

DOTTORATO DI RICERCA IN Scienze e Technologie Vegetali, Microbiche e Genetiche

CICLO XXVII

COORDINATORE Prof. Aniello Scala

Estimation of adaptive genetic variation in Norway spruce (Picea abies (L.) Karst) to climate change

PhD candidate: Irina Calic

December, 2014

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

December 31th, 2014

Nome Cognome del dottorando

A copy of the thesis will be available at: www.dispaa.unifi.it

Dichiarazione

Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l'ottenimento di qualunque altro titolo o diploma dell'Università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo.

31 dicembre 2014

Nome Cognome del dottorando

Una copia della tesi sarà disponibile presso: www.dispaa.unifi.it

Contents

Riassunto	i
Summary	ii
Lavori correlati alla Tesi - Papers related to the Thesis	iii
List of Figures	iv
List of Tables	v
Acknowledgment	vi
1. INTRODUCTION	1
1.1. About Conifers	
1.2 Pinaceae (The Pinus family)	2
1.3 Norway spruce natural distribution	2
1.4 Ecology of Norway spruce	3
1.5 Climate change and its impact on Conifers	4
1.6 Phenomena of adaptation	7
1.7 Adaptive genetic variation in Conifers with emphasis on Norway spruce	
(common garden trials)	9
1.8 Genotype versus environment in Conifers with emphasis on Norway spruce	10
1.9 Gene groups associated to environment among Conifers	12
2. RESEARCH OBJECTIVES	15
3. MATERIAL AND METHODS	16
3.1 Sample collection	16
3.2 Illumina 384 GoldenGate chip design	17
3.3 Germination of seeds	20
3.4 DNA isolation from needles and megagametophytes	21
3.5 Environmental dataset	22
3. 5.1 Aridity index (AI) calculation	24
3. 5.2 Principal component analyses	25
3.6 Genotyping data Analyses	27
3.7 Basic diversity statistics of genotype data	28
3.8 Population structure analyses	30
3.9 Outlier detection methods	31
3.9.1 BayeScan outlier detection method	31
3.9.2 Bayesian linear mixed model (BayEnv)	32
3.9.3 Spatial analyses detection (Samβada)	33

4. RESULTS	36
4.1 Climatic data estimation within mapping population	36
4.2 Analyses of 384 Illumina GoldenGate genotyping data	
4.3 Basic diversity statistics on genotype data	
4.4 Population structure estimation	48
4.5 BayeScan outlier detection method	52
4.6 Environmental association analyses: Bayesian linear mixed model detection (BayEnv)	54
4.7 Spatial analyses detection (Sam $ extsf{b}$ ada)	61
5. DISCUSSION	62
5.1 The thesis summary	62
5.2 Limitations of the current study	64
5.3 Future perspective of the study	68
REFERENCES	69
SUPPLEMENTS	78
Supplement 1: List of mother trees sampled across the European Alps with	
geo-reference data provided	77
Supplement 2: List of SNPs submitted to 384 Illumina GoldenGate genotyping assay	86
Supplement 3. Assignment of 392 individuals based on the geo-reference data	
Supplement 4. List of SNPs failed during 384 Illumina GoldenGate genotyping assay	
Supplement 5. Basic diversity statistics indices on genotyping matrix	
on polymorphic SNPs	103
Supplement 6. (A) Barplot when K=6 for original order for 394 individuals assuming	
existence of panmixia	110
Supplement 7. Fst coefficient estimated as the posterior mean using model	
averaging (BayeScan)	112
Supplement 8: Samβada results for univariate models	118

Parole chiave: abete rosso, adattamento, genotipizzazione 384 SNPs, analisi degli outiliers

Riassunto

Scopo:

L'obiettivo principale di questo studio è stato quello di investigare sul potenziale genetico adattativo in abete rosso (*Picea abies* (L.) Karst) nell'arco alpino.

Metodi e Risultati:

In questo studio, è stato adottato un approccio genomico sul polimorfismo del nucleotide singolo 384 (SNP), secondo il test di genotipizzazione Illumina GoldenGate, per investigare la variabilità genetica e la capacità adattativa in una popolazione di 392 individui di abete rosso campionati nell'arco alpino e georeferenziati. I dati ambientali sono stati ottenuti tramite i dataset WORLDCLIM e IGP MODIS LST satellitare. Per l'analisi statistica multivariata (componenti principali –PCA) è stata applicata su tutte le serie di dati ambientali per ridurre la dimensionalità del campione ed estrarre la più alta percentuale di variazione, per poter procedere poi all'analisi degli outliers.

Conclusioni:

La genotipizzazione ha fornito informazioni sul tasso di successo tramite il polimorfismo del singolo nucleotide (SNPs), e ha rivelato fallimento nel caso di 26% SNPs, dove la maggior parte di questi loci sono stati originati dal dataset di Arborea (Canada) su *Picea glauca*. La struttura della popolazione stata stimata utilizzando STRUCTURE (Pritchard *et al.* 2000) per raggruppare potenzialmente gli alberi esaminati in gruppi genetici, sulla base di 394 individui genotipizzati con successo e 280 loci polimorfici. I risultati hanno mostrato l'assenza di una forte struttura della popolazione e questo probabilmente è dovuto ad un *panmixis*. Le analisi degli outiliers sono state eseguite utilizzando un modello bayesiano modello lineare-misto Bayenv 2 (Gunther e Coop, 2013) e il metodo d'analisi spaziale Samβada (Stucki e Joost, 2014). In sintesi, non è stata trovata nessuna forte correlazione tra frequenze alleliche e i gradienti ambientali inclusi nella analisi degli outlier, suggerendo che la selezione nell' abete rosso avviene al livello del singolo locus testato in questo studio.

Significato ed impatto dello studio:

Questo studio è uno dei diversi studi esplorativi del potenziale genetico adattativo in abete rosso, realizzati utilizzando un approccio di genomica del paesaggio. I limiti di questo studio risiedono nel numero relativamente ridotto di loci esaminati. Come prospettiva futura, si ritengono essenziali studi di associazione *genome-wide*, così come approcci fenotipo-fenotipo e genotipo-ambiente, in cui almeno 1.000 loci siano considerati. Tali studi sarebbero molto importanti per la migliore conoscenza dell'abete rosso, e costituirebbero un mezzo potente per la ricerca di segnali di selezione e adattamento ai cambiamenti climatici. Keywords: Norway spruce, adaptation, 384 SNPs genotyping, outlier analyses

Summary

Aims:

The main objective of this study was to investigate an adaptive genetic potential in Norway spruce (*Picea abies* (L.) Karst) across the European Alps.

Methods and Results:

In this study, we used a genomic approach based on a 384 single nucleotide polymorphism (SNP) Illumina GoldenGate genotyping assay to investigate adaptive genetic variation within a population composed of 392 individuals provided with geo-reference data. An environmental dataset was obtained from WORLDCLIM dataset (Hijmans *et al.* 2005) and PGIS MODIS LST satellite (Neteler, 2010). In addition to temperature and precipitation variables, an aridity index was also included in data analyses. Principal component analyses were applied on all environmental datasets to reduce its dimensionality and extract the highest proportion of variation to be used in outlier detection analyses.

Conclusions:

Genotyping analyses provided insight in to the rate of success with single nucleotide polymorphism (SNPs) genotyping and revealed failure in case of 26% SNPs where most of these loci originated from Arborea dataset (Canada) on white spruce (*Picea glauca*). Population structure was estimated by using STRUCTURE (Pritchard *et al.* 2000) to potentially cluster individuals in genetic groups based on 394 successfully genotype individuals and 280 polymorphic loci. The highest delta K value was 2 (Evanno *et al.* 2005) showed there is no strong population structure within the population and suggested of panmixis. Outlier detection analyses were performed using a Bayesian liner mixed model-Bayenv 2 (Gunther and Coop, 2013) and the Spatial analysis method-Samβada (Stucki and Joost, 2014). In the summary, there was no strong correlation between allele frequencies and environmental gradients included in outlier analyses that would suggest selection in Norway spruce at the individual loci tested in this study.

Significance and Impact of the Study:

This study was one of several exploratory studies of adaptive genetic potential in Norway spruce by using landscape genomics approaches. Limitations of this study were due to the relatively small number of loci. As a future perspective, genome wide association studies or genotype to phenotype approach as well as genotype to environment when at least 1000 loci included, would be challenging in case of this organism and certainly would provide more power in search for signal of selection.

Lavori correlati alla Tesi - Papers related to the Thesis.

- Power and repeatability of outlier and genotype x environment in Norway spruce (*Picea abies* L. Karst)

Calic I, Bussotti F, Neale DB (in preparation)

- Characterization of phenotypic traits involved in long-term adaptation to climate change and their genetic base in case of Norway spruce (*Picea abies* L. Karst) Bonosi L, Mosca E, **Calic I**, Neale DB et al. (in preparation)

- A candidate gene based approach to explore adaptive genetic variation to aridity in Sugar Pine (*Pinus lambertiana*) (in preparation) Vangestel C, Vazguez-Lobo A, Martinez-Garcia PJ, Wegrzyn JL, **Calic I**, Liechty JD, Neale DB.

- Identifying the genetic basis of partial resistance on Sugar Pine (*Pinus lambertiana*) under white pine blister rust infection (WPBR) (In preparation) Vazquez-Lobo A, Vangestel C., Martinez-Garcia PJ, Wegrzyn J, **Calic I,** Neale DB

List of Figures

Figure 1: Natural distribution map of Picea abies across Europe (EUFORGEN, 2013)

Figure 2. Satellite map of Europe with documented drought induced mortality areas

Figure 3: A mapping population consists of 392 trees sampled across the Alps

Figure 4: A 384 Illumina GoldenGate design steps

Figure 5: Germination of Picea abies seeds

Figure 6: Germination of *Picea abies* seeds

Figure 7: PGIS Modis LST satellite provides resolution of 250m x 250m

Figure 8: Visualization of correlation matrix between 20 climatic variables and geographic variables

Figure 9: Visualization of loadings for each principal component (seasonal dataset)

Figure 10: Visualization of the cumulative proportion of variance (%) for each principal component

Figure 11: Visualization of loadings for each principal component (monthly dataset)

Figure 12: Visualization of the cumulative proportion of variance (%) for each principal component

Figure 13: Examples of successfully clustered SNP

Figure 14: Examples of unsuccessfully clustered SNPs

Figure 15: Visualization of Wright's Fis inbreeding coefficient

Figure 16. Plot of mean likelihood L(K) and variance per K value from STRUCTURE

Figure 17. (A) The rate of change of the likelihood distribution (mean±SD) and (B) absolute values of the second order change of the likelihood distribution (mean±SD).

Figure 18. Plot of ΔK (Evanno method)

Figure 19: Barplot when K =2 for original order for 394 individuals

Figure 20. R plot visualization of logarithm for the Posterior Odds to base 10 and averaged Fst across populations.

Figure 21. R plot visualization of logarithm for the Posterior Odds to 384 loci under investigation for the signal of selection.

Figure 22. R plots visualization of 280 SNPs and logarithm of Bayes factors for latitude (A); (B) longitude; (C) elevation; (D) PC 1 (the first principal component value); (E) PC 2 (the second principal component value); (F) PC 3 (the third principal component value).

Figure 23: R plots visualizations for correlation between locus id 23 (PGWD1-0634) and logarithm of base 10 of Bayes factors for winter aridity (A) and locus id 96 (PGLM2-0703) and logarithm of base 10 of Bayes factors for autumn precipitation (B).

Figure 24: R plots visualization of 280 SNPs and logarithm of Bayes factors for PC 1 (the first principal component value) (A); (B) PC 2 (the second principal component value); (C) PC 3 (the third principal component); (D) PC 4 (the fourth principal component value.

List of Tables

Table 1: Documented cases of drought and heat-induced mortality from Europe

Table 2: Gene products showed to be associated to various climate gradients in different conifer species

Table 3: Mapping population of Norway spruce

Table 4: List of environmental variables.

Table 5: Outputs of prcomp function to do principal component analysis in R

Table 6: Summary statistics of the PCA on climatic variables (seasonal dataset)

Table 7: Multivariate measures of climate for the seasonal dataset

Table 8: Summary statistics of the PCA on climatic variables (monthly dataset)

Table 9: Multivariate measures of climate for monthly dataset

Table 10: Basic diversity statistic of genotyping data from 384 Illumina dataset

Table 11: Overview of unsuccessfully genotyped SNPs

Table 12: SNP genotype quality data

Table 13: Basic diversity statistics of genotype data

Table 14: Table output of the Evanno method results

Table 15. Interpretation of Jeffrey's scale of evidence for the selection (Jeffrey, 1961)

Table 16: Summary of SNPs showed to have strong association to geo-climatic variables

Table 17: Norway spruce sampled individuals included for 384 Illumina genotyping assay

Table 18: Summary of candidate genes potentially involved in adaptation process when different outlier detection methods performed

Table 19: The percentage (%) of discovered genes from the total number of genes screened for signal of selection

Table 20: Summary of gene candidates potentially involved in adaptation generated with different outlier methods confirms no repeatability existence

Acknowledgements

At the end of my time as a PhD student, I am proud of the things I have learnt and accomplished but I am first and foremost grateful to the people who have advised, supported, taught and helped me over the years.

First, I would like to thank to my supervisor **David** for guiding me during three years and giving me a chance to train myself in the best way at UC Davis. It was such a pleasure to be your graduate student. Thank you for keeping always your door open. Your insights into forest population genetics and landscape genomics, the beauty of forest, your hospitality and help during my stay in Davis have all been valuable. Filippo, my tutor at UNIFI, thank you for all your support and guidance along doctoral period. I would like to thank to DISPAA Department at UNIFI for providing me with a scholarship and all financial support during my stay abroad. John **Liechty**, I could never mention or thank you enough for all the things you have helped me, big and small, but above all I would like to thank you for always being there as a colleague and never feel like I am bothering you with all my questions. Thank you for introducing me to the world of programming languages, I promise to continue building up my skills in that area! Pedro Martinez Garcia, thank you for all your help and for sharing with me with your expertise. Emily Grau, thank you for your help with scripts and doing it happily! Thank you for housing help and for your constant cheerful and helpful disposition. Thanks to Carl Vangestel and Alejandra Vazquez Lobo Yuren for your truly nice collaboration and guidance on Sugar pine projects. I am grateful for consultations and guidance of Prof. Jeffrey Ross Ibarra in population genetics. To all people of the Plant Science Department at UC Davis from Neale's group and Ross Ibarra's group, Randy Famula, Paul Bilinski, Dianne Velasco, Sayuri Tsukahara and **Colleen Spurlock**, thank you guys for making a good atmosphere at work, for sharing space and time with me, for laughs and chats, your advices and your friendship!

Thanks to **Lorenzo Bonosi** for the collaboration within PicPhenomics project and for genomic data sharing. **Giuseppe Vendramin**, thank you for opportunity to conduct work in your lab and for all your advices and help. **Ilaria Spanu**, thank you so much for all hard work in the lab, we were such a good team!

Thanks to my family for all their love and support, my Mom and Dad, my grandma, aunt and all near and good people to me.

1. INTRODUCTION

1.1 About Conifers

Conifers is a common name to indicate the members of the order Pinales, (division Pinophyta, class Pinopsida), including approximately 700 species and up to 900 taxa, and represent an ecologically important group (Debreczy and Rácz, 2011). They present a monophyletic group of gymnospermous woody plants with a long evolutionary history dating back to Carboniferous more than 300 million years ago (Farjon and Filler, 2013). Based on fossil records, conifers were distributed worldwide at the beginning of Mesozoic (250 million years ago) when their genetic diversity was high (Stewart and Rothwell, 1993). Conifers remained dominant forests across the world until angiosperms occurred during Early Cretaceous (120 million years ago) facing a competition changes (Farjon and Filler, 2013). Nowadays, conifers are present on all continents except Antarctica and in all climate zones. However, among conifer species, some species of the same genus are only common for a particular small region whereas other species are distributed across large areas or continents. Such case is common for *Picea abies*, which is widely distributed across Eurasia and *Picea omorika*, which is only related to small region of Balkan Peninsula.

Conifers are highly valued for their straight trunks, soft, finely grained and easily workable wood, which all emerged a growth in commercial exploitation of conifer forests worldwide (Debreczy and Racz, 2011). Most of conifer-covered slopes were reduced and finally vanished with only few exceptions remained untouched such as redwoods in California, pine forests at Tasmania's southwest, the alerce forest of the southern Andes (Debreczy and Racz, 2011). However, the importance of conifer ecosystems and forest ecosystems in general has been significantly emerged since they play such an important role in the hydrological cycle, recycling of nutrients and stabilizing of climate.

Within conifers, eight families are recognized where some families are monospecific (Sciadopityaceae) to 231 species numbered in Pinaceae, and from a single country (Japan Sciadopityaceae) to all continents expect Antartica (Cupressaceae). Among all families, the Cupressaceae is the only family with a cosmopolitan distribution (both Northern and Southern Hemisphere). The Pinaceae is the Northern Hemisphere family with the widest distribution, which is shared by several genera but the *Pinus* is making the largest contribution. The Taxaceae is a family of mostly Northern Hemisphere distribution as well as the Cephalotaxaceae with a limited distribution in Eastern part of Asia. The Sciadopityaceae is a family of a single species common just for Japan, which was possible spread from Europe to Japan. The Podocarpaceae is a primarily Southern Hemisphere family with a pan-tropical distribution across Ecuador, Mexico and Japan with genus *Podocarpus* accounting for the most distribution of the family. The Araucariaceae is a family where only three genera make up the family being common for the Southern Hemisphere. The last family, the Phyllocladaceae is also common for Southern Hemisphere of one genus with a limited distribution in Tasmania, New Zealand and Malaysia (Debreczy and Racz, 2011).

1.2 Pinaceae (The Pinus family)

The family Pinaceae is the largest family in conifers with 240 or more species included widely distributed along Northern Hemisphere with the greatest diversity in temperate to tropical mountain habitats (Debreczy and Racz, 2011). The Pinaceae is coniferous family very important ecologically and of great economic importance as a source of timber, paper pulp, resins and oils (Debreczy and Racz, 2011). The three largest genera, *Pinus* (115+species), *Abies* (55+species) and *Picea* (ca. 35 species) are widely distributed in Eurasia and North and Central America, while *Larix* (10-15 species) has a broad northern-latitude distribution, while *Tsuga* (9 species) and *Pseudotsuga* (4+species) are restricted to portions of Asia and North America (Debreczy and Racz, 2011).

This family dominance is common in conifer forests of the temperate and cold regions. In boreal forest zone are common limited number of species such as *Abies, Larix, Picea* and *Pinus*. In Europe, the family Pinaceae of the boreal forest in Scandinavia is present in most of mountainous regions but absent in lowlands except around the Mediterranean and Black Seas and in the Baltic States, Belarus and Russia (Farjon and Filler, 2013).

The genus *Picea* is represented in Europe with two species, one is widespread, *Picea abies* and the other is a narrow endemic, *Picea omorika*, occurring only in a small area of Bosnia and Herzegovina and a short distance across the border into Serbia along Tara river. The genus *Picea* is accounting for 38 species widely distributed in the northern parts of Northern Hemisphere and presents one of the most dominant conifer genus (Farjon and Filler, 2013). *Picea* is a northerly genus adapted to low or extremely low winter temperatures and growing seasons that can be as short as five or six weeks (Farjon and Filler, 2013).

1.3 Norway spruce natural distribution

Picea abies (L.) H. Karst.1881 is the most widely distributed spruce in Europe, ranging through the alpine systems from the Maritime Alps to the Carpathians, the Balkan Mountains and sporadically in the Dinaric Alps (Debreczy and Rácz, 2011). Across the Europe, its very wide distribution is starting extensively in Scandinavia (Norway, Sweden and Finland) and in northeast part of Europe from Estonia, Belarus and far into Russia. In Central Europe, its presence is limited to the mountainous regions where if present in lowlands is due to its plantations (Figure 1). It occurs from French Hautes Alps to the end of Alps in Austria. It is also present in Germany (the Bavarian Forest, Bohemian Mountains, the Erzgebirge), the Carpathians and the mountains of the Balkans to Montenegro, Macedonia and Bulgaria (Farjon and Filler, 2013). The area of distribution has expanded beyond its natural range, due to its plantations in Belgium, Luxembourg, the Netherlands, in Denmark as well as Great Britain, Ireland and most parts of France (Spiecker, 2000 in Klimo *et al.* 2000).

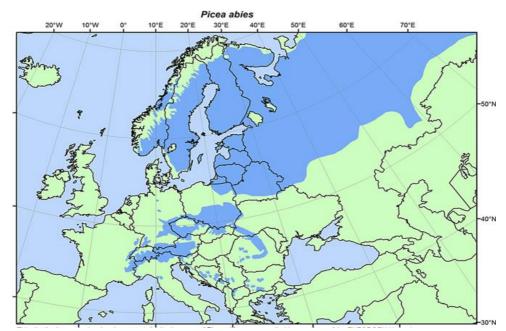


Figure 1. Natural distribution map of *Picea abies* across Europe (EUFORGEN, 2013) (<u>www.euforgen.org</u>) Norway spruce has migrated from several places of origin causing an expansion of the geographic range primarily to higher mountain regions and lowlands through the interglacial period.

An increase in natural range proportions for Norway spruce within Europe started at the beginning of the 19th century due to the intensive reforestation in order to establish a good source for a timber production (Mullin *et al.*, 2011). Nowadays, the range expansion of Norway spruce has been under the human activity influence such as fire, land clearing and extensive logging (Modrzynski, 2007). Norway spruce also has been planted in North America, specifically in eastern Canada (Mullin *et al.*, 2011).

1.4 Ecology of Norway spruce

Two most important climatic factors for the growth of Norway spruce are temperature and precipitation (Nebe, 1968). Environmental factors influence all developmental stages of Norway spruce (Modrzynski, 2007). For instance, amount of solar radiation is one of the important environmental factors important for seed crop abundance in the year prior the flowering since it stimulates bud opening. If environmental conditions are into optimal range, Norway spruce will have a good seed crop every 3-4 years (Modrzynski, 2007). The length of the growing season in Norway spruce depends on photoperiod and temperature. Bud set development is associated to night length, but also other factors such as temperature and moisture requiring the minimum temperature of 0°C for occurrence of deep dormancy. Temperature is important for beginning of the growth for needles and shoots, higher than 5°C, whereas for cambial activity is required temperature above 10°C (Modrzynski, 2007).

The temperature or heat sum requirements of Norway spruce are relatively low, what is evident from the natural geographic range reaching mostly northern and high altitude areas. In the southern parts, Norway spruce reaches high altitude where it forms tree lines or range limits, below which the temperature is too high for the growth (Modrzynski, 2007). Norway spruce is found to be quite tolerant

to low winter temperatures, however it is sensitive to early and late frosts during its growing season (Ellenberg, 1978). It also tolerates high temperatures (up to +46°C) and very low temperature (up to -60°C) at sites where average January temperature of -35°C such as Siberia (Ellenberg, 1978; Schmidt-Vogt, 1977).

Moisture requirements of Norway spruce are quite high, and according to Schmidt-Vogt (1977), Norway spruce is vulnerable to the drought because of its reduced ability to uptake water when it is scarce. Regarding soil requirements, Norway spruce is able to develops optimally on soils that are mesic, loamy and medium rich in nutrients with an optimal pH range lies between 5.3 and 6.0, however it can grow on soils with pH values ranging from 3.4 to 6.7 (Obminski, 1977).

Most disturbances in Norway spruce stands are caused by both biotic and abiotic factors, such as storms, snow and insects. Drought, frost, fungal diseases and herbivores are causes of major disturbance in Norway spruce stands (Schmidt-Vogt, 1989). Norway spruce tolerance to low temperature is well entertained if properly conditioned in late summer and hardened in fall, being able to tolerate to about -60°C during winter dormancy (Schmidt-Vogt, 1977). On the other hand, as it was reported by Christersson and Fircks (1990) observed seedling injury was up to 100) at temperature -4°C. Harmful impact of high temperatures is common for your seedlings when exposed at the soil surface (up to 65°C). Such temperature on mature trees rarely occurs (Schmidt-Vogt, 1977). The tolerance to heat stress is triggered through dehydration in tissues and heat shock proteins synthesis (Modrzynski, 2007). Drought induced mortality in Norway spruce was observed in nurseries and young stands, where in old stands drought damages are minor (Modrzynski, 2007). If present, drought changes are causing physiological changes such as decrease in gas exchange rates and peroxidase activity and carbohydrate exudation from root system (Schmidt-Vogt, 1977).

1.5 Climate change and its impact on conifers

Forest ecosystems are being rapidly and directly transformed by the land uses due to the expanding human populations and economies (Allen *et al.* 2010). Less evidence is available nowadays about impact climate change could have on the world's forest. One of the most important challenges recognized globally is the climate change effect on ecosystems (Koskela *et al.* 2007). Although widely acknowledged, the global temperature has raised up (0,5°C since 1970) due to the increased emissions of greenhouse gases, future predictions are indicating further increases in mean temperature (2-4°C globally) with significant mortality issues in some parts of the world (Christensen *et al.* 2007; Seager *et al.* 2007) as well as extreme droughts or high temperature raise (Allen *et al.* 2010). Average temperatures are expected to increase by 2-4°C in Europe over the next fifty years causing significant changes in regional and seasonal patterns of precipitation (IPCC 2007b), creating novel environmental conditions to which forest ecosystems will be exposed.

Forest ecosystems might not be able to support novel climate changes due to their long life span and time span of the climate change (Kremer, 2007). Based on the palaeoecological data assumptions, the rate of evolutionary change is much slower than the rate of present climate change (Davis *et al.* 2005), leading to the fact that forest species as a sedentary, long lived organisms are under the risk of the potential dieback caused by global climate changes. Trees belong to ecologically and economically important group of the terrestrial ecosystems where these novel changes are about to occur.

Plenty of evidences of die-off cases due to drought and high temperatures on conifer species are already available and reported across the world (Table 1). In Europe, mortality cases due to dry and warm conditions in the 1990s and 2000s across Mediterranean regions, including death among woody species in Spain such as *Pinus sylvestris* (Penuelas *et al.* 2001; Martinez-Vilalta and Pinol, 2002) and in increases in mortality of *Pinus sylvestris* in Switzerland and Italy (Dobbertin and Rigling, 2006, Bigler *et al.* 2006) (Figure 2). For Norway spruce, has been reported a case of dieback due to summer drought paired with biotic stressors in Norway (Solberg, 2004) and in Switzerland due to drought and high summer temperatures in 2003 correlated to bark beetles (*Ips typographus*) reported by Forster *et al.* (2008).

Climate induced mortality of conifer species have been reported in other parts of the world as well. For instance, in North America has been reported drought induced mortality on example of *Pinus contorta* in British Columbia (Kurz *et al.* 2008a) and several spruce species in Alaska (Berg *et al.* 2006).

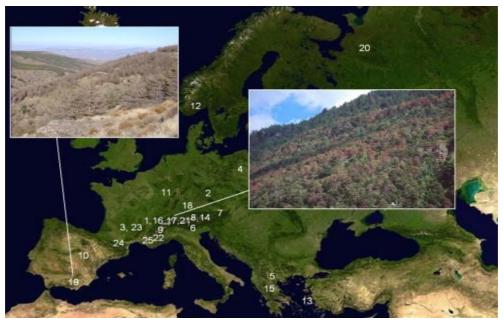


Figure 2. Satellite map of Europe with documented drought induced mortality areas (Table 1). Right picture presents mortality of *Pinus sylvestris* in Switzerland (1999), By: Wermelinger B. Left picture presents die-offs of *Pinus sylvestris* in Spain (2006), By: Navaroo-Cerrillo R. (References in Allen *et al.* 2010)

Many recent examples of drought and heat-induced mortality from around the world suggest that no forest type is invulnerable to climate change (Allen *et al.* 2010). Koski *et al.* (1997) reported populations of Norway spruce are facing severe threats in some regions in Central Europe. Populations are in danger of possible dieback due to the industrial air pollution and global warming. Although it is common high levels of intrapopulation genetic variation and known high adaptability of Norway spruce, decline and mortality rates are predicted to occur (Koski *et al.* 1997).

Table 1: Documented cases of drought and heat-induced mortality from Europe (1970 to present), ID numbers refers to locations mapped (Allen *et al.* 2009).

Location	Years of mortality	Forest type	Dominant tree	Climate anomaly linked to mortality
Europe (Western Central) ID: 2	1970-1985	Temperate conifer and broadleaf	Abies spp. Picea spp. Pinus spp.	Repeated droughts
ltaly (South Tyrol) ID: 6	1992	Temperate mixed conifer	Pinus sylvestris	Multi year drought
Austria (Tyrol) ID: 8	1991-1997	Temperate mixed conifer	Pinus sylvestris	Seasonal droughts
Italy (Aosta) ID: 9	1985-1998	Temperate mixed conifer and broadleaf	Pinus sylvestris	Multi year drought
Norway ID: 12	1992-2000	Temperate conifer	Picea abies	Multi year summer drought
Switzerland ID: 16	2003	Temperate conifer and broadleaf	Picea abies	Drought, high temperatures
Spain ID: 19	2004-2006	Temperate conifer	Pinus sylvestris, Pinus nigra	Multi year drought
France ID: 23	2003-2008	Temperate mixed conifer and broadleaf	Quercus spp. Abies spp. Picea abies Pinus spp.	Spring, summer droughts Scorching heat

1.6 Phenomena of adaptation

Adaptation, or the hereditary adjustment to the environment, is one of the universal features of life (Grant, 1963). An adaptation could be defined as a characteristic evolved by a natural selection, which enchases the survival or reproduction of organisms (Futuyma, 2005). With the climate changes causing environment changes, optimal sets of adaptations with maximizing fitness under local conditions might shift accordingly (Kremer *et al.* 2012). Aitken *et al.* (2008) described three possible scenarios for forest ecosystem how to cope with novel environmental changes as (1) migration to track ecological niches spatially; (2) adaptation to new conditions in current location and (3) extirpation. Existence of phenotypic plasticity and effective genotypes enables forest species to tolerate the environment change (Savolainen *et al.* 2007).

Trees as long-lived sedentary organisms with a capacity of long distance dispersal via seed or pollen are not estimated enough about their genetic basis of adaptation potential given an intensity and directionality of climatic change (Kremer *et al.* 2012). However, the strict criterion for a local adaptation is that one population has higher fitness at its native site than any other population at the same site (Savolainen *et al.* 2013). At other sites, populations would have lower fitness, however that would not mean locally adapted population would grow better elsewhere but only their growth is the best at site where locally adapted (Kawecki and Ebert, 2004).

Understanding the genetic basis of adaptation is possible though the way of estimation distribution of allele frequencies among populations. Evolutionary forces that drive allele frequency distribution changes across time are mutation, gene flow (migration), genetic drift (random changes in allele frequencies from generation to generation due to sampling effects), natural selection and mating system (the degree to which sexual reproduction occurs through self-pollination, consanguineous mating between related or unrelated individuals) (Aitken, 2004). Gene flow influences the process of adaptation via seed migration or pollen flow when new areas are colonized (Austerlitz *et al.* 2000). The potential of forest trees to adaptation is reflected through gene flow (mostly by pollen) and natural selection (Savolainen *et al.* 2014). On the other hand, genetic drift is more reflected than other evolutionary forces in small or isolated populations or species with small ranges and experienced major bottlenecks (Aitken, 2004). The adaptive potential one population could have depends on phenotypic variation, strength of selection, fecundity, interspecific competition and biotic interactions. Tree populations from boreal and temperate zones show moderate to strong clines in phenology and growth along temperate gradients indicating substantial adaptation (Aitken *et al.* 2008).

Trees as long-lived organisms may not have evolutionary rates as high as short generation organisms (Smith and Donoghue, 2008) raising the concern about having an exact match within evolutionary change with rapid climate change. Trees experienced strong evolutionary responses during glacial and interglacial periods when dramatic environmental changes occurred leading to their replacement to more favorable habitats but also their extinction (Kremer, 2010). Based on fossil records, some plant species that previously existed in Europe end of the Tertiary period nowadays are present in North America, however there was no tree extinction in recent period, indicating that trees have developed ability to migrate or adapt to environmental change (Kremer, 2010). Capacity for colonizing new areas for some forest tree species are predicted to be limited, such as Scots pine, which is predicted to decline (Kellomaki *et al.* 2001).

Savolainen et al. (2013) described three possible population genetics approaches for detecting the footprints of local adaptation at the molecular level: population differentiation through scans of the Wright fixation index (Fst), correlation between allele frequencies and environmental variables and Fst-Qst comparisons. Common garden experiments proved to been informative in estimation of adaptive genetic potential, however their informative power depends on the number of different test environments, the duration of tests and the genetic diversity of experimental populations (Neale and Kremer, 2011). With discovery of genomic data, genome scans became an alternative to common garden experiments, as time consuming, costly and logistically challenging approaches. However, through combination of genomic and more traditional approaches, intensive efforts have been made to identify the most ecologically important traits and their underlying genes (Neale and Kremer, 2011). Although approximately 290 genes have been investigated for evidence of balancing or directional selection, around 20% (55 genes) showed departures from neutrality (Neale and Ingvarsson, 2008). Population genetic analyses provide enriched exploration of adaptation signatures based on sampled DNA sequences from multiple individuals especially when common garden or phenotypic selection, are not feasible. However, Tiffin and Ross Ibarra (2014) emphasized the usage of population genetic analyses that provides enriched exploration of adaptation based on sampled DNA sequences from multiple individuals also when common garden experiments or phenotypic selection analyses are not feasible.

1.7 Adaptive genetic variation in conifers with emphasis on Norway spruce (Common garden trials)

Evidence of evolutionary responses through local adaptation in trees may originate from two sources: provenance trials and patterns of clinal variation (Savolainen *et al.* 2007). Selection along environmental gradients in continuous populations often results in clines. Development of the genetic variation that provides increase of phenotypic clines depends on balance between selection and the average disperse distance of the organism (Savolainen *et al.* 2007). Generally, common garden experiments provided an insight in phenotypic proportion of variation between traits and abiotic and biotic environmental factors (Savolainen *et al.* 2007).

Traits related to adaptation to specific environmental stresses could be assessed through long-term field provenance trials such as phenology (e.g. timing of bud burst, bud set, leaf abscission, pollination and seed maturation); cold-hardiness and drought-related traits. However, adaptive traits are more commonly assessed in short-term nursery, growth chamber or greenhouse in more controlled conditions (Aitken, 2004). Long-term provenance trials enabled an opportunity to study differences among populations from different environments as well as effects of a changing environment on these populations by substituting spatial for temporal environmental variation (Aitken 2004).

Common garden plantations have provided an insight about variability in quantitative adaptive traits among and within wild populations of forest tree species (Skroppa and Johnsen, 2000). The analyses of phenotypic clinal variation due to the selection can be a productive approach to uncover local adaptations and their genetic basis (Savolainen *et al.* 2007). Multiple-site provenance trials (also known as common garden plantations) could serve to examine plastic responses of populations in novel environment when planted in sites where environmental gradients are different (Alberto *et al.* 2013).

A number of traits known to have adaptive significance have been observed through common garden studies. In the previous conducted provenance trials, a substantial variation has been observed among populations for traits related to the climatic adaptation (Skroppa and Johnsen, 2000). One of the examples of such study is trial conducted on one-year-old seedlings of Norway spruce, when a clinal variation among populations as observed and the latitude and altitude of the natural stands explained 88% of the variability (Daehlen *et al.* 1995). Skroppa and Johnsen, 2000 described several cases of clinal variation for different traits on case of Norway spruce such as cessation of shoot elongation at the age of six, annual growth rhythm traits, duration of shoot growth, and basic wood density, pointing out that that higher percentage of variation has been observed on population level rather than on family level and it could be explained by different mechanisms influence the genetic variability within and among populations (Skroppa and Johnsen, 2000).

Phenotypic clines along environmental gradients are common in forest trees such as variation in the mean timing for bud set in *Pinus sylvestris* along latitudinal gradient (Mikola, 1982). Beside bud set, other traits have been extensively studied such as phenology in general and flowering time for which strong candidate genes are available and belong mostly to the photoperiodic pathway including circadian clock (Gyllenstrand *et al.* 2007).

In study conducted by Chen *et al.* (2012) was analyzed genetic and phenotypic variation in bud set in Norway spruce, a highly heritable adaptive trait, for which variation appeared to be strongly clinal. Chen *et al.* (2012) emphasized that Norway spruce populations, just as in the case of other forest species, are strongly differentiated for bud set indicating very strong phenotypic differentiation for this particular trait. Additionally, Chen *et al.* (2012) analyzed single-nucleotide polymorphism (SNP) frequencies at candidate genes for timing of bud set in 18 populations of Norway spruce, providing capture of the clinal variation at candidate gene SNPs correlated with latitude. The clinal variation has been finally confirmed in gene expression study on subset of genes for which clinal variation was detected for SNP allele frequencies (Chen *et al.* 2012).

1.8 Genotype versus environment in conifers with emphasis on Norway spruce

Landscape genomics integrates both landscape ecology and population genetics with an aim to investigate how landscape elements (such as forest) and environmental factors influence the spatial distribution of genetic variation. One of the main research questions of landscape genetics is how environmental factors such as temperature or precipitation affect adaptive genetic variation due to the climate change (Holderegger *et al.* 2010). As genomic data became more available nowadays, genome scans for signatures of adaptation became more common (Tiffin and Ross Ibarra, 2014). In genomic era, the first approach was population genomics such as Fst outlier method, which was common for about decade (Holderegger *et al.* 2010). Landscape genetics became available more recently and it directly use environmental variable to highlight molecular markers linked to genomic regions, which are under the selection (Holderegger, 2008). In particular, allele frequencies in individuals either in the populations are correlated to any of environmental variables such as: temperature, precipitation, aridity, altitude etc. (Holderegger, 2008). Genetic variation is often influenced by latitudinal or altitudinal clines, however climate is the most important driver of adaptive phenotypic traits (Eckert *et al.*, 2010a).

Several landscape genomics studies on the conifer species have been conducted in searching for an estimation of adaptive genetic variation. One of the first attempts on non-model organism to detect outlier loci under the selection on Norway spruce was done by Scalfi *et al.* (2014). In this study was reported usage of *F*st outlier detection analyses in a combination with regression analyses. In this study were used 384 SNPs representing 290 genes used for genotyping at micro-geographic study (two altitudinal-transects in the Italian Alps) for a total of 38 populations and macro-geographic study across 27 populations belonging to the Alpine and Hercyno-Carpathian domains. As result, seven loci were detected with Fst outlier detection; six other outliers were detected through population clustering (Bayesian simulation and hierarchical island model) and 15 outliers with regression analyses.

Another approach was described by Chen *et al.* (2012) when analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce for correlations with latitude. In this study were included genotypes for 137 single-nucleotide polymorphisms (SNPs) selected from 18 candidate genes putatively affecting bud set and 308 control SNPs selected from 264 random genes for estimation of patterns of genetic structure and environment.

Several methods have been applied to analyze clinal variation such as linear regression on latitude assuming that geographic variation is associated to an environmental gradient covarying with latitude as well as Regression Monte Carlo simulation to investigate to what extent a significant clinal variation observed at one nucleotide site could be due to LD with another SNP (Berry and Kreitman, 1993). Bayesian generalized linear mixed model (Bayenv) analyses was applied to detect clinal variation for SNP allele frequencies in correlation to environmental variables. The last method used in this study, was BayeScan method (Foll and Gaggiotti, 2008). Chen *et al.* (2012) proved that variation in bud set is clinal one. As result of analysis of clinal variation in allele frequencies, 28 significant SNPs including 11 from candidate genes were detected.

Di Pierro *et al.* (in preparartion) reported approach on Norway spruce to determine and quantify patterns of adaptive response in natural populations across the Italian Alps and Apennines. Across the Italian species range, 24 natural populations were sampled. Genotyping was done for 384 selected Single Nucleotide Polymorphisms (SNPs) from 285 genes. As results of this study, were revealed five Fst outliers and seven SNPs associated to one or more climatic variable, precipitation more than temperature (Di Pierro *et al.* in preparation).

Investigation of local adaptation potential has been performed also on other conifer species. One of examples is the study on four different conifer species: Abies alba, Larix decidua, Pinus cembra L. and Pinus mugo Turra across the European Alps is by Mosca et al. (2012). As the result, six SNPs were detected in Larix decidua and 18 in Pinus mugo Turra, which were associated to PC1 (the first principal component score) corresponding to winter precipitation and seasonal minimum temperature. In Abies alba, four SNPs were associated with PC2 (the second principal component score) corresponded to the seasonal minimum temperature. In all species, except Abies alba, was present a strong effect of seasonal temperature and precipitation when the strongest signal of correlation originated from association to seasonal minimum temperature for A. alba, P. cembra and P. mugo (Mosca et al. 2012). One of the first attempts to illustrate population genomics approach on non-model organism such as loblolly pine (Pinus taeda) was conducted by Eckert et al. 2010. Loblolly pine is a species distributed across the southern eastern part of USA, ranging from Texas to Delaware enabled to determine genetic variation among natural populations based on isozymes and nuclear microsatellites (Eckert et al. 2010). In this study was presented a genome-wide dataset of single nucleotide polymorphisms (SNPs) typed from 1730 loci in a mapping population composed of 682 loblolly pine individuals. Totally were examined 54 populations for allele correlations to multivariate environmental variables (the principal component scores) (Eckert et al. 2010). Very strong association between allele frequencies and geoclimatic multivariate variables (the principal components) was common for 22 SNPs, whereas totally 48 SNPs showed the strongest signal of correlation (i.e. Bayes Factors (BFs.) > 100) describing temperature, growing degree days above 5C, winter aridity, overall aridity, precipitation as well as aridity during summer and winter.

1.9 Gene groups associated to environment among conifers

Mosca *et al.* (2012) reported several associated SNPs located in genes encoding proteins affecting plant response to abiotic stress. Loci associated to multivariate components (PCs) were found in genes involved in lignin biosynthesis. Mosca *et al.* (2012) observed 3 loci where one was detected in *Pinus cembra* and other two loci were detected in *Pinus mugo*. Additionally, two loci encoding for heat-shock proteins (HSP) were detected in *Abies alba* (one) and in *Larix decidua* (one) and they were also correlated to PCs scores. Several associated SNPs were located in *Pinus cembra* and one on *Pinus mugo*. Overall, seven associated SNPs were located in genes common among all four species, when these loci were mainly involved in metabolic and oxidation-reduction processes and in regulation of stomata movement. Among climatic variables, the strongest correlation in this study was related to the seasonal minimum temperature and winter /autumn precipitation (Mosca *et al.* 2012).

Di Pierro *et al.* (unpublished) reported seven associated loci to environmental variables, where for four loci was known putative function and three others were anonymous. Known putative functions were: encoding for SNF2 protein family; encoding for a putative conserved domain: oxygen evolving enhancer protein1 (involved in photosystem II stabilization), encoding for a protein similar to phosphoenolpyruvate carboxykinase 2 (critical enzyme involved in the gluconeogenesis) and locus encoding for a sequence with a high similarity with NAD(P)-linked oxidoreductase-like protein in *Arabidopsis thaliana* (involved in oxidation reduction on chloroplast thylakoid membrane). Di Pierro *et al.* (unpublished) observed more correlation to precipitation than to temperature among climatic variables included in outlier detection analyses.

Scalfi et al. (unpublished) attempted detection of loci with different putative functions both on macro and micro geographic scale. As summary of Fst outlier detection methods, only at macro-geographic scale have been detected seven outlier loci, where one has a similarity with protein of Zea mays (ACG24319) and another was similar to sucrose synthase of Pinus halepensis (AY705802.1). Other detected loci were involved in various biological processes such as: (a) transcription factor, (b) translation-elongation factor, (c) UBX domain-containing protein, (d) acyl-CoA thioesterase or (e) acetyltransferase component. Totally seven outliers were detected with Fst approach and one locus in detected in a gene involved in plant defense and other two in lipid metabolism. Since at macrogeographic scale, analyses were conducted twice, loci detected using populations assigned according to their geographic position was only one and located in Picea glauca (gb|BT10728.1|) and encoding for a nucleic acid-binding protein in Arabidopsis thaliana. Considering another approach, clustering based on STRUCTURE (Pritchard et al., 2000), two loci detected being involved on a gene encoding for a sucrose synthase in Pinus halepensis while another locus detected was located in gene encoding for a F-box protein. In this study, regression analyses were also performed. At micro-geographic scale analyses only two loci showed significant correlation with climatic variables such as temperature and precipitation where one locus has similarity with the pentatricopeptide (PPR) repeat containing protein of A. thaliana. In the macro-geographic scale analyses, totally 38 loci from 227 tested were significant, where only 12 loci were significant.

In study conducted by Eckert *et al.* (2010a), more than half of identified loci were located in genes that code for proteins with unknown function (hypothetical proteins) referring to that time lack of

sequenced loblolly pine genome but referring to *Arabidopsis thaliana* reference genome or lack of sequence similarity to genes in model plants. Most of other identified loci are related to plant response mechanisms to abiotic stress such as calcium-dependent protein kinases (CPDKs) which approved to be a key signal to transduction of osmotic stress signaling, short-chain dehydrogenase/reductases and TIFY domains. Proteins with TIFY domains are known to respond to a wide range of abiotic stresses such as drought, salinity and low temperature. Eckert *et al.* (2010a) described other potentially adaptive genes encoding for proteins responsible for oxidative stress (e.g. oxido-reductases, peroxidases, thioredoxin-like proteins); cell membrane related proteins (e.g. nodulin, K⁺: K⁺ antiporter) and genes encoding for sugar metabolism (e.g. trehalose-6-phosphate phosphatases, TPPs). Additionally, Eckert *et al.* (2010b) reported one SNP located in gene with known gene function that is correlated to ubiquitin-specific protease, proteins quite abundant in eukaryotes and being expressed when ongoing increased protein degradation as response to environmental stress.

Furthermore, Eckert *et al.* (2010a) reported five more loci correlated to aridity where as described; these loci were primarily involved with abiotic stress response to temperature and drought. Five loci showing significant association within genotypes and aridity gradients were located in genes encoding for following: Hexose:hydrogen symporter, Photosystem II protein, CSHC4-type RING finger, MATE efflux family protein and UDP-galactose transporter.

Grivet *et al.* (2011) examined environmental associations between variation at candidate genes and climatic variables with an aim to identify genes, which may be targeted by selection on two Mediterranean conifer species: *Pinus pinaster* Ait. and *Pinus halpenses* Mill. In this study was assessed the impact of natural selection on the same set of candidate genes related to drought tolerance. As result, environmental association revealed loci correlated to temperature, when one of these loci was common in both pine species. Genes discovered belonged to dehydrins, which present a small group of multigene family of intracellular stabilizers that plays a major role in cell protection against desiccation. Additionally, *4cl* gene family has been detected by environmental association analyses. This gene family is involved in the production of basic enzymes of the phenylpropanoid metabolism that present important metabolites acting against biotic and abiotic stresses (Rani *et al.* 2009) as well as encoding key enzymes in biosynthesis of lignin and several studies have demonstrated their involvement in the plant growth (Wagner *et al.* 2009).

Prunier *et al.* (2011) scanned the genome of the boreal conifer black spruce (*Picea mariana* [Mill.] B.S.P.), a dominant tree of the North American boreal forest, for gene single-nucleotide polymorphisms (SNPs) potentially involved in adaptations to temperature and precipitation variations. In this study were included 583 SNPs from 313 genes potentially playing adaptive roles. Prunier *et al.* (2011) detected 14 outlier SNPs correlated to temperature and 16 to precipitation. Loci were located in genes with different putative functions where these correlated to temperature are belonging to C2H2 zinc finger family; R2-R3 MYB, Zinc-binding family, C3HC4 RING finger, AP2, WD-40 repeat family, MBF, Peroxidase, Glycosyl-hydrolase. Loci found to be correlated to precipitation belonged to B-box zinc finger, C3HC4 RING finger, C2H2 zinc finger, Zinc-binding family, Mov31 family, Ubiquitin, LEA, NAC, HD-Zip etc.

De La Torre *et al.* (2014) performed a genome-wide association study on white spruce [*Picea glauca* (Moench) Voss] and Engel-mann spruce [*Picea engelmannii* Parry], two conifer species common in western North America that hybridize extensively in British Columbia and the western part of Alberta (Canada). This study aimed to assess levels of admixture and introgression and to identify loci putatively

involved in adaptive differences between species by using a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes. The main objective of this study was to determine the glacial and postglacial re-colonization patterns between these widely hybridizing conifer species. As result, two species are showing to have long history of hybridization and introgression whose integrity has been maintained by a combination of strong environmental selection and reduced current interspecific gene flow (De La Torre *et al.* 2014). Twenty loci showed evidence of divergent selection where six loci were Fst outliers and associated to climatic gradients, whereas other fourteen loci were either outliers or showed association to climate. These loci were located in genes involved in carbohydrate metabolism, signal transduction and transcription factors (De La Torre *et al.* 2014).

Overall, several group of genes associated to climatic gradients have been identified in different conifer species. Based on the literature sources available so far, seven gene groups were shared among broad conifers, indicating the repeatability in genes also when different outlier detection approach used. The most common gene products are listed as following: (a) lignin biosynthesis present; (b) sugar metabolism; (c) peroxidases; (d) photosystem II protein; (e) Photosystem II protein, (f) Glycosyl hydrolase (g) RING proteins and (g) ubiquitin. (Table 2).

Phenotype	Conifer species	Candidate gene	Reference	
Drought	Pinus pinaster		Grivet <i>et al</i> . (2011)	
Temperature,	Pinus cembra	Lignin biosynthesis	Mosca <i>et al.</i> (2012)	
precipitation	Pinus mugo		1005ca et ul. (2012)	
Aridity	Pinus taeda		Eckert <i>et al</i> . (2012b)	
Temperature,	Picea abies	Sugar metabolism	Di Pierro <i>et al</i> .	
precipitation	Ficed ubles		(unpublished)	
Aridity	Pinus taeda		Eckert <i>et al</i> . (2012b)	
Temperature,	Picea mariana	Peroxidases (WF, AS)	Prunier <i>et al</i> . (2011)	
precipitation	Ficeu mununu			
Aridity	Pinus taeda		Eckert <i>et al</i> . (2012a)	
Temperature,	Picea abies	Photosystem II protein	Di Pierro <i>et al</i> .	
precipitation	Ficed ubles		(unpublished)	
Temperature,	Picea mariana	– Glycosyl hydrolase	Prunier <i>et al</i> . (2011)	
precipitation	Picea glauca	(translocation mechanism)	De La Torre <i>et al</i> . (2014)	
precipitation	P. engelmanii		De La Torre et ul. (2014)	
Aridity	Pinus taeda		Eckert <i>et al. (</i> 2012a)	
Temperature,	Picea mariana	RING proteins	Prunier <i>et al</i> . (2011)	
precipitation	Ficeu mununu			
Aridity	Pinus taeda		Eckert <i>et al</i> . (2012b)	
Temperature, precipitation	Picea mariana	Ubiquitin	Prunier <i>et al</i> . (2011)	

Table 2: Gene products showed to be associated to various climate gradients in different conifer species

2. RESEARCH OBJECTIVES

The main objective of this study is to estimate an adaptive genetic potential within mapping population of Norway spruce across European Alps for a climate change. It is already known that the most important environmental gradients, which influence local adaptation among forest trees, are temperature, precipitation and aridity. Current climatic predictions suggest temperature could rise 1.5-5.8°C in the next hundred years significantly increasing dieback of forest species across the globe. Norway spruce is known to be sensitive to increases in temperature and droughts in temperate and boreal conifer forests. Many recent examples of drought and heat-induced mortality cases across the world, strongly suggest that there is no forest type or climate zone invulnerable to climate change. How rapid changing climatic change will affect Norway spruce growth remains unclear, since the genetic basis of adaptation is not well understood.

This study provides an insight to adaptive genetic variation within 392 geo-referenced individuals sampled across European Alps. The research question in this study is to identify presence of adaptive loci across the genome of Norway spruce. Herewith, we applied an approach where environmental data are directly associated to genomic data of collected samples.

The first research objective was to determine genetic diversity of Norway spruce by genotyping 384 single nucleotide polymorphism (SNPs) from natural populations. The second research objective was to estimate the correlation between climatic variables (e.g. temperature, precipitation or aridity) and genetic variation. Several outlier detection methods provided an insight of correlation between allele frequency and environmental gradients. The last research objective was to discover possible putative genes and responses in these genes underlying responses to climate.

Material and methods

3. MATERIAL AND METHODS

3.1 Sample collection

Needle tissue and seeds were collected in winter 2011/12 across Italian sites (Bonosi L. and Ghelardini L. FEM, San Michele) whereas the rest of sampling material was obtained from cooperating institutes (WSL Birmensdorf; BFW Vienna; INRA Avignon; Grozdarski Institut Slovenije). 392 mother trees originating from three main provenances Italy-Slovenia-France, Austria and Switzerland constitute a population of Norway spruce (Figure 3). Each mother tree was provided with geo-reference data (latitude, longitude and altitude) except for Austrian provenance where individuals were assigned randomly on Google maps (Bonosi L.) (Supplement 1).

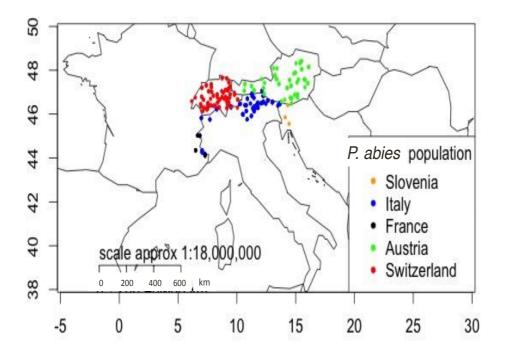


Figure 3: A population consists of 392 trees sampled across the Alps

Each mother tree is geo-referenced by location (site) (n_{sites} =152). An average number of sampled trees per site is 3~4 trees/site (Italy), 2 trees/site (Austria), 2 trees/site (Switzerland), 4 trees/site (France) and one tree/site (Slovenia) (Table 3). Needle tissue from 196 individuals and seeds from 187 individuals were sealed in aplastic bag and stored at -20°C until further processing for DNA isolation.

All mother trees were sampled at isolated points across Alps. An average elevation at which trees were sampled was 1066.33m above Earth's sea level (Slovenia); 1433.07m above Earth's sea level (Italy), 1624.5m above Earth's sea level (France); 1036.5 above Earth's sea level (Austria) and 1254.05m above Earth's sea level (Switzerland).

Country	No. trees	No. sites	Tissue sample	Sample source	
Slovenia	3	3	needles	Godzarski Institut Slovenie	
Italy	190	53	needles	Bonosi, Ghelardini(FEM)	
France	12	3	needles	INRA Avignon, France	
Austria	80	37	mega's	BLW Vienna	
Switzerland	107	56	mega's	WLS Birmensdorf	

Table 3: The population of Norway spruce

3.2 Illumina 384 GoldenGate chip design

SNP genotyping (single nucleotide polymorphism) Illumina GoldenGate 384 chip was designed by integrating three different SNPs sources.

The first set of SNPs is from Comparative Re-sequencing in Pinaceae (CRSP) project (<u>http://dendrome.ucdavis.edu/NealeLab/crsp/</u>). CRSP project was based on Sanger re-sequencing of a panel of 12 unrelated Norway spruce trees (haploid megagamethophyte DNA) using subset of 1024 primer pairs derived from almost 1000 loblolly pine expressing tags (ESTs) including genes involved into several biological mechanisms (Scalfi *et al.* 2014 and Di Pierro *et al.* in preparation). SNPs performed well in the previous studies based on the successful genotyping and quality, in particular a subset of 153 SNPs derived from Scalfi *et al.* 2014 and Di Pierro *et al.* (in preparation), were used for a 384 chip design. The final score of SNPs from CRSP project annotated for different biological processes is 94. (see Figure 4. for details).

Additionally, a second set of SNPs delivered from sequencing panel of Evolutionary Biology Center at Uppsala (Sweden) has been used. From the total set of 1146 SNPs, a final set of 102 SNPs including 24 of candidate genes, were selected for the genotyping. The source of these SNPs is from re-sequencing panel for discovery of new SNPs of 48 Norway spruce alleles. These SNPs were also applied in the study of Chen *et al.* (2012) on Norway spruce and they were putatively involved into photoperiodic pathway, shoot apical development and circadian clock.

Finally, the remaining set of 374 SNPs is from Arborea project on *Picea glauca* (white spruce) Canada (<u>http://www.arborea.ulaval.ca/</u>). These SNPs were generated from 1964 SNPs from 1485 genes, which were initially identified and successfully genotyped in *Picea glauca* (white spruce) and used to be tested in 12 (diploid) individuals of Norway spruce from 12 populations in central Europe (Latvia, Poland and Germany). These 1485 genes were transcription factors either candidate genes related to growth, wood formation, cell wall, lignin synthesis (Chen *et al.* 2012). Testing was done by submitting SNP design panel to Illumina GoldenGate SNP genotyping resulting in discovery of 384 valid SNPs from 340 genes. A group of 374 SNPs are obtained in the collaboration with EB Uppsala, Sweden (Dr. Martin Lascoux) was used for selecting SNPs and the final number of SNPs selected was 188 SNPs originating from genes

putatively involved into photoperiodic pathways and the rest of control SNPs being involved into different biological functions.

The process is initiated by selecting and submitting a list of requested loci to Illumina genotyping center (Parco Tecnologico Padano di Lodi, Italy). Upon submission, Illumina evaluated the list with Assay Design Tool (ADT) to ensure successful assay development. ADT tool was the first step to create an assay panel including these loci that have a high likelihood of success for genetic analyses performance. Evaluation was made based on the flanking sequence for each locus. After the preliminary evaluation with ADT file, Illumina provided Sequence list file where each locus was ranked with design-ability score and design rank (Figure 4).

The final rank of SNPs was made based on design-ability score (the rank of 0.6-1 indicating the high success rate) and the final rank for each SNP provided by Illumina. Additionally, flanking sequences for example with presence of insertions/deletions or with presence of degenerate nucleotides were removed as well as these with the length of sequence on either side of variant (central polymorphism) is less then 60bp. An annotation for each SNPs associated to the trait of interest/environment was also one of the priority criteria for the final rank of SNPs to be submitted for genotyping.

A total of 384 SNPs representing 242 genes were submitted to Illumina Genotyping Center in Parco Technico Padano, Lodi (Italy). The 384 SNPs were genotyped by using Illumina GoldenGate 384 SNP array where 188 SNPs originated from Arborea project, 94 SNPs originated from CRSP and 102 SNPs from Uppsala (Sweden) dataset (Supplement 2).

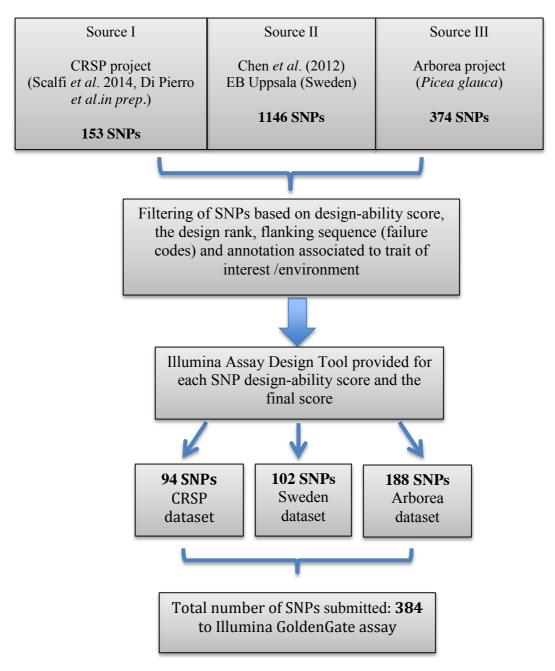


Figure 4: A 384 Illumina GoldenGate design steps

3.3 Germination of seeds

Seeds were placed in a sealable plastic bag and stored in the refrigerator at temperature 4°C shortly before starting the germination process. Norway spruce seeds were previously soaked in distilled water before placing them on the moisture filter paper inside Petri dish (Figure 5). For each individual were selected a group of 10-12 seeds.

Each Petri dish with seeds for the germination were treated with distilled water every 24h in order to keep filter paper regularly moisture (Figure 6). The germination lasted from 5-10 days resulting into slightly opened seeds and embryo development visible in only few mm. Seeds were collected in a single tube for each individual and used for extraction of the haploid tissue (megagametophytes). Total number of individuals used for germination of seeds was 309 (127 individuals from Austria and 182 individuals from Switzerland). Germination of Norway spruce seeds was done at Institute of Plant Genetics (IGV-CNR), Sesto Fiorentino (Italy) at Dr. Vendramin's laboratory.

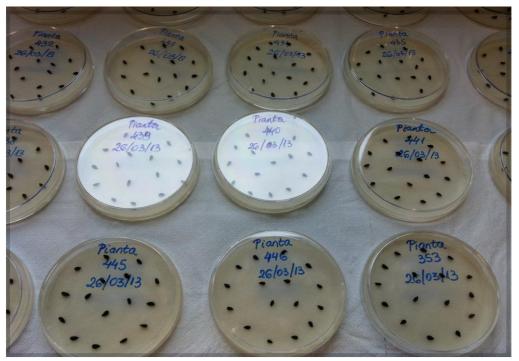


Figure 5: Germination of Picea abies seeds

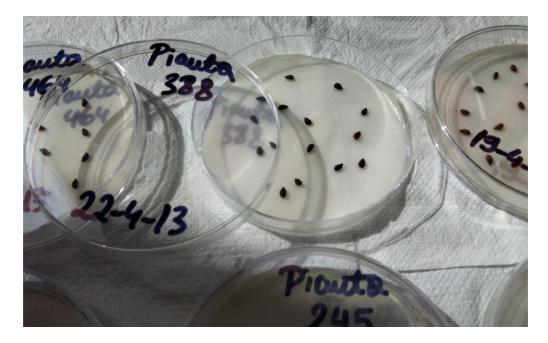


Figure 6: Germination of Picea abies seeds

The minimum number of pooled megagametophytes taken from the single cone was 8, and maximum was 10. As this procedure haploid tissue of spruce seeds is combined to diploid tissue in a single tube for each individual. Inferring the parent genotype from the combined haploid genotypes of mitotically derived products, it is possible that one of two alleles at a locus for which the parent is heterozygous is not detected if used only one megagametophyte from a single individual. However, with a set of 10-pooled megagametophytes per genet, the probability of such event is very small, taking into consideration that the allele of only one megagametophyte could be detected.

In some cases, the germination rate was quite low and minimum required number (8) of megagametophytes could not be achieved due to the fungal infestation or seeds were empty. The number of failed cases of the successful germination was 14 among individuals from Austria and 5 from Switzerland. Additionally, individuals that were germinated again were 52 from Switzerland and 12 from Austria due to the very low germination rate.

3.4 DNA isolation from needles and megagametophytes

Genomic DNA was extracted from both needles and megagametophytes (haploid tissue of *Picea abies* seeds) using the DNeasy plant Mini Kit (QIAGEN, Valencia, CA). Total number of individuals where needles were used for DNA extraction was 211 (individuals from Slovenia, Italy and France) whereas megagametophytes were used for 112 individuals (Austria) and 174 individuals (Switzerland).

Prior DNA isolation, plant material (needles) was weighted on the balance for each individual. Approximately 30mg of plant material was used per individual for DNA isolation. Regarding megagametophytes, at least 8 per individual were used for DNA isolation. Plant material was stored in

2ml micro-centrifuge tubes with 2.0 mm diameter beads overnight at -80°C. Beads, which were used for grinding of material, were previously washed and sterilized before use. Disruption of plant material was done at grinding machine until plant material did not become a fine tissue powder (approximately 1minute ~ needles and 30 seconds ~ megagametophytes). After disruption of plant material, it was added Buffer AP1 (400µl) and RNase (4µl) followed by cell lyses of the mixture for 1h at 65C with mixing (inverting samples) every 15minutes. When cell lyses were completed, a Buffer P3 (130µl) was added to mixture and incubated on ice for 5 minutes. The next step was centrifugation the lysate at 14,000-rpm providing removal of precipitates and cell debris. The volume of 450µl of lysate was recovered followed by direct addition of Buffer AW1 (675µl) on lysate and immediate mixture. From the mixture, 650µl was pipetted into DNeasy Mini spin column placed in 2ml centrifuge tube and centrifuged for 1min at 8000rpm. DNeasy Mini spin column was re-used into a new 2ml centrifuge tube when added Buffer AW2 (500µl) and centrifuged for 1min at 6000 rpm. This step was done one more time, however second time centrifuge was done on 14,000 rpm to dry a membrane. DNeasy Mini spin column was transferred to a new 2ml centrifuge tube when added 50µl of Buffer AE directly on membrane followed by incubation for 10minutes on the room temperature (15-25°C) and then centrifuged for 1 minute on 8000rpm to elute.

Loading DNA on agarose gel was done to estimate integrity for each sample and to test for a genomic DNA quality. Additionally, DNA concentration was measured for each sample with Qubit[™] fluorometer (Invitrogen) in order to achieve minimum quantity of genomic DNA required by Illumina GoldenGate assay (20ng/µl).

DNA isolation procedure was done at Institute of Plant Genetics (IGV-CNR), Sesto Fiorentino (Italy) at Dr. Vendramin's laboratory.

3.5 Environmental dataset

Environmental dataset was obtained for each sampled tree, provided by geo-reference data (longitude, latitude and altitude) by using two different sources. The first was WORLDCLIM dataset (Global Climate data), which provides monthly average data for the period from 1950-2000, with a spatial resolution 1km (Hijmans *et al.*, 2005). Additionally, PGIS MODIS LST (Land surface temperature) satellite (http://modis.gsfc.nasa.gov), which provides daily data, was used with a spatial resolution 250m x 250m for the period 2002-2012 (Neteler, 2010) (Figure 7). Environmental data set was obtained in the collaboration with GIS and Remote Sensing Unit at FEM San Michele (Italy).

Monthly and daily environmental variables, temperature (°C) and precipitation (mm), were obtained for the period from 1980-2012 based of geographic variables for each site. Monthly minimum, maximum and averages were used to calculate seasonal measures for both temperature and precipitation. Seasonal measures were estimated based on annual quarters composed by tree months for each season as winter: (December-February), spring (March-May), summer (June-August) and autumn (September-November). Mean annual temperature (MAT) and mean annual precipitation (MAP) measures were obtained by averaging monthly measures for period 1980-2012 (Table 4).

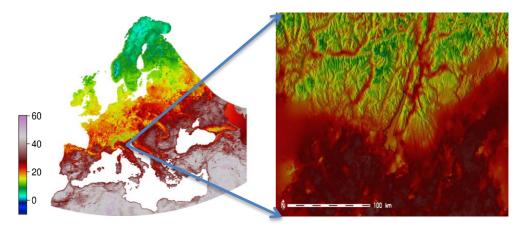


Figure 7: PGIS Modis LST satellite provides resolution of 250m x 250m (Neteler, 2010)

Table 4: List of environmental variables.

Variable	Description	Measure Unit
Tmax seasonal	Seasonal maximum temperature	(°C)
Tmin seasonal	Seasonal minimum temperature	(°C)
Tmean seasonal	Seasonal average temperature (°C)	
Tmax monthly	Monthly maximum temperature	(°C)
Tmin monthly	Monthly minimum temperature	(°C)
Tmean monthly	Monthly average temperature	(°C)
PPT monthly	Monthly precipitation	(mm)
MAP	Mean annual precipitation	(mm)
MAT	Mean annual temperature	(mm)
Al monthly	Monthly values of aridity	
AI seasonal	Seasonal values of aridity	
Elevation	Elevation computed with GIS	

3.5.1 Aridity index (AI) calculation

Monthly temperature and precipitation data were used to estimate potential evapotranspiration (PET) based on the method of Thornthwaite (1948).

$$PET_{i} = \begin{bmatrix} 2 u N \\ 45 \end{bmatrix} \begin{bmatrix} 10 T_{i} \\ I \end{bmatrix}^{(6.75 \times 10^{-7})I^{3}} - (7.7 \times 10^{-5})I^{2} + (1.79 \times 10^{-2})I + 0.49$$

Where *u* is the average monthly day length in hours for month *i*, *N* is the number of days in month *I*, *T_i* is the mean monthly temperature, and *I* is the heat index. The heat index is calculated as the sum across months of $(T_i/5)^{1.541}$. Monthly mean temperatures were used for the estimation of heat index.

The length of each day varies with location upon the Earth and day of the year. Day length definition is explained as the time between the beginning of sunrise, when the upper rim of the sun is apparently even the horizon until the end of sunset, when the upper rim of the sun is apparently even horizon (Harrison, 1960).

For the most accurate modeling of day length, several parameters have to be taken into account such as: position of the Earth with respect to the Sun, the rotation and orbital revolution of the Earth must be modeled and position of the flat surface on which the light is incident on the Earth (Forsythe *et al.* 1995).

An average day length (including twilight) from latitude (L), longitude (L) and the sun's declination angle for each day in the year was estimated by using modified Schoolfield's equations by using a day length coefficient of p=0.8333, providing the most accurate estimation of day length (Forsythe *et al.* 1995).

Formula derivation for day length at a point on the Earth at elevation zero with non-sloping ground can be divided into three main parts (Schoolfield, 1982):

1. Predicting the revolution angle (θ) from the day of the year (J)

 $\Theta = 0.2163108 + 2 \tan^{-1} [0.9671396 \tan [0.00860 (J-186)]]$ (1)

2. Predicting the sun's declination angle (Φ) or the angular distance at solar noon between the Sun and the equator, from the Earth orbit revolution angle

$$\Phi = \sin^{-1} [0.39795 \cos \Theta]$$
 (2)

3. Predicting day length (D) (plus twilight) from latitude (L), longitude (L) and the sun's declination angle.

$$D = 24 - \frac{24}{\pi} \cos^{-1} \qquad \frac{\sin \frac{p\pi}{180} + \sin \frac{L\pi}{180} \sin \Phi}{\cos \frac{L\pi}{180} \cos \Phi}$$
(3)

where p is in degrees and θ and Φ are in radians.

4. Predicting potential evapotranspiration (PET)

 $(6.75 \ 10^{-7}) \ I^3 - (7.7 \ 10^{-5}) \ I^2 + (1.79 \ 10^{-2}) \ I + 0.49$

 $PET=(2\mu N / 45) (10T_i / I)$

Where μ presents average monthly day length in hours for month i and I presents heat index, which is calculated as I=(T_i / I).

Day length (*u*) once calculated is included into formula of evapotranspiration (PET). Aridity index (AI) was defined as the ratio of monthly precipitation to PET with this ratio being defined quarterly.

3.5.2 Principal component analyses

Principal component analysis (PCA) is a tool to reduce multidimensional data to lower dimensions while retaining the most of the information (Kind and Jackson, 1999). The basic goal of principal components analysis is to describe variation in a set of correlated variables, $x^T = (x_1,...x_q)$, in terms of a new set of uncorrelated variables, $y^T = (y_1,...y_q)$, each of which is a linear combination of the x variables (Everitt and Hothorn, 2011). The final aim of principal component analysis is retaining as much as possible of the variation present in the data set.

The reduction of data is achieved by transforming to a new set of variables, the principal components, which are uncorrelated and which are ordered so that the first retain most of the variation present in all of the original variables (Jollite, 2002). PCA analyses produce linear combinations of the original variables to generate the axes, also known as principal components, or PC's (Holland, 2008).

Principal component analyses could be generally performed either with covariance matrix which scaled sums of squares and cross products or with correlation matrix when variables are previously standardized. Correlation matrix is always used when used different variables, which are measured in different units. Principal components should only be extracted from the sample covariance matrix when all the original variables have the same scale (Everitt and Hothorn, 2011).

A principal component analysis was applied using *prcomp* function in R software. The "*prcomp*" function is based on correlation matrix structure. The data were scaled and centered to avoid encountering of problems during performance of PCA analyses that might occur due to the significant difference of the relative magnitude of variables compared to the respective values. The reason is that linear regression favors those variables that show greatest variance, which would be usually those with larger values (reference or better write).

R function "*prcomp*" performs a principal component analysis using a singular value decomposition of the data matrix. The data matrix does not need to be centered or scaled prior the analyses because these options could be specified as arguments in the *prcomp* command by using "center" (a logical statement to indicate the data should be centered at zero) and "scale" (a logical statement to indicate the variance was set to 1 for each variable) (Anderson, online tutorial).

The final outputs important to be considered for further analyses are certainly PC's scores (also referred as loadings), the proportion of variance, cumulative variance explained and eigenvalues (Table 5).

Since the purpose of principal component analyses is the reduction of dimensionality (focusing on a few principal components versus many variables), the decision of how many scores should be selected and how many ignored, depended on several criteria. There are three main criteria to select the most important PC's. One of the most common one is to ignore principal components at the point at which the next PC offers little increase in the total percent variance explained. A second criterion is to include all those PC's, which explained total variance of 90%. The third criterion is to ignore components whose variance explained is less then 1 (when correlation matrix applied). The last criteria is to ignore the last PC's whose variance explained is all roughly equal (Holland, 2008).

The climate dataset offered totally 12 environmental variables measured and estimated for the period from 1980 until 2012. Monthly, annual and seasonal climatic data, longitude and latitude provided for each mother tree, were applied for PCA statistical analyses to summaries the major variation of the information contained into many dimensions into reduced number of uncorrelated dimensions. The number of the final PC's selected was based on the percentage of the variance they explained (e.g. at least 80%) and those for which eigenvalues (the variance explained by each component) were higher than 1, reducing the data from 20 variables (in case of seasonal data) to 3 variables (PC's). Monthly, seasonal and annual datasets and their combinations (monthly-seasonal; monthly-annual etc.) were also applied for PCA in order to obtain the highest possible variance.

prcomp(x)	Interpretation
sdev*sdev	Eigenvalues
rotation	Eigenvectors
х	Scores
sdev	Standard deviations of each column of the rotated data
center	Mean value used for centering
summary(x)\$	Proportion of variance explained

Table 5: Outputs of "prcomp" function to do principal component analysis in R

3.6 Genotyping Data Analyses

Genotyping of SNPs was performed by Illumina GoldenGate platform utilizing BeadArray[™] platform for 384-plex assays at Parco Tecnologico Padano in Lodi, Italy. The process of genotyping was initialized by submission of final assay panel that were included designs predicted to have a high likelihood of success for genetic analysis experiments.

GoldenGate assay was described by Fan *et al.* (2003) explaining design steps. In particular, assay performs allelic discrimination directly on genomic DNA (gDNA), generates a synthetic allele-specific PCR template afterward, and then performs PCR on the artificial template. Genomic DNA (gDNA) is attached to a solid support prior the start of the assay. Assay oligonucleotides targeted to specific SNP (single nucleotide polymorphism) of interest are annealed to gDNA, since two allele specific oligonucleotides are designed for each SNP. Correctly hybridized oligonucleotides remain on the solid phase, whereas non-specifically hybridized oligonucleotides are removed by washing. For each SNP, two allele-specific oligonucleotides (ASOs) and one locus-specific oligonucleotide (LSO) are designed. After washing and annealing, an allele primer extension is carried out with DNA polymerase, followed by ligation of extended ASOs to their corresponding LSOs to create PCR templates. Lastly, primers that are fluorescently labeled, each with different dye, are added for two alleles for each SNP and generating a fluorescent image for each genotype (i.e. AA as homozygous, AT as heterozygous and TT and homozygous) (Fan *et al.* 2003).

All genotypes are visualized in GenomeStudio software v. 3.1.3.0 (Illlumina Inc. http://www.illumina.com). Each SNP has been analyzed independently to determine the genotype. Prior clustering of SNPs, preliminary quality sample evaluation has been made for samples, which required removal of failed samples. Additionally, GenomeStudio parameters have been optimized in order to achieve the highest genotyping accuracy.

First optimized parameter was gencall cutoff or no-call threshold, a quality metric calculated for each genotype, which ranges from 0-1. The gencall threshold of 0.25 was set up prior SNPs clustering meaning that genotype scores below this threshold were not assigned as genotypes since they were considered to be too far from the cluster and they were assigned a "no call" for that particular locus. Additionally, for each SNP has been optimized GenCall Score, a quality metrics, which indicates the reliability of the genotypes called. A GenCall score value is calculated for every genotype and it was set up to 0.45, and generally it could range from 0-1.

Each SNP was analyzed independently to identify genotypes. Manual edition for each SNP was done based on the angle of the clusters, dispersion of the clusters, overlap between clusters and their intensity, after what they have been classified as successfully and non successfully clustered SNPs. Secondly, they have been categorized based on the segregation rate on polymorphic and monomorphic ones. Minor allele frequency (MAF) is helpful to identify loci where homozygotes were incorrectly identified. It can range from 0-1 and all SNPs with Minor Frequency less then 0.1 should be evaluated as potentially false homozygotes, however the threshold of 0.5 was used as a minimum threshold to classify SNPs as monomorphic ones.

Clustering of each SNP was done by manual edition based on quality metrics and on criteria referred. It was carefully examined each choice of manual edition, always taking into consideration the The Law of Segregation ("The First Law").

3.7 Basic diversity statistics of genotype data

SNP genotype data are provided into a sample x SNP matrix where samples are listed across columns and SNPs are listed down the rows provided by full table report from GenomeStudio software v2011.1 (Illumina Inc. <u>http://www.illumina.com</u>). This is particularly one of default formats to export data from GenomeStudio software. Within each cell into matrix, are presented diploid genotypes in the form allele1/allele2 (e.g. AT). The matrix of genotype data contained all 384 SNPs, which were included into genotyping as well as 400 individuals.

Firstly, this genotype data matrix was used to identify the number of successfully genotyped individuals and those failed during genotyping. Additionally, failed and successfully genotyped SNPs were identified. For every failed SNPs, was identified their source, annotation, final rank score and disagnability score.

Secondly, SNP data table report was extracted from GenomeStudio software v2011.1 (Illumina Inc.). The SNP Table column Minor Freq measures the SNP minor allele frequency and could help identify loci where homozygotes were incorrectly identified. Minor Freq values are ranging from 0-1. Based on minor allele frequency (MAF), which was obtained for every single SNP, classification was done on monomorphic, polymorphic and rare SNPs. All SNPs with minor allele frequency (MAF) less than 0.5

were discarded from further basic diversity statistics analyses, which were assumed not to be statistically important since their genotypes are considered to be monomorphic and not to provide genetic information.

SNP data quality was estimated based on call frequency (Call Freq), which presents the proportion of all samples at each locus with call scores above no-threshold and which range from 0-1. Additionally, GC₅₀ score (50%_GC_Score) was considered as indicator of SNP quality. It represents the 50th percentile of the distribution of GenCall scores across all called genotypes. Lastly, missing data for each SNP were also considered as important indicator of SNP quality data also known as No_Calls presenting the total number of genotypes in each sample with a GenCall score below the no-call threshold as defined at the beginning of genotype data analyses.

Analyses of the basic diversity statistics of genotype data, sample x SNP matrix containing successfully genotyped individuals and polymorphic loci (loci with minor allele frequency \geq 0.5) was done in R software v.3.0.2 (<u>http://www.R-project.org</u>). Prior the genetic analyses, it was launched a library package GENETICS v. 1.3.8.1 (Warnes *et al.* 2012), which provided an access to useful functions in population genetics. For each SNP was obtained allele frequency, genotype frequency, expected heterozygosity (He) and Poly. Inf. Content. However, obtained expected heterozygosity was additionally calculated by using a loop (developed by Andrew Eckert) and which provided output for major allele frequency, minor allele frequency, observed heterozygosity (i.e. the sample of heterozygote genotypes) and sample size for each SNP (i.e. number of genotyped samples minus missing data).

Further, calculation of sample Fis was based on Wright's definition of Fis = (He-Ho)/He, where He is expected heterozygosity and Ho presents observed heterozygosity. It indicates the average difference between observed and Hardy-Weinberg expected heterozygosity within each population due to the non-random mating. To calculate expected heterozygosity (He) was used function in R (developed by Andrew Eckert) and as result was obtained Fis across all SNP.

In the continuation, the same matrix data was used to calculate hierarchical fixation indices with R library package HIERFSTAT (Goudet, 2013), which allows estimation of hierarchical F statistics from haploid and diploid genetic data. F-statistics (hierarchical fixation indices) was performed in R software v.3.0.2 (http://www.R-project.org). Beside converted data, which were previously used in basic diversity statistics analyses, additional file with population identifiers was included into F-statistic analyses. Population identifiers were listed into one single file where all individuals were listed across the rows. Assignment of individuals into populations was done based on the assumption where each population represents a family (a group of individuals) at the same site (geo-referenced location). The total number of populations assigned was 152. Firstly, was calculated multilocus F-statistics, which was obtained in the matrix providing the total Fst for populations.

3.8 Population structure analyses

A population consisted of 394 individuals successfully genotyped and 284 loci, was used to infer population structure and classify individuals into populations based on their genotypes. The main aim was to identify the number of populations where each population is characterized by allele frequencies at each locus.

Prichard *et al.* (2000) described a Bayesian clustering method for using multilocus genotype data to infer population structure and assign individuals (probabilistically) to populations. Bayesian method particularly accounts for the presence of Hardy-Weinberg within populations, complete linkage disequilibrium between loci within populations and attempts to find a population grouping that are not in disequilibrium (Pritchard *et al.* 2000). Since each population is modeled by allele frequencies, the knowledge about populations of origin of the individuals and allele frequencies in all populations is given by the posterior distribution (Pritchard *et al.* 2000).

A Bayesian model-based clustering method is implemented in the program STRUCTURE v.2.3.4 (<u>http://pritchardlab.stanford.edu/structure.html</u>) for inferring population structure using multilocus genotype data consisted of unlinked markers. It also provides identification of distinct genetic populations, assignment of individuals to populations and identification of migrants and admixed individuals. The model works well with the most common molecular markers such as SNPs (single nucleotide polymorphism), RAPD (random amplification of polymorphic DNA) or SSRs (microsatellites). This method and the software usage was introduced and described by Pritchard *et al.* (2010).

A final report from GenomeStudio software v.2011.1 (Illumina Inc.) was used to construct input file, which was launched into STRUCTURE v2.3.4 software. The format of the genotype data was arranged as a matrix in a single file, in which individuals were placed in the rows and the loci in columns. Each locus was stored in two columns for diploid organism, each one for one allele. Every genotype was coded by a numbers, where every nucleotide was numbered as following: Adenine (A)=1, Thymine (T)=2, Guanine (G)=3 and Cytosine (C)=4. Missing data (genotypes with no call) were numbered as a -9 (a number that does not occur elsewhere in dataset). File was saved in txt (text) format and launched in STRUCTURE software v.2.3.4.

The beginning of genetic clustering of individuals into populations was previously arranged by admixture model as ancestry model of preference with allele frequency correlation. Admixture model indicates that each individual has inherited some fraction of the genome from ancestors in population k reporting as posterior mean estimates of these proportions (Pritchard *et al.* 2010). Admixture model was useful to estimate population structure and explain the spatial repartition of genetic markers. Among parameters used to perform admixture model was the length of burnin period was selected to 100,000 with number of MCMC (Markov Chain Monte Carlo) Reps after burnin was set up to 500,000. Initial value of ALPHA (Dirichlet Parameter for Degree of Admixture) was set up to 1. Number of genetic clusters (K) from 1 to 10 was tested and for each value, it was run 10 independent MCMC simulations (10 iterations).

3.9 Outlier detection methods

3.9.1 BayeScan outlier detection method

The program, BayeScan is an approach, which provides identification of candidate loci under natural selection from genetic data using differences in allele frequencies between populations. It estimates the probability that each locus is under selection using a Bayesian method, which implements the multinomial-Dirichlet likelihood. BayeScan approach was described and developed by Foll and Gaggiotti (2008). The software BayeScan is available at http://cmpg.unibe.ch/software/BayeScan/download.html.

BayeScan method is based on an island model (Wright 1931) in which subpopulation allele frequencies are correlated through a common migrant gene pool from which they differ in different strength (Foll and Gaggiotti, 2008). The difference in allele frequency between common gene pool and each subpopulation is measured by a subpopulation Fst. In particular, this method estimates the posterior probability of given locus being under the selection, suggesting if positive that locus *i* is under directional selection, whereas if negative, locus *i* is under balancing selection. The evidence of selection occurring is provided by Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm (Green 1995) that estimates the posterior probability (Foll and Gaggiotti, 2008).

BayeScan is command line software and it has been coded using standard C++ (UNIX platform). Input file for BayeScan was based on genotype matrix file after clustering of genotypes from Illumina GenomeStudio v.2011.1 (Illumina Inc. <u>http://www.illumina.com</u>). Genotyping matrix composed of 392 individuals and 280 loci, was used to create input file. Genotypes are labeled as AA (dominant), AB (heterozygous) and BB (recessive). Prior submission to BayeScan program, all genotypes was coded as numbers that provided exact input file when dominant genotypes (AA) were coded as "0" (zero), heterozygous (AB) were coded as "1" and recessive (BB) as "2". Missing data or no calls was coded as "-9".

For each population, total number of genes for particular locus was estimated based on number of individuals per population. The total number of genes represented twice the number of individuals for diploid data, considering also missing data. The number of observations for each of two alleles in each population was estimated. For each individual at each locus, the observed genotypes were coded as "0", "1" and "2". This number summed the total number of genes for that particular population.

Since BayeScan is a population-based approach, all individuals were assigned in the populations. Each population was defined as a group of individuals sampled at the same geographic location (site) provided by geo-reference data (i.e. latitude, longitude) (Supplement 3). BayeScan was running under following parameters: Burn in: 5000, Thining interval: 10, Number of MCMC (Markov Chain Monte Carlo iterations): 1000000, Number of pilot runs: 20 and Length of each pilot run: 5000.

3.9.2 Bayesian linear mixed model (BayEnv)

As outlier detection method, a Bayesian liner mixed model (Bayenv) has been applied to detect loci potentially involved in the local adaptation based on mapping population of Norway spruce. This model has been designed and described by Coop *et al.* (2010). Bayesian method estimates the empirical pattern of covariance in allele frequencies between populations from a set of markers and then uses this as a null model for a test at individual SNP (Coop *et al.* 2010). Bayenv software is available at http://www.eve.ucdavis.edu/gmcoop/.

The main aim was to perform a test of selection on genetic markers, in such case SNPs (single nucleotide polymorphism) based on identification of loci, which might show allele frequency correlation within one or more environmental variable. These loci could be under selection driven by environmental factors or correlation selection pressures (Coop *et al.* 2010).

Bayesian model was applied to the genotype data for 392 individuals sampled across Alps. It was applied an approach when all individuals were assigned in the populations based on their geo-reference data (e.g. latitude, longitude). All individuals were prior assigned in populations for each provenance, Italy-Slovenia-France (8 adjusted groups); Austria (5 adjusted groups) and Switzerland (7 adjusted groups). For pursuing Bayenv analyses, this time genotyping data were organized that individuals were assigned in 20 populations and all 280 loci were included. After estimation of covariance-variance matrix (for a million MCMC (Markov Chain Monte Carlo iterations), an average matrix was used for the second step when was estimated the correlation between environmental variables (included in ENVIRONFILE) with SNPFILE (contained of 280loci).

In the genotype data were included 280 loci, which were successfully genotyped. The program has been coded using standard C++ and designed to run in UNIX environment and it is basically divided in two main steps.

In the first step, the program estimated covariance-variance matrix. The covariance-variance matrix provides information how much allele frequencies co-vary among populations due to their shared ancestry or gene flow. Its role is basically to indicate how well populations are genetically divergent or estimating neutral population structure. Covariance-variance estimation was done based on genotype matrix, which contained allele counts across populations for each SNP. Allele counts were placed in the two columns, for each allele. The sum of allele counts was equal to the sample size for each SNP for each population. Covariance matrix was estimated for million iterations providing an output every 5000 iterations.

In the second step, the program was running separately on each SNP providing quick estimation of Bayes factors for the environmental variable of interest. The main aim was to investigate whether some loci are indicating allele frequencies having strongly correlation with environmental variables taking into account previously estimated neutral population structure (covariance-variance matrix).

Among required input files for pursuing the second step, SNPFILE was submitted, which presented count data for every allele for single SNP, being in the same order as they appeared in covariance

matrix. In SNPFILE were included all 280 loci. Secondly, ENVIRONFILE, is the file of environmental variables previously standardized (i.e. the mean was subtracted from the value of each variable, followed by calculation of difference between individual's score and the mean and then divided through by the standard deviation of the variable across populations). In ENVIRONFILE were included four principal components, geographic data (latitude, longitude and elevation) as well as all monthly environmental variables (monthly minimum temperature, monthly maximum temperature, monthly mean temperature, monthly average precipitation, and monthly aridity). The last input file was MATRIXFILE, which presented an average covariance matrix over million iterations. Bayes factors were estimated by using a million MCMC (Markov Chain Monte Carlo) iterations.

Although Bayenv was done with approach when individuals were assigned into 20 populations based on their provided geo-reference data (i.e. latitude, longitude and elevation), additionally it was applied individual based approach where each population represent an individual sampled at the geographic site (location) provided with geo-reference data (i.e. latitude, longitude, elevation).

Bayenv analyses were performed in UNIX environment and both steps were done by following command lines provided in the manual. The manual is available: (http://www.eve.ucdavis.edu/gmcoop/Software/Bayenv/bayenv_manual.pdf).

3.9.3 Spatial analyses detection (SamBada)

Samβada software presents integrated software for landscape genomics analyses of large datasets. It was applied in order to access whether some markers are potentially associated with an environmental variable. Samβada is command line software, a successive version of MatSAM software developed several years ago by Joost *et al.* (2007).

The key features are the study of local adaptation correlated with environment and the measure of spatial autocorrelation in environmental and molecular datasets (Stucki and Joost, 2014). Sam β ada uses logistic regression to estimate the probability of presence of an allelic variant for a polymorphic marker given the environmental conditions of the sampling (Joost *et al.*, 2007).

Samβada software intends to correlate allele frequency with environmental variables to look for signatures for selection following logistic model of regression. It uses logistic regression model to estimate probability of an allelic variant for a polymorphic marker for environmental conditions for a sampling locations. To fit the models, maximum likelihood approach is used. In this case was applied univariate model where the probability of presence is same at each location and is equal to frequency of genotype. Significance is assessed with both log-likelihood G ratio and Wald test.

The likelihood ratio or G statistics is

G = -2 ln L / L'

, where L is the likelihood of the initial model (with a constant only) and L' is the likelihood of the new model including the examined variable.

The Wald statistics is

$$W = \frac{\beta i}{\sigma (\beta i)}$$

Where β is the maximum likelihood for parameter *i*; β i is the maximum likelihood estimate of the parameter β i and $\sigma(\beta i)$ is an estimate of its standard error (Joost *et al.*, 2007).

For Samβada analyses were prepared input files for molecular and environmental data. Molecular data were consisted of genotyping data for 392 individuals and 280 loci, which were extracted from GenomeStudio Illumina v.2011.1 (Illumina Inc. <u>http://www.illumina.com</u>). Each line in the file provided information of genotypes for each individual. Molecular data set used for analyses were arranged in the form of matrices; each row of the matrix corresponded to a sampled individual, while the columns were organized according to the sampled individual's geographic coordinates and contained binary information (1 or 0) depending on presence or absence of allele at locus in question. For each SNP was recorded presence of absence of alleles when each allele if present for a given individual was set as "1" and if absent allele, was set as "0". The results were tree columns for each SNP presenting all tree genotypes (i.e. AA as dominant was recorded as "1" "0", AB as heterozygous was recorded as "1" "1" and BB as recessive was recorded as "0" "1"). Since there were totally 280 loci successfully genotyped, the total number of columns in molecular data set was 840 (280*3=840). Molecular markers were all screened for minor allele frequency and filtered only those where maf >0.5 considering these as polymorphic ones. The number of SNPs after pruning (filtering) was 208 loci. For each locus were recorded tree versions of genotypes and totally were assigned 624 columns in the molecular data set.

Environmental file contained a dataset for seasonal variables. Totally 21 environmental variables including geo-reference data (latitude and longitude) for each sampled individual, were included into analyses. Among seasonal environmental variables, a seasonal minimum temperature; a seasonal maximum temperature; a seasonal mean temperature; a seasonal precipitation and seasonal aridity were included for the period from 1980 until 2012. Environmental file was pruned (filtered) to keep all variables showing low correlations. Variables showing high correlations with others might lead to oversignificant threshold with the Bonferroni correction. For instance, "t_max_win" (temperature maximum winter) showed to be highly correlated with other temperature variables and if included all temperature variables, models might result in very similar results.

Additionally, a parameter file was prepared, which is needed as well to set up the analyses. The parameter file contained one line per parameter where specified following: the number of environmental variables was 25 (where 21 columns were environmental variables, 2 columns presented geo-reference data such as longitude and latitude, and two other columns presented the state where sampled and id number for each individual); the number of molecular markers was 625 (where (208*3)

plus one column presenting id for sampled individual); the number of individuals included in the analyses (392). The next parameter was option which indicates which column contain identifiers of individuals when id code was set up as "id" followed by subset of environmental variables defined with only those showing high correlation and further processed "ppt_sum", "ppt_aut", "t_max_win", "altitude", "Ai_spring". Further parameter was a model chosen for processing analyses as dimmax=1 indicating a model with a constant and 1 explanatory variable and as a final one parameter was selected best model indicating that only save significant univariate models and rank them according to Wald score. The threshold applied was $2.67*10^{-6}$ (= 0.01/(208*3*6)) where 0.01 presents a threshold, 208 presents all loci with maf ≥ 0.5 , tree different scenarios for each SNP were presented with 3 and number of environmental variables only considered to be evaluated in the model was 6.

Samβada software is available <u>http://lasig.epfl.ch/sambada</u>. It is a command line program designed in C++ (UNIX environment). Program is launched with an indication of the correct path to Samβada folder and listing of all input files along previously stored in the same folder.

4. RESULTS

4.1 Climatic data estimation within Norway spruce population

Principal component analyses (PCA) were performed on the subsets of environmental variables in order to estimate the percentage of proportion of variance. Each subset was independently used to reduce its dimensionality as well as combination of subsets. PCA analyses were performed in R software with *"prcomp"* function.

Among all environmental subsets, all three main ones (i.e. seasonal, monthly and annual) had a proportion of variance higher than 90% as well as their combinations. The main aim was to estimate which one would have the highest proportion of variance indicating the most variation extracted from the dataset. This parameter was important one in decision which dataset to include in outlier detection analyses.

As the final choice to be included, seasonal environmental dataset was selected since it's proportion of variance was higher than 90% and it presents the simplest dataset. It is composed of thirty different variables grouped in five different categories ("ppt_seas"- seasonal precipitation; "Al_seas"- seasonal aridity index; "tmax_seas"- maximum seasonal temperature; "tmean_seas" – mean temperature seasonal; "tmin_seasonal" – minimal seasonal temperature).

In general, no strong correlation existed between climate data and geographic variables (e.g. latitude, longitude and elevation) and among climate variables (Figure 8). Longitude was strongly and negatively correlated to precipitation variables (Pearson's r < -0.72) and aridity index variables (aridity index for winter and aridity index for summer, Pearson's r < -0.67), whereas low and positively with temperature variables (Pearson's r < -0.67). Latitude was also negatively correlated to precipitation variables (Pearson's r < -0.67). Latitude was also negatively correlated to precipitation variables (Pearson's r < -0.38) and aridity index variables (aridity winter and aridity summer, Pearson's r < -0.41) and low and positively to temperature variables (Pearson's r < -0.43). Elevation was strongly and negatively correlated to temperature variables (Pearson's r < -0.91) whereas moderately and positively with precipitation (Pearson's r < 0.56).

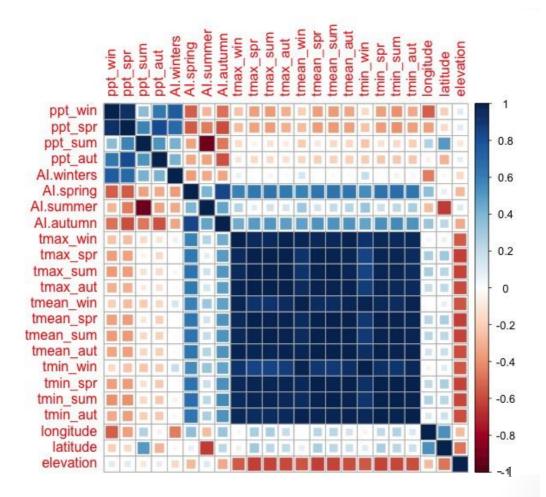


Figure 8: Visualization of correlation matrix between 20 climatic variables and geographic variables reveals no strong and generally negative correlation among variables. Variables abbreviations were listed on left axis and on the top. The correlation plot was generated in R studio software v. 098.51 by using library "corrplot".

Among environmental variables, the correlation was generally positive and moderate. Particularly, the correlation between aridity index and temperature variables was from moderate to strong and positive (Pearson's *r* from 0.47 up to 0.90) whereas exception was aridity for winter, which was negatively correlated (Pearson's *r*...). Temperature and precipitation were negatively and strongly correlated as well (Pearson's *r* < - 0.79) whereas temperature and aridity index for all seasons were moderately to strongly correlated (Pearson's *r* from 0.50 - 0.90). Aridity index and precipitation were strongly and negatively correlated (Pearson's *r* < - 0.78) where an exception was aridity index for winter to precipitation, which were positively and strongly correlated (Pearson's *r* < - 0.98).

The top three principal components (PCs) captured the most (i.e. 90%) variance for the climatic variables included in dataset (Table 6). These top three PCs also had eigenvalues greater than 1 (Figure 9) and cumulative proportion of variance was indicated for each (Figure 10). For every PCs, loadings were obtained explaining an arrangement of variables for each PCs (Table 7). In particular, for the first PCs aridity index as well as temperature variables were loaded, for the second only aridity index for

spring, summer and autumn, whereas for the third PCs precipitation for winter, spring and autumn; aridity index for summer, autumn and winter; mean temperature for autumn and minimum temperature for autumn and winter. The cumulative proportion of variance was ranged from 64% for the first PCs, 83% for the second PCs and 90% for the third PCs (Figure 9).

Table 6: Summary statistics of the PCA on climatic variables presenting the importance of principal components explaining the distribution for the proportion of variance and cumulative proportion if variance for top three principal components.

Parameter	PC1	PC2	PC3
Standard			
deviation	3.58	1.95	1.18
Proportion of variance	0.64	0.19	0.06
Cumulative			
proportion	0.64	0.83	0.90

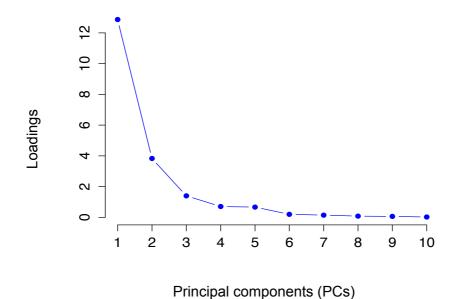


Figure 9: Visualization of loadings for each principal component indicating the first three are having loadings greater than 1.

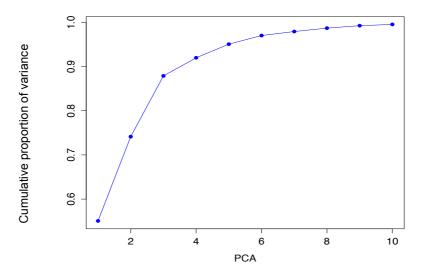


Figure 10: Visualization of the cumulative proportion of variance (%) for each principal component subsequently increasing for the first three PCs.

PC*	Eigenvalue	PVE ⁺	Description
1	12.87	64	Spring, summer, autumn aridity, temperature
2	3.83	19	Spring, summer and autumn aridity
			Winter, spring, autumn precipitation
			Winter, summer, autumn aridity
			Winter maximum temperature
3	1.39	6	Autumn mean temperature
			Winter and autumn minimum temperature

Table 7: Multivariate measures of climate for the seasonal datase	t
---	---

* Principal component.

⁺ Percent variance explained.

Additionally, Principal component analyses (PCA) were performed on the monthly subset of environmental variables in order to estimate the percentage of proportion of variance. The monthly subset was independently used to reduce its dimensionality. PCA analyses were performed in R software with "*prcomp*" function. The monthly dataset contained totally 60 variables grouped as "ppt" (precipitation)/year, "ai" (aridity)/year, "tmax" (maximum temperature)/year, "tave" (average temperature), "tmin" (minimum temperature)/year.

The top four principal components (PCs) captured the most (i.e. 90%) variance for the climatic variables included in dataset (Table 8). These top four PCs also had eigenvalues greater than 1 (Figure 10) and cumulative proportion of variance was indicated for each (Figure 11). For every PCs, loadings were obtained explaining an arrangement of variables for each PCs (Table 9).

In particular, for the first PCs aridity index as well as temperature variables were loaded, for the second only aridity index for months from March until October, whereas for the third PCs precipitation for June, July, August and September; aridity index for months from April and May; maximum temperature for all months except for November and December, average temperature for months from March to September, minimum temperature for months from April to September. For the fourth PCs, precipitation for months January, February, March, July and August, aridity index for January, February, September, November and December, average temperature for January, April, May, October, December and minimum temperature for all months except for June, July and August.

The cumulative proportion of variance was ranged from 62.1% for the first PCs, 81.4% for the second PCs, for the third PCs 89% and 92% for the fourth PCs (Figure 9).

Table 8: Summary statistics of the PCA on climatic variables presenting the importance of principal components explaining the distribution for the proportion of variance and cumulative proportion if variance for top three principal components.

Parameter	PC1	PC2	PC3	PC4
Standard deviation	6.10	3.40	2.14	1.45
Proportion of variance	0.62	0.19	0.07	0.03
Cumulative proportion	0.62	0.81	0.89	0.92

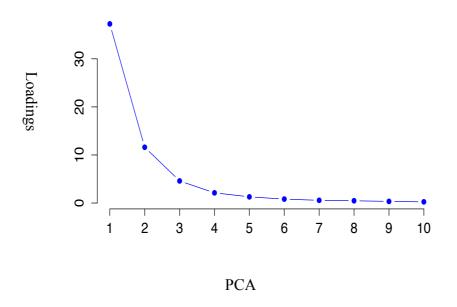


Figure 11: Visualization of loadings for each principal component indicating the first four are having loadings greater than 1.

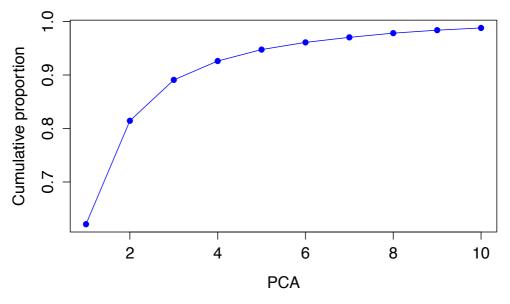


Figure 12: Visualization of the cumulative proportion of variance (%) for each principal component subsequently increasing for the first four PCs.

PC*	Eigenvalue	PVE ⁺	Description
1	3.72	62	Aridity, maximum temperature, average temperature,
1	5.72	02	minimum temperature for all months
2	1.16	19	Aridity for March-October
			Precipitation from June-September, Aridity for April and
2	2 4 50		May, Maximum temperature for February-October,
3 4.59		/	Average temperature for March to September, Minimum
			temperature for April to September
			Precipitation for January to March and July to August,
			Aridity for January to February, September, November,
4	4 2.11 3		December, Average temperature January, April, May,
			October and December, Minimum temperature for all
			months except June, July and August

Table 9: Multivariate measures of climate for monthly dataset

4. 2 Analyses of 384 Illumina GoldenGate genotyping data

Analyses of genotyping data were performed in GenomeStudio Illumina v.2011.1 (Illumina Inc. <u>http://www.illumina.com</u>) software when each SNP was analyzed independently to determine genotypes. Total number of genotyped individuals were 400 and successfully genotyped 394 whereas 6 individuals failed due to the low quality of genomic DNA. From total 384 SNPs genotyped, clusters were reliable and genotypes were successfully assigned in case of 284 SNPs (Figure 13).

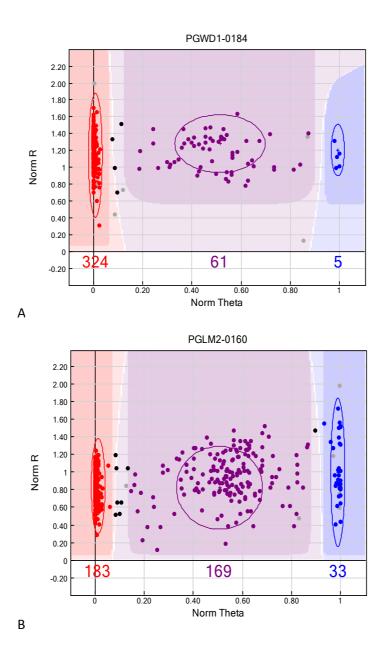


Figure 13: Examples of successfully clustered SNP providing a clear separation between three clusters when genotypes are well distinguished (A, B)

The number of SNPs failed during genotyping was 100. In case of these SNPs, clustering was ambiguous due to the formation of diffuse/poor cluster formation with unreliable genotypes and such SNPs have been zeroed (Figure 14). Additionally, SNPs were also zeroed when their frequency was too low to be attributed to a potential biological effect.

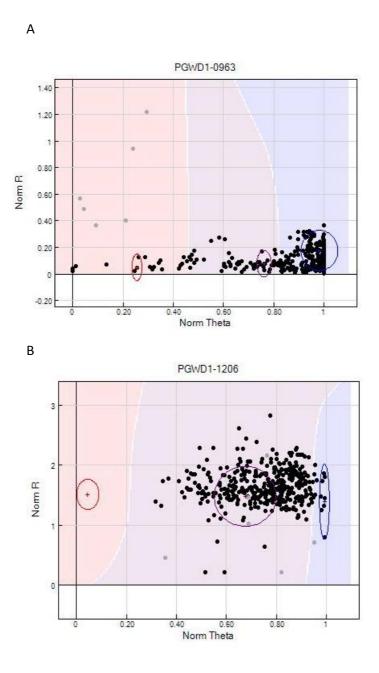


Figure 14: Examples of unsuccessfully clustered SNPs showing low call frequency (A) and overlapping of clusters with unreliable genotypes (B).

Additionally, remaining SNPs were classified based on minor allele frequency on polymorphic (208), monomorphic (47) and rare (29) SNPs. In particular, as polymorphic SNPs were assigned when maf (minor allele frequency) ≥ 0.05 ; as monomorphic SNPs when maf < 0.05 and as rare SNPs when maf < 0.01 (Table 10). Minor allele frequencies measures were extracted from the SNP table provided by GenomeStudio Illumina v.2011.1 (Illumina Inc. <u>http://www.illumina.com</u>).

384 Illumina chip	Number	Percentage
SNPs failed during genotyping	100	26%
Polymorphic SNPs*	208	54%

47

29

12%

7%

Table 10: Basic diversity statistic of genotyping data from 384 Illumina dataset

* Estimation based on minor allele frequency for each SNP

Monomorphic SNPs*

Rare SNPs*

Regarding SNPs that failed during genotyping, the highest number (63) originated from Arborea project (Canada). The Arborea project was conducted on specie *Picea glauca* (White spruce) that is common for boreal forest of Canada and Alaska. Same SNPs were applied in study of Chen *et al.* (2012), when SNPs obtained from Arborea project were tested in 12 diploid individuals of Norway spruce from 12 populations in central Europe (Latvia, Poland and Germany). In particular, SNPs that came from Arborea project proved to be unsuccessful when genotyping on *Picea abies* due to non-existence of SNPs in a mapping population of Norway spruce (Table 11).

Additionally, 27 SNPs from Uppsala (Sweden) specie *Picea abies* (Norway spruce) and 10 SNPs from CRSP re-sequencing panel were also not successful during genotyping. Design-ability score was equal to one, predicting successful performance in genetic analyses (Supplement 4).

Table 11: Overview of unsuccessfully genotyped SNPs					
SNPs source	Species	Number	Final score (average)	Design-ability score (average)	
Canada	Picea glauca	63	0.824	1	
CRSP reseq.	Picea abies	10	0.864	1	
Uppsala (SW)	Picea abies	27	0.83	1	

Overall the quality for SNP genotype data was overall high (e.g. the median Call Freq is equal to 0.97) indicating that the proportion of all samples at each locus with call scores above the no-threshold. In addition, the mean value for GC_{50} score (50%_GC_score) was 0.70 indicating that there was a high percentage of distribution of GenCall score across all called genotypes (Table 12). The missing data per SNP (the median) was 8.30.

SNP genotype quality data Median				
Call frequency	0.97			
Missing data per SNP	8.30			
GC ₅₀ score	0.70			

Table 12: SNP genotype quality data

4.3 Basic diversity statistics on genotype data

The calculation of basic diversity statistics was done based on genotyping matrix composed of only polymorphic SNPs (maf \ge 0.5). It has been generated following summaries based on entire genotyping matrix: MAF (major allele frequency), which average, was equal to 0.76; maf (minor allele frequency), which average, was equal to 0.23; He (expected heterozygosity), which average was equal to 0.3262; Ho (observed heterozygosity), which average was equal to 0.3258 (Table 13). Both expected and observed heterozygosity were used to calculate Wright's Fis inbreeding coefficient across all loci, which formula is defined as Fis=(He-Ho)/He (Figure 15). The mean value of Fis estimated based on 208 polymorphic loci was equal to 0.0004 (Supplement 5).

Basic diversity statisticsMean			
MAF – major allele frequency	0.76		
maf – minor allele frequency	0.23		
Hexp – expected heterozygosity	0.3262		
Hobs – observed heterozygosity	0.3258		
Fis across all loci	0.0004		

Table 13: Basic diversity	statistics of genotype data

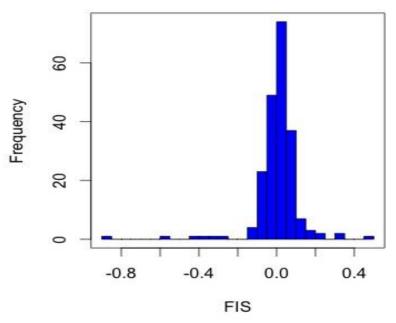


Figure 15: Visualization of Wright's Fis inbreeding coefficient across all loci where Fis=(He-Ho)/He

Fis compares average observed heterozygosity of individuals in each subpopulation and the average Hardy-Weinberg expected heterozygosity for all subpopulations (the "i" stands for individuals and "s" stands for subpopulations) thereby accounting for deviations from Hardy-Weinberg expected genotype frequencies due to the two main reasons such as excess or deficit in heterozygotes due to the non random mating within populations either due to the possible deficit of heterozygotes among subpopulations compared to panmixia. Fis value (fixation index per sample) for each SNP is the value to be considered before launching SNPs for the next analyses, having in mind of exclusion of all SNPs whose value is out of its optimal range (between -0.25 and +0.25). SNPs which were out of the optimal range counted for 59 SNPs having Fis <-0.25 and 78 SNPs having Fis > +0.25 leaving only 71 SNPs whose Fis values were in the optimal range. The number of SNPs for which Fis was within the optimal range, was quite low to retain, therefore the final decision was to include all SNPs into further analyses.

Fst represents a reduction in heterozygosity due to subpopulation divergence in allele frequency. It is equal to difference between averaged expected heterozygosity of subpopulations and the expected heterozygosity of the total population reflecting different degrees of allele frequency divergence among the sets of subpopulations. Fst range of values indicated less heterozygosity on average for subpopulations compared to heterozygosity expected to ideal case when the entire population is panmicitic (Figure 16A). The range of Fst values are ranging from -0.03 to 0.03. In addition, allele frequencies of subpopulations are slightly different and each has expected heterozygosity less than ½. In such case when heterozygosity of total population equal to 0.5 (maximum) that means there is no allele frequency divergence between two subpopulations (Figure 16B).

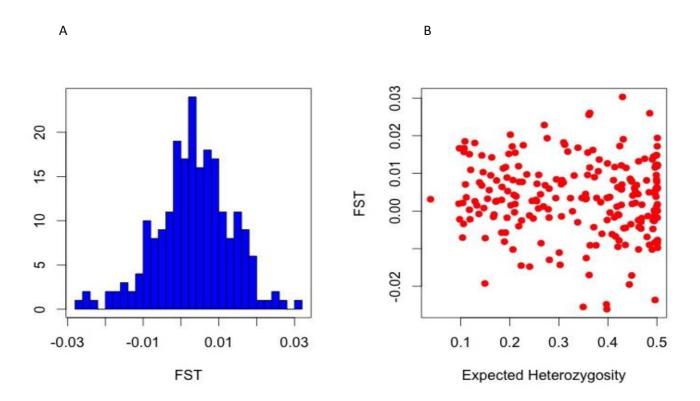


Figure 16. (A) Fst range of values indicating no presence of genetic variation within populations. (B) Expected heterozygosity range of values are less than 0.5 indicating no divergence in allele frequency between subpopulations.

4.4 Population structure estimation

An attempt to identify the number of clusters was based on a mapping population consisted of 394 individuals and 284 successfully genotyped loci. The simulation summary of admixture model (the length of burnin period was selected to 100,000 with number of MCMC (Markov Chain Monte Carlo) Reps after burnin was set up to 500,000) was launched in STRUCTURE HARVESTER (available at http://taylor0.biology.ucla.edu/structureHarvester/), a web-based program for visualization and generating the results from software STRUCTURE (Pritchard *et al.* 2000). The program was developed and described by Earl and vonHoldt (2011).

STRUCTURE HARVESTER (Earl and vonHoldt, 2011) provided visualization of plot of the mean likelihood L(K) per K value including standard deviation bars to display likelihood variance based on output files from STRUCTURE (Pritchard *et al.* 2000) (Figure 16). Use of L(K) is one of two approaches to determine the best K. This approach is known as Wilcoxon test (Nonparametric test) and it is based on assumption when K is approaching a true value, L(K) becomes plateaus (or continues increasing slightly) and has a high variance between runs. In this particular case, L(K) did not show clear mode of true K.

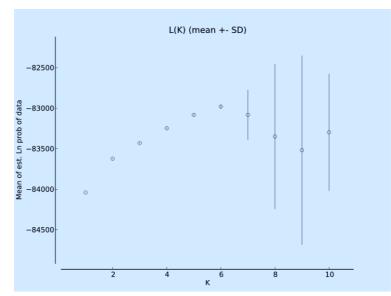
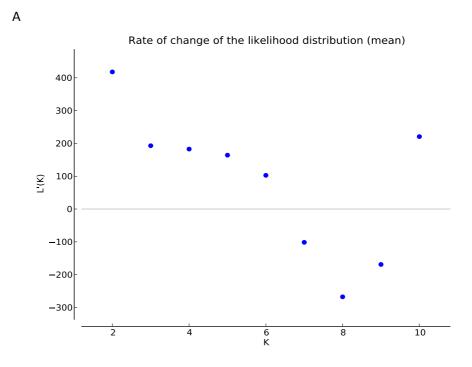



Figure 16. Plot of mean likelihood L(K) and variance per K value from STRUCTURE on dataset consisted of 394 individuals genotyped for 284 loci.

Additionally were provided a plot of rate of change of the likelihood distribution (mean \pm SD) calculated as L'(K)=L(K)-L(K-1) and plot of the absolute values for the second order rate of change of the likelihood distribution (mean \pm SD) calculated according to the formula [L''(K)]=[L'(K+1)-L'(K)] (Figure 17).

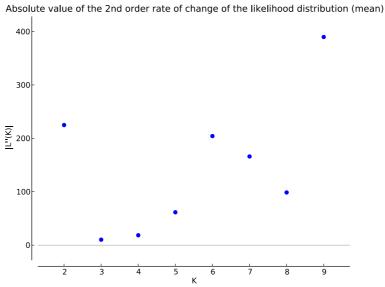


Figure 17. (A) The rate of change of the likelihood distribution (mean±SD) and (B) absolute values of the second order change of the likelihood distribution (mean±SD).

The use of an ad hoc quantity based on the second order of the rate of change of the likelihood function with respect to K (Δ K) is another method of estimating the optimal K, also known as Evanno method (Evanno et al. 2005). The Evanno method is defined as formula $\Delta K = m([L''K])/s[L(K)]$ where ΔK is estimated as the mean of the absolute values of L"(K) averaged over 10 runs divided by standard deviation of L(K). The ΔK shows a clear peak at the true value of K (Figure 18). The highest peak of ΔK was when K=2 indicating the presence of two main genetic clusters. The second highest peak of ΔK value was when K=6.

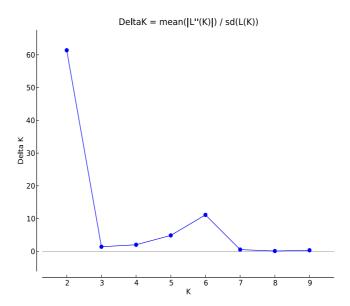


Figure 18. Plot of ΔK (Evanno method) for detection of the real number of K groups, which best fit, the dataset

В

Since Evanno method indicated presence of two main genetic clusters, the conclusion is that within a mapping population of 394 individuals is no strong population structure. The second highest rate of ΔK was when K=6 (Figure 18), however the membership of individuals in such clustering occasion, did not indicate any six cluster grouping, assuming there is an existence of panmixia or a population where process such as mating and individuals movement are uniform (Supplement 6).

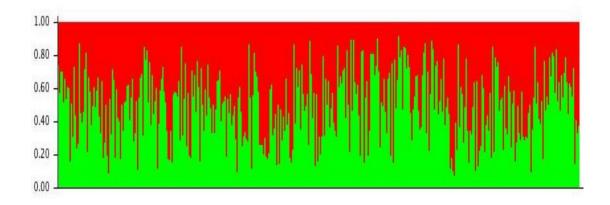


Figure 19. Barplot when K =2 for original order for 394 individuals assuming grouping two main populations. Each individual is represented by a single vertical line, which is partitioned into K colored segments that represent that individual's estimated membership fraction in each of K inferred clusters.

Table 14. Table output of the Evanno method results. Yellow highlight is indicating the largest value of the Delta *K* column. Data as in Figure 18.

К	Reps	MeanLnP(K)	Stdev LnP(K)	Ln'(K)	Ln"(K)	Delta K
1	10	-84041.17	0.133749	_	_	-
2	10	-83623.28	3.662968	417.89	224.89	<mark>61.395571</mark>
3	10	-83430.28	7.24259	193	10.22	1.411097
4	10	-83247.5	9.196255	182.78	18.51	2.012776
5	10	-83083.23	12.623439	164.27	61.54	4.875058
6	10	-82980.5	18.326726	102.73	204.25	11.144926
7	10	-83082.02	305.105045	-101.52	166.06	0.544272
8	10	-83349.6	892.291293	-267.58	98.65	0.110558
9	10	-83518.53	1164.593194	-168.93	389.78	0.334692
10	10	-83297.68	719.453359	220.85	_	_

4. 5 BayeScan outlier detection method

BayeScan calculation ended with output file "prefixname_fst.txt". In this file, each line corresponded to one locus and contained following values: (1) the index of the locus corresponding to the index in the input file; (2) the posterior probability for the model including selection; (3) the logarithm of Posterior Odds to base 10 for the model including selection; (4) the estimated alpha coefficient indicating the strength and direction of selection; (5) the Fst coefficient averaged over populations.

An R function provided to plot and identify outliers using output file "prefixname_fst.txt" when was calculated PO (Posterior Odds) threshold leading to a False Discovery Rate of no more than 5%. The outcome is the plot with outliers and their list. However, the plot merged did not indicate any outliers and the list was empty meaning that no outlier loci were detected within FDR of 5%.

As provided, Fst coefficient was obtained where in each population Fst was calculated as the posterior mean using model averaging (Supplement 7). Fst was plotted together with the logarithm of Posterior Odds to base 10 (which is fixed to 1000 when posterior probability is equal to 1). Fst averaged over populations indicated the highest value for 0.045 for the locus number 27 indicating its presence under purifying or balancing selection as it showed low level of genetic differentiation. The highest logarithm of the Posterior Odds to base 10 was equal to 0.76 for the locus PGWD-1034 (Arborea project, Canada) (Figure 20). The locus PGWD1-1034 is belonging to the AUX/IAA transcription factor gene family (auxin response regulator). The logarithm of the Posterior Odds corresponded to a Bayes factor equal to 3 indicating a "substantial" evidence for selection (Table 13). Posterior odds could be included in the Jeffrey's scale of evidence for Bayes factors (Jeffrey, 1935, 1961). Posterior odds are defined as a ratio of posterior probabilities and indicate how likely the model with selection is compared to the neutral model (Foll, 2010).

$$PO = P(M2|N)/P(M1|N) = BF*P(M2)/P(M1)$$

, where M1 presents a model under selection, M2 presents a neutral model, N represents a given dataset, BF presents Bayes factor and P posterior probability.

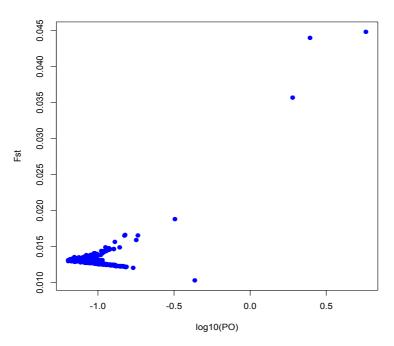


Figure 20. R plot visualization of logarithm for the Posterior Odds to base 10 and averaged Fst across populations.

Table 15. Interpretation of Jeffrey's scale of evidence for the selection
(Jeffrey, 1961)

Posterior probability	Bayes factor (BF)	log10(BF)	Evidence of the selection
0.50 -> 0.76	1 -> 3	0 -> 0.5	Barely worth mentioning
0.76 -> 0.91	3 -> 10	0.5 -> 1	Substantial
0.91 -> 0.97	10-> 32	1 -> 1.5	Strong
0.97 -> 0.99	32 -> 100	1.5 -> 2	Very strong
0.99 -> 1.00	100 -> ∞	2 -> ∞	Decisive

For most of loci, the logarithm of the posterior odds was negative corresponding to non-existence of outlier loci potentially under the selection. In conclusion, BayeScan did not detect any outlier loci at 5% significance level given for 384 loci screened (Figure 21).

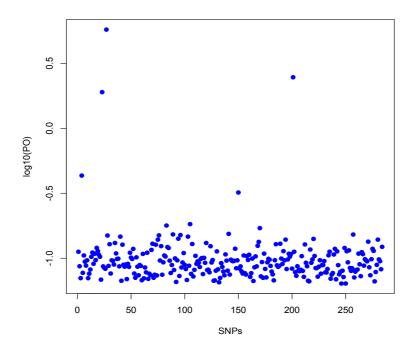
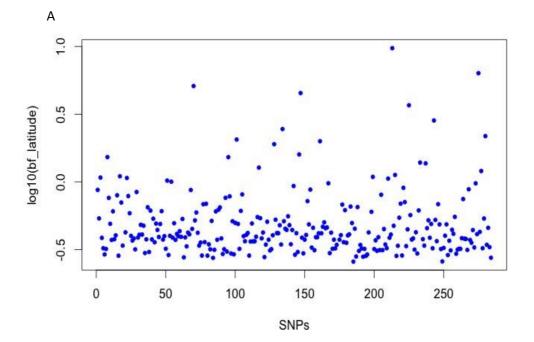
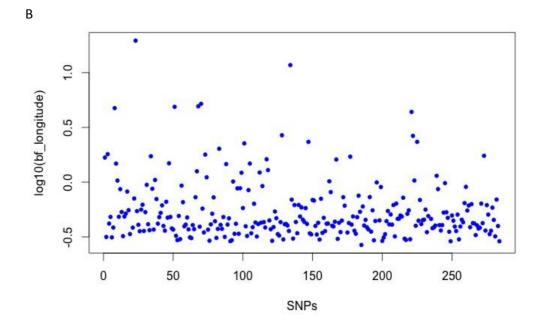
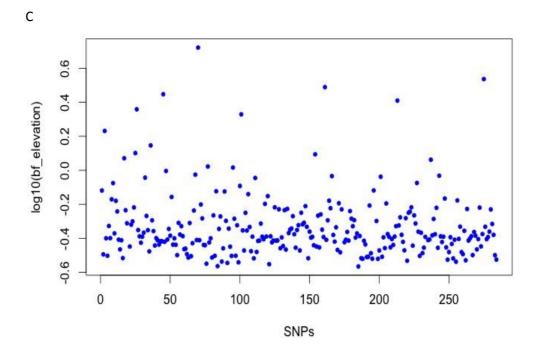


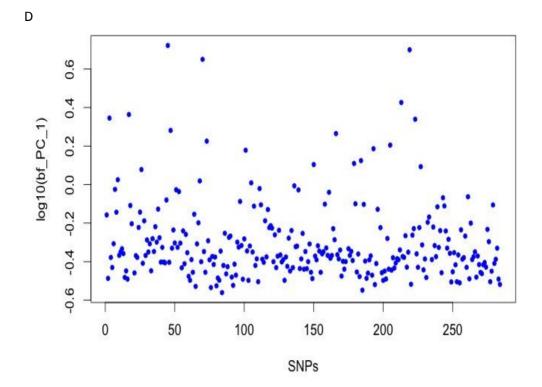
Figure 21. R plot visualization of logarithm for the Posterior Odds to 384 loci under the investigation for the signal of selection.

4. 6 Environmental association analyses: Bayesian linear mixed model detection (BayEnv)


The first outcome file from BayEnv analyses was the covariance-variance matrix estimated over 20 populations and for million iterations. The rows and columns for each population were in the same order as has appeared in allele count file. The covariance-variance matrix was estimated each 5000 iterations until the final million iterations. For the further analyses, the mean covariance matrix over million iterations was used as input for the second step-environmental correlations analyses.


The covariance-variance matrix indicated how well populations are genetically differentiated due to the neutral process such as genetic drift and gene flow. Under the neutral model, the population allele frequency in each population may deviate away from an ancestral (or global) allele frequency due to the genetic drift. Some populations could be more genetically close to each other due to the effect of shared population history or gene flow. In such case, the neutral model is specified by covariance structure of allele frequencies across the populations (Coop *et al*, 2010).


Next, it was explored the correlation between allele frequencies and environmental variables based on average covariance-variance matrix estimated in the first step. In this step, Bayes factors have been estimated for every SNP for each environmental variable across 20 populations and for a million iterations. An output file contained Bayes factors, which presented the measure of correlation strength between allele frequency and environmental variable. A Bayes factor (BF) presented a ratio of the posterior probability under the alternative model and the neutral (null) model. Every Bayes factor was


adjusted to the logarithm of base 10 for each SNP and was used for an interpretation within Jeffrey's scale of signal of the selection (Jeffrey, 1961).

As environmental matrix was used a dataset containing tree PCs values from PCA analyses performed on seasonal environmental dataset, geo-reference data (e.g. longitude, latitude and elevation) and 20 environmental variables from the seasonal dataset. For every variable, Bayes factor (BF) was estimated and totally there were available 26 Bayes factor, which were converted to logarithm of base 10.

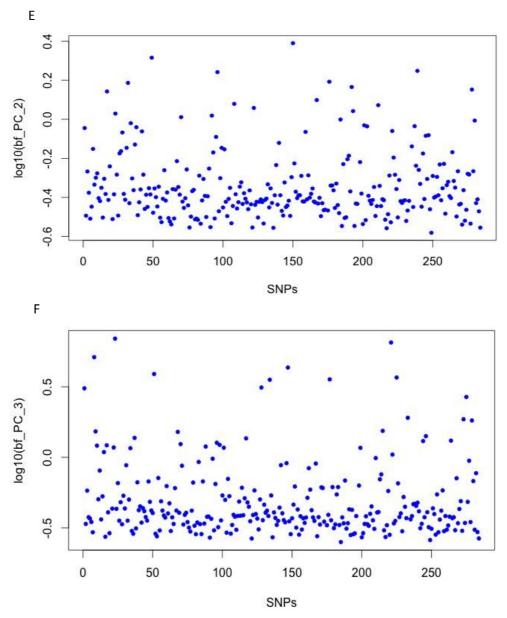


Figure 22: R plots visualization of 280 SNPs and logarithm of Bayes factors for latitude (A); (B) longitude; (C) elevation; (D) PC 1 (the first principal component value); (E) PC 2 (the second principal component value); (F) PC 3 (the third principal component value).

Overall, from total 284 loci, two of them showed strong correlation with geo-climatic variables, indicating a strong evidence of selection. The estimation of the strength for evidence of selection is interpreted based on Jeffrey's scale of evidence described by Jeffrey (1961). Two SNPs indicated strong association to longitude, in particular SNP id 23 (locus name PGWD1-0634) whose logarithm of Bayes factor was equal to 1.29 (Bayes factor equal to 19.6) (Figure 22- B). Another SNP id 134 (locus name PaPHYN_RIII272) showed also strong correlation to longitude, whose logarithm of Bayes factor was equal to 1.07 (Bayes factor equal to 11.72) (Figure 22- B). Regarding other geo-variables (e.g. latitude and elevation), loci indicated weak to moderate correlation (Figure 22- A, C). In addition, all three principal components loaded mainly on the seasonal environmental dataset, did not show to be in strong correlation with loci, when logarithms of Bayes factors in all three cases did not reach 1 which presents a signal for substantial evidence of selection (Figure 22- D, E, F). Beside principal component

values, for all seasonal environmental variables, was estimated a Bayes factor as well. These variables have not been previously used to reduce their own dimensionality via principal component analyses. Two loci indicated strong evidence of selection when for SNP id 23 (locus PGWD1-0634), logarithm of BF was equal to 1.01 (Bayes factor equal to 10.27) showing strong correlation to winter aridity (Figure 23). The second SNP id 96 (PGLM2-0703) whose logarithm of BF was equal to 1.14 (Bayes factor equal to 14.02) was strongly correlated to autumn precipitation (Figure 23).

The locus PGWD1-0634 shared both correlations to longitude and winter aridity. It has originated from Arborea dataset (Canada) and encodes a GMD1 (GDP-D-mannose 4,6-dehydratase 1) and it is involved in the fucose biosynthesis pathway and catalytic and coenzyme binding. The second locus whose correlation was to longitude, was PaPHYN_RIII272 sourced from Uppsala (Sweden) dataset and located in the *Picea abies* partial gene for phytochrome N. The last locus strongly correlated to autumn precipitation was PGLM2-0703 originated from Arborea (Canada) dataset and encoding for mitochondrial substrate carrier family protein.

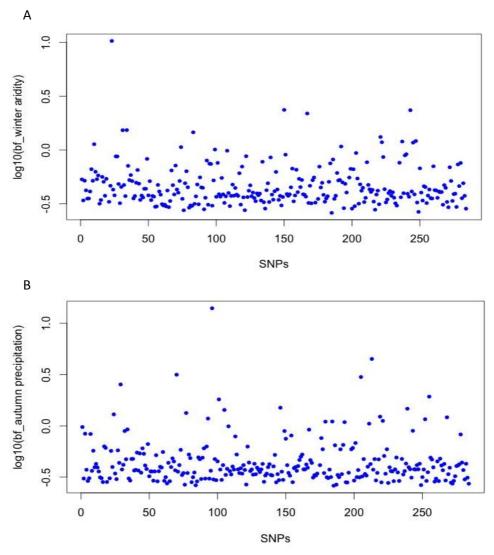


Figure 23: R plots visualizations for correlation between locus id 23 (PGWD1-0634) and logarithm of base 10 of Bayes factors for winter aridity (A) and locus id 96 (PGLM2-0703) and logarithm of base 10 of Bayes factors for autumn precipitation (B).

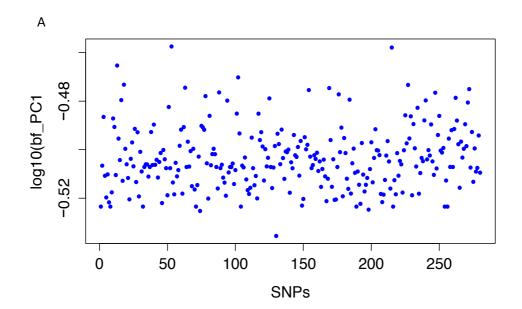

In general, there was no detection of signals for the very strong correlations, indicating that most of SNPs were not very strongly associated with geo-climatic variables. Logarithms of Bayes factors indicated the evidence more in favor of the null model (neutral) over alternative (selective) model. Among all loci included in analyses, three loci appeared to be strongly associated, whose Bayes factor was >10. However, Bayes factor did not attend to be higher than 100 signaling very strong signal of adaptation (Table 16).

Table 16: Summary of SNPs showed to have strong association to geo-climatic variables. Listed are SNPs for which BFs greater than 10 with their functional annotations.

Variable	BF	SNP	Annotation
Longitude	19.6	PGWD1-0634	GDP-D-mannose 4,6 dehydratase
Winter Al	10.27	PGWD1-0634	1(BT106868)
Autumn P	14.02	PGLM2-0703	Mitochondrial substrate carrier protein (BT115596)
Longitude	11.72	PaPHYN_RIII272	<i>P. abies</i> partial phynrl gene for phytohrome N (JQ970263)

AI, aridity; P, precipitation; BF, Bayes factor

Individual based approach reveled very weak signal detection of the selection when tested only four PCs (principal component values) from the monthly dataset. For this approach, was decided to include environmental dataset for monthly variables since it has showed slightly the higher proportion of variance (92.4%) than for the seasonal dataset (90.4%). Results revealed that logarithm of base 10 of Bayes factors for all four principal components were very low and ranged from -0.52 up to -0.40 indicating no presence of selection when this approach applied (Figure 24.).

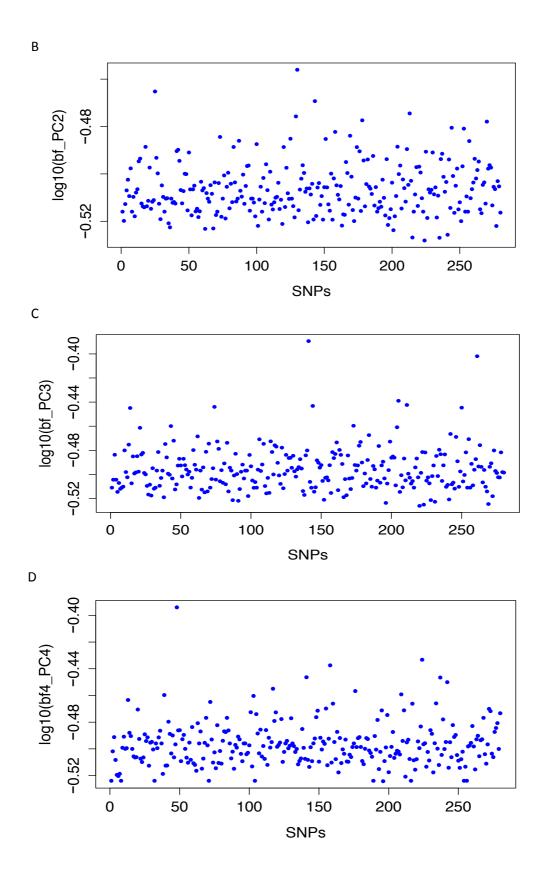


Figure 24: R plots visualization of 280 SNPs and logarithm of Bayes factors for PC 1 (the first principal component value) (A); (B) PC 2 (the second principal component value); (C) PC 3 (the third principal component); (D) PC 4 (the fourth principal component value.

60

4.7 Spatial analyses detection (SamBada)

Spatial analyses detection method (Samβada v. 0.4) produced two output files, where for logistic regression analyses, was obtained one unsorted file for constant models (Supplement 8). The first column is the name of the molecular marker combined with allele name. The following columns are Loglikelihood values, the frequency of the marker, estimation of the parameter β_0 for the logistic model and the error code (default "0" if success). The second obtained file was file for univariate models, which contained list of molecular markers sorted according to G score and WaldScore as well as Loglikelihood values. Next columns were containing measures for the regression (pseudo-R²), followed by AIC (Akaike information criterion) and BIC (Bayesian information criterion). The last columns were placed parameters for regression (β), one constant parameter and one corresponding to the environmental variable (Figure 2). The second file is the most informative one since it contained the most significant models based on the threshold criterion, which in this particular case was equal to 0.00056=0.01/(280*3*21) where 0.01 is a threshold for significance or Bonferroni's correction threshold; 280 is a number of loci included in analyses and screened for signal of selection, 3 represents three distinct genotypes for each marker and 21 presents a number of environmental variables considered which came from seasonal dataset. However, none of significant model was detected within this threshold.

In addition, another trial has been done when genetic and environmental data have been previously pruned and when a new threshold of significance was created. Pruning of environmental variables was done to keep only those which are not highly correlated since it could lead to an over conservative significance threshold with the Bonferroni correction. After pruning, only six variables remained which did not have high correlation. Pruning of genetic data was based on minor allele frequency when loci were kept if their minor allele frequency is equal or higher than 0.05, retaining only polymorphic loci. Sam β ada analyses were conducted based on revised dataset by using option BEST saving only the best models corresponding to significance level specified with new threshold applied which was equal to 2.67 $10^{-5} = (0.01/(208*3*6))$ where 208 presents polymorphic SNPs, 3 presents three distinct genotypes for each loci and 6 represents six environmental variables which have not been highly correlated ("ppt_win"- winter precipitation; "tmax_win" – maximum temperature winter; "ppt_sum" – summer precipitation; "ppt_aut" – autumn precipitation; altitude and "AI spring" – spring aridity). No significant model has been detected either.

5. DISCUSSION

5.1 *The thesis summary*

This study represents one of the several exploratory studies conducted on adaptive genetic potential in Conifer species. Although other examples of similar studies are available, from these discoveries not very high proportion of novel putative genes has been discovered. The genetic basis of adaptation in forest species, especially in Conifers is still not entirely investigated.

We used a 384 Illumina GoldenGate genotyping approach with single nucleotide polymorphisms (SNPs) to estimate adaptive genetic potential in Norway spruce's population. Totally 400 individuals were genotyped, resulting in successful genotyping of 394 individuals where 6 failed due to the bad quality of genomic DNA used for sequencing. Basic diversity statistics of genotyping dataset indicated that from total 384 loci, a hundred loci failed during genotyping where the most of them are originated from Arborea project designed on white spruce (*Picea glauca*). The reason of such high number of SNPs, which failed during genotyping, is due to the very little conservation of SNPs even between closely related species, in this case within *Picea abies* and *Picea glauca*. Finally, a total number of polymorphic SNPs were 208, which were included into outlier detection analyses.

Attempt to cluster of individuals into populations did not result with a strong population structure, indicating in particular existence of panmictic population where all individuals are randomly mating or all mixed. In such case, population is a single entity where processes such as mating and movement of individuals are uniform showing no heterogeneity. Within absence of the strong population structure, potentially strong gene flow or the rate of mixing is going on. Norway spruce has an ability of strong pollen and seed dispersal enabling their movement for hundreds of kilometers away or even further via waterways and human or animal distribution.

With no strong population structure ongoing within natural population, outlier detection analyses were individually based oriented. The search for signal of selection resulted in a relatively weak signal detection where the highest Bayes factor was around 20 showing a strong association to longitude whereas association with climatic gradients was common for winter aridity and autumn precipitation among all environmental gradients from the seasonal dataset.

Environmental association analyses to search for correlations between climate variables and single nucleotide polymorphisms (SNPs) across the range sample of loblolly pine, were performed by Eckert *et al.* (2012b). Applications of a Bayesian linear mixed model provided identification of 22 SNPs with very strong signal of selection (Bayes factor >100) being located in genes with functional annotations involved in different mechanisms of plant response (e.g. oxidative stress, cell membrane related, sugar metabolism) to abiotic stress to drought, salt or cold tolerance. Statistical power for detection of loci under the selection was higher when included 1730 loci from 682 individuals of loblolly pine (*Pinus taeda* L.), which were sampled from 54 populations. This genome-wide dataset for loblolly pine was based on the large geographic scale coverage resulted in a discovery of associated loci thanks to population structure, which was accounted within natural populations of loblolly pine.

Another evidence of the local adaptation within conifer species across the Alps, was reported by Mosca *et al.* (2012). In this study single nucleotide polymorphisms (SNPs) were genotyped in 24 to 37 populations from four subalpine conifer species: *Abies alba* Mill, *Larix decidua* Mill, *Pinus cembra* L. and *Pinus mugo* Turra. A total of 3898 individuals were genotyped and tested for a correlation with geo-environmental data. In all four conifer species, was detected population structure ranking from K=5 (*Abies alba*); K=3 (*Larix decidua*), K=4 (*Pinus cembra*) and K=4 (*Pinus mugo*). This study resulted in the successful detection of loci ranging from six in *Larix decidua* to 18 in *Pinus mugo* mostly associated to winter precipitation and seasonal minimum temperature, whereas in *Abies alba*, two loci resulted in association to the seasonal minimum temperature.

A more powerful attempt to detect patterns of local adaptation in forest species when used landscape genomics approach, lies in the high number of loci and individuals. In this study were applied two different detection methods for outlier scans and none of them resulted with strong signal detection. A Bayesian liner mixed model-BayEnv2 (Gunther and Coop, 2013) implements a Bayesian method to compute correlations between allele frequencies and ecological variables into account, whereas Samβada's approach (Stucki and Joost, 2014) integrates logistic regression method to model the probability of the presence of an allelic variant for the polymorphic marker given the environmental conditions. Stucki et al. (2014) compared several population-based methods with Samβada analyses and concluded that top detection methods in number of outlier loci are Bayesian linear mixed model (Bayenv2.0) and Samβada often resulting also in a common detection of loci. Although different, these two approaches often provide the highest percentage of detected SNPs. Stucki et al. (2014) emphasized the possibility of false positives when used Spatial analyses methods, whereas for Bayesian linear mixed model false positives are less common showing some higher power and greater robustness to population structure (Gunther and Coop, 2013). Although computationally demanded, an advantage of this Bayesian method is the possibility where each individual is treated as a population, allowing to the natural population differentiation test statistics to be calculated without regard of any prior population label (Gunther and Coop, 2013).

Lotterhos and Whitlock (2014) compared several methods to test for selection: FDIST2, BayeScan, FLK and Bayenv2 for the false-positive rates and the power of those four methods to detect loci which differentiated by spatially heterogeneous selection. Older and more widely used methods, such as FDIST and BayeScan showed to have more false-positive rates for loci under either divergent or balanced selection, whereas Bayenv2 and FLK methods showed to be more promised (Lotterhos and Whitlock, 2014).

When identifying outlier loci, it is generally necessary to perform multiple tests to minimize the false positive rate (Perez-Figueroa *et al.*, 2010). It is therefore important to validate the detected outlier loci in multiple ways to determine whether or not they are adaptive such as quantitative trait locus mapping, testing for genotyping errors or consideration of their genomic location (Luikart *et al.* 2003).

5.2 Limitations of the study

As genomic data became more available, genome scans for signatures of adaptation became more common (Tiffin and Ross Ibarra, 2014). Although several studies have been conducted to explore an adaptive genetic potential in conifer species, a small proportion of novel putative genes was discovered. Similar, in case of Norway spruce, a genomic approach with 384 Illumina GoldenGate method provided only a small insight of adaptation based on studies conducted so far.

One of the pioneer attempts to investigate adaptive genetic variation in Norway spruce was done by Scalfi et al. (2014). A total of 384 SNPs representing 290 genes covering different cellular metabolic functions, were genotyped at micro and macro-geographic scale (Table 17). To identify outlier loci methods such as testing Fst outliers (BayeScan software v.2.1) and linear regression methods were combined when seven Fst-outliers were detected at macro-geographic scale whereas two outliers were detected at micro-geographic scale by linear regression method. Totally eight genes potentially involved for adaptation, were identified within these two methods when seven genes were identified with BayeScan v.2.1 method (Foll and Gagiotti, 2006) and one gene with linear regression method (Table 18). Di Pierro et al. (in preparation) continued to explore an adaptive potential in Norway spruce when totally 826 trees were genotyped with 384 SNPs belonging to 285 putative candidate genes (Table 17). Outlier analyses were performed with BayeScan program v. 2.1 (Foll and Gagiotti, 2008) resulted in two genes discovery. To access the correlation between SNP allele frequencies and climatic variables, a Bayesian generalized linear mixed model was applied (Coop et al. 2010) which provided detection of four genes (Table 18). The most recent attempt to investigate adaptive variation was performed when used 392 mother trees of Norway spruce sampled across Alps for 384 SNPs representing 242 genes (Table 17). In this particular approach, Fst outlier analysis with BayeScan v. 2.1 (Foll and Gagiotti, 2008) was performed when none of loci were detected as outliers at 5% significant level. On the other hand, Bayenv analyses resulted in weak signal detection for two loci showing strong correlation to geoclimatic variables when two genes were potentially correlated (Table 18).

Number of individuals	Sampling design	Number of SNPs genotyped	Reference
300 trees (microscale)	6 populations (25 ind/site)	384 SNPs	Scalfi <i>et al</i> . 2014
546 trees (macroscale)	27 populations (15- 24 ind/site)	384 SNPs	Scalfi <i>et al.</i> 2014
826 trees	24 populations (25- 65 ind/site)	384 SNPs	Di Pierro <i>et al.</i> (in preparation)
392 trees	2-4 ind/site (mean)	384 SNPs	Calic <i>et al.</i> (unpublished)

Table 17. Norway spruce sampled individuals included for 384 Illumina genotyping assay

Reference	Methods	Number of genes	Total
	BayeScan v.2.1	7	
Scalfi <i>et al</i> . 2014	Linear regression method	1	8
Di Pierro <i>et al</i> .	BayeScan v.2.1	2	6
(in prep.)	Bayenv	4	0
Calic <i>et al</i> .	Bayescan v.2.1	0	2
(unpublished)	Bayenv	3	3
	Samβada	0	

Table 18. Summary of candidate genes potentially involved in adaptation process when different outlier detection methods performed.

Overall, among these three studies, the most common method of detection was BayeScan v.2.0, that is using allele frequencies between populations to identify candidate loci. In particular, it resulted in detection of nine candidate genes within studies both conducted by Scalfi et al. (2014) and Di Pierro et al. (in preparation) but not providing any detection of outlier loci in the case of the last study (Calic et al. unpublished). Both Scalfi et al. (2014) and Di Pierro et al. (in preparation) studies provided estimation of population structure of the sampled Norway spruce population. For instance, Scalfi et al. (2014) scanned the genome of Norway spruce on macro scale when 6 populations (25 individuals/site) were included and 27 populations (15-24 individuals/site) were included in macro-geographic scale. Population structure was revealed only on macro scale indicating four clusters with Bayesian cluster analyses – STRUCTURE (Pritchard et al. 2000). Di Pierro et al. (in preparation) also estimated population structure when detected four genetic clusters. On the other hand, the study by Calic et al. unpublished, estimated an existence of panmictic population indicating a strong gene flow or a rate of mixing going on. Norway spruce is known to have a strong pollen and seed dispersal enabling their movement for hundreds of kilometers away or even further via waterways and human or animal distribution. An efficient detection of outlier loci is usually fruitful when the population structure is stronger. Other genomic approaches are available such as Sambada method, which integrates logistic regression method to model the probability of presence of an allelic variant for the polymorphic marker given the environmental conditions (Stucki et al. 2014). Although not requiring any population structure of sampled natural population, its disadvantage is the possibility of existence of false positives.

A 384 Illumina GoldenGate method provided only a small percentage of genes identified to be responsible for adaptation. In particular, less than 3% of genes have been discovered from the total number of genes included (Table 19). The highest number of genes (8) was discovered by Scalfi *et al.* (2014) when 846 trees were included on both micro and macro geographic scale. Di Pierro *et al.* (in preparation) resulted in discovery of six genes when 826 individuals were genotyped, where Calic *et al.* (unpublished) resulted in three genes relatively correlated to geo-environmental variables when included 392 individuals.

As outcome from each study on N. spruce, a pairwise combination of genes 8-6-3 has been discovered (Table 19). However, among genes potentially adapted, there was no evidence of repeatability (Table

20). Discovered genes are putatively involved in various biological processes (e.g. plant defense, photosystem regulation, sugar or lipid metabolism etc.) when each study resulted with uncommon candidate gene annotations.

Table 19. The percentage (%) of discovered genes from the total number of genes screened for signal of selection

Number of genes	Genes responsible for adaptation	Percentage (%)	Reference
290	8	2.76%	Scalfi <i>et al</i> . (2014)
285	6	2.11%	Di Pierro <i>et al</i> . (in prep.)
242	3	1.24%	Calic et al. (unpublished)

Limitations in discoveries of novel candidate genes are related to both numbers of loci genotyped as well as sampling design of the population. An approach based on 384 SNPs did not approve a high detection power for adaptive loci in studies conducted so far in N. spruce. The discovery of genes potentially adapted, only tells about a small proportion of genome which has been screened and that there is still much more to be discovered. To provide this, GWAS (genome wide association studies) certainly could provide more detection power in search for adaptation in N. spruce, whose genome is estimated to 20 gigabases (GB) (Nysted *et al.* 2013).

On the other hand, if sampling provides an estimation of the population structure, the probability to detect more outlier loci is higher. Besides the number of loci, the genetic diversity plays important role when selection ongoing. With the presence of homogeneous population, the signal of selection will be lost or with weak signal detection. For instance, Di Pierro *et al.* (in preparation) and Scalfi *et al.* (2014) have observed a sufficient genetic diversity within natural populations, which enabled the discovery of outlier loci. On the other hand, Calic *et al.* (unpublished) has observed a homogenous population with very low Fst values, indicating that all individuals are uniform and in such case there was no strong signal of selection to be detected.

Table 20. Summary of gene candidates potentially involved in adaptation generated with different outlier methods confirms no repeatability existence

Gene classification	Methods	Reference
Plant defense responses		
Lipid metabolism		
Sucrose synthase protein in		
Pinus halepensis	Fst_outlier	
F box protein	detection	
Sugar metabolism		Scalfi <i>et al.</i> 2014
Various biological functions		
Nucleic acid-binding protein		-
Pentatricopeptide (PPR) repeat- containing protein of <i>A.</i> <i>thaliana</i>	Regression method	
Poly-adenilate binding domain	Fst outlier	
Putative galactokinase	detection	
Gene encoding for SNF2 proteins		
Oxygen-evolving protein 1 (photosynthesis)	Davany	Di Pierro <i>et al</i> . (in preparation)
Phosphoenolpyruvate	Bayenv	
carboxynase 2		
(Gluconeogenesis) NADP(P)-linked oxidoreductase		
NADP(P)-IIIIked Oxidoreddctase	Fst outlier	
/	detection	
GMD1(GDP-D-mannose 4,6- dehydratase 1)		
Phytochrome N	Bayenv	Calic <i>et al</i> .
Mitochondrial substrate carrier	-	(unpublished)
family protein		
/	Spatial analyses method	

5.3 Future perspectives

Forest tree species have not been extensively domesticated as crop species and natural populations are still abundant (Tsumura *et al.* 2012). The new insights into the adaptive mechanisms are possible by identifying and studying adaptive genes in these natural populations (Neale and Savolainen, 2004, Neale and Ingvarsson, 2008). Since forest tree species are facilitated by relatively low genetic differentiation between populations on average, are widely distributed in different environments and have relatively large population sizes (Tsumura *et al.*, 2012). As a consequence, the selective pressures acting on a population in a given environment tend to result in adaptation by selecting for a relatively small number of genotype changes at a few specific loci (Pelgas *et al.*, 2011).

Current population genomic methods are not well posed to identify adaptive loci (Berg and Coop, 2014). However, recent advances in population genetics allowed for genome-wide identification of individual recent selective events by identifying unusually large allele frequency differences among populations and environments o by detecting effects of these events on linked diversity (Nielsen *et al.* 2005). Berg and Coop (2014) explained limitations of these population genomic method approaches correlated to the possibility only to identify traits under the selection where an individual allele has a large and/or sustained effect on fitness. As explained, when selection acts on a phenotype that is underwritten by a large number of loci, the response at any given locus is expected to be modest and the signal manifests in shift in allele frequency across many loci (Kremer and Corre, 2011). This signal would be very weak at the level of individual loci that it may be impossible to identify it against the genome-wide background without a specific annotation of which sites are the targets of selection on a give trait (Pritchard *et al.* 2010).

The genome wide association studies are more powered when available large set of individuals enabling mapping of many small effects alleles associated with phenotypic variation down to the scale of linkage disequilibrium in the population (Berg and Coop, 2014). The development and application of GWAS has provided an identification of thousands of loci associated with a wide range of traits and in the same time confirming a polygenic view of phenotypic variation (Visscher *et al.* 2012). GWAS is providing a powerful way to identify the signal of adaptation in polygenic traits.

Additionally, more intention should be focused on genotype to phenotype approach, which has proved to be informative on adaptive genetic potential in forest species. Forest trees are difficult to phenotype since they are long lived and sessile organisms, however an improvement in phenotyping is expected to provide more informative, precise and standardized high-throughput phenotyping technologies (Neale and Kremer, 2011). In addition, a good combination of landscape genomics and common garden experiments could provide more insight into the adaptive potential of forest species.

References

Aitken, S. N. (2004). Genecology and Adaptation of forest trees. Elsevier *Encyclopedia of Forest Sciences Article* 86, pp. 97-2004.

Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T. and Curtis-McLane S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. *Evolutionary Applications*, vol.1, pp.95-111.

Alberto F. J., Aitken S. N., Alia R., Gonzalez-Martinez G.C., Hanninnen H., Kremer A., Lefevre F., Lenormand T., Yeaman S., Whetten R., Savolainen O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations. *Global Change Biology*, vol.19: 1645-1661.

Allen C.D. (2009). Climate-induced forest dieback: an escalating global phenomenon? *Unasylva*, vol. 60: 231-232.

Allen, C.D., Macaldy, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, Jong-Hwan, Allard, G., Running, W., Semerci, A., Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. *Forest Ecology and Management*, vol.259. pp 660-684.

Anderson G. B. Principal component analyses in R. An Examination of the different functions andmethodstoperformPCA.Tutorialavailableonline:http://filebox.vt.edu/users/gba/ePortfolio/Public/AndersonGB_PCAinR.pdf

Austerlitz F., Dick C.W., Dutech C., Klein E., Oddou-Muratorio S., Smouse P.E. and Sork V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. *Molecular Ecology*, 13(4): 937-954.

Berg E.E., Henry J.D., Fastie C.L., De Volder A.D., Matsuoka S.M. (2006). Spruce beetle outbreaks on the Kenai Peninsula Alaska and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. *Forest Ecology and Management*, vol. 227: 219-232.

Berry A. and Kreitman M. (1993). Molecular analysis of an allozyme cline: Alcohol-Dehydrogenase in Drosophila melanogaster on the East coast of North America. *Genetics*. vol. 134: 869-893.

Bigler C, Braker O.U., Bugmann H., Dobbertin M., Rigling A. (2006). Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. *Eco-systems*, vol.9: 330-343.

Chen J., Kallman T., Ma X., Gyllenstrand N., Zaina G., Morgante M., Bousquet J., Eckert A., Wegrzyn J., Neale D., Lagercrantz U. and Lascoux M. (2012). Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (*Picea abies*). *Genetics*, vol.191, pp.865-881.

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., kolli, R.K., Kwon, W.-T., Laprise, R., Magnana Rueda, V., Mearns, L., Menendez, C.G., Raisanen, J., Rinke, A., Sarr, A., Whetton, P. (2007). Regional climate projections. In: Solomon, S., et al. (Eds), Climate change, Cambridge University Press, Cambridge, United Kingdom/New York, NY.

Christersson L., Fircks H. (1990). Frost and winter desiccation as stress factors. Aquilo, *Ser. Bot.* 29:13-19.

Coop G., Witonsky D. Di Rienzo A. and Pritchard J.K. (2010). Using Environmental Correlations to Identify Loci Underlying Local Adaptation. *Genetics*, vol. 185: 1411-1423.

Davis, M.B., Shaw, R.G. and Etterson, J.R. (2005). Evolutionary responses to changing climate. *Ecology*, 86(7). pp1704-1714.

Daehlen AG. Johnsen O. and Kohmann K. (1995). Hostfrostherdighent hos unge granplanter fra norske provenienser og iroplantasjer. *Rapport fra Skogforsk* 1/95, 24 pp.

De La Torre A. R., Roberts D. R. and Aitken S. A. (2014). Genome-wide admixture and ecological niche modeling reveal the maintenance of species boundaries despite long history of interspecific gene flow. *Molecular ecology*, vol.23: 2046-2059.

Debreczy, Zs. and I. Rácz, (2011). Conifers around the world. vol.1- DendroPress Ltd., Budapest. pp 1089.

Di Pierro E. A., Mosca E., Rocchini D., Binelli, Neale D. B. and La Porta N. (unpublished). Population structure and adaptive genetic variation to climate in natural populations of Norway Spruce (*Picea abies* [L.] Karst).

Dobbertin M, Rigling A. (2006). Pine mistletoe (*Viscum album* spp. *austriacum*) contributes to Scots pine (*Pinus sylvestris*) mortality in the Rhone valley of Switzerland. *Forest Pathology*, vol.36: 309-322.

Earl, Dent A. and vonHoldt, Bridgett M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources*, vol. 4: 359-361.

Eckert A. J., Bower A. D., Gonzales-Martinez S. C., Wegzyn J. L., Coop G., Neale D.B. (2010b). Back to nature: ecological genomics of loblolly pine (*Pinus taeda*, Pinaceae). *Molecular Ecology*, vol. 19, pp.3789-3805.

Eckert A.J., van Heerwaarden J., Wegrzyn J.L., Nelson D.C., Ross-Ibarra J., Gonzalez-Martinez S.C. and Neale D.B. (2010a). Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (*Pinus taeda* L., Pinaceae). *Genetics*, 185: 969-982.

Ellenberg H. (1978). Vegetation Mitteleuropas mt den Alpen in okologischer Sicht. Verlag Eugen Ulmer, Stuttgart.

Evanno G., Regnaut S. and Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*, vol. 14: 2611-2620.

Everitt B. and Hothorn T. (2011). An Introduction to Applied Multivariate Analysis with R. Springer Science+Business Media. pp: 61-102.

Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., Steemers F., Butler S.L., Deloukas P., Glaver L., Hunt S., McBride C., Bibikova M., ubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. (2003). Highly parallel SNP Genotyping. Volume LXVIII, Cold Spring Harbor Laboratory Press.

Farjon, A. and D. Filer. (2013). An Atlas of the World's Conifers. Brill.

FollM.(2010).BayeScanv2.0UserManualavailableonline:http://cmpg.unibe.ch/software/BayeScan/files/BayeScan2.0_manual.pdf

Foll M. and Gaggiotti O. (2008). A genome-Scan Method to Identify Selected loci Appropriate for both Dominant and Codominant Markers: A Bayesian Perspective. *Genetics* (180): 977-993.

Forester B., Meier F., Brandli U.B. (2008). Deutlicher Ruckgang der Fichten im Mittelland. Vorratsabbauauch durch Sturm und kafer. *Wald Holz*, vol. 89(3): 52-54.

Forsythe W. C., Rykiel Jr. E.J, Stahl R. S., Wu Hsin-I, Schoolfield R. M. (1995). A model comparison for daylenght as a function of latitude and day of year. *Ecological Modelling*, vol. 80: 87-95.

Futuyma D.J. (2005). Evolution. Sinauer Associates, Inc. Sunderland, Massachusetts U.S.A. pp.247-267.

Goudet J. (2014). Package "Hierfstat" in R. Tutorial available online: http://www.r-project.org, http://www.unilch/popgen/softares/hierfstat.htm

Grant, V. (1963). The Origin of Adaptations. Columbia University press. New York and London. pp 118.

Green P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika*. vol. 82: 711-732.

Grivet D., Sebastiani F., Alia R., Bataillon T., Torre S., Zabal-Aguirre M., Vendramin G.G. and Gonzalez-Martinez C.S. (2011). Molecular Footprints of Local Adaptation in Two Mediterranean Conifers. *Mol. Biol. Evol.* vol. 28: 101-106.

Gunther T. and Coop G. (2013). Robust Identification of Local Adaptation from Allele frequencies. *Genetics*, vol. 195: 205-220.

Gyllenstrand N., Clapham D., Kallman T. and Lagercrantz U. (2007). A Norway Spruce Flowering Locus T Homolog is implicated in Control of Growth Rhythm in Conifers. *Plant Physiology*, vol. 144: 248-257.

Harrison L.C. (1960). Sun, Earth, Time and Man. Rand McNally & Co., Chicago, IL.

Hijmans R. J, Cameron S. E., Parra J.L., Jones P.G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. *Int. J. Climatology*, vol.25: 1965-1978.

Holderegger R., Buehler D., Gugerli F. and Manel S. (2010). Landscape genetics of plants. *Trends in Plant Science*, vol. 15, n.2, pp. 675-683.

Holderegger R., Herrmann D., Poncet B., Gugerli F., Thuiller W., Taberlet P., Gielly L., Rioux D., Brodbeck S., Aubert S. and Manel S. (2008). Land ahead: using genome scans to identify molecular marker of adaptive relevance. *Plant Ecology and Diversity*, vol.1, n.2, pp. 273-283.

Holland S.M. (2008). Principal components analyses (PCA). Online tutorial available: http://strata.uga.edu/software/pdf/pcaTutorial.pdf

IPCC (2007b). Climate change: impacts, adaptation and vulnerability. Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 976pp.

Jeffreys H. (1935). "Some Tests of Significance, Treated by the Theory of Probability," *Proceedings of the Cambridge Philisophy Society*, vol. 31: 203-222.

Jeffreys H. (1961). "Theory of Probability" (3rd ed.), Oxford, U.K.: Oxford University Press.

Jolliffe I. T. (2002). Principal component analyses, Second Edition. Springer. pp: 1-408.

Joost S., Bonin A., Bruford W., Despres L., Conord C., Erhardt G. and Taberlet P. (2007). A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach adaptation. *Molecular Ecology*, vol. 16: 3955-3969.

Kawecki T. and Ebert D. (2004). Conceptual issues in local adaptation. *Ecology Letters*, vol. 7: 1225-1241.

Kellomaki S., Rouvienen I., Peltola H., Strandman H., Steinbrecher R. (2001). Impact of global warming on the tree species composition of boreal forests in Finland and effects on emission of isoprenoids. *Glob. Change Biol.* vol. 7:531-44.

Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME (2014). Selection for complex traits leaves little or no classic signatures of selection. *BMC Genomics*, vol.15: 1-14.

King J. R. and Jackson D. A. (1999). Variable selection in large environmental data sets using principal components analyses. *Environmetrics*, vol 10: 67-77.

Koski V., Skroppa T., Paule L., Wolf H., Turek J. (1997). Technical guidelines for genetic conservation of Norway spruce (*Picea abies* (L.) Karst). International Plant Genetic Resource Institute, Rome, Italy. European Forest Genetic Resources Programme (EUFORGEN).

Koskela J., Buck A. and du Cross T. (2007). Climate change and forest genetic diversity. Implications for sustainable forest management in Europe. European Forest Genetic Resources Program. EUFORGEN. Kremer, A. (2007). How well can existing forests withstand climate change? In Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Eds. Koskela, J., Buck, A. and Tessier du Cros, E.. Biodiversity International, Rome. Italy, pp3-17.

Kremer, A. (2010). Evolutionary responses of European oaks to climate change, Irish Forestry, pp53-65.

Kremer A. and Le Corre V. (2011). Decoupling of differentiation between traits and their underlying genes in response to divergent selection. *Heredity*, vol.108: 375-385.

Kremer, A., Le Corie, V., Petit, R.J. and Ducousso, A. (2010). Historical and contemporary dynamics of adaptive differentiation in European oaks. In: Molecular Approaches in Natural Resource Conservation (eds DeWoody, A., Bickham, J., Michler, C., Nichols, K., Rhodes, G. and Woeste, K.). Cambridge University Press, Cambridge, pp 101-117.

Kremer, A., Ronce, O., Robledo-Arnuncio, J.J., guillaume, F., Bohrer, G., Nathan, R., Bridle, J.R., Gomulkiewicz, R., Klein, E.K., Rittland, L., Kuparinen, A., Gerber, S., Schueler, S. (2012). Long distance gene flow and adaptation of forest trees to rapid climate change. *Ecology letters*.

Kurz W.A., Dymond C.C., Stinson G., Rampley G.J., Neilson E.T. Caroll A. L., Ebata T., Safranyik L. (2008a). Mountain pine beetle and forest carbon feedback to climate change. *Nature*, vol.452: 987-990.

Lotterhos K. and Whitlock M.C. (2014). Evaluation of demographic history and neutral parameterization on the performance of Fst outlier tests. *Molecular Ecology*, vol.23: 2178-2192.

Martinez-Vilalta J, Pinol J. (2002). Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. *Forest Ecology and Management*, vol.161: 247-256.

Mikola J. (1982). Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland. *Silva Fenn*. vol.16:178-184.

Modrzynski J. (2007). Outline of ecology. In: Tjoelker M., G., Boratynski A., Bugala W. (2007). Biology and Ecology of Norway Spruce. *Forestry Sciences*, vol.78, pp. 195-253.

Mosca E., Eckert A. J., Di Pierro E. A., Rocchini D., La Porta N., Belletti P. and Neale D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. *Molecular Ecology*, pp.1-16.

Mullin, T.J., Andersson B., Bastien J.C., Beaulieu R. D., Burdon W. S., Dvorak J.N., King J.N., Kondo T., Krakowski J., Lee S.E., McKeand L., Paques A., Raffin J, Russell T., Skroppa T, Stoehr M. and Yanchuk A. (2011). Economic importance, breeding objectives and achievements. Pp. 40-127. *In*: Plomion C., Bousquet J. and Kole C. (eds). Genetics, Genomics and Breeding of Conifers Trees. Edenbridge Science Publishers and CRC Press, New York.

Neale DB, Ingvarsson PL (2008). Population, quantitative and comparative genomics of adaptation in forest trees. *Curr Opin Plant Biol* 11:1-7

Neale D. and Kremer A. (2011). Forest tree genomics: growing resources and applications. *Nature reviews. Genetics.* 111-122.

Neale DB, Savolainen O. (2004). Association genetics of complex traits in conifers. *Trends Plant Sci*, vol. 9:325-330.

Nebe W. (1968). Uber Bezinehungen zwischen Klima und Wachstum der Fichte (*Picea abies* L.) in inherem europeischen Verbreitungsggebiet. Arch. Forstw.17:1219-1238.

Neteler M. (2010). Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. *Remote sensing*, vol. 2: 333-351.

Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, et al. (2005). Genomic scans for selective sweeps using SNP data. *Genome Research*, vol.15: 283-292.

Nystedt B., Street N.R., Wetterborn A., Zuccolo A., Lin Yao-Cheng, Scofield D.G., Vezzi F., Delhomme N., Giacomello S., Alezeyenko A., Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello J.A., Sena J, Svensson T, Talavera-Lopez C, Theißen G, Tuominenn H, Vanneste K, Zci-Qiang W, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R., Hvidsten T.R., De Jong P., Mackay J., Morgante M., Ritland K., Sundberg B., Lee Thompson S, Van de Peer Y., Andresson B., Nilsson O., Ingvarsson P.K., Lundeberg J. and Jansson S. (2013). The Norway spruce genome sequence and conifer genome evolution. *Nature*, pp.1-6.

Obminski Z. (1977). Ogolny zarys ekologii. In: Bialobok S. (ed). Swierk pospolity, Picea abies (L.) Karst. Nasze drzewa lesne. PWN, Warszawa-Poznan 5: 332-371.

Obminski Z. (1947). Botanika Lesna z krotkim zaryem botaniki ogolneij. Wyd. Spoldzielni Las, War-Szawa. 112 pp.

Pelgas B., Bousquet J, Meirmans PG, Ritland K, Isabel N. (2011). QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. *BMC Genomics*, vol.12: 145.

Penuelas, J, Lloret F., Montoya R. (2001). Severe drought effects on Mediterranean woody flora in Spain. *Forest Science*, vol.47: 214-218.

Pritchard J.K., Stephens M. and Donnelly P. (2000). Inference of Population Structure Using Multilocus Genotype Data. *Genetics*, vol. 155: 945-959.

Pritchard JK, Pickrell JK and Coop G. (2010). The genetics of human adaptation: hard sweeps, soft sweeps and polygenic adaptation. *Current Biology*, vol.20: R208-15.

Prunier J., Laroche J., Beaulieu J. and Bousquet J. (2011). Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. *Molecular Ecology*, vol. 20: 1702-1716.

Rani A., Singh K., Sood P., Kumar S. and Ahuja P.S. (2009). *p-Coumarate:CoA* ligase as a key gene in the yield of catechins in tea [*Camellia sinensis* (L.) O. Kuntze]. *Funct. Integr Genomics*, vol 9: 271-275.

Savolainen, O., Bokma, F., Knurr, T., Karkkainen, K., Pyhajarvi, T., Wachowiak, W. (2007). Adaptation of forest trees to climate change. In: Koskela, J., Buck, A. and Teisser du Cros, E., editors. Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Bioversity International, Rome, Italy. Pp. 19-30.

Savolainen, O., Lascoux, M. and Merila, J. (2013). Ecological genomics of local adaptation. *Nature reviews* | *Genetics*, vol.14, pp.807-820.

Scalfi M., Mosca E., Di Pierro E.A., Troggio M., Vendramin G.G., Sperisen C., La Porta N. and Neale D. B. (unpublished). Interplay between demographic history and selection in shaping genetic diversity in Norway spruce at the micro- and macro-geographic scale.

Schmidt-Vogt H. (1977) (ed). Die Fichte. 1. Taxonomie, Verbreitung, Morphologie, Okologie, Waldesellschaften. Parey, Hamburg u. Berlin. 647 pp.

Schmidt-Vogt H. (1989). Die Fichte. II/2 – Krankheiten. Schaden. Fichtensterben. Verlag Paul Parev, Hamburg and Berlin. 607 pp.

Schoolfield R. (1982). Expressing daylenght as a function of latitude and Julian date. Unpublished.

Seager, R., ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., Naik, N. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America, *Science* 316, 1181-1184.

Skroppa T. and Johnsen O. (2000). Patterns of adaptive genetic variation in forest tree species; the reproductive environment as an evolutionary force in *Picea abies*. In: Matyas, C. (ed): Forest genetics and sustainability, pp. 49-58. Klumer, Dordrecht.

Smith, S.A. and Donoghue, M.J. (2008). Rates of Molecular Evolution are linked to Life History in Flowering Plants. *Science*, vol.322, pp86-89.

Solberg S. (2004). Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. *Forest Pathology*, vol.34: 93-107.

Spiecker, H. (2000). Growth of Norway Spruce (*Picea abies* [L.] Karst.) under changing Environmental Conditions in Europe, in Klimo, E., Hager, H. and Kulhavy, J. (eds) (2000). Spruce Monocultures in Central Europe-Problems and Prospects. EFI Proceedings, 33, pp11-26.

Stewart, W.N. and G.W. Rothwell (1993). Paleobotany and the evolution of the plants. Second edition, Cambridge University Press, Cambridge, UK.

<u>Stucki S. and Joost S. (2014). Samβada: User manual. Available online:</u> <u>http://lasig.epfl.ch/sambada.</u>

Stucki S., Orozco-terWengel P., Bruford M.W., Colli L., Masembe C., Negrini R., Taberlet P., Joost S. and the NEXTGEN Consortium. (2014). High performance computation of landscape genomic models integrating local indices of spatial association.

Cornell University Library. Available online: http://arxiv.org/pdf/1405.7658v1.pdf

Thornthwaite CW. (1948). An approach toward a rational classification of climate. *Geographical Review*, vol. 38: 55-94.

Tiffin P. and Ross-Ibarra J. (2014). Advances and limits of using population genetics to understand local adaptation. *Trends in Ecology and Evolution*. pp.1-8.

Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, and Ihara-Ujino T. (2012). Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, *Cryptomeria japonica*. *Heredity*. vol.109:349-360.

Visscher PM, Brown MA, McCarthy MI, Yang J. (2012). Five Years of GWAS Discovery. *The American Journal of Human Genetics*, vol.90: 7 -24.

Wagner A., Donaldson L., Kim H., Phillips L., Flint H., Steward D., Torr K., Koch G., Schmitt U. and Ralph J. (2009). Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnospersm *Pinus radiata*. *Plant Physiology*. vol. 149: 370-383.

Wright S. (1931). Evolution in Mendelian populations. *Genetics*, vol. 16: 97-159.

Supplements

Supplement 1: List of mother trees sampled across the European Alps with geo-reference data provided. Total number of genotyped individuals is 392 where 205 individuals from Italy-Slovenia-Austria, 107 individuals from Switzerland and 80 individuals from Austria.

ID	COUNTRY	LATITUDE	LONGITUDE	ELEVATION
1	SLOVENIA	45.85535	14.106136	779
2	SLOVENIA	45.558689	14.442744	1142
3	SLOVENIA	46.413892	14.330322	1278
4	ITALY	45.76277034	10.87599277	1555
5	ITALY	45.76253831	10.87548852	1570
7	ITALY	45.76297991	10.87557435	1555
8	ITALY	46.13353065	10.80138445	1640
9	ITALY	46.14412432	10.80221057	1670
10	ITALY	46.14497173	10.8034122	1670
11	ITALY	46.14508323	10.80446362	1670
12	ITALY	46.1430985	10.80311179	1670
13	ITALY	46.358539	11.49359822	1820
14	ITALY	46.35927203	11.49029374	1820
15	ITALY	46.36035306	11.48886681	1820
16	ITALY	46.48599804	11.15234613	1400
17	ITALY	46.48604975	11.15306497	1400
18	ITALY	46.4862492	10.30208588	1370
19	ITALY	46.46715756	10.2636981	1515
20	ITALY	46.46745315	10.26337624	1515
21	ITALY	46.46718712	10.26352644	1515
22	ITALY	46.46972912	10.26279688	1525
23	ITALY	46.32482361	9.502229691	900
24	ITALY	46.32566823	9.509289265	900
25	ITALY	46.32586086	9.509589672	900
26	ITALY	46.32531261	9.508559704	800
27	ITALY	46.32476434	9.486393929	860
28	ITALY	44.18589693	7.26998806	1590
29	ITALY	44.18571229	7.269945145	1590
30	ITALY	44.18629699	7.269730568	1590
31	ITALY	44.18758947	7.269945145	1590
32	ITALY	44.18820492	7.270116806	1590
33	ITALY	44.18555842	7.269644737	1590
34	ITALY	44.18525068	7.269558907	1590
35	ITALY	44.33818402	7.054252625	1250
36	ITALY	44.33822815	7.053002715	1300
37	ITALY	44.33818019	7.053407729	1300
38	ITALY	44.32817686	7.028428316	1460
39	ITALY	44.28298521	7.067062855	1300
40	ITALY	44.25864748	7.045326233	1675

41	ITALY	44.258732	7.046248913	1680
42	ITALY	44.25848611	7.046324015	1680
43	ITALY	46.13935185	11.47203326	1260
44	ITALY	46.14764022	11.45871878	1325
45	ITALY	46.14686719	11.45973802	1310
46	ITALY	46.14688206	11.45939469	1310
47	ITALY	46.14697125	11.46019936	1312
48	ITALY	46.12890597	11.47687197	1100
49	ITALY	46.12956029	11.47652864	1100
50	ITALY	46.41701013	11.72039509	1550
51	ITALY	46.41709149	11.72057748	1550
52	ITALY	46.41730598	11.72089934	1550
53	ITALY	46.42127774	11.70846462	1430
54	ITALY	46.42148483	11.7081213	1433
55	ITALY	46.42175108	11.70782089	1440
56	ITALY	46.41805302	11.71061039	1500
57	ITALY	46.49079209	11.78062677	1725
58	ITALY	46.5021144	11.79169893	1865
59	ITALY	46.5012799	11.79201007	1865
60	ITALY	46.53169049	11.78120613	1890
61	ITALY	46.48254075	11.73736811	1520
62	ITALY	46.48289535	11.73702478	1530
63	ITALY	46.48596849	11.73048019	1580
64	ITALY	46.48309482	11.73720717	1570
65	ITALY	46.48255552	11.73642397	1520
66	ITALY	46.32211185	11.59942746	1100
67	ITALY	46.32314174	11.60028577	1090
68	ITALY	46.29718847	11.50802851	1080
69	ITALY	46.29781854	11.50733113	1120
70	ITALY	46.30080577	11.50885463	1160
71	ITALY	46.30090212	11.5105176	1180
72	ITALY	46.27468616	11.36267424	1200
73	ITALY	46.27468616	11.36267424	1245
74	ITALY	46.28023289	11.37005568	1240
75	ITALY	46.26668394	11.35178447	850
76	ITALY	46.18130125	11.43693924	1760
77	ITALY	46.18219266	11.43666029	1780
78	ITALY	46.18295034	11.43418193	1770
80	ITALY	46.31716958	11.65374756	1320
81	ITALY	46.31501321	11.65921926	1350
82	ITALY	46.29572072	11.7800796	1930
83	ITALY	46.29533525	11.78065896	1933
85	ITALY	46.30967752	11.74735665	1530
86	ITALY	46.30669819	11.74003959	1510
87	ITALY	46.30737263	11.74228191	1515

88	ITALY	46.29524629	11.79241776	1940
89	ITALY	46.34040253	11.79800749	2015
90	ITALY	46.27271353	11.79880142	1610
91	ITALY	45.99986087	10.49755454	1496
92	ITALY	46.00041983	10.49695373	1496
93	ITALY	46.00025587	10.49746871	1496
94	ITALY	46.00009191	10.49753308	1496
95	ITALY	45.97919759	10.53968668	960
96	ITALY	45.97928706	10.53957939	960
97	ITALY	45.91366072	11.23493671	1445
98	ITALY	45.91449674	11.23356342	1445
99	ITALY	45.91503417	11.23253345	1445
100	ITALY	45.91509389	11.2319541	1445
101	ITALY	46.41478373	10.78331709	1400
102	ITALY	46.41173616	10.78938961	1360
103	ITALY	46.41030108	10.7920289	1360
104	ITALY	46.41049341	10.79022646	1360
105	ITALY	46.40720147	10.69576979	1740
106	ITALY	46.40885117	10.69134951	1770
107	ITALY	46.40998299	10.69067359	1780
108	ITALY	46.40975367	10.68962216	1800
109	ITALY	46.40888815	10.69173574	1770
110	ITALY	46.51437205	12.08912373	1555
111	ITALY	46.4951721	12.07562685	1840
113	ITALY	46.49438919	12.07446814	1860
114	ITALY	46.51455663	12.09148407	1530
115	ITALY	46.62431595	12.65882492	1340
116	ITALY	46.62226752	12.65378237	1332
117	ITALY	46.62263595	12.65377164	1332
118	ITALY	46.62316648	12.65355706	1332
119	ITALY	46.53545464	12.27400303	1165
120	ITALY	46.57585481	12.25215912	1740
122	ITALY	46.54652415	12.24321127	1377
123	ITALY	46.54609617	12.24175215	1377
124	ITALY	46.54627326	12.24100113	1377
127	ITALY	46.62030743	12.62799025	1288
128	ITALY	46.62024111	12.6282692	1288
129	ITALY	46.62016742	12.62835503	1288
130	ITALY	46.61071229	12.62099504	1288
131	ITALY	46.46859114	13.6611557	1006
132	ITALY	46.46969956	13.66158485	1006
133	ITALY	46.54581577	13.01414251	750
134	ITALY	46.54631754	13.0148077	750
135	ITALY	46.55052338	13.02959204	1300
136	ITALY	46.55052338	13.02959204	1300

137	ITALY	46.55052338	13.02959204	1300
138	ITALY	46.55052338	13.02959204	1300
139	ITALY	46.55052338	13.02959204	1300
140	ITALY	46.55052338	13.02959204	1300
141	ITALY	46.55052338	13.02959204	1300
142	ITALY	46.51667559	13.67918015	1250
143	ITALY	46.51667559	13.67918015	1250
144	ITALY	46.51667559	13.67918015	1250
145	ITALY	46.51667559	13.67918015	1250
146	ITALY	46.51667559	13.67918015	1250
147	ITALY	46.51667559	13.67918015	1250
148	ITALY	46.46829556	13.66094112	1006
149	ITALY	46.4672019	13.66094112	1006
150	ITALY	46.46114201	13.6648035	1010
151	ITALY	46.46399468	13.66538286	1010
152	ITALY	46.43548347	13.56790066	920
153	ITALY	46.390872	13.47582579	1190
154	ITALY	46.48908578	11.84815407	1800
155	ITALY	46.4669876	12.4736774	1000
156	ITALY	46.70400477	10.90142012	1540
157	ITALY	46.70432114	10.90139866	1540
158	ITALY	46.70454922	10.90110898	1540
159	ITALY	46.82992077	11.29863381	1520
160	ITALY	46.82942163	11.29853725	1520
161	ITALY	46.834578	11.3054198	1750
162	ITALY	46.83448258	11.30525887	1750
163	ITALY	46.85735918	11.34645224	1780
164	ITALY	47.05454739	12.13592291	1630
165	ITALY	47.05440851	12.13609457	1630
166	ITALY	47.0550883	12.1367383	1630
167	ITALY	47.05530758	12.13654518	1630
168	ITALY	47.05407227	12.13400245	1630
169	ITALY	46.92893092	11.27435446	1430
170	ITALY	46.92983943	11.27057791	1490
171	ITALY	46.93023507	11.26883984	1510
172	ITALY	46.92777328	11.26793861	1600
173	ITALY	46.83604958	12.23653793	1420
174	ITALY	46.83587343	12.23641992	1425
175	ITALY	46.83285682	12.23266482	1500
176	ITALY	46.83431744	12.23382354	1500
177	ITALY	46.84595695	12.25091457	1470
178	ITALY	46.84516443	12.2507	1470
179	ITALY	46.84595695	12.25091457	1470
180	ITALY	46.74252217	11.44336581	1550
181	ITALY	46.74473515	11.44479275	1550

182	ITALY	46.74573501	11.44535065	1560
183	ITALY	46.74263981	11.45134807	1540
184	ITALY	46.55052338	13.02959204	1300
185	ITALY	46.55052338	13.02959204	1300
186	ITALY	45.012488	6.849343	1665
187	ITALY	45.013633	6.848688	1640
188	ITALY	45.017881	6.852765	1580
189	ITALY	46.230767	8.296094	1100
190	ITALY	46.229528	8.293734	1150
191	ITALY	46.229936	8.29354	1180
192	ITALY	46.230351	8.292575	1210
193	ITALY	46.234329	8.289013	1250
194	ITALY	46.231687	8.289742	1220
195	ITALY	45.754529	7.704228	1620
196	ITALY	45.754529	7.704248	1610
197	ITALY	45.753481	7.710428	1590
198	ITALY	45.830967	6.985921	1590
200	ITALY	45.830534	6.987004	1590
201	ITALY	45.822504	6.96914	1430
202	FRANCE	45.026455	6.656858	1774
203	FRANCE	45.02609	6.656914	1772
204	FRANCE	45.02579	6.656929	1769
205	FRANCE	45.02423	6.857508	1755
206	FRANCE	44.351132	6.495313	1559
207	FRANCE	44.351385	6.495627	1580
208	FRANCE	44.351246	6.49657	1596
209	FRANCE	44.351434	6.494705	1580
210	FRANCE	44.113144	7.286122	1482
211	FRANCE	44.11099	7.298147	1547
212	FRANCE	44.111293	7.297478	1543
213	FRANCE	44.111687	7.296281	1534
215	AUSTRIA	47.280364	11.246395	900
216	AUSTRIA	47.280364	11.246395	900
217	AUSTRIA	47.191404	14.279823	1080
218	AUSTRIA	47.191404	14.279823	1080
219	AUSTRIA	47.191404	14.279823	1080
220	AUSTRIA	47.601707	13.371048	885
221	AUSTRIA	47.601707	13.371048	885
222	AUSTRIA	47.601707	13.371048	885
223	AUSTRIA	47.891831	14.973249	1000
224	AUSTRIA	47.891831	14.973249	1000
225	AUSTRIA	47.891831	14.973249	1000
226	AUSTRIA	47.55504	14.487534	1320
227	AUSTRIA	47.55504	14.487534	1320
229	AUSTRIA	46.659864	14.065762	840

232	AUSTRIA	46.899616	15.15976	1120
233	AUSTRIA	46.899616	15.15976	1120
234	AUSTRIA	46.918848	12.318892	1680
235	AUSTRIA	46.918848	12.318892	1680
236	AUSTRIA	46.918848	12.318892	1680
237	AUSTRIA	46.899616	15.15976	1120
238	AUSTRIA	47.286216	14.608126	1400
239	AUSTRIA	47.286216	14.608126	1400
240	AUSTRIA	47.286216	14.608126	1400
241	AUSTRIA	47.379057	13.573952	1000
242	AUSTRIA	47.379057	13.573952	1000
243	AUSTRIA	47.379057	13.573952	1000
244	AUSTRIA	47.764772	13.22402	700
245	AUSTRIA	47.764772	13.22402	700
246	AUSTRIA	47.764772	13.22402	700
247	AUSTRIA	47.091441	11.45359	1220
248	AUSTRIA	47.091441	11.45359	1220
249	AUSTRIA	47.091441	11.45359	1220
250	AUSTRIA	46.748477	14.563622	1040
251	AUSTRIA	46.748477	14.563622	1040
252	AUSTRIA	46.748477	14.563622	1040
253	AUSTRIA	47.573688	15.232029	1590
255	AUSTRIA	47.573688	15.232029	1590
256	AUSTRIA	47.565755	15.804348	1280
257	AUSTRIA	47.565755	15.804348	1280
258	AUSTRIA	47.565755	15.804348	1280
259	AUSTRIA	47.409089	16.041278	490
261	AUSTRIA	47.409089	16.041278	490
262	AUSTRIA	48.415644	15.50231	415
263	AUSTRIA	48.415644	15.50231	415
264	AUSTRIA	48.415644	15.50231	415
265	AUSTRIA	48.05046	15.517201	580
266	AUSTRIA	48.05046	15.517201	580
267	AUSTRIA	48.05046	15.517201	580
268	AUSTRIA	48.32664	15.381761	620
270	AUSTRIA	48.32664	15.381761	620
271	AUSTRIA	48.08883	13.412944	645
274	AUSTRIA	46.868997	14.931048	1025
276	AUSTRIA	46.868997	14.931048	1025
277	AUSTRIA	46.722991	14.659286	1040
279	AUSTRIA	46.722991	14.659286	1040
280	AUSTRIA	47.588148	15.742625	960
281	AUSTRIA	47.588148	15.742625	960
282	AUSTRIA	47.588148	15.742625	960
283	AUSTRIA	48.154327	16.109937	405

1 1		40 45 4007	46 400007	405
284	AUSTRIA	48.154327	16.109937	405
285	AUSTRIA	48.154327	16.109937	405
286	AUSTRIA	47.071393	10.633564	1505
287	AUSTRIA	47.071393	10.633564	1505
288	AUSTRIA	47.071393	10.633564	1505
290	AUSTRIA	47.182552	12.266278	1680
291	AUSTRIA	47.182552	12.266278	1680
292	AUSTRIA	47.373201	10.685449	1450
293	AUSTRIA	47.373201	10.685449	1450
294	AUSTRIA	47.373201	10.685449	1450
295	AUSTRIA	47.430257	12.354877	1360
300	AUSTRIA	47.438273	15.115433	1290
304	AUSTRIA	47.605121	12.103071	1040
307	AUSTRIA	47.846391	14.845474	1325
310	AUSTRIA	48.097673	13.119575	465
315	AUSTRIA	46.498946	14.643016	1080
320	AUSTRIA	47.220326	15.785514	560
325	AUSTRIA	48.375031	15.383445	640
330	AUSTRIA	46.74919	15.154631	1065
335	AUSTRIA	48.319402	15.027712	1000
339	AUSTRIA	46.587064	13.776855	1120
340	SWITZERLAND	47.64560829	8.74410406	450
341	SWITZERLAND	47.64560829	8.74410406	450
342	SWITZERLAND	47.64560829	8.74410406	450
344	SWITZERLAND	47.63568582	9.13815627	530
345	SWITZERLAND	47.63568582	9.13815627	530
346	SWITZERLAND	47.45708745	9.32027616	903
347	SWITZERLAND	47.45708745	9.32027616	903
348	SWITZERLAND	47.45708745	9.32027616	903
349	SWITZERLAND	47.20682328	7.03419565	1035
350	SWITZERLAND	47.20682328	7.03419565	1035
351	SWITZERLAND	47.20682328	7.03419565	1035
352	SWITZERLAND	47.31632067	7.40269057	655
353	SWITZERLAND	47.31632067	7.40269057	655
354	SWITZERLAND	47.31632067	7.40269057	655
355	SWITZERLAND	47.22661252	7.83178805	480
357	SWITZERLAND	47.22661252	7.83178805	480
358	SWITZERLAND	47.36547457	7.82263008	865
359	SWITZERLAND	47.36547457	7.82263008	865
360	SWITZERLAND	47.36547457	7.82263008	865
361	SWITZERLAND	47.16551536	9.28739407	1640
362	SWITZERLAND	47.16551536	9.28739407	1640
363	SWITZERLAND	47.26273861	9.42940434	1460
364	SWITZERLAND	47.26273861	9.42940434	1460
365	SWITZERLAND	47.26273861	9.42940434	1460

366	SWITZERLAND	47.04378493	7.59787919	620
367	SWITZERLAND	47.04378493	7.59787919	620
368	SWITZERLAND	47.04378493	7.59787919	620
369	SWITZERLAND	47.02175967	7.85270326	1165
370	SWITZERLAND	47.02175967	7.85270326	1165
371	SWITZERLAND	47.02175967	7.85270326	1165
372	SWITZERLAND	46.98249309	8.84995893	1490
374	SWITZERLAND	46.98249309	8.84995893	1490
376	SWITZERLAND	47.04802314	8.7131424	1180
378	SWITZERLAND	47.09604765	9.1873817	1120
380	SWITZERLAND	47.09604765	9.1873817	1120
381	SWITZERLAND	47.1093514	9.02649182	1460
382	SWITZERLAND	47.1093514	9.02649182	1460
385	SWITZERLAND	47.07806309	9.25058022	1700
386	SWITZERLAND	46.97507113	9.78725991	1540
388	SWITZERLAND	46.75785885	6.46841406	1130
392	SWITZERLAND	46.79710185	7.00496603	610
394	SWITZERLAND	46.79710185	7.00496603	610
395	SWITZERLAND	46.8423952	8.00545824	1170
396	SWITZERLAND	46.8423952	8.00545824	1170
398	SWITZERLAND	46.77391207	8.33660654	1740
400	SWITZERLAND	46.90255281	8.32981578	1500
401	SWITZERLAND	46.90255281	8.32981578	1500
402	SWITZERLAND	46.77469683	8.73527876	1460
404	SWITZERLAND	46.77469683	8.73527876	1460
405	SWITZERLAND	46.79100679	9.04987194	1520
406	SWITZERLAND	46.79100679	9.04987194	1520
408	SWITZERLAND	46.75285117	9.39301711	1500
410	SWITZERLAND	46.75285117	9.39301711	1500
411	SWITZERLAND	46.90924229	9.42832499	1020
412	SWITZERLAND	46.90924229	9.42832499	1020
414	SWITZERLAND	46.87704426	9.80245449	1740
416	SWITZERLAND	46.59078608	6.16219861	1265
418	SWITZERLAND	46.65812784	7.16304745	1270
420	SWITZERLAND	46.65812784	7.16304745	1270
421	SWITZERLAND	46.51003045	7.54756334	1550
422	SWITZERLAND	46.51003045	7.54756334	1550
424	SWITZERLAND	46.699867	7.76395538	1520
427	SWITZERLAND	46.6582495	8.53320812	1360
428	SWITZERLAND	46.6582495	8.53320812	1360
430	SWITZERLAND	46.53274412	8.36579642	1670
431	SWITZERLAND	46.53274412	8.36579642	1670
432	SWITZERLAND	46.53274412	8.36579642	1670
434	SWITZERLAND	46.58437271	9.13285987	1725
436	SWITZERLAND	46.70439244	8.92097277	1640

438	SWITZERLAND	46.70439244	8.92097277	1640
439	SWITZERLAND	46.70479772	9.19115549	960
440	SWITZERLAND	46.70479772	9.19115549	960
442	SWITZERLAND	46.54413293	9.31789976	1630
444	SWITZERLAND	46.54413293	9.31789976	1630
445	SWITZERLAND	46.66836787	10.06171181	1670
446	SWITZERLAND	46.66836787	10.06171181	1670
448	SWITZERLAND	46.29332706	7.23490265	1630
450	SWITZERLAND	46.4489104	6.918335	920
451	SWITZERLAND	46.4489104	6.918335	920
453	SWITZERLAND	46.35868883	6.97130339	1225
454	SWITZERLAND	46.35868883	6.97130339	1225
456	SWITZERLAND	46.45078563	7.51350254	1850
458	SWITZERLAND	46.33079901	7.54058404	1490
460	SWITZERLAND	46.33079901	7.54058404	1490
461	SWITZERLAND	46.39823609	7.78450259	1600
463	SWITZERLAND	46.39823609	7.78450259	1600
465	SWITZERLAND	46.36536073	8.17153512	1680
467	SWITZERLAND	46.38453564	8.12629561	1250
469	SWITZERLAND	46.38453564	8.12629561	1250
470	SWITZERLAND	46.38199651	8.01707381	2010
471	SWITZERLAND	46.38199651	8.01707381	2010
473	SWITZERLAND	46.27886891	8.47579076	1380
475	SWITZERLAND	46.31857028	8.52095467	1280
477	SWITZERLAND	46.45532806	9.19264644	1620
479	SWITZERLAND	46.45532806	9.19264644	1620
480	SWITZERLAND	46.27404204	9.14834001	1050
482	SWITZERLAND	46.27404204	9.14834001	1050
484	SWITZERLAND	46.32439664	9.55064465	1590
486	SWITZERLAND	46.297474	10.05252477	1430
488	SWITZERLAND	46.14846407	7.10438891	905
489	SWITZERLAND	46.14846407	7.10438891	905
490	SWITZERLAND	46.14846407	7.10438891	905
493	SWITZERLAND	46.22334638	7.44512528	1630
495	SWITZERLAND	46.25937612	7.51440954	780
497	SWITZERLAND	46.25937612	7.51440954	780
498	SWITZERLAND	46.21572485	7.46286487	1970
499	SWITZERLAND	46.21572485	7.46286487	1970

Supplement 2: List of SNPs submitted to 384 Illumina GoldenGate genotyping assay. Total 94 SNPs originated from CRSP dataset, 102 SNPs from Uppsala (Sweden) and 188 SNPs from Arborea dataset (Canada)

CRSP dataset

SNP name	Source	Annotation
2_9603_01-Paab_139	CRSP	NA
2_4196_01-Paab_201	CRSP	GTP binding protein, Similar to Arabidopsis thaliana (NP_569023), e=3e-17 & max.identity=35%
UMN_853_01-Paab_38	CRSP	Anonymous locus
UMN_3055_01-Paab_224	CRSP	Similar to Arabidopsis thaliana (NP_177203), e=1e-48 & max.identity=78%, protein root hair specific 10
CL1694Contig1_02-365	CRSP	Similar to Arabidopsis thaliana (NP_172112), e=1e-99 & max.identity=84%, U5 small nuclear ribonucleoprotein component, 116 kD, GTPase activity, GTP binding, translation factor activity, nucleic acid binding, translation elongation factor activity, INVOLVED IN: regulation of embryo sac egg cell differentiation, embryo development ending in seed dormancy
2_9665_01-Paab_175	CRSP	Similar to Ricinus communis (XP_002509420.1), e=5e-86 &max.identity=62%, interferon-induced guanylate-binding protein, putative
CL717Contig1_05-Paab_95	CRSP	Similar to Medicago truncatula (XP_003601864.1), e=1e-20 & max. identity=61%, photosystem II core complex proteins psbY, chloroplast precursor
0_13978_01-Paab_102	CRSP	binding protein
0_177_01-Paab_165	CRSP	Anonymous locus
0_8531_01-Paab_157	CRSP	Similar to Ricinus communis (XP_002518462.1), e=2e-55 & max.identity=62%, multicopper oxidase, putative
CL3507Contig1_03- Paab_191	CRSP	Similar to Arabidopsis thaliana, (NP_566474), e=3e-82 &max.identity=65%, Ca2+ antiporter/cation exchanger, cation/calcium exchanger 3
0_13957_02-Paab_309	CRSP	receptor-like protein kinase HSL1-like (leucine- rich repeat receptor-like protein kinase)
2_7725_01-Paab_466	CRSP	Similar to Arabidopsis thaliana (NP_001189624.1), e=4e-85 & max. identity=62%, beta-galactosidase 8
0_13957_02-132	CRSP	receptor-like protein kinase HSL1-like (leucine- rich repeat receptor-like protein kinase), Anonymous locus
CL3771Contig1_04- Paab_419	CRSP	Ubiquitin carrier protein E, ubiquitin- conjugating enzyme E2 32-like
CL3582Contig1_03-Paab_63	CRSP	trehalose-6-phosphate synthase (TPS)

0_15639_01-392	CRSP	Anonymous locus
0_13680_01-Paab_216	CRSP	VAC14-like protein
0_7171_01-Paab_233	CRSP	Glycogen synthase kinase-3 beta, putative, Anonymous locus
0_9457_01-Paab_421	CRSP	pentatricopeptide repeat-containing protein, putative
CL304Contig1_01-202	CRSP	Oxygen-evolving enhancer protein 1, chloroplast precursor, putative
CL1758Contig1_04-288	CRSP	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial electron transport
2_9280_01-Paab_123	CRSP	Anonymous locus, chromatin remodeling complex subunit
0_11772_01-Paab_103	CRSP	o-sialoglycoprotein endopeptidase
2_9280_01-Paab_338	CRSP	Anonymous locus, chromatin remodeling complex subunit
0_8531_01-Paab_363	CRSP	multicopper oxidase, putative
CL1692Contig1_05- Paab_178	CRSP	histone ubiquitination proteins group, chromosome segregation protein SMC, primarily archaeal type
0 4541 02-266	CRSP	BTB/POZ domain-containing protein
 2_9280_01-Paab_193	CRSP	chromatin remodeling complex subunit
CL304Contig1_01-Paab_118	CRSP	Oxygen-evolving enhancer protein 1, chloroplast precursor, putative
2_10438_01-351	CRSP	amidophosphoribosyltransferase, putative
0_9383_01-Paab_438	CRSP	ubiquitin carboxyl-terminal hydrolase-like protein
0_366_02-Paab_380	CRSP	Heat stress transcription factor B-4
2_4892_01-Paab_39	CRSP	ccaat-binding transcription factor, putative
2_3947_01-Paab_298	CRSP	AT hook motif DNA-binding family protein
2_9845_01-Paab_282	CRSP	Papain family cysteine protease
CL4284Contig1_01- Paab_180	CRSP	Anonymous locus
0_1439_01-Paab_226	CRSP	Pre-mRNA-splicing factor 38B
PabiesCol1_583	CRSP	picea abies col1 gene for constans-like 1
0_17587_01-Paab_42	CRSP	Anonymous locus
2_6491_01-Paab_360	CRSP	Coiled-coil domain-containing protein, putative
0_9457_01-Paab_46	CRSP	pentatricopeptide repeat-containing protein, putative
0_10754_01-Paab_320	CRSP	FACT complex subunit, global transcription factor group, partial
2_5636_01-Paab_399	CRSP	pentatricopeptide repeat-containing protein
	CRSP	Serine/threonine-protein kinase PBS1, putative
	CRSP	f-box family protein
UMN_1023_01-267	CRSP	F-box/LRR-repeat protein 14
0_2433_01-Paab_290	CRSP	histidine triad family protein
2_4976_01-Paab_176	CRSP	26S proteasome regulatory subunit N6
0_7171_01-Paab_359	CRSP	Glycogen synthase kinase-3 beta, putative
CL4511Contig1_02- Paab_223	CRSP	oligopeptidase, putative [Ricinus communis) calmodulin-binding region domain containing protein (Oryza sativa)
2_5636_01-Paab_209	CRSP	pentatricopeptide repeat-containing protein
UMN_4748_01-Paab_38	CRSP	peptide transporter

2_9087_01-Paab_39	CRSP	Anonymous locus
0_10267_01-Paab_148	CRSP	myb domain protein 55
UMN_2809_01-104	CRSP	Hypothetical protein
0_10515_01-Paab_158	CRSP	Anonymous locus
CL1308Contig1_03- Paab_181	CRSP	NA
 CL1148Contig1_08- Paab_134	CRSP	malate dehydrogenase
	CRSP	F box family protein
2_4586_01-Paab_365	CRSP	Oligosaccharyltransferase complex/magnesium transporter family protein
2_9328_01-Paab_425	CRSP	transducin/WD40 domain-containing protein
CL1694Contig1_01- Paab_235	CRSP	U5 small nuclear ribonucleoprotein component, 116 kD
2_2937_01-127	CRSP	ATP/ADP transporter, partial
CL1343Contig1_05- Paab_165	CRSP	Phosphoenolpyruvate carboxykinase [ATP], putative
0_17215_01-Paab_225	CRSP	Magnesium-chelatase subunit H, putative
CL3602Contig1_03- Paab_219	CRSP	protochlorophyllide reductase B,
CL1148Contig1_08- Paab_225	CRSP	malate dehydrogenase
2_3851_01-Paab_280	CRSP	Anonymous locus
UMN_4091_02-Paab_39	CRSP	F box family protein
0_10631_01-Paab_193	CRSP	heat-shock protein 70T-2
CL3795Contig1_01-Paab_45	CRSP	amino acid dehydrogenase family protein
CL1694Contig1_04-Paab_90	CRSP	U5 small nuclear ribonucleoprotein component, 116 kD
0_2354_01-Paab_194	CRSP	armadillo repeat only 1 protein
2_7803_01-Paab_235	CRSP	glycoside hydrolase family 28 protein / polygalacturonase (pectinase) family protein
2_3867_02-Paab_440	CRSP	profilin, putative
2_4723_01-Paab_276	CRSP	coatomer gamma subunit, putative
0_489_01-Paab_316	CRSP	Anonymous locus
0_12021_01-161	CRSP	STRUBBELIG-receptor family 6-protein serine/threonine kinase activity, protein kinase activity, ATP binding
2_9466_01-Paab_179	CRSP	Protease ecfE, putative (present in plastid and chloroplast)
0_7471_01-Paab_399	CRSP	Similar to EX309936.1 [Picea glauca]
0_7921_01-Paab_212	CRSP	short chain dehydrogenase, putative
0_13058_01-Paab_551	CRSP	Polygalacturonase
0_9457_01-Paab_115	CRSP	pentatricopeptide repeat-containing protein, putative
UMN_1604_01-Paab_348	CRSP	SNF2 family DNA-dependent ATPase
0_17215_01-Paab_108	CRSP	Magnesium-chelatase subunit H, putative
0_14976_01-Paab_305	CRSP	ATP binding protein, putative
0_11090_01-Paab_251	CRSP	protein binding protein, putative
UMN_7021_02-141	CRSP	Hypotetical protein
0_8111_01-39	CRSP	3-hydroxyisobutyrate dehydrogenase
CL3771Contig1_04-Paab_68	CRSP	Ubiquitin carrier protein E, ubiquitin- conjugating enzyme E2 32-like

0_13957_02-Paab_27	CRSP	receptor-like protein kinase HSL1-like (leucine- rich repeat receptor-like protein kinase)
CL4257Contig1_01- Paab_391	CRSP	Hypotetical protein
CL1530Contig1_04-Paab_64	CRSP	histone H2B - performs performs essential roles in maintaining structural integrity of the nucleosome, chromatin condensation, and binding

Arborea dataset (Canada)

SNP name	Source	Annotation
PabiesPRR1_1632	Canada	Picea abies Putative PRR1 gene
PabiesZTL_397 Canada		Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl) gene, partial cds
PaPHYN_RI204	Canada	Picea abies partial phynrI gene for phytochrome N
PaPHYO_RI145	Canada	Picea abies partial phyo gene for phytochrome O
PGLM2-0013	Canada	Anonymous locus
PGLM2-0021	Canada	NA
PGLM2-0024	Canada	KH domain-containing protein
PGLM2-0049	Canada	oxidoreductase, 20G-Fe(II) oxygenase family protein
PGLM2-0081	Canada	galactosyltransferase family protein
PGLM2-0098	Canada	PP2AA2 (PROTEIN PHOSPHATASE 2A SUBUNIT A2); protein phosphatase type 2A regulator
PGLM2-0127	Canada	PHS2 (ALPHA-GLUCAN PHOSPHORYLASE 2); phosphorylase/ transferase, transferring glycosyl groups
PGLM2-0130	Canada	Clone WS02756_M22 unknown mRNA
PGLM2-0134	Canada	Anonymous locus
PGLM2-0138	Canada	ZAC; ARF GTPase activator/ phospholipid binding
PGLM2-0140	Canada	Transcribed locus, moderately similar to XP_001771189.1 predicted protein [Physcomitrella patens subsp. patens]
PGLM2-0154 Canada		unknown protein
PGLM2-0158 Canada		SK13 (SHAGGY-LIKE KINASE 13); ATP binding / protein kinase/ protein serine/threonine kinase
PGLM2-0160	Canada	NA
PGLM2-0169	Canada	ATCUL1 (ARABIDOPSIS THALIANA CULLIN 1); protein binding
PGLM2-0193	Canada	LINC1 (LITTLE NUCLEI1)
PGLM2-0195 Canada		LOCATED IN: endomembrane system; EXPRESSED IN: 24 plant structures; EXPRESSED DURING: 15 growth stages; CONTAINS InterPro DOMAIN/s: LMBR1-like conserved region (InterPro:IPR006876); BEST Arabidopsis thaliana protein match is: LMBR1 integral membrane family protein (TAIR:AT5G01460.1); Has 250 Blast hits to 249 proteins in 81 species: Archae - 0; Bacteria - 0; Metazoa - 107; Fungi - 39; Plants - 31; Viruses - 0; Other Eukaryotes - 73 (source: NCBI BLink).
PGLM2-0227	Canada	Transcribed locus
PGLM2-0242	Canada	SEC22; transporter
PGLM2-0271	Canada	cpHsc70-1 (chloroplast heat shock protein 70-1); ATP binding
PGLM2-0285 Canad		MRH1 (morphogenesis of root hair 1); ATP binding / protein binding / protein kinase/ protein serine/threonine kinase/ protein tyrosine kinase

Supplements

PGLM2-0288	Canada	Transcribed locus	
PGLM2-0295	Canada	binding	
PGLM2-0296	Canada	ARFA1D; GTP binding / phospholipase activator/ protein binding	
PGLM2-0314	Canada	ATCS; ATP binding / ATP citrate synthase/ citrate (SI)- synthase	
PGLM2-0349	Canada	Transcribed locus	
PGLM2-0353	Canada	haloacid dehalogenase-like hydrolase family protein	
PGLM2-0360	Canada	FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process unknown; LOCATED IN: cellular_component unknown; EXPRESSED IN: 17 plant structures; EXPRESSED DURING: 7 growth stages; BEST Arabidopsis thaliana protein match is: proline-rich family protein (TAIR:AT3G09000.1); Has 94255 Blast hits to 49644 proteins in 1573 species: Archae - 225; Bacteria - 11215; Metazoa - 37735; Fungi - 21320; Plants - 3339; Viruses - 2662; Other Eukaryotes - 17759 (source: NCBI BLink).	
PGLM2-0368	Canada	FLA7 (FASCICLIN-LIKE ARABINOOGALACTAN 7)	
PGLM2-0383	Canada	Transcribed locus, moderately similar to XP_002283272.1 PREDICTED: hypothetical protein [Vitis vinifera]	
PGLM2-0391	Canada	Transcribed locus	
PGLM2-0395	Canada	NA	
PGLM2-0404	Canada	40S ribosomal protein S15 (RPS15D)	
PGLM2-0425	Canada	ATCOAD (4-phosphopantetheine adenylyltransferase); nucleotidyltransferase/ pantetheine-phosphate adenylyltransferase	
PGLM2-0433	Canada	splicing factor Prp18 family protein	
PGLM2-0437	Canada	folic acid binding / transferase	
PGLM2-0440	Canada	Os11g0167800	
PGLM2-0450	Canada	unknown protein	
PGLM2-0460	Canada	NLI interacting factor (NIF) family protein	
PGLM2-0465	Canada	unknown protein	
PGLM2-0489	Canada	NHL repeat-containing protein	
PGLM2-0520	Canada	BIN4 (brassinosteroid-insensitive4); double-stranded DNA binding	
PGLM2-0565	Canada	SNAP33 (SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ADAPTOR PROTEIN 33); SNAP receptor/ protein binding	
PGLM2-0571	Canada	LIN2 (LESION INITIATION 2); coproporphyrinogen oxidase	
PGLM2-0584	Canada	thylakoid lumenal 17.4 kDa protein, chloroplast	
PGLM2-0592	Canada	TRN1 (TORNADO 1)	
PGLM2-0610	Canada	PRMT11 (ARGININE METHYLTRANSFERASE 11); protein- arginine N-methyltransferase	
PGLM2-0624	Canada	SDRB (SHORT-CHAIN DEHYDROGENASE-REDUCTASE B); binding / catalytic/ oxidoreductase	
PGLM2-0642	Canada	INVOLVED IN: biological_process unknown	
PGLM2-0645	Canada	bile acid:sodium symporter family protein	
PGLM2-0674	Canada	NIC1 (NICOTINAMIDASE 1); catalytic/ nicotinamidase	
PGLM2-0702	Canada	ATP binding / aminoacyl-tRNA ligase/ leucine-tRNA ligase/ nucleotide binding	
PGLM2-0703	Canada	mitochondrial substrate carrier family protein	
PGLM2-0733	Canada	NF-YA7 (NUCLEAR FACTOR Y, SUBUNIT A7); specific transcriptional repressor/ transcription factor	

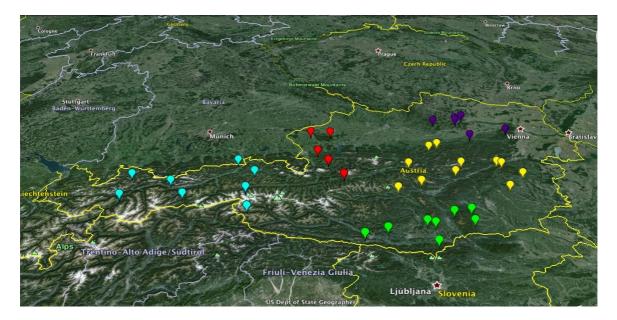
PGLM2-0762	Canada	Anonymous locus, unknown protein
PGLM2-0769	Canada	tetratricopeptide repeat (TPR)-containing protein
		PPX2 (PROTEIN PHOSPHATASE X 2); protein serine/threonine
PGLM2-0780	Canada	phosphatase
PGLM2-0784	Canada	thioesterase family protein
PGLM2-0796	Canada	Transcribed locus, moderately similar to XP_001759251.1
	Canada	predicted protein [Physcomitrella patens subsp. patens]
PGLM2-0798	Canada	DNAJ heat shock N-terminal domain-containing protein
PGLM2-0810	Canada	WIN1 (HOPW1-1-INTERACTING 1); N2-acetyl-L-ornithine:2- oxoglutarate 5-aminotransferase/ catalytic/ pyridoxal phosphate binding / transaminase
PGLM2-0818	Canada	DNAJ heat shock N-terminal domain-containing protein
PGLM2-0828	Canada	CLPB4 (CASEIN LYTIC PROTEINASE B4); ATP binding / ATPase/ nucleoside-triphosphatase/ nucleotide binding / protein binding
PGLM2-0886	Canada	thylakoid lumenal 20 kDa protein
PGLM2-0887	Canada	AMK2 (Adenosine monophosphate kinase); ATP binding / adenylate kinase/ nucleobase, nucleoside, nucleotide kinase/ nucleotide kinase/ phosphotransferase, phosphate group as acceptor
PGLM2-0901	Canada	Anonymous locus
PGLM2-0923	Canada	dormancy/auxin associated family protein
PGLM2-0924	Canada	DFR (DIHYDROFLAVONOL 4-REDUCTASE); dihydrokaempferol 4-reductase
PGLM2-0944	Canada	oxidoreductase NAD-binding domain-containing protein
PGLM2-1030	Canada	postsynaptic protein-related
PGLM2-1031	Canada	Transcribed locus
PGLM2-1037	Canada	COBL1 (COBRA-LIKE PROTEIN 1 PRECURSOR)
PGLM2-1069	Canada	Transcribed locus
PGLM2-1091	Canada	fringe-related protein
PGLM2-1099	Canada	unknown protein
PGLM2-1147	Canada	unknown protein
PGLM2-1166	Canada	AIR9; protein binding
PGLM2-1170	Canada	PEX11D
PGLM2-1171	Canada	flavodoxin family protein / radical SAM domain-containing protein
PGLM2-1178	Canada	FUNCTIONS IN: molecular_function unknown
PGLM2-1182	Canada	SYNC1; ATP binding / aminoacyl-tRNA ligase/ asparagine-tRNA ligase/ aspartate-tRNA ligase/ nucleic acid binding / nucleotide binding
PGLM2-1191	Canada	unknown protein
PGLM2-1223	Canada	FUNCTIONS IN: molecular_function unknown
PGLM2-1269	Canada	Anonymous locus
PGLM2-1273	Canada	amino acid transporter family protein
PGLM2-1385	Canada	fructose-1,6-bisphosphatase, putative / D-fructose-1,6- bisphosphate 1-phosphohydrolase, putative / FBPase, putative
PGLM2-1476	Canada	aconitase C-terminal domain-containing protein
PGLM2-1477	Canada	signal peptide peptidase family protein
PGLM2-1492	Canada	RGLG2 (RING domain Ligase2); ubiquitin-protein ligase
PGLM2-1514	Canada	Transcribed locus
PGLM2-1528	Canada	SYP124 (SYNTAXIN OF PLANTS 124); SNAP receptor

PGWD1-0007	Canada	ATEBP (ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN); DNA binding / protein binding / transcription activator/ transcription factor
PGWD1-0024	Canada	PMEPCRF (PECTIN METHYLESTERASE PCR FRAGMENT F); pectinesterase
PGWD1-0029	Canada	pectinacetylesterase family protein
PGWD1-0041	Canada	NA
PGWD1-0042	Canada	POM1 (POM-POM1); chitinase
PGWD1-0051	Canada	reversibly glycosylated polypeptide, putative
PGWD1-0053	Canada	ATOMT1 (O-METHYLTRANSFERASE 1); caffeate O- methyltransferase/ myricetin 3'-O-methyltransferase/ quercetin 3-O-methyltransferase
PGWD1-0117	Canada	HSP18.2 (heat shock protein 18.2)
PGWD1-0118	Canada	anac028 (Arabidopsis NAC domain containing protein 28); transcription factor
PGWD1-0132	Canada	AtMYB93 (myb domain protein 93); DNA binding / transcription factor
PGWD1-0142	Canada	Transcribed locus
PGWD1-0147	Canada	ATGH9A1 (ARABIDOPSIS THALIANA GLYCOSYL HYDROLASE 9A1); cellulase/ hydrolase, hydrolyzing O-glycosyl compounds
PGWD1-0152	Canada	unknown protein
PGWD1-0158	Canada	CAD9 (CINNAMYL ALCOHOL DEHYDROGENASE 9); binding / catalytic/ oxidoreductase/ zinc ion binding
PGWD1-0184	Canada	ATOMT1 (O-METHYLTRANSFERASE 1); caffeate O- methyltransferase/ myricetin 3'-O-methyltransferase/ quercetin 3-O-methyltransferase
PGWD1-0191	Canada	Anonymous locus
PGWD1-0220	Canada	PIP2A (PLASMA MEMBRANE INTRINSIC PROTEIN 2A); water channel
PGWD1-0242	Canada	gibberellin-responsive protein, putative
PGWD1-0257	Canada	ATFD3 (ferredoxin 3); 2 iron, 2 sulfur cluster binding / electron carrier/ iron-sulfur cluster binding
PGWD1-0269	Canada	GMD1 (GDP-D-MANNOSE 4,6-DEHYDRATASE 1); GDP- mannose 4,6-dehydratase/ binding / catalytic/ coenzyme binding
PGWD1-0282	Canada	GATL6; polygalacturonate 4-alpha-galacturonosyltransferase/ transferase, transferring glycosyl groups / transferase, transferring hexosyl groups
PGWD1-0337	Canada	UDP-glucose 6-dehydrogenase, putative
PGWD1-0344	Canada	AtGH9A4 (Arabidopsis thaliana Glycosyl Hydrolase 9A4); catalytic/ hydrolase, hydrolyzing O-glycosyl compounds
PGWD1-0362	Canada	CESA1 (CELLULOSE SYNTHASE 1); cellulose synthase/ transferase, transferring glycosyl groups
PGWD1-0375	Canada	NA
PGWD1-0391	Canada	GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water channel
PGWD1-0396	Canada	pectinesterase family protein
PGWD1-0400	Canada	MYB31 (MYB DOMAIN PROTEIN 31); DNA binding / transcription factor
PGWD1-0413	Canada	universal stress protein (USP) family protein

PGWD1-0418	Canada	xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, putative / endo-xyloglucan transferase, putative
PGWD1-0421	Canada	LHCB4.3 (light harvesting complex PSII); chlorophyll binding
PGWD1-0453	Canada	LDOX (LEUCOANTHOCYANIDIN DIOXYGENASE); leucocyanidin oxygenase
PGWD1-0468	Canada	MTHFR2 (METHYLENETETRAHYDROFOLATE REDUCTASE 2); methylenetetrahydrofolate reductase (NADPH)
PGWD1-0485	Canada	MYB4; DNA binding / transcription factor
PGWD1-0510	Canada	unknown protein
PGWD1-0511	Canada	XT2 (UDP-XYLOSYLTRANSFERASE 2); UDP-xylosyltransferase/ transferase/ transferase, transferring glycosyl groups / xyloglucan 6-xylosyltransferase
PGWD1-0519	Canada	CESA1 (CELLULOSE SYNTHASE 1); cellulose synthase/ transferase, transferring glycosyl groups
PGWD1-0533	Canada	WRKY65; transcription factor
PGWD1-0551	Canada	unknown protein
PGWD1-0556	Canada	cysteine proteinase, putative
PGWD1-0557	Canada	ribulose bisphosphate carboxylase small chain 1B / RuBisCO small subunit 1B (RBCS-1B) (ATS1B)
PGWD1-0578	Canada	TUB6 (BETA-6 TUBULIN); structural constituent of cytoskeleton
PGWD1-0586	Canada	PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water channel
PGWD1-0589	Canada	PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water channel
PGWD1-0613	Canada	pollen Ole e 1 allergen and extensin family protein
PGWD1-0634	Canada	GMD1 (GDP-D-MANNOSE 4,6-DEHYDRATASE 1); GDP- mannose 4,6-dehydratase/ binding / catalytic/ coenzyme binding
PGWD1-0640	Canada	RSR4 (REDUCED SUGAR RESPONSE 4); protein heterodimerization/ protein homodimerization
PGWD1-0667	Canada	GATL4 (Galacturonosyltransferase-like 4); polygalacturonate 4-alpha-galacturonosyltransferase/ transferase, transferring glycosyl groups / transferase, transferring hexosyl groups
PGWD1-0737	Canada	pectate lyase family protein
PGWD1-0787	Canada	PGSIP1 (PLANT GLYCOGENIN-LIKE STARCH INITIATION PROTEIN 1); transferase, transferring glycosyl groups
PGWD1-0788	Canada	PIP2;8 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;8); water channel
PGWD1-0794	Canada	calcium-binding EF hand family protein
PGWD1-0802	Canada	fringe-related protein
PGWD1-0805	Canada	cupin family protein
PGWD1-0807	Canada	PSAT; O-phospho-L-serine:2-oxoglutarate aminotransferase
PGWD1-0808	Canada	myb family transcription factor
PGWD1-0813	Canada	MYB20 (myb domain protein 20); DNA binding / transcription factor
PGWD1-0853	Canada	TIP4;1 (tonoplast intrinsic protein 4;1); water channel
PGWD1-0875	Canada	GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water channel
	Comodo	
PGWD1-0909	Canada	CUC2 (CUP-SHAPED COTYLEDON 2); transcription factor

PGWD1-0963	Canada	MYB36 (myb domain protein 36); DNA binding / transcription factor
PGWD1-0965	Canada	ATHB-3 (ARABIDOPSIS THALIANA HOMEOBOX 3); DNA binding / sequence-specific DNA binding / transcription factor
PGWD1-0972	Canada	cinnamoyl-CoA reductase family
PGWD1-1016	Canada	MYB4; DNA binding / transcription factor
PGWD1-1027	Canada	RAP2.12; DNA binding / transcription factor
PGWD1-1034	Canada	IAA9 (INDOLE-3-ACETIC ACID INDUCIBLE 9); transcription factor
PGWD1-1048	Canada	APE2 (ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 2); antiporter/ triose-phosphate transmembrane transporter
PGWD1-1070	Canada	BETA-TIP (BETA-TONOPLAST INTRINSIC PROTEIN); water channel
PGWD1-1080	Canada	TIP4;1 (tonoplast intrinsic protein 4;1); water channel
PGWD1-1094	Canada	LACS9 (LONG CHAIN ACYL-COA SYNTHETASE 9); long-chain- fatty-acid-CoA ligase
PGWD1-1121	Canada	NA
PGWD1-1127	Canada	anac075 (Arabidopsis NAC domain containing protein 75); transcription factor
PGWD1-1154	Canada	PRLI-interacting factor-related
PGWD1-1197	Canada	pectate lyase family protein
PGWD1-1206	Canada	DNAJ heat shock N-terminal domain-containing protein / cell division protein-related
PGWD1-1208	Canada	glycosyl hydrolase family 18 protein
PGWD1-1212	Canada	WRKY7; calmodulin binding / transcription factor
PGWD1-1219	Canada	reversibly glycosylated polypeptide, putative
PGWD1-1223	Canada	pectate lyase family protein
PGWD1-1282	Canada	MYB83 (myb domain protein 83); DNA binding / transcription factor
PGWD1-1284	Canada	G6PD2 (GLUCOSE-6-PHOSPHATE DEHYDROGENASE 2); glucose-6-phosphate dehydrogenase
PGWD1-1295	Canada	unknown protein
PGWD1-1304	Canada	LDOX (LEUCOANTHOCYANIDIN DIOXYGENASE); leucocyanidin oxygenase
PGWD1-1319	Canada	pectate lyase family protein
PGWD1-1346	Canada	MTHFR2 (METHYLENETETRAHYDROFOLATE REDUCTASE 2); methylenetetrahydrofolate reductase (NADPH)
PGWD1-1421	Canada	oxidoreductase, zinc-binding dehydrogenase family protein
PGWD1-1422	Canada	GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN); water channel
PGWD1-1437	Canada	TIP4;1 (tonoplast intrinsic protein 4;1); water channel
PGWD1-1492	Canada	glycosyl hydrolase family 18 protein
PGWD1-1501	Canada	polygalacturonase
PGWD1-1510	Canada	pectinesterase family protein
PGWD1-1518 Canada HCT (HYDROXYCINNAMOYL-COA SHIKIMATE/QUINATE HYDROXYCINNAMOYL TRANSFERASE); quinate O- hydroxycinnamoyltransferase/ shikimate O- hydroxycinnamoyltransferase/ transferase		HYDROXYCINNAMOYL TRANSFERASE); quinate O-

Uppsala dataset (Sweden)


SNP name	Source	Annotation
PabiesGI F6 8 261	Uppsala	circadian clock
PabiesGI F8 56 324	Uppsala	circadian clock
PaCCA1-Like_1842	Uppsala	circadian clock
PabiesFT4pr_1472	Uppsala	photoperiodic pathway
PabiesFT4pr_1824	Uppsala	photoperiodic pathway
PablesFT4pr_1024 PablesFT4pr_1951	Uppsala	photoperiodic pathway photoperiodic pathway
PablesFT4pr 2046	Uppsala	photoperiodic pathway photoperiodic pathway
PabiesFT4pr_2173	Uppsala	photoperiodic pathway
PaFTL2pr_2454	Uppsala	photoperiodic pathway
PaFTL2pr_2509	Uppsala	photoperiodic pathway
PaFTL2pr_2694	Uppsala	photoperiodic pathway
PaCCA1-Like_3194	Uppsala	Picea abies CCA1-Like gene partial sequence
PaCCA1-Like_3893	Uppsala	Picea abies CCA1-Like gene partial sequence
PabiesCol1_711	Uppsala	picea abies col1 gene for constans-like 1
PabiesCol1_660	Uppsala	picea abies col1 gene for constans-like 1
PabiesPrMYB2_932	Uppsala	picea abies col1 gene for constans-like 1
PabiesCol1_846	Uppsala	picea abies col1 gene for constans-like 1
PabiesCol1_1495	Uppsala	picea abies col1 gene for constans-like 1
PabiesPrMYB2_753	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_1302	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_2004	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_3403	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_4049	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_4128	Uppsala	picea abies col1 gene for constans-like 1
PabiesMYB2_4183	Uppsala	picea abies col1 gene for constans-like 1
PabiesPrMYB2_595	Uppsala	picea abies col1 gene for constans-like 1
PabiesCol2_989	Uppsala	picea abies constans-like protein gene
PaFTL2pr_2790	Uppsala	Picea abies FTL2 promoter gene
PaFTL2pr_1560	Uppsala	Picea abies FTL2 promoter gene
PaFTL2pr_1757	Uppsala	Picea abies FTL2 promoter gene
PabiesKN2b_2317	Uppsala	Picea abies genotype 5433 homeobox transcription factor KN2 (KN2) gene
PabiesHB3_5122	Uppsala	Picea abies genotype 5433 homeobox transcription factor KN2 (KN2) gene
PabiesHB3_385	Uppsala	Picea abies genotype 5434 homeodomain-leucine zipper trancription factor HB-3 (HB-3) gene
PabiesHB3_2495	Uppsala	Picea abies genotype 5434 homeodomain-leucine zipper trancription factor HB-3 (HB-3) gene
PabiesHB3_2316	Uppsala	Picea abies genotype 5434 homeodomain-leucine zipper trancription factor HB-3 (HB-3) gene
PabiesHB3_5700	Uppsala	Picea abies genotype 5434 homeodomain-leucine zipper trancription factor HB-3 (HB-3) gene
PaKN1b_08525f	Uppsala	Picea abies genotype 5460 homeobox transcription factor KN1 (KN1) gene
PabiesKN2a_196	Uppsala	Picea abies genotype 86453 homeobox transcription factor KN2 (KN2) gene
PabiesKN2a_253	Uppsala	Picea abies genotype 86453 homeobox transcription factor KN2 (KN2) gene

		Picea abies genotype 86453 homeobox transcription
PabiesKN4b_489	Uppsala	factor KN4 (KN4) gene
		Picea abies genotype 86453 homeobox transcription
PaKN4b_01687n	Uppsala	factor KN4 (KN4) gene
PaMFTL1_2136	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PabiesFT1_1718	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PaMFTL1_1251	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PaMFTL1_2215	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PaMFTL1_1613	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PabiesFT1_1050	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PabiesFT1_2091	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PabiesFT1_911	Uppsala	Picea abies MFT1-like protein (MFT1) gene
PabiesCry_454	Uppsala	Picea abies partial cry gene for putative cryptochrome
PaPHYN_R0111	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RIII418	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RIII272	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RII465	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RI330	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RIII185	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_RIII88	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYN_R0319	Uppsala	Picea abies partial phynrI gene for phytochrome N
PaPHYO_RIII336	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RIV211	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RIII510	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RII229	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RIV39	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RII283	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYO_RIV402	Uppsala	Picea abies partial phyo gene for phytochrome O
PaPHYP_RII122	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PaPHYP_RII177	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PaPHYP_RI96	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PaPHYP_RIII76	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PaPHYP_RIII345	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PaPHYP_RIII274	Uppsala	Picea abies partial phyP gene for putative phytochrome P,
PabiesGI_F2_9_1470	Uppsala	Picea abies Putative Gigantea gene, partial sequence

1	I	1
PabiesGI F2 9 420	Uppsala	Picea abies Putative Gigantea gene, partial sequence
PabiesPRR1_240	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_2953	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_3828	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_1039	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_3301	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_1168	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_3722	Uppsala	Picea abies Putative PRR1 gene
PaPRR1_3_GQ0178.B		
7-E07.1-180	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_2381	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_2741	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_2920	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_2990	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR1_3883	Uppsala	Picea abies Putative PRR1 gene
PabiesPRR3_F2_481	Uppsala	Picea abies Putative PRR3 gene, partial sequence
PabiesPRR3_F1_2570	Uppsala	Picea abies Putative PRR3 gene, partial sequence
PabiesPRR3_F1_2978	Uppsala	Picea abies Putative PRR3 gene, partial sequence
PabiesPRR3_F2_331	Uppsala	Picea abies Putative PRR3 gene, partial sequence
PabiesPRR7_F3_104	Uppsala	Picea abies Putative PRR7 gene, partial sequence
PabiesPRR7_F1_1505	Uppsala	Picea abies Putative PRR7 gene, partial sequence
PabiesPRR7_F2_534	Uppsala	Picea abies Putative PRR7 gene, partial sequence
PabiesPRR7_F1_2518	Uppsala	Picea abies Putative PRR7 gene, partial sequence
PabiesPRR7_F1_771	Uppsala	Picea abies Putative PRR7 gene, partial sequence
PabiesPRR7_F2_417	Uppsala	Picea abies Putative PRR7 gene, partial sequence
		Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl)
PabiesZTL_793	Uppsala	gene, partial cds
		Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl)
PabiesZTL_514	Uppsala	gene, partial cds
		Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl)
PabiesZTL_958	Uppsala	gene, partial cds
		Picea likiangensis isolate PLJT-TBS-2 putative ZTL (ztl)
PabiesZTL_367	Uppsala	gene, partial cds
PaMFTL1_3441	Uppsala	shoot apical development
PaMFTL1_802	Uppsala	shoot apical development

Supplement 3. Assignment of 392 individuals based on the geo-reference data when individuals from Austria were assigned in the five populations (A), from Italy-Slovenia and France in 8 populations (B) and from Switzerland, individuals are assigned in the 7 adjusted populations (C).

(A) Assignment of individuals in 5 adjusted groups

(B) Assignment of individuals in 8 adjusted groups

(C) Assignment of individuals in 7 adjusted groups

SNPs name	Source	Species	Final score	Design- ability score
PGWD1-1437	Canada	P.glauca	0.626	1
PGWD1-1048	Canada	P.glauca	0.869	1
PGWD1-0257	Canada	P.glauca	0.956	1
PGWD1-0965	Canada	P.glauca	0.947	1
PGLM2-0195	Canada	P.glauca	0.995	1
PGWD1-1510	Canada	P.glauca	0.993	1
PGLM2-0360	Canada	P.glauca	0.978	1
PGLM2-1273	Canada	P.glauca	0.706	1
PGLM2-0349	Canada	P.glauca	0.977	1
PGLM2-0924	Canada	P.glauca	0.956	1
PGWD1-0963	Canada	P.glauca	0.958	1
PGLM2-0733	Canada	P.glauca	0.955	1
PGWD1-0613	Canada	P.glauca	0.935	1
PGWD1-0519	Canada	P.glauca	0.957	1
PGLM2-0465	Canada		0.927	1
PGWD1-1027	Canada	P.glauca P.glauca	0.927	1
				1
PGLM2-1223 PGLM2-1171	Canada	P.glauca	0.931	1
	Canada	P.glauca	0.918	
PGWD1-1422	Canada	P.glauca	0.609	1
PGLM2-0314	Canada	P.glauca	0.96	1
PGLM2-0383	Canada	P.glauca	0.932	1
PGLM2-0810	Canada	P.galuca	0.951	1
PGWD1-0972	Canada	P.glauca	0.947	1
PGLM2-0227	Canada	P.glauca	0.993	1
PGWD1-0557	Canada	P.glauca	0.818	1
PGLM2-0887	Canada	P.glauca	0.82	1
PGWD1-0578	Canada	P.glauca	0.968	1
PGLM2-1147	Canada	P.glauca	0.913	1
PGWD1-0053	Canada	P.glauca	0.99	1
PGLM2-0780	Canada	P.glauca	0.946	1
PGLM2-0450	Canada	P.glauca	0.986	1
PGWD1-0556	Canada	P.glauca	0.917	1
PGWD1-1208	Canada	P.glauca	0.944	1
PGLM2-0024	Canada	P.glauca	0.924	1
PGWD1-0468	Canada	P.glauca	0.969	1
PGLM2-0271	Canada	P.glauca	0.911	1
PGLM2-0368	Canada	P.glauca	0.989	1
PGWD1-0808	Canada	P.glauca	0.918	1
PGLM2-0762	Canada	P.glauca	0.964	1
PGWD1-0640	Canada	P.glauca	0.957	1
PGWD1-1121	Canada	P.glauca	0.931	1
PGWD1-1197	Canada	P.glauca	0.912	1
PGLM2-0796	Canada	P.glauca	0.975	1
PGWD1-0485	Canada	P.glauca	0.945	1
PGLM2-0013	Canada	P.glauca	0.918	1
PGWD1-0533	Canada	P.glauca	0.977	1

Supplement 4. List of SNPs failed during 384 Illumina GoldenGate genotyping assay

PGLM2-1037	Canada	P.glauca	0.961	1
PGLM2-0674	Canada	P.glauca	0.956	1
PGLM2-0049	Canada	P.glauca	0.989	1
PGWD1-0051	Canada	P.glauca	0.98	1
PGWD1-0551	Canada	P.glauca	0.98	1
PGLM2-1492	Canada	P.glauca	0.935	1
PGWD1-1094	Canada	P.glauca	0.93	1
PGWD1-0413	Canada	P.glauca	0.965	1
PaPHYN R0319	Canada	P.glauca	0.879	1
PGWD1-0117	Canada	P.glauca	0.932	1
PGLM2-0296	Canada	P.glauca	0.921	1
PGWD1-0875	Canada	P.glauca	0.781	1
PGWD1-0932	Canada	P.glauca	0.945	1
PGWD1-1080	Canada	P.glauca	0.824	1
PGWD1-0242	Canada	P.glauca	0.985	1
PGWD1-0142	Canada	P.glauca	0.917	1
PGWD1-0142 PGWD1-1206	Canada	P.glauca	0.888	1
0 8531 01-Paab 157	CRSP reseq	P.abies	0.888	1
2 4196 01-Paab 201	CRSP reseq	P.abies P.abies	0.629	1
0 4541 02-266	· · · ·			1
	CRSP reseq	P.abies	0.97	1
2_10438_01-351 CL4511Contig1_02-	CRSP reseq	P.abies	0.818	L
Paab 223	CRSP reseq	P.abies	0.956	1
CL1308Contig1_03-	CITST TESEQ	1.00103	0.550	1
Paab 181	CRSP reseq	P.abies	0.993	1
CL1343Contig1_05-			0.000	
Paab_165	CRSP reseq	P.abies	0.972	1
0_10631_01-Paab_193	CRSP reseq	P.abies	0.64	1
0_7471_01-Paab_399	CRSP reseq	P.abies	0.88	1
0_8111_01-39	CRSP reseq	P.abies	0.919	1
PaFTL2pr_2790	Uppsala	P.abies	0.908	1
PaPHYP_RI96	Uppsala	P.abies	0.954	1
PGWD1-0007	Uppsala	P.abies	0.909	1
PaPRR1_3_GQ0178.B7-				
E07.1-180	Uppsala	P.abies	0.62	1
PaCCA1-Like_3194	Uppsala	P.abies	0.767	1
PabiesPrMYB2_753	Uppsala	P.abies	0.981	1
PabiesPRR7_F2_534	Uppsala	P.abies	0.886	1
PaPHYP_RII122	Uppsala	P.abies	0.84	1
PabiesPRR1_3301	Uppsala	P.abies	0.775	1
PaPHYP_RIII76	Uppsala	P.abies	0.64	1
PaPHYN_RIII418	Uppsala	P.abies	0.859	1
PabiesCol1_583	Uppsala	P.abies	0.607	1
PabiesMYB2_2004	Uppsala	P.abies	0.988	1
PabiesPRR1_2741	Uppsala	P.abies	0.843	1
PabiesPRR1_2920	Uppsala	P.abies	0.947	1
PabiesCol1_846	Uppsala	P.abies	0.937	1
PabiesMYB2_1302	Uppsala	P.abies	0.77	1
PabiesHB3_5122	Uppsala	P.abies	0.962	1
PaPHYP_RIII345	Uppsala	P.abies	0.998	1
 PabiesFT4pr_1951	Uppsala	P.abies	0.786	1
PaPHYP_RIII274	Uppsala	P.abies	0.923	1

PabiesKN2a_196	Uppsala	P.abies	0.672	1
PabiesFT4pr_2173	Uppsala	P.abies	0.746	1
PabiesPrMYB2_595	Uppsala	P.abies	0.867	1
PabiesFT4pr_1824	Uppsala	P.abies	0.902	1
PaPHYO_RIV402	Uppsala	P.abies	0.813	1
PabiesPRR1_3722	Uppsala	P.abies	0.62	1

Supplement 5. Basic diversity statistics indices on genotyping matrix on polymorphic SNPs. Listed observed and expected heterozygosity for each SNP when maf \geq 0.5 and Fis across all loci.

SNP	Но
CL1148Contig1_08.Paab_225	0.17829457
PGWD1.0396	0.48818898
PGWD1.1319	0.94805195
PGWD1.0282	0.13350785
CL1530Contig1_04.Paab_64	0.27109974
X0_9457_01.Paab_115	0.49739583
PGWD1.1501	0.4
CL1694Contig1_01.Paab_235	0.43121693
PGLM2.0886	0.40220386
PGWD1.0667	0.11658031
X0_8531_01.Paab_363	0.30343008
X0_9749_01.Paab_337	0.24675325
CL1148Contig1_08.Paab_134	0.41239892
PGWD1.0634	0.42506812
CL1694Contig1_04.Paab_90	0.43421053
X0_366_02.Paab_380	0.18324607
PGWD1.1034	0.16397849
PGWD1.0337	0.73385013
X0_9457_01.Paab_46	0.5078125
CL4284Contig1_01.Paab_180	0.4488189
PaCCA1.Like_3893	0.1865285
PGLM2.0645	0.32992327
PGWD1.0807	0.41578947
CL304Contig1_01.Paab_118	0.41732283
PGWD1.0391	0.48266667
PGLM2.0127	0.47164948
PGWD1.1223	0.45646438
X2_9328_01.Paab_425	0.41494845

SNP	Не
CL1148Contig1_08.Paab_225	0.20803377
PGWD1.0396	0.48390662
PGWD1.1319	0.5002063
PGWD1.0282	0.1249227
CL1530Contig1_04.Paab_64	0.23867795
X0_9457_01.Paab_115	0.50007819
PGWD1.1501	0.42731565
CL1694Contig1_01.Paab_235	0.40111644
PGLM2.0886	0.40996606
PGWD1.0667	0.11464572
X0_8531_01.Paab_363	0.43676969
X0_9749_01.Paab_337	0.21687297
CL1148Contig1_08.Paab_134	0.44352371
PGWD1.0634	0.48465627
CL1694Contig1_04.Paab_90	0.43424177
X0_366_02.Paab_380	0.18382323
PGWD1.1034	0.30802756
PGWD1.0337	0.4657857
X0_9457_01.Paab_46	0.50103011
CL4284Contig1_01.Paab_180	0.4316791
PaCCA1.Like_3893	0.19036404
PGLM2.0645	0.33675979
PGWD1.0807	0.40333287
CL304Contig1_01.Paab_118	0.41290579
PGWD1.0391	0.36991444
PGLM2.0127	0.44926277
PGWD1.1223	0.4755099
X2_9328_01.Paab_425	0.42129186

SNP	Fis
PGWD1.1319	-0.89532
PGWD1.0337	-0.57551
PGLM2.0353	-0.40109
X0_9457_01.Paab_421	-0.37184
PGWD1.0391	-0.30481
PGWD1.1421	-0.27803
PGLM2.0169	-0.13983
X0_9749_01.Paab_337	-0.13778
CL1530Contig1_04.Paab_64	-0.13584
PGLM2.0158	-0.11699
PabiesCol1_1495	-0.09658
PabiesZTL_514	-0.09283
PGLM2.1166	-0.08264
PGLM2.1170	-0.07720
PabiesZTL_793	-0.07579
CL1694Contig1_01.Paab_235	-0.07504
PabiesZTL_958	-0.07391
X0_9383_01.Paab_438	-0.07324
X2_5636_01.Paab_209	-0.06955
PGWD1.0282	-0.06872
PGLM2.0140	-0.06777
PGLM2.1030	-0.06673
CL1694Contig1_02.365	-0.06577
PGLM2.0489	-0.06526
PabiesKN2b_2317	-0.06505
PGWD1.0421	-0.06296
PGLM2.0642	-0.06285
X0_11090_01.Paab_251	-0.05961

X0 1439 01.Paab 226	0.22135417
PGWD1.0589	0.10789474
PabiesPRR1_2953	0.36458333
PGLM2.0901	0.1761658
PGLM2.1269	0.09511568
PabiesFT1_1050	0.34574468
PGLM2.0169	0.50793651
X0_177_01.Paab_165	0.45736434
PGWD1.0029	0.18298969
PGLM2.1031	0.17268041
PGWD1.0184	0.15721649
PGLM2.0433	0.48812665
PGLM2.0098	0.26030928
PaPHYO_RIII510	0.27055703
PGWD1.0853	0.35752688
PGLM2.0353	0.57622739
PGLM2.0160	0.44125326
UMN_1604_01.Paab_348	0.25510204
CL3795Contig1_01.Paab_45	0.49041096
PGLM2.0584	0.27466667
PGWD1.0132	0.36814621
PGWD1.0787	0.13554987
PGWD1.1421	0.46498599
PGLM2.0437	0.25064599
PGLM2.0140	0.13178295
PabiesHB3_2495	0.18586387
X0_489_01.Paab_316	0.36528497
PabiesZTL_367	0.13265306
PGWD1.0041	0.18974359
PGLM2.0285	0.47135417
PGLM2.0391	0.47860963
X2_3947_01.Paab_298	0.1056701
PGWD1.1346	0.2377261

X0_1439_01.Paab_226	0.21735952
PGWD1.0589	0.11634148
PabiesPRR1_2953	0.35422106
PGLM2.0901	0.18625934
PGLM2.1269	0.11381616
PabiesFT1_1050	0.35948936
PGLM2.0169	0.44562334
X0_177_01.Paab_165	0.49224471
PGWD1.0029	0.17922361
PGLM2.1031	0.17506793
PGWD1.0184	0.16667666
PGLM2.0433	0.46357373
PGLM2.0098	0.2744579
PaPHYO_RIII510	0.26104746
PGWD1.0853	0.4500442
PGLM2.0353	0.4112711
PGLM2.0160	0.42441527
UMN_1604_01.Paab_348	0.25636776
CL3795Contig1_01.Paab_45	0.49955216
PGLM2.0584	0.3160107
PGWD1.0132	0.36732943
PGWD1.0787	0.13110696
PGWD1.1421	0.36383093
PGLM2.0437	0.25366175
PGLM2.0140	0.12341848
PabiesHB3_2495	0.19005854
X0_489_01.Paab_316	0.37597403
PabiesZTL_367	0.14602798
PGWD1.0041	0.19268341
PGLM2.0285	0.50073093
PGLM2.0391	0.49789609
X2_3947_01.Paab_298	0.11409135
PGWD1.1346	0.22942523

PaPHYO_RIII336	-0.05786
PGLM2.0154	-0.05735
CL4257Contig1_01.Paab_391	-0.05331
PGLM2.0433	-0.05296
PabiesCol1_660	-0.05292
PGLM2.0127	-0.04983
PaFTL2pr_1560	-0.04846
X0_13680_01.Paab_216	-0.04592
PGLM2.0404	-0.04484
PabiesKN4b_489	-0.04002
CL4284Contig1_01.Paab_180	-0.03970
PGLM2.0160	-0.03967
X2_7725_01.Paab_466	-0.03948
PaPHYN_RI330	-0.03764
PaPHYO_RIII510	-0.03643
PaPHYP_RII177	-0.03619
PGWD1.1346	-0.03618
X2_9280_01.Paab_338	-0.03581
PGWD1.1127	-0.03469
PabiesPRR1_2990	-0.03468
X0_13978_01.Paab_102	-0.03460
CL1692Contig1_05.Paab_178	-0.03423
PGWD1.0787	-0.03389
PGLM2.0395	-0.03381
PGWD1.0807	-0.03088
PGLM2.1182	-0.02953
PabiesPRR1_2953	-0.02925
X0_17215_01.Paab_108	-0.02850
PabiesFT4pr_2046	-0.02799
PabiesPRR7_F1_771	-0.02672
PGWD1.1304	-0.02644
X2_9845_01.Paab_282	-0.02460
PGWD1.0029	-0.02101

CL3771Contig1_04.Paab_68	0.34173669
PGLM2.0923	0.30287206
CL3582Contig1_03.Paab_63	0.47382199
PGWD1.1492	0.43832021
PabiesHB3_385	0.15979381
CL1694Contig1_02.365	0.42708333
PGWD1.1154	0.11734694
X0_12021_01.161	0.14578005
PGWD1.0042	0.27393617
PabiesPRR7_F1_771	0.18911917
PGLM2.1170	0.45406824
PGLM2.0565	0.10209424
CL304Contig1_01.202	0.39037433
PaMFTL1_1613	0.41145833
PabiesZTL_793	0.43569554
CL1692Contig1_05.Paab_178	0.51168831
PabiesZTL_514	0.43264249
PGLM2.0081	0.10309278
PGLM2.1182	0.43617021
PGWD1.0024	0.10103627
X2_5636_01.Paab_399	0.33506494
CL4257Contig1_01.Paab_391	0.27083333
X0_9457_01.Paab_421	0.54593176
UMN_3055_01.Paab_224	0.16795866
PaKN4b_01687n	0.19845361
PabiesFT1_1718	0.41836735
PGWD1.0400	0.2997416
X0_7921_01.Paab_212	0.14138817
X0_13680_01.Paab_216	0.51570681
PGLM2.1030	0.37665782
PabiesPRR3_F2_481	0.47311828
PGWD1.0421	0.26493506
PGLM2.1166	0.28608924

CL3771Contig1_04.Paab_68	0.36087244
PGLM2.0923	0.3433352
CL3582Contig1_03.Paab_63	0.49015061
PGWD1.1492	0.46814822
PabiesHB3_385	0.16878446
CL1694Contig1_02.365	0.40072889
PGWD1.1154	0.1197218
X0_12021_01.161	0.14420946
PGWD1.0042	0.28147163
PabiesPRR7_F1_771	0.18419689
PGLM2.1170	0.42152576
PGLM2.0565	0.11115348
CL304Contig1_01.202	0.42283265
PaMFTL1_1613	0.45070442
PabiesZTL_793	0.40500069
CL1692Contig1_05.Paab_178	0.49475446
PabiesZTL_514	0.39589193
PGLM2.0081	0.10724846
PGLM2.1182	0.42365957
PGWD1.0024	0.10083776
X2_5636_01.Paab_399	0.34057427
CL4257Contig1_01.Paab_391	0.25712576
X0_9457_01.Paab_421	0.39795552
UMN_3055_01.Paab_224	0.20803377
PaKN4b_01687n	0.20359826
PabiesFT1_1718	0.43363432
PGWD1.0400	0.30038425
X0_7921_01.Paab_212	0.14488975
X0_13680_01.Paab_216	0.49306386
PGLM2.1030	0.35309555
PabiesPRR3_F2_481	0.49889865
PGWD1.0421	0.24924242
PGLM2.1166	0.26425266

X0_17587_01.Paab_42	-0.02095
CL3507Contig1_03.Paab_191	-0.01872
PGWD1.1219	-0.01842
X0_1439_01.Paab_226	-0.01838
PGWD1.0667	-0.01687
PGWD1.0344	-0.01641
PabiesPRR7_F1_1505	-0.01631
PaPHYO_RII283	-0.01416
X0_9457_01.Paab_46	-0.01354
PGWD1.1070	-0.01295
X2_9665_01.Paab_175	-0.01098
X0_12021_01.161	-0.01089
CL304Contig1_01.Paab_118	-0.01070
PGWD1.0118	-0.00936
PGWD1.0396	-0.00885
PGLM2.0592	-0.00841
PGWD1.0510	-0.00471
PGLM2.0571	-0.00273
X0_2354_01.Paab_194	-0.00235
PGWD1.0132	-0.00222
PGWD1.0024	-0.00197
CL1694Contig1_04.Paab_90	0.00007
PGWD1.0147	0.00095
PGLM2.0818	0.00102
PGLM2.1091	0.00108
PGWD1.0400	0.00214
X0_366_02.Paab_380	0.00314
PGLM2.0610	0.00354
UMN_4748_01.Paab_38	0.00391
X0_14976_01.Paab_305	0.00474
UMN_1604_01.Paab_348	0.00494
PabiesHB3_5700	0.00512
PabiesHB3_2316	0.00523

1	1
PGWD1.0158	0.46933333
X2_4723_01.Paab_276	0.14948454
X2_9466_01.Paab_179	0.29473684
X0_14976_01.Paab_305	0.49481865
X0_2433_01.Paab_290	0.34036939
PGWD1.0147	0.09793814
PGLM2.0642	0.33766234
PabiesPRR1_3883	0.15284974
CL1758Contig1_04.288	0.36787565
PabiesCol1_1495	0.18108108
X2_6491_01.Paab_360	0.46648794
PGWD1.0737	0.48958333
PabiesZTL_958	0.42408377
PGWD1.0220	0.2025974
X2_4892_01.Paab_39	0.46194226
PGLM2.0489	0.17571059
PabiesPRR1_2990	0.5128866
PaMFTL1_2136	0.18814433
PGLM2.0784	0.44186047
PabiesKN4b_489	0.31770833
PGLM2.0021	0.44973545
X0_17587_01.Paab_42	0.36702128
PGWD1.0362	0.40837696
PabiesKN2b_2317	0.53367876
PabiesPRR3_F2_331	0.48302872
PabiesPRR1_3828	0.38845144
PabiesPRR7_F1_1505	0.41005291
PGWD1.1127	0.43617021
PaPHYN_RI330	0.51036269
PaPHYO_RIII336	0.24528302
X2_3851_01.Paab_280	0.33676093
PaPHYO_RI145	0.18670077
PGLM2.0134	0.18251928

	I
PGWD1.0158	0.48233868
X2_4723_01.Paab_276	0.15173553
X2_9466_01.Paab_179	0.29800028
X0_14976_01.Paab_305	0.49717718
X0_2433_01.Paab_290	0.36171839
PGWD1.0147	0.09803138
PGLM2.0642	0.31769481
PabiesPRR1_3883	0.16745508
CL1758Contig1_04.288	0.38238342
PabiesCol1_1495	0.16513221
X2_6491_01.Paab_360	0.491222
PGWD1.0737	0.49737544
PabiesZTL_958	0.39489632
PGWD1.0220	0.21095779
X2_4892_01.Paab_39	0.49493024
PGLM2.0489	0.16494625
PabiesPRR1_2990	0.49569448
PaMFTL1_2136	0.19153081
PGLM2.0784	0.44645607
PabiesKN4b_489	0.30548303
PGLM2.0021	0.49962809
X0_17587_01.Paab_42	0.35948936
PGWD1.0362	0.42808262
PabiesKN2b_2317	0.50108337
PabiesPRR3_F2_331	0.49899867
PabiesPRR1_3828	0.41400746
PabiesPRR7_F1_1505	0.40347424
PGWD1.1127	0.4215461
PaPHYN_RI330	0.49184779
PaPHYO_RIII336	0.23186785
X2_3851_01.Paab_280	0.34095155
PaPHYO_RI145	0.21399764
PGLM2.0134	0.21883033

X0_9457_01.Paab_115	0.00536
X0_17215_01.Paab_225	0.00621
PabiesPRR1_1168	0.00786
PGLM2.0784	0.01029
X2_9466_01.Paab_179	0.01095
X0_7171_01.Paab_359	0.01154
PGLM2.0437	0.01189
X2_3851_01.Paab_280	0.01229
PaMFTL1_2215	0.01232
PabiesGI_F8_56_324	0.01271
X0_13957_02.Paab_27	0.01305
X2_7803_01.Paab_235	0.01340
PabiesFT1_911	0.01357
PGLM2.1031	0.01364
PabiesGI_F2_9_1470	0.01463
X2_4723_01.Paab_276	0.01483
X2_9328_01.Paab_425	0.01506
PGWD1.0041	0.01526
PGWD1.0737	0.01567
X2_5636_01.Paab_399	0.01618
PaMFTL1_2136	0.01768
PGWD1.0418	0.01798
PGWD1.0794	0.01826
CL3795Contig1_01.Paab_45	0.01830
PGLM2.0886	0.01893
PGWD1.1154	0.01984
PaCCA1.Like_3893	0.02015
PGLM2.0645	0.02030
PabiesPRR3_F1_2570	0.02067
PabiesCol1_711	0.02131
PabiesCry_454	0.02185
PabiesHB3_2495	0.02207
X2_9280_01.Paab_123	0.02367

UMN 4748 01.Paab 38	0.25848564
PabiesHB3 2316	0.45844504
PGWD1.0909	0.33695652
X0 11090 01.Paab 251	0.22454308
PabiesGI_F8_56_324	0.26165803
PGLM2.1528	0.34210526
PaPHYO_RIV211	0.09793814
PGLM2.1477	0.15789474
CL3771Contig1_04.Paab_419	0.12532637
PabiesGI F2 9 1470	0.38120104
X0 15639 01.392	0.1285347
PabiesCol1 660	0.10539846
PGWD1.1212	0.0987013
X2_9845_01.Paab_282	0.28238342
CL3507Contig1 03.Paab 191	0.11825193
PabiesHB3 5700	0.19948187
UMN 853 01.Paab 38	0.32891247
PabiesPRR1 1632	0.22797927
PGWD1.0794	0.14615385
PaPHYO RII283	0.21649485
 PGLM2.0818	0.45108696
PGLM2.0798	0.27272727
PabiesCry 454	0.2159383
PabiesPRR1_1039	0.34748011
X2_5636_01.Paab_209	0.4
X0_17215_01.Paab_225	0.49206349
X2_9280_01.Paab_123	0.44507042
PGWD1.0344	0.47668394
PGWD1.1282	0.15762274
X0_7171_01.Paab_233	0.26165803
X0_2354_01.Paab_194	0.16494845
X0_11772_01.Paab_103	0.45876289
PaFTL2pr_1560	0.37886598

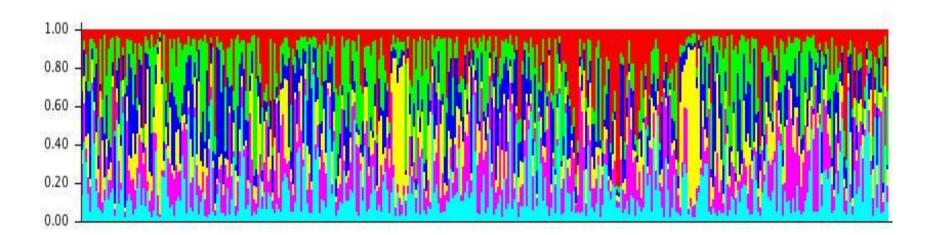
UMN_4748_01.Paab_38	0.25950064
PabiesHB3_2316	0.46085575
PGWD1.0909	0.36488568
X0_11090_01.Paab_251	0.21191202
PabiesGI_F8_56_324	0.26502591
PGLM2.1528	0.37333704
PaPHYO_RIV211	0.10724846
PGLM2.1477	0.19975762
CL3771Contig1_04.Paab_419	0.13139584
PabiesGI_F2_9_1470	0.38686042
X0_15639_01.392	0.13834044
PabiesCol1_660	0.10010137
PGWD1.1212	0.10340909
X2_9845_01.Paab_282	0.27560393
CL3507Contig1_03.Paab_191	0.11607876
PabiesHB3_5700	0.20050804
UMN_853_01.Paab_38	0.35309555
PabiesPRR1_1632	0.24127582
PGWD1.0794	0.14887285
PaPHYO_RII283	0.21347132
PGLM2.0818	0.45154603
PGLM2.0798	0.28992492
PabiesCry_454	0.22076167
PabiesPRR1_1039	0.35740236
X2_5636_01.Paab_209	0.3739893
X0_17215_01.Paab_225	0.49513705
X2_9280_01.Paab_123	0.45586059
PGWD1.0344	0.46898594
PGWD1.1282	0.16706497
X0_7171_01.Paab_233	0.27560393
X0_2354_01.Paab_194	0.16456219
X0_11772_01.Paab_103	0.47998082
PaFTL2pr_1560	0.36135419

X0_7921_01.Paab_212	0.02417
PaKN4b_01687n	0.02527
PaKN1b_08525f	0.02557
PGWD1.0042	0.02677
PabiesPRR1_2381	0.02678
PGLM2.0944	0.02695
PGWD1.0158	0.02696
PabiesPRR1_1039	0.02776
X0_489_01.Paab_316	0.02843
PabiesPRR3_F2_331	0.03200
X0_10267_01.Paab_148	0.03273
CL3582Contig1_03.Paab_63	0.03331
PabiesFT1_1718	0.03521
PGLM2.0828	0.03729
PGWD1.0152	0.03757
CL1758Contig1_04.288	0.03794
PabiesFT1_1050	0.03823
PGLM2.0391	0.03874
PGLM2.0081	0.03875
PGWD1.0220	0.03963
PGLM2.1514	0.03999
PGWD1.1223	0.04005
X0_10515_01.Paab_158	0.04066
PGLM2.0624	0.04417
X0_11772_01.Paab_103	0.04421
PGWD1.1212	0.04553
PGWD1.0362	0.04603
CL3771Contig1_04.Paab_419	0.04619
PGWD1.1295	0.04935
X2_6491_01.Paab_360	0.05035
X0_7171_01.Paab_233	0.05060
PGLM2.0098	0.05155
PabiesPRR3_F2_481	0.05167

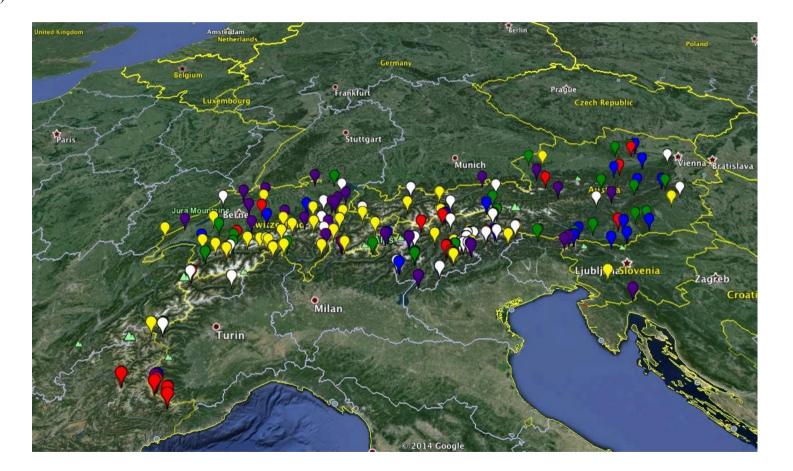
PabiesMYB2 3403	0.16710875
PabiesFT4pr_2046	0.49473684
PaMFTL1 2215	0.44827586
X2_3867_02.Paab_440	0.12403101
X2 9280 01.Paab 338	0.47229551
X0_10267_01.Paab_148	0.1761658
PGWD1.0418	0.18766067
PGWD1.0418	0.44356955
X2_4976_01.Paab_176	
	0.2845953
PGLM2.0395	
PabiesCol1_711	0.48924731
PGLM2.0571	0.4961039
PGWD1.1304	0.51302083
PabiesPRR3_F1_2570	0.48806366
PGLM2.0158	0.28940568
X2_7725_01.Paab_466	0.52105263
X0_17215_01.Paab_108	0.44845361
X2_7803_01.Paab_235	0.48076923
X0_13957_02.Paab_27	0.4947644
PaPHYP_RII177	0.2
PabiesPRR1_2381	0.23896104
PGWD1.0152	0.48
PabiesPrMYB2_932	0.39417989
PaKN1b_08525f	0.11311054
PabiesPRR1_1168	0.42447917
PGLM2.0404	0.49597855
PGLM2.0288	0.28316327
PGWD1.0510	0.1038961
X0_7171_01.Paab_359	0.2372449
PGLM2.1514	0.2408377
X0_10515_01.Paab_158	0.33684211
X2_9665_01.Paab_175	0.44473684
PGWD1.1518	0.31213873

PabiesMYB2_34030.1964452PabiesFT4pr_20460.48126649PaMFTL1_22150.45386661X2_3867_02.Paab_4400.13458114X2_9280_01.Paab_3380.45596529X0_10267_01.Paab_1480.18212772PGWD1.04180.19109599PGWD1.12190.43554704X2_4976_01.Paab_1760.30116673PGLM2.03950.43214286PabiesCol1_7110.49989856PGLM2.05710.49475446PGWD1.13040.49980622PabiesPRR3_F1_25700.49836334PGLM2.01580.25909413X2_7725_01.Paab_4660.50126371X0_17215_01.Paab_1080.43602653X2_7803_01.Paab_2350.48729679X0_13957_02.Paab_270.5013089PaHYP_RII1770.19301486PabiesPRR1_23810.24553571PGWD1.01520.49873797PabiesPRR1_11680.42784147PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_3590.24001448PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_3590.24001448PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_1580.3511179X2_9665_01.Paab_1750.43990765PGWD1.15180.46599648	I	1
PaMFTL1_2215 0.45386661 X2_3867_02.Paab_440 0.13458114 X2_9280_01.Paab_338 0.45596529 X0_10267_01.Paab_148 0.18212772 PGWD1.0418 0.19109599 PGWD1.1219 0.43554704 X2_4976_01.Paab_176 0.30116673 PGLM2.0395 0.43214286 PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGLM2.0288 0.2990207 PGLM2.0288 0.2990207	PabiesMYB2_3403	0.1964452
X2_3867_02.Paab_4400.13458114X2_9280_01.Paab_3380.45596529X0_10267_01.Paab_1480.18212772PGWD1.04180.19109599PGWD1.12190.43554704X2_4976_01.Paab_1760.30116673PGLM2.03950.43214286PabiesCol1_7110.49989856PGLM2.05710.49475446PGWD1.13040.49980622PabiesPRR3_F1_25700.49836334PGLM2.01580.25909413X2_7725_01.Paab_4660.50126371X0_17215_01.Paab_1080.43602653X2_7803_01.Paab_2350.48729679X0_13957_02.Paab_270.5013089PaPHYP_RII1770.19301486PabiesPRR1_23810.24553571PGWD1.01520.49873797PabiesPrMYB2_9320.42132612PaKN1b_08525f0.11607876PabiesPRR1_11680.42784147PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_3590.24001448PGLM2.15140.25086916X0_10515_01.Paab_1750.43990765	PabiesFT4pr_2046	0.48126649
X2_9280_01.Paab_3380.45596529X0_10267_01.Paab_1480.18212772PGWD1.04180.19109599PGWD1.12190.43554704X2_4976_01.Paab_1760.30116673PGLM2.03950.43214286PabiesCol1_7110.49989856PGLM2.05710.49475446PGWD1.13040.49980622PabiesPRR3_F1_25700.49836334PGLM2.01580.25909413X2_7725_01.Paab_4660.50126371X0_17215_01.Paab_1080.43602653X2_7803_01.Paab_2350.48729679X0_13957_02.Paab_270.5013089PaPHYP_RII1770.19301486PabiesPRR1_23810.24553571PGWD1.01520.49873797PabiesPRR1_23810.42784147PGLM2.04040.47469299PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_3590.24001448PGLM2.15140.25086916X0_10515_01.Paab_1750.43990765	PaMFTL1_2215	0.45386661
X0_10267_01.Paab_1480.18212772PGWD1.04180.19109599PGWD1.12190.43554704X2_4976_01.Paab_1760.30116673PGLM2.03950.43214286PabiesCol1_7110.49989856PGLM2.05710.49475446PGWD1.13040.49980622PabiesPRR3_F1_25700.49836334PGLM2.01580.25909413X2_7725_01.Paab_4660.50126371X0_17215_01.Paab_1080.43602653X2_7803_01.Paab_2350.48729679X0_13957_02.Paab_270.5013089PaHYP_RII1770.19301486PabiesPRR1_23810.24553571PGWD1.01520.49873797PabiesPRR1_23810.42784147PGLM2.04040.47469299PGLM2.02880.2990207PGWD1.05100.10340909X0_7171_01.Paab_3590.24001448PGLM2.0515_01.Paab_1750.43990765	X2_3867_02.Paab_440	0.13458114
PGWD1.0418 0.19109599 PGWD1.1219 0.43554704 X2_4976_01.Paab_176 0.30116673 PGLM2.0395 0.43214286 PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_175 0.43990765	X2_9280_01.Paab_338	0.45596529
PGWD1.1219 0.43554704 X2_4976_01.Paab_176 0.30116673 PGLM2.0395 0.43214286 PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.0510 0.10340909 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X0_10267_01.Paab_148	0.18212772
X2_4976_01.Paab_176 0.30116673 PGLM2.0395 0.43214286 PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrM12932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.433990765	PGWD1.0418	0.19109599
PGLM2.0395 0.43214286 PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGWD1.1219	0.43554704
PabiesCol1_711 0.49989856 PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X2_4976_01.Paab_176	0.30116673
PGLM2.0571 0.49475446 PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrR1_168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGLM2.0395	0.43214286
PGWD1.1304 0.49980622 PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43390765	PabiesCol1_711	0.49989856
PabiesPRR3_F1_2570 0.49836334 PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGLM2.0571	0.49475446
PGLM2.0158 0.25909413 X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGWD1.1304	0.49980622
X2_7725_01.Paab_466 0.50126371 X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PabiesPRR3_F1_2570	0.49836334
X0_17215_01.Paab_108 0.43602653 X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGLM2.0158	0.25909413
X2_7803_01.Paab_235 0.48729679 X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X2_7725_01.Paab_466	0.50126371
X0_13957_02.Paab_27 0.5013089 PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X0_17215_01.Paab_108	0.43602653
PaPHYP_RII177 0.19301486 PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X2_7803_01.Paab_235	0.48729679
PabiesPRR1_2381 0.24553571 PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X0_13957_02.Paab_27	0.5013089
PGWD1.0152 0.49873797 PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PaPHYP_RII177	0.19301486
PabiesPrMYB2_932 0.42132612 PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PabiesPRR1_2381	0.24553571
PaKN1b_08525f 0.11607876 PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGWD1.0152	0.49873797
PabiesPRR1_1168 0.42784147 PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PabiesPrMYB2_932	0.42132612
PGLM2.0404 0.47469299 PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PaKN1b_08525f	0.11607876
PGLM2.0288 0.2990207 PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PabiesPRR1_1168	0.42784147
PGWD1.0510 0.10340909 X0_7171_01.Paab_359 0.24001448 PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGLM2.0404	0.47469299
X0_7171_01.Paab_3590.24001448PGLM2.15140.25086916X0_10515_01.Paab_1580.3511179X2_9665_01.Paab_1750.43990765	PGLM2.0288	0.2990207
PGLM2.1514 0.25086916 X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	PGWD1.0510	0.10340909
X0_10515_01.Paab_158 0.3511179 X2_9665_01.Paab_175 0.43990765	X0_7171_01.Paab_359	0.24001448
X2_9665_01.Paab_175 0.43990765	PGLM2.1514	0.25086916
	X0_10515_01.Paab_158	0.3511179
PGWD1.1518 0.46599648	X2_9665_01.Paab_175	0.43990765
	PGWD1.1518	0.46599648

PabiesPRR1_240	0.05188
CL3771Contig1_04.Paab_68	0.05303
PGLM2.0288	0.05303
PabiesHB3_385	0.05327
PGLM2.0901	0.05419
X2_4976_01.Paab_176	0.05502
PabiesPRR1_1632	0.05511
PGWD1.1282	0.05652
PGWD1.0184	0.05676
PGLM2.0285	0.05867
X0_2433_01.Paab_290	0.05902
PGLM2.0798	0.05932
PabiesPRR1_3828	0.06173
PGWD1.1492	0.06371
PGWD1.1501	0.06392
PabiesPrMYB2_932	0.06443
X2_4892_01.Paab_39	0.06665
UMN_853_01.Paab_38	0.06849
CL1148Contig1_08.Paab_134	0.07018
X0_177_01.Paab_165	0.07086
X0_15639_01.392	0.07088
PGWD1.0589	0.07260
X2_3947_01.Paab_298	0.07381
PGWD1.0909	0.07654
CL304Contig1_01.202	0.07676
X2_3867_02.Paab_440	0.07839
PGLM2.0565	0.08150
PGLM2.1528	0.08366
PaPHYO_RIV211	0.08681
PaMFTL1_1613	0.08708
PabiesPRR1_3883	0.08722
PabiesZTL_367	0.09159
PGLM2.0021	0.09986


PGLM2.0592	0.50130548
PGLM2.0592	0.50150546
X0_13978_01.Paab_102	0.1974026
PGLM2.0624	0.47354497
X0_10754_01.Paab_320	0.2519685
PabiesFT1_911	0.31524548
PGLM2.0154	0.16537468
PGLM2.1091	0.09768638
PGLM2.0610	0.27105263
PGWD1.1070	0.46276596
PGWD1.1295	0.47058824
X0_9383_01.Paab_438	0.14136126
PGLM2.0944	0.28981723
PabiesPRR1_240	0.38522427
PGLM2.0828	0.22997416
PGWD1.0118	0.14507772
Mean Ho	0.3262

1	1
PGLM2.0592	0.49712247
X0_13978_01.Paab_102	0.19080087
PGLM2.0624	0.49542826
X0_10754_01.Paab_320	0.28719436
PabiesFT1_911	0.31958335
PGLM2.0154	0.15640439
PGLM2.1091	0.09779238
PGLM2.0610	0.2720143
PGWD1.1070	0.45685106
PGWD1.1295	0.49501799
X0_9383_01.Paab_438	0.13171456
PGLM2.0944	0.29784493
PabiesPRR1_240	0.40630453
PGLM2.0828	0.23888086
PGWD1.0118	0.14373192
Mean He	0.3258


1	1
PGLM2.0923	0.11785
X0_10754_01.Paab_320	0.12266
PGWD1.0634	0.12295
PaPHYO_RI145	0.12756
PGLM2.0584	0.13083
CL1148Contig1_08.Paab_225	0.14295
PabiesMYB2_3403	0.14934
PGLM2.1269	0.16430
PGLM2.0134	0.16593
UMN_3055_01.Paab_224	0.19264
PGWD1.0853	0.20557
PGLM2.1477	0.20957
X0_8531_01.Paab_363	0.30529
PGWD1.1518	0.33017
PGWD1.1034	0.46765
Mean Fis	4.08E-03

Supplement 6. (A) Barplot when K=6 for original order for 394 individuals assuming existence of panmixia. Each individual is represented by a single vertical line, which is partitioned into K colored segments that represent that individual's estimated membership fraction in each of K inferred clusters. (B) Individuals plotted on Google map when K=6 indicating process such as mating and individuals movement are uniform (population in panmixia).

(A)

(B)

SNP	prob	prob log10(PO)		alpha	Fst	
1	0.10082	-0.950299	0.846194	0.057304	0.014897	
2	0.079816	-1.0618	0.88903	-0.035053	0.012822	
3	0.065613	-1.1535	0.90316	-0.028613	0.012881	
4	0.30206	-0.36372	0.36972	-0.427	0.010312	
5	0.071614	-1.1127	0.89798	-0.028071	0.012928	
6	0.095019	-0.97883	0.86141	-0.06329	0.012594	
7	0.086017	-1.0264	0.88081	0.035907	0.014068	
8	0.080616	-1.0571	0.88747	-0.016852	0.013305	
9	0.087818	-1.0165	0.8775	0.015633	0.01393	
10	0.065613	-1.1535	0.90316	0.0014538	0.01323	
11	0.070614	-1.1193	0.89931	-0.023277	0.012932	
12	0.075615	-1.0872	0.8944	-0.041188	0.012757	
13	0.093019	-0.98903	0.86605	-0.056935	0.012688	
14	0.09962	-0.95608	0.84802	0.059047	0.014345	
15	0.083017	-1.0432	0.88422	-0.01475	0.013203	
16	0.09762	-0.96585	0.85443	-0.068909	0.012594	
17	0.088218	-1.0143	0.87495	-0.0027569	0.013682	
18	0.10722	-0.92046	0.82292	0.062538	0.014645	
19	0.10202	-0.94458	0.83884	-0.070137	0.012585	
20	0.096219	-0.9728	0.85844	0.015005	0.014213	
21	0.093019	-0.98903	0.86605	-0.063531	0.012563	
22	0.064013	-1.165	0.90387	-0.0093525	0.013056	
23	0.65513	0.27867	0.26032	0.8337	0.03567	
24	0.079616	-1.063	0.88977	-0.030404	0.012882	
25	0.077816	-1.0738	0.89185	-0.028228	0.013001	
26	0.076615	-1.0811	0.89315	0.011553	0.013493	
27	0.85197	0.76008	0.14803	1.1283	0.044796	
28	0.13003	-0.82548	0.71396	0.10465	0.01652	
29	0.080216	-1.0594	0.88846	0.0039764	0.013464	
30	0.11362	-0.89215	0.80295	-0.081506	0.012477	
31	0.070814	-1.118	0.89892	-0.0029809	0.013218	
32	0.087818	-1.0165	0.8775	-0.028485	0.013113	
33	0.087217	-1.0198	0.87921	-0.020272	0.013177	
34	0.082016	-1.0489	0.88513	0.014476	0.013835	
35	0.11582	-0.88274	0.78635	-0.094102	0.01241	
36	0.09822	-0.9629	0.85139	-0.071333	0.012564	
37	0.089818	-1.0058	0.8713	0.013322	0.013968	
38	0.090218	-1.0036	0.86967	-0.042268	0.012913	
39	0.079616	-1.063	0.88977	-0.017874	0.013087	
40	0.12783	-0.83399	0.73373	-0.10683	0.012299	
41	0.062813	-1.1738	0.9047	-0.010433	0.01306	
42	0.11282	-0.89561	0.8106	0.06993	0.014672	
43	0.081816	-1.0501	0.88535	-0.048654	0.01271	
44	0.079216	-1.0653	0.89031	-0.031914	0.012961	
45	0.082016	-1.0489	0.88513	0.029261	0.013801	
46	0.064613	-1.1607	0.90363	-0.010742	0.013067	
47	0.083017	-1.0432	0.88422	0.032612	0.013844	
48	0.079016	-1.0665	0.89083	-0.044301	0.012766	
49	0.09922	-0.95802	0.84975	0.051549	0.014276	

Supplement 7. Fst coefficient estimated as the posterior mean using model averaging (BayeScan)

	1	I. I		,	3	
50	0.091818	-0.99524	0.867	-0.05791	0.012628	
51	0.089818	-1.0058	0.8713	-0.014362	0.013366	
52	0.10542	-0.92869	0.83238	0.067294	0.014782	
53	0.070814	-1.118	0.89892	-0.0012604	0.013262	
54	0.066013	-1.1507	0.9028	-0.0095085	0.013092	
55	0.092218	-0.99316	0.86653	-0.055311	0.012666	
56	0.079216	-1.0653	0.89031	0.010718	0.013533	
57	0.068814	-1.1314	0.90096	-0.016336	0.013043	
58	0.081416	-1.0524	0.88664	-0.043007	0.012739	
59	0.080216	-1.0594	0.88846	-0.043399	0.012758	
60	0.063413	-1.1694	0.90411	0.0046024	0.013247	
61	0.097419	-0.96684	0.85514	-0.07341	0.012481	
62	0.065413	-1.155	0.90327	0.023726	0.01354	
63	0.078216	-1.0713	0.89168	-0.021643	0.013035	
64	0.072214	-1.1088	0.89771	-0.026862	0.01291	
65	0.09922	-0.95802	0.84975	-0.070396	0.012565	
66	0.064813	-1.1592	0.90351	0.00014235	0.013237	
67	0.070614	-1.1193	0.89931	-0.0013348	0.01323	
68	0.069014	-1.13	0.90059	-0.0040371	0.013223	
69	0.10382	-0.93611	0.83509	-0.078797	0.01245	
70	0.11442	-0.88871	0.7937	0.070042	0.015645	
71	0.066013	-1.1507	0.9028	-0.0035155	0.01313	
72	0.069414	-1.1273	0.90046	-0.0028567	0.01321	
73	0.11282	-0.89561	0.8106	0.065525	0.014652	
74	0.068614	-1.1327	0.90109	0.012372	0.013427	
75	0.12202	-0.85704	0.76793	-0.10786	0.012261	
76	0.13043	-0.82394	0.70196	-0.11546	0.012206	
77	0.087618	-1.0176	0.87779	0.029723	0.013903	
78	0.11022	-0.90701	0.81511	-0.092376	0.012392	
79	0.069414	-1.1273	0.90046	0.0019057	0.013225	
80	0.085017	-1.0319	0.88183	-0.046421	0.012722	
81	0.095019	-0.97883	0.86141	-0.066277	0.01258	
82	0.093419	-0.98697	0.86459	-0.069295	0.012536	
83	0.15143	-0.74847	0.56146	0.12023	0.015912	
84	0.10862	-0.91415	0.82108	-0.090969	0.012375	
85	0.10702	-0.92137	0.82634	-0.077278	0.01253	
86	0.087417	-1.0187	0.87837	-0.0070443	0.013521	
87	0.071414	-1.114	0.89825	-0.020727	0.012986	
88	0.081416	-1.0524	0.88664	0.032915	0.013786	
89	0.13223	-0.81709	0.65189	-0.12519	0.012151	
90	0.075015	-1.091	0.89529	-0.017402	0.013021	
91	0.090618	-1.0015	0.86836	-0.05655	0.012639	
92	0.061612	-1.1827	0.90518	-0.010627	0.01304	
93	0.087818	-1.0165	0.8775	-0.033803	0.012977	
94	0.12382	-0.84978	0.74211	-0.10377	0.012306	
95	0.068014	-1.1368	0.90133	0.0017037	0.013282	
96	0.13103	-0.82165	0.68799	0.1034	0.01662	
97	0.078216	-1.0713	0.89168	-0.036852	0.012777	
98	0.084817	-1.033	0.88233	- 0.00063773	0.013604	
98	0.084817	-0.95997	0.85058	-0.064014	0.013604	
100	0.09882	-0.95997	0.88579	-0.020255	0.012025	
100	0.076215	-1.0312	0.89378	-0.020235	0.013063	
101	0.070213	-1.0022	0.093/0	-0.0077302	0.013143	

	1	1			3	
102	0.063613	-1.1679	0.90399	-0.010297	0.013041	
103	0.12783	-0.83399	0.73373	-0.11593	0.012222	
104	0.080416	-1.0582	0.88767	-0.042695	0.012767	
105	0.15463	-0.73775	0.5136	0.12908	0.016547	
106	0.070414	-1.1206	0.89944	-0.010035	0.013117	
107	0.11402	-0.89043	0.797	-0.1031	0.012333	
108	0.067413	-1.1409	0.9017	-0.024483	0.012916	
109	0.075215	-1.0897	0.89485	-0.029479	0.012886	
110	0.094419	-0.98187	0.86196	-0.072212	0.012554	
111	0.083017	-1.0432	0.88422	-0.041755	0.012775	
112	0.086417	-1.0241	0.88055	0.02933	0.013916	
113	0.084417	-1.0353	0.88328	-0.041627	0.012754	
114	0.078816	-1.0677	0.891	-0.039454	0.012794	
115	0.089818	-1.0058	0.8713	-0.065192	0.012593	
116	0.091218	-0.99838	0.86791	-0.066629	0.012545	
117	0.070214	-1.122	0.89957	0.0091001	0.013386	
118	0.091418	-0.99733	0.86746	-0.062508	0.012639	
119	0.084417	-1.0353	0.88328	-0.0090183	0.013435	
120	0.11582	-0.88274	0.78635	-0.10407	0.012283	
121	0.075015	-1.091	0.89529	-0.03072	0.012859	
122	0.075415	-1.0885	0.8947	-0.030528	0.012879	
123	0.072214	-1.1088	0.89771	-0.0019451	0.01323	
124	0.11002	-0.9079	0.81719	-0.089156	0.012398	
125	0.084817	-1.033	0.88233	0.037983	0.013879	
126	0.088218	-1.0143	0.87495	-0.060394	0.012603	
127	0.062813	-1.1738	0.9047	-0.017201	0.012954	
128	0.063213	-1.1708	0.90435	0.0030615	0.013231	
129	0.074215	-1.096	0.89588	-0.026448	0.012916	
130	0.10142	-0.94743	0.84325	-0.079236	0.012451	
131	0.075815	-1.086	0.89409	-0.037096	0.012839	
132	0.061212	-1.1857	0.9053	0.0013268	0.013217	
133	0.065813	-1.1521	0.90292	-0.0038352	0.013159	
134	0.084017	-1.0375	0.88352	-0.032124	0.013003	
135	0.079016	-1.0665	0.89083	-0.03857	0.012819	
136	0.073215	-1.1024	0.89673	-0.021339	0.013002	
137	0.068814	-1.1314	0.90096	-0.012059	0.013096	
138	0.096619	-0.97081	0.85716	-0.035635	0.013124	
139	0.087417	-1.0187	0.87837	-0.056909	0.012663	
140	0.074215	-1.096	0.89588	-0.024545	0.01293	
141	0.13343	-0.81256	0.6279	-0.12104	0.012193	
142	0.069614	-1.126	0.90021	0.011314	0.013439	
143	0.088818	-1.0111	0.87391	-0.063247	0.012629	
144	0.087217	-1.0198	0.87921	-0.051657	0.012693	
145	0.086617	-1.023	0.88002	0.037491	0.013936	
146	0.087217	-1.0198	0.87921	0.03876	0.014078	
147	0.10582	-0.92685	0.82795	0.068398	0.014611	
148	0.077215	-1.0774	0.89267	-0.041944	0.012735	
149	0.087818	-1.0165	0.8775	-0.038575	0.012871	
150	0.24265	-0.49432	0.44725	0.23683	0.018816	
151	0.077015	-1.0786	0.89283	-0.024048	0.012957	
152	0.079616	-1.063	0.88977	-0.043848	0.01272	
153	0.073415	-1.1011	0.89645	-0.024216	0.012951	
154	0.070814	-1.118	0.89892	-0.014438	0.013034	

					3	
155	0.095019	-0.97883	0.86141	-0.065047	0.012596	
156	0.071214	-1.1153	0.89852	-0.0046079	0.013177	
157	0.069614	-1.126	0.90021	0.015852	0.013473	
158	0.094019	-0.9839	0.86357	-0.064073	0.012609	
159	0.088418	-1.0133	0.87427	-0.05163	0.012708	
160	0.096019	-0.9738	0.85905	-0.059119	0.012648	
161	0.067013	-1.1437	0.90207	-0.0088133	0.013093	
162	0.071214	-1.1153	0.89852	-0.016787	0.013071	
163	0.090418	-1.0026	0.86924	-0.061049	0.012592	
164	0.062613	-1.1753	0.90482	0.0054506	0.013273	
165	0.078416	-1.0701	0.89134	0.0015925	0.013304	
166	0.093619	-0.98595	0.86409	-0.063522	0.012604	
167	0.079616	-1.063	0.88977	0.018617	0.013547	
168	0.11082	-0.90436	0.81291	-0.084159	0.012484	
169	0.11782	-0.87432	0.77784	-0.10779	0.012285	
170	0.14563	-0.7684	0.59807	-0.13931	0.012048	
171	0.067614	-1.1396	0.90158	0.0073837	0.013291	
172	0.085417	-1.0297	0.88107	0.0312	0.013858	
173	0.066013	-1.1507	0.9028	-0.014082	0.013042	
174	0.09782	-0.96487	0.85296	0.021335	0.014369	
175	0.076415	-1.0823	0.89331	-0.041744	0.012756	
176	0.066413	-1.1479	0.90244	-0.010606	0.013087	
177	0.085017	-1.0319	0.88183	-0.020249	0.01319	
178	0.090018	-1.0047	0.87009	-0.052983	0.012703	
179	0.088818	-1.0111	0.87391	0.00081756	0.013643	
180	0.080216	-1.0594	0.88846	-0.038095	0.012824	
181	0.073215	-1.1024	0.89673	-0.022865	0.012973	
182	0.069814	-1.1246	0.89983	0.016466	0.013503	
183	0.063213	-1.1708	0.90435	0.0070222	0.0133	
184	0.088018	-1.0154	0.87562	-0.0033285	0.013509	
185	0.11362	-0.89215	0.80295	-0.097184	0.012358	
186	0.081016	-1.0547	0.88706	0.018077	0.01354	
187	0.079016	-1.0665	0.89083	-0.035444	0.012835	
188	0.080216	-1.0594	0.88846	-0.023142	0.012967	
189	0.11442	-0.88871	0.7937	-0.09128	0.012396	
190	0.090418	-1.0026	0.86924	-0.053887	0.012668	
191	0.082817	-1.0443	0.88445	-0.044322	0.012748	
192	0.10182	-0.94553	0.84	0.050624	0.014379	
193	0.087818	-1.0165	0.8775	0.013687	0.013761	
194	0.12202	-0.85704	0.76793	-0.10566	0.012299	
195	0.076215	-1.0835	0.89378	-0.020427	0.013032	
196	0.089018	-1.01	0.8732	-0.053705	0.012689	
197	0.09762	-0.96585	0.85443	0.023042	0.014181	
198	0.093219	-0.988	0.86509	-0.03404	0.013117	
199	0.097219	-0.96783	0.85583	-0.050957	0.012766	
200	0.076815	-1.0798	0.89299	-0.02179	0.013021	
201	0.71194	0.39297	0.21804	1.0147	0.043965	
202	0.10082	-0.9503	0.84619	-0.074771	0.012515	
203	0.072414	-1.1075	0.89729	-0.0038399	0.013243	
204	0.068214	-1.1354	0.90121	-0.0082674	0.013137	
205	0.079816	-1.0618	0.88903	0.023453	0.01366	
206	0.074415	-1.0948	0.89544	-0.028455	0.012932	
207	0.073615	-1.0998	0.89631	-0.018828	0.013043	

		l			
208	0.075415	-1.0885	0.8947	-0.035002	0.01286
209	0.094019	-0.9839	0.86357	-0.06522	0.012599
210	0.074015	-1.0973	0.89616	-0.029732	0.012862
211	0.067013	-1.1437	0.90207	-0.015437	0.013031
212	0.11322	-0.89388	0.80566	-0.095856	0.012373
213	0.084417	-1.0353	0.88328	-0.031968	0.012996
214	0.079816	-1.0618	0.88903	-0.041902	0.012801
215	0.062813	-1.1738	0.9047	0.0022691	0.01323
216	0.062212	-1.1782	0.90506	0.003361	0.013248
217	0.10442	-0.93332	0.83376	-0.073676	0.012501
218	0.084417	-1.0353	0.88328	0.03184	0.01381
219	0.089218	-1.009	0.87283	-0.0068411	0.013588
220	0.12342	-0.85139	0.74958	-0.11469	0.012231
221	0.094219	-0.98289	0.86251	0.0011068	0.013823
222	0.077415	-1.0762	0.89234	-0.035014	0.012842
223	0.077415	-1.0762	0.89234	0.033069	0.013821
224	0.067213	-1.1423	0.90183	-0.0070271	0.013141
225	0.079216	-1.0653	0.89031	-0.017918	0.013096
226	0.088018	-1.0154	0.87562	-0.014548	0.013282
227	0.070614	-1.1193	0.89931	-0.025147	0.01293
228	0.081416	-1.0524	0.88664	-0.040387	0.012797
229	0.081416	-1.0524	0.88664	-0.036549	0.012821
230	0.086817	-1.022	0.87949	-0.057679	0.012664
231	0.072214	-1.1088	0.89771	-0.010091	0.013102
232	0.072014	-1.1101	0.89784	0.004488	0.013354
233	0.076215	-1.0835	0.89378	-0.0085716	0.013215
234	0.095219	-0.97782	0.85966	0.020628	0.014392
235	0.10082	-0.9503	0.84619	-0.070718	0.01255
236	0.065013	-1.1578	0.90339	-0.010019	0.013057
237	0.069614	-1.126	0.90021	-0.018496	0.013011
238	0.071414	-1.114	0.89825	-0.034537	0.012804
239	0.096419	-0.9718	0.85781	0.033865	0.014053
240	0.10562	-0.92777	0.83097	-0.081658	0.012475
241	0.064413	-1.1621	0.90375	0.010117	0.013325
242	0.10142	-0.94743	0.84325	-0.076683	0.012506
243	0.081216	-1.0536	0.88685	-0.02075	0.013068
244	0.069814	-1.1246	0.89983	-0.015899	0.013012
245	0.072815	-1.1049	0.89701	-0.030581	0.012867
246	0.060012	-1.1949	0.90554	-0.015298	0.012977
247	0.074215	-1.096	0.89588	-0.0093922	0.013131
248	0.066813	-1.1451	0.90219	-0.0093158	0.013116
249	0.10702	-0.92137	0.82634	-0.089447	0.012409
250	0.060012	-1.1949	0.90554	-0.0024698	0.013125
251	0.10162	-0.94648	0.84112	-0.077772	0.012491
252	0.085017	-1.0319	0.88183	-0.015346	0.013288
253	0.10302	-0.93986	0.83638	-0.075028	0.01254
254	0.077616	-1.075	0.89201	-0.032046	0.01288
255	0.074015	-1.0973	0.89616	0.0096781	0.01354
256	0.077215	-1.0774	0.89267	-0.021655	0.013007
257	0.13203	-0.81785	0.67153	-0.12713	0.012158
258	0.066413	-1.1479	0.90244	0.0034851	0.013223
259	0.073015	-1.1037	0.89687	-0.016141	0.013058
260	0.075015	-1.091	0.89529	-0.0049445	0.013293

261	0.075615	-1.0872	0.8944	-0.035549	0.012819
262	0.09782	-0.96487	0.85296	-0.070354	0.012587
263	0.082416	-1.0466	0.88468	-0.050849	0.012696
264	0.067814	-1.1382	0.90146	0.0032176	0.013263
265	0.10022	-0.95318	0.84712	-0.078191	0.012502
266	0.097019	-0.96882	0.8565	-0.064375	0.012595
267	0.080616	-1.0571	0.88747	-0.043415	0.012774
268	0.089418	-1.0079	0.87208	0.039803	0.013989
269	0.087818	-1.0165	0.8775	-0.059116	0.012609
270	0.086417	-1.0241	0.88055	-0.055548	0.012635
271	0.11822	-0.87265	0.7731	-0.10488	0.012317
272	0.078416	-1.0701	0.89134	-0.029514	0.012928
273	0.068814	-1.1314	0.90096	-0.02051	0.012979
274	0.089418	-1.0079	0.87208	-0.05537	0.012664
275	0.10562	-0.92777	0.83097	0.067551	0.014541
276	0.10222	-0.94363	0.83763	-0.078929	0.012468
277	0.062212	-1.1782	0.90506	0.00012207	0.013202
278	0.072615	-1.1062	0.89715	0.010363	0.013395
279	0.081616	-1.0512	0.88579	-0.007806	0.013322
280	0.12202	-0.85704	0.76793	0.084107	0.014891
281	0.089218	-1.009	0.87283	-0.057623	0.012642
282	0.086617	-1.023	0.88002	0.0032196	0.013608
283	0.076015	-1.0848	0.89394	0.024764	0.013639
284	0.10902	-0.91235	0.81918	-0.08205	0.012476

Supplement 8: Sam β ada results for univariate models. List of loci detected under the BEST model when threshold of 0.01 used indicating measures of regression (Efron, McFadden, McFaddenAdj, CoxSnell, Nagelkerke), Akaike information criterion (AIC), Bayesian information criterion (BIC), Parameters β for regression (Batea_0 and Beta_1).

Marker	Env_1	Loglikelihood	Gscore	WaldScore	NumError	Efron	McFadden	McFaddenAdj	CoxSnell	Nagelkerke	AIC	BIC	Beta_0	Beta_1
160_BB	ppt_win	-224.4376832	28.24125588	26.19277394	0	0.098208502	0.059191515	0.050807821	0.072918522	0.030327029	452.8753663	472.56168	-1.911515899	0.015787804
7_AA	ppt_sum	-104.8122197	19.18984068	16.74221474	0	0.075780996	0.083866447	0.066385021	0.049372347	0.062654891	213.6244393	233.3745842	0.290170755	-0.024202408
160_AA	AI_spring	-175.7283632	17.36421137	16.65538663	0	0.058371737	0.04708033	0.036234958	0.045485883	0.028230772	355.4567265	375.1430402	-1.96269716	0.534087802
25_BB	AI_spring	-254.4247472	14.78875768	14.08623537	0	0.075423312	0.028242317	0.020603456	0.03836825	0.013317592	512.8494944	532.5890712	0.406946573	-0.401797977
160_AA	ppt_win	-176.421083	15.97877185	14.07297719	0	0.051843497	0.043323928	0.032478557	0.041933924	0.025929762	356.842166	376.5284797	-0.362207754	-0.015221622
183_BB	AI_spring	-257.44203	14.29546704	13.55672464	0	0.050788612	0.027014399	0.019455528	0.036173507	0.012891627	518.88406	538.7280814	-0.021398937	0.394899121
174_AA	t_win	-68.30816205	14.76476205	13.08827444	0	0.045559385	0.09753373	0.07111035	0.03762398	0.08115835	140.6163241	160.4292974	-3.071267494	-0.421571509
278_BB	ppt_aut	-159.7674513	15.33705443	12.65257429	0	0.066100714	0.045799757	0.033854893	0.03856256	0.029492912	323.5349027	343.3994896	-0.123523187	0.018281213
278_AB	ppt_aut	-154.6469324	15.16984895	12.49290086	0	0.040883995	0.046753607	0.034425572	0.038150272	0.030561732	313.2938647	333.1584517	0.0957661	-0.018653562
53_AA	ppt_win	-136.108697	14.52291671	12.40240165	0	0.089961772	0.050648326	0.036698421	0.036645656	0.034901596	276.2173939	296.0717113	0.771947745	0.018030778
186_BB	ppt_win	-77.39457786	12.67304761	12.29611383	0	0.04756635	0.075677062	0.051791075	0.033230128	0.061059067	158.7891557	178.4968598	-4.552283128	0.020235258
53_AB	ppt_win	-134.2423974	14.26183921	12.17458731	0	0.039873694	0.05044035	0.036293409	0.035998883	0.034947054	272.4847949	292.3391123	-0.796566141	-0.018042827
204_BB	altitude	-249.009191	12.95805333	12.16825325	0	0.061078611	0.025359395	0.017531246	0.033875825	0.01212343	502.018382	521.7367385	-1.790721317	0.001100956
165_BB	ppt_win	-175.5579592	12.26429668	12.10752549	0	0.043066348	0.03375059	0.022742836	0.032865499	0.020088845	355.1159184	374.7373658	-2.369950247	0.01213414
86_AB	ppt_win	-142.2635915	13.90717299	12.00737781	0	0.041799013	0.046600442	0.03319716	0.035119565	0.03154902	288.527183	308.3815004	-0.763816568	-0.017008948
99_AA	ppt_sum	-258.6960257	12.22265718	11.81241584	0	0.048984086	0.023078395	0.015525734	0.031168831	0.010929847	521.3920513	541.2154008	1.49627736	-0.010544751
147_AA	ppt_win	-69.57244202	12.2362021	11.8022093	0	0.045803089	0.080830455	0.054407075	0.031282593	0.067037669	143.144884	162.9578574	-4.849886461	0.021207215