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Abstract—This paper describes an innovative monitoring
technology for detecting ground-level ozone pollution, b ased
on the deployment of a network of wireless devices connected
to a collection of plants, used as bio-sensors. Such devices
retrieve and transmit the electrical activity signals experienced in
plants, used to monitor environmental conditions. The distributed
plants as sensors infrastructure communicates wirelessly with a
weather station, equipped with meteorological sensors as well
as data logging and both wireless and wired communication
capabilities. A back end server collects and analyze real-time data
from the station and delivers environmental and ozone pollution
information to users through a web portal. In order to perform a
classification on the level of ozone exposure, a correlation-based
approach has been used. The system is implemented in pilot phase
with a sensing infrastructure of four plants and started operation
in November 2014. As the data collection volume increases, more
accurate classification techniques can be performed.

I. INTRODUCTION

Nowadays, the air quality is getting worse in highly an-
thropized environments: this phenomenon stimulates a high
level of interest within the scientific community and public
opinion because of the known strong relationship between
exposure to many air pollutants and increased adverse effects
on the human health [1]–[3]. Weather monitoring is also
important not just in defining present climate, but also for
detecting changes in climate and providing the data inputs
to the models which enable us to predict future changes
in our environment [4], [5]. Because of the wide variety
of uses for the information, different groups of people are
interested in a subset of a large number of environmental
variables. These include solar radiation, wind speed, wind
direction, barometric pressure, air temperature, humidity and
net radiation. The demand for these data, usually on an hourly
or more frequent timescale, has increasingly been met by the
development and widespread deployment of automatic weather
stations (AWSs) over the past 30 years [6]. Developments
in communication technologies allow more remote, real-time
weather monitoring and access. Recently there has been a very
fast growth in the number of the active weather stations and
a great improvement of their communication abilities, which
has helped to facilitate access to weather information from
a limited number of stations run by the operator, to a wider
number of networks of stations. The availability of data from
spatially distributed networks has resulted in a paradigm shift,
namely from considering the weather at a single point towards

the evolution of weather patterns over large areas. Moreover,
the new generation of weather sensors should be less sensitive
to chemical interference, and have improved long term stability
and negligible hysteresis. This trend should continue since new
innovative sensors are likely to appear: particularly, visibility
monitors are increasingly common on road monitoring stations
and the upcoming monitoring chemical variables will operate
not only in the atmosphere (e.g. ozone, SO2 and other indus-
trial pollutants), but also in rainfall and even in the soil.
The monitoring of current near-surface atmospheric condi-
tions with a weather station can give us important local
information, but little about how those conditions arose. An
important control on those conditions is the flux of water
and energy, because a wide range of organic and inorganic
gaseous pollutants are released into the atmosphere. Among
air pollutants, ozone is one of the most important greenhouse
gas [7] with secondary origin, generated in the troposphere
through a series of complex photochemical reactions involving
solar radiation and ozone precursors, i.e. methane (CH4),
carbon monoxide (CO), volatile organic compounds (VOCs),
and nitrogen oxides (NOx), which are largely emitted from
anthropogenic sources [8]. Background O3 concentrations have
risen from ∼10 ppb before the industrial revolution [9] to
daytime summer concentrations exceeding 40 ppb in many
parts of the Northern Hemisphere [10]. Due to its nature of
reactive oxidant agent, ozone can generate several negative
effects on human health including lung inflammation, reduced
lung function, degenerative diseases, age related disorders and
eventually cancer [11]. Ozone also acts as a corrosive agent
for many materials, surface coatings and buildings [12].
The use of plants as biosensors represents a new reliable
approach for ozone monitoring. In comparison with the tra-
ditional monitoring systems, the use of biosensors has the
advantage to show us the real impact of pollutants on living
organisms, thus providing additional data to the electronic
instruments. Moreover, this allows to take into account the con-
cepts of bioavailability, dose and exposure, resulting in a more
realistic approach of the impact of pollutants on environmental
and human health [13]. Plants are more sensitive than humans
and animals in terms of physiological reaction to fluctuations
of multiple parameters [14], making them suitable tools for
environmental monitoring. More specifically, morphological
and anatomical parameters of plants, such as specific leaf area
(SLA), stomatal density (SD), and pore surface, have proven
to be useful indicators of air quality [15]. The observation of



necrosis on leaves and coloured spots allow, in certain cases,
the identification of pollutant sources.
In this paper, an ozone pollution monitoring system based on
plant electrical activity analysis is presented. An automatic
weather station provides crucial data about changes to the
composition of the atmosphere, gathering site-specific, real-
time data on environmental conditions such as wind speed and
direction, temperature, barometric pressure and precipitation.
The station uses reliable and accurate sensors to measure
these and other ambient weather conditions. These parame-
ters provide insight into bio-meteorological problems, which
may relate to food production, human health, protection of
endangered flora and fauna or ensuring a comfortable envi-
ronment for habitation. The data collected is also used to
warn the public about hazardous air quality; as a matter of
fact the system can be accessed in real-time by authorized
users via web applications. The ground-level ozone monitoring
system is based on data coming from a network of plants,
which share information about the environment, and on a
data processing platform located on a back end server, where
a classification algorithm able to identify the plant response
to critical level of ozone concentrations is adopted. As a
result, the proposed platform uses the plant community as a
distributed, eco-compatible, self-sustainable and cost-effective
sensing infrastructure.
The paper is organized as follows: in Section II, a description
of the system is given. The ozone critical level detection tech-
nique based on plant electrical activity analysis is presented in
Section III. Conclusions are drawn in Section IV.

II. SYSTEM DESCRIPTION

The system architecture for ground-level ozone monitoring
is shown in Figure 1. The deployed network is composed
by four plant sensors, which have been actively operating
since November 2014: the current deployment is a pilot test
and more types of performance assessment and improvement
measures are planned in the future. The air monitoring system
consists of two main subsystems: the distributed plant sensing
infrastructure, and the automatic weather station. The air mon-
itoring station communicates with a back end server, where a
data processing platform is responsible for the interpretation
of the plant signals in order to evaluate critical levels of ozone
concentrations. To display the collected and processed infor-
mation in a user-friendly format, a web platform accessible by
registered users has been developed.
More detailed description of these subsystems is given in the
following subsections.

A. Plants as Biosensors Infrastructure

About 50 cm high plants of Ligustrum texanum and Buxus
macrophilla were deployed in a delimited area. Electrical
signals are monitored by means of three stainless steel needle
electrodes, one placed at the base (reference for background
noise subtraction), one in the middle and the other on top of
the stem. The electrodes have isolated cable and the needles
are 0.45 mm in diameter and 25 mm in length, similar to
those used in electromyography. The electrodes are inserted
around 57 mm into the plantstem so that the sensitive active
part of the electrodes (2 mm) are in contact with the plant cells.
After some preliminary tests, the sampling frequency was set

Fig. 1. Ground-level Ozone Monitoring System Architecture.

Fig. 2. The deployed ligustrum and buxus plants as biosensors.

as 1 sample/s for all the deployed sensors. All the sensing
elements are connected to a data logging and communication
board, equipped with Freescale iMx28 processor and external
MicroSD memory with 1 GB capacity. Its main functions
are data acquiring, processing, logging and transmitting. Each
device houses a Wi-Fi modem for wireless connectivity to the
weather station board, which establishes a TCP/IP Internet
connection with the data processing platform located at the
back end server. A picture of the deployed monitoring sensors
is shown in Figure 2.

B. Automatic Weather Station

The automatic weather station consists of several mete-
orological sensing elements, the data logging and wireless



Fig. 3. AWS solution scheme with integrated sensing elements.

communication board, and the power supply system. When
studying air quality, it is important to measure the following
factors, as they can help understand the chemical reactions
that occur in the atmosphere: wind speed and direction,
temperature, humidity, rainfall, solar radiation. An example
scheme of automatic weather station with full integration of
meteorological sensing components is depicted in Figure 3.
When high pollutant concentrations occur at a monitoring
station, wind data records can determine the general direction
and area of the emissions. The identification of the sources
can allow to plan a reduction of the impacts on air quality.
Measuring temperature supports air quality assessment, air
quality modeling and forecasting activities. Temperature and
sunlight (solar radiation) play an important role in the chemical
reactions that occur in the atmosphere to form photochemical
smog from other pollutants: favourable conditions can lead to
increased concentrations of smog.
Like temperature and solar radiation, water vapour plays an
important role in many thermal and photochemical reactions in
the atmosphere. As water molecules are small and highly polar,
they can bind strongly to many substances: if attached to the
particles which are suspended in the air they can significantly
increase the amount of light scattered by the particles (moni-
toring aerosols). If the water molecules attach to the corrosive
gases, such as sulfur dioxide, the gas will dissolve in the water
and form an acid solution that can damage health and property.
Reporting of the water vapour content of air gives information

Fig. 4. The automatic weather station equipped with meteorological sensors.

about the percentage of the saturation vapour pressure of water
at a given temperature, namely about the relative humidity. The
amount of water vapour in the atmosphere is highly variable:
it depends on geographic location, how close water bodies
are, wind direction and air temperature. Relative humidity is
generally higher during summer when temperature and rainfall
are also at their highest.
Rain has a ’scavenging’ effect when it washes particulate
matter out of the atmosphere and dissolves gaseous pollutants.
Removing particles improves visibility. Where there is frequent
high rainfall, air quality is generally better. If the rain dissolves
gaseous pollutants, such as sulfur dioxide, it can form acid
rain resulting in potential damage to materials or vegetation.
A common method to measure rainfall is to use a tipping
bucket rain gauge, which registers rainfall by counting small
amounts of collected rain. All the sensing elements of the
weather station are connected to the analog inputs of the data
logging and communication board, equipped with Linux-based
embedded operating system and SQLite database to provide
efficient and reliable local data storage. The data logger is
equipped with a GPRS modem for wireless connectivity and
with Ethernet networking interface to establish a TCP/IP
Internet connection with the data processing platform located
at the back end server. A picture of the deployed weather
station is shown in Figure 4.



Fig. 5. Plant electrical signal measurements view.

C. Client-side Web Applications

The dissemination of the measured environmental condi-
tions is performed via client-side web applications accessible
through any browser, or any computer or mobile device. The
stored data received from the sensors are forwarded by the
server to the applications that access the network. These
applications, hosted on a web platform, provide updated data
summaries and statistics, data visualization with display of
real-time sensors measurements, including plants electrical
activity signals, and data dissemination with weather warnings
relating to detected critical levels of ozone pollution in the
area. The web application for the described end-to-end system,
named ARIA (Italian acronym for ”plants as detectors of
environmental pollution”), is available at the following link:
http://www.progettoaria.net/. Although the system is in pilot
phase, the sensors measurements are already accessible after
registering to the site. Among other applications, the website
allows displaying the plants electrical signals and by clicking
on a particular sensor icon the most recent measurements at
the plant location is shown. A web view example is illustrated
in Figure 5. In addition, detailed reports about the detected
ozone pollution levels are provided. When the plants electrical
response to ozone exposure reaches warning levels, a visual
signal alert is displayed on the website.
In the next section, the ground-level ozone pollution detection
system based on plant electrical activity analysis is presented.

III. OZONE CRITICAL LEVEL DETECTION

The data processing platform is operating on a back end
server. The focus at the preliminary stage of this subsystem
was to find an association between ozone exposure and some
typical features in the resulting plant electrical signal, develop-
ing a classification algorithm able to identify the stimulus. In
order to obtain reliable results, automatic response detection
and data classification for plant electrical signals were to be
implemented. Many studies reported artifacts detection meth-
ods for EEG and EKG analysis [16]–[20]. These methods were
appropriate for human biological signals and offline analysis.
For the analysis of plants bio-electrical signals that are related
to environmental and climatic changes the response detection
algorithm needs to be simplified. The detection algorithm of
plant response to ozone is based on a preliminary extraction
of significant deviations from a certain baseline trend: in order

Fig. 6. Detection of critical level of ozone exposure for ligustrum plant
sensor.

to correctly identify the response in an automatic way, a
derivative-based algorithm has been used, similarly to those
used in spike detection [21]. Subsequently the classification of
the ozone risk level is developed by using the method of corre-
lation. A representative ozone response template, constructed
by coherent averaging of the respective response segments of
the recordings used for the preliminary training phase, was
employed for subsequent comparison with all the responses
detected by the implemented system.
Cross correlation is a statistical technique which can show
whether and how strongly pairs of variables are related. It
is an excellent tool to match images and signals with each
other. It is robust to noise, and can be normalized for pattern
matching. The correlation coefficient, a statistical measure of
similarity of two waveforms, produces a value, ρ, which falls
within the range [-1,+1], where +1 indicates a perfect match
between signal and template. Mathematically, the correlation
coefficient is defined as follows:

ρ =

∑N
i=1(ti − t̄)(si − s̄)√∑N

i=1(ti − t̄)2
√∑N

i=1(si − s̄)2
(1)

where ti are the template points, si are the signal points under
analysis, t̄ is the average value of the template points, s̄ is
the average value of the signal points, N is the number of
points in the template, and ρ is the performance measure. The
correlation coefficient is independent of the relative amplitudes
of two signals and independent of any baseline changes. Based
on experimental data, it was observed that the plant response to
ozone stimulus is characterized by a specific waveform. The
automatic detection system takes advantage of this property
to classify the risk level of ozone air pollution by using the
correlation coefficient. An example of detected ozone response
is depicted in Figure 6.

IV. CONCLUSIONS

In this paper an end-to-end system for ground-level ozone
monitoring based on plants employed as biosensors is pre-
sented. The system has two main components: the plants as



biosensors infrastructure representing a wireless sensor net-
work for ozone exposure detection, and the automatic weather
station equipped with fundamental meteorological sensors.
The monitoring station communicates with a back end server
using GPRS or Ethernet communications. The data processing
platform hosted at the back end server is able to identify critical
levels of ozone exposure by applying a correlation-based
classification algorithm. A web platform has been developed
to allow registered users to access both historical and real-
time data. The current system is in pilot phase and additional
techniques under current investigation include the extension
of the developed algorithms based on plant electrical activity
analysis for further classification of other major air pollutant
classes.
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