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Abstract

In longitudinal studies with subjects measured repeataciigss time, an important prob-
lem is how to select a model generating data by choosing lestadinear regression model
and a linear latent growth model. Approaches based bothformiation criteria and asymp-
totic hypothesis tests of the variances of "random” compdmare widely used but not com-
pletely satisfactory. We propose a test statistic baseti@trace of the product of an estimate
of a variance covariance matrix defined when data come framear regression model and
a sample variance covariance matrix. We studied the saggistribution of the test statistic
giving a representation in terms of an infinite series of galired F'-distributions. Knowl-
edge about this distribution allows us to make inferencéiwi classical hypothesis testing
framework. The test statistic can be used by itself to disicrate between the two models
and/or, if duly modified, it can be used to test randomnessrgiescomponents. Moreover,
in conjunction with somed/C indicators it gives additional information which can hetp i
choosing the model.

keywords: GeneralizedF'-distribution; Hypothesis testing; Linear Mixed Modelspngitudinal
data.

1 Introduction

It is common practice in many applications to collect midtimeasurements on subjects across
time by focusing on the process of change when, typicallth bata dependency and differential
growth for different individuals can occur. If we assumettih@ subjects constitute a sample from
the population of interest and we wish to draw conclusiormiatypical patterns in the population
and the subject-to-subject variability of these pattewss are fitting linear latent growth models.
In this paper these models are analyzed by using a mixedimgdeamework (Laird and Ware,
1982). Linear mixed models can be viewed as extensions ediliregression models and attempt
to account for within-subject dependency in the multipleasweements by including one or more
subject-specific latent variables in the regression modghically, an additional random effect
is included for each regression coefficient that is expettadry among subjects. An important
practical problem is how to discriminate between a linegrassion model and a linear mixed



model and how to choose the random effect components. I tvadeldress the issue of which
model is more suitable, one might use standard model sateaieasures based on information
criteria such as the widely used Akaike Information Cragr /C'; Akaike (1973)), the Bayesian
Information Criteria B1C'; Schwarz (1978)) the conditional Akaike Information Crib@ (cAIC,
Vaida and Blanchard (2005)). These approaches are baséeé chdice of models that minimize
an estimate of a specific criterion which usually involvesaal¢-off between the closeness of the
fit to the data and the complexity of the model. We refer to thpep of Muller et al. (2013)
for a review of these approaches and other methods suchiakagie methods like the LASSO
(Tibshirani, 1996), Fence methods (Jiang et al., 2008) anyd&an methods.

The validity of all the methods proposed depends on the lyidgrassumptions. The review
paper of Muller et al. (2013) gives an overview of the limitglanost important findings of above
approaches, extracting information from some publishedikition results. As is known, one of
the major drawbacks of these approaches is that they faiveoany measure of the degree of
uncertainty of the model chosen. The value they produce nioesiean anything by itself.

Alternatively, because model selection is closely relatedypothesis testing, the choice be-
tween a linear regression modélR M) and a linear latent growth moddl .G M) and the evalu-
ation of its uncertainty could be conducted consideringmé&b hypothesis test on the variances of
"random” components. Noting that models are nested, ittisrabto consider the likelihood ratio
test. However, the difficulty with this is that it makes theialsapproach of comparing the likeli-
hood ratio test statistic with the chi-square distributiioappropriate. The question of whether the
variance of a component is zero depends on whether saidheartakes its value on the boundary
of the parameter space. This situation is known as "nordstali in relation to the other uses of
the likelihood ratio test. The major consequence is thangd samples-2 times the logarithm of
the likelihood ratio cannot be treated as a chi-squareildigton, but rather, as a mixture of chi-
square distributions. Determining the weights of this mmigtdistribution is difficult especially
for testing multiple variance components or a subset of theon more details see, for example,
Self and Liang (1987), Stram and Lee (1994), Verbeke and Mamhs (2003), Giampaoli and
Singer (2009) . Comparing the likelihood ratio statisti¢hwthe critical value from a chi-square
sampling distribution tends not to reject the null as ofteritahould. Other tests not based on
the likelihood function can be implemented (Silvapulle &mh, 2005) but their validity should be
carefully detected when applied to linear mixed models. édwer, all these tests are only valid
asymptotically. Finite sample distributions of the lilkelbd ratio test require simulations and are
only reported in particular cases. For example, Crainigceamd Ruppert (2004) introduced an
efficient simulation algorithm based on the spectral regaregtions of the likelihood ratio test and
the restricted likelihood ratio test statistics for modeith a single variance component.

When we extend the analysis to multiple variance componémescomplexity and difficul-
ties increase. In these cases we have to consider variamagarwe matrices and the problem of
testing the equality of two positive definite matrices. Hymsis testing approaches based on the
equality of two positive definite matrices have a distingais history in multivariate statistics. In
most cases the likelihood ratio approach is used and théingstest statistics involve the ratio of
the determinant of the sample covariance matrix under thdwypothesis and the alternative hy-
pothesis. Other researchers have studied tests based wadh®f two covariance matrices. Roy
(1953), Pillai (1955), Pillai and Jayachandran (1968) aad&b (1973) develop trace-based tests
and compare their performance to that of determinant-btestsl The trace test proposed by Pillai



for testing the equality of two variance covariance magrigppears to be useful in discriminating
between an.RM and anL LG M by appropriately defining the two matrices involved.

Let’'s denote withl the variance covariance matrix of the ordinary least sgqeat&nators
when data come from ahRM and letV + Q be the variance covariance matrix of the same
estimators when data come from BAG M where(2 denotes the covariance matrix of the random
effects. The Pillai test statistic proposed in the papeagel on an estimate %ftr VHV +Q)
with € that plays a a crucial role in discriminating between the tmamlels. IfQ2 is a positive semi
definite matrix,2 = 0, %tr V‘l(V + Q) > 1. In this case we can state that data come from
anLLGM. If Q@ = 0, tr V-1(V + Q) = 1 and data come from ahRM. In section2 the
test statistic is defined after introducing several notetioln sectior8 we analyze the sampling
distribution. When data come from dnkR M it has a "standard’F-distribution, when data come
from an L LG M the sampling distribution is more complex. Itis a linear tdmation of standard
F-distributions. The exact form of a linear combination airetard F-distributions is studied.
Following the work of Kourouklis and Moschopoulos (1985)rdfied sampling distribution in-
volving a generalized’-distribution is proposed which is based on an infinite serépresentation
and is relatively easy to implement. In sectibwe discuss the test statistic to make inference. In
sections, we analyze a slight modification of the test so that infeeemie randomness of single
components of the model is possible. Finally two applicetiare investigated. In sectignwe
applied the test to a data set on tourism. Said data set isisaffiy "regular” to allow a clear-cut
answer regarding the choice of the model. The answers peddog the test are not in conflict
with those given byAIC indicators. The advantage derived from the hypothesigeapproach
is that we can attach a measure of the degree of uncertairhetohoice of the model. In sec-
tion 7 the test is applied to a Cadralazine data set previouslyaealby Vaida and Blanchard
(2005). In this case differem IC' indicators applied to the data set do not give clear-cutcadi
tions about the model. There is a substantial indetermindmgh also remains when using the test
proposed in this paper but we can still provide additionfdrimation by computing an estimate
of the probability of accepting the "wrong” model.

2 Notation and test statistic

Let us suppose thabbservations on theth of n units are described by the modgl= X 3; + u;,

i =1,...,n, whereX is at x k matrix containing a column of ones and a column of constant
time values,3; is ak x 1 vector of coefficients unique to theth experimental unit, and; is a

t x 1 vector whose component is the measurement error at a timefpoindividual .

Let us also suppose that each experimental unit and its mespaurve is considered to be
selected from a larger population of response curves; theisdgression coefficient vectofls
may be viewed as random drawings from sobreariate populations; = 0 +v;, i = 1,...,n,
wherev; is an unobserved random variable that configures indivigu@aith.

In this paper we discuss testing under the following assiamgt (a)u; ~ N (0,021;), (b)

v; ~ N (0,9Q), Q is a positive semi definite matrix, (e} L v;, where the symbol indicates
independence of random variables @) L u;. We refer to this model as a linear latent growth
model.

If 2 = 0, then the regression coefficients are fixed. We refer to tidahas a linear regression
model. The normality assumptions are introduced for tggtimposes.



By replacing the random component in the model we have
yi=X0+¢;, & ~N(0,XQX +0°L)

Letb; = (X'X)~'X'y; be the ordinary least square estimator$ abmputed for each indi-
vidual unit. Note that thé;’s are independent and normally distributed with méamd variance-
covariance matrixs2(X'X) ! + Q. LetS, = (n — 1)~ ", (b; — b) (b; — b) be the sample
variance covariance matrix 6f with b = 1 3" | b;. When data come from abhLG M, S}, is an
unbiased consistent estimate of (X’ X)~! + Q (Gumpertz and Pantula, 1989) when data come
from anLRM S, is an unbiased consistent estimateréf X’ X) !

To discriminate between ahRM or an L LG M we propose the following test statistic

1 X'X
T=tr &5 52)Sb (1)
wheres? = 2571 | 52 with 52 = @=Xb WiXbi) (qyamy, 1970).

When data come from a linear regression mo€lek 0), (1/s2)(X’X) is "close” to S, and
we expect the test statistic to be approximately equal to one. When data come fromh &6’ M
we expect thaf” > 1. The greatefl” the stronger is the evidence against/aRM .

The sampling distribution df is analyzed in the next section.

Observe that the inverse @F—Sb can be seen as an estimatetfX' X) ! [s*(X'X) "1 + Q]
the trace of which (divided by) has been proposed by Theil (1963) to measure the sharei®of pr
and sample information in the posterior precision in theadiregression estimation (Barnabani,
2014).
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3 Sampling distribution of test statistic

When data come from ahRM, Q2 = 0 and(n — 1)S,/0% ~ W}, (X'X)"',n — 1) (W}, is for
Wishart distribution). Then(n — 1)(X'X)Y25 (X' X)"Y2 ~ W}, (I,n — 1) where(X'X)'/? is
the square root ofX’ X'). We have the following results

(i) (n—1)s;/0% ~x2_, wheres;,i=1,..., kisthei—th diagonal element afX’ X )'/2S, (X' X)/2,

Replacings? by s? we have

(n —1)sy _ (n— 1)sii/02 N X%_l @
= A
and
Sii
? ~ Ln—1n(t—k) (3)

(i) Byindependencey ¥  (n —1)s;/0% ~ X1y @nd

1. (X'X)S,  Xitn_1)
—ir ~
a? k(n—1)




becauser ((X’X)W%(X’X)l/?) = tr (X'X) %
With the following equality
1, (X'X)S, 1, (X'X)S, 0% n(t—k)

Zgp 200y 7
k 52 k

we derive the sampling distribution @f

T ~ Frn-1)n(t—k) 4)
When data come from ahLGM (n —1)S,/0? ~ Wy [(X'X)~ 4+ Q/0?,n — 1]. There-
fore, a non singular matrix) exists such that%Q’SbQ ~ Wi (I + U%,n — 1) whereD is a
diagonal matrix of eigenvalueg > 0 of the matrix(X’X)'/2Q(X’X)'/? and
trQ'SyQ = tr (X' X)Y28,(X'X)1/2) = tr (X' X) Sy. We have the following results:

(i) (n—1),sii/0* ~ (1+mi/0?) x%_, where,s;; denotes the — th diagonal element of

Q'S,@Q and )
052” ~ (1 +ni/0%) Fyey i) (5)
(il) As regards the distribution @f, it must be observed that
k k k
> (= Dosifo? =Y (n=Dsifo? ~ Y (1+25) x2 s (6)
=1 =1 =1
When we replace? by s2, we have
1 Sii i Ub
T3 “r (14 ) Pty ()

The above sampling distributions are now reproposed ingerihGeneralized Fisher-distribution
(G F-distribution). This is necessary because (7) is diffiooliniplement in practice and it does
not allow for computing the power of the test.

Let us consider (2). The statistic can be seen as the ratismindependent gamma random
variables where the numerator is distributedGaénr = %51, \; = 2n(t — k)) and the denomi-

nator is distributed ass <7 = w, A2 = 2) whereG(.,.) is for gamma distributionp and

~ are shape parameters, and \, scale parameters. The distribution of the rafig,is called
G F-distribution and has pdf (Malik, 1967)
5
z) = 2+ §) (@) ot 8
1) = gy G +9) (®)
where B(«, ) is the Beta functiony = A;/Ae. Expression (8) is also known as Compound
Gamma Distribution (Dubey, 1970). Therefore, we have

(TL — 1)5ii
82

~ GF (4,a,7) 9)



The standard”-distribution (4) can be seen a&d -distribution withd = n(t — k) /k(n — 1),
a=k(n—-1)/2,y=n(t—k)/2.

The distribution given by (5) is a scalar multiple offavariate which is a& F-distribution
with & = n(t — k) (1+ni/o?) /(n— 1), a = (n — 1)/2 andy = n(t — k) /2.

The result given by (7) is a linear combination of independ€érvariates whose distribution
does not admit a closed and simple form. However, because ibe seen as a linear combination
of ratios of independent gamma variates, the gamma-sepessentation proposed by Kourouklis
and Moschopoulos (1985) and Moschopoulos (1985) is péatiguuseful for defining the distri-
bution of (7). Following these papers we have

n—ls“

M?v

NZwl G p+l 277)
i=1 =0

where0 < n < oo is arbitrary.
In the expression of the serigs= Z’Zl ;= (n—1k/2,w; =Cd;, 1 =0,1,2,...,dy =1,
C=Tlizy (/L + 2)" di = (1) Xiy i gi dim with g; = (1/2) Y5 ey (1 - n/( =)'

When we replace? by s?, we have

k k 2 o0
(n—=1si D i (n—1)si/o G(p+1,2nn(t—k))
D T SR DL e Ter sy, (0

i=1 n(t—k)o2 =0

Finally, from (10) we have the distribution of the trace,

T~ w GF (5,0,7) (11)
=0

with 6 = = 0.

The series representation of tb& -distribution is not difficult to implement in practice and
in most statistical software there is a function that coraptihe generalizef-distribution. In this
paper computations are made with R (R Core Team, 2014) whi#veagy (GB2) (or flexsurv)
allows us to compute density, distribution function, gilarfunction and random generation for
the G F'-distribution.

The weights of the series representation can be troublesorimeplement. Moreover, their
computation can become too CPU-time consuming. In thessganay be adjusted to make the
convergence of the series faster (Kourouklis and Moschoppd985).

When the variability of the scale parameters is large arttiloshape parameters are small the
convergence of the weights is extremely slow. This fact daoadirage a large-scale simulation
and application of the expression proposed and an apprtigimaf the weights is needed. For
n < min{n; : j = 1,...,k} the weights,w;, define probabilities of an infinite discrete distri-
bution (Vellaisamy and Upadhye, 2009) and they can be appeigd by a theoretical discrete
distribution. For more than two random variables, Barnalf2a@15) proposed to approximate
these probabilities with the generalized negative binbudigribution of Jain and Consul (1971)
resulting in a fast and "excellent” approximation. For tvimelr independent random variables,



simple algebra shows that the weights are described exagtly negative binomial distribution
(Barnabani, 2015). The infinite discrete distributidnuw;)o,1,2,... must be truncated after the de-
sired accuracy.

4 |nference on the modd

When data come from abhLG M, the sampling distribution ¢f depends om; > 0, the eigenval-

ues of the matrix X’ X)'/2 Q (X' X)/2. The expected value & is given byE(T) = n?t(fi;)klzﬁ

where7j = (1/k) 2%, (1 4 ;/0?). We can observe that= 1 < Q = 0 that is, if and only if
data come from ab RM; 77 > 1 < Q > 0if and only if data come from al LG M. In the first
case the estimatdF has aG F-distribution (-distribution), in the second cagéhas an infinite
series representation 6f F-distributions. 77 > 1 occurs when at least one eigenvalue is greater
than zero. The tern¥; can be seen as the extra factor due toitheth random effect. It is zero
when the random effect does not occur. R

"Natural” estimators ofy;’s are7;’s i = 1,..., k, the eigenvalues ofX’X)'/2 Q) (X' X)/2
Wheres:) is an estimate of2. () can be estimated in several ways. Following Swamy (1970) we
defineQ = S, — s2(X’'X)~! as a difference of two matrices. This definition can yieldatag
estimates for variances of some of the coefficients and/grmotibe a positive definite matrix. In
this case we could have negative eigenvalues. Althoughtimegacould appear to be misleading,
the definition of(2 is coherent with the above sampling distributions and aldar obtaining
the equalityl’ = £ tr (X/S% = (1/k) Zle(l + 1;/s%) which shows thaf” can be seen as an
estimate ofj.

The models describin@’ are different for the two data sources. The series repratsemtof
G F-distribution used to describe dnW.GM contains the other as a special case constraining the
parametef; to one. We call the more general model the alternative hgsighand the restricted
model the null hypothesis. We can make inference by defirtisgnull hypothesidiy : 7 = 1
(Hp : 7 < 1) against the alternativ&l; : 7 > 1. Thus,H, is rejected ifT" is "much” greater than
one.

The knowledge ofy; /o2 is necessary to compute the probability of making a Typeribrer
and/or to compute the probability of rejecting a false nylbdthesis. Usually this knowledge is
not available and only an estimate of these probabilitigossible by replacing? with s? and;
with 7;. Whenn is large then the probabilities are accurate.

5 Inference on a single component

If T is greater than a critical value or the- value is small, then likely data come from dnW.G M
and it is important to investigate which component is random

When data come from ahLG M the sampling distribution of’ depends orf1 + 7;/c%) with
n;/o? that can be seen as the extra factor due to the random effeastinate of this parameter
replacingy; with 7; ando? with s can help to identify the number of random components but not
which component is random. Therefore, we propose to moH#yeitra factory; /o2, replacing
n; with wy; ando? with o2z wherew;; is the entry {, i) of the matrixQ2 andz? the entry {, 1)
of the matrix(X’X)~!. The "new” parameterp; = (1 + -%%), expresses the extent of "total”
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variability of the: — th coefficient ¢22% + w;;) in relation to the "residual” variancg®z*. Given

a finiteo? > 0 and varyingw;;, ¢; is greater than one and it measures how far we move from a
situation of zero variance. The greater the valuegthe stronger this evidence. Whery = 0

the parameteyp; is equal to one and thie- th component is zero variance. Given thgt > 0 and
increasingr?, ¢; approaches one. )

The reciprocal ofp;, qﬁ;l = % can be seen as the share of "residual” variance on
the "total” variability. It ranges between zero and one. Whg; > 0, qﬁ;l < 1 and we
face a randomness on thie- th component. Whew;; = 0, gb;l = 1 and thei — th com-
ponent is zero variance. Observe tk@tl can be seen as a scalar form of the matrix product
oA X'X) (X' X) T + Q]*l the trace of which (divided by) has been proposed by Theil
(1963) to measure the shares of prior and sample informatidhe posterior precision in the
mixed regression estimation.

A "natural” estimator ofy; is ggz = 1+ 2 whered;; is the entry {, ¢) of the matrix(2. The

2l

sampling distribution OEZ- is immediate. Because of the equal&y: 1+ S“;’m = Sﬁ; where
sy is the ¢, 7) entry of the matrixS,, we have
B ~ (1+ ‘”)F Dotk (12)
C g2pii ) T (n=1)n(t=k)

which is a scale multiple of af' variate and can be seen as@#h'-distribution with
d=n(t—k)(1+ ) /(n—1), 0= (n—1)/2andy = n(t — k)/2.

The sampling distribution (12) is obtained by observing tha- 1)S,/0? ~ W, (X'X)' + Q/0?,n — 1)
and(n — 1)8;;/0? ~ (2% + 24) x2_,. This implies that 3 ~ (1 + -%ii) % replacingo?
with s we get (12).

When data come from ahRM, w; = 0 andg; = 1. We defineHy : ¢; = 1 (Hp : ¢; < 1)
the null hypothesis. In this case the estimaiecan assume values that are greater or less than
Zero Withggi ranging around one according to &r-distribution. Actually,w;; < 0 if and only if
5@ < 1 and the probabilityP (w;; < 0) can be computed with thE'—distribution. If data come
fromanLLGM, wy; > 0andg; > 1. We callH; : ¢; > 1 the alternative hypothesis. In this case
the estimates;; can still assume values that are greater or less than zethduegative values
become increasingly less frequent the stronger the evédagainst the null hypothesis. Thus, the
null hypothesisH,, is rejected if@ is "much” greater than one. Of cours@ a value can also be
computed.

A "confounding” situation can appear when the "residualtiaaces?z" is large compared
with the elements of2. In this caseg; could be close to one and the test statis?;jchas a
G F-distribution close to arF’—distribution. In this case there is a large probability dfirig
to reject the null hypothesis in favor of the alternative.isTproblem is clearly explained, for
example, in the work of Gumpertz and Pantula (1989).

Observe that3; is a pivotal quantity and a confidence interval fgrcan be computed when
data come from ail.LGM. Fixing o we can determine two percentiles Bfdistribution such
that

SQxi’L' B 82xii
P <F(n—1),n(t—k;),1—a/2 = < ¢; L < oy tn—k)a)2 é\—) =1l-a (13)
1
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Thus, if data come from an— th random component, we can compute a confidence interval for
the share. This result can give further information aboetdhoice of random components. If we
automatically compute the confidence interval for each aomept we could face two situations:
(a) an interval contained if0, 1), in which case the component is presumably random, and (b) an
interval around one, in which case a substantial indetexayiroccurs. We could have a zero vari-
ance component or a random component witlwhich dominates the variance of the component,
thereby confounding the choice.

6 An application: Tourism data

A data set on Tourism in Tuscany (Italy) consists of the indamber (base ye&@002) of ac-
commodations (the response variable 266 Municipalities from2003 to 2009. These data were
first processed in order to obtain homogeneous groups of.uhitthe paper we work witB8
"homogeneous” Municipalities. Trajectories of index nwarb of this group are plotted in the
left panel of Fig.: 1. By observing the tourism data, each appears to have its own trajectory

Tourism data Cadralazine data
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Figure 1: Spaghetti plots for Tourism data and Cadralazate d

approximated by linear functions with specific intercepid alopes.

The trajectories are "high” or "low” suggesting two hypatlee from an economic point of
view. One is that the growth of tourism in each Municipalitytime ¢ could be determined solely
by an overall regional political economy. Statisticallystis modeled with a vector of fixed popu-
lation parameters which capture the regional politicalnecoy plus an overall random deviation
from the same.

On the other hand, data show different steepness acrosscidalities, suggesting that the
unit-specific intercepts and slopes could not be fixed byt &aaross units with a growth in tourism
influenced not only by the regional political economy, bbby specific characteristics of each
Municipality. This suggests that data could be modeled Wjireda random component to the
parameter vector in order to distinguish the various ttajges.

Statistically we ask whether it is more appropriate to makdéh with a linear regression model
or a linear latent growth model.



By applying the hypothesis testing approach proposed $rpdaper we can make the following
comments:

e We found a value of the test statistic = 4.76, which, when compared with the critical
value F94.490,0.95 = 1.212, falls into the rejection region. Consequently, we rejéet t
hypothesis that data come from & M. The computation of the probability of Type I
error requires) which is unknown. Replacing the variance covariance matitk 2 we
observe an estimated (conditional) probability close toze

. Thep — value is close to zero confirming strong evidence against the ypibthesis.

° ¢1 = 3.245 and ¢2 = 3.7313 compared WithFy7 490,0.95 = 1.279 confirm that both com-
ponents are random.

e The confidence intervals of the shares abe21719 < qﬁl_l < 0.40331 and0.19351 <
nggl < 0.3593. ltis likely that the "true” shares belong to the intery@J 1), thus confirming
randomness on both coefficients.

The above results are also compared with several indicatmmally used in model selection.
These indicators are computed with the package4 (Bates et al., 2014) of R (R Core Team,
2014). The results are shown in table 1 All the above indisatmnfirm the choice of a linear

AIC BIC
LRM  6122.482 6136.075
LLGM 5925.687 5952.872

Table 1: AIC indicators for the linear regression model and linear faten
growth model for Tourism data.

latent growth model to describe data.

We also computed the conditiondl/C proposed by Vaida and Blanchard (2005), defined
for linear mixed models only and not comparable with othelidators. The value it produces,
cAIC = 5776.097, does not mean anything by itself and the fact that it is lbas the others,
does not mean that theL. G M must be chosen. However, with the test proposed in this paper
can give an estimate of the degree on uncertainty to acceptitted model. This will be done for
the next application.

7 An application: Cadralazine data

In the previous section we discussed a data set which madssilge to give clear and evident
answer about the choice of the model. To illustrate somecdiffes that could arise when discrim-
inating between a linear regression model and a latent growadel let us consider the case study
of a pharmacokinetics dataset, the Cadralazine data,zethly the paper of Vaida and Blanchard
(2005) to which we refer for further explanations of data.eTataset consists of plasma drug
concentrations from0 cardiac failure patients who were given a single intravengdose of30
mg of cadralazine, an anti-hypertensive drug. Each subggthe plasma drug concentration, in
mg/l, measured &, 4, 6, 8, 10 and24 hours, for a total ob observations per subject. The plot of
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the response versus time is given in the right panel of FigTHe data for each patient are well
described by a straight line, but the slopes and intercdptisecten regression lines differ from
subject to subject. Two models are proposed, a linear reigresnodel with fixed intercepts and
slopes, and a mixed effects model with random interceptsskmes.

The choice between the two models is first conducted throegeral AIC type indicators. If

AIC BIC
LRM 161.717 168.0
LLGM 157923 1705

Table 2: AIC indicators for the linear regression model and linear faten
growth model for Cadralazine data.

we compare thel/C and BIC indicators in table 2, we can see that there is substantatémmi-
nacy. They produce conflicting results with tAéC indicating that we should choose &G M,
while the BIC value gives a different interpretation, thus reversingdhaice. Moreover, observe
the differences between the indicators computed/C = 161.72(LRM ) — 157.92(LLGM ) =
3.794, ABIC = 170.5(LLGM) — 168.0(LRM) = 2.5 This values appear to be "low” even
though they do not mean anything.

The indeterminacy emerging in this example is not removeti thie test proposed in this
paper, however it may provide additional information topghethoose the model:

¢ We found a value of the test statisit= 1.7829, which when compared with’g 40.0.95 =
1.8682 falls into the acceptance region. Therefore, we fail toatede L RM . The closeness
of the observed value to the critical value suggests cauti@moosing the model. Indeed,
we found ap — value = 0.0639 that confirms our caution. These results reflect the indeter-
minacy of bothAIC' and BIC indicators.

e In this application the probability of a Type Il error is imp@nt for quantifying the uncer-
tainty of the model chosen, however the computation reglirewledge abou®. Unless
some information is available, the best we can do is to reqtlae "true” variance covariance
matrix with €2 estimated by the data. This allows for estimating ¢h&-distribution under

the alternative hypothesis. The result is a conditionabability, P (T < F18.40,0.95|2 = ﬁ) =0.58

that could be taken as an estimate of the probability of th@eTy error. Therefore, while
the BIC indicator suggests the choice of &M, we must also point out that there is a
"large” estimated probability of failing to reject the falsnodel on the basis of informa-
tion contained in the data set. See Fig.: 2 (a). We can alsthsa(.58 is the degree of
uncertainty associated to the choice oflaRM .

e The AIC indicator guides the choice towards AAG M (see Tab.: 2). We also computed
the conditionalAIC showing a lower, though not comparable, value than the ottier
indicators. Therefore, given a substantial indeterminadiie choice of the model, with the
test statistic proposed in the paper we can give an estinfdke alegree of uncertainty of
accepting arlL LGM instead of an. RM. We suggest proceeding as follows:

1. Estimate the variance covariance mafiix Here we proceed with an estimate pro-
duced by the packadgene4 of R even though another estimate is plausible,
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0 — 0.00054686 0.003727
0.003727  0.025400
2. We assume data come from aiGM and we compute a critical value through a
G F-distribution at a significant level d@f.05 conditionally to€2 = Q. The resulting
critical value is0.971.
3. ComputeP (T' > 0.971|Q2 = 0) = 0.478 through theF'-distribution. This estimated

probability is taken as a degree of uncertainty associattttie choice of ai. LG M.
See Fig.: 2 (b).

1
f(TIHo)

\\

)
0 105 187 0 0.97

f(TIHy)

0.8 = 0.8 =

0.6 = 0.6 =

0.4 = 0.4 =

f(TIHo)
0.2 - 0.2

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\m

() (b)

Figure 2: Hypothesis testing with statisfiton Cadralazine datd.(T'|Hy) is the density o' whenH) is
true; f(T|Hy) is the density off’ when H; is true;a = 0.05 is the probability of a Type | errorj is the
probability of a Type Il error; the numbeiss87 and0.97 are critical values.

8 Conclusions

We propose a finite sample parametric test to discriminaigsd®n a linear regression model and
a linear latent growth model. The test statistic is basedertrace of the product of an estimate
of a variance covariance matrix defined when data come fromear regression model and a
sample variance covariance matrix based on ordinary lgasires estimators. The sampling dis-
tribution of the test statistic depends on the model gemgrdlhe data and can have a "standard”
F-distribution or a linear combination d@-distributions. In this paper a unifying sampling distri-
bution based on an infinite series representation of gemeddi'-distributions is given. This result
allows us to frame the choice of the model in a classical Hyggis testing approach. By appro-
priately modifying the test statistic it is also possibledst hypotheses on randomness of single
elements of the linear latent growth model, thus avoidirggltbundary problem of the likelihood
ratio statistic. The test statistic proposed in this paperiteen applied to two data sets. With the
Tourism data it is used by itself to discriminate betweenttveemodels, with the Cadralazine data
it is used in conjunction with several indicators based dorination criteria that give an estimate
of the probability of accepting or rejecting the model chose
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