
22 July 2024

Monitoraggio strutturale verso robustezza di piattaforme offshore a base fissa / Betti, Michele; Rizzo,
Michele; Spadaccini, Ostilio; Vignoli, Andrea. - STAMPA. - 1:(2015), pp. 551-558. (Intervento presentato al
convegno XXV Congresso CTA “Le giornate Italiane della Costruzione in Acciaio” tenutosi a Salerno nel 1-3
ottobre).

Original Citation:

Monitoraggio strutturale verso robustezza di piattaforme offshore a
base fissa

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1008939 since: 2015-11-25T09:50:13Z

Collegio dei Tecnici dell'Acciio

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access



XXV CONGRESSO C.T.A.  

MONITORAGGIO STRUTTURALE VERSO ROBUSTEZZA  

DI PIATTAFORME OFFSHORE A BASE FISSA 

STRUCTURAL MONITORING VERSUS ROBUSTNESS  

OF FIXED STEEL OFFSHORE PLATFORMS 

Michele Betti, Michele Rizzo, Ostilio Spadaccini, Andrea Vignoli 

Università degli Studi di Firenze 

Dipartimento di Ingegneria Civile e Ambientale (DICEA) 

Firenze, Italia 

mbetti@dicea.unifi.it; mrizzo@dicea.unifi.it, ostilio@dicea.unifi.it, avignoli@dicea.unifi.it 

 

 

ABSTRACT 

Since the early seventies, monitoring techniques for damage identification that analyze the chang-

es in the modal properties of offshore structures have been developed. Results of previous re-

searches showed that the MAC (Modal Assurance Criterion), the COMAC (Coordinate Modal 

Assurance Criterion) and the MSF (Modal Scale Factor) are indexes capable to detect not only the 

damages but also the mass changes (provided that a proper and reliable monitoring has been de-

signed and installed). It is expected, however, that the more the offshore platform is robust and/or 

damage tolerant, the less a structural damage can be detected through the changes in its first mod-

al properties. Within this framework, the paper investigates the ability of monitoring systems and 

damage measures to assess possible structural damage in conjunction with the robustness of such 

structures and, as a reference case study, the VEGA-A offshore platform (an eight-leg steel fixed 

jacket platform operating in the Sicily Channel, 25 km offshore in 122.3 m water depth), was con-

sidered. The aim of the paper is to discuss capability and limitation of the VEGA dynamic moni-

toring systems (a system that allow identifying mode shapes and main frequencies from above-

water measurements) investigating possible improvements of the monitoring system (such as ad-

ditional under-water measurements) aimed at the damage assessment. 

SOMMARIO 

Fin dai primi anni settanta sono state sviluppate tecniche per l'identificazione del danno basate 

sull’analisi delle modifiche nelle proprietà modali. I risultati di ricerche precedenti hanno mostra-

to che il MAC (Modal Assurance Criterion), il COMAC (Coordinate Modal Assurance Criterion) 

o il MSF (Modal Scale Factor) sono indici in grado di rilevare non solo l’eventuale presenza di 
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danno, ma anche i cambiamenti di massa (a condizione che sia stato progettato e installato sulla 

struttura un sistema di monitoraggio affidabile). È ragionevole, tuttavia, ritenere che più la struttu-

ra è robusta e meno un danno strutturale sia rilevabile attraverso l’analisi dei cambiamenti delle 

sole prime forme modali. In questo ambito, ed in riferimento ad uno specifico caso di studio (la 

piattaforma offshore VEGA A), la memoria analizza, in parallelo ad appropriate misure di danno, 

la capacità di un sistema di monitoraggio come efficace ausilio per la valutazione di un potenziale 

danno strutturale. 

1 INTRODUCTION 

Verification of offshore structures for use beyond their initial life requires the proper design of an 

inspection plan aimed to constantly check-up the structural elements (members and joints). The 

amount of inspections, their frequency and their typology is still a critical issue since, for in-

stance, it may not be feasible to inspect all critical component. In fact the visual inspection of 

structural damages is in most cases hard to perform (taking into account both the water depth and 

the marine growth plants that hides the structural member) and evermore economically demand-

ing. For this reason inspection planning was, and still is, mainly based on probabilistic analysis 

(Risk Based Inspection, RBI) [1]. To overcome these problems, since the early seventies, moni-

toring techniques for damage identification through the analysis of the changes in the modal 

properties of offshore structures have been developed and the results of previous researches 

showed that the MAC (Modal Assurance Criterion), the COMAC (Coordinate Modal Assurance 

Criterion) and the MSF (Modal Scale Factor) are indexes capable to detect both offshore damages 

and mass changes (provided that a proper and reliable monitoring system has been designed and 

installed). It is expected, however, that the more the offshore platform is robust (i.e. damage tol-

erant), the less a structural damage can be detected through the changes in its first modal proper-

ties. To deepen these aspects the paper investigates the ability of monitoring systems and damage 

measures to assess possible structural damage in conjunction with the robustness and damage tol-

erance of such structures. To characterize the platform robustness indexes such as the Structural 

Redundancy (SR) evaluated through pushover analyses are considered. 

As a reference case study the VEGA A offshore platform, an eight-leg steel fixed jacket platform 

operating in the Sicily Channel, 25 km offshore, in 122.3 m water depth, was considered. The 

structure comprises a steel jacket platform, which is 140 m high, having eight columns connected 

using horizontal bracings with four vertical bracings in the transversal direction and two vertical 

bracings in longitudinal direction. The dimension of the main columns ranges from 2000 OD  

35/50 WT at the three lower levels to 1700 OD  35/50 WT at the higher ones, while the size of 

the main part of the vertical bracings is 1000 OD  25 WT (with a length, in the longitudinal di-

rection, of about 32 m). The dimensions of the jacket at the sea bed are 70 m by 48 m, while at the 

top they are 50 m by 18 m [2]. Six horizontal bracing frames, spaced at approximately 21 m, are 

also used to support the well conductor guides. EN S355 steel is employed for all structural ele-

ments. The jacket is supported by 20 vertical steel piles, 85 m long with a diameter of 2.6 m. 

These piles have been driven to a depth of 65 m below the seabed by means of an underwater 

hammer.  

Capability, limitation and possible improvements of the existing dynamic structural monitoring 

systems, that allow identifying mode shapes and main frequencies from only above-water meas-

urements, are herein discussed. 

2 THE MONITORING SYSTEM 

Since March 1988 the structural behaviour of the platform has been object of analysis by the De-

partment of Civil and Environmental Engineering of the University of Florence, and a system of 
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vibration monitoring is still active that records structural and environmental data [3]. The actual 

VEGA A structural monitoring systems is constituted of 9 linear accelerometers (6 linear and 3 

rotational) disposed at the level of the skid-beams (above-water). The environmental monitoring 

system is constituted by a current meter and a depth gauge that allow reconstructing the wave 

characteristics. In addition speed and direction of both wind and current are recorded together 

with the meteorological data (air pressure, temperature and humidity). Last updating of the moni-

toring system date back to 2001 and currently an improvement is expected. With the actual moni-

toring system, acceleration data are recorded with a sampling frequency of 10 Hz, instead the me-

teocean data are recorded with a sampling frequency of 2 Hz. The accelerometer data, the atmos-

pheric pressure, the humidity and the wind and air temperature are acquired for a period of  

10 min/h. The depth gauge and the current meter data are acquired for a period of 17 min/h.  

  

Fig. 1. Statistical analysis of the frequency: L1x year 2000 (left), L1x (right) year 2013. 

  

Fig. 2. SSI analysis: stabilization diagram and PDF (storm of 2014/01/25). 

2.1 Signal analysis 

The main structural frequencies of the platform were first evaluated through the FFT technique. In 

2001 one of the superstructures (the Derrick, approximately 2800 ton taking into account addi-

tional structures) was removed during a reconfiguration of the platform. The statistical analysis of 

the first frequency over the period 2000-2013 is reported in Fig. 1. It is possible to read clearly the 
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frequency shift: before the removal of the Derrick the first two frequency of the platform were 

f1mean, 2000 = 0.431 Hz and f2mean, 2000 = 0,483 Hz; after the removal they become f1mean, 2013 = 0.439 

Hz (+1.85%) and f2mean, 2013  = 0.504 Hz (+4.35%).  

A more efficient identification of the frequencies was also performed by means of the Subspace 

Stochastic Identification (SSI) technique, analysing the data recorded at the midnight of each day 

over the years 2000-2013. Subsequently, the identified eigenfrequencies were employed to evalu-

ate the corresponding modal shapes by means of a Singular Value Decomposition (SVD). The 

Probability Density Function (PDF) was built by means of a Gaussian base and Fig. 2 shows the 

stabilization diagram and the PDF of structural resonance (the identified mode shapes are reported 

in Fig. 5). Despite the ability of the SSI to evaluate exactly the main frequencies of the platform, 

the SVD allows for a poor identification of the corresponding modal shapes (Fig. 5) since the ac-

tual monitoring system record only above-water acceleration.  

Table 1. Main characteristics of few significant events. 

Event Hs 

(m) 

Ts 

(s) 

Dm 

(°) 

W 

(m/s) 

Dw 

(°) 

f1 

(Hz) 
1 

(%) 

f2 

(Hz) 
2 

(%) 

f3 

(Hz) 
3 

(%) 

2014-01-06 h23 1.1 6.6 131 8.47 23 0.437 2.02 0.503 2.16 0.756 1.45 

2014-01-30 h04 1.0 5.3 248 9.21 141 0.435 2.08 0.508 2.20 0.749 1.88 

2013-12-27 h01 3.5 8.4 337 8.22 288 0.439 3.00 0.495 2.74 0.771 3.63 

2014-01-25 h02 5.6 9.3 244 27.23 236 0.437 4.31 0.484 3.37 0.761 8.04 

2013-03-14 h22 6.7 9.8 307 n.a. n.a. 0.432 5.83 0.508 3.52 0.755 13.87 

 

 

Fig. 3. SSI analysis: damping evaluation. 

By means of the SSI technique, analyzing events with increasing intensity (Table 1), it is possible 

to evaluate not only the main frequencies and modal shapes but also the corresponding damping. 

As is known the damping of offshore structures can be evaluated as the sum of several factors [4]: 

the structural damping, the aerodynamic, the hydrodynamic and the one connected to the behavior 

of foundations: 
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                           (1) 

It is interesting to observe that events of increasing intensities are associated with higher damping 

values (Fig. 3). In case of events of moderate intensity, the damping value is stable and close to 

2%; while with the growing of the intensity of' event it reaches values around 14% (for the third 

mode shape). Intensities of the event modify also the modal displacements. This behavior is due 

to the nonlinear behavior of the platform, in particular to the nonlinearity of its foundations. 

3 THE NUMERICAL SENSITIVIY ANALYSES 

A 3D numerical model of the VEGA A platform was built with the finite element code ANSYS 

(Fig. 4) modelling main columns and vertical and horizontal bracing elements by means of 1D 

beam elements with elasto-plastic behaviour. The numerical model was first employed to assess 

robustness and damage tolerance of the platform. Subsequently, after dynamic identification, 

modal analyses were performed to assess sensibility of frequencies to damages with the aim to 

discuss improvement of the actual monitoring system to allow identifying of the modal shapes. 

 

                         

Fig. 4. Vega A, numerical model. 

3.1 Modal assessment and model sensitivity 

The dynamic identification of the model was performed employing Genetic algorithms (GA). The 

basic flowchart of a GA works as follows: 1) Start with a randomly generated population of n 

chromosomes (candidate solutions to a problem); 2) Calculate the fitness ƒ(x) of each chromo-

some x in the population; 3) Generate a new population selecting the chromosomes according to 

their fitness value and recombining new chromosomes through crossover and mutation; 4) Re-

place the current population with the new population; 5) Step 2 to step 4 are repeated (iteration) 

until a termination criteria is verified.  

A real-coded genetic algorithm (RCGA) was employed, and the chromosome was built in order to 

collect the selected unknown parameters of the model: the added masses (water and marine 

growth ) and the stiffness of the 20 vertical steel piles. The numerical model of the platform was 

hence built parametrically in order to accept as input these parameters (the topside masses were 

assumed as fixed values). The fitness function was built based on the Modified Total Modal As-
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surance Criterion (MTMAC) [5], an improvement of the MAC with the introduction of the fre-

quencies as penalty functions to account for differences between experimental and numerical re-

sults. The optimization procedure allowed identifying the first three frequencies although the re-

duced number of data does not allow reproducing with the same accuracy the modal shape. In fact 

being the accelerometers positioned only at the skid-beams level the analysis of the experimental 

data allows for an approximate identification of the modal shape. In this respect additional under-

water measurements can offer effective data to substantially improve experimental modal identi-

fication through the monitoring of level #3 (Fig. 4). A comparison between the experimental and 

the numerical modal shape is reported in Fig. 5 (without Derrick). Despite the difficulties in iden-

tifying the modal shape, the identified FE model reproduce quite accurately the modal behaviour 

of the platform since it is able to reproduce with great accuracy the frequency changes produced 

by the removal of the Derrick masses occurred in 2001 as summarized in Table 2. 

 

Table 2. Experimental (Exp.) and Numerical (Num.) frequencies. 

Frequency 2013 

(without Derrick) 

2000 

(with Derrick) 

 Exp. Num. Exp. Num. 

f1 (Hz) 0.44 0.441 0.43 0.429 

f2 (Hz) 0.50 0.498 0.48 0.479 

 

   

Fig. 5. Experimental and numerical modal shape: first three frequencies (without Derrick). 

The identified numerical model was subsequently employed to estimate the changes in frequen-

cies due to a possible damage. Damages of structural primary (columns, the main legs) and sec-

ondary (vertical bracings) components were assumed and the main three frequency of the struc-

ture were evaluated. Results of the analyses are illustrated in Fig. 6.  

It is possible to observe that the damage of one element of the main columns can affects directly 

and significantly the first two frequency. On the contrary, damage of one of the element of the 

vertical bracings interests mainly the third frequency (the torsional one). This result shows that 

even though a major damage can be detected by a change of the two main frequencies, an im-

provement of the monitoring system in order to better characterize higher modal shapes is needed 

to detected damage of secondary elements. 
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Fig. 6. Sensitivity of frequencies due to possible damage of main legs. 

3.2 Platform robustness assessment 

Robustness and structural redundancy were evaluated through non-linear collapse analyses. Dam-

ages (or deteriorations) of structural primary and secondary components were assumed in order to 

evaluate their effects on the robustness of the structure. The nonlinear analyses were developed 

through a pushover approach where load distributions derived by waves were modelled using the 

Stokes 3th order theory. The analyses were developed assuming the environmental load distribu-

tion acting in the two main direction of the offshore platform (the x-direction, the longitudinal 

one, and the y-direction, the transversal one, Fig. 4). More details about the pushover analyses are 

reported in [6], [7]. A similar approach has been recently employed in [8]. 

  

Fig. 7. Pushover analysis: SR x-direction (left); SR y -direction (right). 

In this context the non-linear redundancy analysis was regarded as a possible sound method to be 

combined with the dynamic monitoring to ensure proper future safety of the structure beyond its 

original design life. In fact, taking into account that changes in stiffness are reflected in changes 

in main frequencies, a dynamic monitoring system able to evaluate the structural frequencies and 

the corresponding modal shapes can be used as a sound indicator for major damage of the struc-

ture. The redundancy, strictly related with the concept of robustness, is analysed on the basis of 

the results of the pushover analyses by evaluating the Structural Redundancy (SR). The Structural 

Redundancy (SR) index is a measure of the load level at first member failure with respect to the 

collapse load of the structure. Fig. 7 reports the SR evaluated for the case of load acting in x and 

y-direction. The ratio between the numerical collapse load and the first member failure was found 

to be in the range between 1.6 and 1.8. This denotes a significant redundancy in the structure, as 

the structural collapse does not occur until the loading is increased of about 80% from the load 
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level at first member failure. In the case of load acting in y-direction the SR was found to be in a 

range between 1.2 and 1.5, less than the previous according to the fact that the strong direction is 

the x-direction. The analysis of the indexes shows high values of SR denoting in addition that a 

(single) member damage, thanks to the structural redundancy (and damage tolerance), does not 

affect the whole safety of the platform.  

4 CONCLUSIVE REMARKS 

The paper, with the aim to evaluate the ability of the monitoring systems to detect damage in 

structural members, investigated the aspects of robustness and damage tolerance of a steel jacket 

platform in conjunction with the data obtained by a structural monitoring system.  

The analysis of the Structural Redundancy (SR) shows that single member damage does not affect 

the whole safety of the platform. From a point of view this shows that the structural redundancy is 

a key factor in design of such typology of structure. From another point of view the result shows 

that, due to the robustness of the structure, the dynamic monitoring system in order to check-up 

the presence of a failure in secondary elements should be improved to allows to identify the mod-

al shapes of higher modes.  

In this respect additional under-water measurements, made now possible by the technological de-

velopment, can offer effective data to substantially improve experimental modal identification. 

Nonetheless the actual monitoring system is able to identify damage in main elements and hence 

it can be considered an effective component of an inspection plan helpful to optimize the amount 

of inspection. 
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