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ABSTRACT

In this paper we present an efficient method for mobile vi-
sual search that exploits compact hash codes and data struc-
tures for visual features retrieval. The method has been tested
on a large scale standard dataset of one million SIFT fea-
tures, showing a retrieval performance comparable or supe-
rior to state-of-the-art methods, and a very high efficiency
in terms of memory consumption and computational require-
ments. These characteristics make it suitable for application
to mobile visual search, where devices have limited computa-
tional and memory capabilities.

Index Terms— Mobile visual search, nearest neighbor
search, hashing, SIFT.

1. INTRODUCTION

The technical features of modern smartphones have greatly
improved in all aspects in recent years. Regarding the com-
putational capabilities mobile phones now have relatively fast
processors and storage that is in the order of tens of GB. How-
ever certain characteristics are still quite lagging with respect
to PCs. For example mobile phones have very limited mem-
ory (e.g. Apple iPhone 6 has only 1 GB RAM) and CPUs
with smaller cache, and smaller clock rate, than those of PCs.
Because of these limitations, algorithms designed to run on
desktop computers are not suitable for smartphones and mo-
bile devices.

Regarding the problem of visual search, methods that aim
at reducing computational costs typically use feature hash-
ing, performing nearest neighbor search using Hamming dis-
tances. These methods generally use inverted files, e.g. hash
tables, that require large quantities of memory to store the
hash codes of the features. Moreover hash codes are relatively
long (in the order of several tens of bits) to obtain a reasonable
performance in retrieval, thus requiring fairly large amounts
of memory when storing large scale databases of features.

In this paper we present a novel method for feature hash-
ing, based on k-means, that requires a very limited codebook
size and that obtains good performance in retrieval even with
very compact hash codes. We show also the benefit of using
compact data structures to store a large database of features.
The proposed approach greatly reduces memory requirements

and is suitable, also in terms of computational cost, for mo-
bile visual search applications. The proposed method is com-
pared to state-of-the-art approaches on a standard large scale
dataset, showing a retrieval performance comparable or supe-
rior to more complex state-of-the-art approaches.

This paper is organized as follows: previous works are re-
viewed in Sect. 2; the proposed method is presented in Sect. 3;
experimental results and comparison with state-of-the-art ap-
proaches are shown in Sect. 4. Finally, conclusions are drawn
in Sect. 5.

2. PREVIOUS WORK

Previous works on visual feature hashing can be classified
in methods based on hashing functions, vector quantization
and scalar quantization. These methods typically rely on the
use of inverted files to store the hash codes and to perform
retrieval. A few works have also addressed specifically the
study of efficient data structures for nearest neighbor retrieval.

Hashing: Weiss et al. [1] have cast the problem of hashing
as a particular form of graph partitioning, and then relaxing
the problem. The proposed hashing algorithm, called Spec-
tral Hashing (SH), is efficient and outperforms other methods
based on hashing such as Locality Sensitive Hashing (LSH)
and semantic hashing [2], based on restricted Boltzmann ma-
chine (RBM). Heo et al. [3] have proposed to use hyper-
spheres instead of hyperplanes to encode high- dimensional
data points, to improve mapping of spatially coherent data
points into a binary code. Paulevé et al. [4] have compared
different types of hash functions: random projections and dif-
ferent types of lattices for structured quantization, and two
vector quantization methods, i.e. k-means and hierarchical
k-means clustering, for unstructured quantizers. Experimen-
tal results on SIFT features show that unstructured quantizers
that fit better real datasets, and provide performances signifi-
cantly superior to structured quantizers.

Vector quantization: Jégou et al. [5] have proposed to de-
compose the feature space into a Cartesian product of low-
dimensional subspaces, that are quantized separately. This
Product Quantization (PQ), originally used in source coding,



is efficient in solving memory issues that arise when using
vector quantization methods such as k-means, since in this
case a much reduced number of centroids is needed. The
method has been shown to obtain state-of-the-art results on
a large scale SIFT features dataset, improving over methods
such as SH [1] and Hamming Embedding [6]. Norouzi and
Fleet [7] build upon the idea of compositionality of the PQ
approach, proposing two variations of k-means: Orthogonal
k-means and Cartesian k-means, that can be viewed as gen-
eralization of the Iterative Quantization (ITQ) [8] and Prod-
uct Quantization algorithms, respectively. Chandrasekhar et
al. [9] have compared several compression schemes for SIFT
descriptors, showing that PQ approach obtains best results,
when compared to other vector quantization approach, as well
as against hashing and transform coding. Ge et al. [10] have
proposed an improvement of PQ, optimizing product quanti-
zation by minimizing quantization distortions w.r.t. the space
decomposition and the quantization codebooks.

Scalar quantization: Zhou et al. [11] have proposed an ap-
proach based on scalar quantization, applying it to SIFT de-
scriptors. Hashing is performed computing the median and
the third quartile of the bins of a SIFT descriptor, then cod-
ing the value of each bin according to this subdivision. The
hash code has a dimension of 256, and the first 32 bits are
used to index the code in an inverted file. Ren et al. [12]
have extended the approach of [11] including an evaluation of
the reliability of bits, depending on their quantization errors.
“Unreliable” bits, i.e. those with large quantization errors, are
then flipped at query time to perform query expansion. Chen
and Hsieh [13] have recently proposed an approach that quan-
tizes the differences of the bins of the SIFT descriptor, using
as a threshold the median computed on all the SIFT points of
a training set.

Data structures: Babenko and Lempitsky [14] have pro-
posed a data structure for efficient similarity search, called
inverted multi-index, that generalizes the inverted index by re-
placing vector quantization inside inverted indices with prod-
uct quantization, and building the multi-index as a multi-
dimensional table. An efficient algorithm to produce an or-
dered sequence of multi-index entries for a query is also pro-
posed. Very recently Norouzi et al. [15] have proposed a
method to build multiple hashing tables for exact k-nearest
neighbor search of hash codes, testing the method on a large
scale SIFT dataset.

3. THE PROPOSED METHOD

The proposed method exploits a novel version of the k-means
based hashing schema, introducing the possibility of assign-
ment to multiple cluster centers during the quantization pro-
cess, performing a sort of quantized codebook soft assign-
ment. This approach greatly reduces the number of required

cluster centers and thus, also training data. The resulting hash
code is stored in a memory efficient data structure, suitable for
devices with very limited RAM such as mobile devices. Most
of the approaches presented in scientific literature have relied
on inverted files [5, 11, 12] that are typically implemented as
hash tables1 [13, 15–17] or B-Trees. Instead we propose the
use of a variant of radix tree (also known as ‘patricia trie’
or ‘trie’) for an extremely compact storage of the hash codes
of visual features. The combination of these two solutions
results in a greatly reduced consumption of memory and im-
proved search speed.

3.1. Hashing

A typical approach to unstructured vector quantization is the
use of k-means algorithm to compute the hash code of visual
feature, since it minimizes the quantization error by satisfy-
ing the two Lloyd optimality conditions [5]. In this approach a
dictionary is learned over a training set and hash codes of fea-
tures are obtained by computing their distance to each clus-
ter center. Vectors are assigned to the nearest cluster cen-
ter whose code is used as hash code; considering the case of
SIFT points, i.e. a 128-dimensional feature vector, this means
that compressing it to 64 bits code, requires to use k = 264

centroids. Therefore, the computational cost of learning a k-
means based quantizer becomes expensive in terms of both
memory and time: there is need of large quantities of train-
ing data, e.g. several times larger than k, and the execution
time of the algorithm becomes not feasible. A possible way
to reduce this cost is to use hierarchical k-means (HKM), but
the problem of memory usage and size of the required learn-
ing set is affecting also this approach. Since the quantizer is
defined by the k centroids, the use of quantizers with a large
number of centroids may not be practical or efficient: if a fea-
ture has a dimension D, there is need to store k×D values to
represent the codebook of the quantizer.

A possible solution is to reduce the length of the hash sig-
nature, at the expenses of retrieval performance. Jégou et
al. [5] have proposed the use of product k-means quantiza-
tion to overcome this issue. In our approach, instead, we pro-
pose to compute a sort of soft assignment within the k-means
framework, to obtain very compact signatures and dimension
of the quantizer, while maintaining a retrieval performance
similar to that of [5].

The proposed method, called multi-k-means, starts learn-
ing a standard k-means dictionary, using a very small number
of centroids to maintain a low computational cost. The main
difference resides in the assignment and creation of the hash
code. The geometric mean of all the distances between the
feature to be quantized and the centroids of the codebook is
computed. Then the feature vector is considered as belong-
ing to all the centroids from which its distance is below the

1E.g. Yael Library http://yael.gforge.inria.fr
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Fig. 1. Illustration of the proposed method: if a feature is
assigned to a centroid the corresponding bit in the hash code is
set to 1. Features that strongly belong to a cluster are assigned
only to it (top), while those that are near to the borders of a
Voronoi cell are assigned to more than one cell (bottom).

mean. The hash signature is then computed by concatenating
the sequence of 0s, if the feature vector does not belong to
the centroid, and 1s, if the feature is assigned to the centroid.
This approach allows to create hash signatures using a much
smaller number of centroids, than using the usual k-means
baseline, since each centroid is directly associated to a bit of
the hash code. This approach can be considered a quantized
version of codebook soft assignment [18] and, similarly, it al-
leviates the problem of codeword ambiguity while reducing
the quantization error. Fig. 1 illustrates quantization process
and the resulting hash codes in three cases: one in which a
vector strongly belongs to a single cluster and two cases in
which vectors are assigned to more than one clusters.

Typically to solve the problem of ambiguous assignment
to a codebook centroid (in case of vector quantization) or
quantization error (e.g. in case of scalar quantization or LSH),
a multi probe approach is used. This means that one or more
bits of the query hash code are flipped to perform a query
expansion, thus improving recall at the expense of computa-
tional cost. The need for multi probe queries is not present
in this method, because of the possibility of assignment of
features to more than one centroid.

3.2. Indexing

Radix tries are often used in approximate string matching al-
gorithms [19], such as those required for spell checking. The

trie can be used to implement an inverted file, where the key
to search the data is stored in the position of the nodes. A
memory efficient variant of radix tree is the patricia trie, a
data structure that represents a space-optimized trie in which
each node with only one child is merged with its parent. Fig. 2
compares a trie with a patricia trie.
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Fig. 2. Comparison of trie (left) vs. patricia trie (right), used
to store 7 hash codes (top).

In this work we propose the use of Matching Algo-
rithm with Recursively Implemented StorAge (MARISA)
trie. MARISA trie is a recursive data structure in which a
patricia trie is used to represent another patricia trie. This
recursion makes the data structure more compact at the ex-
penses of search performance. In particular, to maintain a
good time-space tradeoff, we have used one level of recursion
depth.

Patricia tries have a better space complexity than hash ta-
bles, while time complexity is comparable only when consid-
ering imbalanced hash tables. However, the compactness of
the data structure makes it amenable to be maintained in the
CPU cache, thus greatly improving its speed.

4. EXPERIMENTAL RESULTS

Our approach is compared with three methods: the state-of-
the-art Product Quantization [5] approach, and two vector
quantization baselines: ERC Forests [20] and standard quan-
tization with k-means [21,22]. Experiments have been carried
on a large scale standard dataset.

4.1. Dataset

For our experiments we used a dataset of 1 million SIFT de-
scriptors [5, 23], commonly used to compare methods for vi-
sual feature hashing [5, 7, 10, 14, 15, 23]. The dataset is com-
posed by three different subsets: a learning set, a query set
and base set, along with the ground truth results for each



query. Each of these data sets is coming from publicly avail-
able images and they are also publicly available2. In particu-
lar, query and base descriptors are extracted from the INRIA
Holidays images [24], while the learning set is extracted from
Flickr 1M dataset. Tab. 1 summarizes the characteristics of
the dataset. For each query the ground truth reports the 100
nearest SIFT points in the database set, computed using an
exhaustive Euclidean distance calculation.

Table 1. Dataset dimensions
vector dataset SIFT
descriptor dimensionality D 128
learning set vectors 100,000
database set vectors 1,000,000
queries set vectors 10,000

4.2. Data structure

In the first experiment we evaluate the performance of
MARISA trie w.r.t. the data structures typically used to im-
plement inverted files, i.e. hash table and binary tree. The 106

feature vectors of the database set have been coded using the
proposed multi-k-means quantization, then stored using C++
implementations of the data structures. The STL versions of
unordered multimap and multimap provided by GCC
C++ compiler have been used for hash tables and B-Tree, re-
spectively. Results reported in Tab. 2 show that MARISA trie
obtains a dramatic improvement both in terms of speed and
size. In particular hash table and B-Tree would occupy a very
large percentage of RAM in a mobile phone (e.g. ∼ 10% in an
Apple iPhone 6), while the trie fits the L1 cache of an ARM
CPU commonly used in mobile phones.

Table 2. Comparison of data structures used in the experi-
ments to store 1 million SIFT hash codes (computed with the
proposed approach). Search time measures the time required
to perform the series using all the 10,000 query vectors of the
dataset.

MARISA trie Hash table Binary Tree
Dimension (Kb) 19 90,112 93,184
Search Time (ms) 25.3 245.31 370

4.3. Comparison

The methods used in the experiments have different types
of parameters that can be changed to obtain the best perfor-
mances.

Our method uses the number of centroids k in standard k-
means to compute the hash code. The final hash code length

2BIGANN dataset - http://corpus-texmex.irisa.fr

is equal to the number of k means centroids.
The standard quantization with k-means is characterized by
number of centroids k and quantization approach produces an
hash code of length log2k . Due to the noise in quantization,
this standard approach should have a number of quantizers
k sufficiently large, but with a large number of centroids the
complexity is prohibitive. Therefore we should have a big
amount of memory to store the codes; because of this we use,
for standard k-means approach, an hash code of maximum
length 16.

The product quantizer presented in [5] uses two differ-
ent distance computations: Asymmetric Distance Computa-
tion (ADC) and Inverted File with Asymmetric Distance Com-
putation (IVFADC).
ADC is characterized by the number of sub vectors m and the
number of quantizers per sub vectors k*, and produces a code
of length m x log2k

∗.
IVFADC is characterized by the codebook size k’ (number of
centroids associated to each quantizer), the number of neigh-
bouring cells w visited during the multiple assignment, the
number of sub vectors m and the number of quantizers per
sub vectors k* which is in this case fixed to k*=256. The
length of the final code is given by m x log2k

∗.
ERC Forests [20] is characterized by the number of esti-

mators, which indicates the number of trees in the forest and it
produces a code of length at most #estimators×2tree depth,
where tree depth value indicates the maximum depth of each
tree in the forest. In our experiments we used tree depth=3.

Table 3. Method parameters for signature length
methods signature length (bits)
k-means log2k
ERC Forests [20] #estimators× 2tree depth

ADC/IVFADC [5] m x log2k
∗

m-k-means k

Retrieval performance is measured following two mea-
sures: i) recall@R reported in Table 4; ii) precision@R re-
ported in Table 5 and Fig. 3.

recall@R is the average rate of queries for which the 1-
nearest neighbor from ground truth is ranked in the top R po-
sitions. This metric has been used in [5]. This value R is an
output of the method. Following the experimental setup of [5]
we have used only the first nearest neighbor. precision@R
is the average rate of queries for which the nearest neighbor
computed by a method is ranked in the first R positions of
the ground truth set, and was used to evaluate approximate
nearest neighbor in [25]. This value indicates the fraction of
queries for which the nearest neighbor is correctly retrieved
among the base vectors. In the case of R=1 we have that re-
call@R and precision@R are the same measure.

Fig. 3 reports precision@R of the best performing meth-
ods of Tab. 5, for R varying between 1 and 100. For each

http://corpus-texmex.irisa.fr


Table 4. Recall@1 comparison between our method, two
baselines (k-means and ERC Forests), and the Product Quan-
tization method [5].

method parameters code length recall@1
k-means k=256 8 0,012
k-means k=1024 10 0,0007
k-means k=4096 12 0,0004
k-means k=65536 16 0
ERC Forests 3 estimators 23 0,535
ADC m=2 k*=256 16 0,00023
ADC m=4 k*=256 32 0,054
ADC m=8 k*=256 64 0,224
ADC m=16 k*=256 128 0,457
ADC m=16 k*=4096 192 0,633
IVFADC m=16 k’=1024 w=64 128 0,467
IVFADC m=16 k’=8192 w=64 128 0,496
m-k-means k=23 23 0,724

method we show only the configuration that allows to obtain
the best performance.

In all these experiments we use a MARISA trie data
structure for matching, with a minimal recursion to main-
tain a good balance between dimension and search time. Re-
sults for ADC and IVFADC versions of Product Quantization
have been obtained using original code of the authors of the
method.

Results in Tab. 4 show that the proposed approach has
the best performance in terms of recall@1, and that the sec-
ond best method results in a much larger code length, thus
requiring a much larger memory to store the database. Re-
sults in Tab. 5 show that the proposed approach has the best
performance for precision@10. Regarding the value of preci-
sion@100 both variants of Product Quantization obtain the
best performance, although the difference with the perfor-
mance of the proposed method is negligible. In all the cases it
has to be noted that the code length of the competing methods
is much larger than that of multi-k-means.

Table 5. Precision@10 and Precision@100 comparison be-
tween our method, two baselines (k-means and ERC Forests),
and the Product Quantization method [5].

method parameters code length precision@10 precision@100
k-means k=256 8 0,034 0,083
k-means k=1024 10 0,025 0,065
k-means k=4096 12 0,001 0,0027
k-means k=65536 16 0,0001 0,0023
ERC Forests 3 estimators 23 0,8871 0,983
ADC m=2 k*=256 16 0,02 0,092
ADC m=4 k*=256 32 0,191 0,483
ADC m=8 k*=256 64 0,579 0,902
ADC m=16 k*=256 128 0,884 0,996
IVFADC m=16 k’=1024 w=64 128 0,894 0,996
IVFADC m=16 k’=8192 w=64 128 0,872 0,991
m-k-means k=23 23 0,966 0,993

Figure 3 shows how our method with a signature of 23
bits outperforms other methods (in the best configuration) for
R=1 and R=10 while for R=100 results are almost equal.
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Fig. 3. Evaluation in terms of Precision@R using the best
configurations of all the methods (ADC: m=16 k∗=256, IV-
FADC: m=16 k′=8192 w=64, ERC Forests: 3 Estimators,
k-means: k∗=256, m-k-means: k = 23 clusters) for different
values of R.

5. CONCLUSIONS

We have proposed a new version of the k-means based hash-
ing schema called multi-k-means which uses a small num-
ber of centroids and guarantees a low computational cost.
Our compact hash signature, in conjunction with the recursive
data structure MARISA trie, provides best results in terms of
memory requirements and search time compared to the tradi-
tional approaches represented by hash table and binary tree.
It also reaches top performances compared with two base-
lines methods and state-of-the-art approaches based on prod-
uct quantization. Future work will focus on evaluation of this
approach on a bigger dataset to study its scalability and will
concentrate on its applicability to a real world image retrieval
context.
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[4] Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg, “Lo-
cality sensitive hashing: A comparison of hash function
types and querying mechanisms,” Pattern Recognition
Letters, vol. 31, no. 11, pp. 1348 – 1358, 2010.
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