

Θ4τ l r0(x) − Θ4τ l+q r0(x) =
p∑

l=q

l+q−1∑
i=l

Θ4τ i r0(x) − Θ4τ i+1 r0(x)

≤ q

p+q−1∑
h=q

(
Θ4τh r0(x) − Θ4τh+1 r0(x)

)
= q

(
Θ4τqr0(x) − Θ4τp+q r0(x)

)
≤ qΛ0.

Therefore, there exist at most M indices l ∈ {q, . . . , p} for which it does not hold that

Θ4τ l r0(x) − Θ4τ l+q r0(x) ≤ η1. (3.4)

For any subset A ⊂ {q, . . . , p} with cardinality M we consider

SA :=
{
x ∈ Sk

r,r0,δ : (3.4) holds ∀ l /∈ A
}
.

We prove in the next step that

|Tr(SA)| ≤ C rn−k−κ0
2 (3.5)

for some C = C(κ0, δ, r0, n, Ω) > 0. From (3.5) one concludes because the number of 
subsets A as above is estimated by

(
p− q + 1

M

)
≤ (p− q + 1)M ≤ C | log r|M

for some C(κ0, δ, r0, n) > 0, and

|Tr(Sk
r,r0,δ)| ≤

∑
A

|Tr(SA)| ≤ C | log r|M rn−k−κ0
2 ≤ C rn−k−κ0

for some C(κ0, δ, r0, n, Ω) > 0.
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Step 3: proof of (3.5). We estimate the volume of Tr(SA) by covering it iteratively with 
families of balls centered in SA and with radii τ jr0 for j ∈ {q, . . . , p}. We can then proceed 
as follows. Firstly we consider a cover of Tτqr0/5

(SA) made of balls {Bτqr0(xi)}i∈Iq with 
xi ∈ SA and by a straightforward use of Lemma 3.2

H0(Iq) ≤ 5nτ−nqr−n
0

(
diam(Ω) + 1

)n
.

Iteratively, for every j ∈ {q + 1, . . . , p}, we assume to be given the cover
{Bτj−1r0(xi)}i∈Ij−1 of Tτj−1r0/5

(SA), and we select a new cover of Tτjr0/5
(SA) which 

is made of balls of radii τ jr0 centered in SA according to the following two cases:

(a) j − 1 ∈ A,
(b) j − 1 /∈ A.

Case (a). For every xi in the family at level j − 1, using Lemma 3.2 we cover SA ∩
Bτj−1r0(xi) with finitely many balls Bτjr0/2

(yl) with yl ∈ SA ∩ Bτj−1r0(xi) and the 

cardinality of the cover is bounded by

5n |B
(τj−1+τj

/10) r0
(xi)|

ωn

(
τ jr0

/
2
)n ≤ 20n τ−n

(note that Tτjr0/10
(SA ∩ Bτj−1r0(xi)) ⊂ B

(τj−1+τj
/10) r0

(xi)). We claim next that the 

union of Bτjr0(yl) covers the tubular neighborhood

T τjr0
5

(SA ∩Bτj−1r0(xi)).

Indeed for every z ∈ Tτjr0/5
(SA ∩ Bτj−1r0(xi)) there exists z′ ∈ SA ∩ Bτj−1r0(xi) such 

that |z − z′| < τ jr0
/
5. Since z′ ∈ Bτjr0/2

(yl) for some yl, then z ∈ Bτjr0(yl).
Therefore, collecting all such balls, the cardinality of the new covering is estimated 

by

H0(Ij) ≤ 20n τ−n H0(Ij−1). (3.6)

Case (b). If j − 1 /∈ A, then (3.4) holds with l = j − 1. By the Structural Hypothesis 
(i) and the choice of λ1, η1 in (2) and τ in (3) at the beginning of the proof, we have 
that d0(x, 4τ j−1r0) ≤ γ0 for every x ∈ SA. Since xi ∈ SA ⊂ Sk

r,r0,δ
we have also 

dk+1(xi, 4τ j−1r0) ≥ δ. We can then apply Lemma 3.1 and conclude that

SA ∩Bτj−1r0(xi) ⊂ Tτjr0(xi + V ) (3.7)

for some linear subspace V of dimension less than or equal to k. Note that

|Tτjr0((xi + V ) ∩Bτj−1r0(xi))| ≤ ωn τ
n−k |Bτj−1r0(xi)|. (3.8)
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Thus applying Lemma 3.2 we find a covering of Tτjr0/5
(SA) with balls Br0τj (yl) such 

that yl ∈ SA and using (3.8) the cardinality of the covering is bounded by

H0(Ij) ≤ 10nωn H0(Ij−1) τ−k. (3.9)

In any case the procedure ends at j = p with a covering of Tτpr0/5
(SA) which is made 

of balls {Bτpr0(xi)}i∈Ip such that xi ∈ SA and

H0(Ip) ≤ 5nτ−nqr−n
0

(
diam(Ω) + 1

)n(20n τ−n
)M (

10nωn τ
−k

)p−q−M

≤ C τ−kp(20nωn)p ≤ C τ−p
(
k+κ0

2
)

(3.10)

with C = C(κ0, δ, r0, n, Ω) > 0 and where we used (3.3) in the last inequality. Estimate 
(3.5) follows at once

|Tr(SA)| ≤ H0(Ip) |Bτpr0 |
(3.10)
≤ C rn−k−κ0

2 ,

for some C = C(κ0, δ, r0, n, Ω) > 0.

Step 4: proof of (2.4). Let jx be the smallest index such that (3.4) holds for every j ≥ jx, 
and for every i ∈ N set

Ai := {x ∈ S0
r0,δ : jx = i}.

We will prove that Ai is discrete, and hence S0
r0,δ

is at most countable. Fix x ∈ Ai. 
By the choice of the parameters applying the Structural Hypothesis (i) it follows that 
d0(x, 4r0τ j) ≤ γ0 for every j ≥ i. Since x ∈ S0

r0,δ
, we can apply Lemma 3.1 and infer that 

the points y ∈ Br0τj (x) satisfying d0(y, 4r0τ j) ≤ γ0 are contained in Br0τj+1(x). There-
fore Ai ∩Br0τj (x) ⊂ Br0τj+1(x) for every j ≥ i, which implies that Ai is discrete. �
3.1. Almgren’s stratification principle

In this section we make the connection to the approach to Almgren’s stratification 
principle by White [22]. Indeed under very natural assumptions the results by White for 
the time independent case follow from ours.

White’s stratification criterion in its simplest formulation is based on:

(a′) an upper semi-continuous function f : Ω → [0, ∞) defined on a bounded open set 
Ω ⊂ R

n;
(b′) for every x ∈ Ω a compact class of conical functions G(x) according to the following 

definition.
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Definition 3.3. (1) An upper semi-continuous map g : Rn → [0, ∞) is conical if g(z) =
g(0) implies that g is positively 0-homogeneous with respect to z, i.e.,

g(z + λx) = g(z + x) for all x ∈ R
n and λ > 0.

(2) A class G of conical functions is compact if for all sequences (gi)i∈N ⊆ G there exist 
a subsequence (gij )j∈N and an element g ∈ G such that

lim sup
j→∞

gij (yij ) ≤ g(y) ∀ y ∈ R
n, (yi)i∈N ⊂ R

n with yi → y.

In particular a conical function is 0-homogeneous with respect to 0.
The stratification theorem by White is then based on the following two structural 

hypotheses:

(i′) g(0) = f(x) for all g ∈ G (x);
(ii′) for all ri ↓ 0 there exist a subsequence rij ↓ 0 and g ∈ G (x) such that

lim sup
j→+∞

f(x + rijyj) ≤ g(y) for all y, yj ∈ B1 with yj → y.

By the upper semi-continuity of any conical function g, the closed set

Sg := {z ∈ R
n : g(z) = g(0)}

is in fact the set of the maximum points of g. Sg is called the spine of g. Moreover Sg is 
the largest vector space that leaves g invariant, i.e.,

Sg = {z ∈ R
n : g(y) = g(z + y) for all y ∈ R

n} (3.11)

(cp. [22, Theorem 3.1]). We set d(x) := sup{dimSg : g ∈ G (x)}, and

Σ� := {x ∈ Ω : f(x) > 0, d(x) ≤ �}.

The stratification criterion in [22, Theorem 3.2] is the following.

Theorem 3.4 (White). Under the structural hypotheses (i′), (ii′),

Σ0 is countable; (3.12)

dimH(Σ�) ≤ � ∀ � ∈ {1, . . . , n}, (3.13)

where dimH denotes the Hausdorff dimension.

The reader who is interested in the application of this criterion to the model cases of 
area minimizing currents and harmonic maps is referred to [22].
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3.1.1. Relation between the structural hypotheses
Theorem 3.4 can be recovered from our Theorem 2.3 if we assume the following rela-

tions between the structural hypotheses (i), (ii) in Section 2.2 and (i′), (ii′) in Section 3.1:

(1) f = Θ0;
(2) for every x ∈ Ω, if

lim
j

dk(x, rj) = 0 for some (rj)j∈N ⊂ (0, dist(x, ∂Ω)),

then x /∈ Σk−1.

Note that (1) and (2) are always satisfied in the relevant examples considered in the 
literature.

To prove that the conclusions of Theorem 3.4 are implied by Theorem 2.3 it is enough 
to show that

Σ� ⊂
⋃
r0>0

S�
r0 . (3.14)

This means that for every r0 > 0 and for every x ∈ Σ� ∩Ωr0 there exists δ > 0 such that

d�+1(x, r) ≥ δ ∀ 0 < r ≤ r0. (3.15)

Assume by contradiction that (3.15) does not hold, we find r0 and x as above such that 
for a sequence rj ∈ (0, r0] we have d�+1(x, rj) ↓ 0. Then by Section 3.1.1 (2) x cannot 
belong to Σ�.

4. Preliminary results on Dir-minimizing Q-valued functions

We follow [9] for the notation and the terminology, which we briefly recall in the 
following subsections.

The space of Q-points of Rm is the subspace of positive atomic measures in Rm with 
mass Q, i.e.

AQ(Rm) :=
{

Q∑
i=1

�pi� : pi ∈ R
m

}

where �pi� denotes the Dirac delta at pi. AQ is endowed with the complete metric G
given by: for every T =

∑
i �pi� and S =

∑
i �p′i� ∈ AQ(Rm)

G(T, S) := min
σ∈PQ

(
Q∑
i=1

|pi − p′σ(i)|2
)1/2

where PQ is the symmetric group of Q elements.
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A Q-valued function is a measurable map u : Ω → AQ(Rm) from a bounded open 
set Ω ⊂ R

n (with smooth boundary ∂Ω for simplicity). It is always possible to find 
measurable functions ui : Ω → R

m for i ∈ {1, . . . , Q} such that u(x) =
∑

i �ui(x)� for 
a.e. x ∈ Ω. Note that the ui’s are not uniquely determined: nevertheless, we often use 
the notation u =

∑
i �ui� meaning an admissible choice of the functions ui’s has been 

fixed. We set

|u|(x) := G(u(x), Q �0�) =
(∑

i

|ui(x)|2
)1/2

.

The definition of the Sobolev space W 1,2(Ω, AQ) is given in [9, Definition 0.5] and leads 
to the notion of approximate differential Du =

∑
i �Dui� (cf. [9, Definitions 1.9 & 2.6]). 

We set

|Du|(x) :=
(∑

i

|Dui(x)|2
)1/2

and say that a function u ∈ W 1,2(Ω, AQ(Rm)) is Dir-minimizing if

ˆ

Ω

|Du|2 ≤
ˆ

Ω

|Dv|2 ∀ v ∈ W 1,2(Ω), v|∂Ω = u|∂Ω

where the last equality is meant in the sense of traces (cp. [9, Definition 0.7]). By [9, 
Theorem 0.9] Dir-minimizing Q-valued functions are locally Hölder continuous with ex-
ponent β = β(n, Q) > 0.

In what follows we shall always assume that u ∈ W 1,2(Ω, AQ(Rm)) is a nontrivial 
Dir-minimizing function, i.e. u �≡ Q �0�, with

η ◦ u := 1
Q

Q∑
i=1

ui ≡ 0. (4.1)

As explained in [9, Lemma 3.23] the mean value condition in (4.1) does not introduce any 
substantial restriction on the space of Dir-minimizing functions. Moreover, in this case 
ΔQ reduces to the set {x ∈ Ω : u(x) = Q �0�}. Note that, if u �≡ Q �0�, then ΔQ ⊂ Singu
by [9, Theorem 0.11].

4.1. Frequency function

We start by introducing the following quantities: for every x ∈ Ω and s > 0 such that 
Bs(x) ⊂ Ω we set
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Du(x, s) :=
ˆ

Bs(x)

|Du|2

Hu(x, s) :=
ˆ

∂Bs(x)

|u|2

Iu(x, s) := sDu(x, s)
Hu(x, s) .

Iu is called the frequency function of u. Since u is Dir-minimizing and nontrivial, it holds 
that Hu(x, s) > 0 for every s ∈ (0, dist(x, ∂Ω)) (cp. [9, Remark 3.14]), from which Iu is 
well-defined.

We recall that the functions s �→ Du(x, s), s �→ Hu(x, s), and s �→ Iu(x, s) are 
absolutely continuous on (0, dist(x, ∂Ω)). Similarly for fixed s ∈ (0, dist(x, ∂Ω)) one can 
prove the continuity of x �→ Du(x, s), x �→ Hu(x, s) and x �→ Iu(x, s) for x ∈ {y :
dist(y, ∂Ω) > s}. The former follows by the absolute continuity of Lebesgue integral; 
while for the remaining two it suffices the following estimate:

∣∣∣√Hu(x, s) −
√

Hu(y, s)
∣∣∣ ≤

⎛
⎜⎝ ˆ

∂Bs(y)

||u|(z) − |u|(z + x− y)|2 dz

⎞
⎟⎠

1
2

≤ |x− y|

⎛
⎜⎝ ˆ

∂Bs(y)

1ˆ

0

|∇|u|(z + t (x− y))|2 dt dz

⎞
⎟⎠

1
2

≤ |x− y|

⎛
⎜⎝ ˆ

Bs+|x−y|(y)\Bs−|x−y|(y)

|Du|2

⎞
⎟⎠

1
2

(4.2)

where we use the fact that |u| ∈ W 1,2(Ω) with |∇|u|| ≤ |Du| (cp. [9, Definition 0.5]).
The following monotonicity formula discovered by Almgren in [2] is the main estimate 

about Dir-minimizing functions (cp. [9, Theorem 3.15 & (3.48)]): for all 0 ≤ r1 ≤ r2 <

dist(x, ∂Ω) it holds

Iu(x, r2) − Iu(x, r1)

=
r2ˆ

r1

t

Hu(t)

( ˆ

∂Bt(x)

|∂νu|2
ˆ

∂Bt(x)

|u|2 −
( ˆ

∂Bt(x)

〈∂νu, u〉
)2)

dt. (4.3)

We finally recall that from [9, Corollary 3.18] we also deduce that

Hu(z, r) = O(rn+2 Iu(z,0+)−1) (4.4)

where Iu(z, 0+) = limr↓0 Iu(z, r).
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4.2. Compactness

From [9, Proposition 2.11 & Theorem 3.20], if (uj)j∈N is a sequence of Dir-minimizing
functions in Ω such that

sup
j

‖uj‖L2(Ω) + sup
j

ˆ

Ω

|Duj |2 < +∞,

then there exists u ∈ W 1,2(Ω, AQ) such that u is Dir-minimizing, and up to passing to a 
subsequence (not relabeled in the sequel) G(uj , u) → 0 in L2(Ω), and for every Ω′ ⊂⊂ Ω

‖G(uj , u)‖L∞(Ω′) → 0 and
ˆ

Ω′

|Duj |2 →
ˆ

Ω′

|Du|2.

In particular this implies that (|Duj |2)j∈N are equi-integrable in Ω′, and

lim
j→+∞

Iuj
(x, s) = Iu(x, s) ∀ x ∈ Ω, ∀ 0 < 2s < dist(x, ∂Ω). (4.5)

4.3. Homogeneous Q-valued functions

We discuss next some properties of the class of homogeneous Q-valued functions: 
w ∈ W 1,2

loc (Rn, AQ(Rm)) satisfying

(1) w is locally Dir-minimizing with η ◦ w ≡ 0,
(2) w is α-homogeneous, in the sense that

w(x) = |x|α w

(
x

|x|

)
∀x ∈ R

n \ {0},

for some α ∈ (0, Λ0], where Λ0 is a constant to be specified later.

We denote this class by HΛ0 . Note that Iw(x, 0+) = 0 if w(x) �= Q �0�. The following 
lemma is an elementary consequence of the definitions.

Lemma 4.1. Let w ∈ HΛ0 . Then Iw(·, 0+) is conical in the sense of Definition 3.3 (1).

Proof. Firstly Iw(·, 0+) is upper semi-continuous. Indeed since w is Dir-minimizing, we 
can use (4.3) and deduce that Iw(x, 0+) = infs>0 Iw(x, s), i.e. Iw(·, 0+) is the infimum 
of continuous (by (4.2)) functions x �→ Iw(x, s) and hence upper semi-continuous.

We need only to show that Iw(·, 0+) is 0-homogeneous at every point z such that 
Iw(z, 0+) = Iw(0, 0+). We can assume without loss of generality that w is nontrivial, 
i.e. w �≡ Q �0�. We start noticing that if Iw(z, 0+) = Iw(0, 0+) then
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Iw(z, 0+) = Iw(0, 0+) = Iw(0, 1) > 0

where in the last equality we used the homogeneity of w. Therefore in particular w(z) =
Q �0�. Next we show that Iw(z, r) = Iw(0, 0+) for all r > 0. By a simple estimate we get

Iw(z, r) = r Dw(z, r)
Hw(z, r) ≤ Iw(0, r + |z|) Hw(0, r + |z|)

Hw(0, r)
Hw(0, r)
Hw(z, r) . (4.6)

Since w is homogeneous with respect to the origin and the frequency of w at 0 is exactly 
α (cp. [9, Corollary 3.16]), we have also

Hw(0, r) = Hw(0, 1) rn+2 α−1

Dw(0, r) = Dw(0, 1) rn+2 α−2.

In particular

Iw(0, r + |z|) = α = Iw(0, 0+) = Iw(z, 0+)
Hw(0, r + |z|)

Hw(0, r) → 1 as r ↑ +∞.

For what concerns the third factor in (4.6)

Hw(0, r)
Hw(z, r) = 1 + Hw(0, r) −Hw(z, r)

Hw(z, r) (4.7)

and from (4.4) and (4.2) we infer that

|Hw(0, r) −Hw(z, r)| =
(√

Hw(0, r) +
√
Hw(z, r)

)
|
√

Hw(0, r) −
√

Hw(z, r)|

≤ C r
n+2 Iu(0,0+)−1

2 |z|
(
Dw(0, r + |z|) −Dw(0, r − |z|)

) 1
2

≤ C |z| r
n+2 Iu(0,0+)−1

2
(
(r + |z|)n+2 α−2 − (r − |z|)n+2 α−2) 1

2

≤ C |z| 32 rn+2 α−2. (4.8)

This in turn implies

Hw(0, r)
Hw(z, r) → 1 as r ↑ +∞

and from (4.6)

lim Iw(z, r) ≤ lim
+
Iw(z, r),
r→+∞ r↓0
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i.e. by Almgren’s monotonicity estimate (4.3) we infer that Iw(z, r) = Iw(z, 0+) for 
all r > 0. As a consequence (cp. [9, Corollary 3.16]) w is α-homogeneous at z which 
straightforwardly implies that Iw(·, 0+) is 0-homogeneous at z. �

We can then define the spine of a homogeneous Q-valued function w ∈ HΛ0 :

Sw := {x ∈ R
n : Iw(x, 0+) = Iw(0, 0+)}.

By the proof of Lemma 4.1 it follows that w is α-homogeneous at every point x ∈ Sw. 
Similarly it is simple to verify that Sw is the largest vector space which leaves w invariant, 
as well as Iw(·, 0+):

Sw =
{
z ∈ R

n : w(y) = w(z + y) ∀ y ∈ R
n
}
. (4.9)

Indeed it is enough to prove that every z ∈ Sw leaves w invariant (the other inclusion is 
obvious). To show this, note that by the α-homogeneity of w at z and 0 it follows that 
for every y ∈ R

n

w(y) = w (z + y − z) = 2α w

(
z + y − z

2

)
= 2α w

(
y + z

2

)

= w (z + y) .

We denote by Ck for k ∈ {0, . . . , n} the set of k-invariant homogeneous Q-functions

Ck := {w ∈ HΛ0 : dim(Sw) ≥ k}. (4.10)

Note that Cn = Cn−1 = {Q �0�}, i.e. these sets are singleton consisting of the constant 
function w ≡ Q �0�. For Cn this is follows straightforwardly from the definition and (4.9). 
While for Cn−1 one can argue via the cylindrical blowup in [9, Lemma 3.24]. Assume 
without loss of generality that

w ∈ Cn−1, w �≡ Q �0� and Sw = R
n−1 × {0}.

Then by the invariance of w along Sw it follows that w is a function of one variable. By 
[9, Lemma 3.24] it follows that w̃ : R → AQ(Rm) is locally Dir-minimizing and

w̃ �≡ Q �0� , η ◦ w̃ ≡ 0.

This is clearly a contradiction because the only Dir-minimizing function of one variable 
are non-intersecting linear functions (cp. [9, 3.6.2]).

Finally, a simple consequence of (4.9) is that {w|B1 : w ∈ Ck} is a closed subset of 
L2(B1, AQ(Rm)).
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Lemma 4.2. Let (wj)j∈N ⊂ Ck and w ∈ W 1,2
loc (Ω, AQ(Rm)) be such that wj → w in 

L2
loc(Rn, AQ(Rm)). Then w ∈ Ck.

Proof. Let αj be the homogeneity exponent of wj. Since for Dir-minimizing α-homo-
geneous Q-valued functions w it holds that Dw(1) = αHw(1), we deduce from αj ≤ Λ0
and wj → w that the functions wj have equi-bounded energies in any compact set of Rn. 
Therefore by the compactness in Section 4.2 it follows that wj → w locally uniformly 
and w ∈ HΛ0 .

For every j ∈ N let now Vj be a k-dimensional linear subspace of Rn contained in Swj
. 

By the compactness of the Grassmannian Gr(k, n), we can assume that up to passing 
to a subsequence (not relabeled) Vj converges to a k-dimensional subspace V . Using the 
uniform convergence of wj to w we then conclude that for every z ∈ V and y ∈ R

n

w(z + y) = lim
j

wj(zj + y) = lim
j

wj(y) = w(y)

where zj ∈ Vj is any sequence such that zj → z. This shows that V ⊂ Sw, thus implying 
that dim(Sw) ≥ k. �
4.4. Blowups

Let u be a Dir-minimizing Q-valued function, η◦u ≡ 0 and u �≡ Q �0�. Fix any r0 > 0. 
For every y ∈ ΔQ ∩ Ωr0 , i.e. for every y such that u(y) = Q �0� and dist(y, ∂Ω) ≥ 2r0, 
we define the rescaled functions of u at y as

uy,s(x) := s
m−2

2 u(y + sx)

D
1/2
u (y, s)

∀ 0 < s < r0, ∀ x ∈ B r0
s

(0).

From [9, Theorem 3.20] we deduce that for every sk ↓ 0 there exists a subsequence s′k ↓ 0
such that uy,s′k

converges locally uniformly in Rn to a function w : Rn → AQ(Rm) such 
that w ∈ HΛ0 with

Λ0 = Λ0(r0) :=
r0
´
Ω |Du|2

minx∈Ωr0 Hu(x, r0)
. (4.11)

Note that minx∈Ωr0 Hu(x, r0) > 0. Indeed, by the continuity of x �→ Hu(x, r0) and the 
closure of Ωr0 , the minimum is achieved and cannot be 0 because of the condition u �≡ 0. 
In particular, Λ0 ∈ R.

5. Stratification for Dir-minimizing Q-valued functions

In this section we apply Theorems 2.2, 2.3 and 2.4 to the case of Almgren’s Dir-
minimizing Q-valued functions. Keeping the notation Ωs and U as in Section 2.1, we 
set
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(1) Θs : Ωs → [0, +∞) given by

Θ0(x) := lim
r↓0+

Iu(x, r) and Θs(x) := Iu(x, s) for s > 0, x ∈ Ωs ,

(2) for every k ∈ {0, . . . , n}, dk : U → [0, +∞) is given by

dk(x, s) := min
{
‖G(ux,s, w)‖L2(∂B1) : w ∈ Ck

}
.

Note that since {w|B1 : w ∈ Ck} is a closed subset of L2(B1) the minimum in the 
definition of dk is achieved.

It follows from Almgren’s monotonicity formula (4.3) that conditions (a) and (b) of 
Section 2.1 are satisfied.

We verify next that the structural hypotheses in Section 2.2 are fulfilled. For simplicity 
we write the corresponding statements for fixed r0. The corresponding Λ0 > 0 is defined 
as in (4.11) above. Therefore, the sets HΛ0 and Ck, introduced respectively in Section 4.3
and (4.10), are defined in terms of Λ0 = Λ0(r0).

Lemma 5.1. For every ε1 > 0 there exist 0 < λ1(ε1), η1(ε1) < 1/4 such that, for all 
(x, s) ∈ U with x ∈ Ωr0 and s < r0, it holds

Iu(x, s) − Iu(x, λ1s) ≤ η1 =⇒ ∃ w ∈ C0 : ‖G(ux,s, w)‖L2(∂B1) ≤ ε1.

Proof. We argue by contradiction and assume there exist points (xj, sj) with xj ∈ Ωr0

and sj < r0 such that

Iu(xj , sj) − Iu(xj ,
sj
2j ) ≤ 2−j and ‖G(uxj ,sj , w)‖L2(∂B1) ≥ ε1 ∀ w ∈ C0

or equivalently, setting uj := uxj ,sj ,

Iuj
(0, 1) − Iuj

(0, 2−j) ≤ 2−j and ‖G(uj , w)‖L2(∂B1) ≥ ε1 ∀ w ∈ C0. (5.1)

From [9, Corollary 3.18] it follows that

sup
j

Duj
(0, 2) ≤ 2n−2+2 Iuj

(0,2) Iuj
(0, 2)

Iuj
(0, 1) ≤ C (5.2)

where C = C(Λ0) because Iuj
(0, 2) ≤ Λ0 by definition of Λ0. We can then use the 

compactness for Dir-minimizing functions in Section 4.3 to infer the existence of a Dir-
minimizing w such that (up to subsequences) uj → w locally strongly in W 1,2(B2) and 
uniformly. We then can pass into the limit in (4.3) and using (5.1) we obtain

1ˆ

0

t

Hw(t)

⎛
⎜⎝ ˆ

|∂νw|2
ˆ

|w|2 −

⎛
⎝ ˆ

〈∂νw,w〉

⎞
⎠

2
⎞
⎟⎠ dt = 0.
∂Bt ∂Bt ∂Bt
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This implies that w is α-homogeneous (cp. [9, Corollary 3.16]) with

α = lim
j

Iuj
(0, 1) ≤ Λ0

because of Section 4.2. This contradicts ‖G(uj , w)‖L2(∂B1) ≥ ε1 for all w ∈ C0 in (5.1)
and proves the lemma. �
Remark 5.2. Using the regularity theory of Dir-minimizing functions proven in [9] it is 
in fact possible to prove a stronger claim then Lemma 5.1, namely that for every ε1 > 0
there exists 0 < η1(ε1) < 1/4 such that for all (x, s) ∈ U with x ∈ Ωr0 and s < r0

Iu(x, s) − Iu(x, s/2) ≤ η1 =⇒ ∃ w ∈ C0 : ‖G(ux,s, w)‖L2(∂B1) ≤ ε1. (5.3)

Since (5.3) is not needed in the sequel, we leave the details of the proof to the reader.

For what concerns (ii) we argue similarly using a rigidity property of homogeneous 
Dir-minimizing functions.

Lemma 5.3. For every 0 < ε2, τ < 1 there exists 0 < η2(ε2, τ) ≤ ε2 such that if (x, 5s) ∈
U , with x ∈ Ωr0 and 5s < r0, dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥ ε2 for some k ∈
{0, . . . , n − 1} then there exists a k-dimensional affine space V such that

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(V ).

Proof. We prove the statement for V = Sw with w ∈ Ck such that dk(x, 4s) =
‖G(u, w)‖L2(∂B4s(x)). We argue by contradiction. Reasoning as above with the rescal-
ings of u (eventually composing with a rotation of the domain to achieve (4) below for 
a fixed space V ), we find a sequence of functions uj ∈ W 1,2(B5, AQ(Rk) such that

(1) supj Duj
(0, 5) < +∞;

(2) there exists wj ∈ Ck such that ‖G(uj , wj)‖L∞(B4) ↓ 0;
(3) ‖G(uj , w)‖L2(B4) ≥ ε2 for every w ∈ Ck+1;
(4) there exists yj ∈ B1 \Tτ (V ) such that d0(yj , 4) ↓ 0 and V = Swj

is the k-dimensional 
spine of wj (note that by (2) & (3) the dimension of the spine of wj cannot be higher 
than k).

Possibly passing to subsequences (as usual not relabeled), we can assume that uj → w, 
wj → w locally in L2(Rn, AQ(Rm)) and yj → y for some w ∈ W 1,2

loc (Rn, AQ(Rm)) and 
y ∈ B̄1 \ Tτ (V ). By Lemma 4.2 we deduce that w ∈ Ck with Sw ⊃ V ; since by (3) 
w /∈ Ck+1, we conclude Sw = V .

It follows from (4) that wy,s = wy,1 for every s ∈ (0, 1]. Indeed there exist zj ∈ C0 such 
that ‖G((uj)yj ,1, zj)‖L2(∂B4) ↓ 0 and by continuity (uj)yj ,1 → wy,1 ∈ C0. In particular 
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w(y) = 0 and by the upper semi-continuity of x �→ Iw(x, 0+) we deduce also that 
Iw(y, 0+) = Iw(0, 0+), i.e. y ∈ Sw which is the desired contradiction. �

We can then infer that Theorem 2.2 holds for Q-valued functions.

Theorem 5.4. Let u : Ω → AQ(Rm) be a nontrivial Dir-minimizing function with average 
η ◦ u ≡ 0.

For every 0 < κ0, δ < 1 and r0 > 0, there exists C = C(κ0, δ, r0, n) > 0 such that

|Tr(ΔQ ∩ Sk
r,r0,δ)| ≤ C rn−k−κ0 ∀ k ∈ {1, . . . , n− 1},

and S0
r0,δ is countable.

In particular, Theorem 2.3 applies and we conclude that dimH(Sk
r0) ≤ k and that S0

r0

is at most countable. We shall improve upon the latter estimate on the stratum Sn−1
r0 in 

the next section.

5.1. Minkowski dimension

We can actually give an estimate on the Minkowski dimension of the set of maximal 
multiplicity points ΔQ by means of Theorem 2.4. An ε-regularity result is the key tool 
to prove this.

Proposition 5.5. There exists a constant δ0 = δ0(r0) > 0 such that

Sn−1
r = Sn−2

r = Sn−2
r,δ0

∀ r ∈ (0, r0). (5.4)

Proof. The first equality is an easy consequence of Cn = Cn−1 = {Q �0�} that gives 
dn ≡ dn−1.

Set δ0 := (Λ0 + 1)−1/2, we show that Sn−2
r,δ ⊂ Sn−2

r,δ0
for every δ ∈ (0, δ0). Assume by 

contradiction that there exists x ∈ Sn−2
r,δ \Sn−2

r,δ0
for some δ as above. From Cn−1 = {Q �0�}

we deduce the existence of s ∈ (0, r) such that

0 < δ ≤ ‖ux,s‖L2(∂B1) < δ0.

In particular, the condition 
´
B1

|Dux,s|2 = 1 gives

Iux,s
(0, 1) =

´
B1

|Dux,s|2´
∂B1

|ux,s|2
≥ 1

δ2
0
> Λ0.

By recalling that Iu(x, s) = Iux,s
(0, 1), the desired contradiction follows from Almgren’s 

monotonicity formula (4.3) and the very definition of Λ0 in (4.11). �
In particular Theorem 1.1 follows from Theorem 2.4.
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Proof of Theorem 1.1. It is a direct consequence of Proposition 5.5 and Theorem 2.4. 
Given u : Ω → AQ(Rm) a nontrivial Dir-minimizing function (i.e. ΔQ �= Ω), we can 
consider the function

v(x) :=
∑
i

�ui(x) − η ◦ u(x)� .

Then by [9, Lemma 3.23] v is Dir-minimizing with η ◦ v ≡ 0. Moreover, the set of 
Q-multiplicity points of u in Ωr0 corresponds to the set Sn−2

r0 for the function v and the 
conclusion follows straightforwardly. �
5.2. Almgren’s stratification

In this section we show that Theorem 3.4 applies in the case of Q-valued functions, 
as well. In particular, this implies that the singular strata for Dir-minimizing Q-valued 
functions can also be characterized by the spines of the blowup maps, thus leading to 
the proof of Theorem 1.2 in the introduction.

By following the notation in Section 3.1.1 (1), we set

f(x) := Iu(x, 0+) ∀ x ∈ Ω.

For every x ∈ Ω such that f(x) = 0 (or, equivalently, u(x) �= Q �0�) we define G (x) to 
be the singleton made of the constant function 0, i.e. G (x) = {Q �0�}; otherwise

G (x) :=
{
Iw(·, 0+) : w ∈ W 1,2

loc (Rn,AQ(Rm)) blowup of u at x
}
. (5.5)

As explained in Section 4.3 G (x) is never empty because there always exist (possibly 
non-unique) blowup of u at any multiplicity Q point.

Since every blowup of u is a nontrivial homogeneous Dir-minimizing function, it follows 
from Lemma 4.1 that every function g ∈ G (x) is conical in the sense of Definition 3.3
(1). We need then to show the following.

Lemma 5.6. For every x ∈ Ω the class G (x) is compact in the sense of Definition 3.3 (2).

Proof. If x is not a multiplicity Q point, then there is nothing to prove. Otherwise 
consider a sequence of maps gj = Iwj

(·, 0+) ∈ G (x), with wj blowup of u at x. By 
Section 4.3 wj is Dir-minimizing α-homogeneous with α = Iu(x, 0+) and Dwj

(1) = 1. 
Then by the compactness in Section 4.2, there exists w such that wj → w locally in L2

up to subsequences (not relabeled) with Dw(1) = 1. By a simple diagonal argument it 
follows that w is as well a blowup of u at x, i.e. g = Iw(·, 0+) ∈ G(x). For every yj ∈ B1

with yj → y ∈ B1 and for every s > 0, we then deduce
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lim sup
j↑+∞

gj(yj) ≤ lim sup
j↑+∞

Iwj
(yj , s)

= lim sup
j↑+∞

(
sDwj

(y, s)
Hwj

(y, s)
Dwj

(yj , s)
Dwj

(y, s)
Hwj

(y, s)
Hwj

(yj , s)

)

= Iw(y, s)

where we used

- the monotonicity of Iwj
(yj , ·) in the first line,

- the continuity of x �→ Dwj
(x, s) and x �→ Hwj

(x, s),
- the convergence of the frequency functions Iwj

(y, s) → Iw(y, s) (cp. 4.2).

Sending s to 0 provides the conclusion. �
Finally we prove that the Structural Hypothesis (ii′) of White’s theorem (cp. Sec-

tion 3.1) holds as well:

lim sup
j↑+∞

f(x + rijyj) = lim sup
j↑+∞

Iu(x + rijyj , 0+)

≤ lim sup
j↑+∞

Iu(x + rijyj , rijs)

= lim sup
j↑+∞

Iux,rij
(yj , s) = Iw(y, s)

where we used the strong convergence of the frequency of Section 4.2.
In particular, Theorem 3.4 holds true, which in turn leads to the proof of Theorem 1.2

by a simple induction argument.

5.3. Stratification Theorem 1.2

We define now the singular strata Singku for a Dir-minimizing multiple valued function 
u : Ω → AQ(Rm). Consider any point x0 ∈ Singu, and let

u(x0) =
J∑

i=1
κi �pi�

with κi ∈ N \ {0} such that 
∑J

i=1 κi = Q and pi �= pj for i �= j. Then by the uniform 
continuity of u there exist r > 0 and Dir-minimizing multiple valued functions ui :
Br(x0) → Aκi

(Rm) for i ∈ {1, . . . , J} such that

u|Br(x0) =
J∑ �ui� ,
i=1
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where by a little abuse of notation the last equality is meant in the sense u(x) =
∑

i ui(x)
as measures. For every i ∈ {1, . . . , J} let vi : Br(x0) → Aκi

(Rm) be given by

vi(x) :=
κi∑
l=1

�(ui(x))l − η ◦ ui(x)� .

Then we say that a point x0 ∈ Singu belongs to Singku, k ∈ {0, . . . , n}, if the spine of 
every blowup of vi at x0, for every i ∈ {1, . . . , J}, is at most k-dimensional.

We can then prove Theorem 1.2 by a simple induction argument on the number of 
values Q.

Proof of Theorem 1.2. Clearly if Q = 1 there is nothing to prove because every harmonic 
function is regular and Singu = ∅. Now assume we have proven the theorem for every 
Q∗ < Q and we prove it for Q.

We can assume without loss of generality that ΔQ �= Ω. Then, as noticed, ΔQ =
Singu ∩ΔQ by [9, Theorem 0.11]. Moreover Singku ∩ΔQ = Σk, where Σk is that of The-
orem 3.4. Indeed x0 ∈ Σk if and only if the maximal dimension of the spine of any 
g ∈ G(x0) is at most k. By (5.5) g ∈ G(x0) if and only if g = Iw(·, 0+) for some blowup 
w of u at x0. Hence by (4.9) x0 ∈ Σk if and only if the dimension of the spines of the 
blowups of u at x0 is at most k. Note that Singn−2

u ∩ΔQ = ΔQ since Cn = Cn−1 = {Q �0�}
(we use here the notation in Section 4.3) and u is not trivial. Therefore we deduce that

Sing0
u ∩ΔQ is countable

dimH(Singku ∩ΔQ) ≤ k ∀ k ∈ {1, . . . , n− 2}.

Next we consider the relatively open set Ω \ ΔQ (recall that both Singu and ΔQ are 
relatively closed sets). Thanks to the continuity of u we can find a cover of Ω \(Singu ∩ΔQ)
made of countably many open balls Bi ⊂ Ω \ (Singu ∩ΔQ) such that u|Bi

=
�
u1
i

�
+

�
u2
i

�
with u1

i and u2
i Dir-minimizing multiple valued functions taking strictly less than Q

values. Since Singku ∩Bi = Singku1
i
∪ Singku2

i
by the very definition, using the inductive 

hypotheses for u1
i and u2

i we deduce that

Sing0
u ∩Bi is countable

Singn−2
u ∩Bi = Singu ∩Bi

dimH(Singku ∩Bi) ≤ k ∀ k ∈ {1, . . . , n− 2},

thus leading to (1.2) and (1.3). �
6. Applications to generalized submanifolds

In the present section we apply the abstract stratification results in Section 2 to inte-
gral varifolds with mean curvature in L∞ and to almost minimizers in codimension one 
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(both frameworks are not covered by the results in [7] although they can be considered 
as slight variants of those). This case is relevant in several variational problems (see the 
examples in [22, § 4]) most remarkably the case of stationary varifolds or area minimiz-
ing currents in a Riemannian manifold. For a more complete account on the theory of 
varifolds and almost minimizing currents we refer to [1,3] and the lecture notes [18].

6.1. Tubular neighborhood estimate

In what follows we consider integer rectifiable varifolds V = (Γ, f), where Γ is an 
m-dimensional rectifiable set in the bounded open subset Ω ⊂ R

n, and f : Γ → N \ {0}
is locally Hm-integrable. We assume that V has bounded generalized mean curvature, 
i.e. there exists a vector field HV : Ω → R

n such that ‖HV ‖L∞(Ω,Rn) ≤ H0 for some 
H0 > 0 and

ˆ

Γ

divTyΓX dμV = −
ˆ

X ·HV dμV ∀ X ∈ C1
c (Ω,Rn)

where μV := f Hm Γ. It is then well-known (cp., for example, [18, Theorem 17.6]) that 
the quantity

ΘV (x, ρ) := eH0 ρ μV (Bρ(x))
ωmρm

is monotone and the following inequality holds for all 0 < σ < ρ < dist(x, ∂Ω)

ΘV (x, ρ) − ΘV (x, σ) ≥
ˆ

Bρ\Bσ(x)

|(y − x)⊥|2
|y − x|m+2 dμV (y) (6.1)

where (y − x)⊥ is the orthogonal projection of y − x on the orthogonal complement 
(TyΓ)⊥. In particular the family (Θ(·, s))s∈[0,r0] (with the obvious extended notation 
Θ(·, 0+) := limr↓0 Θ(·, r)) satisfies assumption (a) in Section 2.1 for every fixed r0 > 0
with

Λ0(r0) := eH0 diam(Ω) μV (Ω)
ωmrm0

. (6.2)

In order to introduce the control functions dk we recall next the definition of cone.

Definition 6.1. An integer rectifiable m-varifold C = (R, g) in Rn is a cone if the 
m-dimensional rectifiable set R is invariant under dilations i.e.

λ y ∈ R ∀ y ∈ R, ∀ λ > 0
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and g is 0-homogeneous, i.e.

g(λ y) = g(y) ∀ y ∈ R, ∀λ > 0.

An integer rectifiable m-varifold C = (R, g) in Bρ, ρ > 0 is a cone if it is the restriction 
to Bρ of a cone in Rn.

The spine of a cone C = (R, g) in Rn is the biggest subspace V ⊂ R
n such that 

R = R′ × V up to Hm-null sets.
The class of cones whose spine is at least k-dimensional is denoted by Ck and its 

elements are called k-conical.

If d∗ is a distance inducing the weak ∗ topology of varifolds with bounded mass in 
B1 (cp., for instance, [17, Theorem 3.16] for the general case of dual spaces), the control 
function dk is then defined as

dk(x, s) := inf
{
d∗

(
Vx,s,C

)
: C ∈ Ck, ‖HC ‖L∞(Ω,Rn) ≤ H0

}
(6.3)

where Vx,s := (ηx,s(Γ), f ◦ η−1
x,s) with ηx,s(y) := (y − x)/s.

By very definition, then (b) in Section 2.1 is satisfied. We are now ready to check 
that the conditions in the structural hypotheses are satisfied. As usual, we write the 
corresponding statements for fixed r0 and Λ0 := Λ0(r0), for simplicity.

Lemma 6.2. For every ε1 > 0 there exist 0 < λ1(ε1), η1(ε1) < 1/4 such that for all 
(x, ρ) ∈ U , with x ∈ Ωr0 and ρ < r0,

ΘV (x, ρ) − ΘV (x, λ1 ρ) ≤ η1 =⇒ d0(x, ρ) ≤ ε1.

Proof. Assume by contradiction that for some ε1 > 0 there exists (xj , ρj) ∈ U , with 
xj ∈ Ωr0 and ρj < r0, such that

ΘV (xj , ρj) − ΘV (xj , j
−1 ρj) ≤ j−1 and d0(xj , ρj) ≥ ε1. (6.4)

We consider the sequence (Vj)j∈N with Vj := Vxj ,ρj
, and note that for all positive t > 0

there is an index j̄ such that t ρj < r0 if j ≥ j̄, so that

μVj
(Bt ) ≤ ωm tm ΘVj

(xj , t ρj) ≤ ωmtmΛ0 ∀ j ≥ j̄.

Therefore, up to the extraction of subsequences and a diagonal argument, Allard’s rec-
tifiability criterion (cp., for instance, [18, Theorem 42.7, Remark 42.8]) yields a limiting 
m-dimensional integer varifold Vj → C = (R, g) with the bound ‖HC ‖L∞(Ω ≤ H0. Since 
ΘV (xj , s ρj) = ΘVj

(0, s) → ΘC (0, s) except at most for countable values of s, by mono-
tonicity and (6.4) for all j−1 < r < s < 1 we have ΘC (0, s) = ΘC (0, 0+) for every s ≥ 0. 
The monotonicity formula (6.1) applied to C implies that C is actually a cone, thus 
contradicting d0(xj , ρj) ≤ ε1. �
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Lemma 6.3. For every ε2, τ ∈ (0, 1), there exists 0 < η2(ε2, τ) < ε2 such that, for every 
(x, 5s) ∈ U , with x ∈ Ωr0 and 5s < r0, if for some k ∈ {0, . . . , m − 1}

dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥ ε2,

then there exists a k-dimensional affine space x + V such that

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(x + V ).

Proof. The proof is by contradiction. Assume that there exist 0 < ε2, τ < 1, k ∈
{0, . . . , m − 1} and a sequence of points (xj , 5sj) ∈ U , with xj ∈ Ωr0 and 5sj < r0, for 
2j ≥ ε−1

2 such that

dk(xj , 4sj) ≤ j−1 and dk+1(xj , 4sj) ≥ ε2, (6.5)

and such that the conclusion of the lemma fails, in particular, for Vj given by the spine 
of Cj with

d∗
(
Vxj ,4sj ,Cj

)
≤ 2j−1 (6.6)

(note that by 2j ≥ ε−1
2 necessarily dim(Vj) = k). Without loss of generality (up to a 

rotation) we can assume that Vj = V a given vector subspace for every j. This means 
that there exist yj ∈ Bsj (xj) \ Tτsj (xj + V ) such that

d0(yj , 4sj) ≤ j−1. (6.7)

Using the compactness for varifolds with bounded generalized mean curvature, (up to 
passing to subsequences) we can assume that

1. sj → s∞ ∈ [0, r0/5];
2. Cj → C∞ in the sense of varifolds, C∞ a cone with ‖HC∞‖L∞(Ω,Rn) ≤ H0;
3. (yj − xj)

/
sj → z ∈ B1 \ Tτ (V );

4. Vxj ,sj → W∞ and Vyj ,sj → Z∞ in the ball B4 in the sense of varifolds, where W∞
and Z∞ are cones thanks to (6.5) and (6.7), respectively.

Note that by (6.6) it follows that Cj → W∞ and therefore W∞ ∈ Ck because all the Cj

are invariant under translations in the directions of V . Moreover, arguing as above it 
also follows from dk+1(xj , 4sj) ≥ ε2 that the spine of W∞ is exactly V .

Note that η(yj−xj)/sj ,1
corresponds to the translation of vector (yj − xj)

/
sj.

By the equality of (η(yj−xj)/sj ,1
)�Vxj ,sj and Vyj ,sj in B3, we deduce that Z∞ =

(η(yj−xj)/sj ,1
)�W∞ as varifolds in B3, i.e. W∞ is a cone around z too. We claim that 

this implies that W∞ is invariant along the directions of Span{z, V }, thus contradiction 
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the fact that the spine of W∞ equals V . To prove the claim, let W∞ = (R∞, g) with R∞
cone around the origin and z. It suffices to show that y+ z ∈ R∞ for all y ∈ R∞. Indeed 
(z + y)/2 = z + y − z

/
2 ∈ R∞ being R∞ a cone with respect to z; and then y + z ∈ R∞

being R∞ a cone with respect to 0. �
In particular we deduce that Theorem 2.2 and Theorem 2.3 hold in the case of varifolds 

with generalized mean curvature in L∞.

6.2. Almost minimizer in codimension one

It is well-known by the classical examples by Federer [14] that no Allard’s type 
ε-regularity results can hold for higher codimension generalized submanifolds without 
any extra-hypotheses on the densities. Vice versa for generalized hypersurfaces one can 
strengthen the results of the previous subsection giving estimates on the Minkowski di-
mension of the singular set. The arguments in this part resemble very closely those in 
[5], therefore we keep them to the minimum.

In what follows we consider sets of finite perimeter, i.e. borel subsets E ∈ Ω such 
that the distributional derivative of corresponding characteristic function has bounded 
variation: DχE ∈ BVΩ. Following [3,21], a set of finite perimeter is almost minimizing 
in Ω if for all A ⊂⊂ Ω open there exist T ∈

(
0, dist(A, ∂Ω)

)
and α : (0, T ) → [0, +∞)

non-decreasing and infinitesimal in 0 such that whenever E�F ⊂⊂ Br(x) ⊂ A

Per(E,Br(x)) ≤ Per(F,Br(x)) + α(r) rn−1 ∀ r ∈ (0, T ) (6.8)

and

(0, T ) � t �→ α(t)
t

is non-increasing, and
T̂

0

α
1/2(t)
t

dt < ∞. (6.9)

Examples of almost minimizing sets not only include minimal boundaries on Rieman-
nian manifolds, but also boundaries with generalized mean curvature in L∞, minimal 
boundaries with volume constraint, and minimal boundaries with obstacles (cp. [21, 
§ 1.14]).

We use here again the control functions introduced in Section 2.6.1 in terms of flat 
distance: given a set of finite perimeter E, we denote by ∂E its boundary (in the sense 
of currents) and set

dk(x, s) := inf
{
F
(
(∂Ex,s − C) B1

)
: C k-conical & area minimizing

}
where the dimension of the cones C is always n −1, and Ex,s is the push-forward of E via 
the rescaling map ηx,s. In particular dn−1 denotes the distance of the rescaled boundary 
∂Ex,s rescaling of the from flat (n − 1)-dimensional vector spaces.
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The main ε-regularity result for almost minimizing sets can be stated as follows 
(cp. [21, Theorem 1.9], [3, Lemma 17] and [18, Theorem B.2]).

Theorem 6.4. Suppose that E is a perimeter almost minimizer in Ω satisfying (6.8) and 
(6.9) for a given function α. Then, there exists ε > 0 and ω : [0, +∞) → [0, +∞)
continuous, non-decreasing and satisfying ω(0) = 0 with the following property: if

ρ + dn−1(x, ρ) +
ρˆ

0

α
1/2(t)
t

dt ≤ ε,

then ∂E ∩Bρ/2(x) is the graph of a C1 function f satisfying

|∇f(x) −∇f(y)| ≤ ω(|x− y|). (6.10)

Moreover, there are no singular area minimizing cones with dimension of the singular 
set bigger than n − 8, i.e. equivalently

dn−7 = dn−6 = . . . = dn−1. (6.11)

Remark 6.5. The smallness condition dn−1 ≤ ε, together with the almost minimizing 
property, implies the more familiar smallness condition on the Excess, i.e.

Exc(E,Br(x)) := r1−n ‖DχE‖(Br(x)) − r1−n |DχE(Br(x))| ≤ ε′

for some ε′ = ε′(ε) > 0 infinitesimal as ε goes to 0 because of the continuity of the mass 
for converging uniform almost minimizing currents. Therefore (6.10) readily follows from 
[21, Theorem 1.9].

By a simple use of Theorem 6.4 we can the prove the following.

Corollary 6.6. Under the hypotheses of Theorem 6.4 there exist constants δ0 =
δ0(Λ0, n, α) > 0 and ρ0 = ρ0(Λ0, n, α) > 0 such that

Sn−8
r0,δ0

= Sn−8
r0 = Sn−7

r0 = . . . = Sn−2
r0 ∀ r0 ∈ (0, ρ0].

Proof. Set δ0 = ε
/
2 and let ρ0 be sufficiently small to have

ρ0 +
ρ0ˆ

0

α
1/2(t)
t

dt ≤ ε
/
2.

If x /∈ Sn−2
r0,δ0

, r0 ∈ (0, ρ0], then there exists 0 < z0 ≤ r0 such that dn−1(x, z0) < δ0. In 
particular, by the choices of δ0 and of ρ0 the assumptions of Theorem 6.4 are satisfied 
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at s0. Therefore, it turns out that x is a regular point of ∂E and that Bz0/2(x) ∩∂E can be 
written as a graph of a function f satisfying (6.10). In particular, lims↓0 dn−1(x, s) = 0. 
Therefore, given any δ′ < δ0, we have that x /∈ Sn−2

r0,δ′
, thus implying that Sn−2

r0 = Sn−2
r0,δ0

. 
By taking into account (6.11) we conclude the corollary straightforwardly. �

In particular, Theorem 2.4 holds and we deduce the following refinement of the Haus-
dorff dimension estimate of the singular set.

Theorem 6.7. Let E ⊂ Ω be a almost minimizing set of finite perimeter in a bounded 
open set Ω ⊂ R

n according to (6.8) and (6.9). Then there exists a closed subset Σ ⊂
∂E ∩Ω such that ∂E ∩Ω \Σ is a C1 regular (n − 1)-dimensional submanifold of Rn and 
dimM(Σ) ≤ n − 8.

Proof. Let Ω′ ⊂⊂ Ω be compactly supported and set r0 := dist(Ω′, ∂Ω). By the regularity 
Theorem 6.4, a point x ∈ Ω is regular if and only if there exists r > 0 sufficiently small 
such that dn−1(x, r) ≤ ε

/
2. In particular, the set of singular points Σ coincides with 

Sn−2
r0,ε/2

and the conclusion follows combining Theorem 2.4 with Corollary 6.6. �
In addition, we can also derive a higher integrability estimate for almost minimizers 

with bounded generalized mean curvature. Given a set of finite perimeter E ⊂ Ω, one 
can associate to ∂E a varifold in a canonical way (cp. [18]). One can then talk about 
sets of finite perimeter with bounded generalized mean curvature. Important examples 
of such an instance are:

1. the minimizers of the area functional in a Riemannian manifold;
2. the minimizers of the prescribed curvature functional in Ω ⊂ R

n

F(E) := ‖DχE‖(Ω) +
ˆ

Ω∩E

H

with H ∈ L∞(Ω);
3. minimizers of the area functional with volume constraint;
4. more general Λ-minimizers for some Λ > 0, i.e. sets E such that

‖DχE‖(Ω) ≤ ‖DχF ‖(Ω) + Λ |E \ F | ∀ F ⊂ Ω.

Given a point x ∈ ∂E such that Br(x) ∩ ∂E is the graph of a C1 function f , if the 
generalized mean curvature H of ∂E is bounded then we can also talk about generalized 
second fundamental form A in Br/2(x), because in a suitable chosen system of coordinates 
f solves in a weak sense the prescribed mean curvature equation

div
(

∇f√
1 + |∇f |2

)
= H ∈ L∞. (6.12)
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Note that, since in this case f satisfies (6.10), we can choose a suitable system of coor-
dinates and use the Lp theory for uniformly elliptic equations to deduce that actually 
A ∈ Lp(Br/4(x), Hn−1 ∂E) for every p < +∞ with uniform estimate

ˆ

B r
4
(x)∩∂E

|A|p Hn−1 ≤ C rn−p−1 (6.13)

for some dimensional constant C > 0. For convenience we set A ≡ +∞ on the singular 
set Σ ⊂ ∂E.

Theorem 6.8. Let E ⊂ Ω be as in Theorem 6.7 and assume moreover that the varifold 
induced by ∂E has bounded generalized mean curvature. Then, for every p < 7 there 
exists a constant C > 0 such that

ˆ

∂E∩Ω

|A|p dHn−1 ≤ C. (6.14)

Proof. Let ρ0 > 0 be the constant in Corollary 6.6 and ε that of Theorem 6.4. Then 
Σ = Sn−8

ρ0,ε/2
. In then follows that for a fixed k̄ > log2(ρ0

/
10)

(
supp(∂E) \ Σ

)
∩ Ω =

⋃
k≥k̄

Sn−8
2−k,ρ0,ε/2

\ Sn−8
2−k−1,ρ0,ε/2

.

Applying Theorem 2.2 we infer that for every η > 0 there exists C > 0 such that

∣∣T2−k(Sn−8
2−k,ρ0,ε/2

)
∣∣ ≤ C 2−k(8−η). (6.15)

By Lemma 3.2 there exists a cover of T2−k−2
/5

(Sn−8
2−k,ρ0,ε/2

\ Sn−8
2−k−1,ρ0,ε/2

) by balls 
{B2−k−3(xk

i )}i∈Ik with xk
i ∈ Sn−8

2−k,ρ0,ε/2
\ Sn−8

2−k−1,ρ0,ε/2
whose cardinality is estimated 

by (3.2) as

H0(Ik) ≤ C 2−k(8−η−n) (6.16)

where C > 0 is a dimensional constant.
We start estimating the integral in (6.14) as follows:

ˆ

∂E∩Ω

|A|p dHn−1 =
∑
k≥k̄

ˆ

Sn−8
2−k,ρ0,ε/2

\Sn−8
2−k−1,ρ0,ε/2

|A|p dHn−1

≤
∑
k≥k̄

∑
i∈Ik

ˆ
k

|A|p dHn−1.
∂E∩B2−k−3 (xi )
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Since xk
i ∈ Sn−8

2−k,ρ0,ε/2
\ Sn−8

2−k,ρ0,ε/2
it follows that there exists rki ∈ [2−k−1, 2−k) such 

that dn(xk
i , r

k
i ) < ε

/
2. In particular by Theorem 6.4 ∂E ∩B2−k−2(xk

i ) is a graph of a C1

function satisfying (6.10). From (6.13) we conclude that

ˆ

∂E∩Ω

|A|p dHn−1 ≤ C
∑
k≥k̄

H0(Ik) 2−k(n−p−1) ≤ C
∑
k≥k̄

2−k(7−η−p) < C

as soon as η < 7 − p. �
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