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ABSTRACT 

 

The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it 

regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant 

activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to 

the transmembrane receptor Patched and is subsequently mediated by transcriptional effectors belonging to 

the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several 

HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the Mitogen-Activated Protein 

Kinases (MAPK) are involved in a number of biological processes and play an important role in many 

diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the 

MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be 

activated as a consequence of aberrant activation of upstream signaling molecules or during development of 

drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a 

crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, 

as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK 

effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several 

reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with 

the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal 

treatment and prevent tumor relapse. 

 

 

Keywords: Hedgehog, GLI, MAPK, ERK, Cancer, Signal Transduction, Signaling Integration, Targeted 

Therapy, Combination therapy 
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Abbreviations:  

BCC, Basal Cell Carcinoma 

BRAF-i, BRAF inhibitors 

CCA, Cholangiocarcinoma 

CSC, Cancer Stem Cell 

EGF, Epidermal Growth Factor 

EGFR, Epidermal Growth Factor Receptor 

ERK, Extracellular Signal-Regulated Kinase 

FGFb, basic Fibroblast Growth Factor 

HCC, Hepatocellular Carcinoma 

HH, Hedgehog 

IGF1, Insulin-like Growth Factor 1 

IGF1R, Insulin-like Growth Factor 1 Receptor 

IHH, Indian Hedgehog 

IRS1, Insulin Receptor Substrate 1 

JNK, c-Jun N-terminal Kinase 

MAPK, Mitogen-Activated Protein Kinase 

MB, Medulloblastoma 

MEK, MAPK/ERK Kinase 

MMP9, Matrix Metalloproteinase-9 

PDGF, Platelet-Derived Growth Factor 

PDGFR, Platelet-Derived Growth Factor Receptor 

PI3K, Phosphatidylinositol-3-Kinase 

PTCH, Patched 

RSK2, Ribosomal S6 Kinase 2 

RTK, Receptor Tyrosine Kinase 

SHH, Sonic Hedgehog 

SMO, Smoothened 
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1. Classical activation of the MAPK pathway 

Mitogen-activated protein kinases (MAPK) convert extracellular stimuli into biological functions including 

cell survival, proliferation, migration and apoptosis. Growth factors, cytokines, extracellular matrix, osmotic 

stress, reactive oxygen species as well as lipopolysaccharide may activate MAPK. These enzymes are serine-

threonine kinases that include conventional (Extracellular Signal-Regulated Kinases ERK1 and ERK2, p38, 

c-Jun N-terminal kinases, JNK, and ERK5) and atypical (ERK4, ERK8, human orthologs of rat ERK3 and 

ERK7, respectively, and Nemo-like kinase, NLK) MAPK [1]. Besides being involved in a number of 

biological processes, MAPK play an important role in many diseases including inflammation and cancer [2-

4]. The MAPK pathway consists of a MAP kinase kinase kinase (MAP3K), a MAP kinase kinase (MAP2K) 

and a MAPK. Stimulation of the pathway results in the eventual activation of the MAPK by dual 

phosphorylation of a threonine and a tyrosine residue (T-X-Y) located in the phosphorylation loop. This 

activation is induced by MAP2K (e.g. in case of classical MAPK, MEK1 and MEK2 for ERK1/2; MKK3 

and MKK6 for p38, MKK4 and MKK7 for JNK, MKK2 and MKK3 for ERK5). Fine-tuning of MAPK 

activation, in strength and duration, depends on cellular context and biological processes [5,6] and is 

achieved by several mechanisms, including dephosphorylation by phosphatases such as dual specificity 

phosphatases (DUSP), kinase interaction motif protein tyrosine phosphatases (KIM-PTP) and 

serine/threonine protein phosphatases (e.g. PP2A). Another equally important role in MAPK regulation is 

that of MAPK scaffolds, such as Kinase Suppressor of Ras, KSR, that play a key role in modulating the 

strength and duration of MAPK activation [7]. 

MAPK have cytosolic as well as nuclear targets [1]. Following activation, ERK1/2 phosphorylates a 

large number of substrates [8]. Among ERK1/2 cytoplasmic substrates, there are death-associated protein 

kinase (DAPK), tuberous sclerosis complex 2 (TSC2), RSK and MNK. Nuclear targets include NF-AT, Elk-

1, myocyte enhancer factor 2 (MEF2), c-Fos, c-Myc and STAT3. Proteins located at the level of 

cytoskeleton (neurofilaments and paxillin) or associated with membranes (CD120a, Syk and calnexin) are 

also target of ERK1/2. The transcription factor c-Jun is a well-described substrate of activated JNK . 

Additional transcription factors are phosphorylated by JNK, including p53, ATF-2, NF-ATc1, Elk-1, HSF-1, 

STAT3, c-Myc, and JunB [9]. Substrates of activated p38 proteins include cytoplasmic proteins such as 
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cPLA2, MNK1/2, MK2/3, HuR, Bax and Tau. Among nuclear targets of p38 isoforms there are ATF1/2/6, 

MEF2, Elk-1, GADD153, Ets1, p53 and MSK1/2 [10]. 

MAPK are involved in a large variety of solid and hematolgical neoplasms and, indeed, several 

components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, 

JNK, ERK1/2, MEK1/2, RAF, RAS, DUSP1 and ERK5 [11,12]. Among them, alteration of the RAS-RAF-

MEK1/2-ERK1/2 pathway has frequently been reported in human cancer as a result of abnormal activation 

of receptor tyrosine kinases or gain-of-function mutations in genes of the pathway itself [13]. Components of 

JNK and p38 pathways are rarely mutated in cancer compared to those of the ERK1/2 pathway. 

Nevertheless, alterations in JNK and p38 signaling are associated to cancer, although they may act either as 

oncogenes or tumor suppressors depending on the cellular context [14]. ERK5 is also involved in human 

cancers including those of the prostate, breast and liver [15,16]. 

 

2. The canonical Hedgehog signaling pathway 

Initially discovered in Drosophila, the Hedgehog (HH) signaling is an evolutionarily conserved pathway that 

plays a crucial role in patterning, proliferation and differentiation during embryogenesis [17,18]. In the adult 

it is mostly active in stem/progenitor cells, where it regulates tissue homeostasis, repair and regeneration 

[19]. Canonical HH pathway activation is initiated by the binding of HH ligands, Sonic (SHH), Indian (IHH) 

and Desert Hedgehog (DHH), to the 12-pass transmembrane protein receptor Patched (PTCH), which reside 

in the primary cilium [20-22]. Upon HH binding, PTCH relieves its inhibition on the G-protein-coupled 

receptor-like Smoothened (SMO), which translocates into the tip of the cilium and triggers a cascade of 

events that promote the formation of activator forms of the GLI transcription factors (GLI-A). GLI2 and 

GLI3 translocate into the nucleus and induce transcription of HH pathway target genes, including GLI1 [23-

25]. In absence of HH ligands, PTCH inhibits pathway activation by preventing SMO to enter the cilium. 

This results in phosphorylation and proteasome-mediated carboxyl cleavage of GLI2 and GLI3 to their 

repressor forms (GLI2/3-R) [26,27]. GLI1 is degraded by the proteasome and transcriptionally repressed, 

with consequent inhibition of the pathway. GLI1 acts as an activator, whereas GLI2 and GLI3 display both 

positive and negative transcriptional functions [26,28,29]. The GLI transcription factors activate the 

expression of a number of targets, including regulators of proliferation and differentiation (e.g. CyclinD1 and 
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D2, N-Myc, E2F1, PDGFR, Igf2, FoxM1, FoxF1, Hes1, Igfbp3, Neogenin), survival (Bcl2), angiogenesis 

(Vegf, Cyr61), self-renewal (Bmi1, Nanog, Sox2), epithelial-mesenchymal transition (Snail1, Sip1, Elk1) 

and invasiveness (Osteopontin). The HH pathway target genes include GLI1, which further amplifies the 

initial HH signaling, and the HH pathway negative regulators PTCH1 and HHIP1, which restrain the HH 

signaling. 

Abnormal activation of the HH-GLI pathway is implicated in a variety of tumors, including those of 

the skin, brain, lungs, prostate, breast, gastrointestinal tract and blood. Multiple mechanisms of HH pathway 

activation have been described in cancer [30]. Ligand-independent activation is caused by loss-of-function 

mutations in the negative regulators PTCH1 [31,32], SUFU [33,34] or REN [35], activating mutations in 

SMO [36], or gene amplifications of GLI1 and GLI2 [37,38], that results in constitutive HH pathway 

activation. This type of HH pathway activation occurs more often in basal cell carcinoma (BCC), 

medulloblastoma and rhabdomyosarcoma. Ligand-dependent autocrine activation of the HH pathway has 

been identified in several types of cancer, including lung, pancreas, gastrointestinal tract, prostate and colon 

cancer, glioma and melanoma [39-48]. In this case, tumor cells secrete and respond to HH ligands and show 

increased HH ligands expression apparently in absence of genetic aberrations of HH pathway components. 

In the ligand-dependent paracrine activation of HH pathway, a mode of action that resembles the 

physiological HH signaling during development, HH ligands secreted by cancer cells activate HH signaling 

in the surrounding stroma rather than in the tumor itself. The mechanisms by which the HH signaling and the 

tumor stroma interact during paracrine signaling are not completely understood. Evidence supporting this 

mechanism has revealed from studies in human tumor xenograft models of pancreatic and colorectal cancers 

[49]. Similarly, the reverse paracrine HH pathway activation, in which HH ligands are secreted by the tumor 

microenvironment and activate the pathway in tumor cells, has been described in an experimental model of 

glioma [50] and in hematological malignancies, such as B-cell lymphoma and mantle cell lymphoma 

[51,52]. 

The HH signaling has also been implicated in the regulation of cancer stem cells (CSC) by 

promoting their self-renewal [53]. Activated HH signaling has been identified in CSCs of many solid tumors, 

such as glioblastoma, breast, colon, pancreatic cancer, melanoma, and hematological malignancies, including 

CML and multiple myeloma, and has been shown to increase tumor-initiating populations and contribute to 
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self-renewal, growth and tumorigenicity. Similarly, these CSC-promoting effects can be abrogated by 

inhibiting SMO. 

 Evidence of crosstalk between HH-GLI and other oncogenic signaling pathways, such as 

PI3K/AKT/mTOR, Notch, TGF, Wnt/catenin, has been reported in many types of cancer and extensively 

described by recent reviews [54-58]. Here we will focus on the interaction between HH-GLI and the final 

MAPK effectors ERK1/2, p38 and JNK in cancer cells. However, we also discuss findings obtained in 

normal cells where possible mechanisms of interaction relevant for cancer cells have been described. 

 Non-canonical HH signaling activation involving MAPK has also been described in normal cells and 

tissues. For instance, specification of oligodendrocyte progenitors by SHH is blocked by the SMO antagonist 

cyclopamine and PD173074, an inhibitor of FGFR [59]. During limb development induction of SHH by FGF 

is mediated by the ERK1/2 [60]. MAPK has been shown to modulate the expression of IHH in chondrocytic 

cells. MEK1/2 inhibitor UO126 decreases levels of IHH mRNA. Conversely, constitutively active MEK1 or 

MKK3 increase IHH levels, which are diminished by dominant-negative MEK1 [61]. To date, there is no 

evidence of crosstalk between HH-GLI pathway and non classical MAPK neither in normal nor in cancer 

cells. 

 

3. Crosstalk between HH-GLI and ERK1/2 signaling 

The first direct evidence of a crosstalk between HH and ERK1/2 signaling came from a study performed in 

normal NIH/3T3 cells. This report showed that activated MEK1 (S218E, S222E or 32-51) stimulates 

expression and transcriptional activity of GLI proteins, with consequent induction PTCH1 and GLI1 target 

genes, showing for the first time that ERK1/2 act upstream of HH-GLI signaling. Consistently, co-

expression of activated MEK1 and GLI1 or GLI2 induces a synergistic increase in GLI transcriptional 

activity, that is blocked by the MEK1/2 inhibitor PD98059 [62]. Interestingly, this study identified for the 

first time the N-terminus of GLI1 (amino acids 1-130) as a critical region for sensing the ERK1/2 pathway. 

Indeed, deletion of this region produces active GLI1 protein with greatly reduced response to activation by 

MEK1. Nevertheless, in vitro kinase assays showed that GLI1 is not directly phosphorylated by ERK1/2, 

suggesting that the N-terminal region of GLI1 is a target for another kinase downstream of ERK1/2 [62]. A 
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later report identified possible MAPK consensus site, including ERK2, within the N-terminus of GLI 

proteins [63]. 

In the following Section we summarize studies providing evidence of a crosstalk between HH and 

ERK1/2 in different types of cancer. 

 

3.1. Skin cancers 

 

3.1.1. Basal Cell Carcinoma 

Activation of HH-GLI signaling, through genetic loss of PTCH1 or activation of SMO, occurs frequently in 

BCC, the most common human skin cancer [64]. Consistently, the downstream effector GLI1 is often 

upregulated in BCC [65]. A causal role of the activation of HH pathway in the pathogenesis of BCC has 

been largely demonstrated by several mouse models [66]. Consistent activation of the ERK1/2 pathway in 

BCC has not been reported, suggesting that activation of this pathway is not a driving event in this neoplasm. 

Nevertheless, ERK1/2 may be activated in BCC as a consequence of aberrant activation of upstream 

signaling (see below). 

A crosstalk between EGFR-MEK1/2-ERK1/2 and HH-GLI signaling has been reported in 

keratinocytes and BCC (Figure 1). A global gene expression study in human keratinocytes with combined or 

single activation of EGFR and HH-GLI signaling revealed three classes of target genes: genes responding to 

HH only, genes responding to EGFR only, and genes responding to combined activation of both pathways 

[67]. Of note, the last class of genes (EGFR-HH cooperation genes) contains functional GLI binding sites in 

their promoters, suggesting that signaling integration occurs at the level of EGFR-HH target gene promoters. 

In this context, cooperation of EGFR with GLI1 and GLI2 depends on activation of MEK1/2-ERK1/2 

signaling, but not on PI3K/AKT. In fact, treatment with EGFR inhibitor gefitinib and MEK1/2 inhibitor 

UO126 abolishes synergistic activation, whereas PI3K/AKT inhibitor LY294002 does not. Notably, 

MEK1/2-ERK1/2 signaling is involved in the stabilization of GLI1 and GLI2 proteins by the proteasome 

[67]. The same group showed that MEK1/2-ERK1/2-induced phosphorylation and activation of JUN/AP1 

transcription factor is the critical event at the end of EGFR cascade, because it induces binding of activated 

JUN and GLI to common HH-EGFR target promoters, thereby cooperatively regulating target gene 
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expression and BCC transformation [68]. Of note, the beneficial effect of EGFR blockade in HH-driven 

BCC and pancreatic cancer models can be synergistically improved by combined targeting of both pathways 

[68,69]. Importantly, these studies highlight the central role of ERK1/2 in the integration of Receptor 

Tyrosine Kinase (RTK, see also above) and HH signaling in BCC. 

HH pathway may be also upstream of MAPK and ERK1/2 activation (Figure 2). Indeed, GLI1 can 

lead to the induction of PDGFR, thus resulting in the activation of the RAS-ERK1/2 pathway in BCC. 

Accordingly, inhibition of PDGFR or of downstream MEK1/2 decreases the proliferation of the murine BCC 

cell line ASZ001, that harbors constitutively active HH-GLI signaling. Similar results were obtained in HH-

responsive mouse embryo fibroblasts C3H10T1/2, indicating that the signaling axis GLI1>PDGFR>ERK1/2 

may be not restricted to BCC cells. The relevance of this mechanism in vivo is supported by a high level 

expression of PDGFR in murine and human BCC [70]. 

The same group reported that IFN, a local treatment option for BCC [71], prevents SMO agonist-

mediated activation of ERK1/2 in BCC ASZ001 cells [72]. They also found that treatment with the MEK1/2 

inhibitor UO126 induces FAS expression similarly to what happens following IFN treatment. Interestingly, 

they showed that the crosstalk between IFN and HH-GLI pathway might occur at the level of MEK1/2. 

Authors proposed that IFN inhibits MEK1/2 and consequently ERK1/2 activation/phosphorylation, thus 

allowing the expression of Fas and the subsequent induction of apoptosis. An involvement of the MEK1/2-

ERK1/2 pathway in HH-sustained survival has also been found in normal keratinocytes [73]. 

 

 

3.1.2. Melanoma 

Melanoma is the most aggressive form of skin cancer, characterized by poor prognosis and high mortality. 

The most deregulated signaling pathway in melanoma is RAS/RAF/MEK1/2-ERK1/2. Indeed, the majority 

of melanoma show constitutively activated ERK1/2 due to the mutually exclusive activating mutations in 

BRAF and NRAS, which are present in 50% and 15-20% of cutaneous melanomas, respectively [74]. Either 

events lead to constitutive ERK1/2-MAPK pathway activation. BRAF inhibitors (BRAF-i) are effective in 

the treatment of BRAF mutant melanoma patients. However, treatment with BRAF-i is effective only for a 

limited time and complete clinical responses are rarely seen due to the onset of resistance. Although different 
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mechanisms of resistance have been described for BRAF-i, most of them lead to the reactivation of ERK1/2 

or activation of the PI3K/AKT/mTOR pathway. Therefore, it is not surprising that simultaneous targeting of 

components of ERK1/2 and PI3K pathways can delay or overcome BRAF-i resistance [75]. 

 Recent studies indicate that HH-GLI signaling is active in melanoma. Several components of the HH 

pathway are expressed in human melanoma samples [48] and high HH pathway activity is associated with 

decreased post-recurrence survival in metastatic melanoma patients [76]. Growth and proliferation of human 

melanoma cells in vitro and in vivo depends on active HH pathway. Indeed, treatment with SMO antagonists 

cyclopamine or sonidegib reduces proliferation of human melanoma cells and decreases human melanoma 

xenograft growth in nude mice [48,76,77]. Interestingly, BRAF mutant cell lines are more sensitive to 

sonidegib than BRAF wild type melanoma cells and combination of BRAF (vemurafenib) and Hedgehog 

(sonidegib) inhibitors leads to a modest but significant synergistic effect in inhibiting melanoma cell 

proliferation [76]. 

MEK1/2-ERK1/2 signaling has been shown to act upstream of HH and regulate the activity of the 

GLI transcription factors. For instance, oncogenic NRAS (NRAS
Q61K

) and HRAS (HRAS
V12G

) enhance GLI1 

function, by increasing its transcriptional activity and nuclear localization. In particular, both HRAS or 

NRAS counteract GLI1 cytoplasmic retention by the negative regulator SUFU [48] (Figure 1). MEK1/2-

ERK1/2 are likely to be the main effectors of RAS, because inhibition of MEK1/2 with UO126 reverses the 

effect of oncogenic RAS on GLI. A further confirmation of RAS-ERK1/2 acting upstream of HH, systemic 

cyclopamine treatment drastically reduces tumor growth in melanomas induced by oncogenic NRAS in a 

Tyrosinase-NRAS
Q61K

;Ink4a
-/-

 mouse model [48]. 

Growth factor receptor up-regulation, including that of PDGFR, is among the mechanisms 

underlying resistance to BRAF-i in melanoma cells [78]. Similarly to what previously observed for BCC (see 

above) [70], HH-GLI pathway activation induced by treatment with BRAF-i is responsible for PDGFRα up-

regulation following vemurafenib treatment in human melanoma cells in vitro. Then PDGFR expression 

through the activation of downstream ERK1/2 and PI3K determines vemurafenib resistance. Accordingly, 

PDGFRα or HH signaling inhibition decreases ERK1/2 phosphorylation and restores melanoma cells 

sensitivity to BRAF-i [79]. These findings suggest that monitoring patients for early PDGFRα up-regulation 

will facilitate the identification of those who may benefit from the treatment with BRAF-i in combination 
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with clinically approved PDGFRα or HH-GLI inhibitors and that the activation status of ERK1/2 and PI3K 

should be used as a read out of resistance. 

 

3.2. Gastrointestinal cancers 

 

3.2.1. Esophageal cancer 

Previous reports have shown that HH-GLI signaling is active and required for in vitro and in vivo growth of 

esophageal cancer cells [42,80]. Indeed, frequent inactivating mutations in PTCH1, which lead to activation 

of the downstream HH pathway, have been described in esophageal squamous cell carcinomas [81]. Human 

esophageal cancer samples often express high levels of SHH and GLI1, while normal corresponding tissue 

expresses low amounts. Moreover, ERK1/2 phosphorylation/activation may be detected in samples where 

the HH-GLI signaling is active. Consistent with the possible activation of ERK1/2 by HH-GLI, SHH-

induced ERK1/2 activation is inhibited by MEK1/2 inhibitor PD98059 and by cyclopamine in TE 

esophageal cancer cell lines. In these cells, GLI1 is expressed thus suggesting the potential activation of HH 

signaling at basal levels. Stimulation with SHH enhances TE cell proliferation, and this effect is blocked by 

pretreatment with cyclopamine and by PD98059, indicating that loss of ERK1/2 activity inhibits HH-induced 

proliferation of TE cells [82]. 

 

3.2.2. Gastric cancer 

Although SMO and/or PTCH1 mutations are present at low frequency in different histological subtypes of 

gastric tumors [83], activation and requirement of HH signaling has been demonstrated for this cancer type 

[42,84]. On the other hand, there are no data on the percentage of cases in which the MEK1/2-ERK1/2 

pathway is activated in gastric cancers. Nevertheless, the percentage is expected to be high since many RTK 

as well as RAS-RAF may be activated in this malignant neoplasm [85]. 

An interplay between HH-GLI and ERK1/2 has also been observed in gastric cancer cells. Indeed, 

KRAS-MEK1/2-ERK1/2 cascade increases GLI transcriptional activity and induces the expression of HH 

target genes in gastric cancer cells. In agreement with a previous study performed in NIH/3T3 fibroblasts 

[62], the deletion of the N-terminal domain of GLI1 reduces the response to MEK1 stimulation. However, 
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kinase assay experiments fail to show a direct phosphorylation of GLI1 by ERK1/2 [86]. On the other hand, 

SHH stimulates the proliferation of rat gastric mucosal cells through ERK1/2 activation by elevating 

intracellular calcium concentration [87]. In addition, GANT61 and cyclopamine treatment decreases 

proliferation, migration and ERK1/2 phosphorylation in MKN45 gastric cancer cells [88]. 

 

3.2.3. Pancreatic cancer 

HH-GLI signaling is an early and late mediator of pancreatic cancer tumorigenesis, as suggested by 

experimental studies using human pancreatic cancer cells [40] and various mouse models (see below). On 

the other hand, since pancreatic adenocarcinoma is the human malignancy with the highest incidence of 

activating KRAS mutations (70–90%), high frequency of cases with constitutive activation of the MEK1/2-

ERK1/2 pathway is expected [89]. KRAS can activate HH pathway via MEK1/2-ERK1/2 in pancreatic 

cancer cells. In fact, expression of KRasV12 in the immortalized human pancreatic ductal epithelial cell line 

HPDE-c7 increases GLI1 levels and transcriptional activity. Consistently, suppression of oncogenic KRAS 

by siRNA inhibits GLI1 expression and activity in pancreatic ductal adenocarcinoma (PDA) cell lines with 

activating KRAS mutations. KRAS-mediated HH activation is suppressed by pharmacological inhibition of 

MEK1/2 with UO126, which decreases GLI1 protein stability in PDA [90]. Therefore, the major effector of 

RAS in enhancing HH-GLI activity is likely to the MEK1/2-ERK1/2 signaling module. 

The interaction between RAS and GLI has been described also in various mouse models of PDA. 

Mice expressing endogenous levels of mutant KRAS (KRAS
G12D

) and of mutant p53 (Trp53
R172H

) in the 

pancreas show activation of HH pathway, suggesting the action of oncogenic RAS on the endogenous HH-

GLI pathway during tumor development [91]. KRAS (KRAS
G12D

) genetically cooperates with activated 

GLI2 to initiate PDA in vivo [92]. An additional mouse model of KRAS-induced PDA shows that SMO-

independent GLI1 activation is required for survival of tumor cells and KRAS-mediated transformation [93]. 

KRAS also contributes to a shift from autocrine-to-paracrine signaling in PDA, by inducing SHH expression, 

thus leading to HH stimulation of adjacent cells, and by negatively modulating canonical HH signaling 

through its negative effector DYRK1B [94]. Although from these mouse models it is not possible to infer the 

effector of oncogenic RAS, MEK1/2-ERK1/2 are likely to be the main mediators. 
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The MEK1/2-ERK1/2 module might also play a role in mediating the paracrine interactions between 

CXCL12/CXCR4 and HH pathway (Figure 1). In fact, CXCL12 secreted by stromal cells binds to its 

receptor, CXCR4 on pancreatic cancer cells, initiating a downstream signaling that activates AKT and 

ERK1/2. This leads to accumulation of MEK1/2-ERK1/2-dependent nuclear NF-B, that directly binds to 

the SHH promoter inducing its expression in pancreatic cancer cells [95]. 

A number of studies reported that HH-GLI might as well act upstream of ERK1/2 in pancreatic cells. 

In pancreatic duct epithelial cells (PDEC) ectopic expression of SHH enhances proliferation and activates 

PI3K and ERK1/2. Consistent with a role for PI3K and ERK1/2 in SHH-induced PDEC proliferation, 

inhibition of PI3K with LY294002 or MEK1/2 signaling with PD98059 reduces the S-phase fraction while 

increasing the G1 fraction. The mechanism involved in the activation of ERK1/2 by SHH signaling was not 

clarified although an involvement of HER2 or EGFR was excluded. On the other hand, activated GLI1 does 

not stimulate ERK1/2 activation indicating that it is GLI-independent in PDEC cells [96]. The latter study 

indicates that activation of ERK1/2 by HH-GLI pathway may be involved in HH-GLI induced pancreatic 

tumorigenesis. Moreover, HH-GLI signaling enhances K-Ras-induced pancreatic tumorigenesis by reducing 

the dependence of tumor cells on the sustained activation of the MAPK and PI3K/AKT/mTOR signaling 

pathways. Indeed, simultaneous treatment with PD98059 and rapamycin failed to completely inhibit the 

growth of cells expressing KRAS and SHH, although KRAS and HH signaling determine an additive effect 

on cell proliferation [96]. 

 

3.2.4. Hepatocellular carcinoma 

The HH-GLI signaling is involved in the development, invasion and metastasis of hepatocellular carcinoma 

(HCC) [97]. On the other hand, alteration in the ERK1/2 pathway is well documented in human HCC and 

phosphorylated ERK1/2 levels are significantly increased in at least 50% of HCC samples [98]. In HCC 

tissue samples there is a positive correlation between SHH expression and nuclear GLI1, while neither SHH 

nor nuclear GLI1 are found in normal liver tissue. Moreover, the amount of nuclear GLI1 positively 

correlates with tumor pathological grade, with the ability of the tumor to invade and metastasize, and with 

phosphorylated ERK1/2 and MMP9 expression [99]. Inhibition of HH-GLI pathway by KAAD-cyclopamine 

decreases invasion and migration of Bel-7402 HCC cells, the level of nuclear GLI1, MMP9 and p-ERK1/2. 
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Consistently, activation of HH-GLI pathway induces opposite effects. Furthermore, MEK1/2 inhibition with 

UO126 or PD98059 impairs invasion and metastasis formation of HCC cells. Therefore, HH-GLI promotes 

ERK1/2-dependent invasiveness by up-regulating MMP9. In this context, ERK1/2 does not seem to be an 

upstream regulator of the HH-GLI pathway, because UO126 and PD98059 have no effect on the GLI1 

expression in HCC cells [99]. 

 

3.2.5. Cholangiocarcinoma 

HH-GLI signaling is implicated in cholangiocarcinoma (CCA) and recently HH has been proposed as a 

potential target for treatment of human CCA [100]. Several pathways that activate ERK1/2 are involved in 

the pathogenesis and progression of CCA [101]. In CCA cells, HH-GLI and ERK1/2 pathways appear to be 

in parallel rather than in series, because combined inhibition of either pathways with cyclopamine and 

UO126 determines an additive anti-proliferative effect, particularly in cells with KRAS mutation, and 

induces caspase-dependent apoptosis in CCA cells [102]. 

 

3.2.6. Colon cancer 

HH-GLI signaling is active in human colon cancer and is critical for tumor growth, recurrence, metastasis 

and stem cell survival and expansion [45]. In mice, Apc mutant epithelial cells secrete IHH to maintain an 

intestinal stromal phenotype that is required for adenoma development [103]. The ERK1/2 pathway is 

located downstream of many growth-factor receptors, including EGFR and of RAF/RAS, that are involved in 

the pathogenesis and progression of colon cancer [104]. A study reported that MEK1/2-ERK1/2 acts 

upstream of HH signaling in colon cancer cells. Indeed, inhibition of MEK1/2 with UO126 in human HT29 

colon cancer cells decreases phosphorylated ERK1/2 and inhibits GLI transcriptional activity and GLI1 

mRNA and protein levels [105]. 

 

3.3. Brain tumors 

 

3.3.1. Medulloblastoma 
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Medulloblastoma (MB), a primitive neuroectodermal tumor of the cerebellum, is the most common 

malignant brain tumor in children [106]. High expression of the HH pathway occurs in approximately 25% 

of all MB (HH group). Activation of HH pathway in MB can occur through inactivating mutations in PTCH1 

and SUFU, activating mutations in SMO, and GLI1 and GLI2 gene amplifications [33,38]. 

An interaction between EGFR and HH signaling occurs in the medulloblastoma cell line Daoy. EGF 

impairs the activation of the target GLI1 upon HH pathway activation with the SMO agonist SAG. Although 

EGF is able to activate ERK1/2 in these cells, MEK1/2-ERK1/2 activity is not required for inhibitory effect 

of EGF on GLI [107]. 

In murine cerebellar granule cell precursors (GCP) FGF-mediated inhibition of SHH-induced 

proliferation and GLI1 expression requires activation of ERK1/2. Using two different FGFR inhibitors, 

namely PD173074 and SU5402, it was shown that bFGF acts by means of FGFR to abrogate the effects of 

HH signaling. The bFGF-dependent inhibition on SHH proliferative effect depends on activation of ERK1/2 

and JNK. Furthermore, bFGF inhibits the growth of medulloblastoma cells from Ptch+/- mutant mice [108]. 

The involvement of ERK1/2 was not addressed, although it is likely to occur on the basis of results obtained 

in GCP. 

In MB arising in Ptch+/- mice, Chow and colleagues identified three tumor subtypes on the basis of 

microarray signatures. In the growth factor independent group, that contains cells capable to form spheres in 

culture in the absence of growth factors, high levels of phosphorylated ERK1/2 are found. No mechanism of 

HH-GLI ERK1/2 cross talk was identified, although this event could be explained by the occurrence of 

trisomy of chromosome 6. Indeed, murine chromosome 6 contains many oncogenes, including KRAS, 

BRAF and MET, that are activators of ERK1/2 [109]. 

In conclusion, although a consistent activation of the ERK1/2 pathway in MB has not been reported 

[110] and the evidence of a crosstalk between HH-GLI and MEK1/2-ERK1/2 is not clear, targeting 

MEK1/2-ERK1/2 with available molecules might be taken into consideration, especially in the HH group. 

 

3.3.2. Glioblastoma 

Glioma is the most frequent tumor of the central nervous system and can be classified into 4 grades, with 

glioblastoma multiforme being the most aggressive. GLI1 was originally identified as a gene amplified in 
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malignant glioblastoma [37]. Several reports support an active role for HH signaling in glioma and glioma 

CSC [46,47]. On the other hand, ERK1/2 activation is likely to occur especially in gliomas driven by growth 

factor receptors, including EGFR, and/or activation of other pathways upstream of MEK1/2-ERK1/2 [111]. 

SHH mediates the activation of ERK1/2 signaling in radial glial cells during late neocortex development and 

in Hela cells through EGFR transactivation [112] (Figure 2). 

Insulin receptor substrate 1 (IRS1) is a GLI1 transcriptional target in glioma CSC cells. In these 

cells, GLI1 inhibition decreases basal phosphorylation of RAF1, MEK1 and ERK1/2 and that induced by 

IGF-1. Therefore, GLI1 inhibition antagonized IRS1-dependent ERK1/2 activity and desensitizes glioma 

CSC to IGF-I stimulation [113]. The existence of an interplay between HH-GLI and IGF-I signaling on the 

activation of ERK/2 has also been described in adult myogenic cells [114]. 

In another study, inhibition of the HH-GLI pathway by Sant-1 did not alter ERK1/2 phosphorylation 

in glioma/glioblastoma cell lines. Moreover, Sant-1 did not alter the phosphorylation of ERK1/2 induced by 

guggulsterone, a Ras/NFκB inhibitor [115]. The authors suggest that the effects observed occur in the tumor 

bulk. Therefore, ERK1/2 seems to be downstream HH-GLI in CSC [113] but not in the bulk population 

[115]. 

 

3.4. Breast cancer 

The HH signaling is required in breast cancer and breast cancer stem cells [116,117]. Consistently, 

transgenic mice conditionally expressing GLI1 in the mammary epithelium develop mammary tumors [118]. 

Deregulation of the MEK1/2-ERK1/2 pathway occurs frequently and plays a central role in the 

carcinogenesis and maintenance of breast cancers, especially in the basal-like subgroup [119]. 

A crosstalk between HH-GLI and ERK1/2 has been also described in breast cancer cells. 

Cyclopamine inhibits the proliferation of breast cancer cell lines, either estrogen dependent or independent, 

and decreases the expression of CCND1. This effect is partially prevented by UO126, indicating that HH 

pathway inhibition requires an active MEK1/2-ERK1/2 module to produce a decrease in proliferation [120]. 

Furthermore, SHH activates ERK1/2 in a SMO-independent manner in MCF10A normal mammary cells. 

Authors suggested an involvement of GRB2- or p85-recruited proteins in the activation of ERK/2 [121]. 
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3.5. Urologic tumors 

3.5.1. Renal carcinoma 

ERK1/2 pathway is constitutively active and sustains tumor growth in clear cell renal carcinoma cells [122]. 

Similarly, HH signaling is active in tumors, as suggested by elevated expression of SMO and GLI 

transcription factors in tumors compared to corresponding normal tissues. In clear cell renal carcinoma cells, 

irrespectively of VHL status, inhibition of HH-GLI pathway with cyclopamine decreases AKT and ERK1/2 

phosphorylation. No mechanism of interaction was proposed [123]. 

 

3.5.2. Prostate cancer 

HH and MEK1/2-ERK1/2 pathways are both involved in prostate cancer [43,44,124]. EGF signaling has 

been shown to increase the invasive capability of ARCaPE human prostate cancer cells via upregulation of 

pERK1/2 and of GLI1. Enhanced invasiveness is reversed by inhibition of GLI1 in vitro with GANT61. 

Authors hypothesized that the mediator of EGF and HH pathway crosstalk is ERK1/2 through an unknown 

mechanism [125]. 

 

3.6. Hematological malignancies 

 

3.6.1. Leukemia 

HH pathway components are commonly expressed across different acute T-cell leukemia (T-ALL) cell lines. 

In particular, GLI1 is activated by both canonical HH signaling (via SMO) and by non-canonical activation, 

through the PI3K/AKT and MEK1/2-ERK1/2 pathways. Consistent with a non-canonical activation of HH 

downstream of SMO, inhibition of SMO is less effective than targeting GLI in inducing cell death. The GLI 

inhibitor GANT58 reduces proliferation and induces cell death in T-ALL cells. Perifosine, a PI3K/AKT 

inhibitor, decreases GLI1 protein in part through AKT/GSK3b, and inhibition of MEK1/2 with PD98059 

enhances this effect. Interestingly, combination of AKT inhibitor and GANT58 has a synergetic therapeutic 

role in the treatment of T-ALL. Combination of HH and MEK1/2 inhibition was not investigated, although 

of potential interest [126]. 
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MEK1/2-ERK1/2 pathway may be aberrantly activated in chronic lymphocytic leukemia (CLL) 

[127]. SMO inhibition with cyclopamine, LDE-225 or IPI-926 decreases the number of CLL cells in culture 

and induces apoptosis in a subset of CLL samples. Responsiveness correlates with elevated GLI1 and 

PTCH1 transcript levels and the presence of trisomy 12 (interestingly, the gene locus for human DHH and 

GLI1 is present on chromosome 12), whereas no other karyotype correlates with responsiveness. All CLL 

with trisomy 12 display constitutive HH pathway activation driven by autocrine DHH ligand secretion, 

which could be blocked by anti-HH antibody 5E1. Moreover, PTCH1 activates ERK in a SMO-independent 

manner. In this case either ERK1/2 or ERK5 could be involved (see also Section 4) because antibodies for 

pERK in immunohistochemistry do not distinguish between pERK1/2 and pERK5. Consistently, ERK1/2 

activation could be prevented by the 5E1 HH-blocking antibody but not by SMO inhibitors [128] (Figure 2). 

These results beg for a possible clinical development of HH ligand-blocking antibodies. Indeed, these 

therapeutic tools could effectively block canonical (SMO-dependent) and non-canonical (SMO-independent) 

HH signaling and might therefore be more effective than SMO inhibitors for the treatment of human CLL or 

other cancer types with ligand-dependent HH pathway activation. 

HH-GLI components are expressed in the HL60 human acute myeloid leukemia cell line. In these 

cells, cyclopamine induces dose- and time-dependent apoptosis, cell cycle arrest and monocytic 

differentiation. Moreover cyclopamine determines an inhibition of AKT and ERK1/2, indicating that AKT 

and ERK1/2 are downstream to HH-GLI pathway. However, how GLI transcription factor activity sustains 

the activation of ERK1/2 in HL60 cells was not addressed [129]. 

Significant upregulation of PTCH1, Frizzled2, Lef1, CCND1, p21 and downregulation of HOXA10 

and HOXB4 transcripts in CD34+ cells distinguish blast crisis from chronic phase CML. Ectopic SHH 

increases STAT phosphorylation (Y705) and activation in chronic phase CML primary blasts but not in 

those from blast crisis patients. On the other hand, no ERK1/2 or AKT activation/phosphorylation is 

detected. Moreover, cyclopamine, that is able to prevent SHH-induced STAT3 phosphorylation, is 

ineffective on constitutive ERK1/2 and AKT phosphorylation, indicating that HH-GLI does not sustain the 

activation of these two pathways in CML, at least for what concern the chronic phase [130]. 
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3.6.2. Multiple myeloma 

The HH signaling has been shown to maintain a tumor stem cell compartment in multiple myeloma (MM) 

[131]. More recently, it was shown that constitutively active MEK1 increases half-life of GLI2 and enhances 

its nuclear translocation, decreasing ubiquitination of GLI2 protein (Figure 1). RSK2, a protein kinase 

downstream of MEK1/2-ERK1/2 cascade, mimics the effect of MEK1 on GLI2 stabilization. MEK1 and 

RSK2 fail to augment the half-life of GLI2 lacking GSK3 phosphorylation sites, suggesting that MEK1/2-

RSK stabilizes GLI2 by controlling targeting GSK3-mediated phosphorylation and ubiquitination of GLI2. 

The significance of MEK1/2-RSK stabilization was demonstrated in experiments showing that activation of 

MEK1/2-RSK parallels higher GLI2 protein level in several MM cell lines compared to normal B cells. 

Inhibition of RSK function using SL0101 accelerates GLI2 degradation and reduces the expression of GLI2 

target genes in MM cells. Interestingly, combined treatment with RSK inhibitor SL0101 and GLI inhibitor 

GANT58 leads to a synergistic decrease of apoptosis in MM cells [132]. 

 

4. Crosstalk between HH-GLI signaling and ERK5 

To date no crosstalk has been reported between HH-GLI and ERK5 pathway. However, MEF2C, a well 

known target of ERK5 [133], has been shown to activate the expression of GLI2 by binding to its promoter 

during cardiomyogenesis in vitro [134]. Moreover, it is worth pointing out that the majority of experimental 

data presented in Section 3 have been performed with small molecule kinase inhibitors targeting the ERK1/2 

pathway, and these molecules inhibit also MEK5-ERK5. Indeed, PD98059 and U0126, which were initially 

identified as MEK1/2-specific inhibitors, also affect the MEK5-ERK5 pathway [135-137]. Moreover, 

PD184352 (CI-1040), another MEK1/2 inhibitor, decreases the activity of MEK5-ERK5 pathway although at 

lesser extent [136]. 

 

5. Crosstalk between HH-GLI signaling and JNK 

JNK are protein kinases that regulate many physiological processes, including inflammatory responses, 

morphogenesis, cell proliferation, differentiation, survival and death. It is increasingly apparent that 

persistent activation of JNK is also involved in cancer development and progression [138]. Few evidences of 

an interaction between JNK proteins and HH-GLI pathways have been identified. Below are listed the papers 
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that refer to a crosstalk between JNK and HH signaling in cancer cells or in normal contexts where possible 

mechanisms of interaction have been described. 

Deregulation of HH signaling pathway in epidermal keratinocytes is a primary event leading to the 

formation of BCC (see above). Overexpression of SHH in HaCaT keratinocytes grown in organotypic 

cultures induces a basal cell phenotype and increases invasiveness. This behavior is linked to increased 

EGFR activation, JNK phosphorylation and MMP9 expression. However the effective role of JNK in these 

SHH-induced effects was not addressed [139]. On the other hand, bFGF can antagonize the effects of SHH 

in cerebellar GCP and mouse medulloblastoma cells. FGF-mediated inhibition of SHH-induced proliferation 

occurs in a JNK-dependent manner [108]. 

Treatment with lipotoxic agents determines JNK-dependent SHH expression, via AP-1, in human 

hepatocellular carcinoma HUH-7 cells silenced for caspase 9, but not in parental control cells. Moreover, 

caspase 9 deprived cells are more resistant to the lipotoxic effect of fatty acids. These results may suggest 

how in nonalcoholic steatohepatitis, a condition that might predispose to HCC, ballooned hepatocytes that 

express lower level of caspase 9 compared to neighboring normal cells may escape cell death [140]. 

Whisenant and colleagues identified a D-site, a MAPK-docking site, within residues 290-296 of 

GLI3 protein and found that phosphorylation of Ser343 by JNK1-3 was D-site-dependent. Computational 

analysis suggest that D-sites are present in GLI1 and GLI2 and that therefore JNK proteins may bind to and 

directly phosphorylate GLI proteins [63]. 

In another study, using chemoresistant cancer cell lines and their respective parental cells, namely 

human chronic myelogenous leukemia K562-K562/A02 cells and human epidermoid carcinoma KB-

KB/VCR cells, it was shown that SMO may activate GLI through Gαi, Gβγ-JNK signaling axis, thereby 

promoting the GLI-dependent acquired chemoresistance [141]. 

 

6. Crosstalk between HH-GLI signaling and p38 

p38 kinases play a prominent role in regulating the production of pro-inflammatory cytokines. There are no 

data about a crosstalk between HH signaling and p38 in cancer. However, a series of studies suggest 

potential interactions in normal cells. For instance, a reciprocal crosstalk between p38 MAPK and HH 

signaling has been shown in primary astrocytes [142], the most abundant glial cells in the brain that protects 
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neurons against oxidative stress [143]. Indeed, p38 MAPK modulates the expression of downstream targets 

the HH signaling and, in turn, HH pathway induces phosphorylation of p38, but not that of JNK nor ERK1/2. 

Using RNAi and a constitutively-active mutant authors show that SHH-mediated p38 MAPK signaling and 

subsequent GLI1 gene transcription requires G-protein receptor kinase 2 [142]. 

Interestingly, p38 might also mediate the activation of the GLI by the G protein G13 in a SMO-

independent manner. The  subunit of G13 promotes activation of GLI transcription factors in normal 

C3H10T1/2 and pancreatic cancer cell lines. Although the exact mechanism was not reported, authors 

proposed p38 as a possible mediator of this activation, because p38 inhibitor SB202190 impairs G13-

stimulated GLI transcriptional activity by 40–60%. Based on this model, SMO-independent activation of 

GLI is achieved through the 7-transmembrane receptors CCKA, which couples with G13. Therefore, activated 

G13 might promote activation of GLI through p38 [144]. 

 

7. Rationale for combining HH and ERK1/2 inhibitors 

 

7.1. Inhibitors of the HH pathway 

Three major modes of HH pathway inhibition have been exploited therapeutically: SMO inhibition, GLI 

inhibition and disruption of HH/PTCH interaction (Table 1). After cyclopamine (and its more effective 

derivative KAAD-cyclopamine), a naturally compound inhibitor of SMO [145,146], several more potent and 

specific SMO inhibitors have been developed. They include vismodegib, approved for the treatment of 

locally advanced or metastatic BCC, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE-225), 

PF-04449913, LY2940680, LEQ506 and TAK-441 [147]. SMO inhibitors are particularly effective against 

MB and BCC harboring SMO or PTCH mutations. However, despite promising preclinical results, SMO 

inhibitors have yielded little clinical benefit in tumors not harboring mutations in components of the HH 

pathway. The poor clinical performance of SMO inhibitors beyond BCC and MB may be due, at least in 

part, to crosstalk between HH and other oncogenic signaling pathways (as reported above), that may 

significantly alter clinical response to HH pathway inhibition and limit efficacy. 

 The use of SMO inhibitors has been associated with the acquisition of resistance, mostly described in 

medulloblastoma, as a consequence of (i) mutations in human SMO (D473H) and the matching mutation in 
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mouse (D477G), observed during vismodegib treatment; (ii) amplification of downstream HH target genes, 

such as GLI2 and CyclinD1, reported for both vismodegib and sonidegib; (iii) upregulation of other 

oncogenic signaling, such as PI3K/AKT pathway, observed during LDE-225 treatment; (iv) increased 

expression of adenosine triphosphate (ATP)-binding cassette transporter (ABC) such as P-glycoprotein, 

leading to increased drug efflux, observed during saridegib treatment [148-150]. Agents such as 

GANT58/GANT61 [151] and HPI 1-4 [152] act by blocking GLI processing, activation and/or 

transcriptional activity. Recently, other GLI inhibitors have been reported, including ATO (arsenic trioxide) 

[153], an already approved therapeutic for acute promyelocytic leukemia, the anti-pinworm pyrvinium [154] 

and glabrescione B, a small molecule that interferes with the binding of GLI to the DNA [155]. HH pathway 

can be blocked also by disrupting the interaction between HH proteins and PTCH, using anti-HH 

monoclonal antibody 5E1 [156] or the macrocyclic small-molecule robotnikinin [157], both exhibiting 

antitumor activity. 

 

7.2. ERK1/2 inhibitors 

Several RAF and MEK1/2 inhibitors have been developed and many are in clinical trials [158] (Table 1). On 

the other hand, efforts in the identification of ERK1- and ERK2-selective inhibitors have been scarce. This is 

partly due to the earlier assumption that MEK1/2 are the only known activators of ERK1/2 and therefore the 

ERK1/2 cascade might be efficiently blocked by MEK1/2 inhibitors. However, many evidences suggested to 

develop ERK1/2 inhibitors: i) the necessity of targeting components of the same pathway due to different 

possible outcomes in different molecular contexts (i.e. different types of cancer or different patients with the 

same type of cancer); ii) negative feedback loops elicited following treatment with inhibitors of 

RTK/RAS/MEK1/2-ERK1/2 cascade; iii) occurrence of ERK1/2 activation as a resistance mechanism to 

RAF and MEK1/2 inhibitors; iv) activation of ERK1/2 as a consequence of inhibition of PI3K [159,160]. 

More importantly, ERK1/2 activation induced by treatment with BRAF-i may lead to secondary 

malignancies as it is well known for squamous cell carcinoma and recently reported for secondary chronic 

lymphocytic leukemia [161,162]. The above mentioned reasons resulted, very recently, in the development 

of ERK1/2 inhibitors [3]. SCH772984 (Merck/Schering-Plough) is an ATP-competitive ERK1 and ERK2 

inhibitor [163]. This molecule exerts its inhibiting activity by two mechanisms: inhibition of ERK1 and 
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ERK2 intrinsic kinase activity and prevention of phosphorylation of ERK1 and ERK2 by MEK1/2. 

SCH772984 has been shown to work in tumor cell lines and mice models resistant to RAS-MEK inhibitors. 

Specifically, MK-8353 (formerly SCH900353; ClinicalTrials.gov Identifier: NCT01358331), a clinical grade 

analogue of SCH772984, is currently being tested in Phase 1 clinical trials. BVD-523 (Biomed Valley 

Discoveries) is employed in Phase 1 trials in patients with advanced malignancies and Phase 1/2 trials for 

patients with acute myelogenous leukemia or myelodysplastic syndromes. Another available ERK1/2 

inhibitor is RG7842 (GDC0994; Genentech/Roche). Nevertheless, properties and clinical activities of the 

above mentioned ERK1/2 inhibitors are not publicly available yet. 

 

7.3. Combination of HH and MEK1/2-ERK1/2 inhibitors 

ERK1/2 and HH-GLI pathway are involved in several aspects of cancer, ranging from tumor initiation to 

promotion of invasiveness. In this review we extensively described several contexts in which the HH-GLI 

pathway and ERK1/2 interact in a diverse array of processes relevant for cancer, including cell proliferation, 

escape from apoptosis, cell migration, local invasiveness as well as metastasis formation. Several inhibitors 

targeting SMO and MEK1/2-ERK1/2 have been developed and are available. However, preclinical and 

clinical studies have revealed that the application of single-agent SMO or BRAF inhibitors might not be as 

broad as expected and, more importantly, is often associated to mechanisms of resistance. Tables 2 and 3 

report examples of possible future directions for preclinical and clinical studies focusing on combination 

treatment of HH-i and MEK1/2-ERK1/2-i. Along this line, a recent report showed that combination of 

BRAF and HH inhibitors produces a modest but significant synergistic effect in inhibiting melanoma cell 

proliferation [76]. This suggests that a combined therapy targeting both HH signaling and BRAF or 

downstream molecules, i.e. MEK1/2-ERK1/2, might be beneficial in patients with mutated BRAF and 

activated HH signaling. This could apply also to other types of cancer, which depend on an active HH 

pathway and harbor mutations in BRAF or activation of downstream MEK1/2-ERK1/2. Moreover, treatment 

with SMO inhibitors might also partially prevent resistance to BRAF inhibitors. In fact, SMO inhibitor LDE-

225 has been shown to restore and increase the sensitivity of melanoma cells to BRAF inhibitors [75]. 

Nevertheless, combination treatment targeting HH and MEK1/2-ERK1/2 should be taken into consideration 
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also in cases in which the two signaling pathways act in parallel, such as for cholangiocarcinoma or chronic 

myeloid leukemia [102,130]. 

 In light of future clinical trials combining SMO and MEK1/2-ERK1/2 inhibitors, it will be equally 

important to develop sensitive biomarkers of activation of HH-GLI and MEK1/2-ERK1/2 pathways to 

identify the subset of cancers that will likely respond to such inhibitors and to monitor the efficacy of the 

therapy. In this respect, efforts should be made to develop specific and reliable antibodies to detect activated 

GLI1 and pERK1/2 in immunohistochemistry. Moreover, the detection of HH-induced activated RTK, such 

as PDGFR [75], might be another possible biomarker to identify patients who might benefit from treatment 

with HH-GLI and MEK1/2-ERK1/2 inhibitors. 
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FIGURE LEGENDS 

 

Figure 1. Modes of activation of HH signaling by the MAPK ERK1/2 pathway. Canonical activation of 

the HH signaling occurs through binding of HH ligands to PTCH receptor. Consequently, PTCH releases its 

inhibition on SMO. Activated SMO promotes an intracellular signaling cascade that leads to the 

translocation of activated forms of GLI (GLI
A
) into the nucleus, where they induce transcription of target 

genes. MAPK ERK1/2 can activate HH signaling by: 1) enhancement of GLI activity by RAS-MEK1/2-

ERK1/2 signaling, as shown in melanoma and pancreatic cancer cells [48,90]; 2) increase in GLI2 stability 

and activity by MEK1/2-ERK1/2-RSK2 signaling, as suggested in multiple myeloma [132]; 3) synergistic 

promotion of cooperative HH-EGFR target genes, as shown in keratinocytes and BCC [68]. In this case, 
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activation of EGF signaling induces RAS-RAS-MEK1/2-ERK1/2 signaling, leading to activation of GLI1 

and/or JUN/AP1 transcription factors; 4) transcriptional activation of SHH. Here CXCL12 secreted by 

stromal cells binds to its receptor, CXCR4, on pancreatic cancer cells. This initiates a downstream signaling 

that activates AKT and ERK1/2, leading to accumulation of MEK1/2-ERK1/2-dependent nuclear NF-B, 

that directly binds SHH promoter inducing its expression [95]. Abbreviations: CXCL12, CXC ligand 12; 

CXCR4, CXC chemokine receptor type 4; EGF, Epidermal Growth Factor; EGFR, Epidermal Growth Factor 

Receptor; ERK, Extracellular Signal-Regulated Kinase; FGFb, basic Fibroblast Growth Factor; HH, 

Hedgehog; MEK, MAPK/ERK kinase 1; PDGF, Platelet-Derived Growth Factor; PDGFR, Platelet-Derived 

Growth Factor Receptor; RSK2, Ribosomal S6 kinase; PTCH, Patched; SMO, Smoothened; SHH, Sonic 

Hedgehog. 

 

Figure 2. Modes of activation of the ERK1/2 pathway by HH signaling. Classical activation of ERK1/2 

MAPK may occur in different manner. Here only activation induced by growth factor receptors via 

RAS/RAF/MEK1/2 is depicted being the most studied mechanism in reports involving HH-GLI-induced 

ERK1/2 activation. Arrows indicate activating pathways that are known (although not reported in the picture 

for simplicity). Broken lines indicate activating signaling whose intermediates are unknown. Red lines 

indicate identified GLI transcriptional targets (see below). The HH pathway may activate ERK1/2 by several 

mechanisms: 1) following SMO activation, in a GLI-independent manner, via unknown signaling events. 

These effects are blocked by cyclopamine [72,82]; 2) following GLI activation via unknown mechanisms; it 

is not known whether transcriptional activity of GLI is involved [88]; 3) following expression of GLI-

dependent target genes that activate downstream ERK1/2, such as PDGFR and IRS1 [70,79,113]; 4) through 

PTCH in a SMO-independent manner [128]; 5) transactivation of EGFR by SHH has also been described 

[112]. Abbreviations: EGFR, Epidermal Growth Factor Receptor; ERK, Extracellular Signal-Regulated 

Kinase; GLI
A
, GLI activator forms; IGF1, Insulin-like Growth Factor 1; IGF1R, Insulin-like Growth Factor 

1 Receptor; IRS1, Insulin receptor substrate 1; HH, Hedgehog; SHH, Sonic Hedgehog; MEK, MAPK/ERK 

kinase; PDGF, Platelet-Derived Growth Factor; PDGFR, Platelet-Derived Growth Factor Receptor; PTCH, 

Patched; SMO, Smoothened; MMP9, Matrix metalloproteinase-9. 
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Table 1. HH-GLI and MAPK inhibitors cited in the text. 

Inhibitors Alternative name Pathway 

inhibited 

Target References 

Robotnikinin  HH-GLI SHH [157] 

5E1 HH-blocking Ab  HH-GLI SHH [156] 

Cyclopamine  HH-GLI SMO [145,146] 
KAAD-cyclopamine  HH-GLI SMO [164] 

Vismodegib GCD-0449 HH-GLI SMO [165] 

Sonidegib Erismodegib/LDE-225 HH-GLI SMO [166] 

Sant1-4  HH-GLI SMO [167] 

BMS-833923  HH-GLI SMO [168] 

Saridegib IPI-926 HH-GLI SMO [169] 

PF-04449913  HH-GLI SMO [170] 

LY2940680  HH-GLI SMO [171] 

LEQ-506  HH-GLI SMO NCT01106508* 

TAK-441  HH-GLI SMO [172] 

GANT-58,61  HH-GLI GLI [151] 
HPI1-4  HH-GLI GLI [152] 

ATO  HH-GLI GLI [153] 

Pyrvinium  HH-GLI GLI [154] 

Glabrescione B  HH-GLI GLI [155] 

Vemurafenib PLX4032 ERK1/2 BRAFV600E [173] 

PD98059  ERK1/2/5 MEK1/2/5 [135,136,174] 

UO126  ERK1/2/5 MEK1/2/5 [135,136,175] 

PD184352 CI-1040 ERK1/2/5 MEK1/2/ [136,176] 

SCH772984  ERK1/2 ERK1/2 [163] 

MK-8353 SCH900353 ERK1/2 ERK1/2 NCT01358331* 

BVD-523  ERK1/2 ERK1/2 NCT01781429* 

RG7842  GDC0994 ERK1/2 ERK1/2 Robarge et al. 2014** 
SL0101  ERK1/2/5 RSK [177] 

SB202190  p38 p38 [178] 

Guggulsterone  several NFkB [179] 

PD173074  several FGFR1 [180] 

SU5402  several FGFR1,VEGFR2 [181] 

Gefitinib ZD1839 EGFR EGFR [182] 

Perifosine D21266 PI3K/AKT AKT [183,184] 

LY294002  PI3K/AKT PI3K [185] 

Rapamycin Sirolimus PI3K/AKT mTOR [186,187] 

Abbreviations: ATO, Arsenic trioxide; EGFR, Epidermal Growth Factor Receptor; ERK, Extracellular Signal-

Regulated Kinase; FGFR, Fibroblast Growth Factor Receptor; MEK, MAPK/ERK Kinase; mTOR, Mammalian Target 

of Rapamycin; NFkB, Nuclear Factor kappa B; PI3K, Phosphatidylinositol 3-Kinase; RSK, Ribosomal S6 Kinase; 

SHH, Sonic Hedgehog; SMO, Smoothened; VEGFR, Vascular Endothelial Growth Factor Receptor. 

*ClinicalTrials.gov identifier number was added in absence of published references; **Robarge K, Schwarz J, Blake J, 

Burkard M, Chan J, Chen H, et al. Discovery of GDC-0994, a potent and selective ERK1/2 inhibitor in early clinical 

development. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-

9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74:Abstract nr DDT02-03. 

 

Table 2. Experimental in vitro and in vivo models in which the MEK1/2-ERK1/2 module acts upstream 

of HH-GLI signaling. 

Mechanism of action Tumor type Biological effects/function Therapeutic 

implications* 

Referen

ces 

MEK1/2 > ERK1/2 > 

GLI2/1 

Keratinocytes Increased GLI transcriptional activity, 

protein stability (GLI2 more than 

GLI1) 

EGFRi + HHi [67] 

EGFR > MEK1/2 > Keratinocytes EGFRi (gefitinib) and HHi (GANT61 MEK1/2-ERK1/2i + [68] 
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ERK1/2 > JUN/AP1 > 

GLI 

/BCC or Cyc) synergistically reduce mouse 

BCC cell growth 

HH-GLIi  

RAS > RAF > MEK1/2 > 
GLI (counteracting 

SUFU) 

Melanoma Increased GLI transcriptional activity 
and nuclear localization 

MEK1/2-ERK1/2i + 
HH-GLIi  

[48] 

RAS > RAF > GLI Melanoma BRAFV600E inhibition decreases GLI1 

expression 

 [77] 

RAS > RAF > GLI Melanoma Combination of SMOi (sonidegib) 

and BRAFi (vemurafenib) 

synergistically decreases melanoma 

cell proliferation 

MEK1/2-ERK1/2i + 

SMOi 

[76] 

KRASG12D > GLI2 PDA mouse 

model 

KRASG12D cooperates with Gli2 in 

PDA initiation in vivo 

 [92] 

KRAS > GLI1 PDA mouse 

model 

GLI1 is required for KRAS-mediated 

transformation of PDAC cancer cells 

 [93] 

KRAS > RAF > MEK1/2 

> GLI1 

PDA UO126 decreases GLI1 protein 

stability and suppresses anchorage-
independent growth 

MEK1/2-ERK1/2i + 

HH-GLIi 

[90] 

KRAS > MEK1/2 > 

ERK1/2 > GLI 

Gastric 

cancer 

KRAS enhances GLI transcriptional 

activity 

MEK1/2-ERK1/2i + 

HH-GLIi  

[86] 

RAS > RAF > ERK1/2 > 

GLI1 

Colon cancer Cell death and DNA damage; 

MEK1/2i (UO126) decreases GLI1 

expression 

 [105] 

EGF I HH Medulloblast

oma (Daoy) 

EGF down-regulates HH target genes 

(including GLI1) independently of 

MEK1/2 and PI3K 

 [107] 

bFGF I HH Cerebellar 

GCP/ 
Medulloblast

oma 

bFGF promotes GCP differentiation 

and blocks Ptch+/- medulloblastoma 
cell proliferation 

 [108] 

EGF > ERK1/2 > GLI1 Prostate 

cancer 

EGF signaling increases invasion in 

vitro; GLI inhibition (GANT61) can 

reverse the enhanced invasive effect 

induced by EGF 

MEK1/2-ERK1/2i + 

HH-GLIi  

[125] 

MEK1/2 > ERK1/2 > 

GLI 

Acute T-cell 

leukemia 

MEK1/2 (PD98059) enhances down-

regulation of GLI1 protein by AKT 

inhibition 

 [126] 

MEK1 > RSK2 > GLI2  

(via GSK3 inhibition) 

Multiple 

myeloma 

Combination of GLIi (GANT58) and 

RSKi (SL0101) synergistically 

increases apoptosis 

MEK1/2-ERK1/2i + 

GLIi  

[132] 

Abbreviations: AP1, Activator protein 1; BCC, Basal Cell Carcinoma; Cyc, cyclopamine; EGF, Epidermal Growth 

Factor; EGFR, Epidermal Growth Factor Receptor; ERK, Extracellular Signal-Regulated Kinase; bFGF, basic 

Fibroblast Growth Factor; GCP, Granule cell precursors; GSK3, Glycogen Synthase Kinase 3; HH, Hedgehog; 
MEK, MAPK/ERK Kinase; PDA, Pancreatic Ductal Adenocarcinoma; PI3K, Phosphatidylinositol 3-Kinase; Ptch, 

Patched; RSK, Ribosomal S6 Kinase; SUFU; Suppressor of Fused; EGFRi, EGFR inhibitors; HHi, Hedgehog 

inhibitors; HH-GLIi, Hedgehog-GLI inhibitors; SMOi, Smoothened inhibitors; GLIi, GLI inhibitors; MEK1/2-

ERK1/2i, MEK1/2 or ERK1/2 inhibitors. Symbols: >, activation; I, inhibition. *Suggestions for possible future 
preclinical and clinical studies have been reported. 

 

Table 3. Experimental in vitro and in vivo models in which the HH-GLI signaling has been 

shown to act upstream of ERK1/2. 

Mechanism of action Tumor type Biological effects/functionss/functions Therapeutic implications* References 

HH-GLI > PDGFRα > ERK1/2 BCC Proliferation in vitro pERK1/2 as a readout of HH-GLI inhibition. 
MEK1/2i-ERK1/2i+HH-GLIi to prevent 

resistance 

[70] 

HH-SMO > MEK1/2-ERK1/2 BCC Survival in vitro; MEK1/2-ERK1/2 inhibition by 

IFNα determines apoptosis 
IFN+HH-GLIi to inhibit proliferation and 
induce apoptosis 

[72] 

BRAFi > HH/GLI > PDGFRα > Melanoma RAFi chemoresistance, proliferation in vitro BRAFi+PDGFRαi or HH-GLIi; pERK1/2 as [79] 
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ERK1/2 a read out of BRAFi resistance 

HH-SMO > MEK1/2-ERK1/2 Esophageal cancer Cell proliferation in vitro pERK1/2 as a readout of HH-GLI inhibition; 

HH/GLIi+MEK1/2-ERK1/2i 

[82] 

HH-GLI > ERK1/2 Gastric cancer Human cell line in vitro pERK1/2 status as a readout of HH/GLI 

inhibition 

[88] 

HH > ERK1/2 (EGFR-, HER2-, 

GLI-independent) 

Pancreatic 

tissue/cancer 

PDEC growth in vitro. HH reduces MEK1/2-

ERK1/2-dependent tumor cell growth in vitro 

HH-GLIi and/or MEK1/2-ERK1/2i in early 

tumorigenesis; K-Ras-independent tumor 

[96] 

HH-GLI > ERK1/2 > MMP9 Hepatocellular 

carcinoma 

Invasion in vitro MEK1/2-ERK1/2i and/or HH/GLIi  

(aggressive/invasive HCC) 

[99] 

HH-GLI // ERK1/2 Cholangiocarcinoma  Human cholangiocarcinoma cell lines in vitro MEK1/2-ERK1/2i+HH-GLIi [102] 

PTCHi > ERK1/2 Medulloblastoma In vitro sphere formation** Combined HH-GLIi+MEK1/2-ERK1/2i  

(HH subgroup) 

[109] 

HH-GLI > IGF1-IRS1 > 

MEK1/2-ERK1/2 

Glioma (CSC) In vitro CSC proliferation, clonogenicity, 

invasion**; resistance to temozolomide 

MEK1/2-ERK1/2i and/or HH/GLIi in order 

to overcome resistance to temozolomide 

[113] 

HH-GLIi no effect on ERK1/2 Glioma (bulk) GS enhances the inhibitory effect of SANT-1 (HHi) 

on cell growth while activating ERK1/2 

 [115] 

 Breast cancer ERK1/2 is required for inhibition of proliferation by 

cyc in vitro 

 [120] 

HH-GLI > ERK1/2 Clear cell renal 

carcinoma 

Cyc decreases ERK1/2 phosphorylation MEK1/2-ERK1/2i and/or HH/GLIi [123] 

HH > PTCH > ERK1/2  

(SMO independent) 

chronic lymphocytic 

leukemia 

ERK1/2 is involved in HH-GLI-dependent  growth 

in patient-derived cells 

MEK1/2-ERK1/2i+anti-HHAb to prevent 

SMOi resistance 

[128] 

SMO > ERK1/2 Acute myeloid 

leukemia 

Cyc inhibits cell growth, induces monocytic 

differentiation and ERK1/2 dephosphorylation** 

 [129] 

HH-GLI // ERK1/2 Chronic myeloid 

leukemia 

 MEK1/2-ERK1/2i+HH-GLIi [130] 

Abbreviations: BCC, Basal Cell Carcinoma; CSC, Cancer Stem Cells; Cyc, Cyclopamine; EGFR, Epidermal Growth 

Factor Receptor; ERK, Extracellular Signal-Regulated Kinase; EGFR, Epidermal Growth Factor Receptor; GS, 

Guggulsterone; HER2, Human Epidermal Growth Factor Receptor 2; HH, Hedgehog; IFNα, Interferon α; IGF1, 

Insulin-like Growth Factor 1; IRS1; Insulin Receptor Substrate 1; MEK, MAPK/ERK Kinase; MMP9, Matrix 

Metalloproteinase-9; PDEC, Pancreatic Duct Epithelial Cells; PDGFR, Platelet-Derived Growth Factor Receptor ; 
PTCH, Patched; SMO, Smoothened; MEK1/2-ERK1/2i, MEK1/2 or ERK1/2 inhibitors; HH-GLIi, HH-GLI inhibition 

or inhibitors; SMOi, Smoothened inhibitors; anti-HHAb, anti-Hedgehog blocking antibodies (see the text for details). 
Symbols: >, activate; //, parallel signaling. *Suggestions for further preclinical and clinical studies have been reported; 

**a direct dependence of this biological effect on ERK1/2 activity has not been addressed. 

 

 

 

 

 

 


