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Abstract

In this paper we discuss energy conservation issues related to the numerical solution
of the semilinear wave equation. As is well known, this problem can be cast as a Hamil-
tonian system that may be autonomous or not, depending on the prescribed boundary
conditions. We relate the conservation properties of the original problem to those of its
semi-discrete version obtained by the method of lines. Subsequently, we show that the
very same properties can be transferred to the solutions of the fully discretized problem,
obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary
Value Methods) class. Similar arguments hold true for different types of Hamiltonian
Partial Differential Equations, e.g., the nonlinear Schrödinger equation.
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1 Introduction
In this paper we discuss energy-conservation issues for the semilinear wave equation,
though the approach can be extended to different kinds of Hamiltonian Partial Dif-
ferential Equations (like, e.g., the nonlinear Schrödinger equation). For simplicity, but
without loss of generality, we shall consider the following 1D case,

utt(x, t) = uxx(x, t)− f ′(u(x, t)), (x, t) ∈ (0, 1)× (0,∞),

u(x, 0) = ψ0(x), (1)
ut(x, 0) = ψ1(x), x ∈ (0, 1),

coupled with suitable boundary conditions. As usual, subscripts denote partial deriva-
tives. In (1), the functions f , ψ0 and ψ1 are supposed to be suitably regular and such
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that they define a regular solution u(x, t) (f ′ denotes the derivative of f). The problem
is completed by assigning suitable boundary conditions which we shall, at first, assume
to be periodic,

u(0, t) = u(1, t), t > 0. (2)

In such a case, we will assume that ψ0, ψ1, and f are such that the resulting solution
also satisfies

ux(0, t) = ux(1, t), t > 0. (3)

Later on, we shall also consider the case of Dirichlet boundary conditions,

u(0, t) = ϕ0(t), u(1, t) = ϕ1(t), t > 0, (4)

and Neumann boundary conditions,

ux(0, t) = φ0(t), ux(1, t) = φ1(t), t > 0, (5)

with ϕ0(t), ϕ1(t), φ0(t), and φ1(t) suitably regular. We set

v = ut, (6)

and define the Hamiltonian functional

H[u, v](t) =

∫ 1

0

[
1

2
v2(x, t) +

1

2
u2
x(x, t) + f(u(x, t))

]
dx ≡

∫ 1

0
E(x, t) dx. (7)

As is well known, we can rewrite (1) as the infinite-dimensional Hamiltonian system
(for brevity, we neglect the arguments of the functions u and v)

zt = J
δH
δz
, (8)

where

J =

(
0 1
−1 0

)
, z =

(
u
v

)
, (9)

and
δH
δz

=

(
δH
δu

,
δH
δv

)>
(10)

is the functional derivative of H. This latter is defined as follows: given a generic
functional in the form

L[q] =

∫ b

a
L(x, q(x), q′(x))dx,

its functional derivative δL
δq is defined by requiring that, for every function ξ(x),∫ b

a

δL
δq
· ξdx ≡ lim

ε→0

L[q + εξ]− L[q]

ε
=

d

dε
L[q + εξ]

∣∣∣∣
ε=0

.

In particular, by considering a function ξ vanishing at a and b, one obtains:∫ b

a

δL
δq
· ξdx =

[
d

dε

∫ b

a
L(x, q + εξ, q′ + εξ′)dx

]
ε=0

=

∫ b

a

(
∂L

∂q
ξ +

∂L

∂q′
ξ′
)

dx

=

∫ b

a

[
∂L

∂q
ξ +

d

dx

(
∂L

∂q′
ξ

)
−
(
d

dx

∂L

∂q′

)
ξ

]
dx

=

∫ b

a

[
∂L

∂q
ξ −

(
d

dx

∂L

∂q′

)
ξ

]
dx =

∫ b

a

(
∂L

∂q
−
(
d

dx

∂L

∂q′

))
ξ dx.
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Consequently,
δL
δq

=
∂L

∂q
−
(
d

dx

∂L

∂q′

)
. (11)

Exploiting (11), one easily verifies that (8)–(10) are equivalent to (1):

zt =

(
ut
vt

)
= J

δH
δz

=

(
δH
δv

− δH
δu

)
=

(
v

uxx − f ′(u)

)
,

or

ut(x, t) = v(x, t), (x, t) ∈ (0, 1)× (0,∞),

vt(x, t) = uxx(x, t)− f ′(u(x, t)), (12)

that is, the first-order formulation of the first equation in (1).
The numerical treatment of Hamiltonian PDEs such as (1) has been the subject of an

intense research activity during the past decade (see, e.g., [10] for a survey). The exten-
sion of ideas and tools related to geometric integration of ordinary differential equations
(ODEs) has led to the definition and analysis of various structure preserving algorithms
suitable for specific or general classes of PDEs. Two main lines of investigations are
based on a multisymplectic reformulation of the equations or their semi-discretization
by means of the method of lines.

Multisymplectic structures generalize the classical Hamiltonian structure of a Hamil-
tonian ODE by assigning a distinct symplectic operator for each unbounded space di-
rection and time [7]. A clear advantage of this approach is that it allows for an easy
generalization from symplectic to multisymplectic integration. Multisymplectic integra-
tors are numerical methods which precisely conserve a discrete space-time symplectic
structure of Hamiltonian PDEs [70, 8, 59, 43, 42, 54] (a backward error analysis of such
schemes may be found in [74, 60, 61]).

In the method of lines approach, the spatial derivatives are usually approximated
by finite differences or by discrete Fourier transform and the resulting system is then
integrated in time by a suitable ODE integrator. Spectral methods have revealed very
good potentialities especially in the case of periodic boundary conditions [41, 84].1 For
weakly nonlinear term f ′ in (1), the modulated Fourier expansion technique [51, Chapter
XIII] has been adapted to both the semi-discretized and the full-discretized systems to
state long-time near conservation of energy, momentum, and actions [52, 34]. In general,
quoting [80, p. 187], if the PDEs are of Hamiltonian type, (. . . ) the space discretization
should be carried out in such a way that the resulting system of ODEs is Hamiltonian
(for a suitable Poisson bracket) and the time integration should also be carried out by
a symplectic or Poisson integrator. This approach (which we shall consider here), has
been the subject of many researches (e.g., [27, 44, 53, 50, 67, 69, 75, 78]). Whichever
is the considered discretization, the main aim is that of keeping conserved discrete
counterparts of continuous invariants, as done, e.g., in [46, 47, 55, 71, 72], with the so
called discrete variational derivative method. Additional references are [40, 68, 82].

In this paper, we focus our attention on numerical techniques able to provide a full
discretization of the original system with the discrete energy behaving consistently with
the energy function associated with (1). More precisely, to approximate the second

1They have been also applied to multisymplectic PDEs [9, 33, 83].
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order spatial derivative, we use either a central finite difference or a spectral expan-
sion, and then we derive a semi-discrete analogue of the conservation law associated
with the energy density. As is well known, whatever the boundary conditions, the rate
of change of the energy density integrated over an interval depends only on the flux
through its endpoints. We show that the use of an energy-conserving method to dis-
cretize the time assures a precise reproduction of the above mentioned conservation law
of the semi-discrete model. In particular, if there is no net flux into or out of the inter-
val, then the integrated energy density is precisely conserved, meaning that it remains
constant over time. Some of the presented results, in the case of periodic boundary con-
ditions, are already known (see, e.g., [78, 75, 27]). Nevertheless, these authors mainly
focus on the conservation properties of the semi-discrete model, and consider accurate
symplectic integrators for their solution. Instead, we are here more interested in a pre-
cise conservation of the semi-discrete energy and, because of this reason, we consider
energy-conserving methods. Moreover, the algebraic form in which we cast the semi-
discrete problem is quite concise, and allows for a simple extension to the case where
the boundary conditions are not periodic.

A popular strategy for the numerical treatment of generic boundary conditions is
that of considering a Summation By Parts (SBP) operator in space, consisting of a basic
centered difference scheme suitably modified in a number of points near the boundary in
order to assure stability and high order (see [48, 73, 81]). The boundary conditions can
be then imposed by means of projection methods (see [76, 77]) or Simultaneous Approx-
imation Term (SAT) methods adding penalty terms in the semi-discrete problem (see
[45, 29]). Nevertheless, since the SBP operators are not symmetric, this approach is not
able to return a Hamiltonian semi-discretization of the continuous problem and, there-
fore, it does not fit the main goal of this paper: showing the benefits which one could
have when the energy of a semi-discrete version of the original Hamiltonian problem is
exactly (or at least practically) conserved.

When the problem is coupled with the periodic boundary conditions (2), the integral
of E (see (7)) is indeed a conserved quantity and one obtains energy conservation (see,
e.g., [66]). Therefore, it makes sense to look for a corresponding conservation property,
when numerically solving the problem (as done, e.g., in [78, 75, 27]). Nevertheless, also
in the other cases (i.e., (4) and (5)), which are of interest in applications, the qualitative
properties of the solution can be suitably reproduced in the discrete approximation
by slightly generalizing the arguments. In fact, in all cases, one may derive a semi-
discrete problem which turns out to be Hamiltonian, and whose Hamiltonian mimics a
semi-discrete energy which is exactly conserved. Consequently, it makes sense to use
energy-conserving methods for their numerical solution.

Energy conserving methods, in turn, have been the subject of many investigations,
in the ODE setting, during the past years: we quote, as an example, discrete gradient
methods [64, 63], time finite elements [4, 5], the average vector field method [79, 31, 32]
and its generalizations [49]. This latter method has also been considered in the PDE
setting (e.g., [30]). In particular, we shall here consider the energy-conserving methods
in the class of Hamiltonian Boundary Value Methods (HBVMs) [16, 17, 18, 19, 20, 21, 13],
which are methods based on the concept of discrete line integral, as defined in [56, 57, 58].
Such methods have been also generalized to the case of different conservative problems
[12, 15, 22, 23, 26] and, more recently, they have been used for numerically solving
Hamiltonian boundary value problems [2].

With this premise, the paper is organized as follows:
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• we study, at first, the discrete problems derived by a finite-difference spatial dis-
cretization. In particular, in Section 2 we study the case in which problem (1) is
completed by the periodic boundary conditions (2); the case of Dirichlet bound-
ary conditions (4) will be the subject of Section 3; at last, the case of Neumann
boundary conditions (5) will be examined in Section 4;

• we then study, in Section 5, the case where a Fourier-Galerkin space discretization
is considered, when periodic boundary conditions are prescribed. Also, higher
order finite-difference approximations are sketched;

• in Section 6 we study the efficient implementation of the proposed energy-conserv-
ing methods. In Section 7 we report a few numerical tests, whereas Section 8
contains a few concluding remarks;

• finally, in the Appendix we sketch the way how the whole approach can be extended
to different kinds of Hamiltonian PDEs. In particular, we consider the nonlinear
Schrödinger equation.

2 The case of periodic boundary conditions
By considering that the time derivative of the integrand function E(x, t) defined at (7)
satisfies (see (12))

Et(x, t) = v(x, t)vt(x, t) + ux(x, t)uxt(x, t) + f ′(u(x, t))ut(x, t)

= v(x, t)(uxx(x, t)− f ′(u(x, t))) + ux(x, t)vx(x, t) + f ′(u(x, t))v(x, t)

= v(x, t)uxx(x, t) + ux(x, t)vx(x, t) = (ux(x, t)v(x, t))x ≡ −Fx(x, t),

one derives the conservation law:

Et(x, t) + Fx(x, t) = 0, with F (x, t) = −ux(x, t)v(x, t). (13)

Consequently, because of the periodic boundary conditions (2) (and (3)), one obtains

Ḣ[z](t) =

∫ 1

0
Et(x, t)dx = [ux(x, t)v(x, t)]1x=0 = 0,

where, as usual, the dot denotes the time derivative. Therefore (7) is a conserved
quantity, so that at t = h one has:

H[z](h) = H[z](0).

We also recast the Hamiltonian function in a more convenient form to be used in
the sequel. In case of the periodic boundary conditions (2), from (7) one has

H[z](t) ≡
∫ 1

0
E(x, t) dx =

∫ 1

0

[
1

2
v2(x, t) +

1

2
u2
x(x, t) + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v2(x, t) +

1

2
[(u(x, t)ux(x, t))x − u(x, t)uxx(x, t)] + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v2(x, t)− 1

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx+

1

2
[u(x, t)ux(x, t)]1x=0︸ ︷︷ ︸

=0

=

∫ 1

0

[
1

2
v2(x, t)− 1

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx, (14)

where [uux]1x=0 = 0 because of the periodic boundary conditions (2) (and (3)).
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2.1 Semi-discretization
For numerically solving problem (1)-(2), let us introduce the following discretization of
the space variable,

xi = i∆x, i = 0, . . . , N, ∆x = 1/N,

and the vectors:

x =

 x0
...

xN−1

 , q(t) =

 u0(t)
...

uN−1(t)

 , p(t) =

 v0(t)
...

vN−1(t)

 ∈ RN ,

with
ui(t) ≈ u(xi, t), vi(t) ≈ v(xi, t) ≡ ut(xi, t). (15)

Because of the periodic boundary conditions (2), we also set:

uN (t) ≡ u0(t), u−1(t) ≡ uN−1(t), t ≥ 0.

Approximating the second derivative in (12) as

uxx(xi, t) ≈
ui+1(t)− 2ui(t) + ui−1(t)

∆x2
, i = 0, . . . , N − 1, (16)

yields the following semi-discrete problem

q̇ = p, (17)

ṗ = − 1

∆x2
TNq− f ′(q), t > 0,

with the initial condition

q(0) = ψ0(x), p(0) = ψ1(x), (18)

(with an obvious meaning for f ′(q), ψ0(x), and ψ1(x)) and the following approximation
of the Hamiltonian (14),

H ≡ H(q,p) = ∆x

[
p>p

2
+

q>TNq

2∆x2
+ e>f(q)

]
, (19)

where TN is a circulant matrix,2

TN =



2 −1 −1

−1
. . . . . .
. . . . . . . . .

. . . . . . −1
−1 −1 2


∈ RN×N , (20)

and
e =

(
1 . . . 1

)> ∈ RN . (21)

2Because of the periodic boundary conditions (2).
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Problem (17) is clearly Hamiltonian. In fact, one has

q̇ =
1

∆x
∇pH, ṗ = − 1

∆x
∇qH,

or, by introducing the vector

y =

(
q
p

)
,

one obtains the more compact form

ẏ = JN∇H(y), with JN =
1

∆x

(
IN

−IN

)
, (22)

where here and in the sequel we use, when appropriate, the notation H(y) = H(q,p).
Consequently,

Ḣ(y) = ∇H(y)>ẏ = ∇H(y)>JN∇H(y) = 0,

because JN is skew-symmetric. One then concludes that the discrete approximation
(19) to (14) is a conserved quantity for the semi-discrete problem (22). Writing (19) in
componentwise form,

H(q,p) = ∆x
N−1∑
i=0

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
, (23)

one notices that (19) is nothing but the approximation of (14) via the composite trape-
zoidal rule (provided that the second derivative uxx has been previously approximated
as indicated at (16), and taking into account the periodic boundary conditions (2)).
Consequently, one sees that (23) is a O(∆x2) approximation to (14).

2.2 Full discretization
Problem (22) can be discretized by using a HBVM(k, s) method which allows for an
(at least practical) conservation of (19), by using a suitably large value k ≥ s [21], as
is shown in the sequel. Let us study the approximation to the solution over the time
interval [0, h], representing the very first step of the numerical approximation, to be
repeated subsequently. For this purpose, we shall consider the orthonormal polynomial
basis over the interval [0,1], {Pj}, given by the shifted and scaled Legendre polynomials:

degPi = i,

∫ 1

0
Pi(x)Pj(x)dx = δij , ∀i, j ≥ 0,

δij being the Kronecker symbol. Let us then expand the right-hand side of (22) along
this basis, thus obtaining

ẏ(ch) =
∑
j≥0

γj(y)Pj(c), c ∈ [0, 1], (24)

with

γj(y) =

∫ 1

0
JN∇H(y(τh))Pj(τ)dτ, j ≥ 0. (25)

It is possible to prove the following result [21].
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Lemma 1 Assume ∇H(y(·)) can be expanded in Taylor series at 0. Then:

γj(y) = O(hj) ∈ R2N , j = 0, 1, . . . .

Setting the initial condition (see (1))

y0 =

(
ψ0(x)
ψ1(x)

)
, (26)

with ψj(x), j = 0, 1, the vector whose entries are given by ψj(xi), the solution of
(24)-(26) is then formally given by:

y(ch) = y0 + h
∑
j≥0

γj(y)

∫ c

0
Pj(x)dx, c ∈ [0, 1]. (27)

In order to obtain a polynomial approximation σ ∈ Πs to (27), we consider the following
truncated initial value problem [21],

σ̇(ch) =

s−1∑
j=0

γj(σ)Pj(c), c ∈ [0, 1], σ(0) = y0, (28)

where γj(σ) is still given by (25) by replacing y with σ. The polynomial approximation
to (27) is then formally given by:

σ(ch) = y0 + h
s−1∑
j=0

γj(σ)

∫ c

0
Pj(x)dx, c ∈ [0, 1].

The use of a Gauss Legendre quadrature formula of order 2k to approximate the integral
defining γj(σ) (see (25)) would give [21]

γj(σ) =

∫ 1

0
JN∇H(σ(τh))Pj(τ)dτ

=
k∑
`=1

b`Pj(c`)JN∇H(σ(c`h))︸ ︷︷ ︸
=γ̂j(σ)

+∆j(h) ≡ γ̂j(σ) + ∆j(h), (29)

with
∆j(h) = O(h2k−j) ∈ R2N , j = 0, . . . , s− 1. (30)

In such a case, however, we have a different polynomial u ∈ Πs, in place of σ, solution
of the problem

u̇(ch) =
s−1∑
j=0

γ̂j(u)Pj(c), c ∈ [0, 1], u(0) = y0, (31)

γ̂j(u) =
k∑
i=1

biPj(ci)JN∇H(u(cih)), j = 0, . . . , s− 1,

instead of (28): this latter problem defines a HBVM(k, s) method.
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If H(q,p) in (19) is a polynomial of degree ν ≥ 2 (which means that f ∈ Πν)3, and
k is an integer such that

k ≥ 1

2
νs ⇔ ν ≤ 2k

s
, (32)

we can exactly compute the integrals γj(σ) by means of a Gauss-quadrature formula of
order 2k, so that u ≡ σ and, then:

H(σ(h))−H(σ(0)) = h

∫ 1

0
∇H(σ(τh))>σ̇(τh)dτ (33)

= h

∫ 1

0
∇H(σ(τh))>

s−1∑
j=0

Pj(τ)γj(σ)dτ = h∆x2
s−1∑
j=0

γj(σ)>JNγj(σ) = 0,

due to the fact that JN is skew-symmetric. If f , and then H, is not a polynomial, by
taking into account (22) and (29)–(31), the error on the Hamiltonian H, at t = h, is:

H(u(h))−H(u(0)) = h

∫ 1

0
∇H(u(τh))>u̇(τh)dτ

= h

∫ 1

0
∇H(u(τh))>

s−1∑
j=0

Pj(τ) (γj(u)−∆j(h)) dτ

= h∆x2
s−1∑
j=0


=0︷ ︸︸ ︷

γj(u)>JNγj(u)−γj(u)>JN∆j(h)


= h∆x ·N︸ ︷︷ ︸

=1

·O(h2k) ≡ O
(
h2k+1

)
, (34)

where the last equality follows from Lemma 1 and (30). Consequently, choosing k large
enough allows us to approximate the Hamiltonian H within full machine accuracy.
Summing up all the previous arguments and taking into account the results in [21], the
following results can be proved.

Theorem 1 The HBVM(k, s) method (31) is the k-stage Runge-Kutta method with
tableau

c IP>Ω

b>
with

{
b =

(
b1 . . . bk

)>
c =

(
c1 . . . ck

)> , Ω =

 b1
. . .

bk

 , (35)

and P =
(
Pj−1(ci)

)
, I =

( ∫ ci
0 Pj−1(x)dx

)
∈ Rk×s.

Theorem 2 Assume k ≥ s, and define y1 = u(h) as the new approximation to
y(h) provided by a HBVM(k, s) method used with stepsize h. One then obtains:

y1 − y(h) = O(h2s+1),

that is the method has order 2s. Moreover, assuming that f is suitably regular:

H(y1)−H(y0) =


0, if f ∈ Πν and (32) holds true,

O(h2k+1), otherwise.

3Indeed, H contains at least a quadratic term.
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Remark 1 From this result, it follows that one can always obtain the conservation
of the discrete Hamiltonian (19) when f is a polynomial, by choosing k large enough.
Moreover, as (34) suggests, also in the non-polynomial case, a practical conservation
of (19) can be gained by choosing k large enough, so that the approximation is within
round-off errors. As we shall see in Section 6, this is not a severe drawback, since the
discrete problem generated by a HBVM(k, s) method has dimension s, independently of
k (see also [19, 21, 13]).

3 The case of Dirichlet boundary conditions
Let us now consider the case when the considered problem is given by (1) with the
boundary conditions (4). By repeating similar steps as done in (14), one obtains:

H[z](t) =

∫ 1

0
E(x, t)dx ≡

∫ 1

0

[
1

2
v(x, t)2 +

1

2
ux(x, t)2 + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v(x, t)2 +

1

2
[(u(x, t)ux(x, t))x − u(x, t)uxx(x, t)] + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v(x, t)2 − 1

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx+

1

2
[u(x, t)ux(x, t)]1x=0

=

∫ 1

0

[
1

2
v(x, t)2 − 1

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx+

1

2
[u(1, t)ux(1, t)− u(0, t)ux(0, t)] . (36)

Moreover, H[z] is no more conserved because formally (13) still holds true and, then,
one obtains (see also (7), and taking into account the boundary conditions (4)):

Ḣ[z](t) =

∫ 1

0
Et(x, t)dx = [ux(x, t)v(x, t)]1x=0 = ux(1, t)ϕ′1(t)− ux(0, t)ϕ′0(t). (37)

Equation (37) may be interpreted as the instant variation of the energy which is released
or gained by the system at time t. Thus, the continuous Hamiltonian (7), though no
more conserved, has a prescribed variation in time. From (37), at t = h one easily
obtains:

H[z](h)−H[z](0) =

∫ h

0
Ḣ[z](t)dt =

∫ h

0

[
ux(1, t)ϕ′1(t)− ux(0, t)ϕ′0(t)

]
dt, (38)

and we have conservation when the Dirichlet boundary conditions are constant, e.g.,
homogeneous. In particular, in the latter case the conservation of the Hamiltonian may
also assure the well-posedness of the problem, provided that the initial conditions are
such that the Hamiltonian is bounded and the nonlinear term in the equation satisfies
suitable assumptions. As an example, let us assume f bounded from below, that is
f(u) ≥ −L, L ≥ 0, ∀u ∈ R. Consequently, by exploiting the well-known Poincaré
inequality (see, e.g., [38, page 289]), there exists a constant C > 0 independent of u
such that:
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‖u(x, t)‖2L2([0,1]) ≤ C
(
‖v(x, t)‖2L2([0,1]) + ‖ux(x, t)‖2L2([0,1])

)
= 2C

(
H[u, v](t)−

∫ 1

0
f(u(x, t))dx

)
≤ 2C (H[u, v](0) + L) .

3.1 Semi-discretization
In order for numerically solving problem (1)–(4), let us introduce the following dis-
cretization of the space variable,

xi = i∆x, i = 0, . . . , N + 1 ∆x = 1/(N + 1), (39)

and the vectors:

x =

 x1
...
xN

 , q(t) =

 u1(t)
...

uN (t)

 , p(t) =

 v1(t)
...

vN (t)

 ∈ RN , (40)

with ui(t) and vi(t) formally defined as in (15). Approximating the second derivatives
in (12) as follows,

uxx(xi, t) ≈
ui+1(t)− 2ui(t) + ui−1(t)

∆x2
, i = 1, . . . , N,

and, moreover,

ux(1, t) ≈ uN+1(t)− uN (t)

∆x
, ux(0, t) ≈ u1(t)− u0(t)

∆x
, (41)

we then arrive at the following semi-discrete version of (36):

H = ∆x
N∑
i=1

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+

1

2

[
uN+1

uN+1 − uN
∆x

− u0
u1 − u0

∆x

]
. (42)

Moreover, because of the boundary conditions (4), one has:

u0(t) = ϕ0(t), uN+1(t) = ϕ1(t), (43)

so that we obtain the following semi-discrete approximation to the Hamiltonian (36):

H = ∆x
N∑
i=1

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+ ϕ1

ϕ1 − uN
2∆x

+ ϕ0
ϕ0 − u1

2∆x
.

H can be rewritten in vector form as

H ≡ H(q,p, t) = ∆x

[
p>p

2
+

q>TNq

2∆x2
+ e>f(q)

]
+
ϕ(t)>ϕ(t)

2∆x
− q>ϕ(t)

∆x
, (44)

11



where e has been defined in (21) and, moreover:

TN =



2 −1

−1
. . . . . .
. . . . . . . . .

. . . . . . −1
−1 2


∈ RN×N , ϕ(t) =


ϕ0(t)

0
...
0

ϕ1(t)

 ∈ RN . (45)

With reference to (44)-(45), the corresponding semi-discrete problem is then given by:

q̇ = p ≡ 1

∆x
∇pH, t > 0, (46)

ṗ = − 1

∆x2
TNq +

1

∆x2
ϕ− f ′(q) ≡ − 1

∆x
∇qH,

which is clearly Hamiltonian, though the Hamiltonian (44) is now non-autonomous,
because of the boundary conditions (4).

In order for conveniently handling this problem, we at first transform (46) into
an enlarged autonomous Hamiltonian system, by introducing the following auxiliary
conjugate scalar variables,

q̃ ≡ t, p̃, (47)

and the augmented Hamiltonian (compare with (44)),

H̃(q,p, q̃, p̃) = ∆x

[
p>p

2
+

q>TNq

2∆x2
+ e>f(q)

]
+
ϕ(q̃)>ϕ(q̃)

2∆x
− q>ϕ(q̃)

∆x
+ p̃

≡ H(q,p, q̃) + p̃. (48)

The dynamical system corresponding to this new Hamiltonian function is, for t > 0:

q̇ = p ≡ 1

∆x
∇pH̃,

ṗ = − 1

∆x2
TNq +

1

∆x2
ϕ− f ′(q) ≡ − 1

∆x
∇qH̃,

d

dt
q̃ = 1 ≡ ∂

∂p̃
H̃, (49)

d

dt
p̃ = −ϕ0(q̃)− u1

∆x
ϕ′0(q̃)− ϕ1(q̃)− uN

∆x
ϕ′1(q̃) ≡ − ∂

∂q̃
H̃,

with initial conditions given by (see (40))

q(0) = ψ0(x), p(0) = ψ1(x), q̃(0) = p̃(0) = 0. (50)

The first 3 equations in (49) exactly coincides with (46) (considering that q̃ ≡ t), whereas
the last one allows for the conservation of H̃:

H̃(q(t),p(t), q̃(t), p̃(t)) = H̃(q(0),p(0), 0, 0) ≡ H(q(0),p(0), 0), t ≥ 0.

Indeed, one readily sees that

d

dt
H̃(q,p, q̃, p̃) =

=0︷ ︸︸ ︷
∇qH̃

>q̇ +∇pH̃
>ṗ+

∂

∂q̃
H̃

d

dt
q̃ +

∂

∂p̃
H̃

d

dt
p̃︸ ︷︷ ︸

=0

= 0, (51)
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by virtue of (49). Consequently, by recalling that q̃ ≡ t, from (44) and (51) one obtains:

d

dt
H(q,p, t) =

∂

∂t
H(q,p, t) =

[
ϕ0(t)− u1

∆x
ϕ′0(t) +

ϕ1(t)− uN
∆x

ϕ′1(t)

]
,

which is the discrete counterpart of (37), via the approximation (41) and taking into
account the boundary conditions (43). Consequently, one obtains the following semi-
discrete analogue of (38):

H(q(h),p(h), h)−H(q(0),p(0), 0) =

=

∫ h

0

[
uN+1(t)− uN (t)

∆x
ϕ′1(t)− u1(t)− u0(t)

∆x
ϕ′0(t)

]
dt. (52)

Remark 2 It is clear that (52) is equivalent to keep constant H̃(q(t),p(t), t, p̃(t)) along
the solution of (49). Consequently, by conserving the augmented Hamiltonian H̃, one
obtains that H satisfies a prescribed variation in time which, in turn, is consistent with
the corresponding continuous one.

In order to simplify the notation, let us set

y =


q
p
q̃
p̃,

 , J̃N =


1

∆xIN
− 1

∆xIN
1

−1

 , (53)

so that (49)-(50) can be rewritten as

ẏ = J̃N∇H̃(y), t > 0, y(0) = (ψ0(x)>, ψ1(x)>, 0, 0)>. (54)

3.2 Full discretization
The full discretization of (53)-(54) follows similar steps as those seen in Section 2.2 for
(22). Let us then expand the right-hand side in (54) as done in (24)-(25), and consider
the polynomial approximation of degree s given by (28), by formally replacing H with
H̃. In such a case, one obtains energy conservation, since (compare with (33))

H̃(σ(h))− H̃(σ(0)) = h

∫ 1

0
∇H̃(σ(τh))>σ̇(τh)dτ

= h

∫ 1

0
∇H̃(σ(τh))>

s−1∑
j=0

Pj(τ)γj(σ)dτ = h

s−1∑
j=0

γj(σ)>J̃−>N γj(σ) = 0,

since

J̃−>N =


∆xIN

−∆xIN
1

−1

 (55)

is skew-symmetric. Consequently, if one is able to exactly compute the integrals, by
means of a quadrature rule based at k ≥ s Gaussian points, with k large enough, energy
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conservation is gained. This is the case, provided that H̃ is a polynomial, that is, f ∈ Πν

and ϕ0, ϕ1 ∈ Πρ, and, moreover, k satisfies:

k ≥ 1

2
max {νs, 2ρ+ s− 1, ρ+ 2s− 1} (56)

(we observe that, in case ρ = 0, such a bound reduces to the bound (32), obtained in the
case of periodic boundary conditions). When H̃ is not a polynomial, by approximating
the integrals by means of a Gaussian quadrature of order 2k, one obtains, with arguments
similar to those used in (29)-(30),

γj(σ) =

∫ 1

0
J̃N∇H̃(σ(τh))Pj(τ)dτ

=
k∑
`=1

b`Pj(c`)J̃N∇H̃(σ(c`h))︸ ︷︷ ︸
=γ̂j(σ)

+∆j(h) ≡ γ̂j(σ) + ∆j(h),

with
∆j(h) = O(h2k−j) ∈ R2N+2, j = 0, . . . , s− 1. (57)

In such a case, we have again a different polynomial u ∈ Πs, in place of σ, solution of a
problem formally still given by (31) with JN and H replaced by J̃N and H̃, respectively.
As a consequence, by taking into account (57), the error in the Hamiltonian H̃, at t = h,
is given by (see (53)):

H̃(u(h))− H̃(u(0))

= h

∫ 1

0
∇H̃(u(τh))>u̇(τh)dτ = h

∫ 1

0
∇H̃(u(τh))>

s−1∑
j=0

Pj(τ) (γj(u)−∆j(h)) dτ

= h
s−1∑
j=0


=0︷ ︸︸ ︷

γj(u)>J̃−>N γj(u)−γj(u)>J̃−>N ∆j(h)

 = h∆x ·N︸ ︷︷ ︸
< 1

·O(h2k) ≡ O
(
h2k+1

)
,

where the last equality follows from (39), (55), and Lemma 1. Consequently, choosing k
large enough allows us to approximate the Hamiltonian H̃ within full machine accuracy.

All the above arguments can be summarized by the following theorem, which gen-
eralizes Theorem 2 to the present case.

Theorem 3 Assume k ≥ s, and define y1 = u(h) as the new approximation to y(h),
solution of (53)-(54), provided by a HBVM(k, s) method used with stepsize h. One then
obtains:

y1 − y(h) = O(h2s+1),

that is the method has order 2s. Moreover, assuming that f , ϕ0, and ϕ1 in (1) and (4)
are suitably regular:

H̃(y1)− H̃(y0) =


0, if f ∈ Πν , ϕ0, ϕ1 ∈ Πρ, and (56) holds true,

O(h2k+1), otherwise.
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Clearly, considerations similar to those stated in Remark 1 can be repeated also in the
present situation.

Remark 3 In the case when ϕ0 = ϕ1 ≡ 0, we have p̃ ≡ 0 and H̃ ≡ H (see (48), (49)
and (50)), therefore, as a consequence of Theorem 3 and Remark 1, we have (an at least
practical) conservation of the original semi-discrete Hamiltonian.

As sketched at the beginning of this section, the conservation of the Hamiltonian,
when the Dirichlet boundary conditions are homogeneous, may be exploited to show the
well-posedness of the continuous problem, provided that the nonlinearity satisfies suitable
assumptions. Similarly, also in the discrete setting the stability of the solution follows
from the conservation of the (semi-discrete) energy. As an example, if f is bounded
from below (i.e. f(u) ≥ −L, L ≥ 0, ∀u ∈ R), we have:

∆x‖u(t)‖2 = ∆x
(
‖p(t)‖2 + ‖q(t)‖2

)
≤ ∆x

(
p(t)>p(t) +

q(t)>TNq(t)

λN

)
= ∆x

(
p(t)>p(t) +

q(t)>TNq(t)

∆x2
α2

)
≤ ∆x

(
p(t)>p(t) +

q(t)>TNq(t)

∆x2

)
= 2

(
H(u(t))− e>f(q(t))∆x

)
≤ 2 (H(u(0)) + L) ,

where, for N � 1, λN = 2
[
1− cos

(
π

N+1

)]
' (π∆x)2 is the minimum eigenvalue of

TN in (45) and α ' π−1.

Remark 4 Even in the case when the boundary conditions are non-homogeneous, con-
serving the augmented Hamiltonian H̃ may result in a more reliable reproduction of the
original semi-discrete Hamiltonian H.

In particular, according to the analysis in [65], if the boundary conditions are small
enough, we can assume that the variation on the Hamiltonian is quite small, that is
|p̃| ' ε � |H̃| and, therefore, the error on the semi-discrete Hamiltonian H = H̃ − p̃
behaves as

O(h2k) + εO(h2s). (58)

Consequently, the error on H will approximately decrease with order 2k, until O(h2k) '
εO(h2s). This aspect will be confirmed by the numerical tests in Section 7.

4 The case of Neumann boundary conditions
As done in the case of Dirichlet boundary conditions, also when Neumann boundary
conditions are prescribed, one starts from the formulation (36) of the continuous Hamil-
tonian function, and then considers its semi-discretization (42). In so doing, one arrives
at the very same formulation (44), with TN defined as in (45), whereas, by considering
the Neumann boundary conditions (5), and the approximations (41) used to derive (42),
ϕ(t) is now formally defined as follows:

ϕ(t) =
(
u1 − φ0(t)∆x, 0, . . . , 0, uN + φ1(t)∆x

)>
.

In fact, this is equivalent to use the following definitions for u0(t) and uN+1(t),

u0(t) = u1 − φ0(t)∆x, uN+1(t) = uN + φ1(t)∆x, (59)
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which we shall use in the sequel. We prefer, however, to derive the semi-discrete Hamilto-
nian by following a slightly different route, as described below. In more details, starting
from (42), one obtains:

H =

= ∆x
N∑
i=1

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+

1

2

[
uN+1

uN+1 − uN
∆x

− u0
u1 − u0

∆x

]

= ∆x
N−1∑
i=2

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+

1

2

[
uN+1

uN+1 − uN
∆x

− u0
u1 − u0

∆x

]
+∆x

(
1

2
v2

1 − u1
u0 − 2u1 + u2

2∆x2
+ f(u1) +

1

2
v2
N − uN

uN−1 − 2uN + uN+1

2∆x2
+ f(uN )

)
= ∆x

N−1∑
i=2

(
1

2
v2
i − ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+

1

2

[
(uN+1 − uN )2

∆x
+

(u1 − u0)2

∆x

]
+∆x

(
1

2
v2

1 − u1
−u1 + u2

2∆x2
+ f(u1) +

1

2
v2
N − uN

uN−1 − uN
2∆x2

+ f(uN )

)
,

which can be cast in vector form as

H ≡ H(q,p, t) = ∆x

[
p>p

2
+

q>TNq

2∆x2
+ e>f(q)

]
+

w(q, t)>w(q, t)

2∆x
, (60)

where e has been defined in (21), q and p are defined at (40), whereas:

TN =



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1


∈ RN×N , w(q, t) =


u1 − u0(t)

0
...
0

uN+1(t)− uN

 ∈ RN .

(61)
We emphasize that u0(t) and uN+1(t) have to be regarded as known functions. Thus,
with reference to (60)-(61), the corresponding semi-discrete Hamiltonian problem is
given by:

q̇ = p ≡ 1

∆x
∇pH, t > 0, (62)

ṗ = − 1

∆x2
TNq +

Σ

∆x2
w(q, t)− f ′(q) ≡ − 1

∆x
∇qH,

where

Σ =


−1

0
. . .

0
1

 ∈ RN×N .
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By considering (59), one has then

Σ

∆x2
w(q, t) =

1

∆x2


u0 − u1

0
...
0

uN+1 − uN

 =
1

∆x


−φ0(t)

0
...
0

φ1(t)

 ≡
1

∆x
φ(t),

thus obtaining the final shape of (62):

q̇ = p, t > 0, (63)

ṗ = − 1

∆x2
TNq +

1

∆x
φ(t)− f ′(q).

As in the case of Dirichlet boundary conditions, problem (63) is Hamiltonian with
the non-autonomous Hamiltonian (60): again, we can transform this latter into an
autonomous one, by introducing the couple of auxiliary conjugate variables (47) and
the augmented Hamiltonian (compare with (48))

H̃(q,p, q̃, p̃) = H(q,p, q̃) + p̃, (64)

with H now given by (60). The dynamical system corresponding to this new Hamilto-
nian function is, for t > 0:

q̇ = p ≡ 1

∆x
∇pH̃,

ṗ = − 1

∆x2
TNq +

1

∆x
φ− f ′(q) ≡ − 1

∆x
∇qH̃,

d

dt
q̃ = 1 ≡ ∂

∂p̃
H̃, (65)

d

dt
p̃ = − ∂

∂q̃
H̃,

with initial conditions as in (50). Concerning the last equation in (65), from (64), (60)-
(61), and (59), one has, by considering that qi(t) ≡ ui(t), q′i(t) = pi(t) ≡ vi(t) (see (40)),
and q̃ ≡ t,

d

dt
p̃ = − ∂

∂q̃
H̃ = − 1

∆x
((u0(q̃)− u1)v0(q̃) + (uN+1(q̃)− uN )vN+1(q̃))

= φ0(q̃)[v1 −∆xφ′0(q̃)]− φ1(q̃)[vN + ∆xφ′1(q̃)]. (66)

Now, problem (65)-(66) is Hamiltonian with an autonomous Hamiltonian function, so
that its energy (64) is conserved (clearly, considerations similar to those reported in
Remark 2 for the Dirichlet case can be now repeated).

Also now, the discrete problem can be cast in vector form, formally as done in (53)-
(54). Moreover, concerning the discretization issue, arguments similar to those seen in
Section 3.2 apply to the present case. In particular, the following result holds true, the
proof being similar to that of Theorems 2 and 3.

17



Theorem 4 Let y1 = u(h) be the approximation to y(h), solution of (53)-(54),
formally equivalent to (65)-(66), provided by a HBVM(k, s) method used with stepsize
h. One then obtains:

y1 − y(h) = O(h2s+1),

that is the method has order 2s. Moreover, assuming that f , φ0, and φ1 in (1) and (5)
are suitably regular:

H̃(y1)− H̃(y0) =


0, if f ∈ Πν , φ0, φ1 ∈ Πρ, with

2k ≥ max{νs, 2ρ+ s− 1, 2s+ ρ},

O(h2k+1), otherwise.

Evidently, considerations similar to those stated in Remarks 1 and 4 can be repeated
also in the present situation.

5 Periodic boundary conditions revisited
The case of periodic boundary conditions, i.e. (1)-(2), deserves to be further investi-
gated. In fact, the finite-difference discretizations considered above, turn out to provide
a second-order spatial accuracy, in the used stepsize ∆x. When either Dirichlet or Neu-
mann boundary conditions are specified, it is not possible to easily derive higher-order
semi-discrete Hamiltonian formulations of the problem. Conversely, in the case of peri-
odic boundary conditions, this can be easily accomplished. As matter of fact, by suitably
replacing the circulant matrix TN defined in (20), one obtains that the Hamiltonian (19)
remains formally the same, as well as the semi-discrete Hamiltonian problem (17). For
this purpose, any symmetric high-order approximation to the second spatial derivative
could be used (see e.g., [3]), to derive a new circulant and symmetric band-matrix. As
an example, the following matrix provides a fourth-order spatial approximation [78],

TN = −



−5
2

4
3 − 1

12 − 1
12

4
3

4
3

. . . . . . . . . − 1
12

− 1
12

. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . . − 1

12

− 1
12

. . . . . . . . . 4
3

4
3 − 1

12 − 1
12

4
3 −5

2


∈ RN×N , (67)
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whereas, the following one provides a sixth-order spatial approximation (see [3] for
additional examples):

TN = −



−49
18

3
2 − 3

20
1
90

1
90 − 3

20
3
2

3
2

. . . . . . . . . . . . 1
90 − 3

20

− 3
20

. . . . . . . . . . . . . . . 1
90

1
90

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1
90

1
90

. . . . . . . . . . . . . . . − 3
20

− 3
20

1
90

. . . . . . . . . . . . 3
2

3
2 − 3

20
1
90

1
90 − 3

20
3
2 −49

18


∈ RN×N , (68)

5.1 Fourier space discretization
An alternative approach, which we shall investigate in the sequel, is that of using a
Fourier approximation in space (see, e.g., [39]). For this purpose, let us consider the
following complete set of orthonormal functions in [0, 1]:

c0(x) ≡ 1, ck(x) =
√

2 cos(2kπx), sk(x) =
√

2 sin(2kπx), k = 1, 2, . . . , (69)

so that∫ 1

0
ci(x)cj(x)dx =

∫ 1

0
si(x)sj(x)dx = δij ,

∫ 1

0
ci(x)sj(x)dx = 0, ∀i, j. (70)

The following expansion of the solution of (1)-(2) is a slightly different way of writing
the usual Fourier expansion in space:

u(x, t) = c0(x)γ0(t) +
∑
n≥1

[cn(x)γn(t) + sn(x)ηn(t)]

≡ γ0(t) +
∑
n≥1

[cn(x)γn(t) + sn(x)ηn(t)] , x ∈ [0, 1], t ≥ 0, (71)

with

γn(t) =

∫ 1

0
cn(x)u(x, t)dx, ηn(t) =

∫ 1

0
sn(x)u(x, t)dx,

which is allowed because of the periodic boundary conditions (2). Consequently, by
taking into account (70), the first equation in (1) can be rewritten as:

γ̈n(t) = −(2πn)2γn(t)

−
∫ 1

0
cn(x)f ′

γ0(t) +
∑
j≥1

[cj(x)γj(t) + sj(x)ηj(t)]

dx, n ≥ 0,

(72)
η̈n(t) = −(2πn)2ηn(t)

−
∫ 1

0
sn(x)f ′

γ0(t) +
∑
j≥1

[cj(x)γj(t) + sj(x)ηj(t)]

 dx, n ≥ 1,

19



where the double dot denotes, as usual, the second time derivative. The initial conditions
are clearly given by (see (1)):

γn(0) =

∫ 1

0
cn(x)ψ0(x)dx, ηn(0) =

∫ 1

0
sn(x)ψ0(x)dx,

(73)

γ̇n(0) =

∫ 1

0
cn(x)ψ1(x)dx, η̇n(0) =

∫ 1

0
sn(x)ψ1(x)dx.

By introducing the infinite vectors

ω(x) =
(
c0(x), c1(x), s1(x), c2(x), s2(x), . . .

)>
,

(74)

q(t) =
(
γ0(t), γ1(t), η1(t), γ2(t), η2(t), . . .

)>
,

the infinite matrix

D =



0
(2π)2

(2π)2

(4π)2

(4π)2

. . .


, (75)

and considering that (see (71))

u(x, t) = ω(x)>q(t), (76)

problem (72) can be cast in vector form as:

q̇(t) = p(t), t > 0, (77)

ṗ(t) = −Dq(t)−
∫ 1

0
ω(x)f ′(ω(x)>q(t))dx,

with the initial conditions (73) written, more compactly, as

q(0) =

∫ 1

0
ω(x)ψ0(x)dx, p(0) =

∫ 1

0
ω(x)ψ1(x)dx. (78)

The following result then holds true.

Theorem 5 Problem (77) is Hamiltonian, with Hamiltonian

H(q,p) =
1

2
p>p +

1

2
q>Dq +

∫ 1

0
f(ω(x)>q)dx. (79)

This latter is equivalent to the Hamiltonian (7), via the expansion (71)-(76).
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Proof The first statement is straightforward, by considering that

∇qf(ω(x)>q)) = f ′(ω(x)>q)ω(x).

The second statement then easily follows, by taking into account (76), from the fact
that, see (6), (70), (71), and (74):

∫ 1

0
v(x, t)2dx =

∫ 1

0
ut(x, t)

2dx =

∫ 1

0

γ̇0(t) +
∑
n≥1

[γ̇n(t)cn(x) + η̇n(t)sn(x)]

2

dx

= γ̇0(t)2 +
∑
n≥1

[
γ̇n(t)2 + η̇n(t)2

]
≡ p(t)>p(t),

and

∫ 1

0
ux(x, t)2dx =

∫ 1

0

∑
n≥1

2πn [ηn(t)cn(x)− γn(t)sn(x)]

2

dx

=
∑
n≥1

(2πn)2
[
ηn(t)2 + γn(t)2

]
= q(t)>Dq(t).

�

5.2 Truncated Fourier-Galerkin approximation
In order to obtain a practical computational procedure, one usually truncates the infinite
expansion (71) to a finite sum:

u(x, t) ≈ γ0(t) +
N∑
n=1

[cn(x)γn(t) + sn(x)ηn(t)] ≡ uN (x, t), (80)

which converges more than exponentially with N to u, if this latter is an analytical
function.4 In other words, we look for an approximation to u(x, t) belonging to the
functional subspace (see (69))

VN = span {c0(x), c1(x), . . . , cN (x), s1(x), . . . , sN (x)} .

Clearly, such a truncated expansion will not satisfy problem (1)-(2). Nevertheless, in
the spirit of Fourier-Galerkin methods [6], by requiring that the residual

R(uN ) := (uN )tt − (uN )xx + f ′(uN )

4We refer, e.g., to [28], for a corresponding comprehensive error analysis.
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be orthogonal to VN , one obtains the weak formulation of problem (1)-(2), consisting in
the following set of 2N + 1 differential equations,

γ̈n(t) = −(2πn)2γn(t)

−
∫ 1

0
cn(x)f ′

γ0(t) +

N∑
j=1

[cj(x)γj(t) + sj(x)ηj(t)]

 dx, n = 0, . . . , N,

(81)
η̈n(t) = −(2πn)2ηn(t)

−
∫ 1

0
sn(x)f ′

γ0(t) +
N∑
j=1

[cj(x)γj(t) + sj(x)ηj(t)]

dx, n = 1, . . . , N,

approximating the leading ones in (72). By defining the finite vectors in R2N+1 (compare
with (74)),

ωN (x) =
(
c0(x), c1(x), s1(x), c2(x), s2(x), . . . , cN (x), sN (x)

)>
,

qN (t) =
(
γ0(t), γ1(t), η1(t), γ2(t), η2(t), . . . , γN (t), ηN (t)

)>
,

the matrix (compare with (75))

DN =



0
(2π)2

(2π)2

(4π)2

(4π)2

. . .
(2Nπ)2

(2Nπ)2


∈ R(2N+1)×(2N+1),

(82)
and considering that (compare with (80))

uN (x, t) = ωN (x)>qN (t), (83)

the equations (81), which have to be satisfied by (83), can be cast in vector form as:

q̇N (t) = pN (t), t > 0, (84)

ṗN (t) = −DNqN (t)−
∫ 1

0
ωN (x)f ′(ωN (x)>qN (t))dx,

for a total of 4N + 2 differential equations. Clearly, from (73) one obtains that the
initial conditions for (84) are given by:

qN (0) =

∫ 1

0
ωN (x)ψ0(x)dx, pN (0) =

∫ 1

0
ωN (x)ψ1(x)dx. (85)

The following result then easily follows by means of arguments similar to those used to
prove Theorem 5.
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Theorem 6 Problem (84) is Hamiltonian, with Hamiltonian

HN (qN ,pN ) =
1

2
p>NpN +

1

2
q>NDNqN +

∫ 1

0
f(ωN (x)>qN )dx. (86)

We observe that (86) is equivalent to a truncated Fourier expansion of the Hamilto-
nian (7) (see also (79)). Moreover, it is worth mentioning that using the initial conditions
(85), in place of (78), results in an error eN , in the initial data, given by

e2
N =

∫ 1

0

(
ψ0(x)− ωN (x)>qN (0)

)2
dx+

∫ 1

0

(
ψ1(x)− ωN (x)>pN (0)

)2
dx

=
∑
n>N

[∫ 1

0
cn(x)ψ0(x)dx

]2

+

[∫ 1

0
sn(x)ψ0(x)dx

]2

+

∑
n>N

[∫ 1

0
cn(x)ψ1(x)dx

]2

+

[∫ 1

0
sn(x)ψ1(x)dx

]2

. (87)

However, it must be stressed that, unlike the finite-difference case, both eN and the
approximation (86) to the continuous Hamiltonian, converge more than exponentially
in N (eN to 0, and HN to H), provided that the involved functions are analytical.

5.3 Full discretization
Since problem (84) is Hamiltonian, with an autonomous Hamiltonian, this latter is
conserved along the solution. Consequently, energy conserving methods can be conve-
niently used for its solution. In particular, Theorem 2 continues formally to hold for
HBVM(k, s) methods. However, the integral appearing in (84) need to be, in turn,
approximated by means of a suitable quadrature rule. For this purpose, it could be
convenient to do this by means of a composite trapezoidal rule, due to the fact that the
argument is a periodic function. Consequently, having set

gN (x, t) = ωN (x)f ′(ωN (x)>qN (t)), (88)

the uniform mesh on [0, 1]

xi = i∆x, i = 0, . . . ,m, ∆x =
1

m
, (89)

and considering that gN (0, t) = gN (1, t), one obtains:∫ 1

0
gN (x, t)dx = ∆x

m∑
i=1

gN (xi−1, t) + gN (xi, t)

2
+ R(m)

=
1

m

m−1∑
i=0

gN (xi, t) + R(m). (90)

Let us study the error R(m). For this purpose, we need some preliminary result.

Lemma 2 Let us consider the trigonometric polynomial

p(x) =

K∑
k=0

[ak cos(2kπx) + bk sin(2kπx)] , (91)
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and the uniform mesh (89). Then, for all m ≥ K + 1, one obtains:∫ 1

0
p(x)dx =

1

m

m−1∑
i=0

p(xi).

Proof See, e.g., [35, Th. 5.1.4]. �

Lemma 3 Let us consider the trigonometric polynomial (91) and the uniform mesh
(89). Then, for all m ≥ N +K + 1, one obtains:∫ 1

0
cos(2jπx)p(x)dx =

1

m

m−1∑
i=0

cos(2jπxi)p(xi), (92)

∫ 1

0
sin(2jπx)p(x)dx =

1

m

m−1∑
i=0

sin(2jπxi)p(xi), j = 0, . . . , N. (93)

Proof By virtue of the prosthaphaeresis formulae, one has, for all j = 0, . . . , N and
k = 0, . . . ,K:

cos(2jπx) cos(2kπx) =
1

2
[cos(2(k + j)πx) + cos(2(k − j)πx)] ,

cos(2jπx) sin(2kπx) =
1

2
[sin(2(k + j)πx) + sin(2(k − j)πx)] ,

sin(2jπx) cos(2kπx) =
1

2
[sin(2(k + j)πx)− sin(2(k − j)πx)] ,

sin(2jπx) sin(2kπx) =
1

2
[cos(2(k − j)πx)− cos(2(k + j)πx)] .

Consequently, the integrals at the left-hand side in (92)-(93) are trigonometric poly-
nomials of degree at most N + K. By virtue of Lemma 2, it then follows that they
are exactly computed by means of the composite trapezoidal rule at the corresponding
right-hand sides, provided that m ≥ N +K + 1.�

By virtue of Lemma 3, the following result follows at once.

Theorem 7 Let the function f appearing in (88) (see also (83)) be a polynomial of
degree ν, and let us consider the uniform mesh (89). Then, with reference to (90), for
all m ≥ νN + 1 one obtains:

R(m) = 0 i.e.,

∫ 1

0
gN (x, t)dx =

1

m

m−1∑
i=0

gN (xi, t).

For a general function f , the following result holds true.

Theorem 8 Let the function gN (x, t) defined at (88), with t a fixed parameter, belong
to W r,p

per, the Banach space of periodic functions on R whose distribution derivatives up
to order r belong to Lpper(R). Then, with reference to (89)-(90), one has:

R(m) = O(m−r).

Proof See [62, Th. 1.1].�

We end this section by mentioning that different approaches could be also used for
approximating the integral appearing in (84): we refer, e.g., to [37], for a comprehensive
review on this topic.
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6 Implementation of the methods
The efficient implementation of HBVMs has been studied in [19, 13, 14]. We here
sketch the application of a HBVM(k, s) method for solving (17), since the application
to (49), (65), and (84) is similar. We consider the very first application of the method,
so that the index of the time-step can be skipped. As remarked in [19], the discrete
problem generated by a HBVM(k, s) method is more conveniently recast in terms of
the s coefficients of the polynomial (31), instead of the k stages of the Runge-Kutta
formulation (35). Moreover, since in the case of the semi-discrete formulation of the
wave equation the Hamiltonian is separable, additional savings are possible, since the
dimension of the problem can be halved, as we are going to sketch.5 Let us then split
the stage vector Y of the Runge-Kutta formulation, into Q and P , corresponding to the
stages for q and p, respectively. Consequently, from (35) and (17)-(18), one obtains, by
setting q0 = q(0), p0 = p(0), and h the time-step:

Q = e⊗ q0 + hIP>Ω⊗ IN P, P = e⊗ p0 − hIP>Ω⊗ IN F (Q), (94)

where (see (17) and (20))

F (Q) =
1

∆x2
Ik ⊗ TN Q+ f ′(Q), (95)

with an obvious meaning of f ′(Q). By considering the following properties of the ma-
trices P and I, due to corresponding properties of Legendre polynomials [19],

• IP>Ωe = c,

• P>ΩI = Xs ≡


1
2 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1

ξs−1 0

,

with
ξi =

(
2
√

4i2 − 1
)−1

, i = 1, . . . , s− 1, (96)

substitution of the latter equation in (94) in the former one gives:

Q = e⊗ q0 + hc⊗ p0 − h2IXsP>Ω⊗ IN F (Q).

By setting 6

γ = P>Ω⊗ IN F (Q) ≡

 γ0
...

γs−1

 ,

one then obtains the following discrete problem (of block dimension s):

G(γ) ≡ γ − P>Ω⊗ IN F
(
e⊗ q0 + hc⊗ p0 − h2IXs ⊗ IN γ

)
= 0. (97)

5This is not the case when considering different Hamiltonian PDEs, such as, e.g., the nonlinear Schrödinger
equation.

6Here, γj is given by the entries of the vector γ̂j(u) in (31) corresponding to the q components only.
Consequently, it has a halved dimension, w.r.t. this latter vector.
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Once (97) is solved, the new approximations are then given by (see (96)) [19]:

p1 = p0 + hγ0, q1 = q0 + hp0 + h2

(
1

2
γ0 − ξ1γ1

)
.

Consequently, the solution of the discrete problem (97) is the bulk of the computational
cost of the step. For its solution, one could use the following simplified Newton iteration,(

Is ⊗ IN +
h2

∆x2
X2
s ⊗ TN

)
∆γ` = −G(γ`) ≡ η`, ` = 0, 1, . . . , (98)

which only considers the (main) linear part of the function F (see (95)). However, even
though the coefficient matrix of such iteration is constant, nevertheless, it has dimension
sN . To reduce the computational cost, it is then better to use a blended iteration [19]
(see also [11, 24, 25]), formally defined as:

η`1 = ρ2
sX
−2
s ⊗ IN η`, (99)

∆γ` = Is ⊗M−1
N

[
η`1 + Is ⊗M−1

N

(
η` − η`1

)]
, ` = 0, 1, . . . , (100)

where

ρs = min
λ∈σ(Xs)

|λ|, MN = IN +

(
hρs
∆x

)2

TN ,

with σ(Xs) denoting the spectrum of matrix Xs. Consequently, the computational cost
of each iteration is given by:

- the evaluation of η` in (98). This requires k evaluations of the right-hand side of the
second equation in (17) (see (95)–(98)) plus (4ks+ 3k + s)N flops;7

- the evaluation of η`1 in (99). Concerning matrix ρ−1
s Xs, one can either invert and

square it in advance, so that the costs for computing η`1 is 2s2N flops, or solve 2
tridiagonal linear systems, so that, once the factorization is computed,8 the cost per
iteration amounts to 10sN flops. Consequently, the corresponding computational
cost is given by 2 min{s, 5}sN flops;

- the evaluation of ∆γ` in (100). This requires solution of 2s linear systems with
the symmetric matrix MN plus 2sN flops. Concerning matrix MN , an additional
saving of computational effort is gained by retaining only its tridiagonal part (or
by considering an approximate inverse).9 In such a case, after its factorization,10

one has a cost of less than 10sN flops. The total cost is then less than 12sN flops.

In conclusion, the total cost per iteration amounts to k function evaluations plus (13s+
3k + 2 min{s, 5}s+ 4ks)N flops.

It is worth mentioning that the same complexity is obtained in the case of Dirichlet or
Neumann boundary conditions, by considering the corresponding tridiagonal matrices
(45) and (61), respectively. Instead, when using the Fourier-Galerkin spatial semi-
discretization, one obtains that matrix MN is given by

MN = I2N+1 + (hρs)
2DN ∈ R(2N+1)×(2N+1),

7We count as 1 flop, one elementary floating-point operation.
8This costs less than 3s flops.
9In general, the matrix becomes banded, when considering higher-order discretizations, see, e.g., (67)-(68).

10This costs less than 3N flops.
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where matrixDN is diagonal (see (82)). Consequently, alsoMN is a diagonal matrix and,
therefore, the complexity per iteration, besides the functions evaluations of the second
equation in (84) (which are the same as before i.e., k), decreases. As matter of fact,
the required flops per iteration are now given by the dimension of the problem, times a
factor (5s+3k+2 min{s, 5}s+4ks), in place of the factor (13s+3k+2 min{s, 5}s+4ks)
seen above.

As a result of the previous arguments, one then expects a complexity per step which
is linear in the dimension of the problem and, therefore, comparable with that of an
explicit method. Moreover, in contrast to the A-stable HBVM(k, s) methods, explicit
methods may suffer from stepsize restrictions due to stability reasons, as we shall see in
the numerical tests.

Remark 5 Of course, the global complexity will depend on the total number of nonlinear
iterations. This aspect will be numerically investigated in the next section, where we
report the total number of nonlinear iterations required by some HBVM(k, s) methods
for solving a problem for the sine-Gordon equation with various time-steps.

7 Numerical tests
We here consider a few numerical tests, concerning the so called sine-Gordon equation,
which is in the form (1):

utt(x, t) = uxx(x, t)− sin(u(x, t)), x ∈ [−20, 20], t ≥ 0. (101)

In particular, we shall consider soliton-like solutions, as described in [85], defined by the
initial conditions:

u(x, 0) ≡ 0, ut(x, 0) =
4

γ
sech

(
x

γ

)
, γ > 0. (102)

Depending on the value of the positive parameter γ, the solution is known to be given
by:

u(x, t) = 4atan

[
ϕ(t; γ) sech

(
x

γ

)]
, (103)

with

ϕ(t; γ) =


(
√
γ2 − 1)−1 sin

(
γ−1

√
γ2 − 1t

)
, if γ > 1,

t, if γ = 1,

(
√

1− γ2)−1 sinh
(
γ−1

√
1− γ2t

)
, if 0 < γ < 1.

The three cases are shown in Figures 1–2: on the left of Figure 1 is the plot of the first
soliton (obtained for γ > 1), which is named breather ; on the right plot of Figure 1 is the
case 0 < γ < 1, which is named kink-antikink ; at last, the case γ = 1, which is named
double-pole, separates the two different types of dynamics and is shown in the left plot
of Figure 2. Moreover, the space interval being fixed,11 the Hamiltonian is a decreasing
function of γ, as is shown in the right plot of Figure 2. This means that the value of the
Hamiltonian characterizes the dynamics. Consequently, in a neighbourhood of γ = 1,

11I.e., [−20, 20], in our case (see (101)).
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where the Hamiltonian assumes a value ' 16, nearby values of the Hamiltonian will
provide different types of soliton solutions. As a result, energy conserving methods are
expected to be useful, when numerically solving problem (101)-(102) with γ = 1. For
this reason, in all the following experiments, the boundary conditions are prescribed in
order to reproduce the solution (103) corresponding to γ = 1.

Let us then solve such a problem, at first with periodic boundary conditions, by
using:

• a finite-difference approximation with N = 400 equispaced mesh points;

• a trigonometric polynomial approximation of degree N = 100 and, moreover,
m = 200 equispaced mesh points.12 In so doing, the error (87) in the initial
condition is eN ' 1.6 · 10−11, so that it is quite well matched.

For the time integration, let us consider the following second-order methods, used with
stepsize h = 10−1 for 103 integration steps:

• the (symplectic) implicit mid-point rule, i.e., HBVM(1,1), for which the Hamilto-
nian error is ' 2 · 10−2 (though without a drift);

• the (practically) energy-conserving HBVM(5,1) method, for which the Hamilto-
nian error is ' 9 · 10−14.

Concerning the finite-difference space approximation, the error in the numerical
Hamiltonian is plotted on the left of Figure 3. The right plot of the same figure illustrates
the numerical approximation to the solution computed by the HBVM(1,1) method:
as is clear, the computed approximation is wrong, since the method has provided a
breather-like solution. On the contrary, HBVM(5,1) provides a correct approximation,
qualitatively similar to that in the left-plot of Figure 2: it is shown in the left plot in
Figure 5. It is worth mentioning that the value of the numerical Hamiltonian, in the
case of the right plot of Figure 3, is lower than the correct one, thus confirming that,
according to the right plot in Figure 2, it would correspond to an “artificial” larger value
of γ.

Concerning the trigonometric polynomial approximation, the error in the numerical
Hamiltonian is plotted on the left of Figure 4. The right plot of the same figure illustrates
the numerical approximation to the solution computed by the HBVM(1,1) method: it
has again a breather-like shape and, thus, it is not qualitatively correct. On the contrary,
HBVM(5,1) is able to reproduce the correct behaviour of the solution, as is shown in
the right plot in Figure 5.

Completely similar results are obtained by using the same methods (and with the
same stepsize h), when Dirichlet boundary conditions are prescribed for (101)-(102):

• on the left of Figure 6, there is the plot of H(qn,pn, tn)−H(q0,p0, 0) (see (44))
and H̃(qn,pn, q̃n, p̃n) − H̃(qn,pn, q̃0, p̃0) (see (48)), when using the HBVM(1,1)
method. Both differences are quite large and almost overlapping. As a result, the
computed numerical solution, shown in the right plot of Figure 6, is wrong;

• on the left of Figure 7, there is the plot of H(qn,pn, tn)−H(q0,p0, 0) (see (44))
and H̃(qn,pn, q̃n, p̃n) − H̃(qn,pn, q̃0, p̃0) (see (48)), when using the HBVM(5,1)
method. The augmented Hamiltonian (48) is now conserved, whereas the orig-
inal Hamiltonian (44) undergoes small oscillations around its initial value. The
computed solution, shown in the right plot of Figure 7, is now correct.

12In fact, m = 200 is an appropriate choice for N = 100, in this case.
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Analogous results are obtained when Neumann boundary conditions are prescribed
for (101)-(102). In fact, by considering the same methods and stepsize h:

• on the left of Figure 8, there is the plot of H(qn,pn, tn)−H(q0,p0, 0) (see (60))
and H̃(qn,pn, q̃n, p̃n) − H̃(qn,pn, q̃0, p̃0) (see (64)), when using the HBVM(1,1)
method. Both of them are quite large and almost overlapping. As a result, the
computed numerical solution, shown in the right plot of Figure 8, is wrong;

• on the left of Figure 9, there is the plot of H(qn,pn, tn)−H(q0,p0, 0) (see (60))
and H̃(qn,pn, q̃n, p̃n) − H̃(qn,pn, q̃0, p̃0) (see (64)), when using the HBVM(5,1)
method. The augmented Hamiltonian (64) is now conserved, whereas the orig-
inal Hamiltonian (60) undergoes small oscillations around its initial value. The
computed solution, shown in the right plot of Figure 9, is now correct.

As one can see in the plots on the left in Figures 7 and 9, since the boundary
conditions are small, we have a very small variation of the semi-discrete Hamiltonian.
Therefore, we are in the situation presented in Remark 4, and thus, even though the
numerical solution computed by a HBVM(k, 1) method is only second order accurate
in time, we expect the error in the Hamiltonian to decrease with order 2k, until it
reaches the same order of magnitude as the error on the p̃ component, according to
(58). As an example, let us consider again problem (101)-(102) coupled with Dirichlet
boundary conditions. In Figure 11, we plot the errors on the solution (solid line), on
the Hamiltionian H (dashed line) and on p̃ (dotted line with circles), at time t = 100,
versus the time-step h, for HBVM(k, 1), k = 1, 2, 3, 4.

As one may see, the error on the solution always decreases with order 2, as well
as the error on p̃ (which is quite small ' 10−10 ≡ ε). Differently, the error on the
Hamiltonian decreases with order 2k as long as it is larger than the error on p̃. In
particular, for k = 4, the Hamiltonian error starts decreasing with order 8 (for h > 0.25),
becoming soon comparable with the error on p̃ (for h < 0.25), and henceforth decreasing
approximately with order 2.

We now highlight the potentialities of the Fourier-Galerkin space approximation,
with respect to the finite-difference one, when periodic boundary conditions are pre-
scribed for the problem: in fact, the Fourier approximation (86) to the Hamiltonian
converges more than exponentially in the number N of Fourier modes, whereas the
finite-difference approximation (23) converges only quadratically in ∆x. Since also
HBVM(5,1) is second order, we then compare the use of such a method, with step-
size h = 40/` in time and for a total of ` time-steps, for solving problem (101)-(102),
with γ = 1 and periodic boundary conditions, by using:

• the second-order finite-difference spatial discretization with ` mesh points (with
this choice, one has ∆x = h);

• the Fourier-Galerkin approximation with N = 100, and m = 200 spatial grid-
points, which we maintain fixed independently of the choice of `. This because the
obtained spatial approximation yields a far more accurate approximation than the
one corresponding to the time discretization.

Table 1 summarizes the obtained results: both methods are globally second-order accu-
rate, even though the values of N and m are kept fixed in the second case (thus confirm-
ing the well known exponential convergence of the Fourier approximation). Moreover,
by comparing the maximum error in the finite-difference case (FD-error) and in the
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Fourier-Galerkin approach (FG-error), one sees that the latter is much more favourable
than the former.

As mentioned at the end of the previous section, we now compare several HBVM
methods in terms of required nonlinear iterations to obtain the full convergence for
problem (101)-(102), with γ = 1 and periodic boundary conditions on the time interval
[0, 100]. We consider the results for three different stepsizes: h = 0.5, h = 0.1 and
h = 0.01.13 As one can infer from comparing the figures in Tables 2, 3 and 4 with the
ones in Tables 5, 6 and 7, respectively, the same HBVM in time requires a smaller number
of iterations, when applied to the semi-discrete problem obtained by using a Fourier-
Galerkin (FG) space discretization, than that required by using a finite-difference (FD)
space discretization.14 As matter of fact, from the previous tables one deduces that, for
h = 0.5, the mean number of iterations per step is approximately 21.7 for FG and 27.2
for FD; simialrly, for h = 0.1 it is 5.8 for FG and 8.6 for FD; at last, for h = 0.01, it
is approximately 3.1 for FG and 3.9 for FD. Moreover, if a spectral method is used in
space, the number of required iterations, for fixed s, is essentially independent of k. In
particular, for the smallest considered stepsize, from the figures in Table 4 one sees that
the number of iterations is approximately independent of both k and s.

Tables 5, 6 and 7 show that, when a finite-difference method space discretization is
used, more significant variations may occur as k changes, for a fixed s (in particular
when s = 1). Nevertheless, increasing k may also result in a decrease of the required
iterations, as one can see in Table 6, for s > 1. Table 7 shows that also in this case,
excluding HBVM(1, 1), the number of required iteration for the smallest considered
stepsize is essentially independent of both k and s.

We complete this section by performing a further numerical experiment, where we
compare some (practically) energy-conserving HBVMs, with well known explicit meth-
ods of the same order, for solving problem (101)-(102), with γ = 1 and periodic bound-
ary conditions, on the time interval [0, 100]. For all methods, a Fourier-Galerkin space
discretization with N = 100, and m = 200 spatial grid-points, has been considered. In
more details, we compare the following methods:

order 2: the (practically) energy-conserving HBVM(5,1) method, and the symplectic
Störmer-Verlet method (SV2);

order 4: the (practically) energy-conserving HBVM(6,2) method, and the composition
method (SV4) based on the symplectic Störmer-Verlet method (each step requiring
3 steps of the basic method), according to [51, page 44];

order 6: the (practically) energy-conserving HBVM(9,3) method, and the composition
method (SV6) based on the symplectic Störmer-Verlet method (each step requiring
9 steps of the basic method), according to [51, page 44].

To compare the methods, we construct a corresponding Work-Precision Diagram, by
following the standard used in the Test Set for IVP Solvers [86]. In more details,
we plot the accuracy, measured in terms of the maximum absolute error, w.r.t. the
execution time. All tests have been done by using Matlab v. 2014b, running on a dual
core i7 at 2.8 GHz computer with 8GB of memory. The curve of each method is obtained
by using νh (logarithmically) equispaced steps between hmin and hmax, as specified in

13I.e., a “large”, a “medium” and a “small” stepsize, respectively, for the given spatial accuracy.
14This can be expected, since the approximate Jacobian is diagonal, in the former case, and tridiagonal,

in the latter one.
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Table 8.15 When the stepsize used does not exactly divide the final time T = 100, the
nearest mesh-point is considered.

The left plot in Figure 10 summarizes the obtained results, and one sees that the
(practically) energy-conserving HBVMs are competitive, even w.r.t. explicit solvers of
the same order. For sake of completeness, on the right in Figure 10, we plot the cor-
responding Hamiltonian error versus the execution time, thus confirming that HBVMs
are practically energy conserving also for non polynomial Hamiltonians: in fact, tak-
ing aside the coarser time-steps, all methods have a Hamiltonian error which is within
roundoff errors. On the contrary, for the other methods the decrease of the Hamiltonian
error matches their order.

8 Conclusions
In this paper, we have compared the conservation properties of the semilinear wave
equation with the corresponding ones obtained after semi-discretization of the space
variable, both when considering a finite-difference and a spectral space discretization.
When a finite-difference space discretization is considered, we have also studied the case
when non-periodic boundary conditions are prescribed for the problem.

The conservation properties of the semi-discrete problem can be conveniently inher-
ited by the numerical solution provided by energy-conserving methods in the HBVMs
class. Such methods turn out to be computationally appealing, since they result to
be competitive even w.r.t. explicit methods, and allow a safer approximation of the
solution, when energy conservation is an issue, as is confirmed by a few numerical tests
on the sine-Gordon equation with a soliton-like solution.

The arguments can be extended in a quite straightforward way to other Hamilto-
nian partial differential equations, e.g., the Schrödinger equation (as is sketched in the
Appendix), which will be the subject of future investigations. Also a more comprehen-
sive study of Fourier-Galerkin space semi-discretization, when non periodic boundary
conditions are prescribed, will be considered in future investigations.

A further direction of research will concern the conservation of multiple invariants
for the semi-discrete problem, by means of arguments similar to those used in [15, 26].

Appendix
We here sketch the basic facts that allow an extension of the analysis carried out for
the semilinear wave equation (1), to different Hamiltonian PDEs. In particular, we here
consider the nonlinear Schrödinger equation (in dimensionless form),

iψt + ψxx + 2κ|ψ|2ψ = 0, (x, t) ∈ (0, 1)× (0,∞), ψ(x, 0) given, (104)

where i denotes, as usual, the imaginary unit. By setting

ψ = u+ iv,

one then obtains the real form of (104),

ut = −vxx − 2κ(u2 + v2)v, (x, t) ∈ (0, 1)× (0,∞), (105)
vt = uxx + 2κ(u2 + v2)u,

15Larger values of hmax for the explicit methods (see Table 8) are not allowed because of stability reasons.
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which is Hamiltonian with Hamiltonian (compare with (7))

H[u, v](t) =
1

2

∫ 1

0

[
u2
x(x, t) + v2

x(x, t)− κ
(
u2(x, t) + v2(x, t)

)2]
dx

≡
∫ 1

0
E(x, t) dx. (106)

In fact, (105) can be formally recast as in (8)–(10), with the new Hamiltonian functional
(106). In order to be able to repeat for (105) the arguments seen for the Hamiltonian
semi-discretization of (1), with either periodic, or Dirichlet, or Neumann boundary
conditions, it is enough to derive the conservation law corresponding to (13) and the
analogous of (36). Concerning the former conservation law, from (106) and (105) one
obtains:

Et(x, t) = ux(x, t)uxt(x, t) + vx(x, t)vxt(x, t)−

= vt−uxx︷ ︸︸ ︷
2κ
(
u2(x, t) + v2(x, t)

)
u(x, t)ut(x, t)

−2κ
(
u2(x, t) + v2(x, t)

)
v(x, t)︸ ︷︷ ︸

=ut+vxx

vt(x, t)

= ux(x, t)uxt(x, t) + ut(x, t)uxx(x, t) + vx(x, t)vxt(x, t) + vt(x, t)vxx(x, t)

= (ux(x, t)ut(x, t))x + (vx(x, t)vt(x, t))x ≡ −Fx(x, t).

Consequently, in place of (13) one obtains:

Et(x, t) + Fx(x, t), F (x, t) = −ux(x, t)ut(x, t)− vx(x, t)vt(x, t).

Similarly, taking into account (106) and (105), the analogous of (36) is given by:

H[u, v](t) =
1

2

∫ 1

0

[
u2
x(x, t) + v2

x(x, t)− κ
(
u2(x, t) + v2(x, t)

)2]
dx

=
1

2

∫ 1

0
[−u(x, t)uxx(x, t) + (u(x, t)ux(x, t))x

−v(x, t)vxx(x, t) + (v(x, t)vx(x, t))x − κ
(
u2(x, t) + v2(x, t)

)2]
dx

= −1

2

∫ 1

0

[
u(x, t)uxx(x, t) + v(x, t)vxx(x, t) + κ

(
u2(x, t) + v2(x, t)

)2]
dx

+
1

2
[u(1, t)ux(1, t)− u(0, t)(t)ux(0, t) + v(1, t)vx(1, t)− v(0, t)(t)vx(0, t)] .

The arguments for the Hamiltonian semi-discretization of (105) can then be repeated,
mutatis mutandis, almost verbatim as seen for (1), both when considering a finite-
difference and a Fourier-Galerkin space approximation.
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Table 1: Comparing finite-difference (FD) and Fourier-Galerkin (FG) errors.
` FD-error rate FG-error rate

400 1.4486e-01 – 1.7883e-03 –
800 3.6900e-02 1.97 4.4985e-04 1.99

1600 9.2702e-03 1.99 1.1262e-04 2.00
3200 2.3204e-03 2.00 2.8171e-05 2.00

Table 2: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.5 and a Fourier-Galerkin discretization in space.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 2200 2248 2291 2305 2312 2317 2321 2323 2316
2 3630 3648 3660 3664 3665 3667 3667 3669 3669
3 5206 5213 5221 5250 5303 5346 5368 5377 5381
4 6023 6049 6064 6093 6102 6114 6122 6135 6138

Table 3: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.1 and a Fourier-Galerkin discretization in space.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 5047 5120 5129 5130 5131 5135 5139 5139 5139
2 6280 6384 6457 6513 6550 6569 6593 6615 6626
3 5639 5802 5802 5765 5807 5804 5800 5808 5802
4 5469 5527 5556 5570 5585 5605 5613 5621 5624

Table 4: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.01 and a Fourier-Galerkin discretization in space.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 30000 30489 30519 30530 30534 30540 30541 30544 30546
2 30687 30796 30845 30869 30883 30889 30902 30908 30906
3 30304 30335 30343 30334 30340 30343 30336 30341 30341
4 30294 30322 30338 30347 30353 30357 30359 30363 30366

Table 5: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.5 and a finite-difference space discretization.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 2366 2986 2982 3017 3030 3052 3034 3029 3040
2 4498 4520 4514 4538 4573 4567 4563 4589 4585
3 6421 6513 6549 6584 6590 6666 6651 6686 6702
4 7513 7599 7622 7628 7642 7686 7726 7759 7736
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Table 6: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.1 and a finite-difference space discretization.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 5155 7708 7800 7843 7813 7701 7547 7395 7144
2 10638 10312 9825 9485 9262 9135 9073 9037 9029
3 9441 9201 9083 9031 8976 8949 8950 8942 8945
4 8429 8279 8265 8224 8200 8179 8187 8160 8128

Table 7: Iterations required by HBVM(k, s) for solving problem (101)-(102) with stepsize
h = 0.01 and a finite-difference space discretization.

k
s s s+ 1 s+ 2 s+ 3 s+ 4 s+ 5 s+ 6 s+ 7 s+ 8

1 30193 39999 40000 40000 40000 40000 40000 40000 40000
2 39993 39998 39998 40000 40000 40000 40000 40000 40000
3 38453 38914 38815 38895 38982 39026 39067 39093 39144
4 39185 39441 39491 39619 39681 39739 39783 37983 39823

Table 8: Parameters used for constructing the plots in Figure 10.
Method hmax hmin νh
HBVM(5,1) 0.5 0.003 10
HBVM(6,2) 0.5 0.1 4
HBVM(9,3) 1 0.25 4
SV2 0.1 0.0006 13
SV4 0.1 0.007 7
SV6 0.1 0.01 5
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Figure 1: Breather solution for γ = 1.01 (left plot), and kink-antikink solution for γ = 0.99
(right plot).

Figure 2: Double-pole solution for γ = 1 (left plot), and Hamiltonian as a function of γ (right
plot).
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Figure 3: periodic boundary conditions and finite-difference approximation. Hamiltonian
error (left plot) when using the HBVM(1,1) and HBVM(5,1) methods with stepsize h = 0.1,
and numerical solution provided by HBVM(1,1) (right plot) when solving problem (101)-(102)
with γ = 1.

Figure 4: periodic boundary conditions and Fourier-Galerkin approximation. Hamiltonian
error (left plot) when using the HBVM(1,1) and HBVM(5,1) methods with stepsize h = 0.1,
and numerical solution provided by HBVM(1,1) (right plot) when solving problem (101)-(102)
with γ = 1.
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Figure 5: periodic boundary conditions. Computed solution by HBVM(5,1) with stepsize
h = 0.1 by using a finite-difference spatial discretization (left plot) or a spectral space dis-
cretization (right plot).

Figure 6: Dirichlet boundary conditions. Difference with the initial value for the numerical
Hamiltonian and augmented Hamiltonian (left plot) when solving problem (101)-(102) with
γ = 1, by using HBVM(1,1) with stepsize h = 0.1, along with the computed solution (right
plot).
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Figure 7: Dirichlet boundary conditions. Difference with the initial value for the numerical
Hamiltonian and augmented Hamiltonian (left plot) when solving problem (101)-(102) with
γ = 1, by using HBVM(5,1) with stepsize h = 0.1, along with the computed solution (right
plot).

Figure 8: Neumann boundary conditions. Difference with the initial value for the numerical
Hamiltonian and augmented Hamiltonian (left plot) when solving problem (101)-(102) with
γ = 1, by using HBVM(1,1) with stepsize h = 0.1, along with the computed solution (right
plot).
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Figure 9: Neumann boundary conditions. Difference with the initial value for the numerical
Hamiltonian and augmented Hamiltonian (left plot) when solving problem (101)-(102) with
γ = 1, by using HBVM(5,1) with stepsize h = 0.1, along with the computed solution (right
plot).

Figure 10: Work-Precision Diagram (left plot) and Hamiltonian error versus execution time
(right plot) for problem (101)-(102).
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Figure 11: Sine-Gordon problem (101)-(102) with γ = 1, Dirichlet boundary conditions
and finite-difference semi-discretization with N = 400, solved by means of HBVM(k, 1),
k = 1, 2, 3, 4. Errors at time t = 100 versus time-step for the solution (solid line), the
Hamiltonian function H (dashed line) and p̃ (dotted line with circles).
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