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Abstract. A meshless approach is presented for the computation of the approximated solution 

of static and dynamic problems in linear elasticity in terms of displacement fields. The 

displacement field is modeled by means of two different kinds of Artificial Neural Networks 

(ANN). This task is accomplished by means of a meshless approach coupled to a net training 

based on the weak formulation of the differential problem, related to Hu-Washizu principle. A 

common benchmark, namely the Timoshenko cantilever beam, is analyzed and discussed in 

detail; several researches have shown that severe difficulties are encountered with the 

Galerkin and the collocation approach since the neural networks never satisfy essential 

boundary conditions (EBC): in the proposed meshless approach, the trial functions can be 

modified in order to satisfy EBC. A possibility to overcome such difficulty in elasticity is to 

employ an energy-based training, that is, to employ an approach (such as the Hu-Washizu 

functional) which can take into account EBC in the error function to be minimized. An 

example is given in one dimension, analyzing the deflection of a horizontal beam subject to 

transverse loads. The presented examples clearly show the importance of the optimization of 

the non-linear pa-rameters of the network, which control the shape and location of the 

activation functions. It is shown that such parameters can be optimized for a static problem 

and subsequently employed for a dynamic problem. The paper in fact aims to extend the 

results investigating the bench-mark problem in the dynamic field. 
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1 INTRODUCTION 

Meshless approaches which are based on Artificial Neural Networks (ANN) have lately 

become widely used and investigated by the scientific community to find reliable 

approximations for the solutions of a great number of problems, described by one or more 

differential equations. Extensive summaries can be found f.i. in [1] and [2]. 

In the field of structural mechanics one of the most promising perspectives is the analysis 

of cracked structures and more generally the behavior of materials which cannot undergo 

tensile states. One of the most attractive features is that such approaches do not need the 

definition of a mesh, and many of them need a so-called background mesh of the structure for 

only numerical integration purposes. This leads, especially in the field of fracture mechanics, 

to model the cracked materials in a more reliable manner, as the crack pattern computed with 

a FEM-based algorithm often shows a strong sensitivity in the mesh definition in the 

surroundings of the crack itself. 

Usually, meshless approaches employ a weighted residual method (see f.i. [3] and [4]) to 

evaluate the solution; the activation functions are defined by means of a set of parameters – 

called non-linear parameters in the following – which control the shape and location of the 

support of the functions. The present work emphasizes the importance of the optimization of 

such parameters, showing that the non-linear parameters can be optimized with respect to a 

static problem, and subsequently employed to determine the dynamic characteristics of the 

investigated structure. 

2 THEORETICAL REMARKS 

A great amount of different kinds of neural networks can be found in specialized literature, 

but many of them can be represented as a linear combination of nonlinear functions of their 

arguments in the form 

     ∑          

  

   

 (1) 

where      is the independent variable and         is a vector function. It follows 

from the definition (1) that         are vectors coefficients and       are scalar functions 

of  . 

Typically, functions       determine the kind of neural network; in the present work, 

examples are presented which employ either sigmoid functions (utilized in feed-forward back-

propagation – FFBP – networks) or radial basis functions (RBF, giving rise to RBF 

networks). 

2.1 RBF Networks 

In the meshless approaches for structural mechanics, RBF are typically employed, such as 

multi-quadric, Gaussian bells, or compact support functions as the so-called Chebichev's hat 

or similar functions. RB functions can be expressed by means of the combination of the 

distance of the generic point   from the so-called center of the associated function, and a real-

valued function of a scalar variable which decreases for increasing argument (see f.i. [5], [6] 

and [7]): 

 {
       (        )

              ⁄  
 (2) 
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In expression (2),      can be seen as an underlying function which enables to define the 

RBFs      , and in this case a Gaussian bell is employed (Figure 1); usually, compact 

support functions are preferred to other kind of functions owing to the difficulty involved in 

the calculation of integrals, but such difficulty can be overcome by means of proper numerical 

techniques. 

As it is clear from definitions, RB functions depend on a limited number of parameters 

which control their shape and location. In information theory, trial functions are in fact called 

activation functions, as they change their value in a limited interval of the real axis: this 

means that, if the independent variable   falls into a limited region      , then the 

activation function attains non-negligible values. 

The region    is typically a hyper-sphere in    in the case of RBFs, so that its 

characterizing parameters are the coordinates of its center and its radius. Nevertheless, it can 

also attain different shapes, as its expression is mainly a function of the distance of the generic 

point   from the so-called center of the associated function as expressed in (2). 

 

Figure 1: A typical RB function defined by means of a Gaussian bell; the center is located at coordinates (5,5) 

and is highlighted by the black vertical line, while the parameter σ determines the radius of the black circle. 

An interesting example of an RB function is described in [5] and called the up function; 

such function is compactly supported and, if properly scaled and overlapped, possesses the 

following notable characteristics: 

∑       

 

 ∑         

 

 (3) 
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2.2 Feed-forward networks 

An interesting approach is represented by FFBP networks which make use of sigmoid trial 

functions: these are monotonically increasing functions of the independent variable, and 

among the most used are:  

(sigmoid function) {
                 

     
 

         

 (4) 

(hyperbolic tangent function) {
                 

     
              

              

 (5) 

The use of functions (4) or (5) as activation functions is equivalent: as a matter of fact, it 

can be shown that: 

     
          

          
          (6) 

2.3 Meshless approach for static problem 

The described functions are herein utilized to obtain a satisfactory approximation of a 

linear elastostatic problem, cast in the following terms: given a linearly elastic continuum   

subject to body forces   and to surface forces  ̂ on the boundary     (natural boundary 

conditions, NBC), and to restraints  ̂ on the boundary    , find a displacement field      

such that: 

(essential boundary conditions, EBC)         ̂     on     (7) 

(strain-displacement relation)             (8) 

(equilibrium equations)   {
div          n  
    ̂           n    

 (9) 

where       ,   being the elastic tensor. Even though it is simpler than the dynamic case, 

the solution of the elastostatic problem can nevertheless give some insight on the main issues 

of the solution procedure: usually, a weighted residual procedure is adopted to determine the 

unknown parameters      in (1), while the parameters which control the shape and the 

collocation of the generic function    are decided and fixed by the user, and the goodness of 

the obtained approximation mainly depend on the number    of functions chosen. 

Some indications can be found in specialized literature on the best possible way to choose 

the location and shape parameters of the activation functions. As an example, Peng et al. [8] 

observe that a larger support size and higher order of RB functions will yield better 

convergence results. This fact can be partially explained in the light of the stationarity of the 

total energy of the continuum, as explained in the following paragraph. 

The total energy of the structure, given by the sum of the elastic deformation energy and 

the potential energy of the applied loads, is defined as follows: 

     
 

 
∫      

 

 ∫      

 

 ∫  ̂      

   

 (10) 
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Finding the vector field which minimizes (10) and satisfies the EBC (7) and the strain-

displacement conditions (8) yields the solution of the elastostatic problem. 

Functional (10) can usefully be slightly transformed, making use of the symmetries of the 

elastic tensor and of the deformation and tension components, yielding: 

     
 

 
∫               

 

 ∫  ̂      

   

 (11) 

If the displacement is expressed by means of a neural network in the form: 

     ∑          

  

   

 (12) 

then its gradient is given by the expression: 

      ∑              

  

   

 (13) 

and, by substitution in relation (11), the stiffness matrix   and the load vector   can be 

computed such that the minimization of the total energy of the system yields: 

     (14) 

where   is a vector which groups all the components of the vectors     , which are therefore 

called linear parameters. Equation (14) represents the minimization of the structural energy 

with respect to the linear parameters, but not to the other characterizing parameters of the 

network, which will be discussed later. 

As a matter of fact, the stiffness matrix   and the load vector   are given by the 

integration, over the continuum body and surface, of the gradient of the displacement field, 

and therefore depend on the location and shape parameters of the activation functions      , 

which will be grouped in the vector   of non-linear parameters. In this way, it is possible to 

write that: 

                               (15) 

and therefore the total energy of the structure will be approximated by the expression 

     
 

 
                         

 

 
                (16) 

In other words, the minimum value of the total energy of the structure (with respect to the 

linear parameters) is a function of the non-linear parameters which define the activation 

functions, and it is therefore possible to optimize again the energy functional with respect to 

the non-linear parameters only, as shown in [9]. 

2.4 Meshless approach for dynamic problem 

In the case of an elastodynamic problem, the displacements, deformations, tensions and 

loads depend, of course, also on time. Following standard approaches for the numerical 

solution of the dynamical problem, a consistent mass matrix and a damping matrix can be 

computed such that: 

     ̈       ̇               (17) 
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where the dependence of   on time and   have been omitted for sake of simplicity. In the 

following, non-linear parameters will be optimized for the elastostatic problem, and the non-

linear parameters determined in this manner will be utilized to compute mass and damping 

matrices. 

3 APPLICATIONS 

In order to show the feasibility of the examined approach, two applications will be 

analyzed and discussed in the following, namely a 1D horizontal beam with a clamped and a 

hinged end, and a 2D horizontal cantilever, the solution of which can be found f.i. in [10]. 

3.1 1D application with a clamped-hinged horizontal beam 

The considered structure is represented in Figure 2 and is simply a beam with a clamped 

end on the left and a hinged end on the right. 

 

 

Figure 2: The examined structure. 

 

 

Figure 3: The initial arrangement of the RBFs (left) and the corresponding deflection (top right)  

and bending moment (bottom right). 

 

At first, a set of 7 RBF were chosen, with centers (shown by the black circles in Figure 3) 

located at                                          where L is the length of the beam. 

If the non-linear parameters of the network are left as they are, which means no 

optimization is carried out on them, but just the linear parameters are evaluated, the obtained 
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solution is poor from the point of view of both deflections and bending moment, as it is clear 

from a look at Figure 3 (right). 

On the other hand, if the optimization of the non-linear parameters is carried out, the 

results shown in Figure 4 are obtained, thus demonstrating the importance of the optimization 

of the non-linear parameters. 

As a matter of fact, the optimization of the non-linear parameters is not strictly necessary, 

but the number of functions   employed in equation (12) must be much higher. 

 

 

Figure 4: The final arrangement of the RBFs (left) and the obtained solution  

(top right: deflection, bottom right: bending moment). 

 

 
 

Figure 5: The solution (top: deflection, bottom: bending moment) with hyperbolic tangent activation functions; 

left: no optimization of non-linear parameters, right: optimized non-linear parameters. 

A similar situation is observed with the use of a FFBP network in the form (5) with 

hyperbolic tangent activation functions, as shown in Figure 5. 

3.2 2D application (Timoshenko cantilever) 

In this example, a horizontal cantilever is considered, but the displacement is modelled as a 

bi-dimensional vector field which depends on two independent variables   and  , as shown in 

Figure 6. The dimensions of the cantilever are 5.00 m (length) by 1.00 m (height). 
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In the current example, the displacement is modeled by means of equation (12); in order to 

obtain functions which vanish at    , the RBFs were slightly modified, and the following 

functions were used: 

{

 ̃                    

         (            ⁄ )

                        
 (18) 

Such modification is significant only when the RBF is centered near the clamped end, as is 

clear from a look at Figure 7. 

 

 

Figure 6: The considered cantilever: the left end is clamped, the right end is free and loaded by a parabolic 

vertical load f(y). 

 

Figure 7: Two examples of the employed RBFs: on the left a function centered near the clamped edge, while on 

the right a function centered far from the clamped edge. 

 

Element number and type Degrees of freedom Tip deflection 

       40 25,00% 

      40 67,00% 

       48 99,00% 

     20 93,00% 

     24 95,00% 

 

Table 1: Results reported in [11] for a cantilever beam. The tip deflections are the percentages of the solution 

obtained for a 1D horizontal slender beam.  
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Figure 8: The training of the RBF network in the case of the 2D cantilever: above, the positions of the centers 

(red crosses denote initial position and blue circles denote final positions), while below the radii of the circles 

indicate the scaling parameters (red: initial values; blue: final values). The green area indicates the position of 

the cantilever. 

In this case, the optimization of the RBF centers      and scaling parameters    shows that 

convergence is observed towards a pattern where the centers are placed at more or less equal 

distances from each other, and the scaling parameters allow a wide overlapping between the 

functions. 

Following such indications, several arrangements of RB functions were tested: a noticeable 

result is that, after a proper training of the non-linear parameters, a limited number of 

functions is sufficient to obtain a satisfactory approximation of the solution (see Figure 9 and 

Figure 10 for details). 

For sake of comparison, Table 1 reports results from [11] for a cantilever beam with aspect 

ratio   ⁄    , along with the element types employed in the analysis and the number of 

degrees of freedom. CST denotes triangular, 3-nodes plane stress elements with linear shape 

functions. LST denotes triangular, 6-nodes plane stress elements with parabolic shape 

functions. Q4 denotes quadrilateral, 4-nodes plane stress elements with bi-linear shape 

functions. Q8 and Q9 denote quadrilateral, 8- and 9-nodes plane stress elements with cubic 

and quartic shape functions, respectively. 
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Figure 9: The solution for the horizontal (above) and vertical (below) displacement given in [10] (left)  and 

obtained (right) with a network with only 13 RBFs. 

 

Figure 10: The solution for     (above),     (middle) and     (below) given in [10] (left) and obtained (right) 

with a network with only 13 RBFs (which corresponds to 26 linear and 39 non-linear parameters). 

3.3 2D dynamic application (modal shapes for the 2D cantilever) 

The non-linear parameters, optimized for a static load such that of the previous example, 

can be usefully employed to determine the consistent mass matrix of the structure; in the case 

of a time-dependent displacement field, equation (12) is changed in 

       ∑             

  

   

 (19) 

and, upon differentiation, the velocity field is given by: 

        ̇      ∑  ̇           

  

   

 (20) 

where the dot indicates differentiation with respect to time. 

The kinetic energy of the continuum is therefore given by: 
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∫               

 

 (21) 

thus leading to the usual evaluation of the consistent mass matrix  ; it is to be noted that such 

matrix can be regarded as a function of the non-linear parameters again:       . 

It is to be noted that a careful optimization of the non-linear parameters carried out in the 

case of a static load works well also for the determination of the dynamic characteristics of 

the structure, as can be seen by Figure 11. 

 

 

 

 

 

 

 

Figure 11: Some examples of the obtained modal shapes of the cantilever: first transverse (top), first axial 

(middle), fourth transverse (bottom). On the left side the shapes obtained with the meshless approach are shown, 

while on the right side the results from ANSYS FEM code are shown for comparison. 

 

CONCLUDING REMARKS 

The paper presents some results obtained by a RBF meshless approximation of the 

elastostatic and elastodynamic problems. Following the philosophy of neural networks, a set 

of non-linear parameters and a set of linear parameters have been defined. 

It is clear that the optimization of the non-linear parameters of the network can bring 

notable benefits on the quality of the obtained approximation, and enable to greatly reduce the 

numbers of activation functions employed in the network. 

The optimization performed for a static load can be extremely effective also in the 

computation of the dynamic characteristics of the examined structure.  
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