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Stochastic mean-field formulation of the dynamics of diluted neural networks
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We consider pulse-coupled leaky integrate-and-fire neural networks with randomly distributed synaptic
couplings. This random dilution induces fluctuations in the evolution of the macroscopic variables and
deterministic chaos at the microscopic level. Our main aim is to mimic the effect of the dilution as a noise
source acting on the dynamics of a globally coupled nonchaotic system. Indeed, the evolution of a diluted neural
network can be well approximated as a fully pulse-coupled network, where each neuron is driven by a mean
synaptic current plus additive noise. These terms represent the average and the fluctuations of the synaptic currents
acting on the single neurons in the diluted system. The main microscopic and macroscopic dynamical features
can be retrieved with this stochastic approximation. Furthermore, the microscopic stability of the diluted network
can be also reproduced, as demonstrated from the almost coincidence of the measured Lyapunov exponents in
the deterministic and stochastic cases for an ample range of system sizes. Our results strongly suggest that the
fluctuations in the synaptic currents are responsible for the emergence of chaos in this class of pulse-coupled

networks.
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I. INTRODUCTION

In pioneering studies devoted to excitatory pulse-coupled
networks of leaky integrate-and-fire (LIF) neurons [1,2],
Abbott and van Vreeswiijk have shown that these models in
a globally coupled configuration can exhibit only two kinds
of evolution, both regular. The first one, termed the splay
state, is associated to collective asynchronous dynamics and
the second one, called partial synchronization, corresponds to
coherent periodic activity in the network. The latter regime
is characterized by periodic oscillations in the neural activity
and by quasiperiodic motions of the single-neuron membrane
potentials [2]. The introduction of random dilution in such a
network, achieved by considering an Erdos-Rényi distribution
for the connectivity degrees, induces chaoticity in the system
and fluctuations in the collective activity [3]. Fluctuations and
chaos are due to the nonequivalence of the neurons in the
network. However, for massively connected networks, where
the average in-degree is proportional to the system size [4],
the dynamics becomes regular in the thermodynamic limit,
recovering the evolution of the globally coupled system [3,5].
On the other hand, for sparse networks, where the in-degree
value is constant independently of the network size [4],
the system remains chaotic even in the thermodynamic
limit [6].

A fundamental question we would like to address in this
paper is whether the effect of the frozen network heterogeneity
can be reproduced in terms of a homogeneous model with
additive noise. In particular, we are interested in reproducing
the chaotic behavior observed in the diluted system. As
homogeneous model we consider a fully coupled (FC) network
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displaying only regular motions and we focus on the partially
synchronized regime, where the macroscopic variables are
periodic [2]. The addition of noise to the membrane potential
evolution induces irregular oscillations in the dynamics,
observable both at the neuronal and at the macroscopic levels.
To reproduce the dynamics of a specific deterministic diluted
(DD) network, we employ as noise amplitudes in the stochastic
model the ones measured in the original system. As a result,
the stochastic model is able to mimic the main microscopic
and macroscopic features of the original diluted system and
even the chaoticity properties of the deterministic system.
Furthermore, we are able to mimic the dynamics of networks
composed by thousands of neurons by employing a stochastic
model with only 100 elements.

Previous studies have been devoted to the dynamical
equivalence among the effect induced by noise on a system
of identical excitable units and by quenched disorder in the
model parameters (diversity) [7,8]. In our analysis the diversity
among neurons arises from the fact that each network element
has a different (randomly chosen) set of connections. In
particular, our study finds placement in the framework of the
research works devoted to noise-induced chaotic dynamics
[9-11]; however, we are now dealing with a high-dimensional
system with a nontrivial collective behavior. Furthermore,
our approach, despite being developed for a simple network
model, can be easily extended to a large class of complex
networks.

The paper is organized as follows. Section Il A is devoted
to the introduction of the DD model as well as of dynamical
indicators able to characterize microscopic and macroscopic
dynamics in this system. In the same subsection, the results
concerning the dynamical evolution of deterministic FC and
diluted networks are briefly revisited. In Sec. II B the stochastic
model developed to mimic the dynamics of the diluted
system is introduced. Three methods to estimate the Lyapunov
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spectrum in pulse-coupled neural networks are revised in
Sec. III. In the same section the three methods are compared
by applying them to deterministic systems. Furthermore,
the generalization of two of such methods to stochastic
pulse-coupled networks with white and colored noise is
also presented. Section IV A deals with the analysis of
the reconstructions of the microscopic and macroscopic
features of the DD network via the stochastic approach.
The Lyapunov analysis for the stochastic models is re-
ported in Sec. IVB and the results are compared with the
ones obtained for the corresponding DD systems. Finally, a
summary and a brief discussion of the obtained results is
reported in Sec. V together with a sketch of possible future
developments.

II. MODELS AND METHODS

A. Diluted deterministic network
1. The model

We will focus our study on a diluted network of Np LIF,
where the membrane potential v; of each neuron evolves
according to the following first-order differential equation

vi(t)=a—vi(t)+gEi(t) i=1,...,Np, (1)
where a > 1 represents a suprathreshold dc current and gE;
the synaptic current, with g > 0 being the excitatory synaptic
coupling. Whenever the membrane potential of the i-th neuron
reaches a fixed threshold vg = 1, the neuron emits a pulse p(t)
transmitted, without any delay, to all the postsynaptic neurons
and its potential is reset to vg = 0. In particular, the field E;(¢)
is given by the linear superposition of the pulses p(t) received
at the previous spike times {#,} by the i-th neuron from the
pool of its presynaptic neurons. In this paper, in analogy with
previous studies [1,2,12], we assume that the transmitted pulse
is an o function, namely p(1) = a’t exp (—at), where a~! is
the width of the pulse. In this case, the evolution of each
field E;(¢) is ruled by the following second-order differential
equation:

2
Ei0)+2aEi(0) +a’Ei(1) = T Y Cudlt —1): ()

nlt, <t

where C;; isa Np x Np random matrix whose entries are 1 if
there is a synaptic connection from neuron j to neuron i, and
0 otherwise, and K is the number of presynaptic connections
of the i-th neuron. For a FC network K = N and all the
fields are identical, since each neuron receives exactly the
same sequence of spikes. By introducing the auxiliary variable
P, = aE; + E;, the second-order differential equation (2) can
be rewritten as

. . ()(2

a_a—aa,a_—mwaE:Qﬁa—m.

nlt, <t

3)

Therefore, the network evolution is ruled by the 3Np
Egs. (1) and (3) which can be exactly integrated between a
spike event occurring at time 7, and the successive one at time
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t,+1, thus defining the following event-driven map [3,13]:

Ei(n+ 1) = E(n)e ™™ + P(n)t(n)e ™™, (4a)
0[2
Pi(n + 1) = Pi(n)e ™™ + Coi > (4b)

vin 4+ 1) = vi(me ™ +a(l — ™) + gH;(n) . (4c)

The m-th neuron is the next firing neuron, which will reach
the threshold at time #,,,, i.e., v,(n + 1) = 1. One should
notice that the event-driven map is an exact rewriting of
the continuous time evolution of the system evaluated in
correspondence of the spike emissions, therefore it can be
considered a Poincaré section of the original flux in the
3Np dimension. Indeed, the event-driven map is 3Np — 1
dimensional, since the membrane potential of the firing neuron
is always equal to 1 in correspondence of the firing event. Here
t(n) = t,41 — t, is the time between two consecutive spikes,
which can be determined by solving the implicit transcendental
equation

)

ﬂ@:h[ a_%M)],

a+gH,(n)—1

where the expression H;(n) appearing in Egs. (4c) and (5) has
the form

e—r(n) _ e—ozr(n) P,'(I’l)
Hi(n) = — [Ei<n)+a_1}
7(n)e~ ™™
- WP:‘(”)- (6)

In this paper, we consider connectivity matrices C;;
corresponding to random graphs with directed links and a
fixed in-degree K for each neuron [14]. This amounts to
have a & distribution centered at K for the in-degrees and
a binomial distribution with average K for the out-degrees. In
particular, we examine massively connected networks, where
the in-degree grows proportionally to the system size, namely
our choice has been K = 0.2 x Np. As we have verified, the
main results are not modified by considering Erdos-Rényi
distributions with an average in-degree equal to K. A few
tests are also devoted to the dynamics of sparse networks,
in particular this has been done by maintaining the in-degree
constant to K = 100 and by increasing the system size Np up
to 10 000.

2. Microscopic and macroscopic dynamical indicators

In contrast to FC systems, the presence of dilution in the
network induces fluctuations among the instantaneous values
of the fields {E;(¢)} [3,5]. These fluctuations can be estimated
by evaluating the instantaneous standard deviation og(t) of
the individual fields E;(¢) with respect to their instantaneous
average value E(1), defined as follows:

_ 1 X
En =5~ ; Ei(1), @)
| N 12
oE(t) = [N—D gdi(r)z} : (8)
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where d;(t) = E;(t) — E(t) denotes the instantaneous fluc-
tuation of the i-th field with respect to their average over
the network. Similarly, we can define P and op. Obviously,
for a FC network E; = E, P, = P and o = op = 0. In the
following, we will consider an unconstrained time average of
the fluctuations (o), as well as a conditional time average
(op(E, P)) evaluated whenever the value of the average fields
falls within a box of dimension AE x AP centered at (E, P).

To measure the level of correlation present in the field
fluctuations d;(¢), we measure the associated autocorrelation
function

(n; Y di(e + T)di(1)
((o£(1))%)

where (-) indicates the average over time. The time interval
over which the fluctuations are correlated can be estimated by
measuring the decorrelation time 7; from the the initial decay
of Cg(1).

The collective activity in the network can be studied by
examining the macroscopic attractor in the (E,P) plane
as well as the distributions of the average fields F(E) and
F(P). On the other hand, the microscopic dynamics has

Ce(r) =

; €))
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been characterized by considering the distribution F(ISI) of
the single-neuron interspike intervals (ISIs) as well as the
associated first return map.

3. Diluted versus fully coupled dynamics

As already mentioned in the Introduction, the dynamical
regimes observable for FC LIF networks, with postsynaptic
potentials represented as « function, have been analyzed in
Refs. [1,2]. These regimes are the so-called splay state and
partial synchronization. The splay state is characterized by
a constant value for the field £ and by a perfectly periodic
evolution of the single neurons. On the other hand, in the
partially synchronized regime, the common field reveals a
perfectly periodic evolution, while the single-neuron dynamics
is quasiperiodic [12]. In the present paper we will focus in
the latter regime, where collective oscillations in the network
activity are present, in this case the macroscopic attractor
corresponds to a closed curve in the two-dimensional (E, P)
plane. The introduction of random dilution in the system
induces fluctuations d; in the fields E; with respect to their
network average E. Therefore the collective attractor still
resembles a closed orbit, but it has now a finite width whose
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FIG. 1. (Color online) Characterization of the field fluctuations for a DD network. (a) Macroscopic attractor reported in the (£, P) plane
(black dots); the colormap (superimposed on the attractor) quantifies the time-averaged values of the fluctuations (oz(E,P)). These are
estimated over a 100 x 100 grid with resolution AE = 0.06 and AP = 0.8. (b) PDFs F(d;) of the deviation from the average field d; estimated
in three different points along the attractor. These points are indicated in panel (a) with the same symbol and color code. (c) Fluctuations of
the fields (o) averaged both in time and all along the whole attractor as a function of the system size Np (filled circles). The dashed line
indicates a power-law fitting to the data, namely (og) N50‘6. (d) Autocorrelation function Cg(t) of the fluctuations of the fields d;. For all
the reported data the parameters are fixed to g = 0.5, = 9,a = 1.05, and K = 0.2Np. The system size is set to Np = 500, apart in panel (c).
The reported quantities have been evaluated over 10°—10° spikes, after discarding an initial transient of 10° spikes.
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value depends on the values of (E,P) [see Fig. 1(a)]. As
shown in Fig. 1(b), the fluctuations d; are approximately
Gaussian distributed for any point (£, P) along the curve.
Therefore, the d; can be characterized in terms of their standard
deviation (og) averaged in time; this quantity, as previously
shown in Refs. [3,5], vanishes in the thermodynamic limit for
massively connected networks. Indeed, this is verified also in
the present case as shown in Fig. 1(c), thus indicating that
for sufficiently large system sizes one recovers the regular
motion observed for FC systems. It should be recalled that
for sparse networks the fluctuations do not vanish, even for
diverging system sizes [5]. Furthermore, the field fluctuations
present adecorrelation time 7. =~ 0.1, measured from the decay
of the autocorrelation function Cg(t) [see Fig. 1(d)], which
is essentially independent from the system size, as we have
verified.

Another relevant aspect of the diluted system dynamics is
that the random dilution of the links renders the finite network
chaotic. In particular, for a massively connected network the
system becomes regular in the thermodynamic limit, while
a sparse network remains chaotic even for Np — oo [12].
This result suggests that the degree of chaoticity in the system
is related to the amplitude of the fluctuations d;(¢) of the
macroscopic fields.

B. Fully coupled stochastic network

The question that we would like to address is whether the
dynamics of the DD network can be reproduced in terms of
an equivalent FC network with additive stochastic terms. As
a first approximation, we assume that the erratic dynamics of
the DD system is essentially due to the field fluctuations d;(¢).
Therefore, we rewrote the dynamics of the diluted system as
follows:

E() = P(t) — ¢E(1), (10a)
2

P(t) =—aP(t) + IO\‘,—"“X:‘{(S(; — 1), (10b)

Vi) =a—vi(t)+ gE@)+g&@t) i=1,...,Ng, (10c)

where each neuron is driven by the same mean-field term
E(t), generated by the spikes emitted by all the neurons, plus
an additive stochastic term &;(¢). Notice also that we use a
different number of neurons in the reduced model Ng < Np
since the asymptotic evolution of a FC system is fairly well
retrieved already with a relatively small number of neurons.
We will consider both white noise as well as colored one. In
particular, for white Gaussian noise

(€, (D&, (") = D?8; ;8(t — 1) (11)

with a zero average value, namely (&,,,) = 0. For colored noise,
we considered exponentially time correlated noise as follows:

D? ,
(ou, (DEou, (1)) = ——8; je 111/, (12)
2‘L’d

where the average of the noise term is again zero. This is the so-
called Ornstein-Uhlenbeck (OU) noise, which can be obtained
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by integrating the following ordinary differential equation:

. 1 1
éou, (1) = ——éou, + —&u, (13)
T4 T4

where &, is a Gaussian white noise, with the correlation
defined in Eq. (11).

The main issue is to estimate the value of the noise
amplitude D to insert in Eqgs. (11) and (12) and of the
correlation time of the OU process 7; to obtain a good
reconstruction of the original dynamics. The latter parameter
can be straightforwardly quantified from the autocorrelation
function decay, in particular we set 7; = 7, = 0.1. For the
former quantity, as a first attempt, we set D equal to the
time-averaged standard deviation of the fields (o). However,
the quality of the reconstruction was not particularly good
and this can be explained by the fact that the fluctuation
amplitude is state dependent, as shown in Fig. 1(b). Therefore,
we evaluated (ox(E,P)) during simulations of DD systems
and we employed these quantities in the stochastic integration
of the FC system. In particular, we set D = (og(E, P)), where
E and P are now the values of the fields obtained during the
simulation of the FC stochastic system.

We have performed the stochastic integration (see the
Appendix for details) by employing extremely small time
steps. Such a choice is not due requirements related to the the
precision of the integration scheme [in particular, in the white-
noise case the integration would be exact, see (A2)] but to the
fact that for the evolution of our system is crucial to detect the
spike emissions with extremely accuracy. Therefore, instead
of recurring to more elaborate integration schemes [15], we
decided to use small integration time steps 4 in order to
accurately determine the threshold crossing of the membrane
potentials even in the presence of noise.

III. LINEAR STABILITY ANALYSIS

We are not only interested in the reconstruction of the
macroscopic and microscopic dynamical features of the DD
system via the stochastic approach but also in the reproduction
of the linear stability properties of the original model. The
latter can be quantified in terms of the Lyapunov spectrum
{X;}, which can be related to the average growth rates of
infinitesimal volumes in the tangent space. The Lyapunov
spectrum has been estimated by considering the linearized
evolution of the original system and by applying the usual
procedure developed by Benettin et al. [16]. Therefore, let us
start from the formulation of the linearized evolution of the
DD case by differentiating (1) and (3); this reads as:

SE; = 8E; — adP;, (14a)
SP, =—adP;, (14b)
81},’ =—8Ui~|—g8E,‘, i:l,...,ND, (14C)

where {§E;,§ P;,8v;} is a 3 x Np vector in the tangent space.
In the following we will limit our analysis to the maximal
nonzero Lyapunov exponent.

It should be noted that two discontinuous events are
present in the evolution of the original orbit: namely the
spike emission, which affects the field variables {P;}, and
the reset mechanism acting on the membrane potentials {v;}.
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However, these discontinuities are not explicitly present in
the ordinary differential equations (ODEs) representing the
tangent space evolution (14). In the next subsections we
will report three different approaches on how to deal with
these discontinuities in deterministic systems and the possible
extension to stochastic differential equations (SDEs) for two
of them. The first approach requires the formulation of the
dynamics in terms of an exact event-driven map so we do not
see the possibility to extend it to stochastic systems. Instead,
the other two methods concern the integration of ODEs with
discontinuities and they can be easily extended to SDE:s.

A. Linearization of the event-driven map (LEDM)

This approach can be applied whenever it is possible to
write the evolution between two successive events in an exact
manner, and the expression (even implicit) of the time interval
7(n) between two events is known. Here we will focus on the
method introduced in Ref. [13] for networks of pulse-coupled
LIF neurons. In this case it is possible to write explicitly
the linearization of the event-driven map by differentiating
Egs. (4), (5), and (6).

The linearization reads as:

SEi(n+1) = e *"™[SE;(n) + 1(n)3 Pi(n)] — e **™
x [@Ei(n) + (@t(n) — D Pi(n)]dt(n), (152)
SP(n+1) = e "™ [§ Pi(n) — a P,(n)T(n)], (15b)
Svi(n + 1) = e " [8v;(n) + (a — v;(n))dt(n)] + g8 H;(n)
i=1,...,Np; dvp,(n+1)=0, (15¢)
where m is the index of the neuron firing at time ¢, ,, while
the condition v, (n + 1) = 0is a consequence of the Poincaré
section we are performing to derive the event-driven map.

The evolution of the LEDM is completed by the expression
for §7(n), which is

(Sf(l’l) = Tvavm(n) + TEaEm(n) + ‘[P(SPm(I’l), (16)

where
ot ot ot

Ty = E, Tg = E, Tp (= m
More details regarding this method can be found in Ref. [3]
for a DD system.

a7

B. Miiller-Dellago-Posch-Hoover (MDPH) method

A well-known method used for the calculation of Lyapunov
exponents for discontinuous flows has been introduced in
Refs. [17,18] and it has been recently extended to integrate
and fire neural models with refractory periods in Ref. [19]
and to piecewise linear models of spiking neurons [20].
Here we will present an application of this method to our
DD neuronal model. The approach consists of integrating in
parallel the linearized evolution (14) and the ODEs describing
the evolution of the orbit, namely (1) and (3), until one of
the neurons reaches threshold. At this point the tangent vector
value should be updated, due to a discontinuous event, as
explained below.

By following the notation used in Ref. [17], let us consider a
dynamical system described by a flow equation X = f;(x) with

PHYSICAL REVIEW E 91, 022928 (2015)

a discontinuity defined by some implicit equation in terms of
the state variables /(x) = 0. The evolution at the discontinuity
is defined in terms of a function g(x) mapping the state of the
system from the time immediately previous to the discontinuity
to the one immediately after, i.e., x; = g(x_). Finally, let us
assume that the dynamics after the discontinuity is ruled by a
different flow equation, namely X = f(x).

In this way the evolution in the real space is perfectly
defined, while the correction to the tangent space vector 6x,
due to the discontinuity, can be expressed as follows:

8x4 = G(x_)ox_ + [G(x-) fr(x-) — fa(xy)]éz,  (18)
where, provided that specific solvability conditions are
met [17],
. L(x_)éx_
T LGE)AGD)
The notation x_ (x;) indicates the state of the system right

in the moment t* of reaching the discontinuity (just after ¢*).
Moreover,

19)

_ g
Toax

It is easy to show that for our DD system the flux is given
by

Lx) =

1O g
X

fi1(x) = f2(x) = [E,P, V],

and the map at the discontinuity reads as

gx)=[E, B\ . P Po 01,02, Uy, ]
o? o?
=|E_,Ey,....,P_+ ?Cm,laPZ, + ?Cm,z,---,
v1+,v2,...,0,...i|, (20)

where m indicates the neuron firing at time ¢#*. Furthermore,
the firing condition can be expressed as the scalar function

(X)) =v, — 1.

Therefore, a straightforward calculation gives us the cor-
rections to perform in the tangent space to take into account
the firing event at time ¢*:

062
S0E;, =0E;, —C,;—6t, (21a)
K
Ol3
8P, =06P_ + Cm,iEfo, (21b)
vy, = —Up, 8t, 21c)
with
Sup
5t = —20m- (22)
U

Here 4t is the (linear) correction to apply to the spike time of
the reference orbit to obtain the firing time of the perturbed
trajectory. This quantity can be evaluated from the linearization
of the threshold condition v,, = 1, and this leads to the
following expression:

1 8Um
85t = ——
U \O0E,

m

$E, + 2
P

SPm_>, (23)
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where all the quantities entering in the right-hand side of the
above equation are evaluated exactly at the spiking time.

C. Olmi-Politi-Torcini (OPT) method

Recently, another approach has been proposed to deal with
the discontinuities occurring in the context of pulse-coupled
neural networks [21]. In this context the dynamical evolution
in the tangent space between two spike events is ruled by the
3 x Np ODEs reported in (14). Whenever a spike is emitted
in the network the tangent space vector components should be
updated as follows:

8E; =8E;_+ E;_8t, (24a)
8P, =8P+ P._5t, (24b)
v, = Svui_ + 0;_d¢, (24¢)

where the expression for 8¢ is reported in Eq. (22) and the
corrective terms appearing in (24) account for the difference
in the spiking times of the perturbed and unperturbed orbit. It is
clear that in this case, just after the firing event, the component
of the tangent vector corresponding to the membrane potential
of the firing neuron is exactly zero, i.e., dv,, = 0. In this
approach, the evolution in tangent space is still performed by
taking into account the constraint due to the Poincaré section
associated to the event-driven map, meaning that this method
is completely analogous to the LEDM.

D. Comparison of the different methods

In order to verify the agreement among the different ap-
proaches introduced above, we perform numerical estimation
of the maximal nonzero Lyapunov exponent by employing
such methods for a FC deterministic network. In this case
the system is never chaotic and in particular we consider two
situations where the microscopic neuronal dynamics is either
periodic or quasiperiodic. The first regime corresponds to the
so-called splay state (observable for o« = 3 for the chosen
parameters) and the latter one to the partially synchronized
regime (observable for o =9). In both cases, it has been
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shown that the whole branch of the Lyapunov spectrum
corresponding to the membrane potentials vanishes as 1/N? in
the thermodynamic limit [3]. In order to test for the accuracy
of the employed methods, we decided to consider finite-size
networks, with Np = 50-200, where the Lyapunov exponents
are extremely small.

It is important to remember that the definition of the LEDM
and OPT methods require a Poincaré section. Therefore, one
degree of freedom, associated with the motion along the
reference orbit, is removed from the dynamical evolution
and also the corresponding zero Lyapunov exponent from the
Lyapunov spectrum. Conversely, the MDPH method is not
based on a Poincaré section. This means that, for a periodic
motion, the largest Lyapunov exponent, evaluated with LEDM
and OPT methods, corresponds to the second Lyapunov
exponent estimated with the MDPH. Similarly, when the
neurons evolve quasiperiodically in time, the maximal nonzero
Lyapunov exponent obtained with LEDM and OPT is the
second one, while being the third one with the MDPH
method. In summary, to test the accuracy of the algorithms
we compare in the periodic (quasiperiodic) case, the second
(third) Lyapunov exponent as obtained by the MDPH method
with the first (second) one obtained with the other two
methods. We measured these exponents for different system
sizes, namely Np = 50, 100, and 200. For all the considered
parameter values and system sizes the agreement among the
three methods is very good, and the discrepancies among the
different estimations are always of the order of 1075-1079, as
reported in Table I.

We also tested the three algorithms for a diluted deter-
ministic system where the maximal Lyapunov exponent is
definitely positive and its value is two to three orders of
magnitude larger than the absolute values of the Lyapunov
exponents measured in the nonchaotic situations. In this
case to improve the precision of the integration scheme, we
employed an event-driven technique where the integration time
step is variable and given by the solution of Eq. (5). This
implementation allows us to avoid the interpolations required
to find the firing times when the integration schemes with

TABLE I. Comparison of the maximal (nonzero) Lyapunov exponents obtained with the three methods introduced in Sec. III, namely the
LEDM, OPT, and MDPH methods. Upper panel: For a deterministic FC network in the periodic splay-state regime (left set of parameters)
and in the quasiperiodic partially synchronized regime (right set of parameters). Lower panel: For a chaotic DD network in the asynchronous
regime (left set of parameters) and in the partially synchronized regime (right set of parameters). In all cases, the system is first relaxed through
a transient of 10* spikes, after which the Lyapunov exponents are obtained by averaging over a period corresponding to 2107 spike events. The
reported errors are calculated as the maximal (absolute) difference between the average of the values obtained with the three methods and each
single value. The MDPH and OPT estimates are obtained in the upper panel by integrating the system (4) with a fixed time step 4 = 5 x 1076,
while in the lower panel by employing an event-driven integration scheme, where the time step is variable and given by (5).

a=3,g=04,a=13,K =Np

a=9,¢g=04,a=13,K =Np

Np LEDM OPT MDPH Max. Abs. Error LEDM OPT MDPH Max. Abs. Error

50 —1.70x107* —1.67 x 107* —1.70 x 107* 0.02 x 107* —1.83x 1073 —-1.75x 107 —1.76 x 1073 0.05 x 1073

100 —4.25x 107 —430x 107 —4.38 x 107 0.07 x 1073 —473x107* —4.60 x 107* —4.66 x 10~ 0.07 x 10~

200 —1.07 x 10 —1.14x 10> —9.10 x 10~ 0.13 x 1073 —1.19x107* —1.18 x107* —1.28 x 10~* 0.06 x 1074
a=3,g=05a=1.05 K =0.2Np a=9,¢g=05a=1.05K =0.2Np

Np LEDM OPT MDPH Max. Abs. Error LEDM OPT MDPH Max. Abs. Error

200 9.4676 x 107> 9.4676 x 10™3 9.4608 x 1073 0.45 x 107 2.9515 x 107! 2.9515 x 10! 2.9514 x 107! 0.01 x 1073
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a fixed time step are used. Also for the DD systems the
discrepancies among the three methods are of order 105-107°
(as shown in Table I), thus suggesting that these differences are
most probably due to the slow convergence of the Lyapunov
exponents to their asymptotic value rather than to the precision
of the numerical integration. Nonetheless, these results confirm
that the three approaches are essentially equivalent for the
analysis of deterministic systems.

E. Implementation for SDEs

Let us explain in detail how we implement the evolution in
the tangent space associated to the SDEs Eq. (10). For SDEs
the estimation of the maximal Lyapunov exponent has been
performed by employing the MDPH and the OPT methods,
since the LEDM cannot be used in the case of a stochastic
evolution, because it requires an exact knowledge of the next
firing time. For white additive noise, the linearized equations
for both methods have exactly the same form and they coincide
with the expression in absence of noise reported in (14). Notice
that in this case we have a common field, and therefore there
are only two equations for the evolution of the infinitesimal
perturbations (8 E,8 P) of the field. The stochastic nature of
the process is reflected only in the evolution of the reference
orbit around which the linearization is performed. The only
approximation we have done in this case is the same adopted
during the integration of the real space. Namely, at each
firing time the values of the membrane potentials (entering
in the tangent space evolution) are simply evaluated as a
linear interpolation between the values taken at the time step
before and after the firing event and not by employing some
accurate stochastic propagator taking in account the presence
of absorbing boundaries [15].

In the case of OU noise the situation is more delicate; in
particular, the equations for the evolution of the common field
correspond to Eqgs. (14a) and (14b). On the other hand, the
linearized equations for the membrane potentials and the OU
noise terms now read as

ov; = —6v; + g8E + gbéou, (25a)

d¢ou, = —%53;0(;[ i=1,...,Np. (25b)
It is easy to verify via (18) and (19) that the evolution of the
Ornstein-Uhlenbeck process does not require extra corrections
in correspondence of the firing events when the MDPH method
is used, i.e., §&ou,, = déou;,_-
Instead, with the OPT approach each noise term 8&py;,
should be updated whenever a neuron spikes as follows:

8ou,, = 8kou, + éou, Ot (26)

and 5t is now defined as

SV
5 = — 2
Um_
—1 [/ dv, AV
= - SE_+—| 6P_
Uy \OF |_ oP |_
LR Y 7)
d&ou, |_ OUn- )
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IV. RESULTS

In this section we examine the quality of the reconstruction
of the macroscopic and microscopic features and of the stabil-
ity properties of the DD system in terms of SDEs representing a
FC system subject to additive noise. In particular, we consider a
massively connected DD network with K = 0.2Np, for various
system sizes, namely 500 < Np < 10000. We reconstruct
the dynamics of these systems by employing a small FC
stochastic system of size Ng = 100, as we have verified that
finite-size effects are of limited relevance for FC systems. For
each size of the DD system, we employ as noise amplitude
in the stochastic FC system the standard deviation of the
fluctuations of the corresponding DD fields. In particular, for
the chosen setup (massively connected), as the system size of
the DD increases the amplitude of the fluctuations of the fields
decreases, vanishing in the thermodynamic limit [as shown in
Fig. 1(0)].

A. Macroscopic and microscopic dynamics

In order to test for the quality of the reconstruction of the
macroscopic dynamics, we proceed to calculate the PDFs
of the common field variables £ and P in the FC setup
and compare them with the histograms of the average fields
E and P as obtained in the DD case. These are reported
in Figs. 2(a) and 2(d) for two system sizes of the diluted
system, namely Np = 500 and Np = 5000. The agreement
between the original PDFs and the reconstructed ones improve
by passing from white to colored noise. In particular, this
is evident for the F(E), since in the case of white noise
these distributions present oscillations which are absent in the
original ones. The origin of these oscillations can be ascribed
to the fact that in presence of white noise of equal amplitude
along the whole macroscopic orbit the field can be driven
occasionally far from the original attractor.

When the colored noise is employed one observes a better
overall reconstruction of the macroscopic attractors with
respect to white noise. This is evident from Figs. 2(e) and 2(f):
The attractors obtained with OU noise show fewer deviations
from the DD attractor with respect to the white-noise case,
in particular around the maximal P. This is confirmed
by considering the evolution in time of the original and
reconstructed fields. The time traces of the fields are compared
in Figs. 2(g) and 2(h) by matching the time occurrence of the
first maximum of each field. As one can see from the figure
the OU reconstructed field follows reasonably well the original
evolution, at least in the considered time window, while the
field of the system driven by white noise shows, already after
few oscillations, a delay or advance with respect to the original
one.

To render more quantitative this analysis, we have measured
the average oscillation period of the field (Tg) for various
system sizes Np of the DD networks and for the corresponding
stochastic reconstructions with white and OU noise. The
results for all the considered system sizes are displayed in
Fig. 2(i). In the DD case (Tg) increases for increasing Np
and tends towards the corresponding deterministic FC value
(dot-dashed line in the figure), this value will be reached in
the thermodynamic limit, as expected [3]. Both the stochastic
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FIG. 2. (Color online) Reconstruction of the macroscopic dynamics of the DD system (black filled circles) in terms of white (blue empty
triangles) and colored noise (red empty squares). [(a)—(d)] Histograms of the macroscopic fields £ and P; [(e) and (f)] macroscopic attractors;
[(g)—(h)] time traces of the field E; (i) average period of the field (7g) as a function of the system size Np of the DD system. Panels (a), (b),
(e), and (g) refer to Np = 500, while panels (c), (d), (), and (h) refer to Np = 5000. In (g) and (h) the time traces have been shifted in order to
ensure for the coincidence of the time of occurrence of the first maximum in each trace; moreover, the colored (white) noise has been identified
with a dashed (dashed-dotted) line for the sake of visualization in (g), (h), and (i). The periods reported in (i) have been obtained by measuring
the time lapse between two consecutive maxima, the number of samples used for the calculation of T is 5000 data points, and the (green)
dot-dashed line is the field period in a corresponding FC deterministic network equal to 1.98. Reconstructed dynamics have been obtained with
Ng = 100 with an integration step & = 5 x 107°. Other parameters are as in Fig. 1.

estimations slightly underestimate the DD value; however,
while the periods obtained by employing OU noise exhibit
errors with respect to the DD values of the order ~0.4-0.9%,
the errors made with the white-noise reconstruction are usually
larger, namely between 1.0 and 1.5%.

Let us now examine the microscopic dynamics of the DD
system. This is quite peculiar for the chosen parameters,
corresponding to quasiperiodic evolution of the membrane
potentials of the single neurons. Indeed, the single-neuron mo-
tion become exactly quasiperiodic only in the thermodynamic
limit, where the regular FC dynamics is recovered. For DD
systems, as the ones here examined, the neurons evolve on
an almost quasiperiodic orbit, apart small chaotic fluctuations.
These motions can be analyzed by considering the interspike
interval (ISI) of the single cell, in particular, we will estimate
the associated PDF F(ISI) as well as the first return maps for
the ISIs of the single neurons.

The distributions F'(ISI) are reported in Figs. 3(a) and 3(c)
for the same level of dilution and two different system sizes,
namely Np = 500 and Np = 5000. The F(ISI) are defined
over a finite range of values, corresponding to the values

taken by the ISIs during the neuron evolution. By increasing
Np, which corresponds to have smaller fluctuations (o), the
F(ISI) exhibit a sharper peak at large ISI and at the same time
the return map appears to better approach a closed line, as
expected for quasiperiodic motions [see Figs. 3(b) and 3(d)].
As far as the corresponding SDEs are concerned, the
stochastic reconstruction is fairly good for the F(ISI), despite
the fact that the distributions are now covering a slightly wider
range with respect to the original PDFs. The reconstructed
return maps are noisy closed curves following closely the
DD ones. By increasing N the reconstruction improves both
with white and colored noise [as shown in Figs. 3(a)-3(d)];
however, it is difficult to distinguish among the two approaches
relying on these indicators. Therefore, we have measured the
average ISI for different Np in the DD case and for the
corresponding stochastic dynamics. The results are reported in
Fig. 3(e). Inthe DD case, the (ISI) increases with N approach-
ing the FC deterministic limit (green dot dashed line in the
figure). The reconstructed (ISI) are slightly underestimating
the deterministic results; however, they reproduce quite closely
the deterministic values. From the figure it is clear that the OU
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FIG. 3. (Color online) Reconstruction of the microscopic dynamics of the DD system (black filled circles) in terms of white (blue empty
triangles) and colored noise (red empty squares). [(a) and (c)] PDF F(ISI) of the ISIs; [(b) and (d)] ISIs return maps. Panels (a) and (b) refer to
Np = 500, while panels (c) and (d) to Np = 5000. (e) Average ISI as a function of the DD system size Np, the thick (green) dot-dashed line
refers to the asymptotic value of the average ISI in the corresponding FC deterministic set up, equal to 1.96 time units. Also the colored (white)
noise has been identified with a dashed (dashed-dotted) line for the sake of visualization in (e). The reconstructed dynamics are obtained with
Ng = 100 by employing an integration step & = 5 x 1075, The other parameters are as in Fig. 1.

reconstruction represents a better approximation of the DD re-
sults for all the considered Np, with errors ranging from 0.1 to
0.6%, with respect to the white noise results exhibiting discrep-
ancies between 0.6 and 0.8% with respect to the DD values.
From the analysis of the macroscopic and microscopic
features we can conclude that the stochastic reconstruction
improves by passing from white to Ornstein-Uhlenbeck noise.
This is particularly evident for the field E. The reason for
this can be understood by considering the evolution of the
macroscopic field: E displays a rapid rising phase of duration
~0.1—-0.2 followed by a relaxation period ~0.9 x Tg [as
shown in Figs. 2(g) and 2(h)]. Therefore, in order to properly
reproduce this fast rise induced by the firing of the most part of
the neurons in the network, the time correlation of the fluctua-
tions (on a time scale 7. ~ 0.1) should be taken into account.
We have also considered the so-called sparse limit; in
particular, we examined the DD networks obtained by fixing
K =100 and by increasing the system size from Np = 500
to 10000. As can be appreciated from Fig. 4, the quality
of the stochastic reconstruction obtained at the microscopic
and macroscopic level is comparable with the one obtained

for the massively connected networks. Thus suggests that our
approach holds also for extremely diluted systems.

On the other hand, we have verified that the proposed
stochastic reconstruction fails whenever the system does
not support a collective dynamical evolution, in the specific
case this corresponds to partial synchronization. In fully
coupled excitatory systems partial synchronization emerges
only in a certain range of parameters, otherwise one observe
asynchronous dynamics [2]. However, even within this range
of parameters, the diluted system cannot sustain the collective
motion if the average in-degree becomes too small [5,6]. This
is what happens also for the present choice of parameters
for K < 40; notice that this critical connectivity is strongly
dependent on the model parameters but not on N whenever
the system size becomes sufficiently large (for more details
see Ref. [5]).

B. Lyapunov exponents

As already mentioned, the system is chaotic for the DD
system and the largest Lyapunov exponent vanishes in the

4 T T T T 0.1 T T T T T T 100 T T T T T T T T
@) | (b) | ()
0.08 4
3t 1 i
0.06 4 =1 7
ot 1g 2
o w g
| o004 4= E
T o002t ” fl | JL L AM 4 ool )
J 0 1 1 " 1 " 1 1
4 10 20 30 40 50 60 2.5 3

FIG. 4. (Color online) Reconstruction of the microscopic and macroscopic dynamics for a representative size of the DD system in the limit
of large dilution. From left to right, reconstruction of the distributions of the instantaneous fields £, P and of the single-neuron ISIs. The
considered DD network (black filled circles) has a size Np = 10000 and an in-degree K = 100, while the reconstructed dynamics, both for the
white noise (blue empty triangles) and the colored noise (red empty squares), are obtained with Ny = 100, integrated with a step 2 = 5 x 107°.

Other parameters are as in Fig. 1.

022928-9



D. ANGULO-GARCIA AND A. TORCINI

PHYSICAL REVIEW E 91, 022928 (2015)

03 T T T T T T T T T T
a L ]
0.25r
E0.2 =
<
0.15r
0.15r B
o1k ey P m |
o 1 1 1 1 @ . 0 1 1 1 1 1 " 1
0 2000 4000 N 6000 8000 10000 0 2000 4000 N 6000 8000 10000
D D

FIG. 5. (Color online) Maximal Lyapunov exponent A,, as a function of the system size N for the DD case (black filled circles and solid
line) and the corresponding stochastic reconstructions evaluated with the MDPH method (red squares) and the OPT approach (blue triangles).
The stochastic results are reported for white (empty symbols and dotted lines) and Ornstein-Uhlenbeck (filled symbols and dashed lines) noise.
In panel (a) we report the results for massively connected networks, where K = 0.2 x Np and in (b) for sparse networks where K = 100
independent from the value of Np. The inset of panel (a) shows in double logarithmic scale A, versus N for the massively connected networks.
Reconstructed dynamics obtained with Ng = 100 and an integration step of 7 = 5 x 107°. In all cases, the system is relaxed during a transient
of 10° spikes and the Lyapunov exponents are calculated by integrating the tangent space for a period corresponding to 107 —10% spikes. Other

parameters are as in Fig. 1.

thermodynamic limit following a power-law decay with Np
[5]. In particular, in the considered case we observe a decay
Ay & N7V with y =~ 0.25 [as shown in the inset of Fig. 5(a)],
which corresponds to a divergence of the maximal Lyapunov
exponent with the averaged field fluctuations given by s
(o£)%*4. On the other hand, the FC deterministic counterpart
exhibits a perfectly regular dynamics for any system size. Our
aim is to reproduce the level of chaoticity present in the DD
system by perturbing stochastically the FC system with noise
terms whose amplitude corresponds to that of the fluctuations
of the deterministic fields {£;}, thus demonstrating that these
fluctuations are at the origin of the chaotic behavior.

The maximal Lyapunov exponents in the DD case have
been estimated by employing the LEDM method, while for
the stochastic reconstructions we have used the MDPH and
OPT methods with white and OU noise. As is evident from
Fig. 5(a), the MDPH largely fails in reproducing the DD data,
both for white and colored noise, apart for the smallest system
size here considered (namely Np = 500) and white noise. On
the other hand, the OPT approach works quite well both with
white and OU noise over all the examined ranges of network
sizes. The values obtained from the reconstructed dynamics
are always larger than the DD values, but while in the OU case
the error in the estimation increases with Np and ranges from
2% at Np = 500 to 13% at Np = 10000, for the SDEs with
white noise the error is of the order of ~5-9% and it seems
not to depend on the considered system size. Furthermore, the
OPT estimation of the maximal Lyapunov exponent is able to
recover the correct power-law scaling with Np, in particular
in the white- (OU) noise case we have found an exponent
y =~ 0.25 (y =~ 0.22). The exponent found for the white-noise
reconstruction coincides with the deterministic value.

Furthermore, we have verified that for sparse networks
all the considered stochastic reconstructions show that the
maximal Lyapunov exponent saturates to a constant value in
the thermodynamic limit [see Fig. 5(b)]. As expected, due

to the fact that the fluctuations of the fields remain essentially
constant by increasing Np, since (og) o K~12112]. However,
as can be appreciated from Fig. 5(b), the OPT estimation with
OU noise provides in this case the best reconstruction of Ay,
obtained for the DD system, with a maximal discrepancy of
~7% by fixing K = 100 and by varying 500 < Np < 10000.

A possible explanation for the worse performances of the
MDPH method with respect to the OPT one for the estimation
of Ay for a stochastic process with discontinuities relies on
the definition and implementation of the method. As shown
in Eq. (21c) and Eq. (22) the corrections to be applied at
each firing event depends only on the value of the derivative
of the membrane potential of the firing neuron estimate just
before (v,,_) and after (v,,, ) the event. These quantities depend
on the actual value of the membrane potential at threshold
and reset; as a matter of fact we have assumed that these
values are not affected by noise. Maybe this assumption is
too restrictive; however, no better results have been obtained
by the inclusion of stochastic terms. Instead, for the OPT
approach the occurrence of a spike is taken into account
by modifying the values of the linearized variables in the
tangent space on the basis of the time derivatives of the
corresponding variables (in the real space) evaluated just
before the spike emission [see Eq. (24)]. These time derivatives
have been estimated as a linear interpolation between the
values taken at the integration step immediately before and
after the spike; therefore, in their evaluation, the stochastic
evolution is somehow taken in account.

V. CONCLUSIONS

We have shown that the effect of the randomness in
the distribution of the connections among neurons can be
reproduced in terms of a perfectly regular (FC) network,
where an additive noise term is introduced in the evolution
equations for the membrane potentials. This suggests that
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either noise or dilution can lead to similar effects on the
network dynamics (at least) in systems exhibiting collective
oscillations. These results open new interesting directions
for the study of the macroscopic activity of large sparse
(neural) networks, which can be mimicked in terms of few
collective noisy variables. Furthermore, our analysis has
revealed that the stochastic approach is extremely convenient
from a computational point of view, since it allows us to
mimic the dynamics of a deterministic system with 3 x Np
variables by employing Ng + 2 variables, where Ng = 100,
irrespectively of the size of the original network. We have also
employed larger Ny, namely Ng = 400, without observing any
substantial improvement with respect to the smaller size.

We have also discussed and critically re-examined the exist-
ing methods to evaluate Lyapunov exponents for deterministic
dynamical models with discontinuities and specifically for
pulse-coupled systems. In particular, we have introduced a
novel method to estimate stochastic Lyapunov exponents
for dynamical systems with discontinuities. Furthermore, we
have applied this novel approach in order to give convincing
evidence that the fluctuations of the macroscopic variables
acting on the membrane potentials are indeed responsible
for the presence of chaotic activity in diluted networks of
LIF excitatory neurons exhibiting collective oscillations. This
is not obvious for any kind of LIF circuits, and recent
works [22-25] have shown the existence of linearly stable
dynamics in sparse inhibitory networks where the fluctuations
of the currents are responsible for the irregular activity of the
system, in the absence of chaotic motion.

The approach presented here appears to work reasonably
well in the presence of collective oscillations in the macro-
scopic field (i.e., partial synchronization in the network), while
we have verified that, when the global activity is asynchronous,
the reconstructions do not perform equally well. The origin
of this discrepancy can be traced back to the fact that the
fluctuations of the fields are, in the asynchronous situation,
almost periodic with decorrelation times O(10%). Such slow
decorrelation demands for more refined treatment of the noise
term, like, e.g., by considering harmonic noise terms [26].
Furthermore, a higher fidelity is needed in the tangent space
reconstruction since the maximal Lyapunov exponent is, in
this case, two orders of magnitude smaller than for the partially
synchronized dynamics.

Our approach can be considered a sort of stochastic
mean-field version of the original system; in this regard it
should be mentioned that in recent works, the reconstruction
of the dynamics of a diluted neural model quite similar to
the one analyzed here has been successfully attempted by
employing a deterministic heterogeneous mean-field (HMF)
approach [27]. The HMF amounts to introduce mean-field
variables associated to equivalence classes of neurons with
the same in-degree, but it still maintains the heterogeneous
character of the diluted system, thus not allowing us to clearly
single out the source of the chaotic activity.
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APPENDIX: INTEGRATION OF THE STOCHASTIC
DIFFERENTIAL EQUATIONS

Let us now examine how we can perform the integration of
the SDEs (10) for the white and OU noise. The integration
of the ODEs for the fields £ and P can be performed
without any approximation analogously to what done for
the event-driven map (4a) and (4b), since their evolution is
completely deterministic. The integration of the equation for
the membrane potential (10c) is instead performed in two
steps; first, the deterministic part is integrated from time ¢
tot+ h as

F)=v@®)e" +a(l —e")+gH(h).  (Al)

Then the stochastic part is considered, for the white-noise case,
due to the linearity of the SDE the stochastic process can be
integrated exactly [15], and the solution reads as

1
vilt +h) = Fi() + Dy 51 = e 2mi ().

Here the stochastic variable n;(¢) is a spatiotemporal uncorre-
lated random number, normally distributed with zero average
and unitary variance.

For the colored noise, instead, the integration of the
SDE with accuracy O[h?] leads to the following set of
equations [28]:

(A2)

D
(0) = —=n;(0),
£ou, (0) ﬁn()

1 — ¢—2h/a
Eou,(t + h) = Eou,(Ne "™ + D, | —— i, (A3
d

vi(t + h) = Fi(v) + héoy, (1).

The integration is performed with a constant time step & >~
1075-107%. In particular, we integrate exactly the equations
for the field variables £ and P for a time interval /s, while
the membrane potential is evaluated employing the stochastic
propagators reported in Egs. (A2) or (A3), depending on
whether we consider white or OU noise. Whenever the
membrane potential of one neuron overcomes threshold,
we evaluate the crossing time ¢* and the values of all
the membrane potentials at #* via a linear interpolation. We
then restart the integration with the values of the field variables
and of the membrane potentials evaluated at t* after resetting
the potential of the neuron which has just fired.
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