


 

 

 

INDEX 

 

 

LIST OF ABBREVIATIONS      pag. 1 

ABSTRACT pag. 4 

1. INTRODUCTION        pag. 6 

1.1 Melanoma: the malignant transformation of melanocytes  pag. 6 

 1.1.1 Melanoma staging and classification    pag. 8 

 1.1.2 Melanoma disease: the role of molecular biology  pag. 10 

1.2 Hedgehog-GLI pathway      pag. 13 

 1.2.1 Hedgehog ligands: processing and release   pag. 14 

 1.2.2 Canonical Hedgehog signal transduction   pag. 15 

 1.2.3 GLI transcription factors      pag. 18 

 1.2.4 Transcriptional targets of HH signaling    pag. 21 

 1.2.5 HH pathway in cancer      pag. 22 

 1.2.6 Activation of GLI transcription factors by oncogenes in cancer pag. 24 

 1.2.7 Crosstalk between Hedgehog/GLI pathway and p53  pag. 26 

1.3 The E2F transcription factors family     pag. 27 

 1.3.1 E2F1: a crucial player of cell cycle progression   pag. 29 

 1.3.2 E2F1 and apoptosis      pag. 31 

 1.3.3 Regulation of E2F1 activity by protein-protein interactions pag. 34 

 1.3.4 Transcriptional regulation of E2F1    pag. 35 

 1.3.5 Role of microRNAs in E2F1 regulation    pag. 35 

 1.3.6 Regulation of E2F1 by post-translational modifications  pag. 36 

 1.3.7 E2F1 activity in human cancers     pag. 39 

 1.3.8 E2F1 and HH/GLI pathway     pag. 41 

1.4 The ASPP family: specific regulators of p53    pag. 41 

 1.4.1 iASPP: a key inhibitor of p53     pag. 42 

 1.4.2 A link between iASPP and cancer    pag. 44 

2. AIMS OF THE STUDY      pag. 46 

3. MATERIALS AND METHODS     pag. 47 

3.1 Cell cultures and patient samples     pag. 47 

3.2 Plasmids, cloning, mutagenesis and lentiviral vectors   pag. 47 

3.3 Luciferase report assays      pag. 49 



 

 

 

3.4 Protein extraction and western blot     pag. 49 

3.5 Quantitative Real Time-PCR (qPCR)     pag. 50 

3.6 Chromatin immunoprecipitation (ChIP)    pag. 51 

3.7 In vitro growth curves       pag. 52 

3.8 Flow cytometry analysis      pag. 53 

3.9 Cell sorting, nude mice and xenografts     pag. 53 

3.10 Statistical analysis       pag. 54 

3.11 Bioinformatic analysis       pag. 54 

4. RESULTS        pag. 55 

4.1 The Hedgehog signaling positively regulates E2F1 expression  

 in melanoma cells       pag. 55 

4.2 E2F1 is a direct target of GLI1 and GLI2 transcription factors  pag. 58 

4.3 Silencing of E2F1 in melanoma cells     pag. 62 

4.4 E2F1 is required for melanoma cell growth induced by activation  

 of the HH pathway       pag. 64 

4.5 HH signaling modulates iASPP expression and activation  

 through E2F1        pag. 71 

4.6 E2F1 mediates HH-induced melanoma xenograft growth  pag. 77 

5. DISCUSSION        pag. 80 

6. REFERENCES        pag. 86 

 



1 
 

LIST OF ABBREVIATIONS 

 

 

HH= Hedgehog 

PTCH= Patched 

SMO= Smoothened 

TFs= Transcription factors 

GLI= glioma-associated oncogene 

PI3K= phosphoinositide-3 kinase 

WT= wild-type 

iASPP= inhibitor of apoptosis-stimulating protein p53 

PAX3= paired box 3 

SOX10= sex-determining region Y-box10 

HES1= hairy/enhancer of split 

MITF= microphthalmia-associated transcription factor 

UVR= ultraviolet radiation 

SSM= superficial spreading melanoma 

LMM= lentigo malignant melanoma 

ALM= acral lentiginous melanoma 

NM= nodular melanoma 

RGP= radial growth phase 

VGP= vertical growth phase 

AJCC= American Joint Committee on Cancer 

TNM= Tumor-Node-Metastasis 

UICC= Union for International Cancer Control 

TGF-β= Transforming growth factor-β 

BMPs= bone morphogenetic proteins 

DHH= Desert Hedgehog 

SHH= Sonic Hedegehog 

IHH= Indian Hedgehog 

Twhh= Tiggy-Winkle hedgehog 

Ehh= Echidna hedgehog 

Qhh= Qiqihar hedgehog 



2 
 

HIP= HH-interacting protein 

GLI-TFs= GLI transcription factors 

Cos2= Costal 2 

Fu= Fused 

SuFu= Suppressor of Fused 

GLIA= GLI activator 

GLIR= GLI repressor 

PKA= protein kinase A 

CK1= casein kinase 1 

GSK3= glycogen synthase kinase 3 

PDD= processing determinant domain 

miRNAs= microRNAs 

GCPs= cerebellum granule cell progenitors 

MIM= actin-binding protein missing in metastasis 

BCNS= basal cell nevus syndrome 

ERK= extracellular signal-regulated kinase 

EGFR= epidermal growth factor receptor 

PKCδ= protein kinase C δ 

aPKC ι/λ= Atypical Protein Kinase C ι/λ 

PCAF= p300/CBP-associated factor 

E1A= early region 1 A 

pRB= retinoblastoma protein 

DP1= DRTF-1 Polypeptide 1 

MB= Marked Box 

NLS= nuclear localization sequence 

NES= nuclear export sequence 

PcG= polycomb complex 

E2F1= E2-factor 1 

MDM2= Murine Double Minute 2 

ASPP1/2= Apoptosis Stimulating Proteins of p53 

JMY= Junction Mediating and Regulatory Protein 

TP53INP1= Tumor Protein p53 Inducible Nuclear Protein 1 

Apaf-1= protease-activating factor 1 



3 
 

Smac/DIABLO= Second Mitochondria-derived Activator of Caspases/Direct 

IAP-Binding protein with Low PI 

ASK1= apoptosis signal-regulating kinase 1 

MKKs= MAPK Kinases 

HDACs= histone deacetylases 

HP1= heterochromatin protein 1 

BRCT= BRCA carboxy-terminal 

UTR= untranslated region 

CLL= chronic lymphocytic leukemia 

SIRT1= Sirtuin 1 

ATM= Ataxia Telangiectasia Mutated 

ATR= ATM and Rad3 related 

CHK2= checkpoint kinase 2 

SETD7= SET domain-containing protein 7 

LSD1= lysine demethylase 1 

PRMT5= protein arginine methyltransferase 5 

NEDD8= neural precursor cell-expressed developmentally down-regulated 8 

p45SKP2= S-phase kinase-associated protein 2, p45 

SCF= SKP/cullin/F-box protein complex 

CGNPs= cerebellum granule neuron precursor 

PCa= prostate cancer 

GLI-BS= GLI-Binding Site 

TSS= Transcription Start Site 

  



4 
 

ABSTRACT 

 

 

Melanoma is a highly aggressive form of skin cancer that originates from 

the malignant transformation of melanocytes; it has high metastatic propensity 

and it is refractory to most traditional chemotherapeutic drugs.  

 

The Hedgehog-GLI (HH-GLI) signaling is an evolutionarily conserved 

pathway, which plays an important role in embryonic development; in the adult 

it regulates stem cell maintenance, tissue repair and regeneration. In the 

canonical HH signaling, in absence of HH ligands, the transmembrane receptor 

Patched (PTCH) inhibits the transmembrane protein Smoothened (SMO), 

blocking signal transduction. Upon ligand binding, PTCH inhibition of SMO is 

relieved, leading to the activation of three zinc-finger transcription factors 

(TFs) GLI1, GLI2 and GLI3. HH pathway is aberrantly activated in many 

human cancers, including melanoma, where it sustains growth and survival of 

cancer stem cells. Aberrant activation of HH signaling can result not only from 

loss of function of the negative regulator PTCH1 or from constitutive 

activation of SMO, but also from activation of the downstream GLIs 

transcription factors by oncogenic inputs, such as RAS, MEK, 

phosphoinositide-3 kinase (PI3K), AKT and the oncogenic phosphatase WIP1. 

Previous data showed a reciprocal crosstalk between HH signaling and p53. 

More than 80% of melanomas retain wild-type (wt) p53, but its tumor-

suppressor function is impaired by several mechanisms, such as overexpression 

of MDM2 and MDMX or deletion of the CDKN2A locus. Activation of HH 

signaling contributes to reduce p53 function, by increasing MDM2 levels. In 

turn, p53 inhibits GLI1 transcriptional activity in glioblastoma, and enhances 

its degradation by the induction of PCAF upon DNA damage.  

 

Recently, another mechanism of p53 inactivation has been proposed, in 

which the inhibitor of apoptosis-stimulating protein p53 (iASPP) might play an 

important role. iASPP is often upregulated in human cancers, and melanomas 

that harbour wt p53, present high levels of phosphorylated iASPP. 



5 
 

Reactivation of p53 activity is a strategy of target therapy to suppress 

melanoma growth and recent evidence indicate E2F1 as a putative biomarker 

for anti-cancer therapies based on inhibitors of MDM2/p53 interaction. The 

transcription factor E2F1 is a crucial regulator of cell cycle and it is also able to 

induce apoptosis in response to DNA damage. Abnormalities in E2F1 

expression are present in different cancer types, including malignant melanoma 

and are frequently associated with poor patient survival. Recent data suggested 

that HH signaling might increase E2F1 levels, but no clear evidence indicates 

that the GLIs transcription factors directly control E2F1 expression.  

 

In this study we show that both GLI1 and GLI2 directly regulate E2F1 

expression in melanoma cells, by binding to a functional non-canonical GLI 

consensus sequence. Consistently, the analysis of a public microarray data set, 

shows a significant correlation between E2F1 and PTCH1, GLI1 and GLI2 

expression in human metastatic melanomas. Functionally, we investigated the 

role of E2F1 in mediating the effects of HH pathway activation in melanoma, 

and we find that E2F1 is an important mediator of HH signaling and it is 

required for melanoma cell growth induced by activation of HH pathway, both 

in vitro and in vivo. 

 

Moreover, we present evidence that the HH/GLI-E2F1 axis positively 

regulates iASPP expression in melanoma cells. HH pathway activation 

increases mRNA and protein levels of iASPP and this induction is directly 

mediated by E2F1, which binds to iASPP promoter. In addition, we also find 

that HH pathway, not only induces iASPP expression through E2F1, but also 

contributes to iASPP activation. Indeed, HH signaling controls Cyclin B1 and 

CDK1 levels, which form a complex responsible of iASPP phosphorylation.  

 

Our data indicate that E2F1 plays a crucial role in determining melanoma 

cell fate, proliferation and apoptosis, in response to HH signaling activation 

through modulation of iASPP expression and activation. These findings 

suggest the presence of a novel HH/GLI-E2F1-iASPP axis involved in 

melanoma cell growth regulation, and provides a further mechanism through 

which activation of HH signaling impairs p53 function. 
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1. INTRODUCTION 

 

 

1.1 Melanoma: the malignant transformation of melanocytes 

 

Cutaneous melanomas originate from the malignant transformation of 

epidermal melanocytic cells. Melanocytes are the pigmented-producing cells of 

the epidermis, which are located principally in the basal epidermal layer in 

human skin, but also in the ears, gastrointestinal tract, eyes, oral and genital 

mucosa and leptomeninges. Melanocytes are present in about 1-2% of 

epidermis cells, whereas over the 95% of the total epidermal cell population is 

represented by keratinocytes (Yaar and Gilchrest, 2001). Melanocytes derive 

from unpigmented precursor cells, called melanoblasts that migrate from the 

neural crest to the epidermis and hair follicles, the final destination where they 

differentiate and become mature melanocytes. During embryogenesis, several 

different signaling pathways contribute to regulate the survival and migration 

of melanocytes. They include the Wingless signaling (WNT)/β-catenin 

(Dorsky et al., 1998, Dunn et al., 2000), the endothelin B receptor and its 

ligand endothelin-3 (Baynash et al., 1994), the receptor tyrosin kinase KIT 

(Giebel et al., 1991; Karafiat et al., 2007) and its ligand KIT-ligand/SCF (stem 

cell factor) (Hirobe et al., 2010), and NOCTH (Moriyama et al., 2006, 

Schouwey et al., 2007). In melanocyte development is also important the 

activity of transcription factors, such as paired box gene (PAX3) (Hornyak et 

al., 2001, Lang et al., 2005), sex-determining region Y-box10 (SOX10) 

(Honoré et al., 2003, Aoki et al., 2003), hairy/enhancer of split (HES1) 

(Moriyama et al., 2006), and microphthalmia-associated transcription factor 

(MITF) (Hornyak et al., 2001, Shibahara et al., 2000). The melanocytes have 

the physiological role to produce melanin pigments that are synthetized in 

specific cytoplasmic organelles called melanosomes and transferred to 

neighbouring keratinocytes. The melanin pigments have a protective role, 

ensuring skin protection against the effects of ultraviolet radiation (UVR) 

(Kobayashi et al., 1998) and reducing the UVR-induced cellular DNA damage 

and genomic instability. An intense and frequent exposure to UV radiation 
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sunlight is the principal environmental risk factor for melanoma development 

(Kanavy et al., 2011). 

 

Cutaneous melanoma is the most aggressive form of skin cancer that 

develops from the malignant transformation of melanocytes. Melanoma has 

high metastatic propensity and it is refractory to most traditional 

chemotherapeutic drugs and most patients develop resistance to current 

therapies (Chudnovsky et al., 2005; Walia et al., 2012). The incidence of 

malignant melanoma has been increased in white population during the past 

several decades (Hall et al., 1999; Van Der Rhee et al., 1999; Toender et al., 

2014). Melanoma is a cancer with a relatively good prognosis when diagnosed 

at early-stage, and can be treated through surgical excision of the primary 

lesion; conversely, prognosis is worse at late-stage because melanoma has 

spread from primary site to distant organs. Metastatic melanomas have a 

median survival rate comprised from six to ten months (Balch et al., 2009). The 

transformation process of normal melanocytes into melanoma cells is 

considered a multistep and multi-factorial process, in which, environmental, 

genetic and host factors contribute to its development. 

 

Melanoma is currently classified into four different clinical subtypes 

(Clark et al., 1969, Reed et al., 1985; Whiteman et al., 2011; Schoenewolf et 

al., 2014), primary based on anatomic location and patterns of growth: 

superficial spreading melanoma (SSM), lentigo malignant melanoma (LMM), 

nodular melanoma (NM), and acral lentiginous melanoma (ALM). SSM is the 

most common form (nearly 70%) of melanoma that occurs at any site and at 

any age (Langholz et al., 2000). LMM presents a slowing grow and covers a 

largest surface area and may be confused with SSM (Cohen et al., 1995); 

lentigo melanoma constitutes the 10-15% of cutaneous melanoma. NM is the 

second most common type of melanoma that represents the 15-35% of all 

melanomas; it may originate at any site, but is common on exposed areas of the 

head and neck (Langholz et al., 2000). ALM (5-10% of melanoma cases) is 

characterized by the site of origin, such as palm, sole or subungal. There is 

another type of melanoma, the mucosal melanoma (1.3%-1.4% of all 

melanomas) (Batsakis et al., 2000), that occurs at any mucosal site, for 
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example in oral cavity, male and female genital tract, anorectum, and follow 

the histological features of ALM. 

 

Melanoma presents different steps in tumor progression, based on clinical 

and histo-morphological features. The majority of melanoma subtypes progress 

through two distinct histological phases, radial and vertical, and this is the first 

step toward the invasive phenotype. Melanomas progress from the radial 

growth phase (RGP) to the vertical growth phase (VGP) (Meier et al., 1998). In 

the radial growth phase, melanoma cells lack the capacity to invade the dermis 

and metastasize. In vertical growth phase melanomas invades and goes deep 

into the dermis and has propensity to metastasize (Meier et al., 1998; Miller 

and Mihm, 2006; Whiteman et al., 2011). 

 

 

1.1.1 Melanoma staging and classification 

 

Melanoma can be classified into clinical stages on the base of significant 

prognostic factors. This staging system was revised by the American Joint 

Committee on Cancer (AJCC) (Balch et al., 2009) and it is continuously 

evolving. Three main classes of adverse prognostic factors play an important 

role in determining prognosis in melanoma: pathological, clinical, and genetic 

alterations. The pathological class includes lesion thickness (Breslow 

thickness), presence and extent of ulceration (Balch et al., 1980; In 't Hout et 

al., 2012), mitotic index (Barnhill et al., 2005; Thompson et al., 2011), level of 

invasion (Clark level), tumor-infiltrating lymphocytes (Mihm et al., 1996; 

Clemente et al., 1996; Burton et al., 2011), presence and location of metastases, 

tumour vascularity (Kashani-Sabetet al., 2002; Nagore et al., 2005), 

microsatellites (Nagore et al., 2005), lymphovascular invasion (Dadras et al., 

2003, Egger et al., 2011), and elevated levels of serum lactic dehydrogenase 

(Balch et al., 2009). Clinical adverse factors include age (Austin et al., 1994), 

sex (Leiter et al., 2004), location of the lesion, and metastasis. Clark’s level and 

Breslow’s thickness are used for microscopic staging of primary cutaneous 

melanoma. Clark levels consider the anatomic location, epidermis, dermis and 

fat, to classify melanoma (Clark et al., 1969, McGovern et al., 1970, Mihm et 
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al., 1971); this classification system correlates anatomic level of invasion, 

coupled with mitotic index, with prognosis. Breslow thickness measures the 

absolute thickness of the tumor, from the granular layer, the most superficial 

nucleates layer of the epidermis, to the deepest layer of lesion invasion 

(Breslow et al., 1970). The increase in thickness of the tumor and the presence 

of ulceration are both inversely correlated with survival. 

 

The AJCC and Union for International Cancer Control (UICC) staging 

system is based TNM (Tumor-Node-Metastasis) classification system (Sobin et 

al., 2001). TNM is the most used system and describes the anatomic extent of 

cancer. This system takes into account the size of local primary tumor (T), the 

presence or the absence of regional lymphatic metastases (N), and the presence 

of distant metastases (M). The principal prognostic factors for the evaluation of 

primary tumor are represented by Breslow’s thickness and ulceration; instead, 

the number of involved lymph nodes is the second major prognostic significant 

factor. To evaluate the presence of metastasis, the metastatic site and the lactate 

dehydrogenase concentrations represent the most significant prognostic factors. 

A simplified overview of the TNM staging system, classifies cutaneous 

melanoma in five main stages: 

 Stage 0: melanoma involves the epidermis but has no reached the 

underlying dermis. Stage 0 is also called melanoma in situ. 

 Stage I (A and B) and II (A, B and C): melanoma is characterized by 

tumour thickness and ulceration status. There are no evidence of 

regional lymph node or distant metastases. 

 Stage III (A, B and C): melanoma is characterized by lymph node 

metastases, but there are no evidence of distant metastases. 

 Stage IV: melanoma is characterized by the presence of distant 

metastases and increased level of lactate dehydrogenase. 

Each stage presents subgroups, depending to the absence/presence of 

ulceration, lymph-node involvement, and metastasis. 
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1.1.2 Melanoma disease: the role of molecular biology 

 

Melanoma is a genetically and phenotypically heterogeneous tumor, as 

shown by recent studies (Curtin et al., 2005). The initiation and progression of 

melanoma result from genetic and/or epigenetic alteration in key genes that 

control processes such as proliferation, apoptosis, senescence and response to 

DNA-damage. These changes lead to the activation of oncogenes or 

inactivation of tumor suppressor genes or DNA-repair genes (Hodis et al., 

2012), resulting in alteration of normal biological behaviour in cells that can 

accelerate tumor progression (Figure 1.1). Identification of predisposing genes 

and pathway implicated in the acquisition of malignant melanoma phenotype is 

crucial to better understand this disease and improve its treatment (Mourah and 

Lebbé, 2014). 

 

Epidemiological evidence link solar UV irradiation, to primary cause of 

melanoma; up to 65% of malignant melanomas are sun-related (Katsambas et 

al., 1996). The first gene found to be mutated in melanoma was NRAS which 

belong to RAS family (Ball et al., 1994, Goel et al., 2006). This family consists 

of three isoforms HRAS, NRAS and KRAS each encoding a membrane-

localized small GTPase. In response to cellular stimuli, RAS assumes an 

activated state, leading downstream cytoplasmic and/or nuclear events, that 

include the recruitment of RAF. The serine/threonine RAF kinases family is 

composed of three isoforms ARAF, BRAF, CRAF (RAF-1) activated by the 

small GTPase RAS. Melanomas harbour activating mutations of NRAS in 15-

30% of cases; the most common mutations are substitutions of glutamine at 

position 61 by lysine or proline (Q61K, Q61R) (Goydos et al., 2005). BRAF 

was identified mutated in nearly 50-70% of melanomas; the most common 

BRAF mutation (80% of BRAF mutations) is a substitution of valine at position 

600 by glutamic acid (V600E) that leads to a strong increase in BRAF kinase 

activity (Davies et al., 2002). NRAS and BRAF mutations are mutually 

exclusive (Sensi et al., 2006). The V600E mutation induces a constitutively 

activation of MAPK pathway, independent of a previous activation by RAS 

oncogene and extracellular stimulus, inducing an increase of ERK activation, 

and causing a melanoma cell proliferation. Mutation V600E also promotes 
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melanoma survival by regulating expression and function of pro-apoptotic and 

anti-apoptotic proteins such as Bcl-2 family member (BIM, BAD) (Paraiso et 

al., 2011; Boisvert-Adamo et al., 2008). Oncogenic RAS activates not only 

RAF, but also plays a role in PI3K/AKT cascade, which is frequently altered in 

several cancers, including melanoma. Alterations in PI3K/AKT pathways is 

principally due to aberrant expression of the tumor suppressor PTEN, often lost 

or reduced, as a consequence of somatic point mutations and deletion of PTEN 

(30-50% of melanomas) (Guldberg et al., 1997; Tsao et al., 2003). 

 

Melanoma development is also strongly associated with inactivation of 

CDKN2A locus, which encodes p16INK4 and p14ARF, two tumor suppressors 

involved in cell cycle entry at the G1 checkpoint and in stabilization of p53 

expression. The CDKN2A locus is mutated through homozygous deletion or 

mutation in approximately 25-50% of melanomas (Flores et al., 1996, Cachia 

et al., 2000). Several studies have identified additional candidate genes, 

involved in melanoma development, such as c-KIT (Rivera et al., 2008; Torres-

Cabala et al., 2009), BAP1 (Abdel-Rahman et al., 2011; Carbone et al.; 2012), 

RAC1 (Krauthammer et al., 2012), PREX2 (Berger et al., 2012), MITF 

(Garraway et al., 2005), and candidate gene family, such as tyrosine kinase 

family (Prickett et al., 2009), tyrosine phosphatases (Solomon et al., 2008), 

MAPK effectors (Nikolaev et al., 2011; Stark et al., 2011), proteases 

(metalloproteinases, disintegrin and metalloproteinases, and disintegrin and 

metalloproteinases with trombospondin domain) (Palavalli et al., 2009), and 

members of glutamate signaling pathway (Wei et al., 2011). 
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                                                                                                Corine Bertolotto, Scientifica 2013 

 

Figure 1.1. Hypothetical model of melanoma development. Melanoma 

development is a multistep process regulated by a key set of genes. Here are 

represented the major genes that are often mutated during the different phases 

of melanoma progression. Asterisks (*) indicate genes mutated in the germline.  

 

Several genetic pathways regulate various steps in melanocytes 

development, and they have been found altered in melanoma. These pathways 

include: NOTCH, WNT, TGF-β, and Hedgehog signaling. The NOTCH 

pathway is highly conserved in most organisms and responsible for cell fate 

determination in the embryonic development and adult life. This pathway is 

frequently aberrant, most commonly by over-activation, in many types of 

cancer, including melanoma (Murtas et al., 2014; Aydin et al., 2014), and 

confers a survival advantage on tumor (Balint et al., 2005). Expression levels 

of Notch receptors are low in mature melanocytes, whereas in melanoma 

lesions and melanoma cell lines there is an increased expression of Notch 

receptors (Balint et al., 2005). The WNT signaling pathway is an ancient 

system, highly conserved from Drosophila to human. It is involved in several 

cellular functions and has a crucial role in embryonic development, adult 

homeostasis and tumor progression (Klaus and Birchmeier, 2008). The 

function of WNT/β-catenin signaling in melanoma development is interesting 

because it has been shown to play dual roles in both enhancing and preventing 
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melanoma progression. The consequences of Wnt/β-catenin cascade activation 

are complex and likely context-dependent (Chien et al., 2009). Among Wnt 

ligands, Wnt5a is the best characterized in melanoma where it has been shown 

to promotes cell mobility and invasion (Dissanayake et al., 2007, Weeraratna et 

al., 2002). Elevated expression of Wnt5a is frequently correlated with poor 

survival in melanoma patients (Da Forno et al., 2008). Transforming growth 

factor-β (TGF-β) family is a group of structurally related growth factors, which 

includes TGF-β, activin, nodal, bone morphogenetic proteins (BMPs), and 

others. These growth factors play crucial roles in regulating several biological 

processes during embryonic development and adult tissue homeostasis; its 

deregulation has been associated with many human diseases, including cancer. 

In melanoma TGF-β signaling controls its tumorigenesis and metastasis 

formation (Albino et al., 1991). An important Sonic Hedgehog mediator, GLI2, 

has been identified as a direct transcriptional target of TGFβ/SMAD pathway 

in melanoma cells (Dennler et al., 2007). Hedgehog pathway is another 

important pathway in melanoma, as described below. TGF-β2 expression was 

found to correlate with tumor thickness and TGF-β is associated with invasive 

signature (Perrot et al., 2013). 

 

 

1.2 Hedgehog-GLI pathway 

 

The Hedgehog (Hh) signaling pathway was initially identified in 

Drosophila as a crucial mediator of segmental patterning during embryonic 

development; the Hh gene was discovered in 1980 by Christiane Nusslein-

Volhard and Eric F. Wieschaus during a screening of mutations that disrupt the 

Drosophila larval body plan (Nusslein-Volhard and Wieschaus, 1980). The 

name Hedgehog derives from the short and ‘spiked’ phenotype of the cuticle 

presented by hh mutant Drosophila larvae, which were similar to the spikes of 

a hedgehog (Varjosalo and Taipale, 2008; Ingham and McMahon, 2001). HH 

signaling is a conserved pathway, essential in embryonic development, in 

particular within the neural tube and skeleton (Dorus et al., 2006). During 

development, inactivation of HH signaling results in severe abnormalities in 

mice and humans (Chiang et al., 1996, Belloni et al., 1996, Roessler et al., 
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2005). However, in normal adult tissue, Hh signaling is critical for maintaining 

tissue polarity in vertebrate and invertebrate embryos, and it is involved in 

stem cell maintenance, tissue homeostasis, repair and regeneration after injury 

(Beachy et al., 2004, Clement et al., 2007). Aberrant activation of HH signaling 

pathway in the adult is also linked to human cancer (Teglund et al., 2010). The 

discovery of loss-of-function mutations of human PTCH1 (a negative regulator 

of HH pathway) was the initial link with human cancers. The HH family 

protein regulates several cellular processes, such as cell growth, migration, 

survival, differentiation and tissue patterning. HH signaling has different roles 

in different contexts: it can act as a morphogen in a dose-dependent manner 

controlling multiple different developmental processes, or as mitogen 

regulating cell proliferation or inducing factors that control the form of 

developing organs (Ingham and McMahon, 2001). 

 

 

1.2.1 Hedgehog ligands: processing and release 

 

The Drosophila genome encodes a single hh gene, while the vertebrate 

genome duplication resulted in expansion of HH genes (Wada and Makabe, 

2006), which can be classified in three subgroups: Desert Hedgehog (DHH), 

Indian Hedgehog (IHH) and Sonic Hedgehog (SHH) in birds and mammals 

(Echelard et al., 1993). In Zebrafish there are three extra hh homolog, one in 

the Shh subgroup (Tiggy-Winkle hedgehog, Twhh) and two others in the Ihh 

subgroup (Echidna hedgehog and Qiqihar hedgehog: Ehh and Qhh, 

respectively), also in this case, as consequence of duplication and further 

rearrangements (Jaillon et al., 2004). Dhh is closest to Drosophila hh, while 

Ihh and Shh are more closely related to each other than Dhh. Mammalian Hh 

proteins have different roles during the development, resulting from diverse 

pattern of expression (McMahon et al., 200; Sagai et al., 2005). Shh is 

expressed in the developing nervous system during the early vertebrate 

embryogenesis, while in the late stage of development, during organogenesis, it 

is expressed in many epithelial tissues (Meyer and Roelink, 2003; Watanabe et 

al., 2000). Ihh is specifically expressed in a limited number of tissues, such as 

primitive endoderm (Dyer et al., 2001) and gut (van den Brink, 2007); it also 
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acts in bone development (St-Jacques et al., 1999). Dhh expression is restricted 

to the peripheral nervous system and reproductive organs, including sertoli 

cells of testis and granulosa cells of ovaries (Wijgerde et al., 2005; Varjosalo 

and Taipale, 2008). All Hh ligands undergo similar multiple events before 

signaling. HH protein is synthesized as a precursor molecule that is 

translocated into the endoplasmic reticulum (ER) lumen. In the ER the 

precursor undergoes cholesterol-dependent autocatalytic cleavage, originating 

an amino-terminal (N-terminal) and a carboxy-terminal (C-terminal) fragments 

(Lee et al., 1994; Porter et al., 1995; Porter et al 1996a, b; Chen, et al., 2011; 

Ryan and Chiang, 2012). In this process, the C-terminal domain plays an active 

role and acts as an intramolecular cholesterol transferase. HH processing and 

cholesterol modification are essential for proper signaling activity and tissue 

distribution. The cholesterol modified N-terminal fragment is subjected to a 

second covalent modifications by attachment of palmitate to its N-terminus 

(Chamoun et al., 2001; Buglino et al., 2008), generating the fully active form 

of Hh, which is released from the cells and is responsible for all the signaling 

effects of Hh pathway. 

 

 

1.2.2 Canonical Hedgehog signal transduction 

 

In human, the signaling cascade of HH pathway is initiated by binding of 

the HH ligand to its membrane receptor PATCHED (PTCH). There are two 

PTCH homolog genes in vertebrates, called PTCH1 and PTCH2 (Motoyama et 

al., 1998; Carpenter et al., 1998); mouse deficient in ptch2 are viable, but 

develop alopecia and epidermal hypoplasia and have increased tumor incidence 

in the presence of ptch mutation (Lee et al., 2007; Nieuwenhuis et al., 2006). 

Instead, loss of PTCH1 results in a complete activation of HH pathway and this 

suggests that PTCH1 is the functional ortholog of Drosophila ptc. PTCH is a 

12-span transmembrane receptor, which in absence of ligands catalytically 

inhibits the activity of the 7-span transmembrane receptor, SMOOTHENED 

(SMO), by alterating its localization on the cell surface and inactivating HH 

target genes expression. PTCH is a negative regulator of HH signaling, while 

SMO is a positive regulator. The binding of HH ligands to PTCH results in the 
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loss of PTCH inhibition on SMO, which is activated and it can transduce the 

HH signal to the cytoplasm (Taipale et al., 2002). Loss of inhibition of SMO 

triggers the activation of the downstream SHH effectors, the glioma-associated 

(GLI) family of transcription factors. 

 

The GLI transcription factors (GLI1, GLI2, GLI3 in vertebrates and Ci in 

Drosophila) are the final effectors of HH pathway, controlling the expression 

of SHH target genes. GLI2 and GLI3 are the primary mediators of HH 

pathway, while GLI1 is itself a target of HH signaling, which is part of a 

positive feedback to reinforce the GLI activity (Bai et al., 2002). Several 

molecules are engaged in the reception of HH ligands with PTCH. The HH-

interacting protein (HIP) encodes a membrane glycoprotein that binds all three 

mammalian Hedgehog proteins and competes with PTCH to bind HH, acting as 

a negative regulator of HH signaling (Chuang and McMahon, 1999). On the 

other hand, the HH-binding proteins CDO and BOC, and GAS1 act 

cooperatively with PTCH1 for HH binding and enhance signaling activity 

(Martinelli et al., 2007; Allen et al., 2007; Seppala et al., 2007; Tenzen et al., 

2006). Glypican-3 (GPC3) competes with PTCH for HH binding, and acts as a 

negative regulator of HH signaling during development (Capurro et al., 2008). 

How PTCH regulates SMO activity is not completely clear; the current model 

involves trafficking of PTCH and SMO in and out of the cilium, a cell 

organelle present on the most mammalian cells, that is a crucial event in SMO 

activity regulation (Rohatgi et al., 2007; Corbit et al., 2005; Wang et al., 2009). 

In this model PTCH and SMO do not interact physically, but PTCH is 

localized at the bases of the primary cilium and, upon binding of Hh ligand, the 

receptor/ligand complex is translocated out of the primary cilium and 

internalized in endosomal vesicles. This event leads to mobilization of SMO 

into the primary cilium (Figure 1.2). 
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Figure 1.2. Hedgehog signaling pathway. This model briefly describes HH 

pathway activation and its components. (A) In absence of HH ligands, PTCH1 

is located in the cilium and inhibits SMO. GLI transcription factors are present 

in repressor forms, preventing the activation of target genes. (B) HH ligands 

bind PTCH1 receptor, which moves out of the primary cilium. SMO is 

derepressed and moves into the primary cilium where it promotes the 

formation of the activator forms of the GLI transcription factors, through 

dissociation of Suppressor of Fused (SuFu)/GLI complex. Activators GLI-TFs 

translocate in the nucleus, where they induce the transcription of HH target 

genes. 

 

In Drosophila, several molecules have been identified to act downstream 

of SMO signaling, including the atypical kinesin-like protein Costal 2 (Cos2), 

serine/threonine kinase Fused (Fu) and the Suppressor of Fused (SuFu), which 

is not required for pathway activity. In vertebrate Cos2 and Fu are not 

conserved, although SuFu is an important negative regulator of all mammalian 

GLI transcription factors activity, controlling their nuclear translocation and 

degradation (Kogerman et al., 1999; Ding et al., 1999; Merchant et al., 2004; 

Dunaeva et al., 2003). Intriguingly, PTCH, HIP, GAS1 and GLI1 are 

components, but also transcriptional targets of HH pathway, suggesting the 

presence of a feedback regulatory loop as part of mechanisms to maintain the 

level of HH signaling and modulate the response of HH signaling (Allen et al., 
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2007; Cohen et al., 2010). On one hand, PTCH and HIP provide a negative 

feedback regulation, whereas GLI1 forms a positive auto-regulatory loop, 

extending the duration of signaling. On the other hand, HH pathway down-

regulates GAS1 but, at the same time, it acts as a positive regulator for HH 

signaling. In addition the timing and the strength of signaling is regulated by 

the timing of ligand action (Ruiz I Altaba et al., 2007). 

 

 

1.2.3 GLI transcription factors 

 

The final effectors of mammalian HH signaling are the glioma-associated 

oncogene family member (GLI) zinc-finger transcription factors GLI1, GLI2 

and GLI3 (Rubin and de Sauvage, 2006; Zhu and Lo, 2010). The roles of GLI 

transcription factors (GLI-TFs) are regulated by phosphorylation and 

proteolytic processing that convert some GLI proteins from a full-length form, 

which acts as a transcriptional activator (GLIA), into a C-terminus truncated 

repressor (GLIR). In frog, fish, mice and human, GLI1 acts as a strong 

transcriptional activator, indeed it contains only a C-terminal transcriptional 

activation domain; GLI2 acts both activator and repressor (Ruiz I Altaba, 1999) 

whereas GLI3 has mainly repressor functions, although it can also be a positive 

modulator inducing target genes transcription. Consistent with this, GLI2 and 

GLI3 possess both C-terminal activation and N-terminal repression domains 

(Ruiz Altaba et al., 1999; Nguyen et al., 2005; Sasaki et al., 1999). The C-

terminal region contains a transactivator domain, comprised between amino 

acids 1020-1091, that is required for the GLI-induced transcriptional activation 

(Yoon et al., 1998). GLI3 processing requires the sequential phosphorylation of 

multiple serine residues at the C-terminal region, by protein kinase A (PKA), 

casein kinase 1 (CK1), and glycogen synthase kinase 3 (GSK3) (Tempé et al., 

2006; Price et al., 2002). GLI3 processing is also dependent on Slimb/βTrCP, a 

substrate-specific receptor of the SCF-type E3 ubiquitin ligase complex (Jia et 

al., 2005; Smelkinson et al., 2006). The initial phosphorylation is a prerequisite 

for βTrCP action (Wang et al., 2006). Slimb/βTrCP can directly bind only 

phosphorylated GLI3 protein in vitro and in vivo; GLI3 is polyubiquitinated in 

the cell and this processing is carried out by the proteasome (Wang et al., 
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2006). PKA, CK1 and GSK3 also phosphorylate GLI2, which shares with 

GLI3 44% sequence identity and it has conserved PKA, CK1 and GSK3 

phosphorylation sites (Niewiadomski et al., 2014). Despite that, 

phosphorylation of GLI2 induces its complete degradation by the proteasome, 

and only a tiny fraction of GLI2R is formed (Pan et al., 2006; Pan and Wang, 

2007; Pan et al., 2009), consistent with the potential dual functions of GLI2. 

Pan and Wang in 2007 showed that the low efficiency of GLI2 processing is 

determined by the processing determinant domain (PDD). This specific region 

contains the first 197 amino acid residues of GLI2/GLI3 C-termini and 

functions as a signal for protein processing by proteasome (Pan and Wang, 

2007). Consistent with this model, GLI1 does not show GLIR activity because 

lacks a PDD. 

 

In absence of HH ligands, GLI1 is transcriptionally repressed, whereas 

GLI2 and GLI3 can be expressed and act as transcriptional repressors silencing 

HH-GLI targets (Bai et al., 2004; Stamataki et al., 2005). Otherwise, in 

response to HH activation, GLI2 is the main activator, inducing the expression 

of GLI1 and additional GLI target genes (Lee et al., 1997; Sasaki et al., 1999; 

Ikram et al., 2004). GLI1 is a transcriptional target of HH signaling and acts as 

a transcriptional activator to reinforce GLIA function (Jiang et al., 2008). 

 

The three GLI-TFs behave differently and have context-dependent 

repressor and activator functions. The function of GLI proteins is articulated: 

they have partially redundant and partially distinct functions and induce 

distinct target genes (Ruiz I Altaba et al., 2002; Aberger and Ruiz I Altaba, 

2014). For example, GLI1 and GLI2 induce motor neurons in frog spinal cord, 

whereas GLI3 has an opposite function (Ruiz I Altaba et al., 1998). In contrast, 

in the same species, Gli1 is the principal mediator of SHH signaling, inducing 

floor plate differentiation, whereas both Gli2 and Gli3 repress this function. 

(Lee et al., 1997). However, in mice, Gli2 is primarily involved in floor-plate 

development (Matise et al., 1998). Indeed, Gli2 deficient mice exhibit severe 

developmental defects, such as the lacking of a floor plate, and they are 

compromised in the development of other SHH-dependent structures (Mo et 

al., 1997; Matise et al., 1998; Ding et al., 1998). In contrast, functional 
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disruption of Gli1 gene did not result in developmental defects, suggesting that 

probably does not act as primary transducer of SHH signaling (Park et al., 

2000). 

 

Originally, the GLI1 gene was the first gene of GLI family described in 

1987; it was identified in malignant glioma as amplified gene (Kinzler et al., 

1987). GLI1 maps on chromosome 12q13.3-14.1 and encodes for a 

transcription factor of 1106 amino acids. In 2008, was discovery a GLI1 splice 

variant lacking of 128 amino acids at N-terminus, called GLI1ΔN (Shimokawa 

et al., 2008). This variant has a reduced ability to translocate in the nucleus and 

activates the transcription of target genes. GLI1ΔN is present in both normal 

and cancer cell lines (Shimokawa et al., 2008). There is another isoform of 

GLI1, discovered in 2009, called tGLI1 which lacks of 41 amino acids (Lo et 

al., 2009). This isoform maintains all functional domains that are present in 

GLI1 full length, and preserves the ability to translocate in the nucleus and 

induce GLI target genes (Lo et al., 2009). tGLI1 expression is tumor-specific 

(Lo et al., 2009). The transcription factor GLI2 maps on chromosome 2q14, 

and encodes a protein of 1586 amino acids. In 2005 Roessler discovery an 

isoform of GLI2, which lacks the N-terminus region, called GLI2ΔN. The 

amino-terminal repressor domain was essential for the dominant negative 

activity of GLI2, so the isoform GLI2ΔN results more active that the full 

length GLI2 (Roessler et al., 2005). The last GLI-TF is GLI3, located on 

chromosome 7p13. GLI3 encodes a protein of 1580 amino acids, and there is 

no variant described for this gene. 

 

The effects of the GLI code, the sum of GLI positive and negative 

functions, are tightly regulated by the HH signaling and orchestrate an arrays 

of different cellular functions. Regulation of GLI proteins involves the function 

of many factors, such as SuFu, Zic proteins and microRNAs (miRNA). SUFU 

is a conserved negative regulator of GLI signaling that may affect their 

nuclear-cytoplasmic shuttling or their activity in the nucleus, modulating 

cellular responses (Kogerman et al., 1999). During HH pathway activation, the 

inhibitory role of SuFu must be suspended to allow the induction of a positive 

GLI code (Svärd et al., 2006). In addition, SuFu degradation by the ubiquitin-
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proteasome system is promoted by HH signaling itself (Yue et al., 2009). GLI 

and ZIC proteins physically interact through their zinc finger domains and 

regulate each other’s subcellular localization and transcriptional activity in a 

context-dependent manner (Koyabu et al., 2001; Nguyen et al., 2005; Chan et 

al., 2011). Moreover, recent studies show that GLI-TFs physically interact with 

the mammalian homologue of Drosophila Costal2, KIF7, which controls their 

proteolysis and stability, and acts both positively and negatively in HH 

signaling (Cheung et al., 2009; Liem et al., 2009; Endoh-Yamagami et al., 

2009; Li et al., 2012). ULK3, a serine/threonine kinase that shares homology 

with Drosophila Fused protein, is involved in the SHH pathway as a positive 

regulator of GLI proteins. ULK3 enhances GLI1 and GLI2 transcriptional 

activity, alters subcellular localization of GLI1, and phosphorylates GLI 

proteins in vitro (Maloverjan et al., 2010). Furthermore, HH signaling can be 

regulated through specific miRNA, such as miRNA-125b, miRNA-324-5p and 

miRNA-326 that functionally suppress SMO. miRNA-324-5p also targets 

GLI1 in cerebellum granule cell progenitors (GCPs) and human 

medulloblastoma cell lines (Ferretti et al., 2008). In addition, miRNA-17/92 

cluster has been shown to synergize with SHH signaling in GCPs and 

medulloblastoma and it is a positive effector of Shh-mediated proliferation 

(Northcott et al., 2009, Uziel et al., 2009). Additional proteins that have been 

shown to affect HH signaling are: REN (KCTD11), a negative regulator which 

prevents GLI translocation to the nucleus (Di Marcotullio et al., 2004), 

similarly to SuFu; DYRK1, the dual specificity YAK1-related kinase that has 

been shown to enhance GLI1-dependent gene transcription by retaining GLI1 

in the nucleus and by enhancing its transcriptional activity (Mao et al., 2002); 

the actin-binding protein missing in metastasis (MIM) that has been identified 

as a modulator of HH signaling by regulating the activity of GLIs in skin 

development and in tumourigenesis (Callahan et al., 2004). 

 

 

1.2.4 Transcriptional targets of HH signaling 

 

The GLI family has a highly conserved DNA-binding domain comprising 

five sequential C2-H2 zinc finger domains (Pavletich et al., 1993). All GLI 

proteins recognize the consensus sequence 5’-GACCACCCA-3’ in the 
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promoter and enhancer regions of target genes (Kinzler and Volgestein, 1990; 

Hallikas et al., 2006). The two cytosine in 4° and 6° position in the consensus 

sequence are crucial for binding, whereas the other positions allow a certain 

grade of variation (Winklmayr et al., 2010; Peterson et al., 2012). HH 

activation induces several genes, such as PTCH1, HIP1 and GLI1, which can 

trigger positive or negative effects on the pathway. Activation of HH-GLI 

pathway increases the expression of key regulators of G1/S and G2/M phase of 

cell cycle and of genes involving in differentiation process, such as Cyclin D1 

and D2, N-Myc, E2F1, Wnts, Pdgrα, Igf2, FoxM1, Hes1 (Mullor et al., 2001; 

Teh et al., 2002; Kenney et al., 2003; Bhatia et al., 2011; Ingram et al., 2008; 

Shi et al., 2010). GLI-TFs play also a role in promoting cell survival; indeed, 

GLI1 and GLI2 induce the expression of the anti-apoptotic factor BCL2 in 

epidermal cells (Regl et al., 2004; Bigelow et al., 2004). In addition, HH-GLI 

signaling has been implicated in the control of genes involved in regulation of 

invasiveness (Osteopontin) (Das et al., 2009), epithelial-mesenchymal 

transition (Snail1, Sip1, Elk1 and Msx2) (Li et al., 2006; Varnat et al., 2009; 

Ohta et al., 2009), angiogenesis (Vegf) (Pola et al., 2001), and self-renewal 

(Bmi1, Nanog, Sox2) (Leung et al., 2004; Stecca and Ruiz I Altaba, 2009; Po et 

al., 2010; Santini et al., 2014). 

 

 

1.2.5 HH pathway in cancer 

 

Aberrant HH signaling is associated with the development and progression 

of a wide range of human malignancies (Scales and de Sauvage, 2009). The 

first evidence of a link between HH signaling and human cancers was made in 

1970 from the identification of somatic PTCH1 mutations in patients with 

Gorlin syndrome and basal cell nevus syndrome (BCNS) (Gorlin, 1995). These 

individuals are highly predisposed to developing cancers such as BCC (Epstein 

et al., 2008), medulloblastoma and rhabdomyosarcoma. Additional evidence of 

HH signaling implication in human cancer derive from discovery that 90% of 

sporadic BCCs have inactivating mutations in PTCH1 gene (loss of function 

mutation) (Gailani et al., 1996; Johnson et al., 1996; Hahn et al., 1996; Santos 

et al., 2011) and about 10% have activating mutation in SMO (gain of function 
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mutation) (Xie et al., 1998; Couvé-Privat et al., 2002). Other genetic alterations 

in HH pathway components include SUFU mutations (Taylor et al., 2002) in 

medulloblastoma, GLI1 and GLI3 mutations in pancreatic adenocarcinoma and 

GLI1 and GLI2 amplifications in glioblastoma and medulloblastoma, 

respectively (Kinzler et al., 1987; Jones et al., 2008; Cho et al., 2011, 

Nobusawa et al., 2010). The aberrant activation of the signaling caused by 

mutations in HH pathway genes is ligand-independent. 

 

Aberrant activation of HH signaling plays a role in other cancers that 

generally do not harbor mutations in HH pathway components. This is the case 

of lung (Watkins et al., 2003; Yuan et al., 2007), pancreatic (Thayer et al., 

2003; Feldmann et al., 2007), gastrointestinal tract (Berman et al., 2003) and 

prostate cancers (Sanchez et al., 2004; Sheng et al., 2004), gliomas (Clement et 

al., 2007; Ehtesham et al., 2007), melanomas (Stecca et al., 2007) and colon 

cancers (Varnat et al., 2009). In these human cancers, the abnormal activation 

of HH pathway is ligand-dependent. They are characterized by up-regulation of 

the expression of HH ligands, which appear to function in an autocrine or 

paracrine manner or in a combination of both. Two models have been proposed 

to explain how HH ligands promote tumor growth: the first model proposes an 

autocrine mechanism in which HH ligands produced by cancer cells, their 

stromal environment, or both maintain stem cell in the tumor in an 

undifferentiated and proliferative state (Jiang and Hui, 2008). The second 

model proposes that HH ligands secreted by the tumor act in a paracrine 

manner, resulting in pathway activation in the stromal microenvironment, 

which in turn produces factors that indirectly promote tumor growth (Yauch et 

al., 2008; Tian et al., 2009). HH signaling regulates proliferation and survival 

of human melanomas both in vitro and in vivo (Stecca et al., 2007) and it drives 

self-renewal and tumorigenicity of melanoma-initiating cells (Santini et al., 

2012). A systemic interference of HH function prevents melanoma growth and 

metastasis formation in vivo (Stecca et al., 2007; Jalili et al., 2013; O’Reilly et 

al., 2013). 
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1.2.6 Activation of GLI transcription factors by oncogenes in cancer 

 

Classical HH signaling is activated by HH ligands which bind PTCH 

leading to the final activation of GLI-TFs. In contrast, the “non-canonical” HH 

signaling is SMO-independent. Several lines of evidence suggest that 

activation of GLI proteins is induced by various pathways that are frequently 

altered in human malignancies, and not only exclusively by HH signaling itself 

(Pandolfi and Stecca, 2015). Several pathways are involved in the modulation 

of GLI activity, these include phosphinositide-3 kinase (PI3K)/AKT signaling 

(Riobo et al., 2006), RAS/RAF/MEK signaling (Stecca et al, 2007), 

extracellular signal-regulated kinase (ERK) (Riobò et al., 2006), Epidermal 

growth factor receptor (EGFR) signaling (Schnidar et al., 2009), protein kinase 

C δ (PKCδ) (Cai et al., 2009) and transforming growth factor β/SMAD 

(Dennler et al., 2007).  

 

The PI3K/AKT pathway has an important role in regulating HH signaling, 

indeed AKT protects GLI2 and GLI3 from their proteolytic degradation 

through PKA/CK1/GSK3β (Riobo et al., 2006). AKT1 also enhances GLI1 

transcriptional activity and nuclear localization in melanoma cells (Stecca et 

al., 2007). In contrast, in neuroblastoma, PI3K/AKT2 pathway negative 

regulates GLI1 transcriptionally activity, reducing its nuclear accumulation 

(Paul et al., 2013). 

 

In melanoma, glioma and prostate-cancer cells, oncogenic GLI1 activity is 

potentiate by H-RAS or N-RAS, AKT1 or MEK1, enhancing its nuclear 

localization and transcriptional activity, and counteracting GLI1 cytoplasmic 

retention by SUFU (Stecca et al., 2007). Similarly, in pancreatic cancer cells, 

HH-GLI signaling is up-regulated through the oncogenic KRAS, which 

suppresses GLI1 degradation (Ji et al., 2007). In addition, K-RAS-MEK-ERK 

pathway has a positive effect in regulating GLI transcriptional activity in 

gastric cancer (Seto et al., 2009). The interplay between HH-GLI and RAS-

RAF-MEK signaling has been described in mouse melanomas induced by 

oncogenic N-RAS that show an active HH pathway and require HH-GLI 

function (Stecca et al., 2007). 
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Several lines of evidence have indicated a link between HH-GLI and 

epidermal growth factor receptor (EGFR) pathway. In human keratinocytes, 

EGFR signaling cooperates with GLI1 and GLI2 in transcriptionally 

modulating a subset of HH-GLI target genes via activation of 

RAS/RAF/MEK/ERK pathway (Kasper et al., 2006). Schnidar et al. 

demonstrated that HH-GLI and EGFR pathway interaction can induce 

oncogenic transformation and cancer development through the activation of 

RAS/RAF/MEK/ERK pathway leading to JUN/activator protein 1 activation. 

JUN/activator protein 1 cooperates with GLI1 and GLI2 (Schnidar et al., 

2009), which, in turn directly regulate its expression (Laner-Plamberger et al., 

2009). 

 

TGF-β is another pathway that modulates the expression of the 

transcription factors GLI1 and GLI2, enhancing, or prolonging HH signals. 

TGF-β and HH pathway interact downstream of SMO (Dennler et al., 2007). 

TGF-β stimulation triggers GLI2 expression through SMAD3, resulting in an 

increase of GLI1 levels (Dennler et al., 2009). TGF-β can increase GLI1 

protein also through the induction of Kindlin-2, which promotes GLI1 

expression by inhibiting GSK3β. On the other hand, GLI1 transcriptionally 

represses Kindlin-2 originating a feedback loop (Gao et al., 2013). 

 

Recent findings have shown that HH signaling is also modulated by 

protein phosphatases. For instance, the oncogenic wild-type p53-induced 

phosphatase 1 (WIP1) increases tumor formation in SHH-dependent 

medulloblastoma (Doucette et al., 2012). Our group has shown that WIP1 

enhances specifically the activity and stability of GLI1, but not that of GLI2 

nor GLI3 in melanoma cells. In addition, we demonstrated that WIP1 function 

is required for activation of the HH pathway. In fact, WIP1 silencing reduces 

HH-dependent increase in self-renewal and tumorigenicity of melanoma cells 

(Pandolfi et al., 2013). 

 

HH signaling can be regulated by several members of the PKC family. 

Atypical Protein Kinase C ι/λ (aPKC ι/λ) has been identified as a modulator of 

HH-dependent processes, by phosphorylating and activating GLI1. Prkci, the 
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gene encoding for aPKC ι/λ protein, is also a HH target gene, indicating the 

presence of a feedback loop that contributes to HH activation in basal cell 

carcinoma (Atwood et al., 2013). GLI1 activity is also positive regulated by 

PKCα, which increases its transcriptional activity via MEK/ERK signaling 

(Cai et al., 2009). In contrast, PKCδ negative regulates GLI1 function, 

affecting its nuclear localization and transcriptional activity (Cai et al., 2009). 

 

 

1.2.7 Crosstalk between Hedgehog/GLI pathway and p53 

 

The major tumor suppressor, p53, is the most common target of genetic 

alterations in human cancer. p53 is the main sensor of stress and it controls the 

expression of several genes involved in diverse biological functions, such as 

cell cycle arrest, apoptosis, and senescence (Vousden et al., 2002; Oren et al., 

2003; Vogelstein et al.,2000). During the early steps of tumorigenesis, aberrant 

activation of oncogenes gives rise to oncogenic stress, which leads to a p53-

mediated response that has as final effect cellular apoptosis or senescence 

(Bartkova et al., 2006; Di Micco et al., 2006). 

 

Recent data suggest a crosstalk between Hedgehog-GLI signaling and p53 

in cancer. First of all, activation of the HH pathway inhibits p53 function, 

through phosphorylation and activation of the p53 inhibitor MDM2 (Murine 

Double Minute 2) (Abe et al., 2008), which enhances p53 degradation. In turn, 

p53 has a negative role in modulation of GLI1 function in neural stem cells and 

human cancer cells, such as glioblastoma, inhibiting GLI1 activity, nuclear 

localization and protein levels (Stecca and Ruiz I Altaba, 2009). Thus, the 

balance between p53 and GLI1 activity seems to be a critical point: HH 

signaling inhibits the tumor-suppressor function of p53 (Abe et al., 2008), 

which is no longer able to inhibiting GLI1 activity (Stecca and Ruiz I Altaba, 

2009), leading to tumor progression. Recently it has been shown that upon 

DNA damage, p53 inhibits the function of GLI1, inducing its ubiquitin-

dependent degradation (Mazzà et al., 2013). This effect is mediated by p53, 

which stimulates the induction of acetyltransferase p300/CBP-associated factor 

(PCAF), a novel E3 ubiquitin ligase of GLI1 (Mazzà et al., 2013). 
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1.3 The E2F transcription factors family  

 

The E2F (E2 promoter binding factor) was originally identified as a 

cellular component that is required for the early region 1 A (E1A) transforming 

protein of the adenovirus (Kovesdi et al., 1986). E2F is a DNA binding protein 

which binds specific region of the adenoviral E2 promoter (Yee et al., 1989). 

The regions of E1A responsible of the increase of E2F activity are the same 

regions involved in the binding with pRB, p107 and p130; therefore it is 

believed that E1A binds the retinoblastoma protein (pRB), promoting the 

release of free E2F, followed from the induction of the transcription of its 

target genes (Bagchi et al., 1990; Bandara et al.,1991; Fattaey et al., 1993). 

 

E2F family includes a number of transcription factors that are critical 

regulators of several genes involved in a wide range of cellular processes, 

including cell-cycle progression, DNA replication, DNA repair, differentiation, 

and apoptosis. The E2F family consists of eight genes in mammals (E2F1-

E2F8) (Iaquinta et al., 2007; Polager and Ginsberg, 2008) and three related DP 

genes (DP1, DP2/3 and DP4) (Jooss et al., 1995; Milton et al., 2006). The 

protein products from these two groups heterodimerize and give rise to 

functional E2F activity (Bandara et al., 1993; Magae et al., 1996; Wu et al., 

1995). The first evidence of the heterodimeric nature of E2F complexes was 

reported by Girling et al., who isolated DRTF-1 Polypeptide 1 (DP-1) (Girlin et 

al., 1993). DP and E2Fs proteins have significant homology, sharing the 

dimerization and DNA binding domains. 

 

The E2F family members can be classified in activators or repressors of 

transcription on the basis of their functional properties and structural features 

(Trimarchi and Lees, 2002). E2F1, E2F2 and E2F3a, coupled with DP proteins, 

are potent transcriptional activators of several target genes (Wu et al., 2001). 

E2F3b, E2F4 and E2F5 represent the repressor group, as their main role is the 

repression of the transcription of target genes by recruiting the pocket proteins 

(Sardet et al., 1995; Vaishnav et al., 1998). E2F3b is a second product of the 

E2F3 locus, which lacks of the N-terminal domain characteristic of the 

activating E2Fs. E2F6, E2F7 and E2F8 also act as transcriptional repressors of 
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E2F target genes, via different mechanisms than the other E2Fs repressor 

because they lack the sequence required for transactivation and pocket protein-

binding (Cartwright et al., 1998; Trimarchi et al., 1998; Di Stefano et al., 2003; 

Logan et al., 2005; Logan et al., 2004). All E2Fs contain a DNA-binding 

domain (Figure 1.3). 

 

 

 

                                                                   McClellan K.A and Slack R.S., Cell Cycle 2007 

 

Figure 1.3. E2F family members. This scheme shows structure and 

composition of E2F proteins. Each factor contains a DNA-binding domain, a 

DP dimerization domain and E2F1-5 also contain a C-terminal pocket protein 

binding domain. In addition, E2F1, E2F2 and E2F3 have a CyclinA/CDK2-

binding site (in red) in their N-terminal. E2F7 and E2F8 present two DNA-

binding domain. E2F1-6 each contain a Marked Box domain (MB). In green 

are indicated the nuclear localization sequence (NLS); in yellow are indicated 

the nuclear export sequence (NES). 
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The transcriptional activity of E2F1 through E2F5 is mainly regulated by 

binding the “pocket protein” family, which includes the main member pRB and 

its homolog proteins p107 and p130. Generally, the pocket protein binding 

inhibits the transcriptional activity of E2F-DP dimers by masking the 

transcriptional activation domain located in the C-terminal region, and by 

preventing the recruitment of transcriptional activators, such as histone 

acetyltransferases, or by recruiting repressors to the promoter of target genes. 

The member E2F6 acts as a repressor interacting with member of polycomb 

complex (PcG) and not with the pocket proteins (Trimarchi et al., 2001). E2F7 

and E2F8 also are repressors and may function in a similar manner of E2F6 (Di 

Stefano et al., 2003). E2F7 and E2F8 present a duplication of the DNA-binding 

domain; this second DNA-binding domain, probably, substitutes the function 

of the DP subunit in DNA binding (Logan et al., 2004; Logan et al., 2005). 

 

The founding member of E2Fs family, E2-factor 1 (E2F1), was identified 

in the mid 1980s. E2F1 gene maps on chromosome 20q11 and encodes for a 

transcription factor of 437aa. Structural analysis of E2F1 has identified five 

functional domains: at the N-terminus E2F1 presents a cyclin A-binding site 

(aa positions 67-108), followed by the DNA-binding domain (aa positions 128-

181), a dimerization domain (aa positions 199-239) and the “marked-box” 

domain (aa positions 244-309). At the C-terminus E2F1 contains the 

transactivation domain (aa positions 369-437), necessary for the binding to the 

pocket protein family members. 

 

 

1.3.1 E2F1: a crucial player of cell cycle progression 

 

The transcription factor E2F1 belongs to the group of E2Fs transcriptional 

activator. E2F1 binds DNA cooperatively with DP proteins through the 

responsive site (5'-TTTC[CG]CGC-3') (Tao et al., 1997) found in the promoter 

region of several genes (Bieda et al., 2006). These genes are mainly involved in 

DNA replication, such as dihydrofolate reductase (Slansky et al., 1993), 

thymidine kinase, and DNA polymerase α, and cell cycle progression from G1 

to S phase, such as cyclin A and cyclin E, p107, c-Myc (Thalmeier et al., 1989; 
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Hiebert et al., 1989; Schulze et al., 1995; Farra et al., 2011), CDC2 and E2F1 

itself. It is well established the importance of each genes in regulating cell 

proliferation. Their expression is tightly regulated in cell cycle with peak 

expression in G1 phase (Johnson et al., 1994; Neuman et al., 1994). 

 

During G0 and early G1 phase, E2F4 and E2F5 are the mainly mediators of 

E2F activity, which exert an inhibitory effect on cell cycle progression (Müller 

et al., 1997; Sardet et al., 1995; Lindeman et al., 1997). At the same time, 

E2F1/DP1 complex is physically associated with specifically 

hypophosphorylated RB1 protein (Chellappan et al., 1991; Bagchi et al., 1991; 

Weintraub et al., 1992; Helin et al., 1993) leading the repression of E2F target 

genes. Furthermore, the other two E2Fs activator (E2F2 and E2F3) are able to 

form dimers with the DP proteins and interact with RB1 in their inactive state. 

RB activity is regulated through phosphorylation by cyclin-dependent kinase 

(CDKs) providing a model of cell cycle control. Upon growth factor 

stimulation, RB1 undergoes a phosphorylation in mid-to-late G1 phase by 

cyclin-D/CDK4 (Kato et al., 1993) and later by cyclin-E/CDK2 (Lundberg et 

al., 1998; Koff et al., 1992) complex, inducing the release of E2F from the 

complex and rendering E2F transcriptionally activated (Burkhart and Sage, 

2008; Bates et al., 1994) (Figure 1.4). The temporal dynamics of E2F are 

important for a correct cell cycle progression (Zhu et al., 2005). The final result 

of these events is the activation of E2Fs1-3 and subsequent increased 

transcription of S-phase genes, including cyclin-E and cyclin-A, followed by 

inactivation just prior to the entry in mitosis (M) (Muller et al., 1997). 

 

Furthermore, a genome-scale study of gene expression revealed a role for 

E2F in activating not only genes that encode DNA replication proteins at G1/S 

phase, but also genes that are regulated at G2 in cell cycle and encode proteins 

that function in mitosis (Ishida et al., 2001; Zhu et al., 2004). 

 

 



31 
 

 

                                                                       Stanelle J. and Putzer B.M., Trends Mol Med 2006 

 

Figure 1.4. Schematic representation of E2F1 pathway. E2F1 is an important 

regulator of cell cycle progression (on the right) and apoptosis (on the left).  

 

 

1.3.2 E2F1 and apoptosis 

 

A feature of activator E2Fs, in particular E2F1, is the ability to induce 

contradictory processes, such as proliferation and apoptosis (Pan et al., 1998; 

DeGregori et al., 1997; O’Connor et al., 2000); therefore E2F1 has both 

oncogenic and tumor suppressor activities. Several evidence clearly indicates 

that E2F1, like p53, is a strong regulator of apoptosis after DNA damage, 

acting as a part of an anti-tumor safeguard mechanism, which is crucial for the 

preservation of cells malignant transformation and for the suppression of tumor 

formation (Field et al., 1996; Kowalik et al., 1995). The pro-apoptotic activity 

of E2F1 depends to its marked-box domain that is essential for the induction of 

both p53 and p73 accumulation (Hallstrom and Nevins, 2003). Apoptosis can 

be induced by E2F1 in a p53-dependent or p53-independent manner (Stanelle 

and Pützer, 2006). 
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Regarding the p53-dependent E2F1-mediated apoptosis, the first 

mechanism described is the p14ARF/MDM2/p53-dependent pathway. In 

normal condition, MDM2 (Murine Double Minute 2) negatively controls p53 

levels inducing its ubiquitination and proteasomal degradation. In this way, 

MDM2 maintains low levels of p53 protein in the cells (Haupt et al., 1997; 

Momand et al., 1992). On the other hand, MDM2 can also interact with 

p14ARF, which inhibits the ability of MDM2 to target p53 (Stott et al., 1998; 

Pomerantz et al., 1998; Zhang et al., 1998; Kamijo et al., 1998). Several lines 

of evidence have shown that E2F1, in turn, can induce an increase of p14ARF 

levels, leading to p53 stabilization and activation (Bates et al., 1998). The 

result of this regulation is an accumulation of p53 followed by the activation of 

its target genes involved in apoptosis (Lv et al., 2014). E2F1 can induce p53-

dependent apoptosis also in absence of ARF, as shown in ARF-deficient mouse 

and cells (Russel et al., 2002; Lindström et al., 2003). Moreover, E2F1 up-

regulates ATM at transcriptional level, leading to phosphorylation of p53 on 

serine 15 and its accumulation (Powers et al., 2004). This mechanism suggests 

that ATM acts as a functional link between the RB/E2F pathway and p53, in 

ARF-independent manner (Berkovich and Ginsberg, 2003) (Figure 1.4). E2F1 

can also promote apoptosis by directly inducing the expression of four pro-

apoptotic cofactors of p53: ASPP1, and ASPP2 (Apoptosis Stimulating 

Proteins of p53), JMY (Junction Mediating and Regulatory Protein, p53 

cofactor) and TP53INP1 (Tumor Protein p53 Inducible Nuclear Protein 1), 

binding their promoters in vivo (Hershko et al., 2005). Furthermore, E2F1 

induces p53 phosphorylation on serine 46, suggesting a novel mechanism for 

the cooperation between E2F1 and p53 in apoptosis (Hershko et al., 2005). In 

addition, in response to DNA damage E2F1 and p53 directly interact through 

the Cyclin A-binding domain of E2F1, enhancing the apoptotic function of p53 

(Hsieh et al., 2002). 

 

E2F1 also stimulates apoptosis in a p53-independent manner. In this case 

the p53 homolog p73 plays an important role; E2F1 directly induces the 

transcription of p73, leading to the transcriptional activation of p53-responsive 

target genes and apoptosis in absence of p53 (Irwin et al., 2000; Stiewe and 

Pützer, 2000; Ozono et al., 2012). Moreover, disruption of p73 function shows 
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an inhibition of E2F-1-induced apoptosis (Irwin et al., 2000). E2F1 can also 

directly activate the expression of protease-activating factor 1 (Apaf-1), a 

target gene of E2F1 functionally involved in E2F1-mediated apoptosis (Moroni 

et al., 2001; Furukawa et al., 2002), which is activated in response to DNA 

damage. Interestingly, Apaf-1 is also a direct transcriptional target of p53. 

Therefore, Apaf-1 might play as a mediator of both p53-dependent and E2F1-

dependent apoptosis in a context-dependent manner (Moroni et al., 2001). 

E2F1 can induce the expression of pro-apoptotic Bcl-2 homology 3 (BH3)-only 

proteins PUMA, BIM, NOXA, Hrk/DP5 (Hershko et al., 2004; Hao et al., 

2007; Bertin-Ciftci et al., 2013) directly binding to their promoters, and of BIK 

(Real et al., 2006), inducing apoptosis through p53-independent mechanisms. 

The DIP (Death-Inducing Protein) protein, localized in the mitochondria, also 

mediates apoptosis induced by E2F1 independently of p53 (Stanelle et al., 

2005). Furthermore, E2F1 promotes p53-independent apoptosis via 

mitochondria inducing also transcriptional activation of the second 

mitochondrial activator, such as caspase (e.g. CASP3, CASP7, CASP8, 

CASP9) (Nahle et al., 2002; Bertin-Ciftci et al., 2013) and Second 

Mitochondria-derived Activator of Caspases/Direct IAP-Binding protein with 

Low PI (Smac/DIABLO) (Xie et al., 2006) (Figure 1.4). Another death effector 

protein of E2F1 is SIVA, a pro-apoptotic protein containing a death domain, 

which is a direct transcriptional target for p53 and E2F1. Indeed, SIVA is 

directly upregulated by E2F1 and p53 that can activate transcription from 

SIVA promoter (Fortin et al., 2004). E2F1 is also able to modulate the activity 

of the p38 MAPK pathway through a transient up-regulation of p38 MAPK 

phosphorylation. This mechanism involves transcriptional induction of the 

apoptosis signal-regulating kinase 1 (ASK1) gene, also known as MAP3K5, a 

member of mitogen-activated protein kinase family, that phosphorylates p38 

MKKs (MAPK Kinases) (Hershko et al., 2006). The expression of ASK1 is 

modulated by E2F1, which binds to its promoter. ASK1 may also favor the 

p53-independent E2F1 apoptotic activity (Kherrouche et al., 2006). Moreover, 

E2F1 modulates p38 MAPK signaling through the transcriptional regulation of 

WIP1, a phosphatase that dephosphorylates and inactivates p38 (Hershko et al., 

2006). WIP1 is a modulator of E2F1-dependent apoptosis. Several studies have 

demonstrated that E2F1 is involved in several different aspects of programmed 
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cell death depending on the cellular context and the types of stress (Stanelle 

and Putzer, 2006). 

 

 

1.3.3 Regulation of E2F1 activity by protein-protein interactions 

 

The activity of E2F transcription factors plays an important role in 

mammalian cell cycle progression and is controlled by physical association 

with the pocket proteins. The pocket protein family represents the first type of 

protein-protein interaction that modulates E2Fs transcriptional activity 

(Cobrinik, 2005) and includes pRB (Classon et al., 2002), p107 (Zhu et al., 

1993) and p130 (Cobrinik et al., 1993). All the pocket proteins are able to 

regulate cell cycle progression and to arrest cells in G1 phase when they are 

overexpressed. The pRB family of proteins can repress the transcription of E2F 

target genes by recruiting other factors, such as histone deacetylases (HDACs) 

and histone methyltransferase (SUV39H1) in a complex with the 

heterochromatin protein 1 (HP1), leading to the transcriptional repression by 

remodeling the nucleosome (Magnaghi-Jaulin et al., 1998; Nielsen et al., 2001; 

Vandel et al., 2001; Suryadinata et al., 2011; Takaki et al., 2004). The other 

pocket proteins, p107 and p130, generally bind to E2F4 and E2F5 (only p130) 

and modulate their shuttling between nucleus and cytoplasm during different 

phases of cell cycle (Ginsberg et al., 1994; Moberg et al., 1996; Hijmans et al., 

1995; Apostolova et al., 2002; Lindeman et al., 1997). 

 

In response to DNA damage, E2F1 interacts with TopBP1, a DNA 

topoisomerase II β binding protein 1, which contains eight BRCT (BRCA 

carboxy-terminal) motifs. The interaction depends on the amino terminus of 

E2F1 and the sixth BRCT domain of TopBP1, and is induced when ATM- 

phosphorylates E2F1. Through this interaction, the transcriptional and 

apoptotic activities of E2F1 are repressed (Liu et al., 2003; Liu et al., 2004). 

The interaction between TopBP1 and E2F1, and its repression, is specific to 

E2F1, because is not observed with E2F2, E2F3 nor E2F4 (Liu et al.,2003). 
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1.3.4 Transcriptional regulation of E2F1 

 

Even if pocket protein interaction is the main mode to regulate E2F1, 

transcriptional control and post-translational modifications add several 

important steps in E2F1 regulation. The transcriptional regulation of E2F1 

depends, at least in part, on the activity of one or more E2F family members, 

that bind to the E2F1 promoter (Neuman et al., 1994). The first studies showed 

that E2F1 promoter contains E2F-responsive sites that are necessary, but not 

sufficient, for transcriptional regulation of growth (Hsiao et al., 1994). Several 

lines of evidence show the different transcriptional regulation of E2F-

responsive genes (Johnson et al., 1994; Lam et al., 1993). Analysis of E2F1 

promoter revealed the presence of two overlapping E2F-binding sites that have 

distinct roles in the regulation of E2F1 transcription by interacting with 

different E2F members and cooperating with the contiguous repressor element 

(Araki et al., 2003). 

 

Another point of transcriptional control is represent to Myc. Activating 

E2F genes contain Myc binding sites that enhance their transcription at critical 

cell cycle points (Leone et al., 1997; Leone et al., 2001). 

 

 

1.3.5 Role of microRNAs in E2F1 regulation 

 

MicroRNA are small non-coding RNAs of 20-24 nucleotide length that 

negatively regulate eukaryotic gene expression at the post-transcriptional level 

by binding to the 3’-untranslated region (UTR), coding sequence or 5’-UTR of 

target messenger RNAs (mRNAs) and mediate their degradation or inhibition 

of protein translation (Filipowicz et al., 2008; Ambros et al., 2004; Bartel et al., 

2004). MiRNAs are predicted to control the activity of approximately 30% of 

the human protein-coding genes (Filipowicz et al., 2008), and have been shown 

to participate in the regulation of expression of genes involved in various 

biological processes, including proliferation, apoptosis, differentiation and 

metastasis (Filipowicz et al., 2008; Ambros et al., 2004; Bartel et al., 2004). 

The first evidence that miRNAs are involved in cancer came from the finding 
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that some miRNAs are downregulated or deleted in most patients with chronic 

lymphocytic leukemia (CLL) (Calin et al., 2002). miRNAs exhibit differential 

expression levels in tumors, and can act as oncogenes (oncomirs) or tumor 

suppressors depending on their target genes. 

 

One of the first studies revealing that expression of E2F1 is negatively 

regulated by miRNAs was by O’Donnell et al. in 2005 (O’Donnell et al., 

2005). Many different types of miRNA clusters regulate the E2F factors. The 

best characterized miRNA cluster linked to E2F1, includes miRNA-17-92, 

miRNA-106b-25, miRNA-34, miRNA-330-3p. E2F1 is negatively regulated by 

two miRNAs of the miRNA-17-92 cluster (Novotny et al., 2007), which play 

an important role in proliferation and survival and their overexpression 

promotes high proliferation and undifferentiated phenotype of normal lung 

cells (Lu et al., 2007). The paralog of miRNA-17-92 cluster, the miRNA-106b-

25 cluster, possesses oncogenic properties and can modulate cell proliferation. 

MiRNA-106b-25, like miRNA-17-92, prevents high expression of E2F1 (Li et 

al., 2009). In turn, miRNA-17-92 cluster and its paralog cluster miRNA-106b-

25 are activated by E2F1, establishing a miRNA-directed negative feedback 

loop (Sylvestre et al., 2007; Woods et al., 2007; Petrocca et al., 2008; Tan et 

al., 2014). The E2F1 activity is also regulated by miRNA that act as tumor 

suppressor, such as miRNA-330-3p cluster, which negatively regulates E2F1 in 

prostate cancer cells and induces apoptosis in prostate cancer cells through 

E2F1-mediated suppression of AKT phosphorylation (Lee et al., 2009), and 

miRNA-34 family of cluster, which decreases E2F1 transcript levels in a p53-

dependent manner, suppressing cell proliferation and inducing senescence in 

human cancer cells (Tazawa et al., 2007). 

 

 

1.3.6 Regulation of E2F1 by post-translational modifications 

 

Post-translational modifications usually induce conformational changes, 

which can influence protein stability, enzymatic activity, localization and 

interaction with other proteins or DNA. 
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Upon the disruption of the pRB/E2F1 complex, E2F1 is amenable to 

acetylation on lysine (K) residues at position 117, 120 and 125 near the DNA-

binding domain by the acetyltransferase enzyme complex p300/CBP (PCAF). 

Acetylation has been shown to increase E2F1 stability as well as its DNA-

binding activity toward the amino terminus, and to potentiate its activity 

(Martínez-Balbás et al., 2000). In response to DNA damage, E2F1 acetylation 

is required for E2F1 recruitment on the p73 promoter and it is important for the 

induction of apoptosis (Pediconi et al., 2003). DNA damage also induces 

E2F1-dependent activation of the deacetylase Sirtuin 1 (SIRT1) expression, 

which, in turn, binds and negatively regulates E2F1 activity, creating a 

negative feedback loop (Wang et al., 2006). In addition, SIRT1 interacts with 

E2F1 and suppresses the induction of its apoptotic target gene p73 by 

deacetylating E2F1 and/or by deacetylating and inhibiting PCAF (Pediconi et 

al., 2009). 

 

Several reports have described an increase in E2F1 protein following DNA 

damage, as a result of E2F1 protein stabilization (Blattner et al., 1999; Höfferer 

et al., 1999). This stabilization is dependent on ATM (Ataxia Telangiectasia 

Mutated) /ATR (ATM and Rad3 related), a kinase known to activate p53 in 

response to DNA damage. The kinase ATM/ATR becomes active in damaged 

cells and triggers cellular responses phosphorylating E2F1 on serine 31, a site 

not conserved in the other E2F family members, which increases protein 

stability (Lin et al., 2001; Jin et al., 2014). The phosphorylation of E2F1 on 

serine 31 revokes a member of the 14-3-3 family, the 14-3-3 τ, which is a 

phosphoserine/phosphothreonine-binding protein. 14-3-3 τ binds to phospho-

serine 31 of E2F1 and inhibits its ubiquitination during DNA damage response 

(Wang et al., 2004). E2F1 is also phosphorylated by checkpoint kinase 2 

(CHK2), the ATM downstream target, on serine 364 in DNA damage response 

(Stevens et al., 2003), inducing E2F1 protein stabilization. This site of 

phosphorylation is not conserved in most other mammals. The mechanism of 

this stabilization is not clear, but resembles a positive feedback loop, because 

ATM is also a transcriptional target of E2F1 (Berkovich et al., 2003). Recently 

it has been reported that E2F1 is phosphorylated on serine 403 in response to 
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doxorubicin treatment, by an unknown kinase. The phosphorylation on serine 

403 leads to an increase of E2F1 transcriptional activity (Real et al., 2010). 

 

E2F1 can also undergo methylation on lysine (K) 185 by the 

methyltransferase SET domain-containing protein 7 (SETD7, alias Set9), 

which inhibits the E2F1 transcriptional activity. Lysine-185 is also a substrate 

for the lysine demethylase 1 (LSD1), which demethylates E2F1, resulting in an 

increase of its stability and activity (Kontaki and Talianidis, 2010). The 

molecular mechanism involves a crosstalk between different modifications that 

influence E2F1 stability: methylation at lysine-185 inhibits acetylation and 

phosphorylation at distant amino acids (Ser364) and, at the same time, induces 

ubiquitination and degradation of the protein. 

 

Another important protein modification is arginine methylation that 

influences a variety of processes including RNA processing, chromatin and 

transcriptional regulation. E2F1 is methylated on arginine residues 111 and 113 

by protein arginine methyltransferase 5 (PRMT5), which regulates E2F1 DNA-

binding and transcriptional activity, and influences its stability (Cho et al., 

2012). The depletion of PRMT5 causes an accumulation of E2F1, the 

consequent activation of its pro-apoptotic target genes, and induction of p53-

independent apoptosis (Cho et al., 2012). 

 

NEDDylation of E2F1 by the ubiquitin-like enzyme NEDD8 (neural 

precursor cell-expressed developmentally down-regulated 8) reduces protein 

stability and regulates its transcriptional activity in a negative manner (Loftus 

et al., 2012), similar to methylation. The residue K185 is important for an 

efficient NEDDylation of E2F1. Interestingly, lysine 185 is the same residue 

that is methylated by Set7/9 (Kontaki et al., 2010); this methylation allows 

subsequent NEDDylation, which is removed in damage cells, suggesting an 

interplay between methylation and NEDDylation of E2F1 in regulating 

apoptosis E2F1-mediated (Loftus et al., 2012; Aoki et al., 2013). 

 

E2F1 activity is strictly controlled through the cell cycle. Following its 

accumulation in the late G1 phase of cell cycle, E2F1 is degraded in S/G2 
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phase. This event depends on a specific interaction of E2F1 with the F-box 

protein containing p45SKP2 (S-phase kinase-associated protein 2, p45), which is 

the substrate-recognition subunit of the ubiquitin ligase complex SCFSKP2 

(Marti et al., 1999). SCF (SKP/cullin/F-box protein complex) complexes 

belong to E3 ubiquitin ligase family and they are distinguished based on the 

types of F-box protein associated with the core proteins (Kipreos and Pagano, 

2000; Willems et al., 2004). The SCFSKP2-dependent ubiquitination pathway is 

involved in the down-regulation of E2F1 activity during the S/G2 phase of cell 

cycle; indeed, the disruption of E2F1/p45SKP2 interaction leads to a reduction of 

E2F1 ubiquitination, with consequent stabilization and accumulation of 

transcriptionally active E2F1 protein (Marti et al., 1999). Intriguingly, the 

human Skp2 promoter is directly activated by E2F1 (Zhang and Wang, 2006), 

suggesting a novel regulatory loop between Skp2 and E2F1, where they 

mutually control the expression of each other. E2F1 is a positive regulator of 

Skp2 expression at G1/S phase, which, in turn, acts as the negative effector on 

E2F1 degradation in late S phase. Alteration of this regulatory loop may trigger 

uncontrolled cell proliferation in human tumor cells. Given this mutual 

regulation, it remains unclear why the elevated Skp2 expression in tumor cells 

does not lead to increase of E2F degradation (Zhang and Wang, 2006). The 

degradation of E2F1 can also take place in the nuclear proteasome through 

interaction with p14ARF (Martelli et al., 2001), which binds the carboxyl 

terminus of E2F1, promoting the binding of p45SKP2 to the amino terminus of 

protein (Marti et al., 1999). 

 

 

1.3.7 E2F1 activity in human cancers 

 

In the past, E2F1 was recognized as an essential regulator of cell cycle 

progression and apoptosis after DNA damage, but recent evidence shows an 

implication of this transcription factor in various human malignancies. Several 

in vitro and in vivo studies demonstrate that E2F1 can act as either an oncogene 

(Zhang et al., 2000; Johnson et al., 1994; Olson et al., 2007) or a tumor 

suppressor (Yamasaki et al., 1996; Field et al., 1996; Costa et al., 2013). The 

early findings have shown that ectopic expression of E2F1 results in neoplastic 
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transformation of rodent cells in vitro (Xu et al., 1995) and findings from 

transgenic mice models demonstrate that E2F1 overexpression leads to tumor 

development in several tissues (Pierce et al., 1999; Conner et al., 2000) in 

according with oncogenic function of E2F1. In 1990s, in vivo studies showed 

that E2f1 -/- mice increase incidence of tumors formation, demonstrating the 

role of E2F1 as tumor suppressor (Yamasaki et al., 1996). In addition, in the 

majority of human tumor type, the p16INK4/RB/E2F1 pathway is often altered. 

This alteration induces a deregulation and hyperactivation of E2F1 that 

contributes to the genetic instability associated with the malignant 

transformation of normal cells to tumor cells (Pickering et al., 2006). 

 

Recent findings indicate that E2F1 aberrant activation has been observed 

in various cancer cell lines and tumor types (Saito et al., 1995; Eymin et al., 

2001), including malignant melanoma (Halaban et al., 2000; Nelson et al., 

2006). Although the molecular basis for aberrant melanoma cell phenotype is 

not well understood the inactivation of pRB is implicated. Indeed, pRB is 

constitutively inactivated through hyper-phosphorylation or expressed at low 

levels in melanoma cells (Halaban et al., 1998) and this leads to the release of 

free E2F1, which plays a crucial role in melanoma development and 

progression (Halaban et al., 2000). Overexpression of E2F1 is frequently 

associated with high-grade tumors and poor patients survival prognosis (Han et 

al., 2003; Salon et al., 2007; Gorgoulis et al., 2002). In addition, amplification 

of E2F1 is observed in esophageal squamous cell carcinoma (Fujita et al., 

2003), human colon cancer (Iwamoto et al., 2004), and in malignant melanoma 

cell lines and in metastatic lesions (Nelson et al., 2006). The overexpression of 

E2F1, due to gene amplification, may explain the mechanisms of E2F1/pRB 

pathway deregulation seeing as the increased levels of E2F1 could abrogate 

pRB ability to bind E2F1. Moreover, E2F1 overexpression could override 

growth inhibitory signals and contribute to the growth advantage of melanoma 

cells (Nelson et al., 2006). In addition, in malignant melanoma cells the 

deregulation of E2F1 enhances invasion and metastasis formation through 

direct up-regulation of the epidermal growth factor receptor (EGFR) (Alla et 

al., 2010). Overexpression of EGFR is often accompanied by activation of the 
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cytoplasmic Ras/MAPK/ERK and PI3K/AKT signaling cascade (Jiang et al., 

2006). 

 

 

1.3.8 E2F1 and HH/GLI pathway 

 

The first link between HH/GLI pathway and E2F1 was provided by 

discovery of Regl and collaborators. They showed that overexpression of 

GLI2, one of the final effectors of HH pathway, stimulates S-phase in vitro in 

human keratinocytes (Regl et al., 2002). Moreover, they demonstrated that 

GLI2 expression in human epidermal cells leads to a strong increase of mRNA 

levels of key genes involved in cell cycle progression, including the E2F1 

transcription factor. Furthermore, time-course studies show that E2F1 is an 

early transcriptional target of GLI2 (Regl et al., 2004). 

 

Other evidences that link HH/GLI pathway and E2F1 derive from studies 

in medulloblastoma and in proliferating primary cerebellum neuron precursor 

(CGNPs) cells, proposed to be the cells of origin of medulloblastoma. In this 

tumor, it has been demonstrated that SHH leads to an increase of E2F1 mRNA 

and protein levels (Bhatia et al., 2011; Bhatia et al.,2012). 

 

All together these findings show that E2F1 is a possible HH pathway 

target gene, able to modulate HH pathway-response in neural precursors, in 

medulloblastoma and in keratinocytes. 

 

 

1.4 The ASPP family: specific regulators of p53 

 

The apoptotic function of p53 is specifically regulated by members of 

ASPP family (apoptosis-stimulating protein of p53, or Ankyrin repeats, SH3 

domain and proline-rich contain protein) (Liu et al., 2005; Sullivan et al., 

2007). The ASPP family includes the activators of p53, ASPP1 and ASPP2 

(Samuels-Lev et al., 2001), and iASPP, a negative regulator of p53 

(Bergamaschi et al., 2003). ASPP1 and ASPP2 bind to the DNA-binding 
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domain of p53 and stimulate its transactivation function on the promoters of 

pro-apoptotic genes, such as BAX and PIG3, but not p21WAF1 nor Mdm2 

(Samuels-Lev et al., 2001), enhancing p53-mediated apoptosis. ASPP1 and 

ASPP2 can also interact with p63 and p73 to induce apoptosis (Bergamaschi et 

al., 2004), and this is important when p53 is inactive. Recently, has been shown 

that ASPP1 and ASPP2 bind active RAS, and cooperate with this oncogenic 

protein to increase the apoptosis p53-mediated (Wang et al., 2013). iASPP is 

the inhibitory member of ASPP family, which inhibits cell apoptosis p53-

dependent. 

 

ASPP1, ASPP2 and iASPP share a sequence homology at their C 

terminus, which contains four ankyrin repeats, and two domains necessary for 

the interaction with p53, the proline-rich region, and the SH3 domain (Gorina 

and Pavletich, 1996). 

 

 

1.4.1 iASPP: a key inhibitor of p53 

 

iASPP (or PPP1R13L) is evolutionary conserved from C. Elegans to 

humans (Bergamaschi et al., 2003). It is the only member of ASPP family that 

negative regulates p53, inhibiting its normal function, probably by direct 

binding to DNA-binding domain of p53 (Laska et al., 2010). iASPP is 

considered an oncoprotein that cooperates with the oncogene Ras, enhancing 

its transforming activity in vitro (Bergamaschi et al., 2003). 

 

Two isoforms have been described for iASPP: iASPP/RAI and iASPP. 

iASPP/RAI (Rel-associated protein), the first iASPP isoform identified, 

encodes for a protein of 351 amino acids located exclusively in the nucleus, 

that originally was found interact with NF-kβ p65 subunit (RelA) (Yang et al., 

1999); subsequently it has been shown that endogenous iASPP/RAI interacts 

with p53 inhibiting its apoptotic function (Bergamaschi et al., 2003). The 

second isoform identified, iASPP, encodes for a protein of 828 amino acids 

that shows high identity at C termini to iASPP/RAI, but contains 477 

additional amino acids at its N-terminus. The N-terminus is necessary for 
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iASPP cytoplasmic localization, indeed iASPP can localize both in nucleus and 

in cytoplasm (Slee et al., 2004), unlike iASPP/RAI, which lacks of the N-

terminal region. The longer isoform of iASPP acts as inhibitor of p53-mediated 

apoptosis, like iASPP/RAI, suggesting that the C-terminus is the responsable of 

the negative effect on p53, given that this region is common to both (Slee et al., 

2004). In 2007 was identify another isoform of iASPP, called iASPP-SV 

(iASPP splice variant), which encodes a 407 amino acids protein and shares 

homology with the C-termini of iASPP (Zhang et al., 2007). This novel 

isoform contains ankyrin repeats domain, proline-rich region and SH3 domain, 

and share high homology with the other ASPP family members. iASPP-SV 

shows only a nuclear localization, and like the other isoforms, can binds to p53, 

and inhibits its activity, reducing p53 transcriptional activity on the promoter of 

pro-apoptotic genes Bax and p21 (Zhang et al., 2007). 

 

The proline-rich domain of p53 presents a common polymorphism located 

at codon 72 that encodes either proline (p53Pro72) or arginine (p53Arg72). 

Bergamaschi and colleagues have demonstrated that iASPP has higher binding 

affinity to p53Pro72 and regulates its activity more efficiently than p53Arg72, 

and this implies that p53Arg72 is less sensitive to the inhibitory effects of 

iASPP (Bergamaschi et al., 2006). p53Pro72 is also more efficient than 

p53Arg72 in activating p53-dependent DNA-repair target, as shown in a recent 

study (Siddique et al., 2006). 

 

In 50% of human tumors p53 function is absent or reduced as consequence 

of mutations in p53 gene (Hollstein et al., 1994). In tumor cells harbouring p53 

mutations, the mechanism whereby iASPP regulates apoptosis is not 

completely defined; probably it interacts with the other two components of p53 

family, p63 and p73 and influences their apoptotic function. Recently Chikh et 

al. have shown a link between p63 and iASPP in the epithelial integrity 

program, in which iASPP regulates the expression of genes involved in cell 

adhesion (Chikh et al., 2011). In vitro studies have demonstrated that iASPP 

can interact with p63 and p73 and control their apoptotic activity, negatively 

regulating their transcriptional activity, but does not influence their protein 

expression levels. iASPP expression inhibits the DNA-binding functions and 
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the transcriptional activity of p63 and p73 on the promoters of pro-apoptotic 

genes, such as BAX and PUMA (Cai et al., 2012). 

 

 

1.4.2 A link between iASPP and cancer 

 

Several human cancers show overexpression of iASPP, suggesting that 

iASPP contributes to tumorigenesis by increasing proliferative and anti-

apoptotic effects (Zhang et al., 2011; Liu et al., 2011; Lin et al., 2011; Chen et 

al., 2010). Elevated iASPP expression was found in various types of tumor, 

including breast cancer (Bergamaschi et al., 2003), acute leukemia (Zhang et 

al., 2005), hepatocellular carcinomas (Lu et al., 2010), ovarian cancer (Jiiang et 

al., 2011), head and neck squamous cell carcinoma (Liu Z et al., 2012), oral 

tongue squamous cell carcinoma (Chen et al., 2014) and melanoma (Lu et al., 

2013). 

 

In nearly 80-90% of human melanomas p53 has wild-type sequence, but 

impaired function. In these melanoma cells, p53 target genes involved in 

apoptosis are under-expressed (Avery-Kiejda et al., 2011). In a recent study, 

Lu et al. have demonstrated that cytoplasmic iASPP is mostly detected in 

primary melanomas, whereas nuclear iASPP is highly expressed in melanoma 

metastases and associated with poor patient survival, suggesting an association 

with advanced stages of cancer (Lu et al., 2013). Moreover, they have shown 

that melanoma cells carrying p53 wild-type, co-express high levels of MDM2, 

of phosphorylated nuclear iASPP, and of cyclinB1. The complex 

CyclinB1/CDK1 is responsible of iASPP phosphorylation at S84/S113 residues 

(Lu et al., 2013) that inhibits iASPP dimerization, and stimulates iASPP 

nuclear entry as monomer. In the nucleus, iASPP binds to p53 and inhibits 

p53-mediated transcription on the promoters of its target genes PIG3, BAX, 

and PUMA. These data suggest that p53 function can be restored by inhibiting 

both MDM2 and iASPP phosphorylation, for example using inhibitors, such as 

Nutlin3 specific for MDM2, and JNJ, a CDK1 inhibitor that affects 

cyclinB1/CDK1 activity and prevents iASPP modifications (Lu et al., 2013). 
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iASPP plays an important role also in prostate cancer (PCa) progression. 

The majority of metastatic PC present loss of p63 (Signoretti et al., 2000; Shah 

et al., 2002), whereas express wild-type p53 (Taylor et al., 2010; Schlomm et 

al., 2008). Morris et al. have found that nuclear and cytoplasmic iASPP 

expression is greater in PCa than in benign epithelium, and that nuclear iASPP 

is enriched in highly metastatic PCa cells. Nuclear iASPP inactivates p53 

function and enhances PCa progression (Morris et al., 2014). 

 

Taken together these findings might suggest iASPP as a candidate target 

gene for cancer therapy. One of the latest discoveries regards a small peptide 

(A34) derived from p53 linker (289-322) region. A34 was used to investigate 

its ability to influence the interaction between iASPP and p53, and the 

possibility to resume the apoptotic activity of p53. A34 can combine with 

iASPP, release p53 from iASPP, and enhance the transcriptional activity of p53 

on the promoters of its target genes (Qui et al., 2015). These data show that the 

peptide A34 can resume the tumor suppression function of p53. 
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2. AIMS OF THE STUDY 

 

 

In human melanoma HH pathway is often activated and it is required for 

proliferation and survival of melanoma cells, and it drives self-renewal and 

tumorigenicity of melanoma-initiating cells. Previous data have shown a link 

between HH pathway and the transcription factor E2F1. This transcription 

factor is a key modulator of various cellular processes, such as cell cycle 

progression and apoptosis. E2F1 aberrant activation was found in several types 

of cancer, including melanoma. Shh can induce E2F1 expression in neural 

precursors and in medulloblastoma and GLI2, one of the final effectors of HH 

pathway, enhances its expression in keratinocytes: thus indicating E2F1 as a 

HH-responsive gene. However, it is not known what are the effects mediated 

by E2F1, upon HH signalling activation in melanoma. Unlike other types of 

cancer, more than 80% of melanomas retain wild type p53, but its tumor-

suppressor function is impaired by several mechanisms. Recent evidence 

showed that melanomas with p53 wild type express high levels of 

phosphorylated iASPP protein, which is frequently upregulated in human 

cancers and functionally inactivates p53. 

 

This work is articulated in two parts. In the first we show that E2F1 is a 

direct HH target gene in melanoma, and we identify the effects induced by HH 

pathway activation that are mediated by E2F1. In the second part, we focus on 

the p53 inhibitor iASPP, and we evaluate the role of HH/GLI-E2F1 axis in 

regulating its expression and activation, providing a possible mechanism 

through which HH signalling pathway might restrain p53 function. 
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3. MATERIALS AND METHODS 

 

 

3.1 Cell cultures and patient samples 

 

 Human embryonic kidney HEK-293T and commercial A375 melanoma 

cells were obtained from ATCC (CRL-11268 and CRL-1619). Patient-derived 

SSM2c and M26c melanoma cells were obtained from human metastatic 

melanoma samples, as previously described (Santini et al., 2012; Pandolfi et 

al., 2013). Human melanoma samples were obtained after approved protocols 

by the local Ethics Committee. Fresh tissue samples were digested 

enzymatically using 1mg/ml collagenase A and 20 μg/ml DNase I (Roche 

Diagnostic, Mannheim, Germany) in DMEM/F12 (Euroclone, Milan, Italy) for 

1 hour (hr) at 37°C. After dissociation and filtration in 70 µm cell strainers, 

cells were grown in DMEM/F12 supplemented with 10% fetal bovine serum 

(FBS), 1% Penicillin-Streptomycin, 1% Glutamine (Lonza, Basel, Switzerland) 

and epidermal growth factor (EGF) (5ng/ml) (Invitrogen, Carlsband, CA). The 

identity of melanoma cells was verified by immunocytochemistry using 

antibodies specific for melanoma: anti-Melan A, anti-S100 and anti-Vimentin 

antibodies, as previously described (Santini et al., 2012). Mycoplasma was 

periodically tested by 4’,6-diamidino-2-phenylindole (DAPI) inspection and 

PCR. Direct sequencing revealed that both SSM2c and M26c cells harbour 

wild-type p53 with codon 72 Proline polymorphism (Pandolfi et al., 2013). 

Puromycin was used at 2µg/ml to select for transduced cells. 

 

 

3.2 Plasmids, cloning, mutagenesis and lentiviral vectors 

 

 Vectors used for overexpression were: Myc-tagged human GLI1 (kind gift 

from A. Ruiz I Altaba) (Stecca and Ruiz I Altaba, 2009) and GLI2 (Addgene, 

Cambridge, MA, USA) (Roessler et al., 2005). Three fragments of E2F1 

promoter (-132bp, -269bp and -656bp) were PCR amplified with Platinum Pfx 

DNA polymerase (Life Technologies, Carlsbad, CA, USA) and cloned in 
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pGL3Basic vector (Promega, Madison, WI, USA) using NheI-XhoI sites, to 

generate -132/-269/-656bp-E2F1prom-luc reporters. Primers used were: 

 

Primer name Sequence (5’ to 3’) 

E2F1prom -132bp FW ACGCTAGCGCGCGTTAAAGCCAATAGG 

E2F1prom -269bp FW ACGCTAGCATGTTCCGGTGTCCCCAC 

E2F1prom -656bp FW ACGCTAGCACTGGACTGTGAGCTCCTTAGG 

E2F1prom RV ACCTCGAGATCCTTTTTGCCGCGAAA 

 

 Mutations of E2F1 prom -269bp reporter were introduced using 

QuickChange II (Agilent Technologies, Santa Clara, CA, USA) with the 

following oligos: 

 

Primer name Sequence (5’ to 3’) 

Mut1, FW GGTGTCCCCACGCATGCAGCCAGGGGACG 

Mut1, RV CGTCCCCTGGCTGCATGCGTGGGGACACC 

Mut2, FW GCCATTGGCCGTACAGTCCCGCGCCGCCGCC 

Mut2, RV GGCGGCGGCGCGGGACTGTACGGCCAATGGC 

 

 Plasmid identity was verified by direct sequencing. All transfections were 

performed in OptiMEM (Life Technologies) using X-tremeGENE transfection 

reagent (Roche Diagnostic) according to manufacturer’s protocol. 

 

 Replication incompetent lentiviruses were produced in HEK-293T cells by 

co-transfecting cells with the lentiviral of interest, the packaging vector 

(pCMV-dR8.74) and the envelope vector (pMD2.G) (10, 7.5 and 3 g, 

respectively). The supernatant containing the lentiviral particles was harvested 

after 48hrs and 72hrs from transfection, syringe-filtered with a 0.45μm PVDF 

filter and stored at -80°C until use. Transduction was performed on cells 

seeded at low density with a MOI=500; 8μg/ml hexadimethrine bromide 

(Polybrene®, Sigma-Aldrich) was used to increase transduction efficiency. 

Lentiviral vectors used were: pLV-CTH (LV-c), pLV-CTH-shPTCH1 (LV-

shPTCH1) (targeting sequence 5′-GCACTATGCTCCTTTCCTC-3’, exon 18) 

(Stecca and Ruiz I Altaba, 2009) and pLKO.1-puro-shSMO 64 (LV-shSMO 

64) (targeting sequence 5’-GTGGAGAAGATCAACCTGTTT-3’, exon 9) 

(Santini et al., 2012). pLKO.1-puro (LV-c), pLKO.1-puro-shE2F1 50 (LV-

shE2F1 50) (targeting sequence 5’-GACCTCTTCGACTGTGACTTT-3’, exon 

7), pLKO.1-puro-shE2F1 53 (LV-shE2F1 53) (targeting sequence 5’-
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ACCTCTTCGACTGTGACTTTG-3’, exon 7) were from Open Biosystems 

(Lafayette, CO, USA). Most experiments were done with LV-shE2F1 50. 

 

 

3.3 Luciferase reporter assays 

 

 To measure the ability of GLI1, GLI2 and E2F1 to activate the E2F1 

promoter, luciferase reporters used were: -132/-269/-656bpE2F1prom-luc 

reporters (described above) and a GLI-responsive luciferase reporter (8x3’GLI-

BS, GLI-BS), which contains 8 direct repeats of GLI consensus sequence 

GACCACCCA cloned upstream the luciferase gene (kind gift from H. Sasaki) 

(Sasaki et al., 1997). All luciferase reporters were used in a dual-reporter assay 

in combination with Renilla luciferase pRL-TK reporter vector (Promega, 

Madison, WI, USA), in a ratio 10:1, to normalize luciferase activities; 

pGL3Basic vector (Promega) was used to equal DNA amounts. Luminescence 

was measured using the Dual-Glo® Luciferase Assay System (Promega) and 

the GloMax® 20/20 Luminometer (Promega). 

 

 

3.4 Protein extraction and western blot 

 

 Cells were lysed in ice in RIPA buffer (1% NP-40, 150mM NaCl, 5mM 

EDTA, 0.25% NaDOC, 50mM Tris-HCl pH 7.5), with 1X Complete EDTA-

free Protease Inhibitor Cocktail (Roche Applied Science) and phosphatase 

inhibitors for 20min. After centrifugation for 20min at 14000rpm the 

supernatant containing the whole cell extract (WCE) was recovered and 

quantified with Coomassie Protein Assay Kit (Thermo Scientific, Rockford, IL, 

USA). For WB 80μg of proteins and visualized on SDS-PAGE (Sodium 

dodecyl sulphate polycrylamide gel electrophoresis) and transferred onto 

nitrocellulose membrane (Bio-rad, Hercules, CA, USA). Membranes were 

blocked in 6% Non-fat dry milk in PBS-Tween buffer (PBS and 0.05% Tween 

20) (PBS-T) for 1h and incubated with the primary antibody of interest 

overnight at 4°C. The following antibodies were used: rabbit anti-GLI1 

(Abcam, Cambridge, United Kingdom, Ab49314), rabbit anti-E2F1 (#3742), 

rabbit anti-BCL2 (#2976) (Cell Signaling Technology, Danvers, MA, USA), 
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mouse anti-Myc (9E10), mouse anti-HSP90 (F-8), mouse anti-p53 (DO-1), 

mouse anti-iASPP (2808C5a), rabbit anti-CDK1 (C-19), rabbit anti-CyclinB1 

(H-433) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-β-

ACTIN (AC-15) (Sigma-Aldrich, St. Louis, MO, USA). After incubation with 

HRP-conjugated secondary antibody (Cell Signaling Technology, Beverly, 

MA, USA), bands were visualized by chemiluminescent detection. Blots were 

imaged using ChemiDoc XRS (Bio-Rad). 

 

 

3.5 Quantitative Real Time-PCR (qPCR) 

 

 Total RNA from adherent cells was isolated with TRIzol Reagent (Life 

Technologies). Twenty micrograms of total RNA were treated with DNase I 

(Roche Diagnostics) for 20minutes at 30°C and purified by phenol:cloroform 

extraction. Three micrograms of DNase I trated RNA was subjected to reverse 

transcription with High Capacity cDNA Reverse Transcription Kit (Life 

Technologies). qPCRs were carried out at 60°C using FastStart SYBR Green 

Master (Roche Diagnostic) in a Rotorgene-Q (Qiagen, Hilden, Germany). 

Primer sequences are the following:  

 

Primer name Sequence (5’ to 3’) 

GLI1-FW CCCAGTACATGCTGGTGGTT 

GLI1-RV GCTTTACTGCAGCCCTCGT 

PTCH1-FW GGCAGCGGTAGTAGTGGTGTTC 

PTCH1-RV TGTAGCGGGTATTGTCGTGTGTG 

SMO-FW GGGAGGCTACTTCCTCATCC 

SMO-RV GGCAGCTGAAGGTAATGAGC 

E2F1-FW GCTGAGCCACTCGGCTGACG 

E2F1-RV CCACTGTGGTGTGGCTGCCC 

iASPP-FW AGCCTTAAAGAGACAGGACGG 

iASPP-RV TGTTTCATGGCCAGCGACT 

BCL-XL-FW GGTAAACTGGGGTCGCATTG 

BCL-XL-RV GCTGCTGCATTGTTCCCATAG 

PIG3-FW CTGAACCGGGCGGACTTAAT 

PIG3-RV GTGTCCCCGATCTTCCAGTG 

p53AIP1-FW CTCGGTGATGCCTCCGAATG 

p53AIP1-RV GGCCTGGAGAGACCTAGACC 
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Primers for human reference genes are:  

 

Primer name Sequence (5’ to 3’) 

EIF2α-FW GGATGGGACCTTGTTTGCCT 

EIF2α-RV CCACGTTGCCAGGACAGTAT 

HPRT-FW GCCAGACTTTGTTGGATTTG 

HPRT-RV CTCTCATCTTAGGCTTTGTATTTTG 

 

 

3.6 Chromatin immunoprecipitation (ChIP) 

 

 Cells were fixed with 1% formaldehyde for 10 min at room temperature 

(RT) and fixation was stopped by adding glycine to a final concentration of 

125mM for 5 min. Cells were harvested and lysed in SDS Lysis Buffer (0.5% 

SDS, 25mM Tris-HCl pH8) and were incubated for 15min in ice. DNA was 

sonicated to an average size of 300-500bp using a SONOPULS Mini20 

Sonicator (Bandelin, Berlin, Germany) equipped with a cup-horn. The 

remaining insoluble material was removed by centrifugation at maximum 

speed for 15min at 4°C and the supernatants were diluted with ChIP Dilution 

Buffer (1.8% Triton X-100, 2mM EDTA, 300mM NaCl); input material was 

collected and stored at -20°C. For each samples chromatin was incubated 

overnight with Dynabeads Protein G (Life Technologies) pre-conjugated with 

3μg of anti-GLI1 antibody (N-16) (Santa Cruz Biotechnology), anti-GLI2 

(#AF3635) (R&D Systems, Minneapolis, MN, USA), anti-E2F1 (#3742) (Cell 

Signaling Technology) for 30min at RT for endogenous proteins. Beads were 

washed to remove the unbound antibody and resuspended in 75μl 100mg/ml 

BSA and 7.5μl 20mg/ml glycogen (Roche Applied Science) prior to be added 

to the sonicated chromatin and to be incubated overnight at 4°C with gentle 

rotation. Immunocomplexes were then washed with Low Salt Wash Buffer 

(20mM Tris-HCl, pH 8, 2mM EDTA, 150mM NaCl, 0.1% SDS, 1% Triton X-

100), High Salt Wash Buffer (20mM Tris-HCl, pH 8, 2mM EDTA, 500mM 

NaCl, 0.1% SDS, 1% Triton X-100) and LiCl Wash Buffer (250mM LiCl, 1% 

NP-40, 1mM EDTA, 10mM Tris-HCl, pH 8, 1% sodium deoxycholate), and 

twice with TE (1mM EDTA, 10mM Tris-HCl, pH 8). All solutions were added 

with 1X complete Protease Inhibitor Cocktail (Roche Diagnostic). DNA was 

eluted with 1% SDS at 85°C for 10 min, crosslinks were reversed overnight at 
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65°C with 200mM NaCl. After treatment with 4μg RNaseA (Life 

Technologies) at 37°C for 30 min and with 20μg Proteinase K (Roche 

Diagnostic) at 60°C for 2hrs, the immunoprecipitated DNA (ChIP DNA) and 

the IM were recovered by using the QIAquick PCR Purification Kit (Qiagen) 

and eluted in 50μl Of Tris-HCl, pH 8. qPCR were carried out at 60°C using 

FastStart SYBR Green Master (Roche Diagnostic) in a Rotorgene-Q (Qiagen). 

For ChIP with exogenous GLI1 and GLI2 cells were transfected with 

pCS2+MT (negative control) or pCS2+MT-GLI1 or pCS2+MT-GLI2 vectors 

and harvested 48hrs after transfection and ChIP on exogenous GLI1 and GLI2 

was performed. 

 

Primers used were:  

 

Primer name Sequence (5’ to 3’) 

E2F1prom-FW CTATAGAAAGGTCAGTGGGATGC 

E2F1prom-RV AGGCTTTGTCCGGATGGTA 

PTCH1prom-FW ACACACTGGGTTGCCTACC 

PTCH1prom-RV CTGTCAGATGGCTTGGGTTT 

iASPPprom-FW GGAGAAATAGGGGCAATCCGT 

iASPPprom-RV GCATGAGACTAAACCCCCGA 

CDK1prom-FW TCGCTCTCCGCTCAATTTCC 

CDK1prom-RV GGGCTACCCGATTGGTGAAT 

βACTINprom-FW TCGAGCCATAAAAGGCAACT 

βACTINprom-RV CTTCCTCAATCTCGCTCTCG 

 

 

 

3.7 In vitro growth curves 

 

 For growth curve 4500 (SSM2c and M26c) or 3000 (A375) cells/well were 

plated in 12-well plates and counted on days 3-5-7. For growth assay after JNJ 

treatment 15000 (SSM2c and M26c) or 10000 (A375) cells/well were plated in 

12-well plates and treated with the CDK1 inhibitor JNJ-7706621 (500nM, JNJ) 

(Merck, Damstadt, Germany) for 72hrs. 
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3.8 Flow cytometry analysis 

 

 For cell cycle distribution analysis, cells were stained with a hypotonic 

propidium iodide (PI) solution (50g/ml PI, 0.1% Triton X-100, 0.1% sodium 

citrate). For proliferation index experiments, cells were labeled with 5μM of 

CellTrace Violet (Life Technologies), seeded and allowed to proliferate for 72 

and 96hrs and analyzed using flow cytometry. CellTrace Violet data were 

normalized to controls arrested at the parent generation with 1μg/ml mitomycin 

C (t=0hrs) and proliferation index was calculated using ModFit LT software 

(Verity Software House, Topsham, ME, USA). For apoptosis analysis, cells 

were exposed to serum-deprived conditions, and apoptosis was measured after 

48hrs using an Annexin V-PE/7-AAD apoptosis kit (Becton Dickinson, 

Franklin Lakes, NJ, USA). Cells were seeded at 15000 cells/well density in 12-

well plates, treated with the CDK1 inhibitor JNJ-7706621 (500nM, JNJ) and 

apoptosis measured after 48hrs using Annexin V-PE/7-AAD labeling. 

Cytometric analysis were performed with FACS-Canto II (Becton Dickinson).  

 

 

3.9 Cell sorting, nude mice and xenografts 

 

 M26c melanoma cells were transduced with either pLV-CTH (LV-c) or 

pLV-CTH-shPTCH1 (LV-shPTCH1) lentiviruses. Cells transduced with LV-c 

or LV-shPTCH1 also express green fluorescent protein (GFP) and were FACS 

(fluorescent-activated cell sorter)-sorted with the BD FACS-Aria cell sorter 

(Becton Dickinson). GFP positive cells were then transduced with either 

pLKO.1-puro (LV-c) or pLKO.1-puro-shE2F1-1 (LV-shE2F1) lentiviruses, 

resuspended in Matrigel (Becton Dickinson)/DMEM (1/1) and inoculated 

subcutaneously in lateral flanks of adult female athymic-nude mice (Foxn1 

nu/nu) (Harlan Laboratories, Udine, Italy) (40000 cells/injection). Animals 

were housed in SPF conditions and monitored daily. Subcutaneous tumor size 

was measured twice a week with a caliper. Tumor volumes were calculated 

using the formula: V=W2 x L x 0.5, where W and L are, respectively, tumor 

width and length. The experiment was approved by the Italian Ministry of 

Health and were in accordance with the Italian guidelines and regulations. 
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3.10 Statistical analysis 

 

 Data represent meanSEM values and are calculated on at least 3-5 

independent experiments. P-values were calculated using Student’s t-test. A 

two-tailed value of p<0.05 was considered statistically significant. 

 

 

3.11 Bioinformatic analysis 

 

 Publicly available gene expression data for a series of 31 primary and 73 

metastatic melanomas were profiled on Affymetrix U133 platform (Gene 

Expression Omnibus GEO-46517) (Kabbarah et al., 2010). To assess the 

relationship between E2F1, PTCH1, GLI1 and GLI2 expression we performed 

Pearson’s correlation and simple regression analysis using StatGraphics 

Centurion XV.I software (Statpoint Technologies, Warrenton, VA, USA). 
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4. RESULTS 

 

 

4.1 The Hedgehog signaling positively regulates E2F1 expression in 

melanoma cells 

 

The HH pathway plays a crucial role in controlling proliferation and 

growth of melanoma cells in vitro and in vivo (Stecca et al., 2007; Jalili et al., 

2013; O’Reilly et al., 2013) and self-renewal and tumorigenicity of human 

melanoma-initiating cells (Santini et al., 2012). Data from literature showed 

that Shh induces E2F1 in CGNPs and medulloblastoma (Bhatia et al., 2011) 

and that GLI2 enhances the expression of E2F1 in keratinocytes (Regl et al., 

2004). To investigate whether HH signaling pathway regulates E2F1 mRNA 

and protein levels in melanoma cells, we inhibited HH signaling by silencing 

SMO, using a replication incompetent lentivirus expressing a short interference 

RNA (shRNA) specifically targeting for SMO (LV-shSMO) (Santini et 

al.,2012), a positive regulator of HH pathway. LV-shSMO strongly reduced 

mRNA levels of SMO, and of GLI1 and PTCH1, two HH target genes, as 

showed by quantitative real-time PCR (qPCR) analysis. This result confirms 

that LV-shSMO inhibits HH signaling, as previously shown (Santini et al., 

2012) (Fig. 4.1A). Interestingly, SMO silencing reduced E2F1 mRNA, and 

E2F1 and GLI1 protein levels compared to the control (LV-c) in melanoma 

cells (Figure 4.1A and B). 
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Figure 4.1. (A) Expression of HH pathway components (SMO, GLI1, PTCH1) 

and E2F1 in SSM2c cells transduced with LV-c or LV-shSMO lentiviruses, 

measured by qPCR. The y-axis represents expression ratio of 

gene/(EIF2α+HPRT average). These data represent mean ±SEM of three 

independent experiments. *p<0.05. (B) Western blot analysis showing the 

decrease of endogenous GLI1 and E2F1 protein levels upon SMO silencing in 

SSM2c and M26c cells. β-actin was used as loading control. 

 

On the other hand, we activated HH pathway by silencing the negative 

regulator PTCH1. We transduced M26c and SSM2c melanoma cells with a 

lentivirus expressing a shRNA specifically targeting PTCH1 (LV-shPTCH1) 

(Stecca and Ruiz I Altaba, 2009). Activation of the HH pathway with LV-

shPTCH1 resulted in an increase of GLI1, as expected, and induction of E2F1 

mRNA levels in both melanoma cell lines (Figure 4.2A). Similar results were 

obtained by transfecting melanoma cells with low amount of Myc-tagged 

GLI1, where an increase of endogenous E2F1 protein levels was observed in 

both in SSM2c and M26c cells (Figure 4.2B). 

 

Taken together these results indicate that E2F1 expression is positively 

modulated by HH pathway activation in melanoma cells, suggesting that E2F1 

might be a direct HH target. 
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Figure 4.2. (A) qPCR analysis showing the expression of GLI1 and E2F1 in 

M26c and SSM2c cells transduced with LV-c or LV-shPTCH1 lentiviruses. The 

y-axis represents expression ratio of gene/(EIF2α+HPRT average). These data 

represent mean ±SEM of three independent experiments. *p<0.05. (B) Western 

blot analysis showing endogenous E2F1 protein upon Myc-tagged GLI1 

overexpression in SSM2c and M26c. β-actin was used as loading control. 

 

To support the importance and the relevance of the modulation of E2F1 

expression by HH pathway in melanoma, we analysed a public microarray data 

set consistent of 31 primary melanomas and 73 metastatic melanomas (GEO-

46517) (Kabbarah et al., 2010). We found a significant correlation between 

E2F1 and PTCH1, GLI1 and GLI2 expression in metastatic melanomas 

(p=0.0351, p=0.0002, p=0.0072 respectively) (Figure 4.3). In primary 

melanomas we found a correlation only between E2F1 and GLI2 (p=0.0025) 

(not shown). These data suggest the presence of an association between HH 

pathway activation and E2F1 expression in human melanoma samples, and that 

this association preferentially occurs in late stages of melanoma progression. 
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Figure 4.3. Plots showing the positive correlation between the levels of GLI2 

and E2F1 (R2=0.0972, p=0.0072), GLI1 and E2F1 (R2=0.1765, p=0.0002), 

PTCH1 and E2F1 (R2=0.0611, p=0.0351) in metastatic melanomas. 

 

 

4.2 E2F1 is a direct target of GLI1 and GLI2 transcription factors 

 

Our data indicate that HH pathway positively modulates E2F1 expression. 

To evaluate whether this regulation is directly controlled by GLI1 and GLI2, 

the downstream effectors of HH signaling, we performed chromatin 

immunoprecipitation (ChIP) assay in M26c and SSM2c cells by 

immunoprecipitating endogenous GLI1 and GLI2. qPCR analysis on the 

immunoprecipitated DNA showed that both GLI1 and GLI2 bound to E2F1 

promoter, as well as to the positive control PTCH1 promoter (Figure 4.4A). 

We obtained similar data in M26c and SSM2c cells transfected with Myc-

tagged GLI1, Myc-tagged GLI2 or the corresponding empty vector. The DNA 

was immunoprecipitated by an anti-Myc antibody and it was used to measure 

the enrichment of PTCH1, used as positive control, and of E2F1 promoter. 

qPCR analysis on recovered DNA revealed an enrichment for both E2F1 and 

PTCH1 promoters (Figure 4.4B). 
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Figure 4.4. (A) Chromatin immunoprecipitation assay reveals the binding of 

endogenous GLI1 and GLI2 to E2F1 and PTCH1 promoters in M26c and 

SSM2c cells. PTCH1 promoter was used as a positive control, whereas ACTIN 

promoter was used as negative control. The y-axis represents the relative 

promoter enrichment, normalized on input material. (B) Chromatin 

immunoprecipitation assay showing that both exogenous Myc-tagged GLI1 and 

Myc-tagged GLI2 bind to PTCH1 and E2F1 promoters in M26c and SSM2c 

cells. The y-axis represents the relative promoter enrichment expressed as 

GLI1/Myc or GLI2/Myc ratio. 

 

ChIP experiments indicate that GLI1 and GLI2 directly regulate E2F1 

expression by binding to E2F1 promoter. In order to identify the region of 

E2F1 promoter responsible of the modulation through GLI-TFs, we cloned 

upstream the luciferase gene three different fragments of E2F1 promoter, 
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respectively 132 base pairs (bp), 269bp, and 656bp upstream the transcription 

start site (TSS). We transfected SSM2c and M26c melanoma cells with a 

vector containing the E2F1 promoter-luciferase reporter along with GLI1, 

GLI2 or E2F1. The latter was used as positive control because it binds to E2F1 

promoter in a region close to the TSS (Johnson et al., 1994). The luciferase 

assay showed that both GLI1 and GLI2, although the latter at a lesser extent, 

were able to transactivate the luciferase reporter driven by the -269bp and -

656bp fragments, but not by the -132bp fragment (Figure 4.5). E2F1 

transactivated all three fragments, as expected (Figure 4.5). These results show 

that E2F1 promoter contains a functional GLI binding site (GLI-BS) located in 

a region between -132bp and -269bp upstream E2F1 TSS. 

 

 

 

Figure 4.5. Three fragments of different length, respectively -656bp, -269bp, 

and -132bp of the E2F1 promoter were used to test the ability of GLI1 and 

GLI2 to transactivate these promoters. Dual-luciferase report assay in SSM2c 

and M26c cells showing that GLI1 and GLI2 were able to transactivate E2F1 

promoter in a region between -269bp and -132bp from the transcription start 

site. E2F1 was used as a positive control. Relative luciferase activities were 

firefly/renilla ratios, with the level induced by control equated to 1. The data 

represent meanSEM of at least five independent experiments. p values for-

656bp are: CTR versus GLI1, p=0.0214 in SSM2c; p=0.0007 in M26c; CTR 

versus GLI2, p=0.0013 in SSM2c; p=0.0182 in M26c. p values for -269bp are: 

CTR versus GLI1, p<0.0001 in SSM2c; p=0.0183 in M26c; CTR versus GLI2, 
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p<0.0001 in SSM2c; p=0.0006 in M26c. p values for CTR versus E2F1 are 

p<0.04 in -132bp, -269bp, -656bp, in both SSM2c and M26c cells. 

 

Although bioinformatic analysis did not identify any canonical GLI 

consensus sequence (GACCACCCA) in the E2F1 promoter, it is known that 

GLI-TFs are able to bind variant GLI binding site (GLI-BS) with relative low 

affinity leading to strong transcriptional activation (Winklmayr et al., 2010; 

Peterson et al., 2012) (Figure 4.6). We thus speculated that the E2F1 promoter 

might contain a degenerate GLI consensus sequence, and to further 

characterized the position of GLI-BS we identified two putative degenerated 

GLI-BS in E2F1 promoter fragment -269pb (Figure 4.6), called -269Mut1 and 

-269Mut2, and we mutated each of them in two crucial positions for the 

efficiency of GLI binding (Winklmayr et al., 2010) (Figure 4.6). 

 

 

 

Figure 4.6. Consensus GLI binding site motif calculated from experimentally 

validated GLI binding site (Winklmayr et al., 2010) using WebLogo3 (Crooks 

et al., 2004). Cytosines in position 4° and 6° are crucial for DNA binding. We 

identify putative GLI-binding sites in -269pb fragment of E2F1 promoter that 

were mutagenized (-269mut1 and -269mut2). Both positions essential for DNA 

binding (4C and 6C) were mutagenized. 

 

 The disruption of site 1 (-269Mut1) prevented the transactivation of the -

269bp fragment of E2F1 promoter by both GLI1 and GLI2 in M26c and 
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SSM2c cells, as shown by luciferase reporter assay. Mutation of the site 2 (-

269Mut2) did not have any effect (Figure 4.7), suggesting that GLI1 and GLI2 

bind to and transactivate site 1 in the E2F1 promoter.  

 

 

 

Figure 4.7. Quantification of dual-luciferase report assay in SSM2c and M26c 

cells showing that only mutagenesis of -269mut1 prevented GLI1 and GLI2 

from transactivating the -269bp fragment of E2F1 promoter. -269mut2 was 

transactivated by GLI1 and GLI2 similarly to the control (-269wt). Relative 

luciferase activities were firefly/renilla ratios, with the level induced by control 

equated to 1. The data represent meanSEM of at least five independent 

experiments. *p<0.05 

 

These results indicate that the expression of E2F1 is directly regulated by 

the HH pathway and that both the downstream effectors of the HH signaling, 

GLI1 and GLI2, bind to a non-canonical GLI consensus sequence 

(CGCCTCCAG) on the E2F1 promoter, identified by site-directed mutagenesis 

experiments. 

 

 

4.3 Silencing of E2F1 in melanoma cells 

 

E2F1 is a transcriptional regulator of proliferation (Müller et al., 2000; Wu 

et al., 2001). To test the role of E2F1 in melanoma cells, we knocked it down 

using two lentiviruses expressing shRNA specifically targeting E2F1 (LV-

shE2F1-1 and LV-shE2F1-2). qPCR showed a strong reduction of E2F1 
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mRNA expression with both shRNAs, indicating the efficiency of E2F1 

silencing (Figure 4.8A). To evaluate the presence of possible compensatory 

effects upon E2F1 silencing, we also measured the expression levels of other 

members of the E2F family, the activators E2F2 and E2F3a, and the repressor 

E2F4. As showed by qPCR analysis, we found a slight increase in E2F2, a 

minor decrease in E2F3a expression and no changes in E2F4 expression 

(Figure 4.8B). 

 

 

 

Figure 4.8. (A) Quantitative PCR analysis of E2F1 expression in SSM2c cells 

transduced with two different shRNA specifically targeting E2F1 (LV-shE2F1-

1 and LV-shE2F1-2). The y-axis represents the expression ratio of 

gene/(EIF2a+HPRT average). *p<0.05 compared to the control. (B) 

Quantitative PCR analysis of the activator E2F2 and E2F3a, and the repressor 

E2F4 expression in SSM2c cells upon E2F1 silencing with both shRNAs. The 

y-axis represents the expression ratio of gene/(EIF2a+HPRT average). 
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 Our results indicate that both LV-shE2F1-1 and LV-shE2F1-2 efficiently 

silence E2F1 expression in melanoma cells and that upon E2F1 silencing no 

significant compensatory effects by other members of the E2F family are 

observed. 

 

 

4.4 E2F1 is required for melanoma cell growth induced by activation 

of the HH pathway 

 

E2F1 is directly controlled by HH signaling, as indicated by our data. We 

and others have previously shown that HH signalling is required for melanoma 

growth and stemness (Stecca et al., 2007; Jalili et al., 2013; O’Reilly et al., 

2013; Santini et al., 2012). To investigate the effects of the HH pathway that 

are mediated by E2F1 in melanoma, we silenced E2F1 upon HH signalling 

activation. 

 

To activate the HH pathway we silenced the negative regulator PTCH1, 

then we transduced melanoma cells with LV-shPTCH1 lentivirus alone or in 

combination with LV-shE2F1. Western blot and qPCR analysis in M26c 

transduced cells showed an increase of GLI1 and E2F1 expression upon 

PTCH1 silencing, indicating the activation of the HH pathway, and a strong 

decrease of E2F1 upon E2F1 silencing (Figure 4.9A e B). 
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Figure 4.9. (A) Western blot analysis of GLI1 and E2F1 expression in M26c 

cells transduced with LV-c, LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-

shE2F1 lentiviruses. HSP90 was used as loading control. (B) Quantitative 

PCR analysis of E2F1 and GLI1 mRNA levels in M26c cells transduced as 

described above. The y-axis represents the expression ratio of 

gene/(EIF2a+HPRT average). *p<0.05 compared to the control. 

 

To investigate the role of E2F1 in melanoma cell growth induced by HH 

pathway activation, we transduced M26c, SSM2c and A375 cells with LV-c or 

LV-shPTCH1 alone or in combination with LV-shE2F1. Cells transduced were 

seeded and allowed to growth for 7 days. The growth curve showed that in all 

cell types LV-shPTCH1 increased cell number compared to control (LV-c), 

whereas LV-shE2F1 reduced it. Interestingly, in cells transduced with both 

LV-shPTCH1 and LV-shE2F1 lentiviruses we observed a reduction of cell 

growth stronger than in cells transduced with LV-shE2F1 alone (Figure 4.10). 

These results identify a critical role of E2F1 in melanoma cell growth induced 

by activation of the HH pathway. 
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Figure 4.10. Growth curve in SSM2c, M26c and A375 cells transduced with 

LV-c, LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-shE2F1 lentiviruses, 

showing that E2F1 silencing reduced melanoma cell growth and this reduction 

was stronger in presence of activated HH pathway. Cells transduced with LV-

shPTCH1 lentivirus showed an increase of cell growth, consistent with the 

activation of HH pathway. The data represent meanSEM of three independent 

experiments. *p<0.05 

 

E2F1 is also an important regulator of apoptosis (Pan et al., 1998; Massip 

et al., 2013). To determine whether the reduction in cell growth observed upon 

E2F1 silencing was due to changes in cell proliferation or in cell death, we 

evaluated the proliferation index by FACS analysis, using CellTrace Violet, in 

M26c and SSM2c cells transduced with LV-c, LV-shPTCH1, LV-shE2F1 or 

LV-shPTCH1/LV-shE2F1 lentiviruses. As expected, activation of HH pathway 

with LV-shPTCH1 led to an increase of cell proliferation, whereas LV-shE2F1 

reduced it in both cell lines. In M26c cells transduced with LV-shPTCH and 

LV-shE2F1 lentiviruses, we did not observe changes in proliferation index, 
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while in SSM2c cells we observed a slightly reduction in proliferation index 

compared to LV-shE2F1 transduced cells (Figure 4.11).  

 

 

 

Figure 4.11. Proliferation index of M26c and SSM2c cells transduced with LV-

c, LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-shE2F1 lentiviruses. 

Proliferation index was evaluated at 72hrs and 96hrs, whereas mitomycin was 

used to block cell proliferation and was used as control (0hrs), represented on 

the x-axis. The data represent meanSEM of three independent experiments. 

*p<0.05 

 

We also performed cell cycle analysis using flow cytometry, that showed 

an increase of percentage of cells in S-phase upon PTCH1 silencing (Figure 

4.12), according to the increase in proliferation observed after HH signalling 

activation (Santini et al., 2012). In cells where HH pathway was activated in 

absence of E2F1, cell cycle analysis also showed an increase in the percentage 

of cells in sub-G0 phase, corresponding to the apoptotic cellular fraction 

(Figure 4.12). 
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Figure 4.12. Cell cycle distribution of M26c and SSM2c cells transduced with 

LV-c, LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-shE2F1 lentiviruses, 

showing a significant increase of S phase only in M26c cells transduced with 

LV-shPTCH1. Cells transduced with LV-shPTCH1/LV-shE2F1 lentiviruses 

show a significant increase in the apoptotic fraction compared to LV-c control. 

The data represent meanSEM of three independent experiments. *p<0.05 

 

The increase of the apoptotic cellular fraction in sub-G0 phase observed in 

cell cycle analysis, were confirmed by Annexin V-PE/7-AAD labelling. 

Cytometric analysis showed an increase of the percentage of cells in late 

apoptosis in LV-shE2F1 transduced cells, and a bigger increase in cells 

transduced with LV-shE2F1 in combination with LV-shPTCH1 (Figure 4.13). 

 



69 
 

 

 

Figure 4.13. Annexin V-PE/7-AAD labelling of M26c, SSM2c and A375 cells 

transduced with LV-c, LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-shE2F1 

lentiviruses, showing a marked increase of the late apoptotic fraction in M26c 

and A375 cells transduced with LV-shE2F1 lentivirus, and in SSM2c, M26c 

and A375 cells transduced with LV-shPTCH1/LV-shE2F1 lentiviruses 

compared to LV-c control. The data represent meanSEM of three independent 

experiments. *p<0.05 

 

To support these results, we measured the expression levels of genes 

involved in the apoptotic response. qPCR analysis showed that, upon E2F1 

silencing, the mRNA levels of the anti-apoptotic factor BCL-XL decreased, 

whereas the expression of the pro-apoptotic genes PIG3 and p53AIP1, a p53 

target, increased (Figure 4.14A). In line with the data obtained by AnnexinV-

PE/7-AAD labelling, only cells with activated HH pathway and with silenced 

E2F1 (transduced with LV-shPTCH1 and LV-shE2F1 lentiviruses) showed a 

decrease in the protein level of the anti-apoptotic factor BCL2 and a slightly 

increase of p53 (Figure 4.14B). 
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Figure 4.14. (A) Quantitative PCR analysis of BCL-XL, PIG3 and p53AIP1 

expression in M26c cells transduced with LV-c, LV-shPTCH1, LV-shE2F1 or 

LV-shPTCH1/LV-shE2F1 lentiviruses. The y-axis represents the expression 

ratio of gene/(EIF2a+HPRT average). *p<0.05 compared to the control (B) 

Western blot analysis of BCL2 and total p53 in M26c cells transduced with the 

indicated lentiviruses. HSP90 was used as loading control. 

 

These findings indicate that activation of HH pathway in absence of E2F1, 

rather than increasing cell proliferation, enhances apoptosis, probably as a 

result of restoration of p53 activity, which is often impaired in melanoma cells 

(Lu et al., 2013). This result suggests that E2F1 controls the balance between 

cell proliferation and apoptosis upon the activation of HH signaling; activation 

of HH signaling in presence of E2F1 increases melanoma cell proliferation, 

whereas in absence of E2F1 induces apoptosis in melanoma cells. 
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4.5 HH signaling modulates iASPP expression and activation 

through E2F1 

 

Recent evidence indicate that iASPP is frequently up-regulated in human 

cancers (Bergamaschi et al.,2003; Bergamaschi et al., 2006), and that human 

melanomas harboring wt p53 express high levels of phosphorylated iASPP. 

Functionally, phosphorylated iASPP binds and inactivates p53 (Lu et al., 

2013). To test whether HH pathway modulates iASPP expression, we 

transduced SSM2c and M26c cells with LV-c or LV-shPTCH1 lentiviruses to 

activate HH signaling or with LV-c or LV-shSMO lentiviruses to inhibit the 

pathway. qPCR analysis showed an increase of GLI1 mRNA levels upon 

PTCH1 silencing, confirming the activation of HH pathway. This was 

associated with an increase of iASPP expression (Figure 4.15A). Conversely, 

iASPP mRNA levels were reduced upon inhibition of the HH pathway, that 

was confirmed by the reduction of GLI1 expression (Figure 4.15B). 

 

 

 

Figure 4.15. (A) Quantitative PCR analysis of GLI1 and iASPP expression in 

SSM2c and M26c cells transduced with LV-c or LV-shPTCH1 lentiviruses. (B) 

Quantitative PCR analysis of SMO, GLI1 and iASPP expression in SSM2c cells 

transduced with LV-c or LV-shSMO lentiviruses. The y-axis represents the 

expression ratio of gene/(EIF2a+HPRT average). *p<0.05 compared to the 

control. 

 

These results suggest that HH signaling positively modulates iASPP 

expression at transcriptional level. To address the mechanism by which E2F1 



72 
 

controls the outcome of the activation of HH signaling in our patient-derived 

p53wt melanoma cells, we measured iASPP levels in M26c cells transduced 

with LV-c, LV-shPTCH1 or LV-shE2F1 lentiviruses alone or in combination. 

Western blot and qPCR analysis showed that iASPP mRNA and protein levels 

were increased upon PTCH1 silencing, and that E2F1 silencing led to a 

decrease of iASPP protein and mRNA levels (Figure 4.16A and B). In cells 

transduced with both LV-shPTCH1 and LV-shE2F1, iASPP mRNA and 

protein levels did not increase and were lower than cells transduced with LV-

shE2F1 alone and LV-c control cells (Figure 4.16A and B). These results 

indicate that HH signalling regulates iASPP expression through E2F1. 

 

 

Figure 4.16. (A) Western blot analysis of M26c cells transduced with LV-c, 

LV-shPTCH1, LV-shE2F1 or LV-shPTCH1/LV-shE2F1 lentiviruses. HSP90 

was used as loading control. (B) Quantitative PCR analysis of iASPP mRNA 

levels in M26c cells transduced with the indicated lentiviruses. The y-axis 

represents the expression ratio of gene/(EIF2a+HPRT average). *p<0.05 

compared to the control. 

 

Bioinformatic analysis with Transfac Matrix Database identified a 

conserved E2F1 binding site in iASPP promoter. We performed chromatin 

immunoprecipitation (ChIP) assay to confirm this finding. M26c and SSM2c 

cells were transduced with LV-c or LV-shPTCH1 lentiviruses and we 

performed ChIP assay by immunoprecipitating endogenous E2F1. qPCR 
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analysis on recovered DNA showed an enrichment of the iASPP promoter that 

was stronger in cells with activated HH pathway compared to LV-c control 

cells (Figure 4.17A). These results suggest that E2F1 mediates the 

transcriptional regulation of iASPP expression induced by activation of HH 

pathway. 

 

The inhibitory function of iASPP on p53 results from its phosphorylation 

status that depends on the CDK1/Cyclin B1 complex (Lu et al., 2013). Thus, 

we evaluated whether HH pathway might modulate CDK1 and Cyclin B1 

levels. Western blot analysis showed that CDK1 protein levels were 

completely abolished upon E2F1 silencing both in M26c cells transduced with 

LV-shE2F1 and LV-shPTCH1/LV-shE2F1 (Figure 4.17B), accordingly with a 

previous study indicating that E2F1 regulates CDK1 expression (Wu et al., 

2012). ChIP assay in SSM2c cells transduced with LV-c or LV-shPTCH1 

lentiviruses showed that E2F1 bound to CDK1 promoter (Figure 4.17C), 

confirming a direct regulation (Konishi et al., 2003). Notably, the enrichment 

of CDK1 promoter was greater in LV-shPTCH1 transduced cells compared to 

LV-c control cells, in line with E2F1 induction. Cyclin B1 expression increases 

after HH pathway activation, as shown by western blot analysis of M26c 

transduced cells (Figure 4.17B), confirming previous reports (Eichberger et al., 

2006; Locker et al., 2006). The increase in Cyclin B1 protein levels was 

independent of E2F1, because it occurred also in cells transduced with LV-

shPTCH1/LV-shE2F1 lentiviruses (Figure 4.17B). 
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Figure 4.17. (A) Chromatin immunoprecipitation assay. Endogenous E2F1 

was immunoprecipitated from M26c and SSM2c cells transduced with LV-c or 

LV-PTCH1 lentiviruses. Quantitative PCR shows the enrichment of iASPP 

promoter in cells with activated HH pathway (LV-shPTCH1). The y-axis 

represents the relative promoter enrichment, normalized on input material. 

ACTIN promoter was used as negative control. (B) Western blot analysis of 

CDK1 and Cyclin B1 in M26c cells transduced with LV-c, LV-shPTCH1, LV-

shE2F1 or LV-shPTCH1/LV-shE2F1 lentiviruses. HSP90 was used as loading 

control. (C) Chromatin immunoprecipitation assay. Endogenous E2F1 was 

immunoprecipitated from SSM2c cells transduced with LV-c or LV-shPTCH1. 

Quantitative PCR shows the enrichment of CDK1 promoter in cells with 

activated HH pathway (LV-PTCH1). The y-axis represents the relative 

promoter enrichment, normalized on input material. ACTIN promoter was used 

as negative control. 
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These results indicate that HH signaling positively modulates iASPP at 

multiple levels. First, HH pathway contributes to induction of iASPP 

expression through E2F1, which directly binds to iASPP promoter. HH 

signaling also contributes to iASPP activation through E2F1-dependent 

regulation of CDK1 and through modulation of Cyclin B1 in an E2F1-

independent manner. 

 

To confirm that the activation of HH signaling controls iASPP function 

through E2F1, we treated A375, SSM2c, and M26c cells transduced with LV-c 

or LV-shPTCH1 lentiviruses with the CDK1 inhibitor JNJ-7706621 (JNJ), 

which at the dose of 500nM specifically inhibits CDK1 (Emanuel et al., 2005). 

JNJ-7706621 inhibitor was recently shown to block iASPP phosphorylation 

(Lu et al., 2013) (Figure 4.18A). Growth assay showed a reduction in cell 

number in melanoma cells treated with JNJ compared to untreated cells, and 

this reduction was stronger in cells transduced with LV-shPTCH1 (with 

activated HH pathway) compared to cells transduced with LV-c control cells 

(Figure 4.18B). These data show that cells with activated HH pathway are 

more sensitive to CDK1 inhibition, paralleling the results obtained by E2F1 

silencing (Figure 4.10).  
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Figure 4.18. (A) Schematic representation of iASPP phosphorylation by the 

CyclinB1/CDK1 complex. This phosphorylation is reduced when cells are 

treated with the CDK1 inhibitor JNJ-7706621. (B) Cell growth assay in A375, 

SSM2c and M26c cells transduced with LV-c or LV-shPTCH1 lentiviruses after 

treatment with 500nM JNJ-7706621 for 72hrs. The data represent meanSEM 

of three independent experiments. *p<0.05 

 

We also evaluated the percentage of apoptotic cells by cytometric analysis 

after Annexin-V/7AAD labelling in SSM2c, M26c and A375 cells transduced 

as described above. We observed that cells with activated HH signaling were 

more sensitive to JNJ treatment than control cells. We found an increase of 

cells in late apoptosis upon treatment with the CDK1 inhibitor, with a stronger 

increase in cells transduced with LV-shPTCH1 (Figure 4.19). 
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Figure 4.19. Evaluation of cellular apoptosis by AnnexinV/7AAD labelling in 

SSM2c and M26c cells transduced with LV-c and LV-shPTCH1 lentiviruses 

after treatment with JNJ-7706621 500nM for 48hrs. These data represent 

meanSEM of three independent experiments. *p<0.05 compared to LV-c and 

LV-shPTCH1 respectively. 

 

Altogether, these findings indicate that E2F1 determines the outcome of 

HH pathway activation by regulating the expression and the activation of 

iASPP. 

 

 

4.6 E2F1 mediates HH-induced melanoma xenograft growth 

 

To investigate the role of E2F1 in regulating growth of melanoma 

xenografts in vivo induced by HH pathway activation, we injected 4x104 M26c 

cells stably transduced with LV-c, LV-shPTCH1 and/or LV-shE2F1 

lentiviruses subcutaneously into athymic nude mice (Figure 4.20A). M26c cells 

transduced with LV-shPTCH1 resulted in 2-fold larger xenografts than LV-c 

control cells (Figure 4.20B), confirming that the activation of HH pathway 

increases melanoma cell growth in vivo (Santini et al., 2012; Pandolfi et al., 

2013). E2F1 silencing reduced of nearly 50% the size of melanoma xenografts 

compared to LV-c transduced cells, and strongly reduced the increase of tumor 

growth due to PTCH1 silencing (Figure 4.20B). Compared to in vitro studies, 

the difference in xenografts growth between cells transduced with LV-shE2F1 

alone or in combination with LV-shPTCH1 was not significant (Figure 4.20B). 
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Figure 4.20. (A) Representative images of M26c xenografts into athymic nude 

mice. (B) M26c cells transduced with LV-c, LV-shPTCH1, LV-shE2F1 or LV-

shPTCH1/LV-shE2F1 lentiviruses were injected subcutaneously into athymic-

nude mice. Quantification of tumor volume (n=12 for each group), showing 

that E2F1 silencing prevented the increase of tumor growth induced by 

activation of HH pathway. P-values are as follows: LV-c versus LV-shPTCH1, 

p=0.047; LV-c versus LV-shE2F1, p=0.049; LV-shPTCH1 versus LV-

shPTCH1/LV-shE2F1, p=0.043. 

 

Tumors were dissected 42 days after injection. Western blot analysis of 

GLI1, E2F1, iASPP, and CDK1 confirmed the reduction of E2F1 protein levels 

upon E2F1 silencing, and its increase following HH pathway activation (Figure 

4.20), consistently with tumor growth curve. Western blot analysis showed 

protein levels of iASPP, E2F1, and CDK1 (Figure 4.21) with the same pattern 

obtained in vitro (Figure 4.9A, Figure 4.16A, and 4.17B). 
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Figure 4.21. Western blot analysis of GLI1, E2F1, iASPP, and CDK1 in 

tumors derived from M26c xenografts. HSP90 was used as loading control. 

 

Taken together these data suggest that E2F1 plays a crucial role as 

mediator of HH signaling pathway in promoting growth of melanoma 

xenografts. 
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5. DISCUSSION 

 

 

In this study, we identify the transcription factor E2F1 as direct target of 

the GLI1 and GLI2, and a crucial mediator of the effects induced by HH 

pathway activation. Interestingly, we show that HH/GLI-E2F1 axis positively 

modulates the oncoprotein iASPP, a key inhibitor of p53, at multiple levels. 

First, HH activation induces iASPP expression through E2F1, which directly 

binds to iASPP promoter. Second, HH pathway also contributes to iASPP 

activation by induction of Cyclin B1 and by E2F1-dependent regulation of 

CDK1. Our data together suggest a novel HH/GLI-E2F1-iASPP axis that is 

involved in controlling melanoma growth and provide an additional 

mechanism through which HH signaling restrains p53 function during 

tumorigenesis (Figure 5.1). 

 

The Hedgehog-GLI (HH-GLI) signaling is a conserved pathway, which is 

an important mediator of embryonic development. In adult tissue, HH signaling 

is critical for maintaining tissue polarity in vertebrate and invertebrate 

embryos. HH-GLI signaling is also involved in regulating growth and survival 

of human melanomas both in vitro and in vivo (Stecca et al., 2007) and it drives 

self-renewal and tumorigenicity of melanoma-initiating cells (Santini et al., 

2012). The first evidence of an interplay between HH-GLI pathway and the 

transcription factor E2F1 was provided by discovery that the transcription 

factor GLI2, one of the final effectors of HH pathway, enhances E2F1 

expression in keratinocytes (Regl et al., 2004). Additional findings showed that 

SHH stimulation induces E2F1 expression in neural precursors and in 

medulloblastoma (Bahtia et al., 2011). These data indicate that E2F1 is a HH-

responsive gene, however, there is no evidence that indicate a direct 

transcriptional regulation of E2F1 by HH pathway. Here we show that E2F1 

expression is directly regulated by the HH signaling effectors, GLI1 and GLI2, 

in melanoma cells and that both GLI1 and GLI2 are able to bind and to 

transactivate E2F1 promoter. Although bioinformatics analysis did not identify 

a GLI canonical consensus sequence on E2F1 promoter, we identified two 
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putative non-canonical GLI consensus sequences: site 1 (CGCCTCCAG) and 

site 2 (TACCGCCCC), located between -132bp and -269bp upstream the E2F1 

transcription start site. Mutation of site 1 prevented the transactivation of the 

reporter by GLI1 and GLI2, whereas mutation of site 2 did not have any effect, 

suggesting that GLI1 and GLI2 directly regulate the expression of E2F1 by 

binding to the non-canonical GLI consensus sequence CGCCTCCAG in E2F1 

promoter. This degenerate binding site contains 5 base pair substitutions 

respect to the canonical consensus sequence (GACCACCCA), but it maintains 

the two cytosines in 4th and 6th position flanking the central adenine in the 

consensus sequence (GACCACCCA), which are essential for binding as 

suggested by previous studies (Winklmayr et al., 2010; Peterson et al.,2012). 

 

Sequence-specific DNA binding to the cis-regulatory region of a GLI 

target gene mainly involves zinc fingers 4 and 5, which make extensive base 

contact within the 9-mer binding sequence, while fingers 2 and 3 mainly 

establish contacts with the phosphate backbone (Pavletich et al., 1993). 

Although global ChIP analyses and in vitro GLI-DNA binding screenings 

confirmed the consensus sequence as dominant binding site for the GLIs, the 

importance of GLI binding sequences with some degree of base pair 

substitutions is underappreciated. Certainly, variations of the consensus 

sequence might have significant impact on the transcriptional output in 

response to defined GLI activator levels. For instance, substitution of the 

cytosine at position 7th for adenine results in a GLI binding site with enhanced 

transcriptional response compared to the canonical consensus motif 

(Winklmayr et al., 2010). The degenerate consensus sequence we identify in 

our study retains a strong transcriptional response for both GLI1 and GLI2, 

although GLI1 induces a stronger response than GLI2. This is predictable 

because, although all GLI proteins bind the 9-mer consensus sequence with 

comparable affinity, repressor and activator forms bind the same sites, and 

different GLI proteins affect the same target genes differently. Also differential 

epigenetic modifications of the cis-regulatory regions of GLI targets affects 

GLI-DNA binding affinity. Cell-type specific histone acetylation of 

methylations and/or CpG methylation patterns of GLI target gene promoters 

are thus likely to modulate both the qualitative and quantitative response to 
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GLI. Therefore, it will be interesting to test epigenetic modifications of the 

E2F1 promoter in the future. Moreover, it should be noted that our ChIP 

experiments were performed with endogenous GLI1 and GLI2. Most of the 

global ChIP approaches were performed with epitope tagged and 

overexpressed GLI (Vokes et al., 2007; Vokes et al., 2008; Lee et al., 2010), 

which may not fully mimic endogenous GLI function. 

 

The biological relevance of the direct regulation of E2F1 by GLI1 and 

GLI2 is supported by our expression data in human melanoma samples, that 

indicate a significant correlation between HH pathway components (PTCH1, 

GLI1 and GLI2) and E2F1 expression in human metastatic melanomas. This 

might suggest that during melanoma progression activation of the HH signaling 

leads to a strong induction of E2F1 expression. 

 

The transcription factor E2F1 is a crucial modulator of different cellular 

processes, including cell cycle progression and apoptosis (O’Connor et al., 

2000). Several lines of evidence indicate that E2F1 is often aberrantly activated 

in various types of cancer, including melanoma (Halaban et al., 2000; Nelson 

et al., 2006) and are frequently associated with poor patient survival. E2F1 is 

an HH-responsive gene, but it is not known what are the E2F1-mediated effects 

inducing by HH signaling activation. In this study, we identify a functional role 

of E2F1 in regulating melanoma cell growth upon the activation of HH 

pathway. In particular, our data show that the silencing of E2F1 reduces 

melanoma cell growth in vitro and increases apoptotic response. Interestingly, 

these effects are stronger when E2F1 depletion is couple with activated HH 

signaling. These data suggest the presence of a HH/GLI-E2F1 axis that might 

contribute to melanoma progression, and indicate that the effects of activated 

HH pathway in absence of E2F1, rather than increasing cell proliferation, 

enhances apoptosis response, probably as a result of restoration of p53 activity. 

 

The main tumor-suppressor p53 is frequently mutated in human cancers; 

nevertheless more than 80% of melanomas retain wild type p53, but often it is 

inactive and its function impaired by several mechanisms, and p53 target genes 

involved in apoptosis are under-expressed (Avery-Kiejda et al., 2011). 
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Previous evidence have shown that HH signaling contributes to reduce the 

tumor-suppressor function of p53 by increasing the levels of MDM2, a known 

negative modulator of p53 (Abe et al., 2008; Stecca and Ruiz I Altaba, 2009). 

In turn, GLI1 transcriptional activity is negative regulated by p53, promoting 

GLI1 ubiquitination and degradation (Stecca and Ruiz I Altaba, 2009). 

Recently, another mechanism of p53 inactivation has been proposed, in which 

the inhibitor of p53 iASPP might mediate this mechanism. The p53 inhibitor 

iASPP is frequently over-expressed in human cancers (Zhang et al., 2005; 

Saebø et al., 2006; Liu et al., 2012; Chen et al., 2010; Cao et al., 2013), 

including melanoma, suggesting that iASPP contributes to tumorigenesis by 

inducing proliferative and anti-apoptotic effects. However, little is known 

about the regulation of iASPP expression. Here we find that HH-GLI pathway 

activation positively modulates iASPP levels in melanoma cells, enhancing its 

expression upon HH signaling activation. In addition, we show that E2F1 

directly mediates this induction binding to iASPP promoter. Previous data have 

shown that iASPP activation is controlled by Cyclin B1/CDK1 complex that 

phosphorylates iASPP protein (Lu et al., 2013). Consistently, our findings 

indicate that HH pathway activation controls the levels of both Cyclin B1 and 

CDK1, thus contributing to iASPP activation. Moreover, we find that the 

expression of Cyclin B1 increases upon HH pathway activation, in according to 

literature (Eichberger et al., 2006; Locker et al., 2006), and this regulation do 

not require E2F1. Conversely, we find that CDK1 expression is modulated by 

HH signaling through E2F1 (Wu et al., 2012), which binds to CDK1 promoter. 

 

In this study, we provide evidence that E2F1 is a mediator of HH signaling 

also in vivo. Previous data showed that the HH-GLI pathway is active and 

required for melanoma cells proliferation and xenografts growth in vivo (Stecca 

et al., 2007). Although HH pathway activation induces xenografts growth, we 

find that the silencing of E2F1 in presence of HH signaling activation 

counteracts this increase. In this case, we do not find significant difference in 

tumor size between LV-shE2F1 and LV-shPTCH1/LV-shE2F1 xenografts, as 

describe by in vitro results, that show a greater reduction of cell growth upon 

E2F1 silencing coupled with HH signaling activation. This discrepancy 

between in vitro and in vivo results probably is due to other mediators induced 
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by activated HH signaling, such as for instance stemness factors. These factors 

in vivo can promote cancer stem cell self-renewal and induce tumor growth, 

independently of E2F1. However, western blot analysis on xenografts shows 

the same pattern of iASPP and CDK1 expression obtained in vitro. 

 

The reactivation of wt p53 function is the major challenge in cancer, and it 

has been proposed as a novel therapeutic approach to suppress melanoma 

growth, in combination with target therapy (Jochemsen et al., 2014; Lu et al., 

2014). Lu and colleagues have shown that p53 function can be restored using a 

CDK1 inhibitor that affects cyclinB1/CDK1 activity preventing iASPP 

phosphorylation (Lu et al., 2013). Our findings indicate that the treatment with 

CDK1 inhibitor (JNJ-7706621), which prevents iASPP phosphorylation and 

activation, induces the same effects of E2F1 depletion. Cells treated with 

CDK1 inhibitor show a reduced cell proliferation and an increased apoptosis; 

moreover, we observe that cells with activated HH pathway are more sensitive 

to JNJ-7706621 treatment compared to the control. Thus, the inhibition of 

iASPP phosphorylation through E2F1 silencing or JNJ-7706621 treatment 

might be used as a therapeutic approach to resume the p53 tumor-suppressor 

function that leads, lastly, to an increase of the apoptotic response, suggesting 

the activation of p53. 

 

In conclusion, we propose a novel HH/GLI-E2F1-iASPP axis, which is 

involved in regulation of melanoma cell growth, and provides a possible novel 

mechanism through which activation of HH signaling impairs p53 function. In 

addition, we provide a further strategy for therapeutic treatment of melanomas 

and, probably other tumors with activated HH pathway and wt p53. 
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Figure 5.1: Model of the HH/GLI-E2F1-iASPP axis. E2F1 is a direct target of 

the transcription factors GLI1 and GLI2. E2F1 acts downstream of HH 

signaling, modulating the expression and the activation of the p53 inhibitor 

iASPP. E2F1 regulates the expression of iASPP and CDK1. The final effectors 

of HH pathway, GLI1 and GLI2, modulate Cyclin B1 expression independently 

of E2F1. Cyclin B1/CDK1 complex phosphorylates iASPP leading to an 

increase of its ability to impair p53 function. JNJ-7706621 is a CDK1 

inhibitor. 
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