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Abstract

In longitudinal studies with subjects measured repeatedlyacross time, an important prob-
lem is how to select a model generating data by choosing between a linear regression model
and a linear latent growth model. Approaches based both on information criteria and asymp-
totic hypothesis tests of the variances of ”random” components are widely used but not com-
pletely satisfactory. We propose a test statistic based on the trace of the product of an estimate
of a variance covariance matrix defined when data come from a linear regression model and
a sample variance covariance matrix. We studied the sampling distribution of the test statistic
giving a representation in terms of an infinite series of generalizedF -distributions. Knowl-
edge about this distribution allows us to make inference within a classical hypothesis testing
framework. The test statistic can be used by itself to discriminate between the two models
and/or, if duly modified, it can be used to test randomness on single components. Moreover,
in conjunction with someAIC indicators it gives additional information which can help in
choosing the model.

keywords: GeneralizedF -distribution; Hypothesis testing; Linear Mixed Models; Longitudinal
data.

1 Introduction

It is common practice in many applications to collect multiple measurements on subjects across
time by focusing on the process of change when, typically, both data dependency and differential
growth for different individuals can occur. If we assume that the subjects constitute a sample from
the population of interest and we wish to draw conclusions about typical patterns in the population
and the subject-to-subject variability of these patterns,we are fitting linear latent growth models.
In this paper these models are analyzed by using a mixed-modeling framework (Laird and Ware,
1982). Linear mixed models can be viewed as extensions of linear regression models and attempt
to account for within-subject dependency in the multiple measurements by including one or more
subject-specific latent variables in the regression model.Typically, an additional random effect
is included for each regression coefficient that is expectedto vary among subjects. An important
practical problem is how to discriminate between a linear regression model and a linear mixed
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model and how to choose the random effect components. In order to address the issue of which
model is more suitable, one might use standard model selection measures based on information
criteria such as the widely used Akaike Information Criteria (AIC; Akaike (1973)), the Bayesian
Information Criteria (BIC; Schwarz (1978)) the conditional Akaike Information Criterion (cAIC,
Vaida and Blanchard (2005)). These approaches are based on the choice of models that minimize
an estimate of a specific criterion which usually involves a trade-off between the closeness of the
fit to the data and the complexity of the model. We refer to the paper of Muller et al. (2013)
for a review of these approaches and other methods such as shrinkage methods like the LASSO
(Tibshirani, 1996), Fence methods (Jiang et al., 2008) and Bayesian methods.

The validity of all the methods proposed depends on the underlying assumptions. The review
paper of Muller et al. (2013) gives an overview of the limits and most important findings of above
approaches, extracting information from some published simulation results. As is known, one of
the major drawbacks of these approaches is that they fail to give any measure of the degree of
uncertainty of the model chosen. The value they produce doesnot mean anything by itself.

Alternatively, because model selection is closely relatedto hypothesis testing, the choice be-
tween a linear regression model (LRM ) and a linear latent growth model (LLGM ) and the evalu-
ation of its uncertainty could be conducted considering a formal hypothesis test on the variances of
”random” components. Noting that models are nested, it is natural to consider the likelihood ratio
test. However, the difficulty with this is that it makes the usual approach of comparing the likeli-
hood ratio test statistic with the chi-square distributioninappropriate. The question of whether the
variance of a component is zero depends on whether said variance takes its value on the boundary
of the parameter space. This situation is known as ”non-standard” in relation to the other uses of
the likelihood ratio test. The major consequence is that in large samples−2 times the logarithm of
the likelihood ratio cannot be treated as a chi-square distribution, but rather, as a mixture of chi-
square distributions. Determining the weights of this mixture distribution is difficult especially
for testing multiple variance components or a subset of them. For more details see, for example,
Self and Liang (1987), Stram and Lee (1994), Verbeke and Molenberghs (2003), Giampaoli and
Singer (2009) . Comparing the likelihood ratio statistic with the critical value from a chi-square
sampling distribution tends not to reject the null as often as it should. Other tests not based on
the likelihood function can be implemented (Silvapulle andSen, 2005) but their validity should be
carefully detected when applied to linear mixed models. Moreover, all these tests are only valid
asymptotically. Finite sample distributions of the likelihood ratio test require simulations and are
only reported in particular cases. For example, Crainiceanu and Ruppert (2004) introduced an
efficient simulation algorithm based on the spectral representations of the likelihood ratio test and
the restricted likelihood ratio test statistics for modelswith a single variance component.

When we extend the analysis to multiple variance components, the complexity and difficul-
ties increase. In these cases we have to consider variance covariance matrices and the problem of
testing the equality of two positive definite matrices. Hypothesis testing approaches based on the
equality of two positive definite matrices have a distinguished history in multivariate statistics. In
most cases the likelihood ratio approach is used and the resulting test statistics involve the ratio of
the determinant of the sample covariance matrix under the null hypothesis and the alternative hy-
pothesis. Other researchers have studied tests based on thetrace of two covariance matrices. Roy
(1953), Pillai (1955), Pillai and Jayachandran (1968) and Nagao (1973) develop trace-based tests
and compare their performance to that of determinant-basedtests. The trace test proposed by Pillai
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for testing the equality of two variance covariance matrices appears to be useful in discriminating
between anLRM and anLLGM by appropriately defining the two matrices involved.

Let’s denote withV the variance covariance matrix of the ordinary least squareestimators
when data come from anLRM and letV + Ω be the variance covariance matrix of the same
estimators when data come from anLLGM whereΩ denotes the covariance matrix of the random
effects. The Pillai test statistic proposed in the paper is based on an estimate of1k tr V −1(V +Ω)
with Ω that plays a a crucial role in discriminating between the twomodels. IfΩ is a positive semi
definite matrix,Ω � 0, 1

k tr V −1(V + Ω) > 1. In this case we can state that data come from
anLLGM . If Ω = 0, 1

k tr V −1(V + Ω) = 1 and data come from anLRM . In section2 the
test statistic is defined after introducing several notations. In section3 we analyze the sampling
distribution. When data come from anLRM it has a ”standard”F -distribution, when data come
from anLLGM the sampling distribution is more complex. It is a linear combination of standard
F -distributions. The exact form of a linear combination of standardF -distributions is studied.
Following the work of Kourouklis and Moschopoulos (1985) a unified sampling distribution in-
volving a generalizedF -distribution is proposed which is based on an infinite series representation
and is relatively easy to implement. In section4 we discuss the test statistic to make inference. In
section5, we analyze a slight modification of the test so that inference on randomness of single
components of the model is possible. Finally two applications are investigated. In section6 we
applied the test to a data set on tourism. Said data set is sufficiently ”regular” to allow a clear-cut
answer regarding the choice of the model. The answers produced by the test are not in conflict
with those given byAIC indicators. The advantage derived from the hypothesis testing approach
is that we can attach a measure of the degree of uncertainty tothe choice of the model. In sec-
tion 7 the test is applied to a Cadralazine data set previously analyzed by Vaida and Blanchard
(2005). In this case differentAIC indicators applied to the data set do not give clear-cut indica-
tions about the model. There is a substantial indeterminacywhich also remains when using the test
proposed in this paper but we can still provide additional information by computing an estimate
of the probability of accepting the ”wrong” model.

2 Notation and test statistic

Let us suppose thatt observations on thei-th ofn units are described by the modelyi = Xβi + ui,
i = 1, . . . , n, whereX is a t × k matrix containing a column of ones and a column of constant
time values,βi is ak × 1 vector of coefficients unique to thei-th experimental unit, andui is a
t× 1 vector whose component is the measurement error at a time point for individual i.

Let us also suppose that each experimental unit and its response curve is considered to be
selected from a larger population of response curves; thus the regression coefficient vectorsβi
may be viewed as random drawings from somek-variate population:βi = θ + vi, i = 1, . . . , n,
wherevi is an unobserved random variable that configures individualgrowth.

In this paper we discuss testing under the following assumptions: (a)ui ∼ N
(
0, σ2It

)
, (b)

vi ∼ N (0,Ω), Ω is a positive semi definite matrix, (c)ui ⊥ vi, where the symbol⊥ indicates
independence of random variables (d)βi ⊥ ui. We refer to this model as a linear latent growth
model.

If Ω = 0, then the regression coefficients are fixed. We refer to this model as a linear regression
model. The normality assumptions are introduced for testing purposes.
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By replacing the random component in the model we have

yi = Xθ + εi, εi ∼ N
(
0,XΩX ′ + σ2It

)

Let bi = (X ′X)−1X ′yi be the ordinary least square estimators ofθ computed for each indi-
vidual unit. Note that thebi’s are independent and normally distributed with meanθ and variance-
covariance matrixσ2(X ′X)−1 +Ω. Let Sb = (n − 1)−1

∑n
i=1

(
bi − b

) (
bi − b

)
′

be the sample
variance covariance matrix ofbi with b = 1

n

∑n
i=1 bi. When data come from anLLGM , Sb is an

unbiased consistent estimate ofσ2(X ′X)−1 +Ω (Gumpertz and Pantula, 1989) when data come
from anLRM Sb is an unbiased consistent estimate ofσ2(X ′X)−1.

To discriminate between anLRM or anLLGM we propose the following test statistic

T =
1

k
tr

(X ′X)Sb

s2
(1)

wheres2 = 1
n

∑n
i=1 s

2
i , with s2i =

(yi−Xbi)′(yi−Xbi)
T−k (Swamy, 1970).

When data come from a linear regression model (Ω = 0), (1/s2)(X ′X) is ”close” toSb and
we expect the test statisticT to be approximately equal to one. When data come from anLLGM
we expect thatT > 1. The greaterT the stronger is the evidence against anLRM .

The sampling distribution ofT is analyzed in the next section.
Observe that the inverse of(X′X)Sb

s2
can be seen as an estimate ofs2(X ′X)−1

[
s2(X ′X)−1 +Ω

]
−1

the trace of which (divided byk) has been proposed by Theil (1963) to measure the shares of prior
and sample information in the posterior precision in the mixed regression estimation (Barnabani,
2014).

3 Sampling distribution of test statistic

When data come from anLRM , Ω = 0 and(n− 1)Sb/σ
2 ∼ Wk

(
(X ′X)−1, n − 1

)
(Wk is for

Wishart distribution). Then,(n − 1)(X ′X)1/2 Sb

σ2 (X
′X)1/2 ∼ Wk (I, n− 1) where(X ′X)1/2 is

the square root of(X ′X). We have the following results

(i) (n−1)sii/σ
2 ∼ χ2

n−1 wheresii, i = 1, . . . , k is thei−th diagonal element of(X ′X)1/2Sb(X
′X)1/2.

Replacingσ2 by s2 we have

(n − 1)sii
s2

=
(n− 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
χ2
n−1

χ2
n(t−k)/n(t− k)

(2)

and
sii
s2

∼ Fn−1,n(t−k) (3)

(ii) By independence
∑k

i=1(n− 1)sii/σ
2 ∼ χ2

k(n−1) and

1

k
tr

(X ′X)Sb

σ2
∼

χ2
k(n−1)

k(n− 1)
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becausetr
(
(X ′X)1/2 Sb

σ2 (X
′X)1/2

)
= tr (X ′X) Sb

σ2 .

With the following equality

1

k
tr

(X ′X)Sb

s2
=

1

k
tr

(X ′X)Sb

s2
σ2

σ2

n(t− k)

n(t− k)

we derive the sampling distribution ofT

T ∼ Fk(n−1),n(t−k) (4)

When data come from anLLGM (n− 1)Sb/σ
2 ∼ Wk

[
(X ′X)−1 +Ω/σ2, n− 1

]
. There-

fore, a non singular matrixQ exists such thatn−1
σ2 Q′SbQ ∼ Wk

(
I + D

σ2 , n − 1
)

whereD is a
diagonal matrix of eigenvaluesηi ≥ 0 of the matrix(X ′X)1/2Ω(X ′X)1/2 and
trQ′SbQ = tr

(
(X ′X)1/2Sb(X

′X)1/2
)
= tr (X ′X)Sb. We have the following results:

(i) (n − 1) osii/σ
2 ∼

(
1 + ηi/σ

2
)
χ2
n−1 whereosii denotes thei − th diagonal element of

Q′SbQ and
osii
s2

∼
(
1 + ηi/σ

2
)
Fn−1,n(t−k) (5)

(ii) As regards the distribution ofT , it must be observed that

k∑

i=1

(n− 1)osii/σ
2 =

k∑

i=1

(n − 1)sii/σ
2 ∼

k∑

i=1

(
1 +

ηi
σ2

)
χ2
n−1 (6)

When we replaceσ2 by s2, we have

T =
1

k

k∑

i=1

sii
s2

∼
1

k

k∑

i=1

(
1 +

ηi
σ2

)
F(n−1),n(t−k) (7)

The above sampling distributions are now reproposed in terms of Generalized Fisher-distribution
(GF -distribution). This is necessary because (7) is difficult to implement in practice and it does
not allow for computing the power of the test.

Let us consider (2). The statistic can be seen as the ratio of two independent gamma random
variables where the numerator is distributed asG

(
α = n−1

2 , λ1 = 2n(t− k)
)

and the denomi-

nator is distributed asG
(
γ = n(t−k)

2 , λ2 = 2
)

whereG(., .) is for gamma distribution,α and

γ are shape parameters,λ1 andλ2 scale parameters. The distribution of the ratio,Z, is called
GF -distribution and has pdf (Malik, 1967)

f(z) =
δγ

B(α, γ)
(z + δ)−(α+γ) zα−1 (8)

whereB(α, γ) is the Beta function,δ = λ1/λ2. Expression (8) is also known as Compound
Gamma Distribution (Dubey, 1970). Therefore, we have

(n− 1)sii
s2

∼ GF (δ, α, γ) (9)
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The standardF -distribution (4) can be seen as aGF -distribution withδ = n(t−k)/k(n−1),
α = k(n − 1)/2, γ = n(t− k)/2.

The distribution given by (5) is a scalar multiple of aF variate which is aGF -distribution
with δ = n(t− k)

(
1 + ηi/σ

2
)
/(n − 1), α = (n− 1)/2 andγ = n(t− k)/2.

The result given by (7) is a linear combination of independent F variates whose distribution
does not admit a closed and simple form. However, because it can be seen as a linear combination
of ratios of independent gamma variates, the gamma-series representation proposed by Kourouklis
and Moschopoulos (1985) and Moschopoulos (1985) is particularly useful for defining the distri-
bution of (7). Following these papers we have

k∑

i=1

(n− 1)sii
σ2

∼
∞∑

l=0

wl G (ρ+ l, 2 η)

where0 < η < ∞ is arbitrary.
In the expression of the series,ρ =

∑k
i=1 αi = (n−1)k/2, wl = Cdl, l = 0, 1, 2, . . ., d0 = 1,

C =
∏k

i=1

(
η/(1 + ηi

σ2 )
)αi , dl = (1/l)

∑l
i=1 i gi dl−i with gi = (1/i)

∑k
j=1 αj

(
1− η/(1 +

ηj
σ2 )

)i
.

When we replaceσ2 by s2, we have

k∑

i=1

(n− 1)sii
s2

=

∑k
i=1(n− 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
∞∑

l=0

wl
G (ρ+ l, 2 η n(t− k))

G (n(t− k)/2, 2)
(10)

Finally, from (10) we have the distribution of the trace,

T ∼
∞∑

l=0

wl GF (δ, α, γ) (11)

with δ = n(t−k)
k(n−1) η.

The series representation of theGF -distribution is not difficult to implement in practice and
in most statistical software there is a function that computes the generalizedF -distribution. In this
paper computations are made with R (R Core Team, 2014) where alibrary (GB2) (or flexsurv)
allows us to compute density, distribution function, quantile function and random generation for
theGF -distribution.

The weights of the series representation can be troublesometo implement. Moreover, their
computation can become too CPU-time consuming. In these casesη may be adjusted to make the
convergence of the series faster (Kourouklis and Moschopoulos, 1985).

When the variability of the scale parameters is large and/orthe shape parameters are small the
convergence of the weights is extremely slow. This fact can discourage a large-scale simulation
and application of the expression proposed and an approximation of the weights is needed. For
η ≤ min{ηj : j = 1, . . . , k} the weights,wl, define probabilities of an infinite discrete distri-
bution (Vellaisamy and Upadhye, 2009) and they can be approximated by a theoretical discrete
distribution. For more than two random variables, Barnabani (2015) proposed to approximate
these probabilities with the generalized negative binomial distribution of Jain and Consul (1971)
resulting in a fast and ”excellent” approximation. For two linear independent random variables,
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simple algebra shows that the weights are described exactlyby a negative binomial distribution
(Barnabani, 2015). The infinite discrete distribution(l, wl)0,1,2,... must be truncated after the de-
sired accuracy.

4 Inference on the model

When data come from anLLGM , the sampling distribution ofT depends onηi ≥ 0, the eigenval-
ues of the matrix(X ′X)1/2 Ω (X ′X)1/2. The expected value ofT is given byE(T ) = n(t−k)

n(t−k)−2η

whereη = (1/k)
∑k

i=1(1 + ηi/σ
2). We can observe thatη = 1 ⇔ Ω = 0 that is, if and only if

data come from anLRM ; η > 1 ⇔ Ω � 0 if and only if data come from anLLGM . In the first
case the estimatorT has aGF -distribution (F -distribution), in the second caseT has an infinite
series representation ofGF -distributions. η > 1 occurs when at least one eigenvalue is greater
than zero. The termηi

σ2 can be seen as the extra factor due to thei − th random effect. It is zero
when the random effect does not occur.

”Natural” estimators ofηi’s are η̂i’s i = 1, . . . , k, the eigenvalues of(X ′X)1/2 Ω̂ (X ′X)1/2

whereΩ̂ is an estimate ofΩ. Ω̂ can be estimated in several ways. Following Swamy (1970) we
defineΩ̂ = Sb − s2(X ′X)−1 as a difference of two matrices. This definition can yield negative
estimates for variances of some of the coefficients and/or may not be a positive definite matrix. In
this case we could have negative eigenvalues. Although negative η̂i could appear to be misleading,
the definition ofΩ̂ is coherent with the above sampling distributions and allows for obtaining
the equalityT = 1

k tr
(X′X)Sb

s2
= (1/k)

∑k
i=1(1 + η̂i/s

2) which shows thatT can be seen as an
estimate ofη.

The models describingT are different for the two data sources. The series representation of
GF -distribution used to describe anLLGM contains the other as a special case constraining the
parameterη to one. We call the more general model the alternative hypothesis and the restricted
model the null hypothesis. We can make inference by defining the null hypothesisH0 : η = 1
(H0 : η ≤ 1) against the alternativeH1 : η > 1. Thus,H0 is rejected ifT is ”much” greater than
one.

The knowledge ofηi/σ2 is necessary to compute the probability of making a Type II error
and/or to compute the probability of rejecting a false null hypothesis. Usually this knowledge is
not available and only an estimate of these probabilities ispossible by replacingσ2 with s2 andηi
with η̂i. Whenn is large then the probabilities are accurate.

5 Inference on a single component

If T is greater than a critical value or thep−value is small, then likely data come from anLLGM
and it is important to investigate which component is random.

When data come from anLLGM the sampling distribution ofT depends on
(
1 + ηi/σ

2
)

with
ηi/σ

2 that can be seen as the extra factor due to the random effect. An estimate of this parameter
replacingηi with η̂i andσ2 with s2 can help to identify the number of random components but not
which component is random. Therefore, we propose to modify the extra factor,ηi/σ2, replacing
ηi with ωii andσ2 with σ2xii whereωii is the entry (i, i) of the matrixΩ andxii the entry (i, i)
of the matrix(X ′X)−1. The ”new” parameter,φi =

(
1 + ωii

σ2xii

)
, expresses the extent of ”total”
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variability of thei− th coefficient (σ2xii+ωii) in relation to the ”residual” varianceσ2xii. Given
a finiteσ2 > 0 and varyingωii, φi is greater than one and it measures how far we move from a
situation of zero variance. The greater the value ofφi the stronger this evidence. Whenωii = 0
the parameterφi is equal to one and thei− th component is zero variance. Given thatωii > 0 and
increasingσ2, φi approaches one.

The reciprocal ofφi, φ
−1
i = σ2xii

σ2xii+ωii
, can be seen as the share of ”residual” variance on

the ”total” variability. It ranges between zero and one. When ωii > 0, φ−1
i < 1 and we

face a randomness on thei − th component. Whenωii = 0, φ−1
i = 1 and thei − th com-

ponent is zero variance. Observe thatφ−1
i can be seen as a scalar form of the matrix product

σ2(X ′X)−1
[
σ2(X ′X)−1 +Ω

]
−1

the trace of which (divided byk) has been proposed by Theil
(1963) to measure the shares of prior and sample informationin the posterior precision in the
mixed regression estimation.

A ”natural” estimator ofφi is φ̂i = 1 + ω̂ii

s2xii whereω̂ii is the entry (i, i) of the matrixΩ̂. The

sampling distribution of̂φi is immediate. Because of the equalityφ̂i = 1 + ω̂ii

s2xii = ŝii
s2xii where

ŝii is the (i, i) entry of the matrixSb, we have

φ̂i ∼
(
1 +

ωii

σ2xii

)
F(n−1),n(t−k) (12)

which is a scale multiple of anF variate and can be seen as anGF -distribution with
δ = n(t− k)

(
1 + ωii

σ2xii

)
/(n− 1), α = (n− 1)/2 andγ = n(t− k)/2.

The sampling distribution (12) is obtained by observing that (n− 1)Sb/σ
2 ∼ Wk

(
(X ′X)−1 +Ω/σ2, n− 1

)

and(n − 1)ŝii/σ
2 ∼

(
xii + ωii

σ2

)
χ2
n−1. This implies that ŝii

σ2xii ∼
(
1 + ωii

σ2xii

) χ2

n−1

n−1 , replacingσ2

with s2 we get (12).
When data come from anLRM , ωii = 0 andφi = 1. We defineH0 : φi = 1 (H0 : φi ≤ 1)

the null hypothesis. In this case the estimateω̂ii can assume values that are greater or less than
zero withφ̂i ranging around one according to anF−distribution. Actually,ω̂ii ≤ 0 if and only if
φ̂i ≤ 1 and the probabilityP (ω̂ii ≤ 0) can be computed with theF−distribution. If data come
from anLLGM , ωii > 0 andφi > 1. We callH1 : φi > 1 the alternative hypothesis. In this case
the estimatêωii can still assume values that are greater or less than zero butthe negative values
become increasingly less frequent the stronger the evidence against the null hypothesis. Thus, the
null hypothesisH0 is rejected ifφ̂i is ”much” greater than one. Of course ap− value can also be
computed.

A ”confounding” situation can appear when the ”residual” varianceσ2xii is large compared
with the elements ofΩ. In this caseφi could be close to one and the test statisticφ̂i has a
GF -distribution close to anF−distribution. In this case there is a large probability of failing
to reject the null hypothesis in favor of the alternative. This problem is clearly explained, for
example, in the work of Gumpertz and Pantula (1989).

Observe that ŝii
s2xii is a pivotal quantity and a confidence interval forφi can be computed when

data come from anLLGM . Fixing α we can determine two percentiles ofF -distribution such
that

P

(
F(n−1),n(t−k),1−α/2

s2xii

ŝii
≤ φ−1

i ≤ Fn−1,n(t−k),α/2
s2xii

ŝii

)
= 1− α (13)
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Thus, if data come from ani − th random component, we can compute a confidence interval for
the share. This result can give further information about the choice of random components. If we
automatically compute the confidence interval for each component we could face two situations:
(a) an interval contained in(0, 1), in which case the component is presumably random, and (b) an
interval around one, in which case a substantial indeterminacy occurs. We could have a zero vari-
ance component or a random component withσ2 which dominates the variance of the component,
thereby confounding the choice.

6 An application: Tourism data

A data set on Tourism in Tuscany (Italy) consists of the indexnumber (base year2002) of ac-
commodations (the response variable) on260 Municipalities from2003 to 2009. These data were
first processed in order to obtain homogeneous groups of units. In the paper we work with98
”homogeneous” Municipalities. Trajectories of index numbers of this group are plotted in the
left panel of Fig.: 1. By observing the tourism data, each unit appears to have its own trajectory
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Figure 1: Spaghetti plots for Tourism data and Cadralazine data

approximated by linear functions with specific intercepts and slopes.
The trajectories are ”high” or ”low” suggesting two hypotheses from an economic point of

view. One is that the growth of tourism in each Municipality at time t could be determined solely
by an overall regional political economy. Statistically this is modeled with a vector of fixed popu-
lation parameters which capture the regional political economy plus an overall random deviation
from the same.

On the other hand, data show different steepness across Municipalities, suggesting that the
unit-specific intercepts and slopes could not be fixed but vary across units with a growth in tourism
influenced not only by the regional political economy, but also by specific characteristics of each
Municipality. This suggests that data could be modeled by adding a random component to the
parameter vector in order to distinguish the various trajectories.

Statistically we ask whether it is more appropriate to modeldata with a linear regression model
or a linear latent growth model.
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By applying the hypothesis testing approach proposed in this paper we can make the following
comments:

• We found a value of the test statisticT = 4.76, which, when compared with the critical
valueF194,490,0.95 = 1.212, falls into the rejection region. Consequently, we reject the
hypothesis that data come from anLRM . The computation of the probability of Type II
error requiresΩ which is unknown. Replacing the variance covariance matrixwith Ω̂ we
observe an estimated (conditional) probability close to zero.

• Thep− value is close to zero confirming strong evidence against the null hypothesis.
• φ̂1 = 3.245 andφ̂2 = 3.7313 compared withF97,490,0.95 = 1.279 confirm that both com-

ponents are random.
• The confidence intervals of the shares are:0.21719 ≤ φ−1

1 ≤ 0.40331 and0.19351 ≤
φ−1
2 ≤ 0.3593. It is likely that the ”true” shares belong to the interval(0, 1), thus confirming

randomness on both coefficients.

The above results are also compared with several indicatorsnormally used in model selection.
These indicators are computed with the packagelme4 (Bates et al., 2014) of R (R Core Team,
2014). The results are shown in table 1 All the above indicators confirm the choice of a linear

AIC BIC

LRM 6122.482 6136.075
LLGM 5925.687 5952.872

Table 1:AIC indicators for the linear regression model and linear latent
growth model for Tourism data.

latent growth model to describe data.
We also computed the conditionalAIC proposed by Vaida and Blanchard (2005), defined

for linear mixed models only and not comparable with other indicators. The value it produces,
cAIC = 5776.097, does not mean anything by itself and the fact that it is less than the others,
does not mean that theLLGM must be chosen. However, with the test proposed in this paperwe
can give an estimate of the degree on uncertainty to accept the mixed model. This will be done for
the next application.

7 An application: Cadralazine data

In the previous section we discussed a data set which made it possible to give clear and evident
answer about the choice of the model. To illustrate some difficulties that could arise when discrim-
inating between a linear regression model and a latent growth model let us consider the case study
of a pharmacokinetics dataset, the Cadralazine data, analyzed in the paper of Vaida and Blanchard
(2005) to which we refer for further explanations of data. The dataset consists of plasma drug
concentrations from10 cardiac failure patients who were given a single intravenous dose of30
mg of cadralazine, an anti-hypertensive drug. Each subjecthas the plasma drug concentration, in
mg/l, measured at2, 4, 6, 8, 10 and24 hours, for a total of6 observations per subject. The plot of
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the response versus time is given in the right panel of Fig.: 1. The data for each patient are well
described by a straight line, but the slopes and intercepts of the ten regression lines differ from
subject to subject. Two models are proposed, a linear regression model with fixed intercepts and
slopes, and a mixed effects model with random intercepts andslopes.

The choice between the two models is first conducted through severalAIC type indicators. If

AIC BIC

LRM 161.717 168.0
LLGM 157.923 170.5

Table 2:AIC indicators for the linear regression model and linear latent
growth model for Cadralazine data.

we compare theAIC andBIC indicators in table 2, we can see that there is substantial indetermi-
nacy. They produce conflicting results with theAIC indicating that we should choose anLLGM ,
while theBIC value gives a different interpretation, thus reversing thechoice. Moreover, observe
the differences between the indicators computed,∆AIC = 161.72(LRM)− 157.92(LLGM) =
3.794, ∆BIC = 170.5(LLGM) − 168.0(LRM) = 2.5 This values appear to be ”low” even
though they do not mean anything.

The indeterminacy emerging in this example is not removed with the test proposed in this
paper, however it may provide additional information to help choose the model:

• We found a value of the test statisticT = 1.7829, which when compared withF18,40,0.95 =
1.8682 falls into the acceptance region. Therefore, we fail to reject anLRM . The closeness
of the observed value to the critical value suggests cautionin choosing the model. Indeed,
we found ap− value = 0.0639 that confirms our caution. These results reflect the indeter-
minacy of bothAIC andBIC indicators.

• In this application the probability of a Type II error is important for quantifying the uncer-
tainty of the model chosen, however the computation requires knowledge aboutΩ. Unless
some information is available, the best we can do is to replace the ”true” variance covariance
matrix with Ω̂ estimated by the data. This allows for estimating theGF -distribution under

the alternative hypothesis. The result is a conditional probability,P
(
T ≤ F18,40,0.95|Ω = Ω̂

)
= 0.58

that could be taken as an estimate of the probability of the Type II error. Therefore, while
theBIC indicator suggests the choice of anLRM , we must also point out that there is a
”large” estimated probability of failing to reject the false model on the basis of informa-
tion contained in the data set. See Fig.: 2 (a). We can also saythat 0.58 is the degree of
uncertainty associated to the choice of anLRM .

• TheAIC indicator guides the choice towards anLLGM (see Tab.: 2). We also computed
the conditionalAIC showing a lower, though not comparable, value than the otherAIC
indicators. Therefore, given a substantial indeterminacyin the choice of the model, with the
test statistic proposed in the paper we can give an estimate of the degree of uncertainty of
accepting anLLGM instead of anLRM . We suggest proceeding as follows:

1. Estimate the variance covariance matrixΩ̂. Here we proceed with an estimate pro-
duced by the packagelme4 of R even though another estimate is plausible,

11



Ω̂ =

[
0.00054686 0.003727
0.003727 0.025400

]
.

2. We assume data come from anLLGM and we compute a critical value through a
GF -distribution at a significant level of0.05 conditionally toΩ = Ω̂. The resulting
critical value is0.971.

3. ComputeP (T > 0.971|Ω = 0) = 0.478 through theF -distribution. This estimated
probability is taken as a degree of uncertainty associated with the choice of anLLGM .
See Fig.: 2 (b).
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Figure 2: Hypothesis testing with statisticT on Cadralazine data.f(T |H0) is the density ofT whenH0 is
true;f(T |H1) is the density ofT whenH1 is true;α = 0.05 is the probability of a Type I error;β is the
probability of a Type II error; the numbers1.87 and0.97 are critical values.

8 Conclusions

We propose a finite sample parametric test to discriminate between a linear regression model and
a linear latent growth model. The test statistic is based on the trace of the product of an estimate
of a variance covariance matrix defined when data come from a linear regression model and a
sample variance covariance matrix based on ordinary least squares estimators. The sampling dis-
tribution of the test statistic depends on the model generating the data and can have a ”standard”
F -distribution or a linear combination ofF -distributions. In this paper a unifying sampling distri-
bution based on an infinite series representation of generalizedF -distributions is given. This result
allows us to frame the choice of the model in a classical hypothesis testing approach. By appro-
priately modifying the test statistic it is also possible totest hypotheses on randomness of single
elements of the linear latent growth model, thus avoiding the boundary problem of the likelihood
ratio statistic. The test statistic proposed in this paper has been applied to two data sets. With the
Tourism data it is used by itself to discriminate between thetwo models, with the Cadralazine data
it is used in conjunction with several indicators based on information criteria that give an estimate
of the probability of accepting or rejecting the model chosen.
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