
Università degli Studi di Firenze 
 

Dipartimento di Scienze Biomediche Sperimentali e Cliniche 

 

Scuola di Dottorato di Ricerca in Scienze Biomediche 

 curriculum Oncologia Sperimentale e Clinica 

XXVII Ciclo 

(MED/04) 

 

 

 

Tesi di Dottorato di Ricerca 

 

 

 

THE RECEPTOR FOR UROKINASE-PLASMINOGEN 

ACTIVATOR (uPAR)  

CONTROLS PLASTICITY OF CANCER CELL 

MOVEMENT IN MESENCHYMAL AND AMOEBOID 

MIGRATION STYLE 

 

 

 

 

 

Candidato: Dr. Cristina Luciani 
 

 

 

 

Coordinatore del Dottorato:                                        Tutor: 

Prof. Persio Dello Sbarba                              Prof. Mario Del Rosso 
 

 

 

 

 

 



  

 

1 

 

TABLE OF CONTENTS 

 

Abstract        pag. 3 

 

1. INTRODUCTION       pag. 4 

1.1 TUMOR PROGRESSION      pag. 5 

1.2 CELL MIGRATION       pag. 7 

    Mesenchymal migration      pag. 10 

    Amoeboid migration               pag. 11 

    Mesenchymal-amoeboid transition     pag. 12  

    GTPase in cancer cell migration     pag. 14 

1.3 THE uPA/uPAR SYSTEM                                                    pag. 16 

1.4 TUMOR ANGIOGENESIS       pag. 19 

Characterization Endothelial Progenitor Cells   pag. 22 

 

2. PROJECT AIM       pag. 25 

 

3. MATERIALS AND METHODS     pag. 29 

 

4. RESULTS        pag. 39 

 

5. DISCUSSION                                       pag. 64 

 

6. REFERENCES       pag. 70 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alle donne della mia famiglia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

3 

 

Abstract 

 

The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant 

tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its 

property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to 

malignant cells. These features are typical of mesenchymal motility. Here we show that the 

full-length form of uPAR is required when prostate and melanoma cancer cells convert their 

migration style from the "path generating" mesenchymal to the "path finding" amoeboid one, 

thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. 

Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated 

an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated 

rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 

activation. While the mesenchymal movement was reduced upon silencing of uPAR 

expression, the amoeboid one was almost completely abolished, in parallel with a 

deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have 

shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-

actin co-localization under both mesenchymal and amoeboid conditions. Such co-

localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin 

interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and 

almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the 

mesenchymal and amoeboid style of movement by an inward-oriented activity based on its 

property to promote integrin-actin interactions and the following cytoskeleton assembly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

4 

 

 

 

 

 

CHAPTER 1:  

INTRODUCTION 

 



  

 

5 

 

1.1 TUMOR PROGRESSION 
 

Stepwise progression of human cancer has been clinically recognized. Several types of pre-

malignant lesion, such as dysplasia and hyperplasia, can be detected in diverse organs prior to 

appearance of fully malignant invasive tumors. The pre-malignant lesions are caused either by 

genetic alterations which induce monoclonal expansion of the cells, or by environmental 

factors, such as viral infection, which induce polyclonal expansion of the cells. Subsequently, 

accumulation of genetic alteration occurs in one (or a few) of the premalignant cells, and the 

cells convert into malignant ones of clonal origin and produce primary tumor. However, at the 

early stage of primary tumor expansion, the cells are not invasive and metastatic. Then, new 

clones with invasiviness and metastatic ability appear as a result of further accumulation of 

genetic alterations in the cells. Thus, fully malignant cells are invasive and metastatic; 

however, only a restricted fraction of the cells in a primary tumor are considered to be highly 

metastatic. 

Namely, cells in a primary tumor are phenotypically and biologically heterogeneous, and such 

heterogeneity is caused by the difference in the genes altered in each cancer cell [1]. 

Therefore, highly metastatic cells often acquire alterations in more genes than non-metastatic 

cells, and various genes are differentially expressed between metastatic and non-metastatic 

cells. Such cells selectively produce a metastatic tumor in a distant organ; thus, cells in the 

metatstatic tumor are considered to carry all the genetic alterations necessary to maintain 

malignant phenotypes of cancer cells, including invasiviness and metastatic ability. [1] (fig.1) 

 

 

 

Figure 1. Stepwise malignant progression of human cancer in association with accumulation of genetic 

alterations in cells. 

 

In a primary tumor are often contained sub-populations of metastatic and non-metastatic 

cancer cells because various genes are differentially expressed between these sub-populations. 
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Among the genes differentially expressed between metastatic and non-metastatic cells, several 

genes have the effect of inducing or suppressing metastasis. [1] 

One of the genetic alterations occurring significantly higher than in primary tumors in 

metastatic cells is Loss of Heterozygosity (LOH). These mutations suggest that some tumor 

suppressor genes are involved in acquisition of metastatic potential in cancer cells. In 

particular, frequent LOH on chromosome 14q has been consistently observed in metastatic 

and advanced colorectal carcinomas in the studies of three different groups [2,3], suggesting 

that chromosome 14q harbors a metastasis suppressor gene for colorectal carcinoma.  

To understand how cancer cells acquire metastatic potentials, it is necessary to clarify the 

causative genetic alterations for metastatic transformation of normal cells and resulting 

epigenetic alterations unique to cancer cells with metastatic ability [4]. We now know that a 

number of oncogenes and tumor suppressor genes are genetically altered in cancer cells and 

that those alterations accumulate during tumor progression. Thus, it goes without saying that 

alterations of those genes are causative events for multistage carcinogenesis, although we still 

do not know all genes are responsible for the acquisition of invasiveness and metastatic 

potential in cancer cells. 

Genetic alterations are not the only pro-metastatic event, actually is also known that the tumor 

microenvironment can promote the metastatic cascade and that intercellular communication is 

necessary for this to occur.  

Tumor microenvironment, or stromal compartment, is biologically heterogeneous, consisting 

of various cell types, such as fibroblasts, endothelial cells, and immune cells, along with 

growth factors and cytokines, and numerous extracellular matrix (ECM) components. 

Paracrine signals from these factors released by the tumor activate signaling and gene 

expression in the neighboring cells and vice versa, ultimately setting up a cycle of 

reinforcement and continued signal propagation. This interactions between the cancer cells 

and this stromal compartment are required for invasion, angiogenesis, and metastasis of 

cancer cells to ectopic sites [5-7]. 

In a recent study authors demonstrate that exosomes, which are small membranous vesicles 

secreted by most cell types into the extracellular environment, promote angiogenesis, 

invasion, and proliferation in recipient cells to support tumor growth and a prometastatic 

phenotype [8]. 

The development of metastases implicates the migration of cancer cells from the primary 

tumor to distant organs and this is the most devastating aspect of cancer, since most deaths 
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from cancer are due to metastasis. In this study we investigate the migration mechanisms 

involved during cancer progression. 

 

 

 

1.2 CELL MIGRATION 

 

 

Cell migration is a complex and heterogeneous process performed by all nucleated cell types. 

Some cells migrate only in the context of a defined substrate, such as epithelial cells moving 

along a basement membrane but not through interstitial tissues, whereas other cell types, 

including leukocytes or cancer cells, are versatile, as they interact with and migrate within 

virtually any substrate present in the body. 

In tridimensional extracellular matrix (ECM) migration is a multistep process involving 

changes in the cytoskeleton, cell-substrate adhesions and the extracellular matrix components. 

Cell migration in three-dimensional ECM can be schematized into five separate steps [9]: 

1. lamellipodium extension at the leading edge 

2. formation of new focal adhesions complexes 

3. secretion of surface proteases to ECM contacts and 

focalized proteolysis 

4. cell body contraction by actomyosin complexes 

5. tail detachment  

Lamellipodium extension at the leading edge involves actin polymerization, and it is known 

that lamellipodia consist of branched or unbranced filament networks formed through the 

actin-nucleating activity of the actin-related proteins 2/3 (Arp2/3) protein complex. Rac 

stimulates new actin polymerization, acting on Arp2/3 complex, which binds to a family of 

proteins called nucleating promoting factors [10;11] and initiates the formation of new actin 

filaments on the sides of existing filaments to form a branching actin network . The Arp2/3 

complex is activated by Rac through its target insulin receptor tyrosine kinase substrate p53 

(IRSp53) [12]. Rac interacts with IRSp53, which in turn interacts through an Src-homologous 

domain 3 (SH3) domain with a member of the WASP family, which then binds to and 

activates the Arp2/3 complex. Rac is required for lamellipodium extension induced by growth 

factors, cytokines and extracellular matrix components [13]. Rac activation by both tyrosine 

kinases and G-protein-coupled receptors is dependent on phosphoinositol3-kinase (PI3K) 
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activity, and inhibitors of PI3K block Rac activation. During lamellipodia extension 

phosphoinositol phosphates (PIPs) also bind and activate Guanine nucleotide exchange 

factors (GEFs) that regulate the activity of Rac that bind the Arp2/3 complex. A number of 

myosins, the main motor protein in eukaryotic non-muscle cells, have been implicated in cell 

migration [14]. Myosin light chain (MLC) phosphorylation is enhanced in the lamellipodial 

region of cells, which suggests a role for myosins in lamellipodium extension. Rac can affect 

the phosphorylation of both myosin heavy chain (MHC) and MLC via activation of its 

downstream kinase p21 activated-kinase (PAK) [15]. 

Formation of new focal adhesions complexes is localized in the lamellipodia of most 

migrating cells. Upon the attachment of the extending lamellipodium to the extracellular 

matrix, integrins come into contact with ECM ligands and cluster in the cell membrane 

interacting with the focal adhesion kinase  (FAK), α-actinin and talin. All these proteins can 

bind adaptor proteins through SH2, SH3 or proline rich domains to recruit actin binding 

proteins (vinculin, paxillin and a-actinin) as well as regulatory molecules PI3K to focal 

complexes. Rac is required for focal complex assembly and cell adhesion to the extracellular 

matrix itself activates Rac [16,17]. 

Secretion of surface proteases to ECM contacts and focalized proteolysis is crucial for cells to 

migrate in a three-dimensional matrix and, even on a two-dimensional matrix proteases 

production can be important for migration. There are some indications that Rho GTPases 

could play a role in regulating the release and/or activation of secreted proteases. For 

example, Rac is required for shear stress-induced matrix metalloproteinase 9 (MMP9) 

expression in chondrocytes, and activated Rac can induce expression of the MMP1 in 

fibroblasts [18,19]. Constitutive expression of activated Rac induces activation of Jun N-

terminal kinase (JNK), which phosphorylates and activates the transcription factor Jun. Jun is 

a component of the activator protein 1 (AP-1) transcription factor complex and regulates 

transcription of many genes, including MMP genes [20]. Furthermore, in HT1080 cells, Rac1 

mediates MMP2 activation and membrane type matrix metalloproteinase (MT1-MMP) 

expression/processing during the encounter between invading tumor cells and type I collagen 

rich stroma, thereby facilitating collagenolysis and cell invasion [21]. 

Cell body contraction is dependent on actin filaments and myosin II interaction. Stress-fiber 

assembly and contraction, which are controlled by myosin II, are predominantly induced by 

the small G-protein Rho and its important downstream effector, the Rho-associated 

serine/threonine kinase (ROCK) [22]. Rho acts via ROCKs to affect MLC phosphorylation, 

both by inhibiting MLC phosphatase and by phosphorylating MLC. It is likely that ROCKs 
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and MLCK act together to regulate different aspects of cell contractility, because ROCK 

appears to be required for MLC phosphorylation associated with actin filaments in the cell 

body, whereas MLCK is required at the cell periphery. This allows the cell to separately 

control cortical actin dynamics from contractions in inner regions [23].  

Tail detachment occurs when cell-substrate linkages is preferentially disrupt in the back of the 

cell, whereas the leading edge remains attached to the ECM and further elongates. At the 

trailing edge, focal complex disassembly occurs through several mechanisms dependent on 

the type of cell and strength of adhesion to the extracellular matrix. In slowly moving cells tail 

detachment appears to depend on the action of the protease calpain, which cleaves focal 

complex components like talin and cytoplasmic tail of  and  integrins at the rear of cells. 

A reduction in Rho activity could inhibit tail detachment, through decreased actomyosin 

contractility [24,25]. 

For most cells, including epithelial, stromal, and neuronal cells, migration phases are confined 

to morphogenesis and end with terminal differentiation toward intact tissue to become 

reactivated only for tissue regeneration or during specific phases of neoplastic progression 

such as metastatic dissemination or angiogenesis. Furthermore cells can move within tissues 

collectively or as single cells.  

In collective migration, cells maintain their cell–cell junctions and move as multicellular 

connected strands or chords into tissues; the leading edge of a moving cell group is formed by 

one or several cells that utilize actin-mediated ruffles and integrin-dependent traction to 

perform steps 1–4 of the migration sequence. In cell cultures, collective migrating cancer cells 

develop preferential integrin and protease (MT1-MMP, MMP-2) engagement in a subset of 

cells at the leading edge [26]. 

The junctions within invading collective cells are stabilized by cadherins, members of the 

immunoglobulin superfamily (e.g. NCAM or activated leukocyte adhesion molecule) [27-29] 

and gap-junctional cell–cell communication [30,31]. 

The rear of the leading cell(s) maintain the adhesive interaction with other cells, so the 

retraction of the trailing edge has an important modification: as it glides along the ECM 

structure, neighboring cells are dragged forward along the established migration track by 

means of cell–cell adhesion [32,33]. While the leading cells generate actin- and integrin-

mediated traction, a linear cortical actin network extends along cell–cell junctions into deeper 

regions of the collective, suggesting that cortical actin plays a role in sustaining collective 

integrity [34-36]. By contrast, non-neoplastic developing glandular ducts and blood vessels 

contain polarized cells that form an inner lumen andnewly produce a surrounding basement 
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membrane [37]. Sprouting blood vessels, unlike other groups of cells undergoing collective 

migration, use cadherins to recruit pericytes as a second cell type; these pericytes then 

participate in the de novo synthesis of an encircling basement membrane [38]. 

While collective movement has been associated with tumor cell entry into the open lymphatic 

vessels, the movement of individual cells is required for cancer cells to sneak across basement 

membranes, to enter the bloodstream and disseminate to distant organs [39]. The invasion 

strategy of single tumor cells develops according to at least two distinct modes of migration: 

the so-called elongated-mesenchymal mode and rounded-amoeboid mode. 

 

 

Mesenchymal migration 

 

Cells that use mesenchymal migration accomplish the complete five-step migration sequence 

[39]. In 3D tissues, mesenchymal cells adopt a spindle-shaped, fibroblast-like morphology, as 

characteristic for fibroblasts, myoblasts, single endothelial cells or sarcoma cells [40;41]. The 

elongated morphology is dependent on integrin-mediated adhesion dynamics and the presence 

of high traction forces on both cell poles [42]. Blocking of integrins in spindle-shaped tumor 

cells by antibody or small-molecule inhibitors causes cell retraction, acquisition of spherical 

shape and impaired migration rates [43]. 

Concomitant to integrin and actin focalization at substrate-binding sites, mesenchymal cells 

recruit surface proteases to digest and remodel ECM [44]. b1 and b3 integrins, MT-MMPs 

and other proteases then colocalize at contact regions to ECM fibers, proteolytically cleave 

ECM molecules near to the cell surface, and generate structural matrix defects along cell 

migration tracks [44;45]. Focal contact formation and turnover occur in the timescale of 10–

120 minutes, resulting in relatively slow migration velocities (0.1–2 mm/min) in 3D models 

[46-49]. If other cells follow along the newly generated matrix defect, a moving cell chain 

evolves and is guided by matrix strands (contact guidance). 

In migrating mesenchymal cells, Rac and Cdc42 generate pseudopod and lamellipod 

dynamics at outward edges, favoring a rapid and dynamic type of b1 integrin engagement 

towards 2D and 3D substrata. Interfering with Rac and Cdc42 activity perturbs cell extension 

and polarized force generation, thereby severely impairing migration [50]. Rho, on the other 

hand, stabilizes initial integrin–substrate linkages, increases focal contact size and strength, 

and further thickens actin filaments through several mechanisms [51;52]. In mesenchymal or 

adhesive cells interacting with 2Dsubstrata, active Rho leads to increased adhesiveness, stress 
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fiber formation,and retardation of migration speed [51;52]; for cell migration within 3D 

substrata, the functions of Rho with regard to cell shape and adhesion dynamics appear to be 

more complex (see below). Together, the coordination and synergy between polarized 

cytoskeletal dynamics at the leading edge, as mediated by Rac and Cdc42, and the somewhat 

opposing effect of Rho-mediated adhesionstrengthening and cell contractility is thought to 

play a key role in adhesion-dependent cell migration and related dynamics in cell morphology 

[50-52] (fig. 2). 

 

Amoeboid migration 

 

Arguably the most primitive and in some ways the most effective form of cell migration is 

amoeboid movement, which mimics features of the single cell behavior of the amoeba 

Dictyostelium discoideum. Dictyostelium is an ellipsoid cell that has fast deformability 

(within seconds) and translocates via rapidly alternating cycles of morphological expansion 

and contraction.  

In higher eukaryotes, amoeboid movement is carried out by hematopoietic stem cells, 

leukocytes and certain tumor cells [53-55]. These cells use a fast ‘crawling’ type of movement 

that is driven by short-lived and relatively weak interactions with the substrate. Integrins 

mediated adhesion is completely or partially dispensable for cell migration within connective 

tissue, both in vitro and in vivo. Amoeboid migrating cells are highly deformable and, 

because of their lack of stable focal contacts, move at high velocities (2–30 mm/min) [46]. 

Shape change is generated by cortical filamentous actin, which mediates cell dynamics as 

well as providing stiffness to the cell body, but mature focal contacts and stress fibers are 

lacking [56;57].  

In amoeboid migration cells use protease independent physical mechanisms to overcome 

matrix barriers, including adaptation of the cell shape to preformed matrix structures (contact 

guidance), extension of lateral footholds (‘elbowing’) [58] and squeezing through narrow 

spaces constriction rings) [57]. Such shape-driven migration allows cells to glide through or 

circumnavigate, rather than degrade, ECM barriers [59]. The ellipsoid cell shape in amoeboid 

migration requires actin polymerization along the plasma membrane to stiffen and contract 

the cell cortex. 

These cortical actin dynamics are critically controlled by the small GTPase RhoA and its 

effector ROCK to generate cortical tension, stiffness and the maintenance of roundish cell 

morphology [60;61]. In contrast to the five-step migration paradigm, focal contacts and 
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focalization of proteolysis are thus eliminated in amoeboid movement, whereas fast and non-

focalized receptor assemblies at cell–matrix interactions are retained. (fig. 2) 

Among environmental conditions, an interesting paper has highlighted the role of matrix-

bound plasminogen inhibitor type-1 (PAI-1) in supporting amoeboid movement and cell 

blebbing of human colorectal cancer cells via RhoA/ROCK1 signaling [62]. 

 

 

Figure 2. Mesenchymal, metalloproteinase-dependent mode and amoeboid mode. Migrating tumor cells can 

shift between the two type of motility. This shift appears to be high dependent on an inverse relationship 

between Rho and Rac activity. 

 

 

Mesenchymal–amoeboid transition (MAT) 

 

Mesenchymal movement can convert towards amoeboid migration. Known mechanisms 

leading to mesenchymal–amoeboid transition (MAT) are the abrogation of pericellular 

proteolysis using protease inhibitors, the strengthening of RHO/ROCK signal pathways, and 

the weakening of integrin–ECM interactions by antagonists.  

Mesenchymally migrating tumor cells such as HT1080 fibrosarcoma and MDA-MB-231 

mammary carcinoma cells cease their proteolytic migration after the addition of protease 
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inhibitors that target MMPs, ADAMs, cathepsins and serine/threonine proteases [44]. Instead 

of widening the pericellular space and cleaving ECM fibers, the cells then switch to amoeboid 

behavior involving vigorous shape change and the ability to squeeze through narrow regions, 

thereby rescuing their migration independently of pericellular proteolysis [44]. 

Consistent with an amoeboid phenotype, both  integrin distribution and filamenous actin 

adopt a diffuse cortical pattern, reminiscent of migrating lymphocytes [59]. MAT after 

inhibition of surface proteases was confirmed in vivo for tumor cells injected into the mouse 

dermis [44]. A similar phenotypic change was obtained in fibroblasts populating excisional 

wounds in rats treated with the broad-spectrum MMP inhibitor, GM6001. Despite MMP 

inhibition, these fibroblasts retain the capacity to infiltrate the fibrin-rich wound matrix; 

however they now exhibit roundish amoeboid morphology coupled to a strongly reduced 

capacity to remodel the wound and generate scar contraction. 

How protease inhibitors interfere with the regulation of integrin and cytoskeletal dynamics 

and thereby reprogram mesenchymal cells towards amoeboid movement remains unknown. 

Similar transition from mesenchymal to amoeboid movement occurs in HT1080 cells that 

penetrate thick 3D matrigel layers after constitutive activation of the Rho effector kinase 

ROCK [63]. ROCK acts by increasing myosin-II-mediated actin filament stabilization and 

contraction [64;65]. Active Rho A is required for diffuse cortical actin polymerization and 

cell retraction in dividing cells [66] and overexpression of constitutively active ROCK causes 

cortical contraction and cell rounding in originally mesenchymal cell lines, such as 3T3 

fibroblasts and HT1080 cells [63,67]. Active ROCK not only causes HT1080 cells to loose 

their mesenchymal characteristics and convert to a roundish, contracted shape: driven by 

small filopodia and blebbing-type cell protrusions that contain cortical actin, the cells convert 

to a protease-independent migration type, reminiscent of amoeboid movement [63]. Because 

ROCK activation generates cortical actin and cell rounding in some cells [61,63,68], yet 

stabilizes stress fibers and causes cell spreading, flattening, and migratory cell arrest in other 

cell types [64], it appears that additional endogenous or environmental cofactors determine if 

cell–substrate adhesions are stabilized or weakened by Rho/ROCK-mediated signals.  

Reducing attachment forces without interfering with cell contractility prompts cell rounding 

and transition towards amoeboid movement. In 3D collagen substrate, such approaches  

include the following: selection for low endogenous  integrin expression by FACS sorting; 

titrating -integrin-mediated adhesion downwards by blocking antibody; interfering with the 

cytoplasmic  integrin domain by a dominant-negative peptidomimetic; and abrogating 

integrin expression by knockout strategies. All these procedures uniformly generate a 
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roundish yet dynamic cell shape, an even surface distribution of (residual)  integrins, and a 

non-focalized cortical layer of filamentous actin, supporting amoeboid migration in 3D 

collagen lattices. Together, these findings indicate that cells can use a spectrum of migration 

modes ranging from adhesive to nonadhesive and from proteolytic to protease-independent 

[59]. 

 

 

GTPases in cancer cell migration 

 

As previously described the main GTPases involved in migration belong to the Ras 

superfamily. They are small (21-25 kDa) molecules that share structural homology and 

become activated only when bound to GTP. The best-characterized molecules are Rho, which 

controls the stress fibers and focal adhesion formation, and Rac and Cdc42, which regulate 

membrane ruffling, and filopodium formation, respectively. A structural feature that 

distinguishes the Rho proteins from other small GTPases is the so-called Rho insert domain 

located between a β-strand and an α-helix within the small GTPase domain [69-71]. Typically 

Rho proteins are 190-250 residues long and consist only of the GTPase domain and short 

terminal C-terminal extensions. Within their GTPase domains, they share approximately 30% 

amino acid identity with the Ras proteins and 40-95% identity within the family. All members 

contain the sequence motifs characteristic of all GTP-binding proteins, bind to GDP and GTP 

with high affinity. In addition, the majority of members undergo C-terminal post-translational 

modification by isoprenoid lipids. Together with other C-terminal modifications or sequences, 

isoprenoid addition facilitates their subcellular location and association with specific 

membranes or organelles. These lipid modifications are mainly palmitoylation or prenylation, 

being farnesylation and geranyl-geranylation the most frequent post-translation modifications 

[72]. 

Rho GTPases work as sensitive molecular switches existing either in an inactive, GDP-bound 

form or an active GTP-bound form. They are endowed with GTP hydrolytic activity, mainly 

involved in cytoskeleton rearrangements and cell motility, but also involved in cell 

proliferation, transformation and differentiation [70]. Among other members, we will focus 

our attention on the Rac and Rho subfamilies, as they are the main effectors of cell motility. 

The exchange of GDP to GTP and thus the activation of Rho GTPases is catalyzed by guanine 

nucleotide exchange factors (GEFs), which act downstream of numerous growth factor 

receptors, integrins, cytokine receptors, and cadherins. Rho GTPases are key integrating 
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molecules from different extracellular signals, as they can be activated by different GEFs. In 

turn, GTP-bound active GTPases can interact with a plethora of different effectors which 

mediate the different cellular functions of this family of proteins. Rho GTPase effectors are a 

large group of proteins and include actin nucleation promoting molecules, adaptors, as well as 

kinases. Two factors concur to determine specific Rho GTPase function: tissue specificity of 

GTPase effectors and distinct intracellular localizations of closely related Rho GTPases, due 

to different lipid modifications [69]. 

The GEF family is really large, consisting of over 70 proteins mainly belonging to the Dbl or 

the Dock families [73;74]. Lipid modification of Rho and Rac GTPases are also strategic for 

subcellular compartmentalization, allowing interaction with membrane-localised GEFs upon 

masking of isoprenoids by GDI. The hydrolysis of GTP and contact with GAPs allows a new 

association of the GTPases with GDI and return to the cytosol [75]. In addition, Rho GTPases 

can also be regulated by phosphorylation. RhoA has been reported to be phosphorylated by 

protein kinase A and G (PKA and PKG) at serine at position 188, without any modification of 

its interaction with GEFs, but increasing its interaction with GDI and leading to extraction of 

RhoA from plasmamembrane [76]. Inactivation of Rho GTPases is due to an intrinsic GTPase 

activity, which hydrolyses GTP to GDP. However, this activity is very weak and needs to be 

up-regulated by GTPase activating enzymes (GAPs). Of note, Rnd1-3 [77] and RhoH [78;79] 

are not regulated via GAPs, due to their inability to hydrolyse GTP, and are therefore 

regulated through gene expression and protein degradation.          

An additional negative control is achieved through Rho guanine nucleotide dissociation 

inhibitors (GDIs). They bind Rho GTPases and prevent their activation by means of blocking 

interaction of the GTPbound form with effectors, sequestering GDP-bound Rho proteins in 

the cytoplasm away from the GDP-GTP cycle, as well as by hanging membrane compartment 

to GTPases [80].                     

Beside the GEF family, the GAP group is also huge: more or less 100 members have been 

found in the human genome, but their regulation are even less clear than those of the GEFs. 

Indeed, external to their GEF or GAP domains, these proteins strongly diverge in structure 

and secondary functions [74;81]. 

The Rac-related subfamily includes Rac1 (and its splice variant Rac1b), Rac2 and Rac3 [72]. 

Several Rac related proteins, sharing more than 80% identity, they stimulate the formation of 

lamellipodia and membrane ruffles, presumably through interaction with the WAVE complex. 

The splice variant Rac1b contains an additional C-terminal 19-residue insert and is 

constitutively active due to an increased intrinsic guanine nucleotide exchange rate, decreased 
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intrinsic GTPase activity, its inability to interact with Rho GDI and enhanced association with 

the plasma membrane [82;83]. In addition, Rac1 can also be regulated by phosphorylation by 

Akt on Ser71, thereby leading to inhibit the binding of GTP but not Rac1 GTPase activity 

[84]. Rac1 is ubiquitously expressed, whereas Rac2 is expressed only in hematopoietic cells, 

where it seems to have specialized functions [85]. Rac2 inactivation has been correlated with 

several neutrophilic, phagocytic and lymphocytic defects [86]. Indeed, Rac2 is mainly 

responsible for activation of NADPH oxidase and consequent generation of reactive oxygen 

species (ROS) in hematopoietic cells [87]. Finally Rac3, highly expressed in brain and 

upregulated upon serum stimulation of fibroblasts [88], is strongly localized to the 

membranes where it appears to be hyperactive [89]. Animals have 3 Rho isoforms, RhoA, 

Rho B, and Rho C, sharing 85% amino acid sequence identity [69; 74]. Despite their 

similarity, both modulators (GEFs and GAPs) and downstream effectors show favoured 

interaction with single Rho isoforms, and the three proteins play differential roles in cells. 

Rho A and Rho C play key roles in the regulation of actomyosin contractility and in cell 

locomotion, while Rho B, primarily located in endosomes, has been shown to regulate 

intracellular trafficking and cell survival [90]. Mostly, the functional differences are a 

consequence of divergence in their C-terminal 15 amino acids, where the highest level of 

difference is found. 

 

 

1.3 THE uPA/uPAR SYSTEM 

 

 

Generation of plasmin catalyzed by urokinase-type plasminogen activator (uPA) plays an 

important role in pericellular proteolysis during tissue remodeling and cell migration in many 

normal and pathological processes, such as trophoblast invasion, mammary gland involution, 

spermatocyte release, wound healing, psoriasis, and cancer cell invasion [91-93].  

uPA is a serine protease of 45-55 kDa that exists in a proenzyme form (pro-UPA), which, 

upon activation, activates plasminogen to the active serine-protease plasmin. It has a specific 

membrane receptor: urokinase-type plasminogen activator receptor (uPAR). 

Plasmin is a broad-specificity protease, which degrades several ECM components, such 

as fibronectin, laminin and collagen [94]. uPA triggers a proteolytic cascade that involves the 

activation of MMPs, which are responsible for collagen degradation. In addition, the ability 

of uPAR to localize and focalize the proteolytic activity of uPA on the cell surface is 
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extremely important for the invasive ability of tumor cells. The uPA/uPAR complex, besides 

its proteolytic function as a zymogen, also functions as a vitronectin receptor and it 

participates in normal and tumor cell motility processes such as and tumor cells migration and 

invasion [91;95].  

uPAR is composed of three homologous domains (D1, D2, and D3) and is extensively 

glycosylated and attached to the cell membrane by a GPI (Glycosyl Phosphatidylinositol) 

anchor. 

Due to its GPI-anchor attachment [96], uPAR is devoid of a cytoplasmic domain, a feature 

that renders uPAR incapable of signalling. This characteristic requires membrane partners 

enabling uPAR to deliver signals that propagate to the cell contractile apparatus. Most 

consistently uPAR has been found associated with integrins [92;93;97].  The integrin-

uPAR interaction regulates several cellular responses, such as the EGF (Epidermal Growth 

Factor)-receptor-dependent proliferation of a tumor cell line by activating FAK (Focal 

Adhesion Kinase), GRB2 (Growth Factor Receptor-bound protein-2), and ERK (Extracellular 

signal Regulated Kinase)/MAPK (Mitogen Activated Protein Kinases) and 

downregulating p38 MAPK. uPA binding to uPAR activates several tyrosine kinases from 

the Src family (Fyn, Lck,HCK), which in turn activates SHC, PI3K (Phosphatidylinositol 3-

Kinase)-Akt1 pathway and cell migration. It also stimulates the JAK (Janus kinase)-

STAT (Signal Transducer and Activator Of Transcription) pathway, PKC-Epsilon (Protein 

Kinase-C), and CSNK2 (Casein Kinase-2) [98] (fig.3). 

Receptor-bound uPA can be inhibited by PAI-1 (Plasminogen Activator Inhibitor-1) and PAI-

2, and uPAR provides a mechanism for internalization of PAI1-inactivated uPA. 

The uPAR therefore plays an important role both in localizing and modulating cell surface 

plasminogen activation. uPA expression can also be up-regulated in tumor cells 

by GFs (Growth Factors), including HGF/SF (Hepatocyte Growth Factor/Scatter 

Factor), VEGF (Vascular Endothelial Growth Factor), EGF, IGF-I (Insulin-like Growth 

Factors-I) and IGF-II, bFGF (basic Fibroblast Growth Factor), LPA (Lysophosphatidic Acid), 

CSF1 (Colony Stimulating Factor-1), vasopressin, and thrombin, among others. Most of these 

exogenous signals, through their receptors, activate PLC (Phospholipase-

C), PKC, Ras, Raf, MEK1 (MAPK/ERK Kinase-1) and ERK1/2 and also members of the Ras 

superfamily of small GTP-binding proteins. 

uPA/plasmin-mediated proteolysis is critical for cellular migration and tissue remodeling in 

inflammation, tumor propagation, and metastasis. uPA is also essential for pericellular 

proteolysis and is localized to the leading edge of migrating cells.  
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The interactions between uPA and uPAR can facilitate cellular movement, which contribute 

to remodeling of the lung in ARDS or the interstitial lung diseases. This interaction at the 

cancer cell surface is critical event in the pathogenesis of neoplastic growth and metastasis, 

mediating tissue remodeling, tumor cell invasion, adhesion, and proliferation. In addition, the 

binding of uPA to uPAR mediates cell proliferation in several cell types, including non-

malignant lung epithelial cells, lung carcinoma-derived cells, and mesothelioma cells [99]. 

 uPAR is also highly expressed during tissue remodelling in the placenta and migrating 

keratinocytes in wounds. The receptor is, however, implicated in providing oval progenitor 

cells with a growth advantage during liver regeneration. Regulation of the uPA-uPAR system 

is therefore germane to the pathogenesis of disparate pathological conditions, including lung 

injury and neoplasia. 

 

 

Figure 3. uPA/uPAR pathway. : uPAR binds uPA in its active and zymogen (pro-uPA) forms. uPA cleaves 

plasminogen, generating the active protease plasmin, which cleaves and activeates matrix metalloproteases 

(MMPs). Plasmin can also activate pro-uPA. Both plasmin and MMPs degrade many extracellular matrix 

(ECM). 
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uPAR is overexpressed across a variety of tumor cell lines and tissues, including breast, 

ovary, lung, pancreas, colon, kidney, liver, stomach, endometrium, bone and high endogenous 

level of uPAR was also found to be associated with cancer invasion and metastasis [100-102]. 

 uPA also aids in anti-thrombolytic activities to remove blood clots and helps stimulate 

angiogenesis in tumor cells [103].                                                                              

In gastric cancer lesions, uPAR expression has been observed in macrophages, endothelial 

cells and cancer cells located at the invasive front of the tumors [104,105]. Increased 

expression of uPAR antigen or mRNA in tissue extracts and blood from patients with gastric 

cancer have been associated with some clinico-pathological aspects of the disease including 

poor prognosis [106-109]. Interestingly, studies in bone marrow aspirates from curatively 

resected patients with gastric cancer show that those cases with uPAR-positive cancer cells 

disseminated into the bone marrow have worse prognosis than patients with disseminated 

uPAR-negative cancer cells [110,111]. 

Elevated expression of uPAR in tumors and particularly in cancer cells may be an indication 

of more aggressive gastric cancers. Therefore, uPAR expression in cancer cells may represent 

an important prognostic marker for patients with cancer, and may become an important target 

for cancer diagnosis and therapy. 

Experimental evidences accumulated over the last 25 years connote the receptor for the uPAR 

as the prototype receptor regulating the mesenchymal style of cell movement by triggering 

pericellular proteolysis of invasive cells. 

On these considerations, uPAR appears a good candidate molecule capable of modulating 

integrin function and to sustain the style of movement of a cell. Here we show that uPAR 

bridges the mesenchymal and amoeboid style of movement in a series of prostate carcinoma 

and melanoma cell lines, by its property to warrant the integrin-mediated connection between 

actin cytoskeleton and the cell membrane. 

 

 

1.4 TUMOR ANGIOGENESIS 

 

 

Tumor growth requires the induction of new capillary blood vessel, thus neoplastic cells 

beckon endothelial cells (ECs) in the primary cancer site [112]. 

In healthy adults, ECs remain quiescent for years. However, these cells can very rapidly start 

to proliferate and migrate to form new vessels in conditions of injury, inflammation, cancer, 
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or other pathologies. Vessel sprouting in mammals is a highly coordinated process, relying on 

a migratory (but non- or rarely proliferative) tip cell, and trailing proliferating stalk cells, 

elongating the sprout shaft.  

In the figure 4 is shown a schematic pattern of angiogenesis, which involves signaling 

through VEGFR2, the receptor for the pro-angiogenic factor VEGF [113]. VEGFR2 signaling 

activates the expression of Dll4 on the surface of tip cells. Dll4 is a ligand for the Notch 

receptor expressed in neighboring stalk cells. Activation of Notch is a potent pro-stalk cell 

signal in part by downregulation of VEGFR2 and other VEGF coreceptors (like neuropilin-1) 

and upregulation of VEGF inhibitors (like the VEGF trap VEGFR1) in stalk cells. By 

activating Notch signaling in neighboring cells, a tip cell thus ensures that it is flanked by 

stalk cells [114]. In this feedback system, tip cells promote neighboring ECs to assume the 

stalk cell phenotype in an effect known as lateral inhibition. 

An exciting discovery was that tip and stalk cells are not genetically predetermined, 

irreversible cell fates, but rather represent plastically changing, reversible EC phenotypes. 

Tip cells do not remain at the tip for extended periods of time, but continuously shuffle as 

ECs compete for the position at the tip [116]. Indeed, cells are seen to overtake each other, 

with cells moving towards or away from the tip [115]. During this movement, cellular 

VEGFR1 and VEGFR2 levels are continuously readjusted to account for the changes in Dll4 

expression in neighboring cells. Thus, the tip-stalk cell pattern is a dynamic shuffle among 

competitive ECs. Until recently, only genetic signals were known to specify the tip versus 

stalk cell identity, but recent evidence indicates that metabolism is also a key determinant of 

the EC subtype specification. 

During maturation of newly formed vessels, EC secretion of PDGF-B and other signals 

attracts PDGFR-β expressing pericytes in order to stabilize and functionalize nascent vessels 

[117]. Mural cell coverage contributes to vessel maturation and induces ECs to once again 

become quiescent phalanx cells, a process relying on angiopoietin- 1/Tie2 signaling, the 

PHD2 oxygen sensor, junctional molecules (VE-cadherin, claudins, etc.), and other signals 

[118]. 
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Figure 4. Cancer angiogenesis: 1) Cancer cells issues angiogenic growth factors (VEGF); 2) VEGF activates 

endothelial cells, which acquire the angiogenic phenotype; 3) Endothelial cells release metalloproteinases to 

dissolve the ECM and migrate to the cancer ; 4) Once molded new vessels within the tumor,  some metastatic 

cells may enter the bloodstream to get to other organs.  

 

Identification of an increase of endothelial progenitor cells (EPCs) or angioblasts in peripheral 

blood of cancer patients, has highlighted an alternative mechanism of tumor vessel formation 

based on EPCs recruitment from bone marrow [119]. 

Similarly to mature endothelial cells involved in the “classical” process of angiogenesis, 

EPCs are able to migrate and differentiate to form primitive tubes in Matrigel. Moreover, 

EPCs can form endothelial-like colonies in vitro and show a high
 
proliferative rate, that is 

lacking in mature ECs [120]. However, it is not yet clear how to define the EPCs that really 

contribute to vessel formation and their exact role in the process [121]. In this part of the 

project we propose to use cells from human umbilical cord blood taking into consideration 

their capability to form a capillary network in vitro coupled with a high proliferation potential.  

Cancer cells  are not the only cells which recruit EPCs, also fibroblasts cancer-associated 

(CAF) are able to engage EPCs to tumor site through the secretion of stromal cell-derived 

factor-1 (SDF-1), thereby promoting tumor vascularisation [123]. In order to move towards 
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tumors, to enter into tumor mass and to take a part in new vessel formation EPCs must cross 

the endothelial barrier and to move within the tumor microenvironment. 

Preliminary data obtained in our laboratory show that EPCs are more prone than mature EC to 

shift from mesenchynal to amoeboid style of movement (MAT, mesenchymal to amoeboid 

transition). 

Once in the tumor EPCs, besides taking part in tumor angiogenesis,  synergize with CAFs to 

promote an epithelial to mesenchymal transition (EMT) and a MAT of cancer cells [116]. 

In the second part of the project we plan to investigate the role of uPAR in modulating EPC 

mesenchymal and amoeboid movement in order to control both types of EPCs movement 

styles by controlling uPAR. 

 

 

Characterization of Endothelial Progenitor Cells  

 

 It was discovered that 3 markers characterize the functional early EPC: CD133, CD34, and 

the vascular endothelial growth factor receptor-2 (VEGFR-2), termed also kinase insert 

domain receptor (KDR) or Flk-1 [124,125]. CD133 (termed originally AC133), an early 

hematopoietic stem-cell marker, is a 120- kDa transmembrane polypeptide, expressed on 

hematopoietic stem and progenitor cells from human bone marrow, fetal liver, and peripheral 

blood [126]. 

We can distinguish two cellular populations: 

 “Early EPCs” that we can find both in the bone marrow and immediately after their migration 

into the systemic circulation. These cells are positive, as we mentioned above, for 

CD133/CD34/VEGFR-2. 

 “Late EPCs” that are present only in peripheral blood. These cells are positive for 

CD34/VEGFR-2/CD31/VE-cadherin and obviously lose CD133 and begin to express von 

Willebrand factor (vWF). 

It seems that the loss of CD133 reflects the transformation of circulating EPCs into more 

mature endothelial-like cells. However, it is unclear at which time point the EPCs begin to 

lose CD133 during their transmigration from the bone marrow into the systemic circulation or 

later during their circulation. CD133, therefore, is not detectable on the surface of human 

umbilical vein ECs. Circulating EPCs express with different intensity a variety of markers, 

which are typical for the endothelial lineage. These markers include platelet endothelial cell 
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adhesion molecule-1 (CD31), CD146, VE-cadherin, von Willebrand factor, endothelial NO 

synthase, and, on stimulation, E-selectin.  

Furthermore, an interesting observation contrasting the notion of CD34-positive EPC 

represents the work of Harraz et al.[127]. The authors suggest that CD34-negative angioblasts 

are a subset of CD14-positive monocytic cells and that these monocytes have the potential to 

transdifferentiate into ECs. Monocytes may also coexpress endothelial lineage markers and 

form cord-like structures in vitro under angiogenic conditions. Recent data demonstrate that 

human peripheral blood contains pluripotent stem cells, which are a subset of peripheral 

monocytes [128]. These cells can be induced by different growth factors or cytokines (eg, 

VEGF) to acquire different (eg, endothelial) phenotypes. This transdifferentiation potential of 

monocytic cells into cells with endothelial characteristics would suggest a possible common 

origin, respectively the existence of a bone marrow–located hemangioblasts. 

The colonies of early EPCs were termed colony forming unit–endothelial cells (CFU-EC). 

These cells are able to ingest and kill microbes, a characteristic of macrophages but not of 

ECs. In fact, they are not able to form capillary-like structures in vivo but facilitate 

angiogenesis by paracrine secretions of different growth factors.  

Subsequent studies it became clear that these colonies were in fact not endothelial cells, but 

consisted of a core of round, hematopoietic cells, including myeloid progenitor cells, 

monocytes and T lymphocytes, and spindle-shaped monocytes/macrophages that display 

some features of endothelial cells. Thus, as mentioned above, early-outgrowth cells can also 

support angiogenesis in an indirect manner by producing essential growth factors and 

cytokines, similar to monocytes.  

The colonies of late EPCs are composed of true endothelial cells, endothelial colony forming 

cells (ECFCs) and have the classical endothelial cobblestone phenotype and display a wide 

range of vascular endothelial markers, but do not express CD45, CD14, or CD115, nor do 

they ingest bacteria (a monocyte/macrophage characteristic). In comparison with the early-

outgrowth CFU-EC, late-outgrowth ECFC show exponential growth and a high proliferative 

capacity.  

Furthermore, in contrast to CFU-EC, the late-outgrowth ECFC spontaneously form blood 

vessels that associate with the nearby vessels and become a part of the systemic circulation in 

mice. On the basis of these and other experiments, it has been suggested that the late-

outgrowth ECFC are derived from circulating cells that best approximate the true “endothelial 

progenitor cell” definition of EPC [129-132]. 
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The EPC can be isolated from bone marrow, peripheral blood and cordon blood.  Human cord 

blood is the best alternative for isolating EPCs and the transplantation of cord blood–derived 

EPCs may participate in and effectively augment postnatal neovascularization in vivo. In fact, 

human umbilical cord blood has been shown to contain a large number of endothelial colony-

forming cells compared to other sources [133]. In contrast to adult bone marrow–derived 

HSCs, cord blood progenitors have distinctive proliferative advantages, including the capacity 

to form a greater number of colonies, a higher cell-cycle rate, and a longer telomere [134-

136]. All of these properties should favor the growth of the cord blood progenitors compared 

with adult peripheral blood or bone marrow progenitors. In addition, cord blood can be 

obtained non invasively, in contrast to invasive bone marrow isolation.  

Cord blood contained cells with the ability to form colonies after 100 population doublings, 

which were termed high proliferative potential endothelial colony-forming cells (HPP-ECFC). 

The colonies themselves included cells expressing an array of EC surface proteins. The 

development of such assays, which evaluate the self-renewal and proliferative capacity of 

putative EPCs, will be very helpful in determining the phenotype of the EPC and its 

differentiation pathway. 

Many investigators are currently detecting and quantifying circulating EPCs (CEPCs) using 

magnetic beads which have been coated with anti-endothelial antibodies, like CD146 

antibodies (a cell surface marker).  
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The fundamental abnormality resulting in the development of cancer is the continual 

unregulated proliferation of cancer cells. Rather than responding appropriately to the signals 

that control normal cell behavior, cancer cells grow and divide in an uncontrolled manner, 

invading normal tissues and organs and eventually spreading throughout the body. The 

generalized loss of growth control exhibited by cancer cells is the net result of accumulated 

abnormalities in multiple cell regulatory systems and is reflected in several aspects of cell 

behavior that distinguish cancer cells from their normal counterparts.  The cells which 

constitute the tumor eventually undergo metaplasia, followed by dysplasia and then anaplasia, 

resulting in a malignant phenotype. This malignancy allows for invasion into the circulation, 

followed by invasion to a second site for tumorigenesis. 

After the tumor cells come to rest at another site, they re-penetrate the vessel or walls and 

continue to multiply, eventually forming another clinically detectable tumor. This new tumor 

is known as a metastatic (or secondary) tumor. Metastasis is one of the main hallmarks 

of malignancy. Most neoplasms can metastasize, although in varying degrees (e.g., basal cell 

carcinoma rarely metastasize) [137]. 

 The uPA/uPAR complex, besides its proteolytic activity, also functions as a vitronectin 

receptor and it participates in normal and tumor cell motility processes such as tumor cells 

migration and invasion, for this reason we have investigated the uPAR role in cancer cells 

migration to better understand the trigger mechanisms involved in metastasis process. 

We first verified the role of uPAR in the mesenchymal movement. We measured uPAR by a 

quantitative Real-Time PCR and Western Blotting analysis in cell lines representative of two 

of the more aggressive human cancer: prostatic carcinoma and melanoma.  

Once evaluated uPAR levels, we have verified the capability of our cancer cell lines to shift 

from mesenchymal to amoeboid migration. To study this aspect we have induced the 

amoeboid  migration using a mixture of protease inhibitors and we have assayed the 

capability of treated cells to migrate across tridimensional Matrigel matrices (proteases-

indipendent condition) compared with control cells.  

As previously described amoeboid migrating cells have a roundish shape, which changes 

frequently thanks to actin polymerization controlled by high activation level of the small 

GTPase RhoA. Starting from this premise, we have searched amoeboid features in protease 

inhibitors treated cells using confocal microscope and quantifing active RhoA, to confirm the 

occurred transition from mesenchymal migration to amoeboid mode in our cell lines[138]. 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2944/
http://en.wikipedia.org/wiki/Metaplasia
http://en.wikipedia.org/wiki/Dysplasia
http://en.wikipedia.org/wiki/Anaplasia
http://en.wikipedia.org/wiki/Malignancy
http://en.wikipedia.org/wiki/Tumorigenesis
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Neoplasia
http://en.wikipedia.org/wiki/Basal_cell_carcinoma
http://en.wikipedia.org/wiki/Basal_cell_carcinoma
http://www.qiagen.com/products/genes%20and%20pathways/pathway%20details.aspx?pathwayID=460&ID=NM_002659
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As it is known from literature, uPA-receptor regulates the mesenchymal style of cell 

movement by triggering pericellular proteolysis. Therefore we have evaluated if uPAR has a 

role in amoeboid migration treating cancer cells with antisense oligodeoxinucleotide, which 

blocks  uPAR mRNA down-regulating uPAR expression. 

uPA is able to cleave its cell surface receptor uPAR and this cleavage leads to the formation 

of cell surface truncated forms, devoid of the N-terminal domain 1 (D1). 

To investigate the possible role(s) of the forms of cell surface glycophosphatidylinositol-

anchored uPAR in amoeboid migration, we have performed invasivity assays and 

phenotypical analysis in uPAR-negative human embrional kidney 293 cells (no-uPAR), 

transfected with the cDNA of intact uPAR (D1D2D3-uPAR) or with cDNAs corresponding to 

the truncated forms of uPAR (D2D3-uPAR). These experiments have been performed in 

presence and absence of protease inhibitor mixture. 

Due to its glycosyl-phosphatidyl-inositol (GPI)-anchor attachment [96], uPAR is devoid of a 

transmembrane domain, a feature that makes uPAR incapable of signalling. This 

characteristic requires membrane partners enabling uPAR to deliver signals that propagate to 

the cell contractile apparatus. Most consistently uPAR has been found associated with 

integrins [92,93,97]. Besides interaction with ECM ligands, integrins provide a molecular link 

that connects microenvironment to the cytoskeleton. Together with a long series of adaptor 

proteins integrins define molecular mechanical pathways in cells, which subsequently 

determine actin dynamics and cell movement [139]. Thus, a major pathway that controls in-

ward integrin activity may define and distinguish cancer cell invasion strategies. On these 

considerations, we used a peptide known as M25 able to prevent  uPAR-integrin interaction 

during focal adhesion complex formation. 

The most important purpose in this study is to demonstrate that uPAR bridges the 

mesenchymal and amoeboid style of movement in a series of prostate carcinoma and 

melanoma cell lines, by its interaction with integrins. 

Metastatic development is not the only cellular migration occurrence of cancer progression, 

infact also during tumor angiogenesis endothelial cells migrate to the tumor, recruited by 

cancer cells.   

We decided to enrich this project with a second part focused on uPAR role cancer amoeboid 

angiogenesis in endothelial progenitor cells (EPC), because in cancer patients peripheral 

blood have been found high numbers of EPCs recruited from bone marrow [119]. 

Once isolated EPCs, we have proceeded with invasivity experiment to evaluate their 

migratory capability with and without proteases inhibition.  
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To induce the amoeboid-migration in EPCs we have tested, in addition to chemical protease 

inhibitor mixture, a physiologic protease inhibitor mix in this part of the project, with the aim 

to recreate a proteases-indipendent condition closer to tumoral microenvironment. We 

evaluated the main amoeboid migration parameters (cell morphology, Rho/Rac activation 

level) using confocal microscopy and activation assays of small GTPases involved in 

migration. 

A future prospective is to treat EPC with anti-sense oligodeoxinucleotide to down-regulate 

uPAR expression, and understand if the receptor has a role in this migratory process. The anti-

uPAR treatment of EPC has the possibility to block the entrance of EPCs into tumor mass and 

eliminate the EPC-dependent tumor progression. 
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MATERIALS AND METHODS 
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Cancer cell lines and culture conditions                

Prostate cancer cell lines LNCaP and PC3 were purchased from ATCC (Manassas, VA, 

USA). LNCaP are androgen-sensitive human prostate adenocarcinoma cells, while PC3 cells, 

derived from a bone metastasis of a grade IV prostatic adenocarcinoma, are reported to be 

androgen receptor (AR)-negative. Pcb1 cell line, established from a bone metastasis of PC3, 

were provided by Professor Adriano Angelucci (L’Aquila, Italy). All prostate cancer cell lines 

were grown in RPMI-1640 culture medium (Euroclone, Milano, Italy) containing 2 mM 

glutamine, 100 UI/ml penicillin, 100 μg/ml streptomycin and supplemented with 10% fetal 

bovine serum (FBS; Euroclone). Melanoma cell lines MeWo and A375 were purchased from 

ATCC. A375 M6 cells, derived from a metastasis of A375, were provided by Professor Lido 

Calorini (Firenze, Italy). Melanoma cells were maintained in DMEM culture medium 

(Euroclone, Milano, Italy) containing 2 mM glutamine, 100 UI/ml penicillin, 100 μg/ml 

streptomycin and supplemented with 10% FBS (Euroclone). uPAR-negative human 

embrional kidney 293 (HEK-293) cells transfected with cDNA of intact uPAR (uPAR-

D1D2D3), with cDNAs corresponding to the truncated form of uPAR (uPAR-D2D3) and 

with pcDNA3 empty vector (no-uPAR), were kindly provided by Professor Pia Ragno 

(Napoli, Italy). HEK-293 transfected cells were grown in DMEM culture medium (Euroclone, 

Milano, Italy) containing 2 mM glutamine, 100 UI/ml penicillin, 100 μg/ml streptomycin and 

supplemented with 10% fetal bovine serum (FBS; Euroclone). 

 

Isolation and characterization of EPCs                

Human umbilical cord blood (UCB) samples (volume > 50 mL) were collected in citrate 

phosphate dextrose solution from health newborns. We used cord blood units with a number 

of total nucleated cells < 1.3x10
9
 (threshold of suitability for the banking established by the 

Umbilical Cord Bank of Careggi, Florence, Italy) after maternal informed consent in 

accordance with the Declaration of Helsinki and in compliance with Italian legislation. Blood 

was diluted 1:1 with Hanks balanced salt solution (EuroClone) and was overlaid on an 

appropriate volume of density gradient separation medium (Lympholyte; Cedarlane). Cells 

were centrifuged for 30 minutes at room temperature at 740g. Mononuclear cells were 

recovered, washed 3 times with Hanks balanced salt solution and resuspended in complete 

EGM-2 medium (Lonza) supplemented with 10% FBS (Hyclone), 50 ng/mL VEGF 

(PeproTech) and 5 IU/mL heparin. Cells were seeded on gelatin-coated 6-well tissue culture 

plates at a density of 5x10
5
 cells/cm2 in a 5%CO2 humidified incubator at 37°C. On days 4 

and 7, half of the medium was exchanged with fresh medium. Then the medium was changed 
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completely with EGM2–10% FBS every 3 days. EPC colonies appeared in cell cultures after 

2-3 weeks and were identified as circumvented monolayers of cobblestone-like cells. The 

colonies were mechanically picked from the original plate and seeded on another gelatin-

coated well with EGM2–10% FBS for expansion. These cells can be maintained in culture for 

8-10 passages with the same culture medium of EC.  

Flow cytometric analysis: 

ECFCs were CD31+, KDR+, CD105+, ULEX+, vWF+, CD45-, CD34-. The characterization  

was based on flow cytometric analysis. ECFCs were analyzed for the expression of  typical 

surface staminal, endothelial or monocyte-macrophage antigens by flow cytometry. To 

recognize surface antigens, it was necessary to use fluorochrome-labeled monoclonal 

antibodies. The fluorochrome that we used was phycoerytrin (PE-red) and fluorescein (FITC-

green). Both are exited at wavelength of 488 nm (blue), so they can be used together for a 

very sensitive detection system in the double labeling. To characterize the cells obtained by 

the technique described above, first, washed cells were resuspended in flow cytometry buffer 

(CellWASH 0.1% sodium azide in PBS; BD Biosciences). Aliquots (0.1x10
6 cells/100 μL) 

were incubated with the following conjugated monoclonal antibodies: CD45-FITC, CD34-

FITC, CD31-FITC (all from BD Biosciences PharMingen); CD105/R-phycoerythrin (Ancell); 

ULEXFITC (Vector Laboratories); phycoerythrin-labeled by Tetra-Tag phycoerythrin- 

labeling kit (StemCell Technologies) KDR (RELIATech), uPAR/R3 (BioPorto Diagnostic 

A/S), and vWF (BD Biosciences PharMingen). Nonspecific fluorescence and morphologic 

parameters of the cells were determined with isotype-matched mouse monoclonal antibodies 

(BD Biosciences PharMingen). All incubations were done for 20 minutes; and, after washing, 

cells were resuspended in 100 μL of CellWASH. 7-Aminoactinomycin (BD Biosciences 

PharMingen) was added to exclude dead cells from the analysis. Flow cytometric acquisition 

was performed by collecting 104 events on a FACSCalibur (BD Biosciences) instrument, and 

data were analyzed on DOT-PLOT biparametric diagrams using Cell Questpro OS X.1 

software (BDBiosciences) on a Macintosh PC. 

Capillary morphogenesis: 

Capillary morphogenesis was performed in 13-mm tissue culture wells coated with Matrigel. 

Experimental conditions were the same used for invasion assay. ECFCs were plated 

(60x10
3
/well) in complete EBM-2 medium 2% FCS and incubated at 37°C, 5% CO2. Plates 

were photographed at 6 hours and at 24 hours. Results were quantified by image analysis, 

giving the percentage of photographic field occupied by ECFC. Six to 9 photographic fields 
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from 3 plates were scanned for each point. Results were expressed as percentage field 

occupancy with respect to control taken as 100% ± SD. 

 

Quantitative Real-Time PCR analysis          

Total RNA was prepared using Nucleospin RNA II (Macherey-Nagel), agarose gel checked 

for integrity, and reverse transcribed with GoScript system (Promega) using random primers 

according to manufacturer’s instructions. uPAR expression in all cancer cell lines and after 

anti-uPAR aODN treatment was determined by a quantitative Real-Time (RT)–PCR with an 

Applied Biosystem 7500 Fast Real Time PCR System (Applied Biosystems, Milano, Italy) 

and determined by the comparative C
t 
method using 18S ribosomal RNA as the normalization 

gene. Amplification was performed with the default PCR setting: 40 cycles of 95°C for 15 

seconds and of 60°C for 60 seconds using SYBR Green–based detection (GoTaq qPCR 

Master Mix; Promega). Primers (IDT, Tema Ricerca, Italy) used for RT-PCR were as follows: 

-18S-rRNA: sense, 5’-CCAGTAAGTGCGGGTCATAAG-3’ antisense, 5’-

GCCTCACATAACCATCCAATC-3’; -uPAR: sense, 5’- GCCCAATCCTGGAGCTTGA-3; 

antisense, 5’- TCCCCTTGCAGCTGTAACACT-3’. 

 

Semiquantitative reverse transcription– polymerase chain reaction (PCR) analysis      

Total RNA preparation and reverse transcription were performed as described in the previous 

paragraph. The levels of messenger RNA for the integrin chains were determined by an 

internal-based semiquantitative RT-PCR. RT-PCR was performed for 35 cycles at 58°C in a 

thermocycler. The reaction products were analyzed by electrophoresis in 1% agarose gel 

containing ethidium bromide, followed by photography under ultraviolet illumination using 

Polaroid positive/ negative instant films. Primers sequences and cycling conditions are:  

uPAR primer sense 5’-AAAATGCTGTGTGCTGCTGACC-3’ and antisense 5’-

CCTGCCCTGAAGTCGTTAGTG-3’; GAPDH primer sense 5’-

CCACCCATGGCAAATTCCATGGCA-3’ and antisense 5’-

TCTAGACGGCAGGTCAGGTCCACC-3’; their cycling profile is 94°C 1 minute, 56°C 1 

minute, 72°C 1 minute. 

Immunoprecipitation and Western blotting 

Cells were lysed as were directly lysed in RIPA buffer. Five hundred micrograms of cell 

protein was transferred into an Eppendorf tip, and the relevant primary antibody (anti-integrin 

or antiuPAR) was added in 0.1% bovine serum albumin, followed by overnight incubation at 
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4°C. To each lysate, protein A agarose beads (Sigma, St. Louis, MO) were added for 3 hours 

at 4°C. The beads were collected by centrifugation at 14,000 revolutions per minute for 30 

seconds, and the supernatant was stocked for further Western blotting. Aliquots of the pellets 

were processed, electrophoresed, and blotted as described previously [140]. After incubation 

with 5% skim milk in 20 mM Tris buffer, pH 7.4 (blocking solution), membranes were 

probed with a monoclonal antibody directed against uPAR (1:200) (American Diagnostica, 

Stamford, CT), overnight at 4°C. After incubation with horseradish peroxidase (HRP)–

conjugated anti-mouse or anti-rabbit IgG (1:5,000) for 1 hour (Amersham Biosciences, 

Uppsala, Sweden), immune complexes were detected with the enhanced chemiluminescence 

(ECL) detection system (Amersham Biosciences). The membranes were exposed to 

autoradiographic films (Hyperfilm MP; Amersham Biosciences) for 1–30 minutes. After 30 

minutes’ incubation with stripping solution (62.5 mM Tris HCl, pH 6.8, containing 100 mM -

mercaptoethanol and 2% sodium dodecyl sulfate), the membrane was washed for 5 minutes 

with 20 mM Tris buffer, pH 7.4, incubated for 30 minutes at room temperature with blocking 

solution, and reprobed with anti-integrin or anti-uPAR antibodies. 

 

Invasion assay with Boyden chambers                

Invasion was studied in Boyden chambers in which the upper and lower wells were separated 

by 8μm–pore size polycarbonate filters coated with Matrigel (BD Biosciences). In order to 

increase uPAR dependency of the invasion process, the Matrigel was enriched with human 

VN (Sigma-Aldrich, cat. V8379), to a final concentration of 300 μg/ml. To obtain a “thick” 

layer, we added 100 μl of Matrigel/cm2 porous membrane. According to the manufacturer’s 

instruction such an amount results into a 500 μm thick Matrigel layer, corresponding to about 

25 folds the average diameter of circulating prostate and melanoma cells [141]. Cancer cells 

(25 x 103) were placed in the upper well of the Boyden chamber, and invasion was performed 

at 37 °C in 5% CO2 for 12 hours, a time consistent with the average speeds of cell migration 

under amoeboid and mesenchymal conditions in 500 μm thick gels [2]. To evaluate the 

uPAR-dependent invasion, some experiments were performed in the presence of anti-uPAR 

R3 antibody which blocks uPA/uPAR interaction (American Diagnostica) or after anti-uPAR 

aODN treatment. Invasion quantified as previously described [140].   

    Protease-indipendent invasion was evaluated by 3D-Boyden chamber 

assays with Matrigel coating in the presence of a protease inhibitor cocktail (Tab.1), a mixture 

of protease inhibitors with a broad specificity for serine, cysteine, aspartic and amino-

peptidase, and MMPs [142]. To analyse the protease-indipendent invasion in EPC we have 
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accomplished invasiviness assay in presence of  physiologic protease inhibitor cocktail (Tab. 

2). Protease inhibitor cocktail was added to un-polymerized Matrigel solution on the upper 

surface of the porous filter. To induce the amoeboid phenotype, cells were treated for 2 hours 

with the protease inhibitor cocktail at the same concentrations used in the invasion assay. 

INHIBITOR  PROTEASES CONCENTRATION 

AEBSF  Serine Proteases  104 mM 

Aprotinin  Serine proteases  80 µM 

Leupeptina Serine and Cysteine proteases 2 mM 

Bestatin  Amino peptidasi   4 mM  

Pepstatin A Acid proteasi  1,5 mM  

E-64  Cysteine proteases 1,4 mM  

Ilomastat Metallo-proteases 10 µM 

 

Table 1. Composition of  protease inhibitor mixture and respective concentration. 

 

INHIBITOR  PROTEASES  CONCENTRATION  

α2-antiplasmina  Serine Proteases  5  µg/ml  

Cystatin  Cysteine proteases  5 µM  

PAI 1  uPA, tPA  10  ng/ml  

TIMP 1  MMP  0,5  µg/ml  

TIMP 2  MMP  0,5  µg/ml  

TIMP 3  MMP  0,5  µg/ml  

 

Table 2. Composition of  physiologic protease inhibitor mixture and respective concentration. 

 

Cell Proliferation Assay and Trypan blue exclusion assay 

The viability of cancer cell lines and EPCs was determined by a cell proliferation assay using 

WST-1 reagent (Roche). WST-1 is a water-soluble sulfonated tetrazolium salt that is cleaved 

by cellular succinate-dehydrogenases in living cells, yielding dark blue formazan. Damaged 
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or dead cells exhibit reduced or no dehydrogenase activity. Briefly, the cells were plated onto 

a 96-multiwell plate in quadruple. After 24, 48 and 72 hours WST-1 solution/culture medium 

(5 mmol/l, 1 9) was added to each well. Following 1-hour incubation at 37°C, absorbance at 

450 nm (reference at 630 nm) was measured by a Multiskan JX microplate reader. Percentage 

of cell viability was calculated based on the absorbance measured relative to that of the 

untreated control cells maintained in culture medium alone. After proteases inhibitors mixes 

(chemical and physiologic) harvested EPCs were mixed with an equal volume of 0.4% trypan 

blue dye. For quantization of cell viability, blue and bright cells were counted, and viability 

was calculated as the percentage of live (bright) cells versus control set to 100%. 

 

Collagen degradation assay             

The collagen degradation assay was performed using a Matrigel layer containing 2 % FITC-

labeled collagen monomers. Cells suspensions has been copolymerized with Matrigel and 

FITC-labeled collagen and degradation has been allowed for 40 h. Solid-phase collagen 

containing the cells will be pelleted, whereas FITC released into the supernatant will be 

analyzed by spectrofluorometry. One hundred percent values have been obtained by complete 

collagenase (1mg/ml) digestion of cell-free collagen lattices. Background fluorescence has 

been obtained by pelletting non-digested cell-free lattices. These experiments have been 

performed with control cells and with EPCs treated with the physiologic protease inhibitor 

cocktail or with cancer cells treated with the chemical protease inhibitor cocktail. 

 

Cell migration in 3D-collagen matrices              

To visualize the efficacy of the protease inhibitor cocktails to induce an amoeboid migration 

style we used reconstruction by time-lapse video microscopy and confocal microscopy, using 

HT1080 cells as a model for a clear visualization of fiber breakdown in the process of 

proteolytic migration and shift to the amoeboid style. Subconfluent cells were detached by 

EDTA (2 mmol/L), washed, incorporated into three-dimensional collagen lattice (1.67 

mg/mL; native dermal bovine type I collagen; RD Systems), and monitored by time-lapse 

video microscopy. We used HT1080 cells as model for a clear visualization of fiber 

breakdown in the process of proteolytic migration. To observe amoeboid condition, the 

protease inhibitor cocktail was added to the lattice before polymerization as well as to the 

supernatant. For three-dimensional time-lapse confocal microscopy (Leica-SP5 system), cells 

within the lattice were labeled by calcein-AM (1 μmol/L), scanned at 3-min time intervals for 
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simultaneous fluorescence and back scatter signal (reflection), and reconstructed. Three-

dimensional motility of cells is shown by time lapse of xyzt analysis (three-dimensional 

analysis during time). Movies are a two-dimensional projection (xy) of all stacks during a 

time course. xy two-dimensional migration of cells has been excluded by analysis of zx axis 

movements during the same time course (see supplementary movie 1 and 2 on line 

publication of this work [138]). 

 

RhoA and Rac1 activity assay           

Cells from different experimental conditions (control, protease inhibitor cocktail, anti-uPAR 

aODN and anti-uPAR aODN + protease inhibitor cocktail) were directly lysed in RIPA 

buffer, the lysates were clarified by centrifugation, and RhoA-GTP or Rac-GTP was 

quantified. Briefly, lysates were incubated with 10 μg Rhotekin-glutathione S-transferase 

(GST) fusion protein (Upstate) or p21 activated kinase-GST fusion protein, both absorbed on 

glutathione-Sepharose beads for 1 h at 4°C. Immunoreactive RhoA or Rac1 was then 

quantified by Western blot analysis. Lysates were normalized for RhoA or Rac1 content by 

immunoblot. 

 

Immunofluorescence analysis                 

Immunofluorescence was performed on cancer cells and EPC grown on coverslips in their 

culture conditions. Once at confluence, cells were treated with protease inhibitor cocktail 

respective and  two hours later fixed in 4% paraformaldehyde. TRITC-labelled phalloidin 

(P1951, Sigma) was applied to the cells to visualize cell morphology and the arrangement of 

actin cytoskeleton. Nuclei were stained with the fluorescent Hoechst 33342 dye (DAPI) 

(10μg/ ml) (Invitrogen) for 15 min at rt.  To display uPAR and integrins in cancer cells the 

anti-human primary antibodies used were rabbit polyclonal antibody anti-uPAR FL-290  

(1:100) (SANTA CRUZ BIOTECHNOLOGY, INC) mouse anti–β1 integrin subunit MAB 

1969 (1:100), and mouse anti–β3 integrin subunit (1:100) (Chemicon International). The 

secondary antibodies used for immunostainings were Alexa 488–conjugated goat anti-mouse 

IgG (1:200) (Molecular Probes, Eugene, OR), and Texas Red–conjugated goat anti-rabbit IgG 

(1:200) (Molecular Probes).              

The coverslips containing the immunolabeled cells were observed under a Bio-Rad MRC 

1024 ES confocal laser scanning microscope (Bio-Rad, Hercules, CA) equipped with a 15-
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mW  krypton/Argon laser source for fluorescence measurements, using an excitation 

wavelength appropriate for Alexa 488 (495 nm) and Texas Red (595 nm). Series of optical 

sections (X- and Y-steps: 512 _ 512 pixels) were then obtained through the depth of the cells, 

with a thickness of 1 _m at intervals of 0.8 _m (Z-step). A single composite image was 

obtained by superimposition of twenty optical sections for each sample observed. The 

collected images were analysed by ImageJ software to evaluate co-localization.  

 

uPAR down-regulation with antisense oligodeoxinucleotide (u-PAR aODN)             

uPAR gene expression was inhibited with an 18-mer phosphorothioate aODN (ISIS 

Pharmaceuticals, Carlsbad Research Center, CA, USA, product designation: ISIS 17916) . 

The sequence of ISIS 17916 is 50-CGG CGG GTG ACC CAT GTC-30. As negative control, 

we used a completely degenerated 18-mer ODN (scrambleODN): such ODN is a mixture of 

all the possible combinations of the bases, which compose the aODN. ODN uptake and 

stability were enhanced by combining ODNs (10 mmol/l) with a cationic liposome (13 

mmol/l), namely DOTAP (Boehringer Mannheim, Mannheim, Germany). Cell cultures were 

treated daily with ODNs for 4 days, on the basis of preliminary experiments indicating a 

steady-state reduction of uPAR number and of uPAR mRNA after 3 days of aODN treatment. 

Since the half-life of cationic lipidcombined ODNs in the culture medium was about 24 h, the 

initial treatment with 10 mM cationic lipid-combined ODN was followed by a second 

addition of 5 mM after 24 h in order to restore the initial concentration. On the fourth day, 

cells were subjected  to invasivity assays , to evaluate the role of the uPAR on amoeboid 

migration. In all the experiments performed with ODNs, we have supplemented cells with 

heat-inactivated serum (15 min at 651C) in order to inactivate serum nucleases able to 

degrade the added compounds. 

 

Treatment of cells with M25 peptide           

Disruption of uPAR-integrin interaction was obtained with the M25 peptide, previously 

identified in a phage display library [143-145], able to uncouple uPAR interaction with 

integrin α-chain. The peptide was produced in collaboration with PRIMM srl, Milan, Italy. In 

the β-propeller model of α-chain folding, the sequence of this peptide 

(STYHHLSLGYMYTLN) spans an exposed loop on the ligand-binding surface of α-chain, 
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thus impairing integrin-uPAR interaction. In cell culture both M25 and scramble-M25 (sM25) 

were used at 50 μM for 2h at 37°C.  

 

Statistical analysis                    

Results are expressed as means ± SD. Multiple comparisons were performed by the Student 

test. Statistical significances were accepted at p<0.05. 
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RESULTS 
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Function of uPAR in mesenchymal invasion of tumor cells  

uPAR is expressed by cells that move in a mesenchymal fashion, since uPAR-bound uPA 

promotes plasminogen activation to plasmin and subsequent MMPs and proteases activation-

dependent ECM degradation.                               

In order to correlate uPAR espression level to invasive property of cancer cell lines, we 

performed Boyden Chambre-Matrigel invasion assay. We found a correlation between uPAR 

expression levels and the number of invasive cells. First of all we evaluated the expression 

levels of uPAR in melanoma and prostatic carcinoma cell lines (figure 5A and 5B), than we 

assayed the invasion property (figure 5C). Quantitative Real-Time PCR and Western Blotting 

analysis showing that uPAR expression was proportional to the number of invasive cells in 

the Boyden chamber assay. 

 

 
Figure 5: uPAR expression and function in mesenchymal invasion of prostate cancer and melanoma cells. 

Panel A: Quantitative Real-Time PCR of uPAR in melanoma and prostate cancer cell lines. Results are the mean 

of three different experiments ± SD. * : p<0.05 with respect to LNCaP and MEWO cells, respectively. Panel B: 

Western Blotting analysis of uPAR in prostate cancer and melanoma cell lines. Numbers on the right refer to 

molecular weights expressed in kDa. GAPDH used as a reference loading control. Panel C: invasion of porous 

filters coated with a 3D Matrigel layer, showing the differential total number of invading cells/filter for each one 

of the used cell lines. 
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Blocking uPAR mesenchymal function with an antibody (R3) against uPAR domain-1, 

thereby masking the uPA binding site, resulted into a decrease of invasion which was similar 

in all the examined cancer cell lines (figure 6). The use of the blocking antibody blunted the 

uPAR-dependent proteolytic cascade without using protease inhibitors. 

 

Figure 6: uPAR function in mesenchymal invasion of prostate cancer and melanoma cells. Activity of the 

R3 uPAR-blocking antibody on Matrigel invasion. The pictures show the typical appearance of filters in the 

absence and in the presence of the R3 antibody for each cell line. Results are the mean of three different 

experiments ± SD. * : p<0.05 with respect to LNCaP and MEWO cells (Figure 5B), or with respect to control 

(Figure 5C), respectively. 

 

Induction of the amoeboid phenotype  

To appraise the acquisition of the amoeboid phenotype performed Matrigel invasion, 

collagenase activity assay, Rac1/RhoA activation and cell morphology, in the presence of the 

inhibitor cocktail added to the cell suspension and to Matrigel solution before polymerization. 

To evaluate whether exposure to a protease inhibitor cocktail induced a protease-independent 

invasion, we subjected cancer cell lines to a Boyden chamber migration assay through a thick 



  

 

42 

 

Matrigel coating,. In figure 7A we show the percent amoeboid response of each cell line. 

Respect to the mesenchymal control was not comparable in terms of invasive cells, ranging 

from 30% to 72% depending on the cancer cell line, indicating that plasticity of cell migration 

upon variation of microenvironment conditions is greatly variable among cancer cells. 

 

Figure 7: Induction of the amoeboid movement in prostate cancer and melanoma cells. Panel A: the 

histogram on the left shows invasion of porous filters coated with a 3D Matrigel layer, expressed as % cells 

moving under amoeboid conditions for each one of the cell lines. Refer to figure 5C for the absolute number of 

invading cells under mesenchymal conditions. Mix: presence of the protease inhibitors cocktail. Results are the 

mean of five different experiments performed in triplicate on each cell line ± SD. * : p<0.05. Panel B: The 

histogram shows the collagenolytic activity of Pcb1 and A375M6 cells under mesenchymal and amoeboid 

conditions; Ctrl-: collagenolytic activity in the absence of cells and of added exogenous collagen; Ctrl+: 

collagenolytic activity in the absence of cells but in the presence of exogenous collagenase. Results are the mean 

of two different experiments performed in triplicate on each cell line ± SD. * : p<0.05. 

 

 

We performed collagenase activity assay of two different cancer cell lines sharing an high 

invasive potential (see figure 5C). To prove the proteases inhibition we have carried out 

collagen degradation assay, where the  cells are plunged in FITC-labelled collagene. When 

proteases degrades FITC-collagene, it gives off fluorescence (more flourescence = more 

proteases activity). The panel B istogram in figure 7, shows the collagenolytic activity of 

Pcb1 and A375M6 cells under mesenchymal and amoeboid conditions expressed as % 

collagen degradation with respect to the positive control obtained by addition of exogenous 

collagenase. The experimental conditions here referred to as “amoeboid” were characterized 

by a residual proteolytic activity that did not account for the size of the invasive cell 

population (Figure 7B). To characterize the motility shift we also analyzed the activation of 

two recognized regulators of the cytoskeleton, the small GPTases RhoA and Rac1. 

Mesenchymal motility has been recognized to be causally linked to activation of Rac, which 

drives motility by promoting lamellipodia and filopodia, and inhibition of Rho GTPases, 

whereas an opposite phenotype has been associated with amoeboid motility. Western blotting 

data for the activated forms of RhoA and Rac1, compared to total RhoA and Rac1, provided 
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univocal results for all the examined cell lines, showing a decrease of activated Rac1 and an 

increase of activated RhoA upon shifting of cells to the amoeboid movement (Figure 8). The 

overall morphology of the cell and its dependency on actin cytoskeleton assembly is 

characteristic of the movement style. Mesenchymal motility is connoted by an elongated, 

fibroblast-like, cell morphology with established cell polarity, dependent on the small GTPase 

Rac which, in turn, organizes actin polymerization to form filopodia and lamellipodia , giving 

origin to actin-rich protrusions. These features were exhibited by cancer cells under control 

conditions. Under the stimulus of proteases inhibition all the cell lines acquired a round 

morphology and a sub-membranous cortical actin localization, features connoting the 

amoeboid movement (figure 9).  

 

Figure 8: Biochemical features evaluation of the amoeboid movement in prostate cancer and melanoma 
cells. Western blotting of total and GTP-loaded forms of small Rho-GTPases RhoA and Rac1 under 

mesenchymal and amoeboid conditions for each prostate cancer and melanoma cell line. Three experiments were 

performed for each cell line in each condition. Histograms report band densitometry; * indicates statistical 

significance at p<0.05. Numbers on the right refer to molecular weights expressed in kDa. Rac1- GTP and 
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RhoA-GTP, GTP-loaded forms of small Rho GTP-ases; Rac1 and RhoA, total un-loaded forms of small Rho 

GTP-ases, used as a reference loading control. 

 

 
 
Figure 9: Morphological features of the mesenchymal (elongated) to amoeboid (roundish) transition 

(MAT) of prostate cancer and melanoma cells. Each picture shows the general pattern and related 

magnification of a small field for each cell line. Red: phalloidin staining of the actin cytoskeleton. Blue: nuclear 

staining with DAPI. Magnification 40 X for reference pictures and 100 X for enlarged insets. Results shown are 

representative of two different preparations of each cell line under mesenchymal and amoeboid conditions. 

Round cells, perinuclear cortical actin localization and the loss of actin-rich filopodia are evident in amoeboid 

conditions. 
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The WST-1 assay showed that viable cells were more that 95% under both control and 

protease inhibitors treatment. Moreover, once re-incubated with an inhibitor cocktail-free 

medium, treated cells completely recovered their functional and morphological mesenchymal 

features (data not shown).  
 

Requirement of uPAR in amoeboid migration 

Genetic uPAR knockdown has demonstrated robust antitumor activity both in vitro and in 

pre-clinical studies. To induce the loss of uPAR function we used the uPAR-aODN 

previously used in other studies of our laboratory [140]. uPAR-aODN produced an evident 

reduction of uPAR expression inducing a strong decrease of mesenchymal and amoeboid 

movements (figure 10A and 10B). 

 
Figure 10: Effects of uPAR silencing with uPAR-aODN on invasion in mesenchymal and amoeboid 

conditions of prostate and melanoma cancer cells. Panel A: Western Blotting analysis of uPAR for each 

prostate cancer and melanoma cell line after uPAR-aODN treatment. DOTAP: treatment of cells with the 

cationic liposome alone; aODN: treatment of cells with DOTAP liposomes-delivered uPAR-antisense 

oligodeoxynucleotide; sODN: treatment of cells with DOTAP liposomes-delivered scramble 

oligodeoxynucleotide. Numbers on the right of each Western blotting refer to molecular weights expressed in 

kDa. GAPDH used as a reference loding control. Panel B: Matrigel invasion under mesenchymal (-MIX) and 

amoeboid (+MIX) conditions. Results are the mean of three experiments performed in triplicate on each cell line 

± SD. * : p<0.05 with respect to controls. 

 

 



  

 

46 

 

Both in control and in the presence of protease inhibitors all the cell lines showed a reduced 

active Rac1 paralleled by an increased RhoA activation, while uPAR-aODN treatment 

resulted into reduced Rac1 activation either in the absence or in the presence of the inhibitor 

cocktail. The RhoA/Rac1 ratio in the presence of aODN and aODN + inhibitor cocktail 

conformed to the classical amoeboid pattern indicating a prevalence of RhoA activity in 

prostate cancer cell lines, while it showed smaller variations with respect to controls in 

melanoma cell lines (figure 11). Therefore, under amoeboid conditions and in the presence of 

uPAR knockdown, cancer cells still activate ameoboid-related transductions but are unable to 

invade 3D matrices, indicating that the loss of uPAR is detrimental for both movement styles. 

The residual movement observed in the absence of protease inhibitors in control cells treated 

with uPAR-aODN must be ascribed to proteases of different families. 

Figure 11: Effects of uPAR silencing with uPAR-aODN on i small Rho-GTPases activation in 
mesenchymal and amoeboid conditions of prostate and melanoma cancer cells. Western blotting of total and 

GTP-loaded forms of small Rho-GTPases RhoA and Rac1 under mesenchymal and amoeboid conditions for 

each prostate cancer and melanoma cell line, untreated and treated with aODN/sODN, respectively. Histograms 

report RhoA/Rac1 ratio obtained by band densitometry quantification. *: statistical significance at p<0.05 with 

respect to control; **: statistical significance at p<0.01 with respect to controls. Numbers on the right of each 

Western blotting refer to molecular weights expressed in kDa. For other symbols, refer to the legend of figure 5. 

 



  

 

47 

 

 

 

 

 

The full-length D1D2D3 form of uPAR is required to induce amoeboid migration 

 

Native uPAR is organized in three differently folded homologous domains of about 90 amino 

acids each (D1, D2 and D3 from the N-terminus), stabilized by intra- molecular disulphide 

bonds. The X-ray structure shows that uPAR binds uPA by directly interacting with D1, in a 

pocket built by all three domains. These structural features suggest the necessity for 

cooperation of all three uPAR domains for high-affinity binding of uPA. uPAR may be 

anchored to the cell surface either in its native form (D1D2D3) or in a truncated form (D2D3), 

as a result of a cleavage of the D1-D2 linker region. The uPAR-negative human embrional 

kidney-293 (HEK- 293) cells transfected with cDNA of intact uPAR (uPAR-D1D2D3), with 

cDNAs corresponding to the truncated form of uPAR (uPAR-D2D3) and with pcDNA3 

empty vector (no-uPAR) [146] were used to evaluate whether the native D1D2D3 or the 

cleaved D2D3 form of uPAR was involved in uPAR-dependent amoeboid movement style. 

The three differentially transfected cell lines were capable of invading Matrigel-coated filters, 

while only the uPAR-D1D2D3 cell line showed invasion capabilities upon exposure to a 

protease inhibitor-rich environment (figure 12). 

 

 

Figure 12: Migration features in HEK-293 cells transfected with intact uPAR (D1D2D3) and truncated 
uPAR (D2D3). Invasion of porous filters coated with a 3D Matrigel layer, showing the differential total number 

of invading cells/ filter under mesenchymal and amoeboid conditions, as reported in the text. +/-Mix: presence or 

absence of the protease inhibitor cocktail. Results are the mean of three different experiments performed in 

triplicate on each cell line ± SD. *: p<0.05 with respect to each control. 
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This indicates that the presence of full length uPAR is strictly required in order to shift from 

the mesenchymal to amoeboid movement style. Also in these cells collagenolysis was 

inhibited by the protease inhibitor mixture (data not shown). Experiments aimed to evaluate 

small GTPases Rac1 and RhoA activation showed a decrease of activated Rac1 in the 

presence of protease inhibitors in all the transfectants, while a significant increase of RhoA 

activation was observed only in uPAR-D1D2D3 cells (figure 13 A). 

 

 

Figure 13: Mesenchymal and amoeboid features in HEK-293 cells transfected with intact uPAR (D1D2D3) 

and truncated uPAR (D2D3). Panel A: Western blotting of total and GTP-loaded forms of small Rho-GTPases 

RhoA and Rac1 under mesenchymal and amoeboid conditions for each HEK-293 transfectant. Three 

experiments were performed for each transfectant in each condition. Histograms report band densitometry, 

assuming 1 as the reference value of controls in each condition. * shows statistical significance at p<0.05. Panel 

B: Morphological features of the mesenchymal (elongated) to amoeboid (roundish) transition (MAT) of each 

HEK-293 transfectant. Red: phalloidin staining of the actin cytoskeleton. Blue: nuclear staining with DAPI. 

Magnification: 200 X. Results shown are representative of two different preparations of each cell line under 

mesenchymal and amoeboid conditions. No-uPAR cells did not adhere under amoeboid conditions. 
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 Morphological study of actin assembly of the three cell lines plated on VN-enriched 

Matrigel-coated surfaces showed the presence of actin protrusions and an overall spindle-like 

morphology only in full-length uPAR-expressing cells, while an overall feature of round cells 

was similarly exhibited by no-uPAR and uPAR-D3D3-expressing cells, which did not show 

actin protrusions (figure 13 B). In a protease inhibitor-rich milieu no-uPAR cells were unable 

to adhere, while the totality of uPAR-D1D2D3 and uPAR-D2D3 cells assumed a round shape, 

lost actin filament protrusions and exhibited a rim of perinuclear cortical actin. Taken 

together, these data show that uPAR supports mesenchymal and amoeboid movement style 

only when expressed in its full-length native form. 

 

Integrins bridge uPAR and actin cytoskeleton.  

Already established uPAR-mediated pathways include uPAR association with integrins, the 

key molecules that promote rearrangement of the actin cytoskeleton and cell movement.10 

PCb1 cells, M6 melanoma cells and the three HEK-293 clones show an integrin pattern in line 

with previous observations (figure 14) . 

 

 

Figure 14: Integrin pattern. Semiquantitative RT-PCR of the shown integrin α and β chains in cell lines used 
in this study. GAPDH was used as a reference control. Product size, espressed in bp, are reported on the right. 

 

Confocal immuno-fluorescence analysis of integrin β1 and uPAR in PCb1 and of integrin β3 

and uPAR in A375M6 cells is shown in figure 15. These data show that uPAR-integrins 

interactions persist under both mesenchymal and amoeboid conditions. Treatment of cells 

with 50 μM peptide M25 for 2h at 37°C uncoupled uPAR from integrins, in the absence (data 



  

 

50 

 

not shown) and in the presence of the inhibitor cocktail (figure 15). In presence of scramble 

M25 the cells share uPAR-integrin interaction comparable to controls. 
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Figure 15: Integrin-upar interaction. Confocal microscopy for uPAR (red fluorescence)-β1-integrins (green 

fluorescence) co-localization in Pcb1 prostate carcinoma cells (panel A) and for uPAR (red fluorescence)- β3-

integrins (green fluorescence) co-localization in A375M6 melanoma cells (panel B) under mesenchymal 

(control) and amoeboid (+MIX) conditions, in the absence and in the presence of M25 peptide and of scramble 

M25 peptide (sM25). Nuclear staining: DAPI (blue). The co-localization score is reported within each picture. 

Refer also to table 1 for a complete view of co-localization scores in all the examined cell lines. Magnification: 

40 X. The shown pictures are representative of 50 different pictures for each experimental condition that were 

studied by Image J analysis. 
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Immunoprecipitation experiments with lysates of Pcb1 and A375M6 cells demonstrated the 

activity of M25 peptide in uncoupling uPAR-integrin β1 or β3 interaction (figure 16). The 

statistical analysis of uPAR-integrin co-localization for the cell lines considered in this study 

is reported in table 3. 

 

Figure 16: Integrin-uPAR interaction. Immunoprecipitation of uPAR and β1-integrins in Pcb1 prostate 

carcinoma cells and of uPAR and β3-integrins in A375M6 melanoma cells. Input: Western blotting of aliquots of 

cell lysates before immunoprecipitation, used as a reference loading control. IP beta 1: immunoprecipitate 

obtained with anti-beta 1 antibodies; IB beta 1: immunoblotting with anti-beta 1 antibodies; IP beta 3: 

immunoprecipitate obtained with anti-beta 3 antibodies; IB beta 3: immunoblotting with anti-beta 3 antibodies; 

IB uPAR: immunoblotting with anti-uPAR antibody; IP uPAR: immunoprecipitate obtained with anti-uPAR 

antibodies. Molecular weights, expressed in kDa, are reported on the left. 
 

Parallel experiments aimed to evaluate uPAR-actin and integrins-actin colocalization showed 

that both uPAR and integrins co-localize with actin also in amoeboid conditions, where the 

thick ring of cortical actin/uPAR and cortical actin/integrin overlap (figure 17A). The use of 

peptide M25 uncoupled all the observed co-localizations (uPAR, integrins, actin) and 

produced structural alteration of actin which lost the stress fibres organization and acquired a 

granular feature under both mesenchymal and amoeboid conditions (figure 17B). The 

statistical analysis of uPAR-actin and integrin-actin co-localization for all the cell lines is 

reported in table 3 
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Figure 17: uPAR-actin co-localization. Panel A: confocal microscopy for uPAR (green fluorescence) and 

falloidin (red fluorescence), in A375-M6 melanoma cells under mesenchymal (control) and amoeboid (+MIX) 

conditions, in the absence of M25 peptide, and in the presence of M25 peptide or of its scramble counterpart 

(sM25). The co-localization score is reported within each figure, as well as in table 1. Nuclear staining: DAPI 

(blue). Magnification: 40 X. The shown pictures are representative of 50 different pictures for each experimental 

condition that were studied by Image J analysis, as reported in the legend to table 1.   Panel B: Magnification 

(200 X) of selected sections of panel A to show actin cytoskeleton (revealed by red falloidin staining) 

derangement as an effect of M25 peptide treatment. 
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Table 3. Colocalization analysis. M25 concentration is 50 µM. 
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Activity of the M25 peptide on mesenchymal and amoeboid migration styles and related 

transductions.  

On the basis of these results we reasoned that the property of M25 peptide to uncouple uPAR 

from integrins, and hence from actin under both mesenchymal and amoeboid conditions, 

could produce functional effects similar to those obtained with uPAR aODN on mesenchymal 

and amoeboid migration styles. Therefore we studied Matrigel invasion and Rac-1/RhoA 

modulation under each relevant experimental condition. Similarly to genetic uPAR 

knockdown, results of Matrigel invasion obtained on PCb1, A375 M6 and Hek-293 cells 

clearly show that M25 peptide exerts a very intense inhibition of the amoeboid movement of 

cells treated with the inhibitor cocktail and partially inhibits the movement of control cells 

that move with a pre-specified mesenchymal migration style (figure 18). 
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Figure 18: M25 treatment effect on invasivity. Invasion of porous filters coated with a 3D Matrigel layer, by 

HEK-293 transfectants (panel A), Pcb1 (panel B) and M6 cells (panel C) under amoeboid and mesenchymal 

conditions, in the absence and in the presence of M25 peptide. Results are the mean of three different 

experiments performed in triplicate on each cell line ± SD. *: p<0.05. The pictures show the typical appearance 

of filters in each experimental condition. 

 

Results obtained on small Rho-GTPases show that the shift from mesenchymal to amoeboid 

movement increases the RhoA/Rac1 ratio, even in the presence of M25 peptide (figure 19), 

but such a Rho over-activation does not support amoeboid movement owing to the M25-

dependent weakening of actin cytoskeleton-integrins-uPAR functional axis. Overall, the 

phenotypic effects obtained with the M25 peptide are similar to those obtained with uPAR-

aODNs, allowing us to conclude that uPAR regulates plasticity of cell movement in both the 
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mesenchymal and amoeboid migration styles by an integrin-mediated coupling of the cell 

membrane to the actin cytoskeleton. 

 

 

 

Figure 19: Biochemical effects of M25 treatment. Western blotting of total and GTP-loaded forms of small 

Rho-GTPases Rac1 and RhoA under mesenchymal and amoeboid conditionsconditions ± M25 peptide for each 

prostate cancer and melanoma cell line. Three experiments were performed for each cell line in different 

conditions. Histograms report RhoA/Rac1 ratio obtained by band densitometry quantification and * shows 

statistical significance at p<0.05. Numbers on the right of each Western blotting refer to molecular weights 

expressed in kDa. 

 

 

 

 

 



  

 

61 

 

Evaluation of protease inibitors toxicity in EPC 

 

In the end we evaluated the amoeboid phenotype of EPC since they are recruited in the 

tumoral microenvironment to form new blood vessels to provide nutrients to the cancer. To 

re-create a condition most similar to tumoral microenvironment we tested a physiological 

protease inhibitor cocktail. In order to compare the effects of the physiological protease 

inhibitor mixture with the former chemical mix, we performed WST1 (data not shown) 

Trypan Blue viability assay (figure 20). Taking in to account of the toxicity of chemical 

mixture, we performed the following EPC experiments with the physiologic mix. 

Figur

e 20: Trypan Blue viability assay. In histograms are reported the results of Trypan blue exclusion test to assess 

the cell viability. A viable cell have a clear cytoplasm whereas a nonviable cell have a blue cytoplasm. The 

percentage was obtained  from cell counts using Burker chamber. We have choosen to test the physiological 

protease inhibitor mix at 6 and 24 hours because they are respectively the invasivity assay and morphogenesis 

endpoint. 
 

 

Evaluation of angiogenetic properties of EPC in vitro  

After isolation and cytofluorimetric characterization, we have evaluated EPC angiogenetic 

properties using capillary morphogenesis. Treated with physiological mix EPC M2 clone 

maintained their angiogenetic capability (figure 21). 
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Figure 21: Capillary morphogenesis. Evaluation of capability to form capillary-like tubes in vitro, measuring 

the percentage of the photographic field occupied by cells engaged in capillary-like cord formation by image 

analysis.. Panel A: control EPC,  Panel B: EPCs treated with physiologic protease inhibitor mix. 

 

 

Induction of amoeboid phenotype in EPC  

Matrigel invasion, and cell morphology. To evaluate whether exposure to a protease inhibitor 

cocktail induced a protease-independent invasion, we subjected EPcells to a Boyden chamber 

migration assay through a thick Matrigel coating, in the presence of the physiologic inhibitor 

cocktail added to Matrigel solution before polymerization. As shown in figure 22, where we 

have reported invasivity assay histogram, the physiologic mix increases the number of 

invasive cells. To prove the proteases inhibition we have carried out collagen degradation 

assay, where the  cells are plunged in FITC-labelled collagene. When proteases degrades 

FITC-collagene, it gives off fluorescence (more flourescence = more proteases activity). We 

observed that in the presence of the mix fluorescence percentage is drastically reduced 

compared to control (figure 23). These data suggest that invasive EPCs use amoeboid 

migration in 3D Matrigel matrices.  

        

 

Figure 22: Invasivity assay after physiological protease inhibitors treatment. EPCs invasion performed by 

Boyden chambers method, it has been expressed as number of cells which cross the filter. Physiologic mix: 

presence of the protease inhibitor cocktail. Results are the mean of five different experiments performed in 

triplicate on each cell line ± SD. * : p<0.05. 
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Figure 23: Collagene degradation assay. The histogram shows the collagenolitic activity of EPCs under 

mesenchymal and amoeboid conditions, expressed as % collagen degradation with respect to the positive control 

obtained by addition of exogenous collagenase. Ctrl-: collagenolytic activity in the absence of cells and in the 

presence of exogenous collagen; Ctrl+: collagenolytic activity in the absence of cells but in the presence 

collagenase 1mg/ml; cells ctlr: control EPCs in the presence of exogenous collagen; physiologic mix: EPCs 

trated with protease inhibitor cocktail in the presence of exogenous collagen.  

 

 

 

Also in this section of the project we characterized the motility shift by mesuring the 

activation level of small GPTases RhoA and Rac1. From western blotting experiments we 

have seen that EPCs treated with physiologic protease inhibitor cocktail express decreased 

activated Rac1 and an increased activated RhoA (figure 24). 

 

 
Figure 24: Biochemical features evaluation of the amoeboid movement in prostate cancer and melanoma 

cells. Western blotting of total and GTP-loaded forms of small Rho-GTPases RhoA and Rac1 under 

mesenchymal and amoeboid conditions for EPCs.  

 

 

 

We performed a morphological analysis of EPCs compared with the respective control. Figure 

25 shows that physiological inhibitors combination induces a change in the morphology of 

EPCs including the loss of stress fibers, clearly visible in cells undergoing mesenchymal 

migration.  



  

 

64 

 

 
Figure 25: Morphological features of the mesenchymal to amoeboid transition (MAT) of EPCs. Each 

picture shows the general pattern of a small field for both control and treated cells. Red: phalloidin staining of 

the actin cytoskeleton. Blue: nuclear staining with DAPI. Magnification 40 X for reference pictures and 100 X 

for enlarged insets. Results shown are representative of two different preparations under mesenchymal and 

amoeboid conditions.  

 

 



  

 

65 

 

 

 

 

 

 

CHAPTER 5:  

DISCUSSION 
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A ten years analysis of the prospective multicentre Chemo-N0 (node negative) trial has 

identified the uPA/ uPAR system as the only level-of-evidence-1 cancer biomarker system for 

prognosis and/or prediction in node-negative breast cancer [31]. uPAR contributes to multiple 

features of the malignant character, including high metastatic potential [32], angiogenesis 

[33], epithelial-to-mesenchymal-transition (EMT) [34] and cancer cell stemness [35]. Our 

data show that uPAR has a role in sustaining both mesenchymal and amoeboid migration 

style of cancer cells by controlling the state of the actin cytoskeleton assembly via its integrin-

mediated interaction with cytoskeleton.  

Far-off and recent studies have underlined the key role of multiple proteases and their 

receptors in mesenchymal migration style of cancer cell during the invasion process so that 

the property of cancer cells to proteolytically degrade anatomical barriers has attained the role 

of a marker of cancer cell malignancy. Amoeboid motility has been originally described in the 

amoeba Dictyostelium discoideum, but it is also exploited by eukaryotic cells under particular 

environmental cues, such as the need to rapidly slide through lose interstitial tissues with gaps 

that accommodate the cell body using flexible and weak adhesion sites, producing a 

movement that depends on dynamic cytoplasmic protrusions due to intracellular 

compartmentalization of cytoplasm between an intact cortical actin cytoskeleton and the 

locally expanded cell membrane (blebs). Pioneer studies enlightened the possibility of cancer 

cells to move within tissues according to amoeboid features, leading to the so-called “cortical 

expansion model for amoeboid chemotaxis” of malignant cells [39]. Cancer cell amoeboid 

motility has now become an issue, accounting for rapid movement of invading cells within 

the primary and the metastatic site.  

Herein we have shown that malignant cells derived from human melanoma and prostate 

cancer exhibit a uPAR-dependent mesenchymal invasion across a 3D Matrigel substrate, that 

is proportional to uPAR expression and that may be strongly reduced by preventing uPAR 

interaction with its ligand uPA. We confirm the main role of uPAR in mesenchymal 

migration also in human embrional kidney 293 cells (HEK-293) transfected with the full-

length form (D1D2D3) of the human uPAR. We observed a residual mesenchymal Matrigel 

invasion that could be surely ascribable to the activity of multiple proteases. Our results 

indicate that the uPAR-driven proteolytic activity accounts for more than 50% of single 

migrating cells in all the studied cancer cell lines. The residual cell invasion has to be related 

to many other proteases such as members of the MMP and cathepsin families. Due to the high 

number of involved molecules it was not possible to use blocking antibodies, while the use of 
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specific protease inhibitors could induce the shift to an amoeboid movement style. The same 

cells shifted toward an amoeboid migration style (MAT) upon exposure to a protease inhibitor 

cocktail. Our observation that not the whole cancer cell populations undergo MAT and that 

the percentage of shifting cells varies among the different cell lines independently of their 

origin (primary tumor or metastasis) indicates that this feature is independent of cancer 

progression. Also small Rho-GTPases activation and cell morphology were consistent with 

MAT. Although under mesenchymal conditions not all the studied cell lines showed an 

unambiguously elongated cell shape, the acquisition of amoeboid features in the presence of 

the inhibitor cocktail, such as the attainment of a round shape and reorganization of actin 

according to a strictly sub-cortical location were evident.  

The results obtained with uPAR-aODN on mesenchymal and amoeboid movement clearly 

show uPAR requirement in both styles of cancer cell migration. Moreover, the data obtained 

with HEK-293 cells transfected with the truncated or with the native form of uPAR show that 

only the full-length form supports amoeboid movement. Many proteases cleave the receptor 

(cleaved uPAR, c-uPAR) [40]. c-uPAR, devoid of D1, is unable to bind extracellular uPAR 

ligands, uPA and VN, as well as to interact with integrins, indicating that uPAR cleavage is a 

mechanism that negatively regulates uPAR activities associated with a migratory and invasive 

phenotype: in fact the full-length uPAR and uPA are up-regulated and are negative prognostic 

factors in several tumors [31]. In order to elucidate the mechanism whereby native uPAR 

regulates amoeboid movement, we decided to explore the in-ward uPAR activities by 

studying its property to regulate the actin cytoskeleton [92,26,41]. Interaction of uPAR with 

integrins is the foundation stone of the cell migration signalosome [116]. In our cancer cells 

we have confirmed uPAR interaction with β1 and β3 integrins by confocal microscopy and 

immunoprecipitation, showing that such interactions are present under both mesenchymal and 

amoeboid conditions. Integrins, which lack actin-binding domains, are indirectly connected to 

the actin cytoskeleton through different protein complexes that contain over a hundred 

different types of proteins, talin, α-actinin, filamin, tensin, parvin and myosin-X being the 

most studied, that transmit the mechanical force from the cell membrane to the actin 

cytoskeleton for cytoplasm contraction during cell movement [139]. We have shown herein 

that uPAR co-localizes with actin cytoskeleton in all the examined conditions, including the 

amoeboid one, where the thick ring of cortical actin and uPAR overlap. In the β-propeller 

model of α-chain folding, the sequence of the M25 peptide spans an exposed loop on the 

uPAR-binding surface of α-chain, thus impairing integrin-uPAR interaction [143]. M25 

peptide not only uncoupled uPAR from integrins in all the cells and experimental conditions 
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studied in this work, but it also produced a structural alteration of actin which lost the stress 

fibres and cortical organization under the mesenchymal and amoeboid conditions, and 

acquired a granular feature. It is therefore evident that M25 peptide uncouples uPAR from 

integrins, and hence from actin, thereby producing functional effects similar to those obtained 

with uPAR aODN on mesenchymal and amoeboid migration styles. The final effects of both 

treatments, that lead to an alteration of actin assembly, which is no longer efficiently bound to 

integrins modified by the loss of interaction with uPAR, result into a weakening of actin-

membrane coupling and in the loss of the tensile force that determines translocations of the 

cell body [139]. Actin disorganization impaired both mesenchymal and amoeboid migration 

of cancer cells. Also the activity of small Rho- GTPases was deranged by the use of M25 

peptide as well as by uPAR-aODN, thus partially inhibiting mesenchymal migration and 

totally inhibiting the amoeboid one. As the M25 peptide is specific for inhibition of uPAR-

integrin α-chain interaction, its limited effects on mesenchymal migration may be accounted 

for by the failure of the peptide to inhibit integrin-MMPs interactions that also regulate 

mesenchymal motility [144,145].  

Available data indicate that a successful strategy to combat invasion and metastatic diffusion 

of aggressive cancer cells is the identification of molecular targets that control the ability of 

cancer cells to adapt to the environment by regulating plasticity of cancer cells. Taken 

together, the results obtained in the present study show that uPAR, a recognized marker of 

cancer cell progression is a molecular mediator of plasticity in cancer cell motility by 

regulating contractile forces in tumor cell migration through the functional axis uPAR-

integrins-actin. Together with the many so far reported pro-tumoral activities of uPAR, our 

observations make the uPA/uPAR system an attractive target for the treatment of cancer that 

has not yet been extensively explored in the clinic. 

To better understand the molecular mechanisms of amoeboid migration during angiogenesis, 

we have decided to study the amoeboid angiogenesis, as a possible form of EPC migration to 

cancer to form new blood vessels EPCs are recruited into circulation in response to growth 

factors secreted from tumors, such as VEGF,  that promote mobilization of endothelial cells to 

sites of vasculogenesis. 

Endothelial cells contribute at least in two ways to tumor progression: first, recruitment of 

EPCs stimulates the sprouting of new tumor blood vessels to feed primary growth; second, 

changes in the structure of the existing vascular endothelium create an escape route for cancer 

cells to generate distant metastases. Furthermore, to allow successful metastases in distant 

organs, cancer cells interact with endothelial cells activating trans-endothelial  migration 
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(TEM). This process resembles the leukocyte extravasation during the inflammatory response 

where the activated endothelium supports adhesion and diapedesis of the leukocyte through 

the vasculature. 

In this section of the study, after demonstration of EPC angiogenesis properties, we tested on 

this cell line the toxicity of protease inhibitor mixtures used to prevent mesenchymal 

movement. 

The results obtained showed that EPCs are critically susceptible to chemical mix, but this 

effect has not been observed after treatment with physiological protease inhibitor mixture. 

After invasion assay we have shown that the number of invasive EPCs, in presence of 

physiologic mix increases respect to the control. Furthermore, we confirm the mesenchymal 

migration inhibition using a collagenolysis assay, where the treated EPCs with inhibitor mix 

showed a reduced collagenolytic activity respect to the control. 

From GTPase assays on EPCs, it is emerged that in protease inhibitors-treated EPCs RhoA 

activation level increases and Rac1 activation level decreases respect to control. This result 

allows us to confirm that EPCs are able to perform amoeboid migration. 

Furthermore this fact has been confirmed by confocal morphologic analysis, where we 

observed that treated EPCs have a reduced cytoplasm and loose stress fibers, typical of 

mesenchymal movement.  

The future prospectives of this project is to investigate the role of uPAR during MAT by 

controlling the receptor expression and to perform in vivo assays to study the effects of 

control EPCs, amoeboid EPCs and uPAR-silenced EPCs on human melanoma development 

and metastasis. 
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